1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
21 #include "SyntheticSections.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/Support/BLAKE3.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/RandomNumberGenerator.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include "llvm/Support/xxhash.h"
36 #define DEBUG_TYPE "lld"
39 using namespace llvm::ELF
;
40 using namespace llvm::object
;
41 using namespace llvm::support
;
42 using namespace llvm::support::endian
;
44 using namespace lld::elf
;
47 // The writer writes a SymbolTable result to a file.
48 template <class ELFT
> class Writer
{
50 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
52 Writer(Ctx
&ctx
) : ctx(ctx
), buffer(ctx
.e
.outputBuffer
), tc(ctx
) {}
57 void addSectionSymbols();
59 void resolveShfLinkOrder();
60 void finalizeAddressDependentContent();
61 void optimizeBasicBlockJumps();
62 void sortInputSections();
63 void sortOrphanSections();
64 void finalizeSections();
65 void checkExecuteOnly();
66 void setReservedSymbolSections();
68 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> createPhdrs(Partition
&part
);
69 void addPhdrForSection(Partition
&part
, unsigned shType
, unsigned pType
,
71 void assignFileOffsets();
72 void assignFileOffsetsBinary();
73 void setPhdrs(Partition
&part
);
75 void fixSectionAlignments();
77 void writeTrapInstr();
80 void writeSectionsBinary();
84 std::unique_ptr
<FileOutputBuffer
> &buffer
;
85 // ThunkCreator holds Thunks that are used at writeTo time.
88 void addRelIpltSymbols();
89 void addStartEndSymbols();
90 void addStartStopSymbols(OutputSection
&osec
);
93 uint64_t sectionHeaderOff
;
95 } // anonymous namespace
97 template <class ELFT
> void elf::writeResult(Ctx
&ctx
) {
98 Writer
<ELFT
>(ctx
).run();
102 removeEmptyPTLoad(Ctx
&ctx
, SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> &phdrs
) {
103 auto it
= std::stable_partition(phdrs
.begin(), phdrs
.end(), [&](auto &p
) {
104 if (p
->p_type
!= PT_LOAD
)
108 uint64_t size
= p
->lastSec
->addr
+ p
->lastSec
->size
- p
->firstSec
->addr
;
112 // Clear OutputSection::ptLoad for sections contained in removed
114 DenseSet
<PhdrEntry
*> removed
;
115 for (auto it2
= it
; it2
!= phdrs
.end(); ++it2
)
116 removed
.insert(it2
->get());
117 for (OutputSection
*sec
: ctx
.outputSections
)
118 if (removed
.count(sec
->ptLoad
))
119 sec
->ptLoad
= nullptr;
120 phdrs
.erase(it
, phdrs
.end());
123 void elf::copySectionsIntoPartitions(Ctx
&ctx
) {
124 SmallVector
<InputSectionBase
*, 0> newSections
;
125 const size_t ehSize
= ctx
.ehInputSections
.size();
126 for (unsigned part
= 2; part
!= ctx
.partitions
.size() + 1; ++part
) {
127 for (InputSectionBase
*s
: ctx
.inputSections
) {
128 if (!(s
->flags
& SHF_ALLOC
) || !s
->isLive() || s
->type
!= SHT_NOTE
)
130 auto *copy
= make
<InputSection
>(cast
<InputSection
>(*s
));
131 copy
->partition
= part
;
132 newSections
.push_back(copy
);
134 for (size_t i
= 0; i
!= ehSize
; ++i
) {
135 assert(ctx
.ehInputSections
[i
]->isLive());
136 auto *copy
= make
<EhInputSection
>(*ctx
.ehInputSections
[i
]);
137 copy
->partition
= part
;
138 ctx
.ehInputSections
.push_back(copy
);
142 ctx
.inputSections
.insert(ctx
.inputSections
.end(), newSections
.begin(),
146 static Defined
*addOptionalRegular(Ctx
&ctx
, StringRef name
, SectionBase
*sec
,
147 uint64_t val
, uint8_t stOther
= STV_HIDDEN
) {
148 Symbol
*s
= ctx
.symtab
->find(name
);
149 if (!s
|| s
->isDefined() || s
->isCommon())
152 s
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
153 stOther
, STT_NOTYPE
, val
,
155 s
->isUsedInRegularObj
= true;
156 return cast
<Defined
>(s
);
159 // The linker is expected to define some symbols depending on
160 // the linking result. This function defines such symbols.
161 void elf::addReservedSymbols(Ctx
&ctx
) {
162 if (ctx
.arg
.emachine
== EM_MIPS
) {
163 auto addAbsolute
= [&](StringRef name
) {
165 ctx
.symtab
->addSymbol(Defined
{ctx
, ctx
.internalFile
, name
, STB_GLOBAL
,
166 STV_HIDDEN
, STT_NOTYPE
, 0, 0, nullptr});
167 sym
->isUsedInRegularObj
= true;
168 return cast
<Defined
>(sym
);
170 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
171 // so that it points to an absolute address which by default is relative
172 // to GOT. Default offset is 0x7ff0.
173 // See "Global Data Symbols" in Chapter 6 in the following document:
174 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
175 ctx
.sym
.mipsGp
= addAbsolute("_gp");
177 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
178 // start of function and 'gp' pointer into GOT.
179 if (ctx
.symtab
->find("_gp_disp"))
180 ctx
.sym
.mipsGpDisp
= addAbsolute("_gp_disp");
182 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
183 // pointer. This symbol is used in the code generated by .cpload pseudo-op
184 // in case of using -mno-shared option.
185 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
186 if (ctx
.symtab
->find("__gnu_local_gp"))
187 ctx
.sym
.mipsLocalGp
= addAbsolute("__gnu_local_gp");
188 } else if (ctx
.arg
.emachine
== EM_PPC
) {
189 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
190 // support Small Data Area, define it arbitrarily as 0.
191 addOptionalRegular(ctx
, "_SDA_BASE_", nullptr, 0, STV_HIDDEN
);
192 } else if (ctx
.arg
.emachine
== EM_PPC64
) {
193 addPPC64SaveRestore(ctx
);
196 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
197 // combines the typical ELF GOT with the small data sections. It commonly
198 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
199 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
200 // represent the TOC base which is offset by 0x8000 bytes from the start of
202 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
203 // correctness of some relocations depends on its value.
204 StringRef gotSymName
=
205 (ctx
.arg
.emachine
== EM_PPC64
) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
207 if (Symbol
*s
= ctx
.symtab
->find(gotSymName
)) {
208 if (s
->isDefined()) {
209 ErrAlways(ctx
) << s
->file
<< " cannot redefine linker defined symbol '"
210 << gotSymName
<< "'";
215 if (ctx
.arg
.emachine
== EM_PPC64
)
218 s
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
219 STV_HIDDEN
, STT_NOTYPE
, gotOff
, /*size=*/0,
220 ctx
.out
.elfHeader
.get()});
221 ctx
.sym
.globalOffsetTable
= cast
<Defined
>(s
);
224 // __ehdr_start is the location of ELF file headers. Note that we define
225 // this symbol unconditionally even when using a linker script, which
226 // differs from the behavior implemented by GNU linker which only define
227 // this symbol if ELF headers are in the memory mapped segment.
228 addOptionalRegular(ctx
, "__ehdr_start", ctx
.out
.elfHeader
.get(), 0,
231 // __executable_start is not documented, but the expectation of at
232 // least the Android libc is that it points to the ELF header.
233 addOptionalRegular(ctx
, "__executable_start", ctx
.out
.elfHeader
.get(), 0,
236 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
237 // each DSO. The address of the symbol doesn't matter as long as they are
238 // different in different DSOs, so we chose the start address of the DSO.
239 addOptionalRegular(ctx
, "__dso_handle", ctx
.out
.elfHeader
.get(), 0,
242 // If linker script do layout we do not need to create any standard symbols.
243 if (ctx
.script
->hasSectionsCommand
)
246 auto add
= [&](StringRef s
, int64_t pos
) {
247 return addOptionalRegular(ctx
, s
, ctx
.out
.elfHeader
.get(), pos
,
251 ctx
.sym
.bss
= add("__bss_start", 0);
252 ctx
.sym
.end1
= add("end", -1);
253 ctx
.sym
.end2
= add("_end", -1);
254 ctx
.sym
.etext1
= add("etext", -1);
255 ctx
.sym
.etext2
= add("_etext", -1);
256 ctx
.sym
.edata1
= add("edata", -1);
257 ctx
.sym
.edata2
= add("_edata", -1);
260 static void demoteDefined(Defined
&sym
, DenseMap
<SectionBase
*, size_t> &map
) {
262 for (auto [i
, sec
] : llvm::enumerate(sym
.file
->getSections()))
263 map
.try_emplace(sec
, i
);
264 // Change WEAK to GLOBAL so that if a scanned relocation references sym,
265 // maybeReportUndefined will report an error.
266 uint8_t binding
= sym
.isWeak() ? uint8_t(STB_GLOBAL
) : sym
.binding
;
267 Undefined(sym
.file
, sym
.getName(), binding
, sym
.stOther
, sym
.type
,
268 /*discardedSecIdx=*/map
.lookup(sym
.section
))
270 // Eliminate from the symbol table, otherwise we would leave an undefined
271 // symbol if the symbol is unreferenced in the absence of GC.
272 sym
.isUsedInRegularObj
= false;
275 // If all references to a DSO happen to be weak, the DSO is not added to
276 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid
277 // dangling references to an unneeded DSO. Use a weak binding to avoid
278 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols.
280 // In addition, demote symbols defined in discarded sections, so that
281 // references to /DISCARD/ discarded symbols will lead to errors.
282 static void demoteSymbolsAndComputeIsPreemptible(Ctx
&ctx
) {
283 llvm::TimeTraceScope
timeScope("Demote symbols");
284 DenseMap
<InputFile
*, DenseMap
<SectionBase
*, size_t>> sectionIndexMap
;
285 for (Symbol
*sym
: ctx
.symtab
->getSymbols()) {
286 if (auto *d
= dyn_cast
<Defined
>(sym
)) {
287 if (d
->section
&& !d
->section
->isLive())
288 demoteDefined(*d
, sectionIndexMap
[d
->file
]);
290 auto *s
= dyn_cast
<SharedSymbol
>(sym
);
291 if (sym
->isLazy() || (s
&& !cast
<SharedFile
>(s
->file
)->isNeeded
)) {
292 uint8_t binding
= sym
->isLazy() ? sym
->binding
: uint8_t(STB_WEAK
);
293 Undefined(ctx
.internalFile
, sym
->getName(), binding
, sym
->stOther
,
296 sym
->versionId
= VER_NDX_GLOBAL
;
300 if (ctx
.arg
.hasDynSymTab
)
301 sym
->isPreemptible
= computeIsPreemptible(ctx
, *sym
);
305 static OutputSection
*findSection(Ctx
&ctx
, StringRef name
,
306 unsigned partition
= 1) {
307 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
308 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
309 if (osd
->osec
.name
== name
&& osd
->osec
.partition
== partition
)
314 // The main function of the writer.
315 template <class ELFT
> void Writer
<ELFT
>::run() {
316 // Now that we have a complete set of output sections. This function
317 // completes section contents. For example, we need to add strings
318 // to the string table, and add entries to .got and .plt.
319 // finalizeSections does that.
323 // If --compressed-debug-sections is specified, compress .debug_* sections.
324 // Do it right now because it changes the size of output sections.
325 for (OutputSection
*sec
: ctx
.outputSections
)
326 sec
->maybeCompress
<ELFT
>(ctx
);
328 if (ctx
.script
->hasSectionsCommand
)
329 ctx
.script
->allocateHeaders(ctx
.mainPart
->phdrs
);
331 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
332 // 0 sized region. This has to be done late since only after assignAddresses
333 // we know the size of the sections.
334 for (Partition
&part
: ctx
.partitions
)
335 removeEmptyPTLoad(ctx
, part
.phdrs
);
337 if (!ctx
.arg
.oFormatBinary
)
340 assignFileOffsetsBinary();
342 for (Partition
&part
: ctx
.partitions
)
345 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
346 // because the files may be useful in case checkSections() or openFile()
347 // fails, for example, due to an erroneous file size.
348 writeMapAndCref(ctx
);
350 // Handle --print-memory-usage option.
351 if (ctx
.arg
.printMemoryUsage
)
352 ctx
.script
->printMemoryUsage(ctx
.e
.outs());
354 if (ctx
.arg
.checkSections
)
357 // It does not make sense try to open the file if we have error already.
362 llvm::TimeTraceScope
timeScope("Write output file");
363 // Write the result down to a file.
368 if (!ctx
.arg
.oFormatBinary
) {
369 if (ctx
.arg
.zSeparate
!= SeparateSegmentKind::None
)
374 writeSectionsBinary();
377 // Backfill .note.gnu.build-id section content. This is done at last
378 // because the content is usually a hash value of the entire output file.
383 if (auto e
= buffer
->commit())
384 Err(ctx
) << "failed to write output '" << buffer
->getPath()
385 << "': " << std::move(e
);
387 if (!ctx
.arg
.cmseOutputLib
.empty())
388 writeARMCmseImportLib
<ELFT
>(ctx
);
392 template <class ELFT
, class RelTy
>
393 static void markUsedLocalSymbolsImpl(ObjFile
<ELFT
> *file
,
394 llvm::ArrayRef
<RelTy
> rels
) {
395 for (const RelTy
&rel
: rels
) {
396 Symbol
&sym
= file
->getRelocTargetSym(rel
);
402 // The function ensures that the "used" field of local symbols reflects the fact
403 // that the symbol is used in a relocation from a live section.
404 template <class ELFT
> static void markUsedLocalSymbols(Ctx
&ctx
) {
405 // With --gc-sections, the field is already filled.
406 // See MarkLive<ELFT>::resolveReloc().
407 if (ctx
.arg
.gcSections
)
409 for (ELFFileBase
*file
: ctx
.objectFiles
) {
410 ObjFile
<ELFT
> *f
= cast
<ObjFile
<ELFT
>>(file
);
411 for (InputSectionBase
*s
: f
->getSections()) {
412 InputSection
*isec
= dyn_cast_or_null
<InputSection
>(s
);
415 if (isec
->type
== SHT_REL
) {
416 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rel
>());
417 } else if (isec
->type
== SHT_RELA
) {
418 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rela
>());
419 } else if (isec
->type
== SHT_CREL
) {
420 // The is64=true variant also works with ELF32 since only the r_symidx
422 for (Elf_Crel_Impl
<true> r
: RelocsCrel
<true>(isec
->content_
)) {
423 Symbol
&sym
= file
->getSymbol(r
.r_symidx
);
432 static bool shouldKeepInSymtab(Ctx
&ctx
, const Defined
&sym
) {
436 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
437 // from live sections.
438 if (sym
.used
&& ctx
.arg
.copyRelocs
)
441 // Exclude local symbols pointing to .ARM.exidx sections.
442 // They are probably mapping symbols "$d", which are optional for these
443 // sections. After merging the .ARM.exidx sections, some of these symbols
444 // may become dangling. The easiest way to avoid the issue is not to add
445 // them to the symbol table from the beginning.
446 if (ctx
.arg
.emachine
== EM_ARM
&& sym
.section
&&
447 sym
.section
->type
== SHT_ARM_EXIDX
)
450 if (ctx
.arg
.discard
== DiscardPolicy::None
)
452 if (ctx
.arg
.discard
== DiscardPolicy::All
)
455 // In ELF assembly .L symbols are normally discarded by the assembler.
