1 //===- Symbols.cpp --------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
11 #include "InputFiles.h"
12 #include "InputSection.h"
13 #include "OutputSections.h"
14 #include "SymbolTable.h"
15 #include "SyntheticSections.h"
18 #include "lld/Common/ErrorHandler.h"
19 #include "llvm/Demangle/Demangle.h"
20 #include "llvm/Support/Compiler.h"
24 using namespace llvm::object
;
25 using namespace llvm::ELF
;
27 using namespace lld::elf
;
29 static_assert(sizeof(SymbolUnion
) <= 64, "SymbolUnion too large");
31 template <typename T
> struct AssertSymbol
{
32 static_assert(std::is_trivially_destructible
<T
>(),
33 "Symbol types must be trivially destructible");
34 static_assert(sizeof(T
) <= sizeof(SymbolUnion
), "SymbolUnion too small");
35 static_assert(alignof(T
) <= alignof(SymbolUnion
),
36 "SymbolUnion not aligned enough");
39 LLVM_ATTRIBUTE_UNUSED
static inline void assertSymbols() {
40 AssertSymbol
<Defined
>();
41 AssertSymbol
<CommonSymbol
>();
42 AssertSymbol
<Undefined
>();
43 AssertSymbol
<SharedSymbol
>();
44 AssertSymbol
<LazySymbol
>();
47 // Returns a symbol for an error message.
48 static std::string
maybeDemangleSymbol(Ctx
&ctx
, StringRef symName
) {
49 return ctx
.arg
.demangle
? demangle(symName
.str()) : symName
.str();
52 std::string
elf::toStr(Ctx
&ctx
, const elf::Symbol
&sym
) {
53 StringRef name
= sym
.getName();
54 std::string ret
= maybeDemangleSymbol(ctx
, name
);
56 const char *suffix
= sym
.getVersionSuffix();
62 const ELFSyncStream
&elf::operator<<(const ELFSyncStream
&s
,
64 return s
<< toStr(s
.ctx
, *sym
);
67 static uint64_t getSymVA(Ctx
&ctx
, const Symbol
&sym
, int64_t addend
) {
69 case Symbol::DefinedKind
: {
70 auto &d
= cast
<Defined
>(sym
);
71 SectionBase
*isec
= d
.section
;
73 // This is an absolute symbol.
77 assert(isec
!= &InputSection::discarded
);
79 uint64_t offset
= d
.value
;
81 // An object in an SHF_MERGE section might be referenced via a
82 // section symbol (as a hack for reducing the number of local
84 // Depending on the addend, the reference via a section symbol
85 // refers to a different object in the merge section.
86 // Since the objects in the merge section are not necessarily
87 // contiguous in the output, the addend can thus affect the final
88 // VA in a non-linear way.
89 // To make this work, we incorporate the addend into the section
90 // offset (and zero out the addend for later processing) so that
91 // we find the right object in the section.
95 // In the typical case, this is actually very simple and boils
96 // down to adding together 3 numbers:
97 // 1. The address of the output section.
98 // 2. The offset of the input section within the output section.
99 // 3. The offset within the input section (this addition happens
100 // inside InputSection::getOffset).
102 // If you understand the data structures involved with this next
103 // line (and how they get built), then you have a pretty good
104 // understanding of the linker.
105 uint64_t va
= isec
->getVA(offset
);
109 // MIPS relocatable files can mix regular and microMIPS code.
110 // Linker needs to distinguish such code. To do so microMIPS
111 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other`
112 // field. Unfortunately, the `MIPS::relocate()` method has
113 // a symbol value only. To pass type of the symbol (regular/microMIPS)
114 // to that routine as well as other places where we write
115 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry`
116 // field etc) do the same trick as compiler uses to mark microMIPS
117 // for CPU - set the less-significant bit.
118 if (ctx
.arg
.emachine
== EM_MIPS
&& isMicroMips(ctx
) &&
119 ((sym
.stOther
& STO_MIPS_MICROMIPS
) || sym
.hasFlag(NEEDS_COPY
)))
122 if (d
.isTls() && !ctx
.arg
.relocatable
) {
123 // Use the address of the TLS segment's first section rather than the
124 // segment's address, because segment addresses aren't initialized until
125 // after sections are finalized. (e.g. Measuring the size of .rela.dyn
126 // for Android relocation packing requires knowing TLS symbol addresses
127 // during section finalization.)
