1 //===- Chunks.h -------------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_COFF_CHUNKS_H
10 #define LLD_COFF_CHUNKS_H
13 #include "InputFiles.h"
14 #include "lld/Common/LLVM.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/PointerIntPair.h"
17 #include "llvm/ADT/iterator.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/MC/StringTableBuilder.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/WindowsMachineFlag.h"
27 using llvm::COFF::ImportDirectoryTableEntry
;
28 using llvm::object::chpe_range_type
;
29 using llvm::object::coff_relocation
;
30 using llvm::object::coff_section
;
31 using llvm::object::COFFSymbolRef
;
32 using llvm::object::SectionRef
;
36 class DefinedImportData
;
40 class RuntimePseudoReloc
;
43 // Mask for permissions (discardable, writable, readable, executable, etc).
44 const uint32_t permMask
= 0xFE000000;
46 // Mask for section types (code, data, bss).
47 const uint32_t typeMask
= 0x000000E0;
49 // The log base 2 of the largest section alignment, which is log2(8192), or 13.
50 enum : unsigned { Log2MaxSectionAlignment
= 13 };
52 // A Chunk represents a chunk of data that will occupy space in the
53 // output (if the resolver chose that). It may or may not be backed by
54 // a section of an input file. It could be linker-created data, or
55 // doesn't even have actual data (if common or bss).
64 Kind
kind() const { return chunkKind
; }
66 // Returns the size of this chunk (even if this is a common or BSS.)
67 size_t getSize() const;
69 // Returns chunk alignment in power of two form. Value values are powers of
70 // two from 1 to 8192.
71 uint32_t getAlignment() const { return 1U << p2Align
; }
73 // Update the chunk section alignment measured in bytes. Internally alignment
75 void setAlignment(uint32_t align
) {
76 // Treat zero byte alignment as 1 byte alignment.
77 align
= align
? align
: 1;
78 assert(llvm::isPowerOf2_32(align
) && "alignment is not a power of 2");
79 p2Align
= llvm::Log2_32(align
);
80 assert(p2Align
<= Log2MaxSectionAlignment
&&
81 "impossible requested alignment");
84 // Write this chunk to a mmap'ed file, assuming Buf is pointing to
85 // beginning of the file. Because this function may use RVA values
86 // of other chunks for relocations, you need to set them properly
87 // before calling this function.
88 void writeTo(uint8_t *buf
) const;
90 // The writer sets and uses the addresses. In practice, PE images cannot be
91 // larger than 2GB. Chunks are always laid as part of the image, so Chunk RVAs
92 // can be stored with 32 bits.
93 uint32_t getRVA() const { return rva
; }
94 void setRVA(uint64_t v
) {
95 // This may truncate. The writer checks for overflow later.
99 // Returns readable/writable/executable bits.
100 uint32_t getOutputCharacteristics() const;
102 // Returns the section name if this is a section chunk.
103 // It is illegal to call this function on non-section chunks.
104 StringRef
getSectionName() const;
106 // An output section has pointers to chunks in the section, and each
107 // chunk has a back pointer to an output section.
108 void setOutputSectionIdx(uint16_t o
) { osidx
= o
; }
109 uint16_t getOutputSectionIdx() const { return osidx
; }
112 // Collect all locations that contain absolute addresses for base relocations.
113 void getBaserels(std::vector
<Baserel
> *res
);
115 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of
116 // bytes, so this is used only for logging or debugging.
117 StringRef
getDebugName() const;
119 // Return true if this file has the hotpatch flag set to true in the
120 // S_COMPILE3 record in codeview debug info. Also returns true for some thunks
121 // synthesized by the linker.
122 bool isHotPatchable() const;
124 MachineTypes
getMachine() const;
125 llvm::Triple::ArchType
getArch() const;
126 std::optional
<chpe_range_type
> getArm64ECRangeType() const;
128 // ARM64EC entry thunk associated with the chunk.
