1 //===- LinkerScript.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the parser/evaluator of the linker script.
11 //===----------------------------------------------------------------------===//
13 #include "LinkerScript.h"
15 #include "InputFiles.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "SymbolTable.h"
20 #include "SyntheticSections.h"
23 #include "lld/Common/CommonLinkerContext.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/TimeProfiler.h"
41 using namespace llvm::ELF
;
42 using namespace llvm::object
;
43 using namespace llvm::support::endian
;
45 using namespace lld::elf
;
47 static bool isSectionPrefix(StringRef prefix
, StringRef name
) {
48 return name
.consume_front(prefix
) && (name
.empty() || name
[0] == '.');
51 StringRef
LinkerScript::getOutputSectionName(const InputSectionBase
*s
) const {
52 // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we
53 // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not
54 // technically required, but not doing it is odd). This code guarantees that.
55 if (auto *isec
= dyn_cast
<InputSection
>(s
)) {
56 if (InputSectionBase
*rel
= isec
->getRelocatedSection()) {
57 OutputSection
*out
= rel
->getOutputSection();
59 assert(ctx
.arg
.relocatable
&& (rel
->flags
& SHF_LINK_ORDER
));
62 StringSaver
&ss
= ctx
.saver
;
63 if (s
->type
== SHT_CREL
)
64 return ss
.save(".crel" + out
->name
);
65 if (s
->type
== SHT_RELA
)
66 return ss
.save(".rela" + out
->name
);
67 return ss
.save(".rel" + out
->name
);
71 if (ctx
.arg
.relocatable
)
74 // A BssSection created for a common symbol is identified as "COMMON" in
75 // linker scripts. It should go to .bss section.
76 if (s
->name
== "COMMON")
79 if (hasSectionsCommand
)
82 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
83 // by grouping sections with certain prefixes.
85 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
86 // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
87 // We provide an option -z keep-text-section-prefix to group such sections
88 // into separate output sections. This is more flexible. See also
89 // sortISDBySectionOrder().
90 // ".text.unknown" means the hotness of the section is unknown. When
91 // SampleFDO is used, if a function doesn't have sample, it could be very
92 // cold or it could be a new function never being sampled. Those functions
93 // will be kept in the ".text.unknown" section.
94 // ".text.split." holds symbols which are split out from functions in other
95 // input sections. For example, with -fsplit-machine-functions, placing the
96 // cold parts in .text.split instead of .text.unlikely mitigates against poor
97 // profile inaccuracy. Techniques such as hugepage remapping can make
98 // conservative decisions at the section granularity.
99 if (isSectionPrefix(".text", s
->name
)) {
100 if (ctx
.arg
.zKeepTextSectionPrefix
)
101 for (StringRef v
: {".text.hot", ".text.unknown", ".text.unlikely",
102 ".text.startup", ".text.exit", ".text.split"})
103 if (isSectionPrefix(v
.substr(5), s
->name
.substr(5)))
108 for (StringRef v
: {".data.rel.ro", ".data", ".rodata",
109 ".bss.rel.ro", ".bss", ".ldata",
110 ".lrodata", ".lbss", ".gcc_except_table",
111 ".init_array", ".fini_array", ".tbss",
112 ".tdata", ".ARM.exidx", ".ARM.extab",
113 ".ctors", ".dtors", ".sbss",
114 ".sdata", ".srodata"})
115 if (isSectionPrefix(v
, s
->name
))
121 uint64_t ExprValue::getValue() const {
123 return alignToPowerOf2(sec
->getOutputSection()->addr
+ sec
->getOffset(val
),
125 return alignToPowerOf2(val
, alignment
);
128 uint64_t ExprValue::getSecAddr() const {
129 return sec
? sec
->getOutputSection()->addr
+ sec
->getOffset(0) : 0;
132 uint64_t ExprValue::getSectionOffset() const {
133 return getValue() - getSecAddr();
136 // std::unique_ptr<OutputSection> may be incomplete type.
137 LinkerScript::LinkerScript(Ctx
&ctx
) : ctx(ctx
) {}
138 LinkerScript::~LinkerScript() {}
140 OutputDesc
*LinkerScript::createOutputSection(StringRef name
,
141 StringRef location
) {
142 OutputDesc
*&secRef
= nameToOutputSection
[CachedHashStringRef(name
)];
144 if (secRef
&& secRef
->osec
.location
.empty()) {
145 // There was a forward reference.
148 descPool
.emplace_back(
149 std::make_unique
<OutputDesc
>(ctx
, name
, SHT_PROGBITS
, 0));
150 sec
= descPool
.back().get();
154 sec
->osec
.location
= std::string(location
);
158 OutputDesc
*LinkerScript::getOrCreateOutputSection(StringRef name
) {
159 auto &secRef
= nameToOutputSection
[CachedHashStringRef(name
)];
163 std::make_unique
<OutputDesc
>(ctx
, name
, SHT_PROGBITS
, 0))
169 // Expands the memory region by the specified size.
170 static void expandMemoryRegion(MemoryRegion
*memRegion
, uint64_t size
,
172 memRegion
->curPos
+= size
;
175 void LinkerScript::expandMemoryRegions(uint64_t size
) {
176 if (state
->memRegion
)
177 expandMemoryRegion(state
->memRegion
, size
, state
->outSec
->name
);
178 // Only expand the LMARegion if it is different from memRegion.
179 if (state
->lmaRegion
&& state
->memRegion
!= state
->lmaRegion
)
180 expandMemoryRegion(state
->lmaRegion
, size
, state
->outSec
->name
);
183 void LinkerScript::expandOutputSection(uint64_t size
) {
184 state
->outSec
->size
+= size
;
185 expandMemoryRegions(size
);
188 void LinkerScript::setDot(Expr e
, const Twine
&loc
, bool inSec
) {
189 uint64_t val
= e().getValue();
190 // If val is smaller and we are in an output section, record the error and
191 // report it if this is the last assignAddresses iteration. dot may be smaller
192 // if there is another assignAddresses iteration.
193 if (val
< dot
&& inSec
) {
194 recordError(loc
+ ": unable to move location counter (0x" +
195 Twine::utohexstr(dot
) + ") backward to 0x" +
196 Twine::utohexstr(val
) + " for section '" + state
->outSec
->name
+
200 // Update to location counter means update to section size.
202 expandOutputSection(val
- dot
);
207 // Used for handling linker symbol assignments, for both finalizing
208 // their values and doing early declarations. Returns true if symbol
209 // should be defined from linker script.
210 static bool shouldDefineSym(Ctx
&ctx
, SymbolAssignment
*cmd
) {
211 if (cmd
->name
== ".")
214 return !cmd
->provide
|| ctx
.script
->shouldAddProvideSym(cmd
->name
);
217 // Called by processSymbolAssignments() to assign definitions to
218 // linker-script-defined symbols.
219 void LinkerScript::addSymbol(SymbolAssignment
*cmd
) {
220 if (!shouldDefineSym(ctx
, cmd
))
224 ExprValue value
= cmd
->expression();
225 SectionBase
*sec
= value
.isAbsolute() ? nullptr : value
.sec
;
226 uint8_t visibility
= cmd
->hidden
? STV_HIDDEN
: STV_DEFAULT
;
228 // When this function is called, section addresses have not been
229 // fixed yet. So, we may or may not know the value of the RHS
232 // For example, if an expression is `x = 42`, we know x is always 42.
233 // However, if an expression is `x = .`, there's no way to know its
234 // value at the moment.
236 // We want to set symbol values early if we can. This allows us to
237 // use symbols as variables in linker scripts. Doing so allows us to
238 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
239 uint64_t symValue
= value
.sec
? 0 : value
.getValue();
241 Defined
newSym(ctx
, createInternalFile(ctx
, cmd
->location
), cmd
->name
,
242 STB_GLOBAL
, visibility
, value
.type
, symValue
, 0, sec
);
244 Symbol
*sym
= ctx
.symtab
->insert(cmd
->name
);
245 sym
->mergeProperties(newSym
);
246 newSym
.overwrite(*sym
);
247 sym
->isUsedInRegularObj
= true;
248 cmd
->sym
= cast
<Defined
>(sym
);
251 // This function is called from LinkerScript::declareSymbols.
252 // It creates a placeholder symbol if needed.
253 void LinkerScript::declareSymbol(SymbolAssignment
*cmd
) {
254 if (!shouldDefineSym(ctx
, cmd
))
257 uint8_t visibility
= cmd
->hidden
? STV_HIDDEN
: STV_DEFAULT
;
258 Defined
newSym(ctx
, ctx
.internalFile
, cmd
->name
, STB_GLOBAL
, visibility
,
259 STT_NOTYPE
, 0, 0, nullptr);
261 // If the symbol is already defined, its order is 0 (with absence indicating
262 // 0); otherwise it's assigned the order of the SymbolAssignment.