456 // If the assembler fails to do so, the linker discards them if
457 // * --discard-locals is used.
458 // * The symbol is in a SHF_MERGE section, which is normally the reason for
459 // the assembler keeping the .L symbol.
460 if (sym
.getName().starts_with(".L") &&
461 (ctx
.arg
.discard
== DiscardPolicy::Locals
||
462 (sym
.section
&& (sym
.section
->flags
& SHF_MERGE
))))
467 bool elf::includeInSymtab(Ctx
&ctx
, const Symbol
&b
) {
468 if (auto *d
= dyn_cast
<Defined
>(&b
)) {
469 // Always include absolute symbols.
470 SectionBase
*sec
= d
->section
;
473 assert(sec
->isLive());
475 if (auto *s
= dyn_cast
<MergeInputSection
>(sec
))
476 return s
->getSectionPiece(d
->value
).live
;
479 return b
.used
|| !ctx
.arg
.gcSections
;
482 // Scan local symbols to:
484 // - demote symbols defined relative to /DISCARD/ discarded input sections so
485 // that relocations referencing them will lead to errors.
486 // - copy eligible symbols to .symTab
487 static void demoteAndCopyLocalSymbols(Ctx
&ctx
) {
488 llvm::TimeTraceScope
timeScope("Add local symbols");
489 for (ELFFileBase
*file
: ctx
.objectFiles
) {
490 DenseMap
<SectionBase
*, size_t> sectionIndexMap
;
491 for (Symbol
*b
: file
->getLocalSymbols()) {
492 assert(b
->isLocal() && "should have been caught in initializeSymbols()");
493 auto *dr
= dyn_cast
<Defined
>(b
);
497 if (dr
->section
&& !dr
->section
->isLive())
498 demoteDefined(*dr
, sectionIndexMap
);
499 else if (ctx
.in
.symTab
&& includeInSymtab(ctx
, *b
) &&
500 shouldKeepInSymtab(ctx
, *dr
))
501 ctx
.in
.symTab
->addSymbol(b
);
506 // Create a section symbol for each output section so that we can represent
507 // relocations that point to the section. If we know that no relocation is
508 // referring to a section (that happens if the section is a synthetic one), we
509 // don't create a section symbol for that section.
510 template <class ELFT
> void Writer
<ELFT
>::addSectionSymbols() {
511 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
) {
512 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
515 OutputSection
&osec
= osd
->osec
;
516 InputSectionBase
*isec
= nullptr;
517 // Iterate over all input sections and add a STT_SECTION symbol if any input
518 // section may be a relocation target.
519 for (SectionCommand
*cmd
: osec
.commands
) {
520 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
523 for (InputSectionBase
*s
: isd
->sections
) {
524 // Relocations are not using REL[A] section symbols.
525 if (isStaticRelSecType(s
->type
))
528 // Unlike other synthetic sections, mergeable output sections contain
529 // data copied from input sections, and there may be a relocation
530 // pointing to its contents if -r or --emit-reloc is given.
531 if (isa
<SyntheticSection
>(s
) && !(s
->flags
& SHF_MERGE
))
541 // Set the symbol to be relative to the output section so that its st_value
542 // equals the output section address. Note, there may be a gap between the
543 // start of the output section and isec.
544 ctx
.in
.symTab
->addSymbol(makeDefined(ctx
, isec
->file
, "", STB_LOCAL
,
545 /*stOther=*/0, STT_SECTION
,
546 /*value=*/0, /*size=*/0, &osec
));
550 // Today's loaders have a feature to make segments read-only after
551 // processing dynamic relocations to enhance security. PT_GNU_RELRO
552 // is defined for that.
554 // This function returns true if a section needs to be put into a
555 // PT_GNU_RELRO segment.
556 static bool isRelroSection(Ctx
&ctx
, const OutputSection
*sec
) {
562 uint64_t flags
= sec
->flags
;
564 // Non-allocatable or non-writable sections don't need RELRO because
565 // they are not writable or not even mapped to memory in the first place.
566 // RELRO is for sections that are essentially read-only but need to
567 // be writable only at process startup to allow dynamic linker to
568 // apply relocations.
569 if (!(flags
& SHF_ALLOC
) || !(flags
& SHF_WRITE
))
572 // Once initialized, TLS data segments are used as data templates
573 // for a thread-local storage. For each new thread, runtime
574 // allocates memory for a TLS and copy templates there. No thread
575 // are supposed to use templates directly. Thus, it can be in RELRO.
579 // .init_array, .preinit_array and .fini_array contain pointers to
580 // functions that are executed on process startup or exit. These
581 // pointers are set by the static linker, and they are not expected
582 // to change at runtime. But if you are an attacker, you could do
583 // interesting things by manipulating pointers in .fini_array, for
584 // example. So they are put into RELRO.
585 uint32_t type
= sec
->type
;
586 if (type
== SHT_INIT_ARRAY
|| type
== SHT_FINI_ARRAY
||
587 type
== SHT_PREINIT_ARRAY
)
590 // .got contains pointers to external symbols. They are resolved by
591 // the dynamic linker when a module is loaded into memory, and after
592 // that they are not expected to change. So, it can be in RELRO.
593 if (ctx
.in
.got
&& sec
== ctx
.in
.got
->getParent())
596 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
597 // through r2 register, which is reserved for that purpose. Since r2 is used
598 // for accessing .got as well, .got and .toc need to be close enough in the
599 // virtual address space. Usually, .toc comes just after .got. Since we place
600 // .got into RELRO, .toc needs to be placed into RELRO too.
601 if (sec
->name
== ".toc")
604 // .got.plt contains pointers to external function symbols. They are
605 // by default resolved lazily, so we usually cannot put it into RELRO.
606 // However, if "-z now" is given, the lazy symbol resolution is
607 // disabled, which enables us to put it into RELRO.
608 if (sec
== ctx
.in
.gotPlt
->getParent())
611 if (ctx
.in
.relroPadding
&& sec
== ctx
.in
.relroPadding
->getParent())
614 // .dynamic section contains data for the dynamic linker, and
615 // there's no need to write to it at runtime, so it's better to put
617 if (sec
->name
== ".dynamic")
620 // Sections with some special names are put into RELRO. This is a
621 // bit unfortunate because section names shouldn't be significant in
622 // ELF in spirit. But in reality many linker features depend on
623 // magic section names.
624 StringRef s
= sec
->name
;
626 bool abiAgnostic
= s
== ".data.rel.ro" || s
== ".bss.rel.ro" ||
627 s
== ".ctors" || s
== ".dtors" || s
== ".jcr" ||
628 s
== ".eh_frame" || s
== ".fini_array" ||
629 s
== ".init_array" || s
== ".preinit_array";
632 ctx
.arg
.osabi
== ELFOSABI_OPENBSD
&& s
== ".openbsd.randomdata";
634 return abiAgnostic
|| abiSpecific
;
637 // We compute a rank for each section. The rank indicates where the
638 // section should be placed in the file. Instead of using simple
639 // numbers (0,1,2...), we use a series of flags. One for each decision
640 // point when placing the section.
641 // Using flags has two key properties:
642 // * It is easy to check if a give branch was taken.
643 // * It is easy two see how similar two ranks are (see getRankProximity).
645 RF_NOT_ADDR_SET
= 1 << 27,
646 RF_NOT_ALLOC
= 1 << 26,
647 RF_HIP_FATBIN
= 1 << 19,
648 RF_PARTITION
= 1 << 18, // Partition number (8 bits)
649 RF_LARGE_ALT
= 1 << 15,
651 RF_EXEC_WRITE
= 1 << 13,
655 RF_NOT_RELRO
= 1 << 9,
660 unsigned elf::getSectionRank(Ctx
&ctx
, OutputSection
&osec
) {
661 unsigned rank
= osec
.partition
* RF_PARTITION
;
663 // We want to put section specified by -T option first, so we
664 // can start assigning VA starting from them later.
665 if (ctx
.arg
.sectionStartMap
.count(osec
.name
))
667 rank
|= RF_NOT_ADDR_SET
;
669 // Allocatable sections go first to reduce the total PT_LOAD size and
670 // so debug info doesn't change addresses in actual code.
671 if (!(osec
.flags
& SHF_ALLOC
))
672 return rank
| RF_NOT_ALLOC
;
674 // Sort sections based on their access permission in the following
675 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
677 // Read-only sections come first such that they go in the PT_LOAD covering the
678 // program headers at the start of the file.
680 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
681 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
682 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
683 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
685 bool isExec
= osec
.flags
& SHF_EXECINSTR
;
686 bool isWrite
= osec
.flags
& SHF_WRITE
;
688 if (!isWrite
&& !isExec
) {
689 // Among PROGBITS sections, place .lrodata further from .text.
690 // For -z lrodata-after-bss, place .lrodata after .lbss like GNU ld. This
691 // layout has one extra PT_LOAD, but alleviates relocation overflow
692 // pressure for absolute relocations referencing small data from -fno-pic
693 // relocatable files.
694 if (osec
.flags
& SHF_X86_64_LARGE
&& ctx
.arg
.emachine
== EM_X86_64
)
695 rank
|= ctx
.arg
.zLrodataAfterBss
? RF_LARGE_ALT
: 0;
697 rank
|= ctx
.arg
.zLrodataAfterBss
? 0 : RF_LARGE
;
699 if (osec
.type
== SHT_LLVM_PART_EHDR
)
701 else if (osec
.type
== SHT_LLVM_PART_PHDR
)
703 else if (osec
.name
== ".interp")
705 // Put .note sections at the beginning so that they are likely to be
706 // included in a truncate core file. In particular, .note.gnu.build-id, if
707 // available, can identify the object file.
708 else if (osec
.type
== SHT_NOTE
)
710 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
711 // alleviate relocation overflow pressure. Large special sections such as
712 // .dynstr and .dynsym can be away from .text.
713 else if (osec
.type
!= SHT_PROGBITS
)
718 rank
|= isWrite
? RF_EXEC_WRITE
: RF_EXEC
;
721 // The TLS initialization block needs to be a single contiguous block. Place
722 // TLS sections directly before the other RELRO sections.
723 if (!(osec
.flags
& SHF_TLS
))
725 if (isRelroSection(ctx
, &osec
))
728 rank
|= RF_NOT_RELRO
;
729 // Place .ldata and .lbss after .bss. Making .bss closer to .text
730 // alleviates relocation overflow pressure.
731 // For -z lrodata-after-bss, place .lbss/.lrodata/.ldata after .bss.
732 // .bss/.lbss being adjacent reuses the NOBITS size optimization.
733 if (osec
.flags
& SHF_X86_64_LARGE
&& ctx
.arg
.emachine
== EM_X86_64
) {
734 rank
|= ctx
.arg
.zLrodataAfterBss
735 ? (osec
.type
== SHT_NOBITS
? 1 : RF_LARGE_ALT
)
740 // Within TLS sections, or within other RelRo sections, or within non-RelRo
741 // sections, place non-NOBITS sections first.
742 if (osec
.type
== SHT_NOBITS
)
745 // Put HIP fatbin related sections further away to avoid wasting relocation
746 // range to jump over them. Make sure .hip_fatbin is the furthest.
747 if (osec
.name
== ".hipFatBinSegment")
748 rank
|= RF_HIP_FATBIN
;
749 if (osec
.name
== ".hip_gpubin_handle")
750 rank
|= RF_HIP_FATBIN
| 2;
751 if (osec
.name
== ".hip_fatbin")
752 rank
|= RF_HIP_FATBIN
| RF_WRITE
| 3;
754 // Some architectures have additional ordering restrictions for sections
755 // within the same PT_LOAD.
756 if (ctx
.arg
.emachine
== EM_PPC64
) {
757 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
758 // that we would like to make sure appear is a specific order to maximize
759 // their coverage by a single signed 16-bit offset from the TOC base
761 StringRef name
= osec
.name
;
764 else if (name
== ".toc")
768 if (ctx
.arg
.emachine
== EM_MIPS
) {
769 if (osec
.name
!= ".got")
771 // All sections with SHF_MIPS_GPREL flag should be grouped together
772 // because data in these sections is addressable with a gp relative address.
773 if (osec
.flags
& SHF_MIPS_GPREL
)
777 if (ctx
.arg
.emachine
== EM_RISCV
) {
778 // .sdata and .sbss are placed closer to make GP relaxation more profitable
780 StringRef name
= osec
.name
;
781 if (name
== ".sdata" || (osec
.type
== SHT_NOBITS
&& name
!= ".sbss"))
788 static bool compareSections(Ctx
&ctx
, const SectionCommand
*aCmd
,
789 const SectionCommand
*bCmd
) {
790 const OutputSection
*a
= &cast
<OutputDesc
>(aCmd
)->osec
;
791 const OutputSection
*b
= &cast
<OutputDesc
>(bCmd
)->osec
;
793 if (a
->sortRank
!= b
->sortRank
)
794 return a
->sortRank
< b
->sortRank
;
796 if (!(a
->sortRank
& RF_NOT_ADDR_SET
))
797 return ctx
.arg
.sectionStartMap
.lookup(a
->name
) <
798 ctx
.arg
.sectionStartMap
.lookup(b
->name
);
802 void PhdrEntry::add(OutputSection
*sec
) {
806 p_align
= std::max(p_align
, sec
->addralign
);
807 if (p_type
== PT_LOAD
)
811 // A statically linked position-dependent executable should only contain
812 // IRELATIVE relocations and no other dynamic relocations. Encapsulation symbols
813 // __rel[a]_iplt_{start,end} will be defined for .rel[a].dyn, to be
814 // processed by the libc runtime. Other executables or DSOs use dynamic tags
816 template <class ELFT
> void Writer
<ELFT
>::addRelIpltSymbols() {
820 // __rela_iplt_{start,end} are initially defined relative to dummy section 0.
821 // We'll override ctx.out.elfHeader with relaDyn later when we are sure that
822 // .rela.dyn will be present in the output.
823 std::string name
= ctx
.arg
.isRela
? "__rela_iplt_start" : "__rel_iplt_start";
824 ctx
.sym
.relaIpltStart
=
825 addOptionalRegular(ctx
, name
, ctx
.out
.elfHeader
.get(), 0, STV_HIDDEN
);
826 name
.replace(name
.size() - 5, 5, "end");
827 ctx
.sym
.relaIpltEnd
=
828 addOptionalRegular(ctx
, name
, ctx
.out
.elfHeader
.get(), 0, STV_HIDDEN
);
831 // This function generates assignments for predefined symbols (e.g. _end or
832 // _etext) and inserts them into the commands sequence to be processed at the
833 // appropriate time. This ensures that the value is going to be correct by the
834 // time any references to these symbols are processed and is equivalent to
835 // defining these symbols explicitly in the linker script.
836 template <class ELFT
> void Writer
<ELFT
>::setReservedSymbolSections() {
837 if (ctx
.sym
.globalOffsetTable
) {
838 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
839 // to the start of the .got or .got.plt section.