129 Defined
*getEntryThunk() const;
130 void setEntryThunk(Defined
*entryThunk
);
133 Chunk(Kind k
= OtherKind
) : chunkKind(k
), hasData(true), p2Align(0) {}
135 const Kind chunkKind
;
138 // Returns true if this has non-zero data. BSS chunks return
139 // false. If false is returned, the space occupied by this chunk
140 // will be filled with zeros. Corresponds to the
141 // IMAGE_SCN_CNT_UNINITIALIZED_DATA section characteristic bit.
145 // The alignment of this chunk, stored in log2 form. The writer uses the
149 // The output section index for this chunk. The first valid section number is
153 // The RVA of this chunk in the output. The writer sets a value.
157 class NonSectionChunk
: public Chunk
{
159 virtual ~NonSectionChunk() = default;
161 // Returns the size of this chunk (even if this is a common or BSS.)
162 virtual size_t getSize() const = 0;
164 virtual uint32_t getOutputCharacteristics() const { return 0; }
166 // Write this chunk to a mmap'ed file, assuming Buf is pointing to
167 // beginning of the file. Because this function may use RVA values
168 // of other chunks for relocations, you need to set them properly
169 // before calling this function.
170 virtual void writeTo(uint8_t *buf
) const {}
172 // Returns the section name if this is a section chunk.
173 // It is illegal to call this function on non-section chunks.
174 virtual StringRef
getSectionName() const {
175 llvm_unreachable("unimplemented getSectionName");
179 // Collect all locations that contain absolute addresses for base relocations.
180 virtual void getBaserels(std::vector
<Baserel
> *res
) {}
182 virtual MachineTypes
getMachine() const { return IMAGE_FILE_MACHINE_UNKNOWN
; }
184 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of
185 // bytes, so this is used only for logging or debugging.
186 virtual StringRef
getDebugName() const { return ""; }
188 // Verify that chunk relocations are within their ranges.
189 virtual bool verifyRanges() { return true; };
191 // If needed, extend the chunk to ensure all relocations are within the
192 // allowed ranges. Return the additional space required for the extension.
193 virtual uint32_t extendRanges() { return 0; };
195 static bool classof(const Chunk
*c
) { return c
->kind() >= OtherKind
; }
198 NonSectionChunk(Kind k
= OtherKind
) : Chunk(k
) {}
201 class NonSectionCodeChunk
: public NonSectionChunk
{
203 virtual uint32_t getOutputCharacteristics() const override
{
204 return llvm::COFF::IMAGE_SCN_MEM_READ
| llvm::COFF::IMAGE_SCN_MEM_EXECUTE
;
208 NonSectionCodeChunk(Kind k
= OtherKind
) : NonSectionChunk(k
) {}
211 // MinGW specific; information about one individual location in the image
212 // that needs to be fixed up at runtime after loading. This represents
213 // one individual element in the PseudoRelocTableChunk table.
214 class RuntimePseudoReloc
{
216 RuntimePseudoReloc(Defined
*sym
, SectionChunk
*target
, uint32_t targetOffset
,
218 : sym(sym
), target(target
), targetOffset(targetOffset
), flags(flags
) {}
221 SectionChunk
*target
;
222 uint32_t targetOffset
;
223 // The Flags field contains the size of the relocation, in bits. No other
224 // flags are currently defined.
228 // A chunk corresponding a section of an input file.
229 class SectionChunk
: public Chunk
{
230 // Identical COMDAT Folding feature accesses section internal data.
234 class symbol_iterator
: public llvm::iterator_adaptor_base
<
235 symbol_iterator
, const coff_relocation
*,
236 std::random_access_iterator_tag
, Symbol
*> {
241 symbol_iterator(ObjFile
*file
, const coff_relocation
*i
)
242 : symbol_iterator::iterator_adaptor_base(i
), file(file
) {}
245 symbol_iterator() = default;
247 Symbol
*operator*() const { return file
->getSymbol(I
->SymbolTableIndex
); }
250 SectionChunk(ObjFile
*file
, const coff_section
*header
, Kind k
= SectionKind
);
251 static bool classof(const Chunk
*c
) { return c
->kind() <= SectionECKind
; }
252 size_t getSize() const { return header
->SizeOfRawData
; }
253 ArrayRef
<uint8_t> getContents() const;
254 void writeTo(uint8_t *buf
) const;
256 MachineTypes
getMachine() const { return file
->getMachineType(); }
258 // Defend against unsorted relocations. This may be overly conservative.