128 if (!ctx
.tlsPhdr
|| !ctx
.tlsPhdr
->firstSec
) {
130 << " has an STT_TLS symbol but doesn't have a PT_TLS segment";
133 return va
- ctx
.tlsPhdr
->firstSec
->addr
;
137 case Symbol::SharedKind
:
138 case Symbol::UndefinedKind
:
140 case Symbol::LazyKind
:
141 llvm_unreachable("lazy symbol reached writer");
142 case Symbol::CommonKind
:
143 llvm_unreachable("common symbol reached writer");
144 case Symbol::PlaceholderKind
:
145 llvm_unreachable("placeholder symbol reached writer");
147 llvm_unreachable("invalid symbol kind");
150 uint64_t Symbol::getVA(Ctx
&ctx
, int64_t addend
) const {
151 return getSymVA(ctx
, *this, addend
) + addend
;
154 uint64_t Symbol::getGotVA(Ctx
&ctx
) const {
156 return ctx
.in
.igotPlt
->getVA() + getGotPltOffset(ctx
);
157 return ctx
.in
.got
->getVA() + getGotOffset(ctx
);
160 uint64_t Symbol::getGotOffset(Ctx
&ctx
) const {
161 return getGotIdx(ctx
) * ctx
.target
->gotEntrySize
;
164 uint64_t Symbol::getGotPltVA(Ctx
&ctx
) const {
166 return ctx
.in
.igotPlt
->getVA() + getGotPltOffset(ctx
);
167 return ctx
.in
.gotPlt
->getVA() + getGotPltOffset(ctx
);
170 uint64_t Symbol::getGotPltOffset(Ctx
&ctx
) const {
172 return getPltIdx(ctx
) * ctx
.target
->gotEntrySize
;
173 return (getPltIdx(ctx
) + ctx
.target
->gotPltHeaderEntriesNum
) *
174 ctx
.target
->gotEntrySize
;
177 uint64_t Symbol::getPltVA(Ctx
&ctx
) const {
178 uint64_t outVA
= isInIplt
? ctx
.in
.iplt
->getVA() +
179 getPltIdx(ctx
) * ctx
.target
->ipltEntrySize
180 : ctx
.in
.plt
->getVA() + ctx
.in
.plt
->headerSize
+
181 getPltIdx(ctx
) * ctx
.target
->pltEntrySize
;
183 // While linking microMIPS code PLT code are always microMIPS
184 // code. Set the less-significant bit to track that fact.
185 // See detailed comment in the `getSymVA` function.
186 if (ctx
.arg
.emachine
== EM_MIPS
&& isMicroMips(ctx
))
191 uint64_t Symbol::getSize() const {
192 if (const auto *dr
= dyn_cast
<Defined
>(this))
194 return cast
<SharedSymbol
>(this)->size
;
197 OutputSection
*Symbol::getOutputSection() const {
198 if (auto *s
= dyn_cast
<Defined
>(this)) {
199 if (auto *sec
= s
->section
)
200 return sec
->getOutputSection();
206 // If a symbol name contains '@', the characters after that is
207 // a symbol version name. This function parses that.
208 void Symbol::parseSymbolVersion(Ctx
&ctx
) {
209 // Return if localized by a local: pattern in a version script.
210 if (versionId
== VER_NDX_LOCAL
)
212 StringRef s
= getName();
213 size_t pos
= s
.find('@');
214 if (pos
== StringRef::npos
)
216 StringRef verstr
= s
.substr(pos
+ 1);
218 // Truncate the symbol name so that it doesn't include the version string.
224 // If this is not in this DSO, it is not a definition.
228 // '@@' in a symbol name means the default version.
229 // It is usually the most recent one.
230 bool isDefault
= (verstr
[0] == '@');
232 verstr
= verstr
.substr(1);
234 for (const VersionDefinition
&ver
: namedVersionDefs(ctx
)) {
235 if (ver
.name
!= verstr
)
241 versionId
= ver
.id
| VERSYM_HIDDEN
;
245 // It is an error if the specified version is not defined.