840 InputSection
*sec
= ctx
.in
.gotPlt
.get();
841 if (!ctx
.target
->gotBaseSymInGotPlt
)
842 sec
= ctx
.in
.mipsGot
? cast
<InputSection
>(ctx
.in
.mipsGot
.get())
843 : cast
<InputSection
>(ctx
.in
.got
.get());
844 ctx
.sym
.globalOffsetTable
->section
= sec
;
847 // .rela_iplt_{start,end} mark the start and the end of .rel[a].dyn.
848 if (ctx
.sym
.relaIpltStart
&& ctx
.mainPart
->relaDyn
->isNeeded()) {
849 ctx
.sym
.relaIpltStart
->section
= ctx
.mainPart
->relaDyn
.get();
850 ctx
.sym
.relaIpltEnd
->section
= ctx
.mainPart
->relaDyn
.get();
851 ctx
.sym
.relaIpltEnd
->value
= ctx
.mainPart
->relaDyn
->getSize();
854 PhdrEntry
*last
= nullptr;
855 OutputSection
*lastRO
= nullptr;
856 auto isLarge
= [&ctx
= ctx
](OutputSection
*osec
) {
857 return ctx
.arg
.emachine
== EM_X86_64
&& osec
->flags
& SHF_X86_64_LARGE
;
859 for (Partition
&part
: ctx
.partitions
) {
860 for (auto &p
: part
.phdrs
) {
861 if (p
->p_type
!= PT_LOAD
)
864 if (!(p
->p_flags
& PF_W
) && p
->lastSec
&& !isLarge(p
->lastSec
))
870 // _etext is the first location after the last read-only loadable segment
871 // that does not contain large sections.
873 ctx
.sym
.etext1
->section
= lastRO
;
875 ctx
.sym
.etext2
->section
= lastRO
;
879 // _edata points to the end of the last non-large mapped initialized
881 OutputSection
*edata
= nullptr;
882 for (OutputSection
*os
: ctx
.outputSections
) {
883 if (os
->type
!= SHT_NOBITS
&& !isLarge(os
))
885 if (os
== last
->lastSec
)
890 ctx
.sym
.edata1
->section
= edata
;
892 ctx
.sym
.edata2
->section
= edata
;
894 // _end is the first location after the uninitialized data region.
896 ctx
.sym
.end1
->section
= last
->lastSec
;
898 ctx
.sym
.end2
->section
= last
->lastSec
;
902 // On RISC-V, set __bss_start to the start of .sbss if present.
903 OutputSection
*sbss
=
904 ctx
.arg
.emachine
== EM_RISCV
? findSection(ctx
, ".sbss") : nullptr;
905 ctx
.sym
.bss
->section
= sbss
? sbss
: findSection(ctx
, ".bss");
908 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
909 // be equal to the _gp symbol's value.
910 if (ctx
.sym
.mipsGp
) {
911 // Find GP-relative section with the lowest address
912 // and use this address to calculate default _gp value.
913 for (OutputSection
*os
: ctx
.outputSections
) {
914 if (os
->flags
& SHF_MIPS_GPREL
) {
915 ctx
.sym
.mipsGp
->section
= os
;
916 ctx
.sym
.mipsGp
->value
= 0x7ff0;
923 // We want to find how similar two ranks are.
924 // The more branches in getSectionRank that match, the more similar they are.
925 // Since each branch corresponds to a bit flag, we can just use
926 // countLeadingZeros.
927 static int getRankProximity(OutputSection
*a
, SectionCommand
*b
) {
928 auto *osd
= dyn_cast
<OutputDesc
>(b
);
929 return (osd
&& osd
->osec
.hasInputSections
)
930 ? llvm::countl_zero(a
->sortRank
^ osd
->osec
.sortRank
)
934 // When placing orphan sections, we want to place them after symbol assignments
935 // so that an orphan after
939 // doesn't break the intended meaning of the begin/end symbols.
940 // We don't want to go over sections since findOrphanPos is the
941 // one in charge of deciding the order of the sections.
942 // We don't want to go over changes to '.', since doing so in
943 // rx_sec : { *(rx_sec) }
944 // . = ALIGN(0x1000);
945 // /* The RW PT_LOAD starts here*/
946 // rw_sec : { *(rw_sec) }
947 // would mean that the RW PT_LOAD would become unaligned.
948 static bool shouldSkip(SectionCommand
*cmd
) {
949 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
950 return assign
->name
!= ".";
954 // We want to place orphan sections so that they share as much
955 // characteristics with their neighbors as possible. For example, if
956 // both are rw, or both are tls.
957 static SmallVectorImpl
<SectionCommand
*>::iterator
958 findOrphanPos(Ctx
&ctx
, SmallVectorImpl
<SectionCommand
*>::iterator b
,
959 SmallVectorImpl
<SectionCommand
*>::iterator e
) {
960 // Place non-alloc orphan sections at the end. This matches how we assign file
961 // offsets to non-alloc sections.
962 OutputSection
*sec
= &cast
<OutputDesc
>(*e
)->osec
;
963 if (!(sec
->flags
& SHF_ALLOC
))
966 // As a special case, place .relro_padding before the SymbolAssignment using
967 // DATA_SEGMENT_RELRO_END, if present.
968 if (ctx
.in
.relroPadding
&& sec
== ctx
.in
.relroPadding
->getParent()) {
969 auto i
= std::find_if(b
, e
, [=](SectionCommand
*a
) {
970 if (auto *assign
= dyn_cast
<SymbolAssignment
>(a
))
971 return assign
->dataSegmentRelroEnd
;
978 // Find the most similar output section as the anchor. Rank Proximity is a
979 // value in the range [-1, 32] where [0, 32] indicates potential anchors (0:
980 // least similar; 32: identical). -1 means not an anchor.
982 // In the event of proximity ties, we select the first or last section
983 // depending on whether the orphan's rank is smaller.
986 for (auto j
= b
; j
!= e
; ++j
) {
987 int p
= getRankProximity(sec
, *j
);
989 (p
== maxP
&& cast
<OutputDesc
>(*j
)->osec
.sortRank
<= sec
->sortRank
)) {
997 auto isOutputSecWithInputSections
= [](SectionCommand
*cmd
) {
998 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
999 return osd
&& osd
->osec
.hasInputSections
;
1002 // Then, scan backward or forward through the script for a suitable insertion
1003 // point. If i's rank is larger, the orphan section can be placed before i.
1005 // However, don't do this if custom program headers are defined. Otherwise,
1006 // adding the orphan to a previous segment can change its flags, for example,
1007 // making a read-only segment writable. If memory regions are defined, an
1008 // orphan section should continue the same region as the found section to
1009 // better resemble the behavior of GNU ld.
1011 ctx
.script
->hasPhdrsCommands() || !ctx
.script
->memoryRegions
.empty();
1012 if (cast
<OutputDesc
>(*i
)->osec
.sortRank
<= sec
->sortRank
|| mustAfter
) {
1013 for (auto j
= ++i
; j
!= e
; ++j
) {
1014 if (!isOutputSecWithInputSections(*j
))
1016 if (getRankProximity(sec
, *j
) != maxP
)
1022 if (isOutputSecWithInputSections(i
[-1]))
1026 // As a special case, if the orphan section is the last section, put
1027 // it at the very end, past any other commands.
1028 // This matches bfd's behavior and is convenient when the linker script fully
1029 // specifies the start of the file, but doesn't care about the end (the non
1030 // alloc sections for example).
1031 if (std::find_if(i
, e
, isOutputSecWithInputSections
) == e
)
1034 while (i
!= e
&& shouldSkip(*i
))
1039 // Adds random priorities to sections not already in the map.
1040 static void maybeShuffle(Ctx
&ctx
,
1041 DenseMap
<const InputSectionBase
*, int> &order
) {
1042 if (ctx
.arg
.shuffleSections
.empty())
1045 SmallVector
<InputSectionBase
*, 0> matched
, sections
= ctx
.inputSections
;
1046 matched
.reserve(sections
.size());
1047 for (const auto &patAndSeed
: ctx
.arg
.shuffleSections
) {
1049 for (InputSectionBase
*sec
: sections
)
1050 if (patAndSeed
.first
.match(sec
->name
))
1051 matched
.push_back(sec
);
1052 const uint32_t seed
= patAndSeed
.second
;
1053 if (seed
== UINT32_MAX
) {
1054 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1055 // section order is stable even if the number of sections changes. This is
1056 // useful to catch issues like static initialization order fiasco
1058 std::reverse(matched
.begin(), matched
.end());
1060 std::mt19937
g(seed
? seed
: std::random_device()());
1061 llvm::shuffle(matched
.begin(), matched
.end(), g
);
1064 for (InputSectionBase
*&sec
: sections
)
1065 if (patAndSeed
.first
.match(sec
->name
))
1069 // Existing priorities are < 0, so use priorities >= 0 for the missing
1072 for (InputSectionBase
*sec
: sections
) {
1073 if (order
.try_emplace(sec
, prio
).second
)
1078 // Builds section order for handling --symbol-ordering-file.
1079 static DenseMap
<const InputSectionBase
*, int> buildSectionOrder(Ctx
&ctx
) {
1080 DenseMap
<const InputSectionBase
*, int> sectionOrder
;
1081 // Use the rarely used option --call-graph-ordering-file to sort sections.
1082 if (!ctx
.arg
.callGraphProfile
.empty())
1083 return computeCallGraphProfileOrder(ctx
);
1085 if (ctx
.arg
.symbolOrderingFile
.empty())
1086 return sectionOrder
;
1088 struct SymbolOrderEntry
{
1093 // Build a map from symbols to their priorities. Symbols that didn't
1094 // appear in the symbol ordering file have the lowest priority 0.
1095 // All explicitly mentioned symbols have negative (higher) priorities.
1096 DenseMap
<CachedHashStringRef
, SymbolOrderEntry
> symbolOrder
;
1097 int priority
= -ctx
.arg
.symbolOrderingFile
.size();
1098 for (StringRef s
: ctx
.arg
.symbolOrderingFile
)
1099 symbolOrder
.insert({CachedHashStringRef(s
), {priority
++, false}});
1101 // Build a map from sections to their priorities.
1102 auto addSym
= [&](Symbol
&sym
) {
1103 auto it
= symbolOrder
.find(CachedHashStringRef(sym
.getName()));
1104 if (it
== symbolOrder
.end())
1106 SymbolOrderEntry
&ent
= it
->second
;
1109 maybeWarnUnorderableSymbol(ctx
, &sym
);
1111 if (auto *d
= dyn_cast
<Defined
>(&sym
)) {
1112 if (auto *sec
= dyn_cast_or_null
<InputSectionBase
>(d
->section
)) {
1113 int &priority
= sectionOrder
[cast
<InputSectionBase
>(sec
)];
1114 priority
= std::min(priority
, ent
.priority
);
1119 // We want both global and local symbols. We get the global ones from the
1120 // symbol table and iterate the object files for the local ones.
1121 for (Symbol
*sym
: ctx
.symtab
->getSymbols())
1124 for (ELFFileBase
*file
: ctx
.objectFiles
)
1125 for (Symbol
*sym
: file
->getLocalSymbols())
1128 if (ctx
.arg
.warnSymbolOrdering
)
1129 for (auto orderEntry
: symbolOrder
)
1130 if (!orderEntry
.second
.present
)
1131 Warn(ctx
) << "symbol ordering file: no such symbol: "
1132 << orderEntry
.first
.val();
1134 return sectionOrder
;
1137 // Sorts the sections in ISD according to the provided section order.
1139 sortISDBySectionOrder(Ctx
&ctx
, InputSectionDescription
*isd
,
1140 const DenseMap
<const InputSectionBase
*, int> &order
,
1141 bool executableOutputSection
) {
1142 SmallVector
<InputSection
*, 0> unorderedSections
;
1143 SmallVector
<std::pair
<InputSection
*, int>, 0> orderedSections
;
1144 uint64_t unorderedSize
= 0;
1145 uint64_t totalSize
= 0;
1147 for (InputSection
*isec
: isd
->sections
) {
1148 if (executableOutputSection
)
1149 totalSize
+= isec
->getSize();
1150 auto i
= order
.find(isec
);
1151 if (i
== order
.end()) {
1152 unorderedSections
.push_back(isec
);
1153 unorderedSize
+= isec
->getSize();
1156 orderedSections
.push_back({isec
, i
->second
});
1158 llvm::sort(orderedSections
, llvm::less_second());
1160 // Find an insertion point for the ordered section list in the unordered
1161 // section list. On targets with limited-range branches, this is the mid-point
1162 // of the unordered section list. This decreases the likelihood that a range
1163 // extension thunk will be needed to enter or exit the ordered region. If the
1164 // ordered section list is a list of hot functions, we can generally expect
1165 // the ordered functions to be called more often than the unordered functions,
1166 // making it more likely that any particular call will be within range, and
1167 // therefore reducing the number of thunks required.
1169 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1170 // If the layout is:
1175 // only the first 8-16MB of the cold code (depending on which hot function it
1176 // is actually calling) can call the hot code without a range extension thunk.
1177 // However, if we use this layout:
1183 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1184 // of the second block of cold code can call the hot code without a thunk. So
1185 // we effectively double the amount of code that could potentially call into
1186 // the hot code without a thunk.
1188 // The above is not necessary if total size of input sections in this "isd"
1189 // is small. Note that we assume all input sections are executable if the
1190 // output section is executable (which is not always true but supposed to
1191 // cover most cases).
1193 if (executableOutputSection
&& !orderedSections
.empty() &&
1194 ctx
.target
->getThunkSectionSpacing() &&
1195 totalSize
>= ctx
.target
->getThunkSectionSpacing()) {
1196 uint64_t unorderedPos
= 0;
1197 for (; insPt
!= unorderedSections
.size(); ++insPt
) {
1198 unorderedPos
+= unorderedSections
[insPt
]->getSize();
1199 if (unorderedPos
> unorderedSize
/ 2)
1204 isd
->sections
.clear();
1205 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(0, insPt
))
1206 isd
->sections
.push_back(isec
);
1207 for (std::pair
<InputSection
*, int> p
: orderedSections
)
1208 isd
->sections
.push_back(p
.first
);
1209 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(insPt
))
1210 isd
->sections
.push_back(isec
);
1213 static void sortSection(Ctx
&ctx
, OutputSection
&osec
,
1214 const DenseMap
<const InputSectionBase
*, int> &order
) {
1215 StringRef name
= osec
.name
;
1217 // Never sort these.
1218 if (name
== ".init" || name
== ".fini")
1221 // Sort input sections by priority using the list provided by
1222 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1223 // digit radix sort. The sections may be sorted stably again by a more
1226 for (SectionCommand
*b
: osec
.commands
)
1227 if (auto *isd
= dyn_cast
<InputSectionDescription
>(b
))
1228 sortISDBySectionOrder(ctx
, isd
, order
, osec
.flags
& SHF_EXECINSTR
);
1230 if (ctx
.script
->hasSectionsCommand
)
1233 if (name
== ".init_array" || name
== ".fini_array") {
1234 osec
.sortInitFini();
1235 } else if (name
== ".ctors" || name
== ".dtors") {
1236 osec
.sortCtorsDtors();
1237 } else if (ctx
.arg
.emachine
== EM_PPC64
&& name
== ".toc") {
1238 // .toc is allocated just after .got and is accessed using GOT-relative
1239 // relocations. Object files compiled with small code model have an
1240 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1241 // To reduce the risk of relocation overflow, .toc contents are sorted so
1242 // that sections having smaller relocation offsets are at beginning of .toc
1243 assert(osec
.commands
.size() == 1);
1244 auto *isd
= cast
<InputSectionDescription
>(osec
.commands
[0]);
1245 llvm::stable_sort(isd
->sections
,
1246 [](const InputSection
*a
, const InputSection
*b
) -> bool {
1247 return a
->file
->ppc64SmallCodeModelTocRelocs
&&
1248 !b
->file
->ppc64SmallCodeModelTocRelocs
;
1253 // If no layout was provided by linker script, we want to apply default
1254 // sorting for special input sections. This also handles --symbol-ordering-file.