259 void sortRelocations();
261 // Write and relocate a portion of the section. This is intended to be called
262 // in a loop. Relocations must be sorted first.
263 void writeAndRelocateSubsection(ArrayRef
<uint8_t> sec
,
264 ArrayRef
<uint8_t> subsec
,
265 uint32_t &nextRelocIndex
, uint8_t *buf
) const;
267 uint32_t getOutputCharacteristics() const {
268 return header
->Characteristics
& (permMask
| typeMask
);
270 StringRef
getSectionName() const {
271 return StringRef(sectionNameData
, sectionNameSize
);
273 void getBaserels(std::vector
<Baserel
> *res
);
274 bool isCOMDAT() const;
275 void applyRelocation(uint8_t *off
, const coff_relocation
&rel
) const;
276 void applyRelX64(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
277 uint64_t p
, uint64_t imageBase
) const;
278 void applyRelX86(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
279 uint64_t p
, uint64_t imageBase
) const;
280 void applyRelARM(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
281 uint64_t p
, uint64_t imageBase
) const;
282 void applyRelARM64(uint8_t *off
, uint16_t type
, OutputSection
*os
, uint64_t s
,
283 uint64_t p
, uint64_t imageBase
) const;
285 void getRuntimePseudoRelocs(std::vector
<RuntimePseudoReloc
> &res
);
287 // Called if the garbage collector decides to not include this chunk
288 // in a final output. It's supposed to print out a log message to stdout.
289 void printDiscardedMessage() const;
291 // Adds COMDAT associative sections to this COMDAT section. A chunk
292 // and its children are treated as a group by the garbage collector.
293 void addAssociative(SectionChunk
*child
);
295 StringRef
getDebugName() const;
297 // True if this is a codeview debug info chunk. These will not be laid out in
298 // the image. Instead they will end up in the PDB, if one is requested.
299 bool isCodeView() const {
300 return getSectionName() == ".debug" || getSectionName().starts_with(".debug$");
303 // True if this is a DWARF debug info or exception handling chunk.
304 bool isDWARF() const {
305 return getSectionName().starts_with(".debug_") || getSectionName() == ".eh_frame";
308 // Allow iteration over the bodies of this chunk's relocated symbols.
309 llvm::iterator_range
<symbol_iterator
> symbols() const {
310 return llvm::make_range(symbol_iterator(file
, relocsData
),
311 symbol_iterator(file
, relocsData
+ relocsSize
));
314 ArrayRef
<coff_relocation
> getRelocs() const {
315 return llvm::ArrayRef(relocsData
, relocsSize
);
318 // Reloc setter used by ARM range extension thunk insertion.
319 void setRelocs(ArrayRef
<coff_relocation
> newRelocs
) {
320 relocsData
= newRelocs
.data();
321 relocsSize
= newRelocs
.size();
322 assert(relocsSize
== newRelocs
.size() && "reloc size truncation");
325 // Single linked list iterator for associated comdat children.
326 class AssociatedIterator
327 : public llvm::iterator_facade_base
<
328 AssociatedIterator
, std::forward_iterator_tag
, SectionChunk
> {
330 AssociatedIterator() = default;
331 AssociatedIterator(SectionChunk
*head
) : cur(head
) {}
332 bool operator==(const AssociatedIterator
&r
) const { return cur
== r
.cur
; }
333 // FIXME: Wrong const-ness, but it makes filter ranges work.
334 SectionChunk
&operator*() const { return *cur
; }
335 SectionChunk
&operator*() { return *cur
; }
336 AssociatedIterator
&operator++() {
337 cur
= cur
->assocChildren
;
342 SectionChunk
*cur
= nullptr;
345 // Allow iteration over the associated child chunks for this section.
346 llvm::iterator_range
<AssociatedIterator
> children() const {
347 // Associated sections do not have children. The assocChildren field is
348 // part of the parent's list of children.
349 bool isAssoc
= selection
== llvm::COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE
;
350 return llvm::make_range(
351 AssociatedIterator(isAssoc
? nullptr : assocChildren
),
352 AssociatedIterator(nullptr));
355 // The section ID this chunk belongs to in its Obj.