263 Symbol
*sym
= ctx
.symtab
->insert(cmd
->name
);
264 if (!sym
->isDefined())
265 ctx
.scriptSymOrder
.insert({sym
, cmd
->symOrder
});
267 // We can't calculate final value right now.
268 sym
->mergeProperties(newSym
);
269 newSym
.overwrite(*sym
);
271 cmd
->sym
= cast
<Defined
>(sym
);
272 cmd
->provide
= false;
273 sym
->isUsedInRegularObj
= true;
274 sym
->scriptDefined
= true;
277 using SymbolAssignmentMap
=
278 DenseMap
<const Defined
*, std::pair
<SectionBase
*, uint64_t>>;
280 // Collect section/value pairs of linker-script-defined symbols. This is used to
281 // check whether symbol values converge.
282 static SymbolAssignmentMap
283 getSymbolAssignmentValues(ArrayRef
<SectionCommand
*> sectionCommands
) {
284 SymbolAssignmentMap ret
;
285 for (SectionCommand
*cmd
: sectionCommands
) {
286 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
)) {
287 if (assign
->sym
) // sym is nullptr for dot.
288 ret
.try_emplace(assign
->sym
, std::make_pair(assign
->sym
->section
,
289 assign
->sym
->value
));
292 if (isa
<SectionClassDesc
>(cmd
))
294 for (SectionCommand
*subCmd
: cast
<OutputDesc
>(cmd
)->osec
.commands
)
295 if (auto *assign
= dyn_cast
<SymbolAssignment
>(subCmd
))
297 ret
.try_emplace(assign
->sym
, std::make_pair(assign
->sym
->section
,
298 assign
->sym
->value
));
303 // Returns the lexicographical smallest (for determinism) Defined whose
304 // section/value has changed.
305 static const Defined
*
306 getChangedSymbolAssignment(const SymbolAssignmentMap
&oldValues
) {
307 const Defined
*changed
= nullptr;
308 for (auto &it
: oldValues
) {
309 const Defined
*sym
= it
.first
;
310 if (std::make_pair(sym
->section
, sym
->value
) != it
.second
&&
311 (!changed
|| sym
->getName() < changed
->getName()))
317 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
318 // specified output section to the designated place.
319 void LinkerScript::processInsertCommands() {
320 SmallVector
<OutputDesc
*, 0> moves
;
321 for (const InsertCommand
&cmd
: insertCommands
) {
322 if (ctx
.arg
.enableNonContiguousRegions
)
324 << "INSERT cannot be used with --enable-non-contiguous-regions";
326 for (StringRef name
: cmd
.names
) {
327 // If base is empty, it may have been discarded by
328 // adjustOutputSections(). We do not handle such output sections.
329 auto from
= llvm::find_if(sectionCommands
, [&](SectionCommand
*subCmd
) {
330 return isa
<OutputDesc
>(subCmd
) &&
331 cast
<OutputDesc
>(subCmd
)->osec
.name
== name
;
333 if (from
== sectionCommands
.end())
335 moves
.push_back(cast
<OutputDesc
>(*from
));
336 sectionCommands
.erase(from
);
340 llvm::find_if(sectionCommands
, [&cmd
](SectionCommand
*subCmd
) {
341 auto *to
= dyn_cast
<OutputDesc
>(subCmd
);
342 return to
!= nullptr && to
->osec
.name
== cmd
.where
;
344 if (insertPos
== sectionCommands
.end()) {
345 ErrAlways(ctx
) << "unable to insert " << cmd
.names
[0]
346 << (cmd
.isAfter
? " after " : " before ") << cmd
.where
;
350 sectionCommands
.insert(insertPos
, moves
.begin(), moves
.end());
356 // Symbols defined in script should not be inlined by LTO. At the same time
357 // we don't know their final values until late stages of link. Here we scan
358 // over symbol assignment commands and create placeholder symbols if needed.
359 void LinkerScript::declareSymbols() {
361 for (SectionCommand
*cmd
: sectionCommands
) {
362 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
)) {
363 declareSymbol(assign
);
366 if (isa
<SectionClassDesc
>(cmd
))
369 // If the output section directive has constraints,
370 // we can't say for sure if it is going to be included or not.
371 // Skip such sections for now. Improve the checks if we ever
372 // need symbols from that sections to be declared early.
373 const OutputSection
&sec
= cast
<OutputDesc
>(cmd
)->osec
;
374 if (sec
.constraint
!= ConstraintKind::NoConstraint
)
376 for (SectionCommand
*cmd
: sec
.commands
)
377 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
378 declareSymbol(assign
);
382 // This function is called from assignAddresses, while we are
383 // fixing the output section addresses. This function is supposed
384 // to set the final value for a given symbol assignment.
385 void LinkerScript::assignSymbol(SymbolAssignment
*cmd
, bool inSec
) {
386 if (cmd
->name
== ".") {
387 setDot(cmd
->expression
, cmd
->location
, inSec
);
394 ExprValue v
= cmd
->expression();
395 if (v
.isAbsolute()) {
396 cmd
->sym
->section
= nullptr;
397 cmd
->sym
->value
= v
.getValue();
399 cmd
->sym
->section
= v
.sec
;
400 cmd
->sym
->value
= v
.getSectionOffset();
402 cmd
->sym
->type
= v
.type
;
405 bool InputSectionDescription::matchesFile(const InputFile
&file
) const {
406 if (filePat
.isTrivialMatchAll())
409 if (!matchesFileCache
|| matchesFileCache
->first
!= &file
)
410 matchesFileCache
.emplace(&file
, filePat
.match(file
.getNameForScript()));
412 return matchesFileCache
->second
;
415 bool SectionPattern::excludesFile(const InputFile
&file
) const {
416 if (excludedFilePat
.empty())
419 if (!excludesFileCache
|| excludesFileCache
->first
!= &file
)
420 excludesFileCache
.emplace(&file
,
421 excludedFilePat
.match(file
.getNameForScript()));
423 return excludesFileCache
->second
;
426 bool LinkerScript::shouldKeep(InputSectionBase
*s
) {
427 for (InputSectionDescription
*id
: keptSections
)
428 if (id
->matchesFile(*s
->file
))
429 for (SectionPattern
&p
: id
->sectionPatterns
)
430 if (p
.sectionPat
.match(s
->name
) &&
431 (s
->flags
& id
->withFlags
) == id
->withFlags
&&
432 (s
->flags
& id
->withoutFlags
) == 0)
437 // A helper function for the SORT() command.
438 static bool matchConstraints(ArrayRef
<InputSectionBase
*> sections
,
439 ConstraintKind kind
) {
440 if (kind
== ConstraintKind::NoConstraint
)
443 bool isRW
= llvm::any_of(
444 sections
, [](InputSectionBase
*sec
) { return sec
->flags
& SHF_WRITE
; });
446 return (isRW
&& kind
== ConstraintKind::ReadWrite
) ||
447 (!isRW
&& kind
== ConstraintKind::ReadOnly
);
450 static void sortSections(MutableArrayRef
<InputSectionBase
*> vec
,
451 SortSectionPolicy k
) {
452 auto alignmentComparator
= [](InputSectionBase
*a
, InputSectionBase
*b
) {
453 // ">" is not a mistake. Sections with larger alignments are placed
454 // before sections with smaller alignments in order to reduce the
455 // amount of padding necessary. This is compatible with GNU.
456 return a
->addralign
> b
->addralign
;
458 auto nameComparator
= [](InputSectionBase
*a
, InputSectionBase
*b
) {
459 return a
->name
< b
->name
;
461 auto priorityComparator
= [](InputSectionBase
*a
, InputSectionBase
*b
) {
462 return getPriority(a
->name
) < getPriority(b
->name
);
466 case SortSectionPolicy::Default
:
467 case SortSectionPolicy::None
:
469 case SortSectionPolicy::Alignment
:
470 return llvm::stable_sort(vec
, alignmentComparator
);
471 case SortSectionPolicy::Name
:
472 return llvm::stable_sort(vec
, nameComparator
);
473 case SortSectionPolicy::Priority
:
474 return llvm::stable_sort(vec
, priorityComparator
);
475 case SortSectionPolicy::Reverse
:
476 return std::reverse(vec
.begin(), vec
.end());
480 // Sort sections as instructed by SORT-family commands and --sort-section
481 // option. Because SORT-family commands can be nested at most two depth
482 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
483 // line option is respected even if a SORT command is given, the exact
484 // behavior we have here is a bit complicated. Here are the rules.
486 // 1. If two SORT commands are given, --sort-section is ignored.
487 // 2. If one SORT command is given, and if it is not SORT_NONE,
488 // --sort-section is handled as an inner SORT command.
489 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
490 // 4. If no SORT command is given, sort according to --sort-section.
