[mlir] Update Ch-2.md (#121379)
[llvm-project.git] / libcxx / test / std / thread / thread.condition / thread.condition.condvar / wait_for_pred.pass.cpp
blob76fc7393bc8fc70b11f77c18bbbce91c4afbab67
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 // UNSUPPORTED: no-threads, c++03
11 // <condition_variable>
13 // class condition_variable;
15 // template <class Rep, class Period, class Predicate>
16 // bool
17 // wait_for(unique_lock<mutex>& lock,
18 // const chrono::duration<Rep, Period>& rel_time,
19 // Predicate pred);
21 #include <condition_variable>
22 #include <atomic>
23 #include <cassert>
24 #include <chrono>
25 #include <mutex>
26 #include <thread>
28 #include "make_test_thread.h"
29 #include "test_macros.h"
31 template <class Function>
32 std::chrono::microseconds measure(Function f) {
33 std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
34 f();
35 std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
36 return std::chrono::duration_cast<std::chrono::microseconds>(end - start);
39 int main(int, char**) {
40 // Test unblocking via a call to notify_one() in another thread.
42 // To test this, we set a very long timeout in wait_for() and we try to minimize
43 // the likelihood that we got awoken by a spurious wakeup by updating the
44 // likely_spurious flag only immediately before we perform the notification.
46 std::atomic<bool> ready(false);
47 std::atomic<bool> likely_spurious(true);
48 auto timeout = std::chrono::seconds(3600);
49 std::condition_variable cv;
50 std::mutex mutex;
52 std::thread t1 = support::make_test_thread([&] {
53 std::unique_lock<std::mutex> lock(mutex);
54 auto elapsed = measure([&] {
55 ready = true;
56 bool result = cv.wait_for(lock, timeout, [&] { return !likely_spurious; });
57 assert(result); // return value should be true since we didn't time out
58 });
59 assert(elapsed < timeout);
60 });
62 std::thread t2 = support::make_test_thread([&] {
63 while (!ready) {
64 // spin
67 // Acquire the same mutex as t1. This ensures that the condition variable has started
68 // waiting (and hence released that mutex).
69 std::unique_lock<std::mutex> lock(mutex);
71 likely_spurious = false;
72 lock.unlock();
73 cv.notify_one();
74 });
76 t2.join();
77 t1.join();
80 // Test unblocking via a timeout.
82 // To test this, we create a thread that waits on a condition variable with a certain
83 // timeout, and we never awaken it. The "stop waiting" predicate always returns false,
84 // which means that we can't get out of the wait via a spurious wakeup.
86 auto timeout = std::chrono::milliseconds(250);
87 std::condition_variable cv;
88 std::mutex mutex;
90 std::thread t1 = support::make_test_thread([&] {
91 std::unique_lock<std::mutex> lock(mutex);
92 auto elapsed = measure([&] {
93 bool result = cv.wait_for(lock, timeout, [] { return false; }); // never stop waiting (until timeout)
94 assert(!result); // return value should be false since the predicate returns false after the timeout
95 });
96 assert(elapsed >= timeout);
97 });
99 t1.join();
102 // Test unblocking via a spurious wakeup.
104 // To test this, we set a fairly long timeout in wait_for() and we basically never
105 // wake up the condition variable. This way, we are hoping to get out of the wait
106 // via a spurious wakeup.
108 // However, since spurious wakeups are not required to even happen, this test is
109 // only trying to trigger that code path, but not actually asserting that it is
110 // taken. In particular, we do need to eventually ensure we get out of the wait
111 // by standard means, so we actually wake up the thread at the end.
113 std::atomic<bool> ready(false);
114 std::atomic<bool> awoken(false);
115 auto timeout = std::chrono::seconds(3600);
116 std::condition_variable cv;
117 std::mutex mutex;
119 std::thread t1 = support::make_test_thread([&] {
120 std::unique_lock<std::mutex> lock(mutex);
121 auto elapsed = measure([&] {
122 ready = true;
123 bool result = cv.wait_for(lock, timeout, [&] { return true; });
124 awoken = true;
125 assert(result); // return value should be true since we didn't time out
127 assert(elapsed < timeout); // can technically fail if t2 never executes and we timeout, but very unlikely
130 std::thread t2 = support::make_test_thread([&] {
131 while (!ready) {
132 // spin
135 // Acquire the same mutex as t1. This ensures that the condition variable has started
136 // waiting (and hence released that mutex).
137 std::unique_lock<std::mutex> lock(mutex);
138 lock.unlock();
140 // Give some time for t1 to be awoken spuriously so that code path is used.
141 std::this_thread::sleep_for(std::chrono::seconds(1));
143 // We would want to assert that the thread has been awoken after this time,
144 // however nothing guarantees us that it ever gets spuriously awoken, so
145 // we can't really check anything. This is still left here as documentation.
146 bool woke = awoken.load();
147 assert(woke || !woke);
149 // Whatever happened, actually awaken the condition variable to ensure the test
150 // doesn't keep running until the timeout.
151 cv.notify_one();
154 t2.join();
155 t1.join();
158 return 0;