356 uint32_t getSectionNumber() const;
358 ArrayRef
<uint8_t> consumeDebugMagic();
360 static ArrayRef
<uint8_t> consumeDebugMagic(ArrayRef
<uint8_t> data
,
361 StringRef sectionName
);
363 static SectionChunk
*findByName(ArrayRef
<SectionChunk
*> sections
,
366 // The file that this chunk was created from.
369 // Pointer to the COFF section header in the input file.
370 const coff_section
*header
;
372 // The COMDAT leader symbol if this is a COMDAT chunk.
373 DefinedRegular
*sym
= nullptr;
375 // The CRC of the contents as described in the COFF spec 4.5.5.
376 // Auxiliary Format 5: Section Definitions. Used for ICF.
377 uint32_t checksum
= 0;
379 // Used by the garbage collector.
382 // Whether this section needs to be kept distinct from other sections during
383 // ICF. This is set by the driver using address-significance tables.
384 bool keepUnique
= false;
386 // The COMDAT selection if this is a COMDAT chunk.
387 llvm::COFF::COMDATType selection
= (llvm::COFF::COMDATType
)0;
389 // A pointer pointing to a replacement for this chunk.
390 // Initially it points to "this" object. If this chunk is merged
391 // with other chunk by ICF, it points to another chunk,
392 // and this chunk is considered as dead.
396 SectionChunk
*assocChildren
= nullptr;
398 // Used for ICF (Identical COMDAT Folding)
399 void replace(SectionChunk
*other
);
400 uint32_t eqClass
[2] = {0, 0};
402 // Relocations for this section. Size is stored below.
403 const coff_relocation
*relocsData
;
405 // Section name string. Size is stored below.
406 const char *sectionNameData
;
408 uint32_t relocsSize
= 0;
409 uint32_t sectionNameSize
= 0;
412 // A section chunk corresponding a section of an EC input file.
413 class SectionChunkEC final
: public SectionChunk
{
415 static bool classof(const Chunk
*c
) { return c
->kind() == SectionECKind
; }
417 SectionChunkEC(ObjFile
*file
, const coff_section
*header
)
418 : SectionChunk(file
, header
, SectionECKind
) {}
419 Defined
*entryThunk
= nullptr;
422 // Inline methods to implement faux-virtual dispatch for SectionChunk.
424 inline size_t Chunk::getSize() const {
425 if (isa
<SectionChunk
>(this))
426 return static_cast<const SectionChunk
*>(this)->getSize();
427 return static_cast<const NonSectionChunk
*>(this)->getSize();
430 inline uint32_t Chunk::getOutputCharacteristics() const {
431 if (isa
<SectionChunk
>(this))
432 return static_cast<const SectionChunk
*>(this)->getOutputCharacteristics();
433 return static_cast<const NonSectionChunk
*>(this)->getOutputCharacteristics();
436 inline void Chunk::writeTo(uint8_t *buf
) const {
437 if (isa
<SectionChunk
>(this))
438 static_cast<const SectionChunk
*>(this)->writeTo(buf
);
440 static_cast<const NonSectionChunk
*>(this)->writeTo(buf
);
443 inline StringRef
Chunk::getSectionName() const {
444 if (isa
<SectionChunk
>(this))
445 return static_cast<const SectionChunk
*>(this)->getSectionName();
446 return static_cast<const NonSectionChunk
*>(this)->getSectionName();
449 inline void Chunk::getBaserels(std::vector
<Baserel
> *res
) {
450 if (isa
<SectionChunk
>(this))
451 static_cast<SectionChunk
*>(this)->getBaserels(res
);
453 static_cast<NonSectionChunk
*>(this)->getBaserels(res
);
456 inline StringRef
Chunk::getDebugName() const {
457 if (isa
<SectionChunk
>(this))
458 return static_cast<const SectionChunk
*>(this)->getDebugName();
459 return static_cast<const NonSectionChunk
*>(this)->getDebugName();
462 inline MachineTypes
Chunk::getMachine() const {
463 if (isa
<SectionChunk
>(this))
464 return static_cast<const SectionChunk
*>(this)->getMachine();
465 return static_cast<const NonSectionChunk
*>(this)->getMachine();
468 inline llvm::Triple::ArchType
Chunk::getArch() const {
469 return llvm::getMachineArchType(getMachine());
472 inline std::optional
<chpe_range_type
> Chunk::getArm64ECRangeType() const {
473 // Data sections don't need codemap entries.