491 static void sortInputSections(Ctx
&ctx
, MutableArrayRef
<InputSectionBase
*> vec
,
492 SortSectionPolicy outer
,
493 SortSectionPolicy inner
) {
494 if (outer
== SortSectionPolicy::None
)
497 if (inner
== SortSectionPolicy::Default
)
498 sortSections(vec
, ctx
.arg
.sortSection
);
500 sortSections(vec
, inner
);
501 sortSections(vec
, outer
);
504 // Compute and remember which sections the InputSectionDescription matches.
505 SmallVector
<InputSectionBase
*, 0>
506 LinkerScript::computeInputSections(const InputSectionDescription
*cmd
,
507 ArrayRef
<InputSectionBase
*> sections
,
508 const SectionBase
&outCmd
) {
509 SmallVector
<InputSectionBase
*, 0> ret
;
510 DenseSet
<InputSectionBase
*> spills
;
512 // Returns whether an input section's flags match the input section
513 // description's specifiers.
514 auto flagsMatch
= [cmd
](InputSectionBase
*sec
) {
515 return (sec
->flags
& cmd
->withFlags
) == cmd
->withFlags
&&
516 (sec
->flags
& cmd
->withoutFlags
) == 0;
519 // Collects all sections that satisfy constraints of Cmd.
520 if (cmd
->classRef
.empty()) {
521 DenseSet
<size_t> seen
;
522 size_t sizeAfterPrevSort
= 0;
523 SmallVector
<size_t, 0> indexes
;
524 auto sortByPositionThenCommandLine
= [&](size_t begin
, size_t end
) {
525 llvm::sort(MutableArrayRef
<size_t>(indexes
).slice(begin
, end
- begin
));
526 for (size_t i
= begin
; i
!= end
; ++i
)
527 ret
[i
] = sections
[indexes
[i
]];
530 MutableArrayRef
<InputSectionBase
*>(ret
).slice(begin
, end
- begin
),
531 ctx
.arg
.sortSection
, SortSectionPolicy::None
);
534 for (const SectionPattern
&pat
: cmd
->sectionPatterns
) {
535 size_t sizeBeforeCurrPat
= ret
.size();
537 for (size_t i
= 0, e
= sections
.size(); i
!= e
; ++i
) {
538 // Skip if the section is dead or has been matched by a previous pattern
539 // in this input section description.
540 InputSectionBase
*sec
= sections
[i
];
541 if (!sec
->isLive() || seen
.contains(i
))
544 // For --emit-relocs we have to ignore entries like
545 // .rela.dyn : { *(.rela.data) }
546 // which are common because they are in the default bfd script.
547 // We do not ignore SHT_REL[A] linker-synthesized sections here because
548 // want to support scripts that do custom layout for them.
549 if (isa
<InputSection
>(sec
) &&
550 cast
<InputSection
>(sec
)->getRelocatedSection())
553 // Check the name early to improve performance in the common case.
554 if (!pat
.sectionPat
.match(sec
->name
))
557 if (!cmd
->matchesFile(*sec
->file
) || pat
.excludesFile(*sec
->file
) ||
558 sec
->parent
== &outCmd
|| !flagsMatch(sec
))
562 // Skip if not allowing multiple matches.
563 if (!ctx
.arg
.enableNonContiguousRegions
)
566 // Disallow spilling into /DISCARD/; special handling would be needed
567 // for this in address assignment, and the semantics are nebulous.
568 if (outCmd
.name
== "/DISCARD/")
571 // Class definitions cannot contain spills, nor can a class definition
572 // generate a spill in a subsequent match. Those behaviors belong to
573 // class references and additional matches.
574 if (!isa
<SectionClass
>(outCmd
) && !isa
<SectionClass
>(sec
->parent
))
579 indexes
.push_back(i
);
583 if (pat
.sortOuter
== SortSectionPolicy::Default
)
586 // Matched sections are ordered by radix sort with the keys being (SORT*,
587 // --sort-section, input order), where SORT* (if present) is most
590 // Matched sections between the previous SORT* and this SORT* are sorted
591 // by (--sort-alignment, input order).
592 sortByPositionThenCommandLine(sizeAfterPrevSort
, sizeBeforeCurrPat
);
593 // Matched sections by this SORT* pattern are sorted using all 3 keys.
594 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we
595 // just sort by sortOuter and sortInner.
598 MutableArrayRef
<InputSectionBase
*>(ret
).slice(sizeBeforeCurrPat
),
599 pat
.sortOuter
, pat
.sortInner
);
600 sizeAfterPrevSort
= ret
.size();
603 // Matched sections after the last SORT* are sorted by (--sort-alignment,
605 sortByPositionThenCommandLine(sizeAfterPrevSort
, ret
.size());
607 SectionClassDesc
*scd
=
608 sectionClasses
.lookup(CachedHashStringRef(cmd
->classRef
));
610 Err(ctx
) << "undefined section class '" << cmd
->classRef
<< "'";
613 if (!scd
->sc
.assigned
) {
614 Err(ctx
) << "section class '" << cmd
->classRef
<< "' referenced by '"
615 << outCmd
.name
<< "' before class definition";
619 for (InputSectionDescription
*isd
: scd
->sc
.commands
) {
620 for (InputSectionBase
*sec
: isd
->sectionBases
) {
621 if (sec
->parent
== &outCmd
|| !flagsMatch(sec
))
623 bool isSpill
= sec
->parent
&& isa
<OutputSection
>(sec
->parent
);
624 if (!sec
->parent
|| (isSpill
&& outCmd
.name
== "/DISCARD/")) {
625 Err(ctx
) << "section '" << sec
->name
626 << "' cannot spill from/to /DISCARD/";
636 // The flag --enable-non-contiguous-regions or the section CLASS syntax may
637 // cause sections to match an InputSectionDescription in more than one
638 // OutputSection. Matches after the first were collected in the spills set, so
639 // replace these with potential spill sections.
640 if (!spills
.empty()) {
641 for (InputSectionBase
*&sec
: ret
) {
642 if (!spills
.contains(sec
))
645 // Append the spill input section to the list for the input section,
646 // creating it if necessary.
647 PotentialSpillSection
*pss
= make
<PotentialSpillSection
>(
648 *sec
, const_cast<InputSectionDescription
&>(*cmd
));
649 auto [it
, inserted
] =
650 potentialSpillLists
.try_emplace(sec
, PotentialSpillList
{pss
, pss
});
652 PotentialSpillSection
*&tail
= it
->second
.tail
;
653 tail
= tail
->next
= pss
;
662 void LinkerScript::discard(InputSectionBase
&s
) {
663 if (&s
== ctx
.in
.shStrTab
.get())
664 ErrAlways(ctx
) << "discarding " << s
.name
<< " section is not allowed";
668 for (InputSection
*sec
: s
.dependentSections
)
672 void LinkerScript::discardSynthetic(OutputSection
&outCmd
) {
673 for (Partition
&part
: ctx
.partitions
) {
674 if (!part
.armExidx
|| !part
.armExidx
->isLive())
676 SmallVector
<InputSectionBase
*, 0> secs(
677 part
.armExidx
->exidxSections
.begin(),
678 part
.armExidx
->exidxSections
.end());
679 for (SectionCommand
*cmd
: outCmd
.commands
)
680 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
681 for (InputSectionBase
*s
: computeInputSections(isd
, secs
, outCmd
))
686 SmallVector
<InputSectionBase
*, 0>
687 LinkerScript::createInputSectionList(OutputSection
&outCmd
) {
688 SmallVector
<InputSectionBase
*, 0> ret
;
690 for (SectionCommand
*cmd
: outCmd
.commands
) {
691 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
)) {
692 isd
->sectionBases
= computeInputSections(isd
, ctx
.inputSections
, outCmd
);
693 for (InputSectionBase
*s
: isd
->sectionBases
)
695 ret
.insert(ret
.end(), isd
->sectionBases
.begin(), isd
->sectionBases
.end());
701 // Create output sections described by SECTIONS commands.
702 void LinkerScript::processSectionCommands() {
703 auto process
= [this](OutputSection
*osec
) {
704 SmallVector
<InputSectionBase
*, 0> v
= createInputSectionList(*osec
);
706 // The output section name `/DISCARD/' is special.
707 // Any input section assigned to it is discarded.
708 if (osec
->name
== "/DISCARD/") {
709 for (InputSectionBase
*s
: v
)
711 discardSynthetic(*osec
);
712 osec
->commands
.clear();
716 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
717 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
718 // sections satisfy a given constraint. If not, a directive is handled
719 // as if it wasn't present from the beginning.
721 // Because we'll iterate over SectionCommands many more times, the easy
722 // way to "make it as if it wasn't present" is to make it empty.
723 if (!matchConstraints(v
, osec
->constraint
)) {
724 for (InputSectionBase
*s
: v
)
726 osec
->commands
.clear();
730 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
731 // is given, input sections are aligned to that value, whether the
732 // given value is larger or smaller than the original section alignment.