1255 template <class ELFT
> void Writer
<ELFT
>::sortInputSections() {
1256 // Build the order once since it is expensive.
1257 DenseMap
<const InputSectionBase
*, int> order
= buildSectionOrder(ctx
);
1258 maybeShuffle(ctx
, order
);
1259 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1260 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1261 sortSection(ctx
, osd
->osec
, order
);
1264 template <class ELFT
> void Writer
<ELFT
>::sortSections() {
1265 llvm::TimeTraceScope
timeScope("Sort sections");
1267 // Don't sort if using -r. It is not necessary and we want to preserve the
1268 // relative order for SHF_LINK_ORDER sections.
1269 if (ctx
.arg
.relocatable
) {
1270 ctx
.script
->adjustOutputSections();
1274 sortInputSections();
1276 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1277 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1278 osd
->osec
.sortRank
= getSectionRank(ctx
, osd
->osec
);
1279 if (!ctx
.script
->hasSectionsCommand
) {
1280 // OutputDescs are mostly contiguous, but may be interleaved with
1281 // SymbolAssignments in the presence of INSERT commands.
1282 auto mid
= std::stable_partition(
1283 ctx
.script
->sectionCommands
.begin(), ctx
.script
->sectionCommands
.end(),
1284 [](SectionCommand
*cmd
) { return isa
<OutputDesc
>(cmd
); });
1286 ctx
.script
->sectionCommands
.begin(), mid
,
1287 [&ctx
= ctx
](auto *l
, auto *r
) { return compareSections(ctx
, l
, r
); });
1290 // Process INSERT commands and update output section attributes. From this
1291 // point onwards the order of script->sectionCommands is fixed.
1292 ctx
.script
->processInsertCommands();
1293 ctx
.script
->adjustOutputSections();
1295 if (ctx
.script
->hasSectionsCommand
)
1296 sortOrphanSections();
1298 ctx
.script
->adjustSectionsAfterSorting();
1301 template <class ELFT
> void Writer
<ELFT
>::sortOrphanSections() {
1302 // Orphan sections are sections present in the input files which are
1303 // not explicitly placed into the output file by the linker script.
1305 // The sections in the linker script are already in the correct
1306 // order. We have to figuere out where to insert the orphan
1309 // The order of the sections in the script is arbitrary and may not agree with
1310 // compareSections. This means that we cannot easily define a strict weak
1311 // ordering. To see why, consider a comparison of a section in the script and
1312 // one not in the script. We have a two simple options:
1313 // * Make them equivalent (a is not less than b, and b is not less than a).
1314 // The problem is then that equivalence has to be transitive and we can
1315 // have sections a, b and c with only b in a script and a less than c
1316 // which breaks this property.
1317 // * Use compareSectionsNonScript. Given that the script order doesn't have
1318 // to match, we can end up with sections a, b, c, d where b and c are in the
1319 // script and c is compareSectionsNonScript less than b. In which case d
1320 // can be equivalent to c, a to b and d < a. As a concrete example:
1321 // .a (rx) # not in script
1322 // .b (rx) # in script
1323 // .c (ro) # in script
1324 // .d (ro) # not in script
1326 // The way we define an order then is:
1327 // * Sort only the orphan sections. They are in the end right now.
1328 // * Move each orphan section to its preferred position. We try
1329 // to put each section in the last position where it can share
1332 // There is some ambiguity as to where exactly a new entry should be
1333 // inserted, because Commands contains not only output section
1334 // commands but also other types of commands such as symbol assignment
1335 // expressions. There's no correct answer here due to the lack of the
1336 // formal specification of the linker script. We use heuristics to
1337 // determine whether a new output command should be added before or
1338 // after another commands. For the details, look at shouldSkip
1341 auto i
= ctx
.script
->sectionCommands
.begin();
1342 auto e
= ctx
.script
->sectionCommands
.end();
1343 auto nonScriptI
= std::find_if(i
, e
, [](SectionCommand
*cmd
) {
1344 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1345 return osd
->osec
.sectionIndex
== UINT32_MAX
;
1349 // Sort the orphan sections.
1350 std::stable_sort(nonScriptI
, e
, [&ctx
= ctx
](auto *l
, auto *r
) {
1351 return compareSections(ctx
, l
, r
);
1354 // As a horrible special case, skip the first . assignment if it is before any
1355 // section. We do this because it is common to set a load address by starting
1356 // the script with ". = 0xabcd" and the expectation is that every section is
1358 auto firstSectionOrDotAssignment
=
1359 std::find_if(i
, e
, [](SectionCommand
*cmd
) { return !shouldSkip(cmd
); });
1360 if (firstSectionOrDotAssignment
!= e
&&
1361 isa
<SymbolAssignment
>(**firstSectionOrDotAssignment
))
1362 ++firstSectionOrDotAssignment
;
1363 i
= firstSectionOrDotAssignment
;
1365 while (nonScriptI
!= e
) {
1366 auto pos
= findOrphanPos(ctx
, i
, nonScriptI
);
1367 OutputSection
*orphan
= &cast
<OutputDesc
>(*nonScriptI
)->osec
;
1369 // As an optimization, find all sections with the same sort rank
1370 // and insert them with one rotate.
1371 unsigned rank
= orphan
->sortRank
;
1372 auto end
= std::find_if(nonScriptI
+ 1, e
, [=](SectionCommand
*cmd
) {
1373 return cast
<OutputDesc
>(cmd
)->osec
.sortRank
!= rank
;
1375 std::rotate(pos
, nonScriptI
, end
);
1380 static bool compareByFilePosition(InputSection
*a
, InputSection
*b
) {
1381 InputSection
*la
= a
->flags
& SHF_LINK_ORDER
? a
->getLinkOrderDep() : nullptr;
1382 InputSection
*lb
= b
->flags
& SHF_LINK_ORDER
? b
->getLinkOrderDep() : nullptr;
1383 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1384 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1387 OutputSection
*aOut
= la
->getParent();
1388 OutputSection
*bOut
= lb
->getParent();
1391 return la
->outSecOff
< lb
->outSecOff
;
1392 if (aOut
->addr
== bOut
->addr
)
1393 return aOut
->sectionIndex
< bOut
->sectionIndex
;
1394 return aOut
->addr
< bOut
->addr
;
1397 template <class ELFT
> void Writer
<ELFT
>::resolveShfLinkOrder() {
1398 llvm::TimeTraceScope
timeScope("Resolve SHF_LINK_ORDER");
1399 for (OutputSection
*sec
: ctx
.outputSections
) {
1400 if (!(sec
->flags
& SHF_LINK_ORDER
))
1403 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1404 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1405 if (!ctx
.arg
.relocatable
&& ctx
.arg
.emachine
== EM_ARM
&&
1406 sec
->type
== SHT_ARM_EXIDX
)
1409 // Link order may be distributed across several InputSectionDescriptions.
1410 // Sorting is performed separately.
1411 SmallVector
<InputSection
**, 0> scriptSections
;
1412 SmallVector
<InputSection
*, 0> sections
;
1413 for (SectionCommand
*cmd
: sec
->commands
) {
1414 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
1417 bool hasLinkOrder
= false;
1418 scriptSections
.clear();
1420 for (InputSection
*&isec
: isd
->sections
) {
1421 if (isec
->flags
& SHF_LINK_ORDER
) {
1422 InputSection
*link
= isec
->getLinkOrderDep();
1423 if (link
&& !link
->getParent())
1424 ErrAlways(ctx
) << isec
<< ": sh_link points to discarded section "
1426 hasLinkOrder
= true;
1428 scriptSections
.push_back(&isec
);
1429 sections
.push_back(isec
);
1431 if (hasLinkOrder
&& errCount(ctx
) == 0) {
1432 llvm::stable_sort(sections
, compareByFilePosition
);
1433 for (int i
= 0, n
= sections
.size(); i
!= n
; ++i
)
1434 *scriptSections
[i
] = sections
[i
];
1440 static void finalizeSynthetic(Ctx
&ctx
, SyntheticSection
*sec
) {
1441 if (sec
&& sec
->isNeeded() && sec
->getParent()) {
1442 llvm::TimeTraceScope
timeScope("Finalize synthetic sections", sec
->name
);
1443 sec
->finalizeContents();
1447 // We need to generate and finalize the content that depends on the address of
1448 // InputSections. As the generation of the content may also alter InputSection
1449 // addresses we must converge to a fixed point. We do that here. See the comment
1450 // in Writer<ELFT>::finalizeSections().
1451 template <class ELFT
> void Writer
<ELFT
>::finalizeAddressDependentContent() {
1452 llvm::TimeTraceScope
timeScope("Finalize address dependent content");
1453 AArch64Err843419Patcher
a64p(ctx
);
1454 ARMErr657417Patcher
a32p(ctx
);
1455 ctx
.script
->assignAddresses();
1457 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1458 // do require the relative addresses of OutputSections because linker scripts
1459 // can assign Virtual Addresses to OutputSections that are not monotonically
1460 // increasing. Anything here must be repeatable, since spilling may change
1462 const auto finalizeOrderDependentContent
= [this] {
1463 for (Partition
&part
: ctx
.partitions
)
1464 finalizeSynthetic(ctx
, part
.armExidx
.get());
1465 resolveShfLinkOrder();
1467 finalizeOrderDependentContent();
1469 // Converts call x@GDPLT to call __tls_get_addr
1470 if (ctx
.arg
.emachine
== EM_HEXAGON
)
1471 hexagonTLSSymbolUpdate(ctx
);
1473 uint32_t pass
= 0, assignPasses
= 0;
1475 bool changed
= ctx
.target
->needsThunks
1476 ? tc
.createThunks(pass
, ctx
.outputSections
)
1477 : ctx
.target
->relaxOnce(pass
);
1478 bool spilled
= ctx
.script
->spillSections();
1482 // With Thunk Size much smaller than branch range we expect to
1483 // converge quickly; if we get to 30 something has gone wrong.
1484 if (changed
&& pass
>= 30) {
1485 Err(ctx
) << (ctx
.target
->needsThunks
? "thunk creation not converged"
1486 : "relaxation not converged");
1490 if (ctx
.arg
.fixCortexA53Errata843419
) {
1492 ctx
.script
->assignAddresses();
1493 changed
|= a64p
.createFixes();
1495 if (ctx
.arg
.fixCortexA8
) {
1497 ctx
.script
->assignAddresses();
1498 changed
|= a32p
.createFixes();
1501 finalizeSynthetic(ctx
, ctx
.in
.got
.get());
1503 ctx
.in
.mipsGot
->updateAllocSize(ctx
);
1505 for (Partition
&part
: ctx
.partitions
) {
1506 // The R_AARCH64_AUTH_RELATIVE has a smaller addend field as bits [63:32]
1507 // encode the signing schema. We've put relocations in .relr.auth.dyn
1508 // during RelocationScanner::processAux, but the target VA for some of
1509 // them might be wider than 32 bits. We can only know the final VA at this
1510 // point, so move relocations with large values from .relr.auth.dyn to
1511 // .rela.dyn. See also AArch64::relocate.
1512 if (part
.relrAuthDyn
) {
1513 auto it
= llvm::remove_if(
1514 part
.relrAuthDyn
->relocs
, [this, &part
](const RelativeReloc
&elem
) {
1515 const Relocation
&reloc
= elem
.inputSec
->relocs()[elem
.relocIdx
];
1516 if (isInt
<32>(reloc
.sym
->getVA(ctx
, reloc
.addend
)))
1518 part
.relaDyn
->addReloc({R_AARCH64_AUTH_RELATIVE
, elem
.inputSec
,
1520 DynamicReloc::AddendOnlyWithTargetVA
,
1521 *reloc
.sym
, reloc
.addend
, R_ABS
});
1524 changed
|= (it
!= part
.relrAuthDyn
->relocs
.end());
1525 part
.relrAuthDyn
->relocs
.erase(it
, part
.relrAuthDyn
->relocs
.end());
1528 changed
|= part
.relaDyn
->updateAllocSize(ctx
);
1530 changed
|= part
.relrDyn
->updateAllocSize(ctx
);
1531 if (part
.relrAuthDyn
)
1532 changed
|= part
.relrAuthDyn
->updateAllocSize(ctx
);
1533 if (part
.memtagGlobalDescriptors
)
1534 changed
|= part
.memtagGlobalDescriptors
->updateAllocSize(ctx
);
1537 std::pair
<const OutputSection
*, const Defined
*> changes
=
1538 ctx
.script
->assignAddresses();
1540 // Some symbols may be dependent on section addresses. When we break the
1541 // loop, the symbol values are finalized because a previous
1542 // assignAddresses() finalized section addresses.
1543 if (!changes
.first
&& !changes
.second
)
1545 if (++assignPasses
== 5) {
1547 Err(ctx
) << "address (0x" << Twine::utohexstr(changes
.first
->addr
)
1548 << ") of section '" << changes
.first
->name
1549 << "' does not converge";
1551 Err(ctx
) << "assignment to symbol " << changes
.second
1552 << " does not converge";
1555 } else if (spilled
) {
1556 // Spilling can change relative section order.
1557 finalizeOrderDependentContent();
1560 if (!ctx
.arg
.relocatable
)
1561 ctx
.target
->finalizeRelax(pass
);
1563 if (ctx
.arg
.relocatable
)
1564 for (OutputSection
*sec
: ctx
.outputSections
)
1567 // If addrExpr is set, the address may not be a multiple of the alignment.
1568 // Warn because this is error-prone.
1569 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1570 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1571 OutputSection
*osec
= &osd
->osec
;
1572 if (osec
->addr
% osec
->addralign
!= 0)
1573 Warn(ctx
) << "address (0x" << Twine::utohexstr(osec
->addr
)
1574 << ") of section " << osec
->name
1575 << " is not a multiple of alignment (" << osec
->addralign
1579 // Sizes are no longer allowed to grow, so all allowable spills have been
1580 // taken. Remove any leftover potential spills.
1581 ctx
.script
->erasePotentialSpillSections();
1584 // If Input Sections have been shrunk (basic block sections) then
1585 // update symbol values and sizes associated with these sections. With basic
1586 // block sections, input sections can shrink when the jump instructions at
1587 // the end of the section are relaxed.