474 if (!(getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE
))
477 switch (getMachine()) {
479 return chpe_range_type::Amd64
;
481 return chpe_range_type::Arm64EC
;
483 return chpe_range_type::Arm64
;
487 // This class is used to implement an lld-specific feature (not implemented in
488 // MSVC) that minimizes the output size by finding string literals sharing tail
489 // parts and merging them.
491 // If string tail merging is enabled and a section is identified as containing a
492 // string literal, it is added to a MergeChunk with an appropriate alignment.
493 // The MergeChunk then tail merges the strings using the StringTableBuilder
494 // class and assigns RVAs and section offsets to each of the member chunks based
495 // on the offsets assigned by the StringTableBuilder.
496 class MergeChunk
: public NonSectionChunk
{
498 MergeChunk(uint32_t alignment
);
499 static void addSection(COFFLinkerContext
&ctx
, SectionChunk
*c
);
500 void finalizeContents();
501 void assignSubsectionRVAs();
503 uint32_t getOutputCharacteristics() const override
;
504 StringRef
getSectionName() const override
{ return ".rdata"; }
505 size_t getSize() const override
;
506 void writeTo(uint8_t *buf
) const override
;
508 std::vector
<SectionChunk
*> sections
;
511 llvm::StringTableBuilder builder
;
512 bool finalized
= false;
515 // A chunk for common symbols. Common chunks don't have actual data.
516 class CommonChunk
: public NonSectionChunk
{
518 CommonChunk(const COFFSymbolRef sym
);
519 size_t getSize() const override
{ return sym
.getValue(); }
520 uint32_t getOutputCharacteristics() const override
;
521 StringRef
getSectionName() const override
{ return ".bss"; }
524 const COFFSymbolRef sym
;
527 // A chunk for linker-created strings.
528 class StringChunk
: public NonSectionChunk
{
530 explicit StringChunk(StringRef s
) : str(s
) {}
531 size_t getSize() const override
{ return str
.size() + 1; }
532 void writeTo(uint8_t *buf
) const override
;
538 static const uint8_t importThunkX86
[] = {
539 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // JMP *0x0
542 static const uint8_t importThunkARM
[] = {
543 0x40, 0xf2, 0x00, 0x0c, // mov.w ip, #0
544 0xc0, 0xf2, 0x00, 0x0c, // mov.t ip, #0
545 0xdc, 0xf8, 0x00, 0xf0, // ldr.w pc, [ip]
548 static const uint8_t importThunkARM64
[] = {
549 0x10, 0x00, 0x00, 0x90, // adrp x16, #0
550 0x10, 0x02, 0x40, 0xf9, // ldr x16, [x16]
551 0x00, 0x02, 0x1f, 0xd6, // br x16
554 static const uint8_t importThunkARM64EC
[] = {
555 0x0b, 0x00, 0x00, 0x90, // adrp x11, 0x0
556 0x6b, 0x01, 0x40, 0xf9, // ldr x11, [x11]
557 0x0a, 0x00, 0x00, 0x90, // adrp x10, 0x0
558 0x4a, 0x01, 0x00, 0x91, // add x10, x10, #0x0
559 0x00, 0x00, 0x00, 0x14 // b 0x0
563 // A chunk for DLL import jump table entry. In a final output, its
564 // contents will be a JMP instruction to some __imp_ symbol.
565 class ImportThunkChunk
: public NonSectionCodeChunk
{
567 ImportThunkChunk(COFFLinkerContext
&ctx
, Defined
*s
);
568 static bool classof(const Chunk
*c
) { return c
->kind() == ImportThunkKind
; }
570 // We track the usage of the thunk symbol separately from the import file
571 // to avoid generating unnecessary thunks.