733 if (osec
->subalignExpr
) {
734 uint32_t subalign
= osec
->subalignExpr().getValue();
735 for (InputSectionBase
*s
: v
)
736 s
->addralign
= subalign
;
739 // Set the partition field the same way OutputSection::recordSection()
740 // does. Partitions cannot be used with the SECTIONS command, so this is
746 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script
748 if (ctx
.arg
.enableNonContiguousRegions
&& !overwriteSections
.empty())
749 ErrAlways(ctx
) << "OVERWRITE_SECTIONS cannot be used with "
750 "--enable-non-contiguous-regions";
751 DenseMap
<CachedHashStringRef
, OutputDesc
*> map
;
753 for (OutputDesc
*osd
: overwriteSections
) {
754 OutputSection
*osec
= &osd
->osec
;
756 !map
.try_emplace(CachedHashStringRef(osec
->name
), osd
).second
)
757 Warn(ctx
) << "OVERWRITE_SECTIONS specifies duplicate " << osec
->name
;
759 for (SectionCommand
*&base
: sectionCommands
) {
760 if (auto *osd
= dyn_cast
<OutputDesc
>(base
)) {
761 OutputSection
*osec
= &osd
->osec
;
762 if (OutputDesc
*overwrite
= map
.lookup(CachedHashStringRef(osec
->name
))) {
763 Log(ctx
) << overwrite
->osec
.location
<< " overwrites " << osec
->name
;
764 overwrite
->osec
.sectionIndex
= i
++;
766 } else if (process(osec
)) {
767 osec
->sectionIndex
= i
++;
769 } else if (auto *sc
= dyn_cast
<SectionClassDesc
>(base
)) {
770 for (InputSectionDescription
*isd
: sc
->sc
.commands
) {
772 computeInputSections(isd
, ctx
.inputSections
, sc
->sc
);
773 for (InputSectionBase
*s
: isd
->sectionBases
) {
774 // A section class containing a section with different parent isn't
775 // necessarily an error due to --enable-non-contiguous-regions. Such
776 // sections all become potential spills when the class is referenced.
781 sc
->sc
.assigned
= true;
785 // Check that input sections cannot spill into or out of INSERT,
786 // since the semantics are nebulous. This is also true for OVERWRITE_SECTIONS,
787 // but no check is needed, since the order of processing ensures they cannot
788 // legally reference classes.
789 if (!potentialSpillLists
.empty()) {
790 DenseSet
<StringRef
> insertNames
;
791 for (InsertCommand
&ic
: insertCommands
)
792 insertNames
.insert(ic
.names
.begin(), ic
.names
.end());
793 for (SectionCommand
*&base
: sectionCommands
) {
794 auto *osd
= dyn_cast
<OutputDesc
>(base
);
797 OutputSection
*os
= &osd
->osec
;
798 if (!insertNames
.contains(os
->name
))
800 for (SectionCommand
*sc
: os
->commands
) {
801 auto *isd
= dyn_cast
<InputSectionDescription
>(sc
);
804 for (InputSectionBase
*isec
: isd
->sectionBases
)
805 if (isa
<PotentialSpillSection
>(isec
) ||
806 potentialSpillLists
.contains(isec
))
807 Err(ctx
) << "section '" << isec
->name
808 << "' cannot spill from/to INSERT section '" << os
->name
814 // If an OVERWRITE_SECTIONS specified output section is not in
815 // sectionCommands, append it to the end. The section will be inserted by
817 for (OutputDesc
*osd
: overwriteSections
)
818 if (osd
->osec
.partition
== 1 && osd
->osec
.sectionIndex
== UINT32_MAX
)
819 sectionCommands
.push_back(osd
);
821 // Input sections cannot have a section class parent past this point; they
822 // must have been assigned to an output section.
823 for (const auto &[_
, sc
] : sectionClasses
) {
824 for (InputSectionDescription
*isd
: sc
->sc
.commands
) {
825 for (InputSectionBase
*sec
: isd
->sectionBases
) {
826 if (sec
->parent
&& isa
<SectionClass
>(sec
->parent
)) {
827 Err(ctx
) << "section class '" << sec
->parent
->name
828 << "' is unreferenced";
837 void LinkerScript::processSymbolAssignments() {
838 // Dot outside an output section still represents a relative address, whose
839 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
840 // that fills the void outside a section. It has an index of one, which is
841 // indistinguishable from any other regular section index.
842 aether
= std::make_unique
<OutputSection
>(ctx
, "", 0, SHF_ALLOC
);
843 aether
->sectionIndex
= 1;
845 // `st` captures the local AddressState and makes it accessible deliberately.
846 // This is needed as there are some cases where we cannot just thread the
847 // current state through to a lambda function created by the script parser.
848 AddressState
st(*this);
850 st
.outSec
= aether
.get();
852 for (SectionCommand
*cmd
: sectionCommands
) {
853 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
855 else if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
856 for (SectionCommand
*subCmd
: osd
->osec
.commands
)
857 if (auto *assign
= dyn_cast
<SymbolAssignment
>(subCmd
))
864 static OutputSection
*findByName(ArrayRef
<SectionCommand
*> vec
,
866 for (SectionCommand
*cmd
: vec
)
867 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
868 if (osd
->osec
.name
== name
)
873 static OutputDesc
*createSection(Ctx
&ctx
, InputSectionBase
*isec
,
874 StringRef outsecName
) {
875 OutputDesc
*osd
= ctx
.script
->createOutputSection(outsecName
, "<internal>");
876 osd
->osec
.recordSection(isec
);
880 static OutputDesc
*addInputSec(Ctx
&ctx
,
881 StringMap
<TinyPtrVector
<OutputSection
*>> &map
,
882 InputSectionBase
*isec
, StringRef outsecName
) {
883 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
884 // option is given. A section with SHT_GROUP defines a "section group", and
885 // its members have SHF_GROUP attribute. Usually these flags have already been
886 // stripped by InputFiles.cpp as section groups are processed and uniquified.
887 // However, for the -r option, we want to pass through all section groups
888 // as-is because adding/removing members or merging them with other groups
889 // change their semantics.
890 if (isec
->type
== SHT_GROUP
|| (isec
->flags
& SHF_GROUP
))
891 return createSection(ctx
, isec
, outsecName
);
893 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
894 // relocation sections .rela.foo and .rela.bar for example. Most tools do
895 // not allow multiple REL[A] sections for output section. Hence we
896 // should combine these relocation sections into single output.
897 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
898 // other REL[A] sections created by linker itself.
899 if (!isa
<SyntheticSection
>(isec
) && isStaticRelSecType(isec
->type
)) {
900 auto *sec
= cast
<InputSection
>(isec
);
901 OutputSection
*out
= sec
->getRelocatedSection()->getOutputSection();
903 if (auto *relSec
= out
->relocationSection
) {
904 relSec
->recordSection(sec
);
908 OutputDesc
*osd
= createSection(ctx
, isec
, outsecName
);
909 out
->relocationSection
= &osd
->osec
;
913 // The ELF spec just says
914 // ----------------------------------------------------------------
915 // In the first phase, input sections that match in name, type and
916 // attribute flags should be concatenated into single sections.
917 // ----------------------------------------------------------------
919 // However, it is clear that at least some flags have to be ignored for
920 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
921 // ignored. We should not have two output .text sections just because one was
922 // in a group and another was not for example.
924 // It also seems that wording was a late addition and didn't get the
925 // necessary scrutiny.
927 // Merging sections with different flags is expected by some users. One
928 // reason is that if one file has
930 // int *const bar __attribute__((section(".foo"))) = (int *)0;
932 // gcc with -fPIC will produce a read only .foo section. But if another
936 // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
938 // gcc with -fPIC will produce a read write section.
940 // Last but not least, when using linker script the merge rules are forced by
941 // the script. Unfortunately, linker scripts are name based. This means that
942 // expressions like *(.foo*) can refer to multiple input sections with
943 // different flags. We cannot put them in different output sections or we
944 // would produce wrong results for
946 // start = .; *(.foo.*) end = .; *(.bar)
948 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
949 // another. The problem is that there is no way to layout those output
950 // sections such that the .foo sections are the only thing between the start
953 // Given the above issues, we instead merge sections by name and error on
954 // incompatible types and flags.
955 TinyPtrVector
<OutputSection
*> &v
= map
[outsecName
];
956 for (OutputSection
*sec
: v
) {
957 if (sec
->partition
!= isec
->partition
)
960 if (ctx
.arg
.relocatable
&& (isec
->flags
& SHF_LINK_ORDER
)) {
961 // Merging two SHF_LINK_ORDER sections with different sh_link fields will
962 // change their semantics, so we only merge them in -r links if they will
963 // end up being linked to the same output section. The casts are fine
964 // because everything in the map was created by the orphan placement code.