1588 static void fixSymbolsAfterShrinking(Ctx
&ctx
) {
1589 for (InputFile
*File
: ctx
.objectFiles
) {
1590 parallelForEach(File
->getSymbols(), [&](Symbol
*Sym
) {
1591 auto *def
= dyn_cast
<Defined
>(Sym
);
1595 const SectionBase
*sec
= def
->section
;
1599 const InputSectionBase
*inputSec
= dyn_cast
<InputSectionBase
>(sec
);
1600 if (!inputSec
|| !inputSec
->bytesDropped
)
1603 const size_t OldSize
= inputSec
->content().size();
1604 const size_t NewSize
= OldSize
- inputSec
->bytesDropped
;
1606 if (def
->value
> NewSize
&& def
->value
<= OldSize
) {
1607 LLVM_DEBUG(llvm::dbgs()
1608 << "Moving symbol " << Sym
->getName() << " from "
1609 << def
->value
<< " to "
1610 << def
->value
- inputSec
->bytesDropped
<< " bytes\n");
1611 def
->value
-= inputSec
->bytesDropped
;
1615 if (def
->value
+ def
->size
> NewSize
&& def
->value
<= OldSize
&&
1616 def
->value
+ def
->size
<= OldSize
) {
1617 LLVM_DEBUG(llvm::dbgs()
1618 << "Shrinking symbol " << Sym
->getName() << " from "
1619 << def
->size
<< " to " << def
->size
- inputSec
->bytesDropped
1621 def
->size
-= inputSec
->bytesDropped
;
1627 // If basic block sections exist, there are opportunities to delete fall thru
1628 // jumps and shrink jump instructions after basic block reordering. This
1629 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1631 template <class ELFT
> void Writer
<ELFT
>::optimizeBasicBlockJumps() {
1632 assert(ctx
.arg
.optimizeBBJumps
);
1633 SmallVector
<InputSection
*, 0> storage
;
1635 ctx
.script
->assignAddresses();
1636 // For every output section that has executable input sections, this
1637 // does the following:
1638 // 1. Deletes all direct jump instructions in input sections that
1639 // jump to the following section as it is not required.
1640 // 2. If there are two consecutive jump instructions, it checks
1641 // if they can be flipped and one can be deleted.
1642 for (OutputSection
*osec
: ctx
.outputSections
) {
1643 if (!(osec
->flags
& SHF_EXECINSTR
))
1645 ArrayRef
<InputSection
*> sections
= getInputSections(*osec
, storage
);
1646 size_t numDeleted
= 0;
1647 // Delete all fall through jump instructions. Also, check if two
1648 // consecutive jump instructions can be flipped so that a fall
1649 // through jmp instruction can be deleted.
1650 for (size_t i
= 0, e
= sections
.size(); i
!= e
; ++i
) {
1651 InputSection
*next
= i
+ 1 < sections
.size() ? sections
[i
+ 1] : nullptr;
1652 InputSection
&sec
= *sections
[i
];
1653 numDeleted
+= ctx
.target
->deleteFallThruJmpInsn(sec
, sec
.file
, next
);
1655 if (numDeleted
> 0) {
1656 ctx
.script
->assignAddresses();
1657 LLVM_DEBUG(llvm::dbgs()
1658 << "Removing " << numDeleted
<< " fall through jumps\n");
1662 fixSymbolsAfterShrinking(ctx
);
1664 for (OutputSection
*osec
: ctx
.outputSections
)
1665 for (InputSection
*is
: getInputSections(*osec
, storage
))
1669 // In order to allow users to manipulate linker-synthesized sections,
1670 // we had to add synthetic sections to the input section list early,
1671 // even before we make decisions whether they are needed. This allows
1672 // users to write scripts like this: ".mygot : { .got }".
1674 // Doing it has an unintended side effects. If it turns out that we
1675 // don't need a .got (for example) at all because there's no
1676 // relocation that needs a .got, we don't want to emit .got.
1678 // To deal with the above problem, this function is called after
1679 // scanRelocations is called to remove synthetic sections that turn
1681 static void removeUnusedSyntheticSections(Ctx
&ctx
) {
1682 // All input synthetic sections that can be empty are placed after
1683 // all regular ones. Reverse iterate to find the first synthetic section
1684 // after a non-synthetic one which will be our starting point.
1686 llvm::find_if(llvm::reverse(ctx
.inputSections
), [](InputSectionBase
*s
) {
1687 return !isa
<SyntheticSection
>(s
);
1690 // Remove unused synthetic sections from ctx.inputSections;
1691 DenseSet
<InputSectionBase
*> unused
;
1693 std::remove_if(start
, ctx
.inputSections
.end(), [&](InputSectionBase
*s
) {
1694 auto *sec
= cast
<SyntheticSection
>(s
);
1695 if (sec
->getParent() && sec
->isNeeded())
1697 // .relr.auth.dyn relocations may be moved to .rela.dyn in
1698 // finalizeAddressDependentContent, making .rela.dyn no longer empty.
1699 // Conservatively keep .rela.dyn. .relr.auth.dyn can be made empty, but
1700 // we would fail to remove it here.
1701 if (ctx
.arg
.emachine
== EM_AARCH64
&& ctx
.arg
.relrPackDynRelocs
&&
1702 sec
== ctx
.mainPart
->relaDyn
.get())
1707 ctx
.inputSections
.erase(end
, ctx
.inputSections
.end());
1709 // Remove unused synthetic sections from the corresponding input section
1710 // description and orphanSections.
1711 for (auto *sec
: unused
)
1712 if (OutputSection
*osec
= cast
<SyntheticSection
>(sec
)->getParent())
1713 for (SectionCommand
*cmd
: osec
->commands
)
1714 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
1715 llvm::erase_if(isd
->sections
, [&](InputSection
*isec
) {
1716 return unused
.count(isec
);
1718 llvm::erase_if(ctx
.script
->orphanSections
, [&](const InputSectionBase
*sec
) {
1719 return unused
.count(sec
);
1723 // Create output section objects and add them to OutputSections.
1724 template <class ELFT
> void Writer
<ELFT
>::finalizeSections() {
1725 if (!ctx
.arg
.relocatable
) {
1726 ctx
.out
.preinitArray
= findSection(ctx
, ".preinit_array");
1727 ctx
.out
.initArray
= findSection(ctx
, ".init_array");
1728 ctx
.out
.finiArray
= findSection(ctx
, ".fini_array");
1730 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1731 // symbols for sections, so that the runtime can get the start and end
1732 // addresses of each section by section name. Add such symbols.
1733 addStartEndSymbols();
1734 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1735 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1736 addStartStopSymbols(osd
->osec
);
1738 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1739 // It should be okay as no one seems to care about the type.
1740 // Even the author of gold doesn't remember why gold behaves that way.
1741 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1742 if (ctx
.mainPart
->dynamic
->parent
) {
1743 Symbol
*s
= ctx
.symtab
->addSymbol(Defined
{
1744 ctx
, ctx
.internalFile
, "_DYNAMIC", STB_WEAK
, STV_HIDDEN
, STT_NOTYPE
,
1745 /*value=*/0, /*size=*/0, ctx
.mainPart
->dynamic
.get()});
1746 s
->isUsedInRegularObj
= true;
1749 // Define __rel[a]_iplt_{start,end} symbols if needed.
1750 addRelIpltSymbols();
1752 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1753 // should only be defined in an executable. If .sdata does not exist, its
1754 // value/section does not matter but it has to be relative, so set its
1755 // st_shndx arbitrarily to 1 (ctx.out.elfHeader).
1756 if (ctx
.arg
.emachine
== EM_RISCV
) {
1757 if (!ctx
.arg
.shared
) {
1758 OutputSection
*sec
= findSection(ctx
, ".sdata");
1759 addOptionalRegular(ctx
, "__global_pointer$",
1760 sec
? sec
: ctx
.out
.elfHeader
.get(), 0x800,
1762 // Set riscvGlobalPointer to be used by the optional global pointer
1764 if (ctx
.arg
.relaxGP
) {
1765 Symbol
*s
= ctx
.symtab
->find("__global_pointer$");
1766 if (s
&& s
->isDefined())
1767 ctx
.sym
.riscvGlobalPointer
= cast
<Defined
>(s
);
1772 if (ctx
.arg
.emachine
== EM_386
|| ctx
.arg
.emachine
== EM_X86_64
) {
1773 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1776 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1778 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1779 // in the TLS block).
1781 // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1782 // as an absolute symbol of zero. This is different from GNU linkers which
1783 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1784 Symbol
*s
= ctx
.symtab
->find("_TLS_MODULE_BASE_");
1785 if (s
&& s
->isUndefined()) {
1786 s
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
1787 STV_HIDDEN
, STT_TLS
, /*value=*/0, 0,
1788 /*section=*/nullptr});
1789 ctx
.sym
.tlsModuleBase
= cast
<Defined
>(s
);
1793 // This responsible for splitting up .eh_frame section into
1794 // pieces. The relocation scan uses those pieces, so this has to be
1797 llvm::TimeTraceScope
timeScope("Finalize .eh_frame");
1798 for (Partition
&part
: ctx
.partitions
)
1799 finalizeSynthetic(ctx
, part
.ehFrame
.get());
1803 demoteSymbolsAndComputeIsPreemptible(ctx
);
1805 if (ctx
.arg
.copyRelocs
&& ctx
.arg
.discard
!= DiscardPolicy::None
)
1806 markUsedLocalSymbols
<ELFT
>(ctx
);
1807 demoteAndCopyLocalSymbols(ctx
);
1809 if (ctx
.arg
.copyRelocs
)
1810 addSectionSymbols();
1812 // Change values of linker-script-defined symbols from placeholders (assigned
1813 // by declareSymbols) to actual definitions.
1814 ctx
.script
->processSymbolAssignments();
1816 if (!ctx
.arg
.relocatable
) {
1817 llvm::TimeTraceScope
timeScope("Scan relocations");
1818 // Scan relocations. This must be done after every symbol is declared so
1819 // that we can correctly decide if a dynamic relocation is needed. This is
1820 // called after processSymbolAssignments() because it needs to know whether
1821 // a linker-script-defined symbol is absolute.
1822 scanRelocations
<ELFT
>(ctx
);
1823 reportUndefinedSymbols(ctx
);
1824 postScanRelocations(ctx
);
1826 if (ctx
.in
.plt
&& ctx
.in
.plt
->isNeeded())
1827 ctx
.in
.plt
->addSymbols();
1828 if (ctx
.in
.iplt
&& ctx
.in
.iplt
->isNeeded())
1829 ctx
.in
.iplt
->addSymbols();
1831 if (ctx
.arg
.unresolvedSymbolsInShlib
!= UnresolvedPolicy::Ignore
) {
1833 ctx
.arg
.unresolvedSymbolsInShlib
== UnresolvedPolicy::ReportError
&&
1834 !ctx
.arg
.noinhibitExec
1837 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1838 // entries are seen. These cases would otherwise lead to runtime errors
1839 // reported by the dynamic linker.
1841 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1842 // to catch more cases. That is too much for us. Our approach resembles
1843 // the one used in ld.gold, achieves a good balance to be useful but not
1846 // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol
1847 // is overridden by a hidden visibility Defined (which is later discarded
1848 // due to GC), don't report the diagnostic. However, this may indicate an
1849 // unintended SharedSymbol.
1850 for (SharedFile
*file
: ctx
.sharedFiles
) {
1851 bool allNeededIsKnown
=
1852 llvm::all_of(file
->dtNeeded
, [&](StringRef needed
) {
1853 return ctx
.symtab
->soNames
.count(CachedHashStringRef(needed
));
1855 if (!allNeededIsKnown
)
1857 for (Symbol
*sym
: file
->requiredSymbols
) {
1858 if (sym
->dsoDefined
)
1860 if (sym
->isUndefined() && !sym
->isWeak()) {
1861 ELFSyncStream(ctx
, diag
)
1862 << "undefined reference: " << sym
<< "\n>>> referenced by "
1863 << file
<< " (disallowed by --no-allow-shlib-undefined)";
1864 } else if (sym
->isDefined() &&
1865 sym
->computeBinding(ctx
) == STB_LOCAL
) {
1866 ELFSyncStream(ctx
, diag
)
1867 << "non-exported symbol '" << sym
<< "' in '" << sym
->file
1868 << "' is referenced by DSO '" << file
<< "'";
1876 llvm::TimeTraceScope
timeScope("Add symbols to symtabs");
1877 // Now that we have defined all possible global symbols including linker-
1878 // synthesized ones. Visit all symbols to give the finishing touches.
1879 for (Symbol
*sym
: ctx
.symtab
->getSymbols()) {
1880 if (!sym
->isUsedInRegularObj
|| !includeInSymtab(ctx
, *sym
))
1882 if (!ctx
.arg
.relocatable
)
1883 sym
->binding
= sym
->computeBinding(ctx
);
1885 ctx
.in
.symTab
->addSymbol(sym
);
1887 if (sym
->includeInDynsym(ctx
)) {
1888 ctx
.partitions
[sym
->partition
- 1].dynSymTab
->addSymbol(sym
);
1889 if (auto *file
= dyn_cast_or_null
<SharedFile
>(sym
->file
))
1890 if (file
->isNeeded
&& !sym
->isUndefined())
1891 addVerneed(ctx
, *sym
);
1895 // We also need to scan the dynamic relocation tables of the other
1896 // partitions and add any referenced symbols to the partition's dynsym.
1897 for (Partition
&part
:
1898 MutableArrayRef
<Partition
>(ctx
.partitions
).slice(1)) {
1899 DenseSet
<Symbol
*> syms
;
1900 for (const SymbolTableEntry
&e
: part
.dynSymTab
->getSymbols())
1902 for (DynamicReloc
&reloc
: part
.relaDyn
->relocs
)
1903 if (reloc
.sym
&& reloc
.needsDynSymIndex() &&
1904 syms
.insert(reloc
.sym
).second
)
1905 part
.dynSymTab
->addSymbol(reloc
.sym
);
1910 ctx
.in
.mipsGot
->build();
1912 removeUnusedSyntheticSections(ctx
);
1913 ctx
.script
->diagnoseOrphanHandling();
1914 ctx
.script
->diagnoseMissingSGSectionAddress();
1918 // Create a list of OutputSections, assign sectionIndex, and populate
1919 // ctx.in.shStrTab. If -z nosectionheader is specified, drop non-ALLOC
1921 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1922 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1923 OutputSection
*osec
= &osd
->osec
;
1924 if (!ctx
.in
.shStrTab
&& !(osec
->flags
& SHF_ALLOC
))
1926 ctx
.outputSections
.push_back(osec
);
1927 osec
->sectionIndex
= ctx
.outputSections
.size();
1928 if (ctx
.in
.shStrTab
)
1929 osec
->shName
= ctx
.in
.shStrTab
->addString(osec
->name
);
1932 // Prefer command line supplied address over other constraints.
1933 for (OutputSection
*sec
: ctx
.outputSections
) {
1934 auto i
= ctx
.arg
.sectionStartMap
.find(sec
->name
);
1935 if (i
!= ctx
.arg
.sectionStartMap
.end())
1936 sec
->addrExpr
= [=] { return i
->second
; };
1939 // With the ctx.outputSections available check for GDPLT relocations
1940 // and add __tls_get_addr symbol if needed.
1941 if (ctx
.arg
.emachine
== EM_HEXAGON
&&
1942 hexagonNeedsTLSSymbol(ctx
.outputSections
)) {
1944 ctx
.symtab
->addSymbol(Undefined
{ctx
.internalFile
, "__tls_get_addr",
1945 STB_GLOBAL
, STV_DEFAULT
, STT_NOTYPE
});
1946 sym
->isPreemptible
= true;
1947 ctx
.partitions
[0].dynSymTab
->addSymbol(sym
);
1950 // This is a bit of a hack. A value of 0 means undef, so we set it
1951 // to 1 to make __ehdr_start defined. The section number is not
1952 // particularly relevant.