576 COFFLinkerContext
&ctx
;
579 class ImportThunkChunkX64
: public ImportThunkChunk
{
581 explicit ImportThunkChunkX64(COFFLinkerContext
&ctx
, Defined
*s
);
582 size_t getSize() const override
{ return sizeof(importThunkX86
); }
583 void writeTo(uint8_t *buf
) const override
;
584 MachineTypes
getMachine() const override
{ return AMD64
; }
587 class ImportThunkChunkX86
: public ImportThunkChunk
{
589 explicit ImportThunkChunkX86(COFFLinkerContext
&ctx
, Defined
*s
)
590 : ImportThunkChunk(ctx
, s
) {}
591 size_t getSize() const override
{ return sizeof(importThunkX86
); }
592 void getBaserels(std::vector
<Baserel
> *res
) override
;
593 void writeTo(uint8_t *buf
) const override
;
594 MachineTypes
getMachine() const override
{ return I386
; }
597 class ImportThunkChunkARM
: public ImportThunkChunk
{
599 explicit ImportThunkChunkARM(COFFLinkerContext
&ctx
, Defined
*s
)
600 : ImportThunkChunk(ctx
, s
) {
603 size_t getSize() const override
{ return sizeof(importThunkARM
); }
604 void getBaserels(std::vector
<Baserel
> *res
) override
;
605 void writeTo(uint8_t *buf
) const override
;
606 MachineTypes
getMachine() const override
{ return ARMNT
; }
609 class ImportThunkChunkARM64
: public ImportThunkChunk
{
611 explicit ImportThunkChunkARM64(COFFLinkerContext
&ctx
, Defined
*s
,
612 MachineTypes machine
)
613 : ImportThunkChunk(ctx
, s
), machine(machine
) {
616 size_t getSize() const override
{ return sizeof(importThunkARM64
); }
617 void writeTo(uint8_t *buf
) const override
;
618 MachineTypes
getMachine() const override
{ return machine
; }
621 MachineTypes machine
;
624 // ARM64EC __impchk_* thunk implementation.
625 // Performs an indirect call to an imported function pointer
626 // using the __icall_helper_arm64ec helper function.
627 class ImportThunkChunkARM64EC
: public ImportThunkChunk
{
629 explicit ImportThunkChunkARM64EC(ImportFile
*file
);
630 size_t getSize() const override
;
631 MachineTypes
getMachine() const override
{ return ARM64EC
; }
632 void writeTo(uint8_t *buf
) const override
;
633 bool verifyRanges() override
;
634 uint32_t extendRanges() override
;
637 Defined
*sym
= nullptr;
638 bool extended
= false;
644 class RangeExtensionThunkARM
: public NonSectionCodeChunk
{
646 explicit RangeExtensionThunkARM(COFFLinkerContext
&ctx
, Defined
*t
)
647 : target(t
), ctx(ctx
) {
650 size_t getSize() const override
;
651 void writeTo(uint8_t *buf
) const override
;
652 MachineTypes
getMachine() const override
{ return ARMNT
; }
657 COFFLinkerContext
&ctx
;
660 // A ragnge extension thunk used for both ARM64EC and ARM64 machine types.
661 class RangeExtensionThunkARM64
: public NonSectionCodeChunk
{
663 explicit RangeExtensionThunkARM64(MachineTypes machine
, Defined
*t
)
664 : target(t
), machine(machine
) {
666 assert(llvm::COFF::isAnyArm64(machine
));
668 size_t getSize() const override
;
669 void writeTo(uint8_t *buf
) const override
;
670 MachineTypes
getMachine() const override
{ return machine
; }
675 MachineTypes machine
;
679 // See comments for DefinedLocalImport class.