246 // Usually version script is not provided when linking executable,
247 // but we may still want to override a versioned symbol from DSO,
248 // so we do not report error in this case. We also do not error
249 // if the symbol has a local version as it won't be in the dynamic
251 if (ctx
.arg
.shared
&& versionId
!= VER_NDX_LOCAL
)
252 ErrAlways(ctx
) << file
<< ": symbol " << s
<< " has undefined version "
256 void Symbol::extract(Ctx
&ctx
) const {
259 parseFile(ctx
, file
);
263 uint8_t Symbol::computeBinding(Ctx
&ctx
) const {
264 auto v
= visibility();
265 if ((v
!= STV_DEFAULT
&& v
!= STV_PROTECTED
) || versionId
== VER_NDX_LOCAL
)
267 if (binding
== STB_GNU_UNIQUE
&& !ctx
.arg
.gnuUnique
)
272 bool Symbol::includeInDynsym(Ctx
&ctx
) const {
273 if (computeBinding(ctx
) == STB_LOCAL
)
275 if (!isDefined() && !isCommon())
276 // This should unconditionally return true, unfortunately glibc -static-pie
277 // expects undefined weak symbols not to exist in .dynsym, e.g.
278 // __pthread_mutex_lock reference in _dl_add_to_namespace_list,
279 // __pthread_initialize_minimal reference in csu/libc-start.c.
280 return !(isUndefWeak() && ctx
.arg
.noDynamicLinker
);
282 return exportDynamic
||
283 (ctx
.arg
.exportDynamic
&& (isUsedInRegularObj
|| !ltoCanOmit
));
286 // Print out a log message for --trace-symbol.
287 void elf::printTraceSymbol(const Symbol
&sym
, StringRef name
) {
289 if (sym
.isUndefined())
290 s
= ": reference to ";
291 else if (sym
.isLazy())
292 s
= ": lazy definition of ";
293 else if (sym
.isShared())
294 s
= ": shared definition of ";
295 else if (sym
.isCommon())
296 s
= ": common definition of ";
298 s
= ": definition of ";
300 Msg(sym
.file
->ctx
) << sym
.file
<< s
<< name
;
303 static void recordWhyExtract(Ctx
&ctx
, const InputFile
*reference
,
304 const InputFile
&extracted
, const Symbol
&sym
) {
305 ctx
.whyExtractRecords
.emplace_back(toStr(ctx
, reference
), &extracted
, sym
);
308 void elf::maybeWarnUnorderableSymbol(Ctx
&ctx
, const Symbol
*sym
) {
309 if (!ctx
.arg
.warnSymbolOrdering
)
312 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning is
313 // emitted. It makes sense to not warn on undefined symbols (excluding those
314 // demoted by demoteSymbols).
316 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols,
317 // but we don't have to be compatible here.
318 if (sym
->isUndefined() && !cast
<Undefined
>(sym
)->discardedSecIdx
&&
319 ctx
.arg
.unresolvedSymbols
== UnresolvedPolicy::Ignore
)
322 const InputFile
*file
= sym
->file
;
323 auto *d
= dyn_cast
<Defined
>(sym
);
325 auto report
= [&](StringRef s
) { Warn(ctx
) << file
<< s
<< sym
->getName(); };
327 if (sym
->isUndefined()) {
328 if (cast
<Undefined
>(sym
)->discardedSecIdx
)
329 report(": unable to order discarded symbol: ");
331 report(": unable to order undefined symbol: ");
332 } else if (sym
->isShared())
333 report(": unable to order shared symbol: ");
334 else if (d
&& !d
->section
)
335 report(": unable to order absolute symbol: ");
336 else if (d
&& isa
<OutputSection
>(d
->section
))
337 report(": unable to order synthetic symbol: ");
338 else if (d
&& !d
->section
->isLive())
339 report(": unable to order discarded symbol: ");
342 // Returns true if a symbol can be replaced at load-time by a symbol
343 // with the same name defined in other ELF executable or DSO.
344 bool elf::computeIsPreemptible(Ctx
&ctx
, const Symbol
&sym
) {
345 assert(!sym
.isLocal() || sym
.isPlaceholder());
347 // Only symbols with default visibility that appear in dynsym can be
348 // preempted. Symbols with protected visibility cannot be preempted.
349 if (sym
.visibility() != STV_DEFAULT
)
352 // At this point copy relocations have not been created yet, so any
353 // symbol that is not defined locally is preemptible.