1953 ctx
.out
.elfHeader
->sectionIndex
= 1;
1954 ctx
.out
.elfHeader
->size
= sizeof(typename
ELFT::Ehdr
);
1956 // Binary and relocatable output does not have PHDRS.
1957 // The headers have to be created before finalize as that can influence the
1958 // image base and the dynamic section on mips includes the image base.
1959 if (!ctx
.arg
.relocatable
&& !ctx
.arg
.oFormatBinary
) {
1960 for (Partition
&part
: ctx
.partitions
) {
1961 part
.phdrs
= ctx
.script
->hasPhdrsCommands() ? ctx
.script
->createPhdrs()
1962 : createPhdrs(part
);
1963 if (ctx
.arg
.emachine
== EM_ARM
) {
1964 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
1965 addPhdrForSection(part
, SHT_ARM_EXIDX
, PT_ARM_EXIDX
, PF_R
);
1967 if (ctx
.arg
.emachine
== EM_MIPS
) {
1968 // Add separate segments for MIPS-specific sections.
1969 addPhdrForSection(part
, SHT_MIPS_REGINFO
, PT_MIPS_REGINFO
, PF_R
);
1970 addPhdrForSection(part
, SHT_MIPS_OPTIONS
, PT_MIPS_OPTIONS
, PF_R
);
1971 addPhdrForSection(part
, SHT_MIPS_ABIFLAGS
, PT_MIPS_ABIFLAGS
, PF_R
);
1973 if (ctx
.arg
.emachine
== EM_RISCV
)
1974 addPhdrForSection(part
, SHT_RISCV_ATTRIBUTES
, PT_RISCV_ATTRIBUTES
,
1977 ctx
.out
.programHeaders
->size
=
1978 sizeof(Elf_Phdr
) * ctx
.mainPart
->phdrs
.size();
1980 // Find the TLS segment. This happens before the section layout loop so that
1981 // Android relocation packing can look up TLS symbol addresses. We only need
1982 // to care about the main partition here because all TLS symbols were moved
1983 // to the main partition (see MarkLive.cpp).
1984 for (auto &p
: ctx
.mainPart
->phdrs
)
1985 if (p
->p_type
== PT_TLS
)
1986 ctx
.tlsPhdr
= p
.get();
1989 // Some symbols are defined in term of program headers. Now that we
1990 // have the headers, we can find out which sections they point to.
1991 setReservedSymbolSections();
1993 if (ctx
.script
->noCrossRefs
.size()) {
1994 llvm::TimeTraceScope
timeScope("Check NOCROSSREFS");
1995 checkNoCrossRefs
<ELFT
>(ctx
);
1999 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2001 finalizeSynthetic(ctx
, ctx
.in
.bss
.get());
2002 finalizeSynthetic(ctx
, ctx
.in
.bssRelRo
.get());
2003 finalizeSynthetic(ctx
, ctx
.in
.symTabShndx
.get());
2004 finalizeSynthetic(ctx
, ctx
.in
.shStrTab
.get());
2005 finalizeSynthetic(ctx
, ctx
.in
.strTab
.get());
2006 finalizeSynthetic(ctx
, ctx
.in
.got
.get());
2007 finalizeSynthetic(ctx
, ctx
.in
.mipsGot
.get());
2008 finalizeSynthetic(ctx
, ctx
.in
.igotPlt
.get());
2009 finalizeSynthetic(ctx
, ctx
.in
.gotPlt
.get());
2010 finalizeSynthetic(ctx
, ctx
.in
.relaPlt
.get());
2011 finalizeSynthetic(ctx
, ctx
.in
.plt
.get());
2012 finalizeSynthetic(ctx
, ctx
.in
.iplt
.get());
2013 finalizeSynthetic(ctx
, ctx
.in
.ppc32Got2
.get());
2014 finalizeSynthetic(ctx
, ctx
.in
.partIndex
.get());
2016 // Dynamic section must be the last one in this list and dynamic
2017 // symbol table section (dynSymTab) must be the first one.
2018 for (Partition
&part
: ctx
.partitions
) {
2020 part
.relaDyn
->mergeRels();
2021 // Compute DT_RELACOUNT to be used by part.dynamic.
2022 part
.relaDyn
->partitionRels();
2023 finalizeSynthetic(ctx
, part
.relaDyn
.get());
2026 part
.relrDyn
->mergeRels();
2027 finalizeSynthetic(ctx
, part
.relrDyn
.get());
2029 if (part
.relrAuthDyn
) {
2030 part
.relrAuthDyn
->mergeRels();
2031 finalizeSynthetic(ctx
, part
.relrAuthDyn
.get());
2034 finalizeSynthetic(ctx
, part
.dynSymTab
.get());
2035 finalizeSynthetic(ctx
, part
.gnuHashTab
.get());
2036 finalizeSynthetic(ctx
, part
.hashTab
.get());
2037 finalizeSynthetic(ctx
, part
.verDef
.get());
2038 finalizeSynthetic(ctx
, part
.ehFrameHdr
.get());
2039 finalizeSynthetic(ctx
, part
.verSym
.get());
2040 finalizeSynthetic(ctx
, part
.verNeed
.get());
2041 finalizeSynthetic(ctx
, part
.dynamic
.get());
2045 if (!ctx
.script
->hasSectionsCommand
&& !ctx
.arg
.relocatable
)
2046 fixSectionAlignments();
2049 // 1) Create "thunks":
2050 // Jump instructions in many ISAs have small displacements, and therefore
2051 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2052 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2053 // responsibility to create and insert small pieces of code between
2054 // sections to extend the ranges if jump targets are out of range. Such
2055 // code pieces are called "thunks".
2057 // We add thunks at this stage. We couldn't do this before this point
2058 // because this is the earliest point where we know sizes of sections and
2059 // their layouts (that are needed to determine if jump targets are in
2062 // 2) Update the sections. We need to generate content that depends on the
2063 // address of InputSections. For example, MIPS GOT section content or
2064 // android packed relocations sections content.
2066 // 3) Assign the final values for the linker script symbols. Linker scripts
2067 // sometimes using forward symbol declarations. We want to set the correct
2068 // values. They also might change after adding the thunks.
2069 finalizeAddressDependentContent();
2071 // All information needed for OutputSection part of Map file is available.
2076 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2077 // finalizeAddressDependentContent may have added local symbols to the
2078 // static symbol table.
2079 finalizeSynthetic(ctx
, ctx
.in
.symTab
.get());
2080 finalizeSynthetic(ctx
, ctx
.in
.debugNames
.get());
2081 finalizeSynthetic(ctx
, ctx
.in
.ppc64LongBranchTarget
.get());
2082 finalizeSynthetic(ctx
, ctx
.in
.armCmseSGSection
.get());
2085 // Relaxation to delete inter-basic block jumps created by basic block
2086 // sections. Run after ctx.in.symTab is finalized as optimizeBasicBlockJumps
2087 // can relax jump instructions based on symbol offset.
2088 if (ctx
.arg
.optimizeBBJumps
)
2089 optimizeBasicBlockJumps();
2091 // Fill other section headers. The dynamic table is finalized
2092 // at the end because some tags like RELSZ depend on result
2093 // of finalizing other sections.
2094 for (OutputSection
*sec
: ctx
.outputSections
)
2097 ctx
.script
->checkFinalScriptConditions();
2099 if (ctx
.arg
.emachine
== EM_ARM
&& !ctx
.arg
.isLE
&& ctx
.arg
.armBe8
) {
2100 addArmInputSectionMappingSymbols(ctx
);
2101 sortArmMappingSymbols(ctx
);
2105 // Ensure data sections are not mixed with executable sections when
2106 // --execute-only is used. --execute-only make pages executable but not
2108 template <class ELFT
> void Writer
<ELFT
>::checkExecuteOnly() {
2109 if (!ctx
.arg
.executeOnly
)
2112 SmallVector
<InputSection
*, 0> storage
;
2113 for (OutputSection
*osec
: ctx
.outputSections
)
2114 if (osec
->flags
& SHF_EXECINSTR
)
2115 for (InputSection
*isec
: getInputSections(*osec
, storage
))
2116 if (!(isec
->flags
& SHF_EXECINSTR
))
2117 ErrAlways(ctx
) << "cannot place " << isec
<< " into " << osec
->name
2118 << ": --execute-only does not support intermingling "
2122 // The linker is expected to define SECNAME_start and SECNAME_end
2123 // symbols for a few sections. This function defines them.
2124 template <class ELFT
> void Writer
<ELFT
>::addStartEndSymbols() {
2125 // If the associated output section does not exist, there is ambiguity as to
2126 // how we define _start and _end symbols for an init/fini section. Users
2127 // expect no "undefined symbol" linker errors and loaders expect equal
2128 // st_value but do not particularly care whether the symbols are defined or
2129 // not. We retain the output section so that the section indexes will be
2131 auto define
= [=](StringRef start
, StringRef end
, OutputSection
*os
) {
2133 Defined
*startSym
= addOptionalRegular(ctx
, start
, os
, 0);
2134 Defined
*stopSym
= addOptionalRegular(ctx
, end
, os
, -1);
2135 if (startSym
|| stopSym
)
2136 os
->usedInExpression
= true;
2138 addOptionalRegular(ctx
, start
, ctx
.out
.elfHeader
.get(), 0);
2139 addOptionalRegular(ctx
, end
, ctx
.out
.elfHeader
.get(), 0);
2143 define("__preinit_array_start", "__preinit_array_end", ctx
.out
.preinitArray
);
2144 define("__init_array_start", "__init_array_end", ctx
.out
.initArray
);
2145 define("__fini_array_start", "__fini_array_end", ctx
.out
.finiArray
);
2147 // As a special case, don't unnecessarily retain .ARM.exidx, which would
2148 // create an empty PT_ARM_EXIDX.
2149 if (OutputSection
*sec
= findSection(ctx
, ".ARM.exidx"))
2150 define("__exidx_start", "__exidx_end", sec
);
2153 // If a section name is valid as a C identifier (which is rare because of
2154 // the leading '.'), linkers are expected to define __start_<secname> and
2155 // __stop_<secname> symbols. They are at beginning and end of the section,
2156 // respectively. This is not requested by the ELF standard, but GNU ld and
2157 // gold provide the feature, and used by many programs.
2158 template <class ELFT
>
2159 void Writer
<ELFT
>::addStartStopSymbols(OutputSection
&osec
) {
2160 StringRef s
= osec
.name
;
2161 if (!isValidCIdentifier(s
))
2163 StringSaver
&ss
= ctx
.saver
;
2164 Defined
*startSym
= addOptionalRegular(ctx
, ss
.save("__start_" + s
), &osec
, 0,
2165 ctx
.arg
.zStartStopVisibility
);
2166 Defined
*stopSym
= addOptionalRegular(ctx
, ss
.save("__stop_" + s
), &osec
, -1,
2167 ctx
.arg
.zStartStopVisibility
);
2168 if (startSym
|| stopSym
)
2169 osec
.usedInExpression
= true;
2172 static bool needsPtLoad(OutputSection
*sec
) {
2173 if (!(sec
->flags
& SHF_ALLOC
))
2176 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2177 // responsible for allocating space for them, not the PT_LOAD that
2178 // contains the TLS initialization image.
2179 if ((sec
->flags
& SHF_TLS
) && sec
->type
== SHT_NOBITS
)
2184 // Adjust phdr flags according to certain options.
2185 static uint64_t computeFlags(Ctx
&ctx
, uint64_t flags
) {
2187 return PF_R
| PF_W
| PF_X
;
2188 if (ctx
.arg
.executeOnly
&& (flags
& PF_X
))
2189 return flags
& ~PF_R
;
2193 // Decide which program headers to create and which sections to include in each
2195 template <class ELFT
>
2196 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0>
2197 Writer
<ELFT
>::createPhdrs(Partition
&part
) {
2198 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> ret
;
2199 auto addHdr
= [&, &ctx
= ctx
](unsigned type
, unsigned flags
) -> PhdrEntry
* {
2200 ret
.push_back(std::make_unique
<PhdrEntry
>(ctx
, type
, flags
));
2201 return ret
.back().get();
2204 unsigned partNo
= part
.getNumber(ctx
);
2205 bool isMain
= partNo
== 1;
2207 // Add the first PT_LOAD segment for regular output sections.
2208 uint64_t flags
= computeFlags(ctx
, PF_R
);
2209 PhdrEntry
*load
= nullptr;
2211 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2213 if (!ctx
.arg
.nmagic
&& !ctx
.arg
.omagic
) {
2214 // The first phdr entry is PT_PHDR which describes the program header
2217 addHdr(PT_PHDR
, PF_R
)->add(ctx
.out
.programHeaders
.get());
2219 addHdr(PT_PHDR
, PF_R
)->add(part
.programHeaders
->getParent());
2221 // PT_INTERP must be the second entry if exists.
2222 if (OutputSection
*cmd
= findSection(ctx
, ".interp", partNo
))
2223 addHdr(PT_INTERP
, cmd
->getPhdrFlags())->add(cmd
);
2225 // Add the headers. We will remove them if they don't fit.
2226 // In the other partitions the headers are ordinary sections, so they don't
2227 // need to be added here.
2229 load
= addHdr(PT_LOAD
, flags
);
2230 load
->add(ctx
.out
.elfHeader
.get());
2231 load
->add(ctx
.out
.programHeaders
.get());
2235 // PT_GNU_RELRO includes all sections that should be marked as
2236 // read-only by dynamic linker after processing relocations.
2237 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2238 // an error message if more than one PT_GNU_RELRO PHDR is required.
2239 auto relRo
= std::make_unique
<PhdrEntry
>(ctx
, PT_GNU_RELRO
, PF_R
);
2240 bool inRelroPhdr
= false;
2241 OutputSection
*relroEnd
= nullptr;
2242 for (OutputSection
*sec
: ctx
.outputSections
) {
2243 if (sec
->partition
!= partNo
|| !needsPtLoad(sec
))
2245 if (isRelroSection(ctx
, sec
)) {
2250 ErrAlways(ctx
) << "section: " << sec
->name
2251 << " is not contiguous with other relro" << " sections";
2252 } else if (inRelroPhdr
) {
2253 inRelroPhdr
= false;
2259 for (OutputSection
*sec
: ctx
.outputSections
) {
2260 if (!needsPtLoad(sec
))
2263 // Normally, sections in partitions other than the current partition are
2264 // ignored. But partition number 255 is a special case: it contains the
2265 // partition end marker (.part.end). It needs to be added to the main
2266 // partition so that a segment is created for it in the main partition,
2267 // which will cause the dynamic loader to reserve space for the other
2269 if (sec
->partition
!= partNo
) {
2270 if (isMain
&& sec
->partition
== 255)
2271 addHdr(PT_LOAD
, computeFlags(ctx
, sec
->getPhdrFlags()))->add(sec
);
2275 // Segments are contiguous memory regions that has the same attributes
2276 // (e.g. executable or writable). There is one phdr for each segment.
2277 // Therefore, we need to create a new phdr when the next section has
2278 // incompatible flags or is loaded at a discontiguous address or memory
2279 // region using AT or AT> linker script command, respectively.
2281 // As an exception, we don't create a separate load segment for the ELF
2282 // headers, even if the first "real" output has an AT or AT> attribute.