965 auto *firstIsec
= cast
<InputSectionBase
>(
966 cast
<InputSectionDescription
>(sec
->commands
[0])->sectionBases
[0]);
967 OutputSection
*firstIsecOut
=
968 (firstIsec
->flags
& SHF_LINK_ORDER
)
969 ? firstIsec
->getLinkOrderDep()->getOutputSection()
971 if (firstIsecOut
!= isec
->getLinkOrderDep()->getOutputSection())
975 sec
->recordSection(isec
);
979 OutputDesc
*osd
= createSection(ctx
, isec
, outsecName
);
980 v
.push_back(&osd
->osec
);
984 // Add sections that didn't match any sections command.
985 void LinkerScript::addOrphanSections() {
986 StringMap
<TinyPtrVector
<OutputSection
*>> map
;
987 SmallVector
<OutputDesc
*, 0> v
;
989 auto add
= [&](InputSectionBase
*s
) {
990 if (s
->isLive() && !s
->parent
) {
991 orphanSections
.push_back(s
);
993 StringRef name
= getOutputSectionName(s
);
994 if (ctx
.arg
.unique
) {
995 v
.push_back(createSection(ctx
, s
, name
));
996 } else if (OutputSection
*sec
= findByName(sectionCommands
, name
)) {
997 sec
->recordSection(s
);
999 if (OutputDesc
*osd
= addInputSec(ctx
, map
, s
, name
))
1001 assert(isa
<MergeInputSection
>(s
) ||
1002 s
->getOutputSection()->sectionIndex
== UINT32_MAX
);
1007 // For further --emit-reloc handling code we need target output section
1008 // to be created before we create relocation output section, so we want
1009 // to create target sections first. We do not want priority handling
1010 // for synthetic sections because them are special.
1012 for (InputSectionBase
*isec
: ctx
.inputSections
) {
1013 // Process InputSection and MergeInputSection.
1014 if (LLVM_LIKELY(isa
<InputSection
>(isec
)))
1015 ctx
.inputSections
[n
++] = isec
;
1017 // In -r links, SHF_LINK_ORDER sections are added while adding their parent
1018 // sections because we need to know the parent's output section before we
1019 // can select an output section for the SHF_LINK_ORDER section.
1020 if (ctx
.arg
.relocatable
&& (isec
->flags
& SHF_LINK_ORDER
))
1023 if (auto *sec
= dyn_cast
<InputSection
>(isec
))
1024 if (InputSectionBase
*rel
= sec
->getRelocatedSection())
1025 if (auto *relIS
= dyn_cast_or_null
<InputSectionBase
>(rel
->parent
))
1028 if (ctx
.arg
.relocatable
)
1029 for (InputSectionBase
*depSec
: isec
->dependentSections
)
1030 if (depSec
->flags
& SHF_LINK_ORDER
)
1033 // Keep just InputSection.
1034 ctx
.inputSections
.resize(n
);
1036 // If no SECTIONS command was given, we should insert sections commands
1037 // before others, so that we can handle scripts which refers them,
1038 // for example: "foo = ABSOLUTE(ADDR(.text)));".
1039 // When SECTIONS command is present we just add all orphans to the end.
1040 if (hasSectionsCommand
)
1041 sectionCommands
.insert(sectionCommands
.end(), v
.begin(), v
.end());
1043 sectionCommands
.insert(sectionCommands
.begin(), v
.begin(), v
.end());
1046 void LinkerScript::diagnoseOrphanHandling() const {
1047 llvm::TimeTraceScope
timeScope("Diagnose orphan sections");
1048 if (ctx
.arg
.orphanHandling
== OrphanHandlingPolicy::Place
||
1049 !hasSectionsCommand
)
1051 for (const InputSectionBase
*sec
: orphanSections
) {
1052 // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present,
1053 // automatically. The section is not supposed to be specified by scripts.
1054 if (sec
== ctx
.in
.relroPadding
.get())
1056 // Input SHT_REL[A] retained by --emit-relocs are ignored by
1057 // computeInputSections(). Don't warn/error.
1058 if (isa
<InputSection
>(sec
) &&
1059 cast
<InputSection
>(sec
)->getRelocatedSection())
1062 StringRef name
= getOutputSectionName(sec
);
1063 if (ctx
.arg
.orphanHandling
== OrphanHandlingPolicy::Error
)
1064 ErrAlways(ctx
) << sec
<< " is being placed in '" << name
<< "'";
1066 Warn(ctx
) << sec
<< " is being placed in '" << name
<< "'";
1070 void LinkerScript::diagnoseMissingSGSectionAddress() const {
1071 if (!ctx
.arg
.cmseImplib
|| !ctx
.in
.armCmseSGSection
->isNeeded())
1074 OutputSection
*sec
= findByName(sectionCommands
, ".gnu.sgstubs");
1075 if (sec
&& !sec
->addrExpr
&& !ctx
.arg
.sectionStartMap
.count(".gnu.sgstubs"))
1076 ErrAlways(ctx
) << "no address assigned to the veneers output section "
1080 // This function searches for a memory region to place the given output
1081 // section in. If found, a pointer to the appropriate memory region is
1082 // returned in the first member of the pair. Otherwise, a nullptr is returned.
1083 // The second member of the pair is a hint that should be passed to the
1084 // subsequent call of this method.
1085 std::pair
<MemoryRegion
*, MemoryRegion
*>
1086 LinkerScript::findMemoryRegion(OutputSection
*sec
, MemoryRegion
*hint
) {
1087 // Non-allocatable sections are not part of the process image.
1088 if (!(sec
->flags
& SHF_ALLOC
)) {
1089 bool hasInputOrByteCommand
=
1090 sec
->hasInputSections
||
1091 llvm::any_of(sec
->commands
, [](SectionCommand
*comm
) {
1092 return ByteCommand::classof(comm
);
1094 if (!sec
->memoryRegionName
.empty() && hasInputOrByteCommand
)
1096 << "ignoring memory region assignment for non-allocatable section '"
1097 << sec
->name
<< "'";
1098 return {nullptr, nullptr};
1101 // If a memory region name was specified in the output section command,
1102 // then try to find that region first.
1103 if (!sec
->memoryRegionName
.empty()) {
1104 if (MemoryRegion
*m
= memoryRegions
.lookup(sec
->memoryRegionName
))
1106 ErrAlways(ctx
) << "memory region '" << sec
->memoryRegionName
1107 << "' not declared";
1108 return {nullptr, nullptr};
1111 // If at least one memory region is defined, all sections must
1112 // belong to some memory region. Otherwise, we don't need to do
1113 // anything for memory regions.
1114 if (memoryRegions
.empty())
1115 return {nullptr, nullptr};
1117 // An orphan section should continue the previous memory region.
1118 if (sec
->sectionIndex
== UINT32_MAX
&& hint
)
1119 return {hint
, hint
};
1121 // See if a region can be found by matching section flags.
1122 for (auto &pair
: memoryRegions
) {
1123 MemoryRegion
*m
= pair
.second
;
1124 if (m
->compatibleWith(sec
->flags
))
1125 return {m
, nullptr};
1128 // Otherwise, no suitable region was found.
1129 ErrAlways(ctx
) << "no memory region specified for section '" << sec
->name
1131 return {nullptr, nullptr};
1134 static OutputSection
*findFirstSection(Ctx
&ctx
, PhdrEntry
*load
) {
1135 for (OutputSection
*sec
: ctx
.outputSections
)
1136 if (sec
->ptLoad
== load
)
1141 // Assign addresses to an output section and offsets to its input sections and
1142 // symbol assignments. Return true if the output section's address has changed.
1143 bool LinkerScript::assignOffsets(OutputSection
*sec
) {
1144 const bool isTbss
= (sec
->flags
& SHF_TLS
) && sec
->type
== SHT_NOBITS
;
1145 const bool sameMemRegion
= state
->memRegion
== sec
->memRegion
;
1146 const bool prevLMARegionIsDefault
= state
->lmaRegion
== nullptr;
1147 const uint64_t savedDot
= dot
;
1148 bool addressChanged
= false;
1149 state
->memRegion
= sec
->memRegion
;
1150 state
->lmaRegion
= sec
->lmaRegion
;
1152 if (!(sec
->flags
& SHF_ALLOC
)) {
1153 // Non-SHF_ALLOC sections have zero addresses.
1155 } else if (isTbss
) {
1156 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range
1157 // starts from the end address of the previous tbss section.
1158 if (state
->tbssAddr
== 0)
1159 state
->tbssAddr
= dot
;
1161 dot
= state
->tbssAddr
;
1163 if (state
->memRegion
)
1164 dot
= state
->memRegion
->curPos
;
1166 setDot(sec
->addrExpr
, sec
->location
, false);
1168 // If the address of the section has been moved forward by an explicit
1169 // expression so that it now starts past the current curPos of the enclosing
1170 // region, we need to expand the current region to account for the space
1171 // between the previous section, if any, and the start of this section.
