[TableGen] Split DAGISelMatcherOpt FactorNodes into 2 functions. NFC (#125330)
[llvm-project.git] / libcxx / test / std / numerics / rand / rand.dist / rand.dist.bern / rand.dist.bern.negbin / eval_param.pass.cpp
blob5abae0e554339b78fbb8c5890869407146cb0008
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // REQUIRES: long_tests
11 // <random>
13 // template<class IntType = int>
14 // class negative_binomial_distribution
16 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
18 #include <random>
19 #include <cassert>
20 #include <cmath>
21 #include <numeric>
22 #include <vector>
24 #include "test_macros.h"
26 template <class T>
27 inline
29 sqr(T x)
31 return x * x;
34 int main(int, char**)
37 typedef std::negative_binomial_distribution<> D;
38 typedef D::param_type P;
39 typedef std::minstd_rand G;
40 G g;
41 D d(16, .75);
42 P p(5, .75);
43 const int N = 1000000;
44 std::vector<D::result_type> u;
45 for (int i = 0; i < N; ++i)
47 D::result_type v = d(g, p);
48 assert(d.min() <= v && v <= d.max());
49 u.push_back(v);
51 double mean = std::accumulate(u.begin(), u.end(),
52 double(0)) / u.size();
53 double var = 0;
54 double skew = 0;
55 double kurtosis = 0;
56 for (unsigned i = 0; i < u.size(); ++i)
58 double dbl = (u[i] - mean);
59 double d2 = sqr(dbl);
60 var += d2;
61 skew += dbl * d2;
62 kurtosis += d2 * d2;
64 var /= u.size();
65 double dev = std::sqrt(var);
66 skew /= u.size() * dev * var;
67 kurtosis /= u.size() * var * var;
68 kurtosis -= 3;
69 double x_mean = p.k() * (1 - p.p()) / p.p();
70 double x_var = x_mean / p.p();
71 double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
72 double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
73 assert(std::abs((mean - x_mean) / x_mean) < 0.01);
74 assert(std::abs((var - x_var) / x_var) < 0.01);
75 assert(std::abs((skew - x_skew) / x_skew) < 0.01);
76 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
79 typedef std::negative_binomial_distribution<> D;
80 typedef D::param_type P;
81 typedef std::mt19937 G;
82 G g;
83 D d(16, .75);
84 P p(30, .03125);
85 const int N = 1000000;
86 std::vector<D::result_type> u;
87 for (int i = 0; i < N; ++i)
89 D::result_type v = d(g, p);
90 assert(d.min() <= v && v <= d.max());
91 u.push_back(v);
93 double mean = std::accumulate(u.begin(), u.end(),
94 double(0)) / u.size();
95 double var = 0;
96 double skew = 0;
97 double kurtosis = 0;
98 for (unsigned i = 0; i < u.size(); ++i)
100 double dbl = (u[i] - mean);
101 double d2 = sqr(dbl);
102 var += d2;
103 skew += dbl * d2;
104 kurtosis += d2 * d2;
106 var /= u.size();
107 double dev = std::sqrt(var);
108 skew /= u.size() * dev * var;
109 kurtosis /= u.size() * var * var;
110 kurtosis -= 3;
111 double x_mean = p.k() * (1 - p.p()) / p.p();
112 double x_var = x_mean / p.p();
113 double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
114 double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
115 assert(std::abs((mean - x_mean) / x_mean) < 0.01);
116 assert(std::abs((var - x_var) / x_var) < 0.01);
117 assert(std::abs((skew - x_skew) / x_skew) < 0.02);
118 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.1);
121 typedef std::negative_binomial_distribution<> D;
122 typedef D::param_type P;
123 typedef std::mt19937 G;
124 G g;
125 D d(16, .75);
126 P p(40, .25);
127 const int N = 1000000;
128 std::vector<D::result_type> u;
129 for (int i = 0; i < N; ++i)
131 D::result_type v = d(g, p);
132 assert(d.min() <= v && v <= d.max());
133 u.push_back(v);
135 double mean = std::accumulate(u.begin(), u.end(),
136 double(0)) / u.size();
137 double var = 0;
138 double skew = 0;
139 double kurtosis = 0;
140 for (unsigned i = 0; i < u.size(); ++i)
142 double dbl = (u[i] - mean);
143 double d2 = sqr(dbl);
144 var += d2;
145 skew += dbl * d2;
146 kurtosis += d2 * d2;
148 var /= u.size();
149 double dev = std::sqrt(var);
150 skew /= u.size() * dev * var;
151 kurtosis /= u.size() * var * var;
152 kurtosis -= 3;
153 double x_mean = p.k() * (1 - p.p()) / p.p();
154 double x_var = x_mean / p.p();
155 double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
156 double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
157 assert(std::abs((mean - x_mean) / x_mean) < 0.01);
158 assert(std::abs((var - x_var) / x_var) < 0.01);
159 assert(std::abs((skew - x_skew) / x_skew) < 0.02);
160 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.08);
163 return 0;