2284 // In addition, NOBITS sections should only be placed at the end of a LOAD
2285 // segment (since it's represented as p_filesz < p_memsz). If we have a
2286 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
2287 // even if flags match, so as not to require actually writing the
2288 // supposed-to-be-NOBITS section to the output file. (However, we cannot do
2289 // so when hasSectionsCommand, since we cannot introduce the extra alignment
2290 // needed to create a new LOAD)
2291 uint64_t newFlags
= computeFlags(ctx
, sec
->getPhdrFlags());
2292 // When --no-rosegment is specified, RO and RX sections are compatible.
2293 uint32_t incompatible
= flags
^ newFlags
;
2294 if (ctx
.arg
.singleRoRx
&& !(newFlags
& PF_W
))
2295 incompatible
&= ~PF_X
;
2299 bool sameLMARegion
=
2300 load
&& !sec
->lmaExpr
&& sec
->lmaRegion
== load
->firstSec
->lmaRegion
;
2301 if (load
&& sec
!= relroEnd
&&
2302 sec
->memRegion
== load
->firstSec
->memRegion
&&
2303 (sameLMARegion
|| load
->lastSec
== ctx
.out
.programHeaders
.get()) &&
2304 (ctx
.script
->hasSectionsCommand
|| sec
->type
== SHT_NOBITS
||
2305 load
->lastSec
->type
!= SHT_NOBITS
)) {
2306 load
->p_flags
|= newFlags
;
2308 load
= addHdr(PT_LOAD
, newFlags
);
2315 // Add a TLS segment if any.
2316 auto tlsHdr
= std::make_unique
<PhdrEntry
>(ctx
, PT_TLS
, PF_R
);
2317 for (OutputSection
*sec
: ctx
.outputSections
)
2318 if (sec
->partition
== partNo
&& sec
->flags
& SHF_TLS
)
2320 if (tlsHdr
->firstSec
)
2321 ret
.push_back(std::move(tlsHdr
));
2323 // Add an entry for .dynamic.
2324 if (OutputSection
*sec
= part
.dynamic
->getParent())
2325 addHdr(PT_DYNAMIC
, sec
->getPhdrFlags())->add(sec
);
2327 if (relRo
->firstSec
)
2328 ret
.push_back(std::move(relRo
));
2330 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2331 if (part
.ehFrame
->isNeeded() && part
.ehFrameHdr
&&
2332 part
.ehFrame
->getParent() && part
.ehFrameHdr
->getParent())
2333 addHdr(PT_GNU_EH_FRAME
, part
.ehFrameHdr
->getParent()->getPhdrFlags())
2334 ->add(part
.ehFrameHdr
->getParent());
2336 if (ctx
.arg
.osabi
== ELFOSABI_OPENBSD
) {
2337 // PT_OPENBSD_MUTABLE makes the dynamic linker fill the segment with
2338 // zero data, like bss, but it can be treated differently.
2339 if (OutputSection
*cmd
= findSection(ctx
, ".openbsd.mutable", partNo
))
2340 addHdr(PT_OPENBSD_MUTABLE
, cmd
->getPhdrFlags())->add(cmd
);
2342 // PT_OPENBSD_RANDOMIZE makes the dynamic linker fill the segment
2343 // with random data.
2344 if (OutputSection
*cmd
= findSection(ctx
, ".openbsd.randomdata", partNo
))
2345 addHdr(PT_OPENBSD_RANDOMIZE
, cmd
->getPhdrFlags())->add(cmd
);
2347 // PT_OPENBSD_SYSCALLS makes the kernel and dynamic linker register
2348 // system call sites.
2349 if (OutputSection
*cmd
= findSection(ctx
, ".openbsd.syscalls", partNo
))
2350 addHdr(PT_OPENBSD_SYSCALLS
, cmd
->getPhdrFlags())->add(cmd
);
2353 if (ctx
.arg
.zGnustack
!= GnuStackKind::None
) {
2354 // PT_GNU_STACK is a special section to tell the loader to make the
2355 // pages for the stack non-executable. If you really want an executable
2356 // stack, you can pass -z execstack, but that's not recommended for
2357 // security reasons.
2358 unsigned perm
= PF_R
| PF_W
;
2359 if (ctx
.arg
.zGnustack
== GnuStackKind::Exec
)
2361 addHdr(PT_GNU_STACK
, perm
)->p_memsz
= ctx
.arg
.zStackSize
;
2364 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2365 // is expected to perform W^X violations, such as calling mprotect(2) or
2366 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2368 if (ctx
.arg
.zWxneeded
)
2369 addHdr(PT_OPENBSD_WXNEEDED
, PF_X
);
2371 if (OutputSection
*cmd
= findSection(ctx
, ".note.gnu.property", partNo
))
2372 addHdr(PT_GNU_PROPERTY
, PF_R
)->add(cmd
);
2374 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2376 PhdrEntry
*note
= nullptr;
2377 for (OutputSection
*sec
: ctx
.outputSections
) {
2378 if (sec
->partition
!= partNo
)
2380 if (sec
->type
== SHT_NOTE
&& (sec
->flags
& SHF_ALLOC
)) {
2381 if (!note
|| sec
->lmaExpr
|| note
->lastSec
->addralign
!= sec
->addralign
)
2382 note
= addHdr(PT_NOTE
, PF_R
);
2391 template <class ELFT
>
2392 void Writer
<ELFT
>::addPhdrForSection(Partition
&part
, unsigned shType
,
2393 unsigned pType
, unsigned pFlags
) {
2394 unsigned partNo
= part
.getNumber(ctx
);
2395 auto i
= llvm::find_if(ctx
.outputSections
, [=](OutputSection
*cmd
) {
2396 return cmd
->partition
== partNo
&& cmd
->type
== shType
;
2398 if (i
== ctx
.outputSections
.end())
2401 auto entry
= std::make_unique
<PhdrEntry
>(ctx
, pType
, pFlags
);
2403 part
.phdrs
.push_back(std::move(entry
));
2406 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2407 // This is achieved by assigning an alignment expression to addrExpr of each
2409 template <class ELFT
> void Writer
<ELFT
>::fixSectionAlignments() {
2410 const PhdrEntry
*prev
;
2411 auto pageAlign
= [&, &ctx
= this->ctx
](const PhdrEntry
*p
) {
2412 OutputSection
*cmd
= p
->firstSec
;
2415 cmd
->alignExpr
= [align
= cmd
->addralign
]() { return align
; };
2416 if (!cmd
->addrExpr
) {
2417 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2418 // padding in the file contents.
2420 // When -z separate-code is used we must not have any overlap in pages
2421 // between an executable segment and a non-executable segment. We align to
2422 // the next maximum page size boundary on transitions between executable
2423 // and non-executable segments.
2425 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2426 // sections will be extracted to a separate file. Align to the next
2427 // maximum page size boundary so that we can find the ELF header at the
2428 // start. We cannot benefit from overlapping p_offset ranges with the
2429 // previous segment anyway.
2430 if (ctx
.arg
.zSeparate
== SeparateSegmentKind::Loadable
||
2431 (ctx
.arg
.zSeparate
== SeparateSegmentKind::Code
&& prev
&&
2432 (prev
->p_flags
& PF_X
) != (p
->p_flags
& PF_X
)) ||
2433 cmd
->type
== SHT_LLVM_PART_EHDR
)
2434 cmd
->addrExpr
= [&ctx
= this->ctx
] {
2435 return alignToPowerOf2(ctx
.script
->getDot(), ctx
.arg
.maxPageSize
);
2437 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2438 // it must be the RW. Align to p_align(PT_TLS) to make sure
2439 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2440 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2441 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2442 // be congruent to 0 modulo p_align(PT_TLS).
2444 // Technically this is not required, but as of 2019, some dynamic loaders
2445 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2446 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2447 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2448 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2449 // blocks correctly. We need to keep the workaround for a while.
2450 else if (ctx
.tlsPhdr
&& ctx
.tlsPhdr
->firstSec
== p
->firstSec
)
2451 cmd
->addrExpr
= [&ctx
] {
2452 return alignToPowerOf2(ctx
.script
->getDot(), ctx
.arg
.maxPageSize
) +
2453 alignToPowerOf2(ctx
.script
->getDot() % ctx
.arg
.maxPageSize
,
2454 ctx
.tlsPhdr
->p_align
);
2457 cmd
->addrExpr
= [&ctx
] {
2458 return alignToPowerOf2(ctx
.script
->getDot(), ctx
.arg
.maxPageSize
) +
2459 ctx
.script
->getDot() % ctx
.arg
.maxPageSize
;
2464 for (Partition
&part
: ctx
.partitions
) {
2466 for (auto &p
: part
.phdrs
)
2467 if (p
->p_type
== PT_LOAD
&& p
->firstSec
) {
2474 // Compute an in-file position for a given section. The file offset must be the
2475 // same with its virtual address modulo the page size, so that the loader can
2476 // load executables without any address adjustment.
2477 static uint64_t computeFileOffset(Ctx
&ctx
, OutputSection
*os
, uint64_t off
) {
2478 // The first section in a PT_LOAD has to have congruent offset and address
2479 // modulo the maximum page size.
2480 if (os
->ptLoad
&& os
->ptLoad
->firstSec
== os
)
2481 return alignTo(off
, os
->ptLoad
->p_align
, os
->addr
);
2483 // File offsets are not significant for .bss sections other than the first one
2484 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2485 // increasing rather than setting to zero.
2486 if (os
->type
== SHT_NOBITS
&& (!ctx
.tlsPhdr
|| ctx
.tlsPhdr
->firstSec
!= os
))
2489 // If the section is not in a PT_LOAD, we just have to align it.
2491 return alignToPowerOf2(off
, os
->addralign
);
2493 // If two sections share the same PT_LOAD the file offset is calculated
2494 // using this formula: Off2 = Off1 + (VA2 - VA1).
2495 OutputSection
*first
= os
->ptLoad
->firstSec
;
2496 return first
->offset
+ os
->addr
- first
->addr
;
2499 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsetsBinary() {
2500 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2501 auto needsOffset
= [](OutputSection
&sec
) {
2502 return sec
.type
!= SHT_NOBITS
&& (sec
.flags
& SHF_ALLOC
) && sec
.size
> 0;
2504 uint64_t minAddr
= UINT64_MAX
;
2505 for (OutputSection
*sec
: ctx
.outputSections
)
2506 if (needsOffset(*sec
)) {
2507 sec
->offset
= sec
->getLMA();
2508 minAddr
= std::min(minAddr
, sec
->offset
);
2511 // Sections are laid out at LMA minus minAddr.
2513 for (OutputSection
*sec
: ctx
.outputSections
)
2514 if (needsOffset(*sec
)) {
2515 sec
->offset
-= minAddr
;
2516 fileSize
= std::max(fileSize
, sec
->offset
+ sec
->size
);
2520 static std::string
rangeToString(uint64_t addr
, uint64_t len
) {
2521 return "[0x" + utohexstr(addr
) + ", 0x" + utohexstr(addr
+ len
- 1) + "]";
2524 // Assign file offsets to output sections.
2525 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsets() {
2526 ctx
.out
.programHeaders
->offset
= ctx
.out
.elfHeader
->size
;
2527 uint64_t off
= ctx
.out
.elfHeader
->size
+ ctx
.out
.programHeaders
->size
;
2529 PhdrEntry
*lastRX
= nullptr;
2530 for (Partition
&part
: ctx
.partitions
)
2531 for (auto &p
: part
.phdrs
)
2532 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2535 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2536 // will not occupy file offsets contained by a PT_LOAD.
2537 for (OutputSection
*sec
: ctx
.outputSections
) {
2538 if (!(sec
->flags
& SHF_ALLOC
))
2540 off
= computeFileOffset(ctx
, sec
, off
);
2542 if (sec
->type
!= SHT_NOBITS
)
2545 // If this is a last section of the last executable segment and that
2546 // segment is the last loadable segment, align the offset of the
2547 // following section to avoid loading non-segments parts of the file.
2548 if (ctx
.arg
.zSeparate
!= SeparateSegmentKind::None
&& lastRX
&&
2549 lastRX
->lastSec
== sec
)
2550 off
= alignToPowerOf2(off
, ctx
.arg
.maxPageSize
);
2552 for (OutputSection
*osec
: ctx
.outputSections
) {
2553 if (osec
->flags
& SHF_ALLOC
)
2555 osec
->offset
= alignToPowerOf2(off
, osec
->addralign
);
2556 off
= osec
->offset
+ osec
->size
;
2559 sectionHeaderOff
= alignToPowerOf2(off
, ctx
.arg
.wordsize
);
2561 sectionHeaderOff
+ (ctx
.outputSections
.size() + 1) * sizeof(Elf_Shdr
);
2563 // Our logic assumes that sections have rising VA within the same segment.
2564 // With use of linker scripts it is possible to violate this rule and get file
2565 // offset overlaps or overflows. That should never happen with a valid script
2566 // which does not move the location counter backwards and usually scripts do
2567 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2568 // kernel, which control segment distribution explicitly and move the counter
2569 // backwards, so we have to allow doing that to support linking them. We
2570 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2571 // we want to prevent file size overflows because it would crash the linker.
2572 for (OutputSection
*sec
: ctx
.outputSections
) {
2573 if (sec
->type
== SHT_NOBITS
)
2575 if ((sec
->offset
> fileSize
) || (sec
->offset
+ sec
->size
> fileSize
))
2576 ErrAlways(ctx
) << "unable to place section " << sec
->name
2577 << " at file offset "
2578 << rangeToString(sec
->offset
, sec
->size
)
2579 << "; check your linker script for overflows";
2583 // Finalize the program headers. We call this function after we assign
2584 // file offsets and VAs to all sections.
2585 template <class ELFT
> void Writer
<ELFT
>::setPhdrs(Partition
&part
) {
2586 for (std::unique_ptr
<PhdrEntry
> &p
: part
.phdrs
) {
2587 OutputSection
*first
= p
->firstSec
;
2588 OutputSection
*last
= p
->lastSec
;
2590 // .ARM.exidx sections may not be within a single .ARM.exidx
2591 // output section. We always want to describe just the
2592 // SyntheticSection.
2593 if (part
.armExidx
&& p
->p_type
== PT_ARM_EXIDX
) {
2594 p
->p_filesz
= part
.armExidx
->getSize();
2595 p
->p_memsz
= p
->p_filesz
;
2596 p
->p_offset
= first
->offset
+ part
.armExidx
->outSecOff
;
2597 p
->p_vaddr
= first
->addr
+ part
.armExidx
->outSecOff
;
2598 p
->p_align
= part
.armExidx
->addralign
;
2600 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2603 p
->p_paddr
= first
->getLMA() + part
.armExidx
->outSecOff
;
2608 p
->p_filesz
= last
->offset
- first
->offset
;
2609 if (last
->type
!= SHT_NOBITS
)
2610 p
->p_filesz
+= last
->size
;
2612 p
->p_memsz
= last
->addr
+ last
->size
- first
->addr
;
2613 p
->p_offset
= first
->offset
;
2614 p
->p_vaddr
= first
->addr
;
2616 // File offsets in partitions other than the main partition are relative
2617 // to the offset of the ELF headers. Perform that adjustment now.
2619 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2622 p
->p_paddr
= first
->getLMA();
2627 // A helper struct for checkSectionOverlap.
2629 struct SectionOffset
{
2635 // Check whether sections overlap for a specific address range (file offsets,
2636 // load and virtual addresses).