1172 if (state
->memRegion
&& state
->memRegion
->curPos
< dot
)
1173 expandMemoryRegion(state
->memRegion
, dot
- state
->memRegion
->curPos
,
1177 state
->outSec
= sec
;
1178 if (!(sec
->addrExpr
&& hasSectionsCommand
)) {
1179 // ALIGN is respected. sec->alignment is the max of ALIGN and the maximum of
1180 // input section alignments.
1181 const uint64_t pos
= dot
;
1182 dot
= alignToPowerOf2(dot
, sec
->addralign
);
1183 expandMemoryRegions(dot
- pos
);
1185 addressChanged
= sec
->addr
!= dot
;
1188 // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT()
1189 // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA
1190 // region is the default, and the two sections are in the same memory region,
1191 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
1192 // heuristics described in
1193 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
1195 state
->lmaOffset
= sec
->lmaExpr().getValue() - dot
;
1196 } else if (MemoryRegion
*mr
= sec
->lmaRegion
) {
1197 uint64_t lmaStart
= alignToPowerOf2(mr
->curPos
, sec
->addralign
);
1198 if (mr
->curPos
< lmaStart
)
1199 expandMemoryRegion(mr
, lmaStart
- mr
->curPos
, sec
->name
);
1200 state
->lmaOffset
= lmaStart
- dot
;
1201 } else if (!sameMemRegion
|| !prevLMARegionIsDefault
) {
1202 state
->lmaOffset
= 0;
1205 // Propagate state->lmaOffset to the first "non-header" section.
1206 if (PhdrEntry
*l
= sec
->ptLoad
)
1207 if (sec
== findFirstSection(ctx
, l
))
1208 l
->lmaOffset
= state
->lmaOffset
;
1210 // We can call this method multiple times during the creation of
1211 // thunks and want to start over calculation each time.
1214 // We visited SectionsCommands from processSectionCommands to
1215 // layout sections. Now, we visit SectionsCommands again to fix
1217 for (SectionCommand
*cmd
: sec
->commands
) {
1218 // This handles the assignments to symbol or to the dot.
1219 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
)) {
1221 assignSymbol(assign
, true);
1222 assign
->size
= dot
- assign
->addr
;
1226 // Handle BYTE(), SHORT(), LONG(), or QUAD().
1227 if (auto *data
= dyn_cast
<ByteCommand
>(cmd
)) {
1228 data
->offset
= dot
- sec
->addr
;
1230 expandOutputSection(data
->size
);
1234 // Handle a single input section description command.
1235 // It calculates and assigns the offsets for each section and also
1236 // updates the output section size.
1238 auto §ions
= cast
<InputSectionDescription
>(cmd
)->sections
;
1239 for (InputSection
*isec
: sections
) {
1240 assert(isec
->getParent() == sec
);
1241 if (isa
<PotentialSpillSection
>(isec
))
1243 const uint64_t pos
= dot
;
1244 dot
= alignToPowerOf2(dot
, isec
->addralign
);
1245 isec
->outSecOff
= dot
- sec
->addr
;
1246 dot
+= isec
->getSize();
1248 // Update output section size after adding each section. This is so that
1249 // SIZEOF works correctly in the case below:
1250 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
1251 expandOutputSection(dot
- pos
);
1255 // If .relro_padding is present, round up the end to a common-page-size
1256 // boundary to protect the last page.
1257 if (ctx
.in
.relroPadding
&& sec
== ctx
.in
.relroPadding
->getParent())
1258 expandOutputSection(alignToPowerOf2(dot
, ctx
.arg
.commonPageSize
) - dot
);
1260 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
1261 // as they are not part of the process image.
1262 if (!(sec
->flags
& SHF_ALLOC
)) {
1264 } else if (isTbss
) {
1265 // NOBITS TLS sections are similar. Additionally save the end address.
1266 state
->tbssAddr
= dot
;
1269 return addressChanged
;
1272 static bool isDiscardable(const OutputSection
&sec
) {
1273 if (sec
.name
== "/DISCARD/")
1276 // We do not want to remove OutputSections with expressions that reference
1277 // symbols even if the OutputSection is empty. We want to ensure that the
1278 // expressions can be evaluated and report an error if they cannot.
1279 if (sec
.expressionsUseSymbols
)
1282 // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
1283 // as an empty Section can has a valid VMA and LMA we keep the OutputSection
1284 // to maintain the integrity of the other Expression.
1285 if (sec
.usedInExpression
)
1288 for (SectionCommand
*cmd
: sec
.commands
) {
1289 if (auto assign
= dyn_cast
<SymbolAssignment
>(cmd
))
1290 // Don't create empty output sections just for unreferenced PROVIDE
1292 if (assign
->name
!= "." && !assign
->sym
)
1295 if (!isa
<InputSectionDescription
>(*cmd
))
1301 static void maybePropagatePhdrs(OutputSection
&sec
,
1302 SmallVector
<StringRef
, 0> &phdrs
) {
1303 if (sec
.phdrs
.empty()) {
1304 // To match the bfd linker script behaviour, only propagate program
1305 // headers to sections that are allocated.
1306 if (sec
.flags
& SHF_ALLOC
)
1313 void LinkerScript::adjustOutputSections() {
1314 // If the output section contains only symbol assignments, create a
1315 // corresponding output section. The issue is what to do with linker script
1316 // like ".foo : { symbol = 42; }". One option would be to convert it to
1317 // "symbol = 42;". That is, move the symbol out of the empty section
1318 // description. That seems to be what bfd does for this simple case. The
1319 // problem is that this is not completely general. bfd will give up and
1320 // create a dummy section too if there is a ". = . + 1" inside the section
1322 // Given that we want to create the section, we have to worry what impact
1323 // it will have on the link. For example, if we just create a section with
1324 // 0 for flags, it would change which PT_LOADs are created.
1325 // We could remember that particular section is dummy and ignore it in
1326 // other parts of the linker, but unfortunately there are quite a few places
1327 // that would need to change:
1328 // * The program header creation.
1329 // * The orphan section placement.
1330 // * The address assignment.
1331 // The other option is to pick flags that minimize the impact the section
1332 // will have on the rest of the linker. That is why we copy the flags from
1333 // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the
1334 // impact low. We do not propagate SHF_EXECINSTR as in some cases this can
1335 // lead to executable writeable section.
1336 uint64_t flags
= SHF_ALLOC
;
1338 SmallVector
<StringRef
, 0> defPhdrs
;
1339 bool seenRelro
= false;
1340 for (SectionCommand
*&cmd
: sectionCommands
) {
1341 if (!isa
<OutputDesc
>(cmd
))
1343 auto *sec
= &cast
<OutputDesc
>(cmd
)->osec
;
1345 // Handle align (e.g. ".foo : ALIGN(16) { ... }").
1348 std::max
<uint32_t>(sec
->addralign
, sec
->alignExpr().getValue());
1350 bool isEmpty
= (getFirstInputSection(sec
) == nullptr);
1351 bool discardable
= isEmpty
&& isDiscardable(*sec
);
1352 // If sec has at least one input section and not discarded, remember its
1353 // flags to be inherited by subsequent output sections. (sec may contain
1354 // just one empty synthetic section.)
1355 if (sec
->hasInputSections
&& !discardable
)
1358 // We do not want to keep any special flags for output section
1359 // in case it is empty.
1362 flags
& ((sec
->nonAlloc
? 0 : (uint64_t)SHF_ALLOC
) | SHF_WRITE
);
1363 sec
->sortRank
= getSectionRank(ctx
, *sec
);
1366 // The code below may remove empty output sections. We should save the
1367 // specified program headers (if exist) and propagate them to subsequent
1368 // sections which do not specify program headers.
1369 // An example of such a linker script is:
1370 // SECTIONS { .empty : { *(.empty) } :rw
1371 // .foo : { *(.foo) } }
1372 // Note: at this point the order of output sections has not been finalized,
1373 // because orphans have not been inserted into their expected positions. We
1374 // will handle them in adjustSectionsAfterSorting().
1375 if (sec
->sectionIndex
!= UINT32_MAX
)
1376 maybePropagatePhdrs(*sec
, defPhdrs
);
1378 // Discard .relro_padding if we have not seen one RELRO section. Note: when
1379 // .tbss is the only RELRO section, there is no associated PT_LOAD segment
1380 // (needsPtLoad), so we don't append .relro_padding in the case.
1381 if (ctx
.in
.relroPadding
&& ctx
.in
.relroPadding
->getParent() == sec
&&
1389 sec
->relro
&& !(sec
->type
== SHT_NOBITS
&& (sec
->flags
& SHF_TLS
));
1393 // It is common practice to use very generic linker scripts. So for any
1394 // given run some of the output sections in the script will be empty.
1395 // We could create corresponding empty output sections, but that would
1396 // clutter the output.
1397 // We instead remove trivially empty sections. The bfd linker seems even
1398 // more aggressive at removing them.
1399 llvm::erase_if(sectionCommands
, [&](SectionCommand
*cmd
) { return !cmd
; });
1402 void LinkerScript::adjustSectionsAfterSorting() {
1403 // Try and find an appropriate memory region to assign offsets in.