354 if (!sym
.isDefined())
360 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is
361 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is
362 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of
363 // -Bsymbolic-functions.
364 if (ctx
.arg
.symbolic
||
365 (ctx
.arg
.bsymbolic
== BsymbolicKind::NonWeak
&&
366 sym
.binding
!= STB_WEAK
) ||
367 (ctx
.arg
.bsymbolic
== BsymbolicKind::Functions
&& sym
.isFunc()) ||
368 (ctx
.arg
.bsymbolic
== BsymbolicKind::NonWeakFunctions
&& sym
.isFunc() &&
369 sym
.binding
!= STB_WEAK
))
370 return sym
.inDynamicList
;
374 void elf::parseVersionAndComputeIsPreemptible(Ctx
&ctx
) {
375 // Symbol themselves might know their versions because symbols
376 // can contain versions in the form of <name>@<version>.
377 // Let them parse and update their names to exclude version suffix.
378 bool hasDynSymTab
= ctx
.arg
.hasDynSymTab
;
379 for (Symbol
*sym
: ctx
.symtab
->getSymbols()) {
380 if (sym
->hasVersionSuffix
)
381 sym
->parseSymbolVersion(ctx
);
382 sym
->isExported
= sym
->includeInDynsym(ctx
);
384 sym
->isPreemptible
= sym
->isExported
&& computeIsPreemptible(ctx
, *sym
);
388 // Merge symbol properties.
390 // When we have many symbols of the same name, we choose one of them,
391 // and that's the result of symbol resolution. However, symbols that
392 // were not chosen still affect some symbol properties.
393 void Symbol::mergeProperties(const Symbol
&other
) {
394 // DSO symbols do not affect visibility in the output.
395 if (!other
.isShared() && other
.visibility() != STV_DEFAULT
) {
396 uint8_t v
= visibility(), ov
= other
.visibility();
397 setVisibility(v
== STV_DEFAULT
? ov
: std::min(v
, ov
));
401 void Symbol::resolve(Ctx
&ctx
, const Undefined
&other
) {
402 if (other
.visibility() != STV_DEFAULT
) {
403 uint8_t v
= visibility(), ov
= other
.visibility();
404 setVisibility(v
== STV_DEFAULT
? ov
: std::min(v
, ov
));
406 // An undefined symbol with non default visibility must be satisfied
409 // If this is a non-weak defined symbol in a discarded section, override the
410 // existing undefined symbol for better error message later.
411 if (isPlaceholder() || (isShared() && other
.visibility() != STV_DEFAULT
) ||
412 (isUndefined() && other
.binding
!= STB_WEAK
&& other
.discardedSecIdx
)) {
413 other
.overwrite(*this);
418 printTraceSymbol(other
, getName());
421 // An undefined weak will not extract archive members. See comment on Lazy
422 // in Symbols.h for the details.
423 if (other
.binding
== STB_WEAK
) {
429 // Do extra check for --warn-backrefs.
431 // --warn-backrefs is an option to prevent an undefined reference from
432 // extracting an archive member written earlier in the command line. It can
433 // be used to keep compatibility with GNU linkers to some degree. I'll
434 // explain the feature and why you may find it useful in this comment.
436 // lld's symbol resolution semantics is more relaxed than traditional Unix
437 // linkers. For example,
439 // ld.lld foo.a bar.o
441 // succeeds even if bar.o contains an undefined symbol that has to be
442 // resolved by some object file in foo.a. Traditional Unix linkers don't
443 // allow this kind of backward reference, as they visit each file only once
444 // from left to right in the command line while resolving all undefined
445 // symbols at the moment of visiting.
447 // In the above case, since there's no undefined symbol when a linker visits
448 // foo.a, no files are pulled out from foo.a, and because the linker forgets
449 // about foo.a after visiting, it can't resolve undefined symbols in bar.o
450 // that could have been resolved otherwise.
452 // That lld accepts more relaxed form means that (besides it'd make more
453 // sense) you can accidentally write a command line or a build file that
454 // works only with lld, even if you have a plan to distribute it to wider
455 // users who may be using GNU linkers. With --warn-backrefs, you can detect
456 // a library order that doesn't work with other Unix linkers.