2637 static void checkOverlap(Ctx
&ctx
, StringRef name
,
2638 std::vector
<SectionOffset
> §ions
,
2639 bool isVirtualAddr
) {
2640 llvm::sort(sections
, [=](const SectionOffset
&a
, const SectionOffset
&b
) {
2641 return a
.offset
< b
.offset
;
2644 // Finding overlap is easy given a vector is sorted by start position.
2645 // If an element starts before the end of the previous element, they overlap.
2646 for (size_t i
= 1, end
= sections
.size(); i
< end
; ++i
) {
2647 SectionOffset a
= sections
[i
- 1];
2648 SectionOffset b
= sections
[i
];
2649 if (b
.offset
>= a
.offset
+ a
.sec
->size
)
2652 // If both sections are in OVERLAY we allow the overlapping of virtual
2653 // addresses, because it is what OVERLAY was designed for.
2654 if (isVirtualAddr
&& a
.sec
->inOverlay
&& b
.sec
->inOverlay
)
2657 Err(ctx
) << "section " << a
.sec
->name
<< " " << name
2658 << " range overlaps with " << b
.sec
->name
<< "\n>>> "
2659 << a
.sec
->name
<< " range is "
2660 << rangeToString(a
.offset
, a
.sec
->size
) << "\n>>> " << b
.sec
->name
2661 << " range is " << rangeToString(b
.offset
, b
.sec
->size
);
2665 // Check for overlapping sections and address overflows.
2667 // In this function we check that none of the output sections have overlapping
2668 // file offsets. For SHF_ALLOC sections we also check that the load address
2669 // ranges and the virtual address ranges don't overlap
2670 template <class ELFT
> void Writer
<ELFT
>::checkSections() {
2671 // First, check that section's VAs fit in available address space for target.
2672 for (OutputSection
*os
: ctx
.outputSections
)
2673 if ((os
->addr
+ os
->size
< os
->addr
) ||
2674 (!ELFT::Is64Bits
&& os
->addr
+ os
->size
> uint64_t(UINT32_MAX
) + 1))
2675 Err(ctx
) << "section " << os
->name
<< " at 0x"
2676 << utohexstr(os
->addr
, true) << " of size 0x"
2677 << utohexstr(os
->size
, true)
2678 << " exceeds available address space";
2680 // Check for overlapping file offsets. In this case we need to skip any
2681 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2682 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2683 // binary is specified only add SHF_ALLOC sections are added to the output
2684 // file so we skip any non-allocated sections in that case.
2685 std::vector
<SectionOffset
> fileOffs
;
2686 for (OutputSection
*sec
: ctx
.outputSections
)
2687 if (sec
->size
> 0 && sec
->type
!= SHT_NOBITS
&&
2688 (!ctx
.arg
.oFormatBinary
|| (sec
->flags
& SHF_ALLOC
)))
2689 fileOffs
.push_back({sec
, sec
->offset
});
2690 checkOverlap(ctx
, "file", fileOffs
, false);
2692 // When linking with -r there is no need to check for overlapping virtual/load
2693 // addresses since those addresses will only be assigned when the final
2694 // executable/shared object is created.
2695 if (ctx
.arg
.relocatable
)
2698 // Checking for overlapping virtual and load addresses only needs to take
2699 // into account SHF_ALLOC sections since others will not be loaded.
2700 // Furthermore, we also need to skip SHF_TLS sections since these will be
2701 // mapped to other addresses at runtime and can therefore have overlapping
2702 // ranges in the file.
2703 std::vector
<SectionOffset
> vmas
;
2704 for (OutputSection
*sec
: ctx
.outputSections
)
2705 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2706 vmas
.push_back({sec
, sec
->addr
});
2707 checkOverlap(ctx
, "virtual address", vmas
, true);
2709 // Finally, check that the load addresses don't overlap. This will usually be
2710 // the same as the virtual addresses but can be different when using a linker
2711 // script with AT().
2712 std::vector
<SectionOffset
> lmas
;
2713 for (OutputSection
*sec
: ctx
.outputSections
)
2714 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2715 lmas
.push_back({sec
, sec
->getLMA()});
2716 checkOverlap(ctx
, "load address", lmas
, false);
2719 // The entry point address is chosen in the following ways.
2721 // 1. the '-e' entry command-line option;
2722 // 2. the ENTRY(symbol) command in a linker control script;
2723 // 3. the value of the symbol _start, if present;
2724 // 4. the number represented by the entry symbol, if it is a number;
2725 // 5. the address 0.
2726 static uint64_t getEntryAddr(Ctx
&ctx
) {
2728 if (Symbol
*b
= ctx
.symtab
->find(ctx
.arg
.entry
))
2729 return b
->getVA(ctx
);
2733 if (to_integer(ctx
.arg
.entry
, addr
))
2737 if (ctx
.arg
.warnMissingEntry
)
2738 Warn(ctx
) << "cannot find entry symbol " << ctx
.arg
.entry
2739 << "; not setting start address";
2743 static uint16_t getELFType(Ctx
&ctx
) {
2746 if (ctx
.arg
.relocatable
)
2751 template <class ELFT
> void Writer
<ELFT
>::writeHeader() {
2752 writeEhdr
<ELFT
>(ctx
, ctx
.bufferStart
, *ctx
.mainPart
);
2753 writePhdrs
<ELFT
>(ctx
.bufferStart
+ sizeof(Elf_Ehdr
), *ctx
.mainPart
);
2755 auto *eHdr
= reinterpret_cast<Elf_Ehdr
*>(ctx
.bufferStart
);
2756 eHdr
->e_type
= getELFType(ctx
);
2757 eHdr
->e_entry
= getEntryAddr(ctx
);
2759 // If -z nosectionheader is specified, omit the section header table.
2760 if (!ctx
.in
.shStrTab
)
2762 eHdr
->e_shoff
= sectionHeaderOff
;
2764 // Write the section header table.
2766 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2767 // and e_shstrndx fields. When the value of one of these fields exceeds
2768 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2769 // use fields in the section header at index 0 to store
2770 // the value. The sentinel values and fields are:
2771 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2772 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2773 auto *sHdrs
= reinterpret_cast<Elf_Shdr
*>(ctx
.bufferStart
+ eHdr
->e_shoff
);
2774 size_t num
= ctx
.outputSections
.size() + 1;
2775 if (num
>= SHN_LORESERVE
)
2776 sHdrs
->sh_size
= num
;
2778 eHdr
->e_shnum
= num
;
2780 uint32_t strTabIndex
= ctx
.in
.shStrTab
->getParent()->sectionIndex
;
2781 if (strTabIndex
>= SHN_LORESERVE
) {
2782 sHdrs
->sh_link
= strTabIndex
;
2783 eHdr
->e_shstrndx
= SHN_XINDEX
;
2785 eHdr
->e_shstrndx
= strTabIndex
;
2788 for (OutputSection
*sec
: ctx
.outputSections
)
2789 sec
->writeHeaderTo
<ELFT
>(++sHdrs
);
2792 // Open a result file.
2793 template <class ELFT
> void Writer
<ELFT
>::openFile() {
2794 uint64_t maxSize
= ctx
.arg
.is64
? INT64_MAX
: UINT32_MAX
;
2795 if (fileSize
!= size_t(fileSize
) || maxSize
< fileSize
) {
2797 raw_string_ostream
s(msg
);
2798 s
<< "output file too large: " << fileSize
<< " bytes\n"
2799 << "section sizes:\n";
2800 for (OutputSection
*os
: ctx
.outputSections
)
2801 s
<< os
->name
<< ' ' << os
->size
<< "\n";
2802 ErrAlways(ctx
) << msg
;
2806 unlinkAsync(ctx
.arg
.outputFile
);
2808 if (!ctx
.arg
.relocatable
)
2809 flags
|= FileOutputBuffer::F_executable
;
2810 if (!ctx
.arg
.mmapOutputFile
)
2811 flags
|= FileOutputBuffer::F_no_mmap
;
2812 Expected
<std::unique_ptr
<FileOutputBuffer
>> bufferOrErr
=
2813 FileOutputBuffer::create(ctx
.arg
.outputFile
, fileSize
, flags
);
2816 ErrAlways(ctx
) << "failed to open " << ctx
.arg
.outputFile
<< ": "
2817 << bufferOrErr
.takeError();
2820 buffer
= std::move(*bufferOrErr
);
2821 ctx
.bufferStart
= buffer
->getBufferStart();
2824 template <class ELFT
> void Writer
<ELFT
>::writeSectionsBinary() {
2825 parallel::TaskGroup tg
;
2826 for (OutputSection
*sec
: ctx
.outputSections
)
2827 if (sec
->flags
& SHF_ALLOC
)
2828 sec
->writeTo
<ELFT
>(ctx
, ctx
.bufferStart
+ sec
->offset
, tg
);
2831 static void fillTrap(std::array
<uint8_t, 4> trapInstr
, uint8_t *i
,
2833 for (; i
+ 4 <= end
; i
+= 4)
2834 memcpy(i
, trapInstr
.data(), 4);
2837 // Fill the last page of executable segments with trap instructions
2838 // instead of leaving them as zero. Even though it is not required by any
2839 // standard, it is in general a good thing to do for security reasons.
2841 // We'll leave other pages in segments as-is because the rest will be
2842 // overwritten by output sections.
2843 template <class ELFT
> void Writer
<ELFT
>::writeTrapInstr() {
2844 for (Partition
&part
: ctx
.partitions
) {
2845 // Fill the last page.
2846 for (std::unique_ptr
<PhdrEntry
> &p
: part
.phdrs
)
2847 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2849 ctx
.target
->trapInstr
,
2850 ctx
.bufferStart
+ alignDown(p
->firstSec
->offset
+ p
->p_filesz
, 4),
2851 ctx
.bufferStart
+ alignToPowerOf2(p
->firstSec
->offset
+ p
->p_filesz
,
2852 ctx
.arg
.maxPageSize
));
2854 // Round up the file size of the last segment to the page boundary iff it is
2855 // an executable segment to ensure that other tools don't accidentally
2856 // trim the instruction padding (e.g. when stripping the file).
2857 PhdrEntry
*last
= nullptr;
2858 for (std::unique_ptr
<PhdrEntry
> &p
: part
.phdrs
)
2859 if (p
->p_type
== PT_LOAD
)
2862 if (last
&& (last
->p_flags
& PF_X
))
2863 last
->p_memsz
= last
->p_filesz
=
2864 alignToPowerOf2(last
->p_filesz
, ctx
.arg
.maxPageSize
);
2868 // Write section contents to a mmap'ed file.
2869 template <class ELFT
> void Writer
<ELFT
>::writeSections() {
2870 llvm::TimeTraceScope
timeScope("Write sections");
2873 // In -r or --emit-relocs mode, write the relocation sections first as in
2874 // ELf_Rel targets we might find out that we need to modify the relocated
2875 // section while doing it.
2876 parallel::TaskGroup tg
;
2877 for (OutputSection
*sec
: ctx
.outputSections
)
2878 if (isStaticRelSecType(sec
->type
))
2879 sec
->writeTo
<ELFT
>(ctx
, ctx
.bufferStart
+ sec
->offset
, tg
);
2882 parallel::TaskGroup tg
;
2883 for (OutputSection
*sec
: ctx
.outputSections
)
2884 if (!isStaticRelSecType(sec
->type
))
2885 sec
->writeTo
<ELFT
>(ctx
, ctx
.bufferStart
+ sec
->offset
, tg
);
2888 // Finally, check that all dynamic relocation addends were written correctly.
2889 if (ctx
.arg
.checkDynamicRelocs
&& ctx
.arg
.writeAddends
) {
2890 for (OutputSection
*sec
: ctx
.outputSections
)
2891 if (isStaticRelSecType(sec
->type
))
2892 sec
->checkDynRelAddends(ctx
);
2896 // Computes a hash value of Data using a given hash function.
2897 // In order to utilize multiple cores, we first split data into 1MB
2898 // chunks, compute a hash for each chunk, and then compute a hash value
2899 // of the hash values.
2901 computeHash(llvm::MutableArrayRef
<uint8_t> hashBuf
,
2902 llvm::ArrayRef
<uint8_t> data
,
2903 std::function
<void(uint8_t *dest
, ArrayRef
<uint8_t> arr
)> hashFn
) {
2904 std::vector
<ArrayRef
<uint8_t>> chunks
= split(data
, 1024 * 1024);
2905 const size_t hashesSize
= chunks
.size() * hashBuf
.size();
2906 std::unique_ptr
<uint8_t[]> hashes(new uint8_t[hashesSize
]);
2908 // Compute hash values.
2909 parallelFor(0, chunks
.size(), [&](size_t i
) {
2910 hashFn(hashes
.get() + i
* hashBuf
.size(), chunks
[i
]);
2913 // Write to the final output buffer.
2914 hashFn(hashBuf
.data(), ArrayRef(hashes
.get(), hashesSize
));
2917 template <class ELFT
> void Writer
<ELFT
>::writeBuildId() {
2918 if (!ctx
.mainPart
->buildId
|| !ctx
.mainPart
->buildId
->getParent())
2921 if (ctx
.arg
.buildId
== BuildIdKind::Hexstring
) {
2922 for (Partition
&part
: ctx
.partitions
)
2923 part
.buildId
->writeBuildId(ctx
.arg
.buildIdVector
);
2927 // Compute a hash of all sections of the output file.
2928 size_t hashSize
= ctx
.mainPart
->buildId
->hashSize
;
2929 std::unique_ptr
<uint8_t[]> buildId(new uint8_t[hashSize
]);
2930 MutableArrayRef
<uint8_t> output(buildId
.get(), hashSize
);
2931 llvm::ArrayRef
<uint8_t> input
{ctx
.bufferStart
, size_t(fileSize
)};
2933 // Fedora introduced build ID as "approximation of true uniqueness across all
2934 // binaries that might be used by overlapping sets of people". It does not
2935 // need some security goals that some hash algorithms strive to provide, e.g.
2936 // (second-)preimage and collision resistance. In practice people use 'md5'
2937 // and 'sha1' just for different lengths. Implement them with the more
2938 // efficient BLAKE3.
2939 switch (ctx
.arg
.buildId
) {
2940 case BuildIdKind::Fast
:
2941 computeHash(output
, input
, [](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2942 write64le(dest
, xxh3_64bits(arr
));
2945 case BuildIdKind::Md5
:
2946 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2947 memcpy(dest
, BLAKE3::hash
<16>(arr
).data(), hashSize
);
2950 case BuildIdKind::Sha1
:
2951 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2952 memcpy(dest
, BLAKE3::hash
<20>(arr
).data(), hashSize
);
2955 case BuildIdKind::Uuid
:
2956 if (auto ec
= llvm::getRandomBytes(buildId
.get(), hashSize
))
2957 ErrAlways(ctx
) << "entropy source failure: " << ec
.message();
2960 llvm_unreachable("unknown BuildIdKind");
2962 for (Partition
&part
: ctx
.partitions
)
2963 part
.buildId
->writeBuildId(output
);
2966 template void elf::writeResult
<ELF32LE
>(Ctx
&);
2967 template void elf::writeResult
<ELF32BE
>(Ctx
&);
2968 template void elf::writeResult
<ELF64LE
>(Ctx
&);
2969 template void elf::writeResult
<ELF64BE
>(Ctx
&);