680 class LocalImportChunk
: public NonSectionChunk
{
682 explicit LocalImportChunk(COFFLinkerContext
&ctx
, Defined
*s
);
683 size_t getSize() const override
;
684 void getBaserels(std::vector
<Baserel
> *res
) override
;
685 void writeTo(uint8_t *buf
) const override
;
689 COFFLinkerContext
&ctx
;
692 // Duplicate RVAs are not allowed in RVA tables, so unique symbols by chunk and
693 // offset into the chunk. Order does not matter as the RVA table will be sorted
695 struct ChunkAndOffset
{
699 struct DenseMapInfo
{
700 static ChunkAndOffset
getEmptyKey() {
701 return {llvm::DenseMapInfo
<Chunk
*>::getEmptyKey(), 0};
703 static ChunkAndOffset
getTombstoneKey() {
704 return {llvm::DenseMapInfo
<Chunk
*>::getTombstoneKey(), 0};
706 static unsigned getHashValue(const ChunkAndOffset
&co
) {
707 return llvm::DenseMapInfo
<std::pair
<Chunk
*, uint32_t>>::getHashValue(
708 {co
.inputChunk
, co
.offset
});
710 static bool isEqual(const ChunkAndOffset
&lhs
, const ChunkAndOffset
&rhs
) {
711 return lhs
.inputChunk
== rhs
.inputChunk
&& lhs
.offset
== rhs
.offset
;
716 using SymbolRVASet
= llvm::DenseSet
<ChunkAndOffset
>;
718 // Table which contains symbol RVAs. Used for /safeseh and /guard:cf.
719 class RVATableChunk
: public NonSectionChunk
{
721 explicit RVATableChunk(SymbolRVASet s
) : syms(std::move(s
)) {}
722 size_t getSize() const override
{ return syms
.size() * 4; }
723 void writeTo(uint8_t *buf
) const override
;
729 // Table which contains symbol RVAs with flags. Used for /guard:ehcont.
730 class RVAFlagTableChunk
: public NonSectionChunk
{
732 explicit RVAFlagTableChunk(SymbolRVASet s
) : syms(std::move(s
)) {}
733 size_t getSize() const override
{ return syms
.size() * 5; }
734 void writeTo(uint8_t *buf
) const override
;
741 // This class represents a block in .reloc section.
742 // See the PE/COFF spec 5.6 for details.
743 class BaserelChunk
: public NonSectionChunk
{
745 BaserelChunk(uint32_t page
, Baserel
*begin
, Baserel
*end
);
746 size_t getSize() const override
{ return data
.size(); }
747 void writeTo(uint8_t *buf
) const override
;
750 std::vector
<uint8_t> data
;
755 Baserel(uint32_t v
, uint8_t ty
) : rva(v
), type(ty
) {}
756 explicit Baserel(uint32_t v
, llvm::COFF::MachineTypes machine
)
757 : Baserel(v
, getDefaultType(machine
)) {}
758 static uint8_t getDefaultType(llvm::COFF::MachineTypes machine
);
764 // This is a placeholder Chunk, to allow attaching a DefinedSynthetic to a
765 // specific place in a section, without any data. This is used for the MinGW
766 // specific symbol __RUNTIME_PSEUDO_RELOC_LIST_END__, even though the concept
767 // of an empty chunk isn't MinGW specific.
768 class EmptyChunk
: public NonSectionChunk
{
771 size_t getSize() const override
{ return 0; }
772 void writeTo(uint8_t *buf
) const override
{}
775 class ECCodeMapEntry
{
777 ECCodeMapEntry(Chunk
*first
, Chunk
*last
, chpe_range_type type
)
778 : first(first
), last(last
), type(type
) {}
781 chpe_range_type type
;
784 // This is a chunk containing CHPE code map on EC targets. It's a table
785 // of address ranges and their types.