458 // The option is also useful to detect cyclic dependencies between static
459 // archives. Again, lld accepts
461 // ld.lld foo.a bar.a
463 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
464 // handled as an error.
466 // Here is how the option works. We assign a group ID to each file. A file
467 // with a smaller group ID can pull out object files from an archive file
468 // with an equal or greater group ID. Otherwise, it is a reverse dependency
471 // A file outside --{start,end}-group gets a fresh ID when instantiated. All
472 // files within the same --{start,end}-group get the same group ID. E.g.
474 // ld.lld A B --start-group C D --end-group E
476 // A forms group 0. B form group 1. C and D (including their member object
477 // files) form group 2. E forms group 3. I think that you can see how this
478 // group assignment rule simulates the traditional linker's semantics.
479 bool backref
= ctx
.arg
.warnBackrefs
&& file
->groupId
< other
.file
->groupId
;
482 if (!ctx
.arg
.whyExtract
.empty())
483 recordWhyExtract(ctx
, other
.file
, *file
, *this);
485 // We don't report backward references to weak symbols as they can be
488 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking
489 // sandwich), where def2 may or may not be the same as def1. We don't want
490 // to warn for this case, so dismiss the warning if we see a subsequent lazy
491 // definition. this->file needs to be saved because in the case of LTO it
492 // may be reset to internalFile or be replaced with a file named lto.tmp.
493 if (backref
&& !isWeak())
494 ctx
.backwardReferences
.try_emplace(this,
495 std::make_pair(other
.file
, file
));
499 // Undefined symbols in a SharedFile do not change the binding.
500 if (isa
<SharedFile
>(other
.file
))
503 if (isUndefined() || isShared()) {
504 // The binding will be weak if there is at least one reference and all are
505 // weak. The binding has one opportunity to change to weak: if the first
506 // reference is weak.
507 if (other
.binding
!= STB_WEAK
|| !referenced
)
508 binding
= other
.binding
;
512 // Compare two symbols. Return true if the new symbol should win.
513 bool Symbol::shouldReplace(Ctx
&ctx
, const Defined
&other
) const {
514 if (LLVM_UNLIKELY(isCommon())) {
515 if (ctx
.arg
.warnCommon
)
516 Warn(ctx
) << "common " << getName() << " is overridden";
517 return !other
.isWeak();
522 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes
523 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat
524 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all
525 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to
526 // an existing STB_WEAK, there may be discarded section errors because the
527 // selected copy may be in a non-prevailing COMDAT.
528 return !isGlobal() && other
.isGlobal();
531 void elf::reportDuplicate(Ctx
&ctx
, const Symbol
&sym
, const InputFile
*newFile
,
532 InputSectionBase
*errSec
, uint64_t errOffset
) {
533 if (ctx
.arg
.allowMultipleDefinition
)
535 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which
536 // is sort of proto-comdat. There is actually no duplicate if we have
537 // full support for .gnu.linkonce.
538 const Defined
*d
= dyn_cast
<Defined
>(&sym
);
539 if (!d
|| d
->getName() == "__x86.get_pc_thunk.bx")
541 // Allow absolute symbols with the same value for GNU ld compatibility.
