1 //===----------------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // REQUIRES: long_tests
13 // template<class RealType = double>
14 // class weibull_distribution
16 // template<class _URNG> result_type operator()(_URNG& g);
25 #include "test_macros.h"
38 typedef std::weibull_distribution
<> D
;
39 typedef std::mt19937 G
;
42 const int N
= 1000000;
43 std::vector
<D::result_type
> u
;
44 for (int i
= 0; i
< N
; ++i
)
46 D::result_type v
= d(g
);
50 double mean
= std::accumulate(u
.begin(), u
.end(), 0.0) / u
.size();
54 for (std::size_t i
= 0; i
< u
.size(); ++i
)
56 double dbl
= (u
[i
] - mean
);
63 double dev
= std::sqrt(var
);
64 skew
/= u
.size() * dev
* var
;
65 kurtosis
/= u
.size() * var
* var
;
67 double x_mean
= d
.b() * std::tgamma(1 + 1/d
.a());
68 double x_var
= sqr(d
.b()) * std::tgamma(1 + 2/d
.a()) - sqr(x_mean
);
69 double x_skew
= (sqr(d
.b())*d
.b() * std::tgamma(1 + 3/d
.a()) -
70 3*x_mean
*x_var
- sqr(x_mean
)*x_mean
) /
71 (std::sqrt(x_var
)*x_var
);
72 double x_kurtosis
= (sqr(sqr(d
.b())) * std::tgamma(1 + 4/d
.a()) -
73 4*x_skew
*x_var
*sqrt(x_var
)*x_mean
-
74 6*sqr(x_mean
)*x_var
- sqr(sqr(x_mean
))) / sqr(x_var
) - 3;
75 assert(std::abs((mean
- x_mean
) / x_mean
) < 0.01);
76 assert(std::abs((var
- x_var
) / x_var
) < 0.01);
77 assert(std::abs((skew
- x_skew
) / x_skew
) < 0.01);
78 assert(std::abs((kurtosis
- x_kurtosis
) / x_kurtosis
) < 0.03);
81 typedef std::weibull_distribution
<> D
;
82 typedef std::mt19937 G
;
85 const int N
= 1000000;
86 std::vector
<D::result_type
> u
;
87 for (int i
= 0; i
< N
; ++i
)
89 D::result_type v
= d(g
);
93 double mean
= std::accumulate(u
.begin(), u
.end(), 0.0) / u
.size();
97 for (std::size_t i
= 0; i
< u
.size(); ++i
)
99 double dbl
= (u
[i
] - mean
);
100 double d2
= sqr(dbl
);
106 double dev
= std::sqrt(var
);
107 skew
/= u
.size() * dev
* var
;
108 kurtosis
/= u
.size() * var
* var
;
110 double x_mean
= d
.b() * std::tgamma(1 + 1/d
.a());
111 double x_var
= sqr(d
.b()) * std::tgamma(1 + 2/d
.a()) - sqr(x_mean
);
112 double x_skew
= (sqr(d
.b())*d
.b() * std::tgamma(1 + 3/d
.a()) -
113 3*x_mean
*x_var
- sqr(x_mean
)*x_mean
) /
114 (std::sqrt(x_var
)*x_var
);
115 double x_kurtosis
= (sqr(sqr(d
.b())) * std::tgamma(1 + 4/d
.a()) -
116 4*x_skew
*x_var
*sqrt(x_var
)*x_mean
-
117 6*sqr(x_mean
)*x_var
- sqr(sqr(x_mean
))) / sqr(x_var
) - 3;
118 assert(std::abs((mean
- x_mean
) / x_mean
) < 0.01);
119 assert(std::abs((var
- x_var
) / x_var
) < 0.01);
120 assert(std::abs((skew
- x_skew
) / x_skew
) < 0.01);
121 assert(std::abs((kurtosis
- x_kurtosis
) / x_kurtosis
) < 0.01);
124 typedef std::weibull_distribution
<> D
;
125 typedef std::mt19937 G
;
128 const int N
= 1000000;
129 std::vector
<D::result_type
> u
;
130 for (int i
= 0; i
< N
; ++i
)
132 D::result_type v
= d(g
);
133 assert(d
.min() <= v
);
136 double mean
= std::accumulate(u
.begin(), u
.end(), 0.0) / u
.size();
140 for (std::size_t i
= 0; i
< u
.size(); ++i
)
142 double dbl
= (u
[i
] - mean
);
143 double d2
= sqr(dbl
);
149 double dev
= std::sqrt(var
);
150 skew
/= u
.size() * dev
* var
;
151 kurtosis
/= u
.size() * var
* var
;
153 double x_mean
= d
.b() * std::tgamma(1 + 1/d
.a());
154 double x_var
= sqr(d
.b()) * std::tgamma(1 + 2/d
.a()) - sqr(x_mean
);
155 double x_skew
= (sqr(d
.b())*d
.b() * std::tgamma(1 + 3/d
.a()) -
156 3*x_mean
*x_var
- sqr(x_mean
)*x_mean
) /
157 (std::sqrt(x_var
)*x_var
);
158 double x_kurtosis
= (sqr(sqr(d
.b())) * std::tgamma(1 + 4/d
.a()) -
159 4*x_skew
*x_var
*sqrt(x_var
)*x_mean
-
160 6*sqr(x_mean
)*x_var
- sqr(sqr(x_mean
))) / sqr(x_var
) - 3;
161 assert(std::abs((mean
- x_mean
) / x_mean
) < 0.01);
162 assert(std::abs((var
- x_var
) / x_var
) < 0.01);
163 assert(std::abs((skew
- x_skew
) / x_skew
) < 0.01);
164 assert(std::abs((kurtosis
- x_kurtosis
) / x_kurtosis
) < 0.03);