786 class ECCodeMapChunk
: public NonSectionChunk
{
788 ECCodeMapChunk(std::vector
<ECCodeMapEntry
> &map
) : map(map
) {}
789 size_t getSize() const override
;
790 void writeTo(uint8_t *buf
) const override
;
793 std::vector
<ECCodeMapEntry
> &map
;
796 class CHPECodeRangesChunk
: public NonSectionChunk
{
798 CHPECodeRangesChunk(std::vector
<std::pair
<Chunk
*, Defined
*>> &exportThunks
)
799 : exportThunks(exportThunks
) {}
800 size_t getSize() const override
;
801 void writeTo(uint8_t *buf
) const override
;
804 std::vector
<std::pair
<Chunk
*, Defined
*>> &exportThunks
;
807 class CHPERedirectionChunk
: public NonSectionChunk
{
809 CHPERedirectionChunk(std::vector
<std::pair
<Chunk
*, Defined
*>> &exportThunks
)
810 : exportThunks(exportThunks
) {}
811 size_t getSize() const override
;
812 void writeTo(uint8_t *buf
) const override
;
815 std::vector
<std::pair
<Chunk
*, Defined
*>> &exportThunks
;
818 static const uint8_t ECExportThunkCode
[] = {
819 0x48, 0x8b, 0xc4, // movq %rsp, %rax
820 0x48, 0x89, 0x58, 0x20, // movq %rbx, 0x20(%rax)
823 0xe9, 0, 0, 0, 0, // jmp *0x0
828 class ECExportThunkChunk
: public NonSectionCodeChunk
{
830 explicit ECExportThunkChunk(Defined
*targetSym
) : target(targetSym
) {}
831 size_t getSize() const override
{ return sizeof(ECExportThunkCode
); };
832 void writeTo(uint8_t *buf
) const override
;
833 MachineTypes
getMachine() const override
{ return AMD64
; }
838 // MinGW specific, for the "automatic import of variables from DLLs" feature.
839 // This provides the table of runtime pseudo relocations, for variable
840 // references that turned out to need to be imported from a DLL even though
841 // the reference didn't use the dllimport attribute. The MinGW runtime will
842 // process this table after loading, before handling control over to user
844 class PseudoRelocTableChunk
: public NonSectionChunk
{
846 PseudoRelocTableChunk(std::vector
<RuntimePseudoReloc
> &relocs
)
847 : relocs(std::move(relocs
)) {
850 size_t getSize() const override
;
851 void writeTo(uint8_t *buf
) const override
;
854 std::vector
<RuntimePseudoReloc
> relocs
;
857 // MinGW specific. A Chunk that contains one pointer-sized absolute value.
858 class AbsolutePointerChunk
: public NonSectionChunk
{
860 AbsolutePointerChunk(COFFLinkerContext
&ctx
, uint64_t value
)
861 : value(value
), ctx(ctx
) {
862 setAlignment(getSize());
864 size_t getSize() const override
;
865 void writeTo(uint8_t *buf
) const override
;
869 COFFLinkerContext
&ctx
;
872 // Return true if this file has the hotpatch flag set to true in the S_COMPILE3
873 // record in codeview debug info. Also returns true for some thunks synthesized
875 inline bool Chunk::isHotPatchable() const {
876 if (auto *sc
= dyn_cast
<SectionChunk
>(this))
877 return sc
->file
->hotPatchable
;
878 else if (isa
<ImportThunkChunk
>(this))
883 inline Defined
*Chunk::getEntryThunk() const {
884 if (auto *c
= dyn_cast
<const SectionChunkEC
>(this))
885 return c
->entryThunk
;
889 inline void Chunk::setEntryThunk(Defined
*entryThunk
) {
890 if (auto c
= dyn_cast
<SectionChunkEC
>(this))
891 c
->entryThunk
= entryThunk
;
894 void applyMOV32T(uint8_t *off
, uint32_t v
);
895 void applyBranch24T(uint8_t *off
, int32_t v
);
897 void applyArm64Addr(uint8_t *off
, uint64_t s
, uint64_t p
, int shift
);
898 void applyArm64Imm(uint8_t *off
, uint64_t imm
, uint32_t rangeLimit
);
899 void applyArm64Branch26(uint8_t *off
, int64_t v
);
901 // Convenience class for initializing a coff_section with specific flags.
904 FakeSection(int c
) { section
.Characteristics
= c
; }
906 coff_section section
;
909 // Convenience class for initializing a SectionChunk with specific flags.
910 class FakeSectionChunk
{
912 FakeSectionChunk(const coff_section
*section
) : chunk(nullptr, section
) {
913 // Comdats from LTO files can't be fully treated as regular comdats
914 // at this point; we don't know what size or contents they are going to
915 // have, so we can't do proper checking of such aspects of them.
916 chunk
.selection
= llvm::COFF::IMAGE_COMDAT_SELECT_ANY
;
922 } // namespace lld::coff
926 struct DenseMapInfo
<lld::coff::ChunkAndOffset
>
927 : lld::coff::ChunkAndOffset::DenseMapInfo
{};