[HLSL] Implement RWBuffer::operator[] via __builtin_hlsl_resource_getpointer (#117017)
[llvm-project.git] / lld / MachO / Arch / ARM64.cpp
blob882873ae5de0c1081b223ae483509151d2e80ef6
1 //===- ARM64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Arch/ARM64Common.h"
10 #include "InputFiles.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
15 #include "lld/Common/ErrorHandler.h"
16 #include "mach-o/compact_unwind_encoding.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/BinaryFormat/MachO.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/LEB128.h"
22 #include "llvm/Support/MathExtras.h"
24 using namespace llvm;
25 using namespace llvm::MachO;
26 using namespace llvm::support::endian;
27 using namespace lld;
28 using namespace lld::macho;
30 namespace {
32 struct ARM64 : ARM64Common {
33 ARM64();
34 void writeStub(uint8_t *buf, const Symbol &, uint64_t) const override;
35 void writeStubHelperHeader(uint8_t *buf) const override;
36 void writeStubHelperEntry(uint8_t *buf, const Symbol &,
37 uint64_t entryAddr) const override;
39 void writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
40 uint64_t &stubOffset, uint64_t selrefVA,
41 Symbol *objcMsgSend) const override;
42 void populateThunk(InputSection *thunk, Symbol *funcSym) override;
43 void applyOptimizationHints(uint8_t *, const ObjFile &) const override;
45 void initICFSafeThunkBody(InputSection *thunk,
46 InputSection *branchTarget) const override;
47 InputSection *getThunkBranchTarget(InputSection *thunk) const override;
48 uint32_t getICFSafeThunkSize() const override;
51 } // namespace
53 // Random notes on reloc types:
54 // ADDEND always pairs with BRANCH26, PAGE21, or PAGEOFF12
55 // POINTER_TO_GOT: ld64 supports a 4-byte pc-relative form as well as an 8-byte
56 // absolute version of this relocation. The semantics of the absolute relocation
57 // are weird -- it results in the value of the GOT slot being written, instead
58 // of the address. Let's not support it unless we find a real-world use case.
59 static constexpr std::array<RelocAttrs, 11> relocAttrsArray{{
60 #define B(x) RelocAttrBits::x
61 {"UNSIGNED",
62 B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)},
63 {"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)},
64 {"BRANCH26", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)},
65 {"PAGE21", B(PCREL) | B(EXTERN) | B(BYTE4)},
66 {"PAGEOFF12", B(ABSOLUTE) | B(EXTERN) | B(BYTE4)},
67 {"GOT_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(GOT) | B(BYTE4)},
68 {"GOT_LOAD_PAGEOFF12",
69 B(ABSOLUTE) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)},
70 {"POINTER_TO_GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)},
71 {"TLVP_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(TLV) | B(BYTE4)},
72 {"TLVP_LOAD_PAGEOFF12",
73 B(ABSOLUTE) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)},
74 {"ADDEND", B(ADDEND)},
75 #undef B
76 }};
78 static constexpr uint32_t stubCode[] = {
79 0x90000010, // 00: adrp x16, __la_symbol_ptr@page
80 0xf9400210, // 04: ldr x16, [x16, __la_symbol_ptr@pageoff]
81 0xd61f0200, // 08: br x16
84 void ARM64::writeStub(uint8_t *buf8, const Symbol &sym,
85 uint64_t pointerVA) const {
86 ::writeStub(buf8, stubCode, sym, pointerVA);
89 static constexpr uint32_t stubHelperHeaderCode[] = {
90 0x90000011, // 00: adrp x17, _dyld_private@page
91 0x91000231, // 04: add x17, x17, _dyld_private@pageoff
92 0xa9bf47f0, // 08: stp x16/x17, [sp, #-16]!