1404 MemoryRegion
*hint
= nullptr;
1405 for (SectionCommand
*cmd
: sectionCommands
) {
1406 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1407 OutputSection
*sec
= &osd
->osec
;
1408 if (!sec
->lmaRegionName
.empty()) {
1409 if (MemoryRegion
*m
= memoryRegions
.lookup(sec
->lmaRegionName
))
1412 ErrAlways(ctx
) << "memory region '" << sec
->lmaRegionName
1413 << "' not declared";
1415 std::tie(sec
->memRegion
, hint
) = findMemoryRegion(sec
, hint
);
1419 // If output section command doesn't specify any segments,
1420 // and we haven't previously assigned any section to segment,
1421 // then we simply assign section to the very first load segment.
1422 // Below is an example of such linker script:
1423 // PHDRS { seg PT_LOAD; }
1424 // SECTIONS { .aaa : { *(.aaa) } }
1425 SmallVector
<StringRef
, 0> defPhdrs
;
1426 auto firstPtLoad
= llvm::find_if(phdrsCommands
, [](const PhdrsCommand
&cmd
) {
1427 return cmd
.type
== PT_LOAD
;
1429 if (firstPtLoad
!= phdrsCommands
.end())
1430 defPhdrs
.push_back(firstPtLoad
->name
);
1432 // Walk the commands and propagate the program headers to commands that don't
1433 // explicitly specify them.
1434 for (SectionCommand
*cmd
: sectionCommands
)
1435 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1436 maybePropagatePhdrs(osd
->osec
, defPhdrs
);
1439 // When the SECTIONS command is used, try to find an address for the file and
1440 // program headers output sections, which can be added to the first PT_LOAD
1441 // segment when program headers are created.
1443 // We check if the headers fit below the first allocated section. If there isn't
1444 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1445 // and we'll also remove the PT_PHDR segment.
1446 void LinkerScript::allocateHeaders(
1447 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> &phdrs
) {
1448 uint64_t min
= std::numeric_limits
<uint64_t>::max();
1449 for (OutputSection
*sec
: ctx
.outputSections
)
1450 if (sec
->flags
& SHF_ALLOC
)
1451 min
= std::min
<uint64_t>(min
, sec
->addr
);
1453 auto it
= llvm::find_if(phdrs
, [](auto &e
) { return e
->p_type
== PT_LOAD
; });
1454 if (it
== phdrs
.end())
1456 PhdrEntry
*firstPTLoad
= it
->get();
1458 bool hasExplicitHeaders
=
1459 llvm::any_of(phdrsCommands
, [](const PhdrsCommand
&cmd
) {
1460 return cmd
.hasPhdrs
|| cmd
.hasFilehdr
;
1462 bool paged
= !ctx
.arg
.omagic
&& !ctx
.arg
.nmagic
;
1463 uint64_t headerSize
= getHeaderSize(ctx
);
1466 // If SECTIONS is present and the linkerscript is not explicit about program
1467 // headers, only allocate program headers if that would not add a page.
1468 if (hasSectionsCommand
&& !hasExplicitHeaders
)
1469 base
= alignDown(min
, ctx
.arg
.maxPageSize
);
1470 if ((paged
|| hasExplicitHeaders
) && headerSize
<= min
- base
) {
1471 min
= alignDown(min
- headerSize
, ctx
.arg
.maxPageSize
);
1472 ctx
.out
.elfHeader
->addr
= min
;
1473 ctx
.out
.programHeaders
->addr
= min
+ ctx
.out
.elfHeader
->size
;
1477 // Error if we were explicitly asked to allocate headers.
1478 if (hasExplicitHeaders
)
1479 ErrAlways(ctx
) << "could not allocate headers";
1481 ctx
.out
.elfHeader
->ptLoad
= nullptr;
1482 ctx
.out
.programHeaders
->ptLoad
= nullptr;
1483 firstPTLoad
->firstSec
= findFirstSection(ctx
, firstPTLoad
);
1485 llvm::erase_if(phdrs
, [](auto &e
) { return e
->p_type
== PT_PHDR
; });
1488 LinkerScript::AddressState::AddressState(const LinkerScript
&script
) {
1489 for (auto &mri
: script
.memoryRegions
) {
1490 MemoryRegion
*mr
= mri
.second
;
1491 mr
->curPos
= (mr
->origin
)().getValue();
1495 // Here we assign addresses as instructed by linker script SECTIONS
1496 // sub-commands. Doing that allows us to use final VA values, so here
1497 // we also handle rest commands like symbol assignments and ASSERTs.
1498 // Return an output section that has changed its address or null, and a symbol
1499 // that has changed its section or value (or nullptr if no symbol has changed).
1500 std::pair
<const OutputSection
*, const Defined
*>
1501 LinkerScript::assignAddresses() {
1502 if (hasSectionsCommand
) {
1503 // With a linker script, assignment of addresses to headers is covered by
1504 // allocateHeaders().
1505 dot
= ctx
.arg
.imageBase
.value_or(0);
1507 // Assign addresses to headers right now.
1508 dot
= ctx
.target
->getImageBase();
1509 ctx
.out
.elfHeader
->addr
= dot
;
1510 ctx
.out
.programHeaders
->addr
= dot
+ ctx
.out
.elfHeader
->size
;
1511 dot
+= getHeaderSize(ctx
);
1514 OutputSection
*changedOsec
= nullptr;
1515 AddressState
st(*this);
1517 errorOnMissingSection
= true;
1518 st
.outSec
= aether
.get();
1519 recordedErrors
.clear();
1521 SymbolAssignmentMap oldValues
= getSymbolAssignmentValues(sectionCommands
);
1522 for (SectionCommand
*cmd
: sectionCommands
) {
1523 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
)) {
1525 assignSymbol(assign
, false);
1526 assign
->size
= dot
- assign
->addr
;
1529 if (isa
<SectionClassDesc
>(cmd
))
1531 if (assignOffsets(&cast
<OutputDesc
>(cmd
)->osec
) && !changedOsec
)
1532 changedOsec
= &cast
<OutputDesc
>(cmd
)->osec
;
1536 return {changedOsec
, getChangedSymbolAssignment(oldValues
)};
1539 static bool hasRegionOverflowed(MemoryRegion
*mr
) {
1542 return mr
->curPos
- mr
->getOrigin() > mr
->getLength();
1545 // Spill input sections in reverse order of address assignment to (potentially)
1546 // bring memory regions out of overflow. The size savings of a spill can only be
1547 // estimated, since general linker script arithmetic may occur afterwards.
1548 // Under-estimates may cause unnecessary spills, but over-estimates can always
1549 // be corrected on the next pass.
1550 bool LinkerScript::spillSections() {
1551 if (potentialSpillLists
.empty())
1554 bool spilled
= false;
1555 for (SectionCommand
*cmd
: reverse(sectionCommands
)) {
1556 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
1559 OutputSection
*osec
= &osd
->osec
;
1560 if (!osec
->memRegion
)
1563 // Input sections that have replaced a potential spill and should be removed
1564 // from their input section description.
1565 DenseSet
<InputSection
*> spilledInputSections
;
1567 for (SectionCommand
*cmd
: reverse(osec
->commands
)) {
1568 if (!hasRegionOverflowed(osec
->memRegion
) &&
1569 !hasRegionOverflowed(osec
->lmaRegion
))
1572 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
1575 for (InputSection
*isec
: reverse(isd
->sections
)) {
1576 // Potential spill locations cannot be spilled.
1577 if (isa
<PotentialSpillSection
>(isec
))
1580 // Find the next potential spill location and remove it from the list.
1581 auto it
= potentialSpillLists
.find(isec
);
1582 if (it
== potentialSpillLists
.end())
1584 PotentialSpillList
&list
= it
->second
;
1585 PotentialSpillSection
*spill
= list
.head
;
1587 list
.head
= spill
->next
;
1589 potentialSpillLists
.erase(isec
);
1591 // Replace the next spill location with the spilled section and adjust
1592 // its properties to match the new location. Note that the alignment of
1593 // the spill section may have diverged from the original due to e.g. a
1594 // SUBALIGN. Correct assignment requires the spill's alignment to be
1595 // used, not the original.
1596 spilledInputSections
.insert(isec
);
1597 *llvm::find(spill
->isd
->sections
, spill
) = isec
;
1598 isec
->parent
= spill
->parent
;
1599 isec
->addralign
= spill
->addralign
;
1601 // Record the (potential) reduction in the region's end position.
1602 osec
->memRegion
->curPos
-= isec
->getSize();
1603 if (osec
->lmaRegion
)
1604 osec
->lmaRegion
->curPos
-= isec
->getSize();
1606 // Spilling continues until the end position no longer overflows the
1607 // region. Then, another round of address assignment will either confirm
1608 // the spill's success or lead to yet more spilling.