542 if (!d
->section
&& !errSec
&& errOffset
&& d
->value
== errOffset
)
544 if (!d
->section
|| !errSec
) {
545 Err(ctx
) << "duplicate symbol: " << &sym
<< "\n>>> defined in " << sym
.file
546 << "\n>>> defined in " << newFile
;
550 // Construct and print an error message in the form of:
552 // ld.lld: error: duplicate symbol: foo
553 // >>> defined at bar.c:30
554 // >>> bar.o (/home/alice/src/bar.o)
555 // >>> defined at baz.c:563
556 // >>> baz.o in archive libbaz.a
557 auto *sec1
= cast
<InputSectionBase
>(d
->section
);
558 auto diag
= Err(ctx
);
559 diag
<< "duplicate symbol: " << &sym
<< "\n>>> defined at ";
560 auto tell
= diag
.tell();
561 diag
<< sec1
->getSrcMsg(sym
, d
->value
);
562 if (tell
!= diag
.tell())
564 diag
<< sec1
->getObjMsg(d
->value
) << "\n>>> defined at ";
566 diag
<< errSec
->getSrcMsg(sym
, errOffset
);
567 if (tell
!= diag
.tell())
569 diag
<< errSec
->getObjMsg(errOffset
);
572 void Symbol::checkDuplicate(Ctx
&ctx
, const Defined
&other
) const {
573 if (isDefined() && !isWeak() && !other
.isWeak())
574 reportDuplicate(ctx
, *this, other
.file
,
575 dyn_cast_or_null
<InputSectionBase
>(other
.section
),
579 void Symbol::resolve(Ctx
&ctx
, const CommonSymbol
&other
) {
580 if (other
.visibility() != STV_DEFAULT
) {
581 uint8_t v
= visibility(), ov
= other
.visibility();
582 setVisibility(v
== STV_DEFAULT
? ov
: std::min(v
, ov
));
584 if (isDefined() && !isWeak()) {
585 if (ctx
.arg
.warnCommon
)
586 Warn(ctx
) << "common " << getName() << " is overridden";
590 if (CommonSymbol
*oldSym
= dyn_cast
<CommonSymbol
>(this)) {
591 if (ctx
.arg
.warnCommon
)
592 Warn(ctx
) << "multiple common of " << getName();
593 oldSym
->alignment
= std::max(oldSym
->alignment
, other
.alignment
);
594 if (oldSym
->size
< other
.size
) {
595 oldSym
->file
= other
.file
;
596 oldSym
->size
= other
.size
;
601 if (auto *s
= dyn_cast
<SharedSymbol
>(this)) {
602 // Increase st_size if the shared symbol has a larger st_size. The shared
603 // symbol may be created from common symbols. The fact that some object
604 // files were linked into a shared object first should not change the
605 // regular rule that picks the largest st_size.
606 uint64_t size
= s
->size
;
607 other
.overwrite(*this);
608 if (size
> cast
<CommonSymbol
>(this)->size
)
609 cast
<CommonSymbol
>(this)->size
= size
;
611 other
.overwrite(*this);
615 void Symbol::resolve(Ctx
&ctx
, const Defined
&other
) {
616 if (other
.visibility() != STV_DEFAULT
) {
617 uint8_t v
= visibility(), ov
= other
.visibility();
618 setVisibility(v
== STV_DEFAULT
? ov
: std::min(v
, ov
));
620 if (shouldReplace(ctx
, other
))
621 other
.overwrite(*this);
624 void Symbol::resolve(Ctx
&ctx
, const LazySymbol
&other
) {
625 if (isPlaceholder()) {
626 other
.overwrite(*this);
630 if (LLVM_UNLIKELY(!isUndefined())) {
631 // See the comment in resolve(Ctx &, const Undefined &).
633 ctx
.backwardReferences
.erase(this);
634 } else if (isCommon() && ctx
.arg
.fortranCommon
&&
635 other
.file
->shouldExtractForCommon(getName())) {
636 // For common objects, we want to look for global or weak definitions that
637 // should be extracted as the canonical definition instead.
638 ctx
.backwardReferences
.erase(this);
639 other
.overwrite(*this);
645 // An undefined weak will not extract archive members. See comment on Lazy in
646 // Symbols.h for the details.
649 other
.overwrite(*this);
655 const InputFile
*oldFile
= file
;
657 if (!ctx
.arg
.whyExtract
.empty())
658 recordWhyExtract(ctx
, oldFile
, *file
, *this);
661 void Symbol::resolve(Ctx
&ctx
, const SharedSymbol
&other
) {
662 exportDynamic
= true;
663 if (isPlaceholder()) {
664 other
.overwrite(*this);
668 // See the comment in resolveCommon() above.
669 if (other
.size
> cast
<CommonSymbol
>(this)->size
)
670 cast
<CommonSymbol
>(this)->size
= other
.size
;
673 if (visibility() == STV_DEFAULT
&& (isUndefined() || isLazy())) {
674 // An undefined symbol with non default visibility must be satisfied
676 uint8_t bind
= binding
;
677 other
.overwrite(*this);
680 printTraceSymbol(other
, getName());
683 void Defined::overwrite(Symbol
&sym
) const {
684 if (isa_and_nonnull
<SharedFile
>(sym
.file
))
685 sym
.versionId
= VER_NDX_GLOBAL
;
686 Symbol::overwrite(sym
, DefinedKind
);
687 auto &s
= static_cast<Defined
&>(sym
);