1609 if (!hasRegionOverflowed(osec
->memRegion
) &&
1610 !hasRegionOverflowed(osec
->lmaRegion
))
1614 // Remove any spilled input sections to complete their move.
1615 if (!spilledInputSections
.empty()) {
1617 llvm::erase_if(isd
->sections
, [&](InputSection
*isec
) {
1618 return spilledInputSections
.contains(isec
);
1627 // Erase any potential spill sections that were not used.
1628 void LinkerScript::erasePotentialSpillSections() {
1629 if (potentialSpillLists
.empty())
1632 // Collect the set of input section descriptions that contain potential
1634 DenseSet
<InputSectionDescription
*> isds
;
1635 for (const auto &[_
, list
] : potentialSpillLists
)
1636 for (PotentialSpillSection
*s
= list
.head
; s
; s
= s
->next
)
1637 isds
.insert(s
->isd
);
1639 for (InputSectionDescription
*isd
: isds
)
1640 llvm::erase_if(isd
->sections
, [](InputSection
*s
) {
1641 return isa
<PotentialSpillSection
>(s
);
1644 potentialSpillLists
.clear();
1647 // Creates program headers as instructed by PHDRS linker script command.
1648 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> LinkerScript::createPhdrs() {
1649 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> ret
;
1651 // Process PHDRS and FILEHDR keywords because they are not
1652 // real output sections and cannot be added in the following loop.
1653 for (const PhdrsCommand
&cmd
: phdrsCommands
) {
1655 std::make_unique
<PhdrEntry
>(ctx
, cmd
.type
, cmd
.flags
.value_or(PF_R
));
1658 phdr
->add(ctx
.out
.elfHeader
.get());
1660 phdr
->add(ctx
.out
.programHeaders
.get());
1663 phdr
->p_paddr
= cmd
.lmaExpr().getValue();
1664 phdr
->hasLMA
= true;
1666 ret
.push_back(std::move(phdr
));
1669 // Add output sections to program headers.
1670 for (OutputSection
*sec
: ctx
.outputSections
) {
1671 // Assign headers specified by linker script
1672 for (size_t id
: getPhdrIndices(sec
)) {
1674 if (!phdrsCommands
[id
].flags
)
1675 ret
[id
]->p_flags
|= sec
->getPhdrFlags();
1681 // Returns true if we should emit an .interp section.
1683 // We usually do. But if PHDRS commands are given, and
1684 // no PT_INTERP is there, there's no place to emit an
1685 // .interp, so we don't do that in that case.
1686 bool LinkerScript::needsInterpSection() {
1687 if (phdrsCommands
.empty())
1689 for (PhdrsCommand
&cmd
: phdrsCommands
)
1690 if (cmd
.type
== PT_INTERP
)
1695 ExprValue
LinkerScript::getSymbolValue(StringRef name
, const Twine
&loc
) {
1698 return {state
->outSec
, false, dot
- state
->outSec
->addr
, loc
};
1699 ErrAlways(ctx
) << loc
<< ": unable to get location counter value";
1703 if (Symbol
*sym
= ctx
.symtab
->find(name
)) {
1704 if (auto *ds
= dyn_cast
<Defined
>(sym
)) {
1705 ExprValue v
{ds
->section
, false, ds
->value
, loc
};
1706 // Retain the original st_type, so that the alias will get the same
1707 // behavior in relocation processing. Any operation will reset st_type to
1712 if (isa
<SharedSymbol
>(sym
))
1713 if (!errorOnMissingSection
)
1714 return {nullptr, false, 0, loc
};
1717 ErrAlways(ctx
) << loc
<< ": symbol not found: " << name
;
1721 // Returns the index of the segment named Name.
1722 static std::optional
<size_t> getPhdrIndex(ArrayRef
<PhdrsCommand
> vec
,
1724 for (size_t i
= 0; i
< vec
.size(); ++i
)
1725 if (vec
[i
].name
== name
)
1727 return std::nullopt
;
1730 // Returns indices of ELF headers containing specific section. Each index is a
1731 // zero based number of ELF header listed within PHDRS {} script block.
1732 SmallVector
<size_t, 0> LinkerScript::getPhdrIndices(OutputSection
*cmd
) {
1733 SmallVector
<size_t, 0> ret
;
1735 for (StringRef s
: cmd
->phdrs
) {
1736 if (std::optional
<size_t> idx
= getPhdrIndex(phdrsCommands
, s
))
1737 ret
.push_back(*idx
);
1738 else if (s
!= "NONE")
1739 ErrAlways(ctx
) << cmd
->location
<< ": program header '" << s
1740 << "' is not listed in PHDRS";
1745 void LinkerScript::printMemoryUsage(raw_ostream
& os
) {
1746 auto printSize
= [&](uint64_t size
) {
1747 if ((size
& 0x3fffffff) == 0)
1748 os
<< format_decimal(size
>> 30, 10) << " GB";
1749 else if ((size
& 0xfffff) == 0)
1750 os
<< format_decimal(size
>> 20, 10) << " MB";
1751 else if ((size
& 0x3ff) == 0)
1752 os
<< format_decimal(size
>> 10, 10) << " KB";
1754 os
<< " " << format_decimal(size
, 10) << " B";
1756 os
<< "Memory region Used Size Region Size %age Used\n";
1757 for (auto &pair
: memoryRegions
) {
1758 MemoryRegion
*m
= pair
.second
;
1759 uint64_t usedLength
= m
->curPos
- m
->getOrigin();
1760 os
<< right_justify(m
->name
, 16) << ": ";
1761 printSize(usedLength
);
1762 uint64_t length
= m
->getLength();
1765 double percent
= usedLength
* 100.0 / length
;
1766 os
<< " " << format("%6.2f%%", percent
);
1772 void LinkerScript::recordError(const Twine
&msg
) {
1773 auto &str
= recordedErrors
.emplace_back();
1777 static void checkMemoryRegion(Ctx
&ctx
, const MemoryRegion
*region
,
1778 const OutputSection
*osec
, uint64_t addr
) {
1779 uint64_t osecEnd
= addr
+ osec
->size
;
1780 uint64_t regionEnd
= region
->getOrigin() + region
->getLength();
1781 if (osecEnd
> regionEnd
) {
1782 ErrAlways(ctx
) << "section '" << osec
->name
<< "' will not fit in region '"
1783 << region
->name
<< "': overflowed by "
1784 << (osecEnd
- regionEnd
) << " bytes";
1788 void LinkerScript::checkFinalScriptConditions() const {
1789 for (StringRef err
: recordedErrors
)
1791 for (const OutputSection
*sec
: ctx
.outputSections
) {
1792 if (const MemoryRegion
*memoryRegion
= sec
->memRegion
)
1793 checkMemoryRegion(ctx
, memoryRegion
, sec
, sec
->addr
);
1794 if (const MemoryRegion
*lmaRegion
= sec
->lmaRegion
)
1795 checkMemoryRegion(ctx
, lmaRegion
, sec
, sec
->getLMA());
1799 void LinkerScript::addScriptReferencedSymbolsToSymTable() {
1800 // Some symbols (such as __ehdr_start) are defined lazily only when there
1801 // are undefined symbols for them, so we add these to trigger that logic.
1802 auto reference
= [&ctx
= ctx
](StringRef name
) {
1803 Symbol
*sym
= ctx
.symtab
->addUnusedUndefined(name
);
1804 sym
->isUsedInRegularObj
= true;
1805 sym
->referenced
= true;
1807 for (StringRef name
: referencedSymbols
)
1810 // Keeps track of references from which PROVIDE symbols have been added to the
1812 DenseSet
<StringRef
> added
;
1813 SmallVector
<const SmallVector
<StringRef
, 0> *, 0> symRefsVec
;
1814 for (const auto &[name
, symRefs
] : provideMap
)
1815 if (shouldAddProvideSym(name
) && added
.insert(name
).second
)
1816 symRefsVec
.push_back(&symRefs
);
1817 while (symRefsVec
.size()) {
1818 for (StringRef name
: *symRefsVec
.pop_back_val()) {
1820 // Prevent the symbol from being discarded by --gc-sections.
1821 referencedSymbols
.push_back(name
);
1822 auto it
= provideMap
.find(name
);
1823 if (it
!= provideMap
.end() && shouldAddProvideSym(name
) &&
1824 added
.insert(name
).second
) {
1825 symRefsVec
.push_back(&it
->second
);
1831 bool LinkerScript::shouldAddProvideSym(StringRef symName
) {
1832 // This function is called before and after garbage collection. To prevent
1833 // undefined references from the RHS, the result of this function for a
1834 // symbol must be the same for each call. We use unusedProvideSyms to not
1835 // change the return value of a demoted symbol.
1836 Symbol
*sym
= ctx
.symtab
->find(symName
);
1839 if (sym
->isDefined() || sym
->isCommon()) {
1840 unusedProvideSyms
.insert(sym
);
1843 return !unusedProvideSyms
.count(sym
);