93 0x90000010, // 0c: adrp x16, dyld_stub_binder@page
94 0xf9400210, // 10: ldr x16, [x16, dyld_stub_binder@pageoff]
95 0xd61f0200, // 14: br x16
98 void ARM64::writeStubHelperHeader(uint8_t *buf8) const {
99 ::writeStubHelperHeader<LP64>(buf8, stubHelperHeaderCode);
102 static constexpr uint32_t stubHelperEntryCode[] = {
103 0x18000050, // 00: ldr w16, l0
104 0x14000000, // 04: b stubHelperHeader
105 0x00000000, // 08: l0: .long 0
108 void ARM64::writeStubHelperEntry(uint8_t *buf8, const Symbol &sym,
109 uint64_t entryVA) const {
110 ::writeStubHelperEntry(buf8, stubHelperEntryCode, sym, entryVA);
113 static constexpr uint32_t objcStubsFastCode[] = {
114 0x90000001, // adrp x1, __objc_selrefs@page
115 0xf9400021, // ldr x1, [x1, @selector("foo")@pageoff]
116 0x90000010, // adrp x16, _got@page
117 0xf9400210, // ldr x16, [x16, _objc_msgSend@pageoff]
118 0xd61f0200, // br x16
119 0xd4200020, // brk #0x1
120 0xd4200020, // brk #0x1
121 0xd4200020, // brk #0x1
124 static constexpr uint32_t objcStubsSmallCode[] = {
125 0x90000001, // adrp x1, __objc_selrefs@page
126 0xf9400021, // ldr x1, [x1, @selector("foo")@pageoff]
127 0x14000000, // b _objc_msgSend
130 void ARM64::writeObjCMsgSendStub(uint8_t *buf, Symbol *sym, uint64_t stubsAddr,
131 uint64_t &stubOffset, uint64_t selrefVA,
132 Symbol *objcMsgSend) const {
133 uint64_t objcMsgSendAddr;
134 uint64_t objcStubSize;
135 uint64_t objcMsgSendIndex;
137 if (config->objcStubsMode == ObjCStubsMode::fast) {
138 objcStubSize = target->objcStubsFastSize;
139 objcMsgSendAddr = in.got->addr;
140 objcMsgSendIndex = objcMsgSend->gotIndex;
141 ::writeObjCMsgSendFastStub<LP64>(buf, objcStubsFastCode, sym, stubsAddr,
142 stubOffset, selrefVA, objcMsgSendAddr,
143 objcMsgSendIndex);
144 } else {
145 assert(config->objcStubsMode == ObjCStubsMode::small);
146 objcStubSize = target->objcStubsSmallSize;
147 if (auto *d = dyn_cast<Defined>(objcMsgSend)) {
148 objcMsgSendAddr = d->getVA();
149 objcMsgSendIndex = 0;
150 } else {
151 objcMsgSendAddr = in.stubs->addr;
152 objcMsgSendIndex = objcMsgSend->stubsIndex;
154 ::writeObjCMsgSendSmallStub<LP64>(buf, objcStubsSmallCode, sym, stubsAddr,
155 stubOffset, selrefVA, objcMsgSendAddr,
156 objcMsgSendIndex);
158 stubOffset += objcStubSize;
161 // A thunk is the relaxed variation of stubCode. We don't need the
162 // extra indirection through a lazy pointer because the target address
163 // is known at link time.
164 static constexpr uint32_t thunkCode[] = {
165 0x90000010, // 00: adrp x16, <thunk.ptr>@page
166 0x91000210, // 04: add x16, [x16,<thunk.ptr>@pageoff]
167 0xd61f0200, // 08: br x16
170 void ARM64::populateThunk(InputSection *thunk, Symbol *funcSym) {
171 thunk->align = 4;
172 thunk->data = {reinterpret_cast<const uint8_t *>(thunkCode),
173 sizeof(thunkCode)};
174 thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGEOFF12,
175 /*pcrel=*/false, /*length=*/2,
176 /*offset=*/4, /*addend=*/0,
177 /*referent=*/funcSym);
178 thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_PAGE21,
179 /*pcrel=*/true, /*length=*/2,
180 /*offset=*/0, /*addend=*/0,
181 /*referent=*/funcSym);
183 // Just a single direct branch to the target function.
184 static constexpr uint32_t icfSafeThunkCode[] = {
185 0x14000000, // 08: b target
188 void ARM64::initICFSafeThunkBody(InputSection *thunk,
189 InputSection *branchTarget) const {
190 // The base data here will not be itself modified, we'll just be adding a
191 // reloc below. So we can directly use the constexpr above as the data.
192 thunk->data = {reinterpret_cast<const uint8_t *>(icfSafeThunkCode),
193 sizeof(icfSafeThunkCode)};
195 thunk->relocs.emplace_back(/*type=*/ARM64_RELOC_BRANCH26,
196 /*pcrel=*/true, /*length=*/2,
197 /*offset=*/0, /*addend=*/0,
198 /*referent=*/branchTarget);
201 InputSection *ARM64::getThunkBranchTarget(InputSection *thunk) const {
202 assert(thunk->relocs.size() == 1 &&
203 "expected a single reloc on ARM64 ICF thunk");
204 auto &reloc = thunk->relocs[0];
205 assert(reloc.referent.is<InputSection *>() &&
206 "ARM64 thunk reloc is expected to point to an InputSection");
208 return reloc.referent.dyn_cast<InputSection *>();
211 uint32_t ARM64::getICFSafeThunkSize() const { return sizeof(icfSafeThunkCode); }
213 ARM64::ARM64() : ARM64Common(LP64()) {
214 cpuType = CPU_TYPE_ARM64;
215 cpuSubtype = CPU_SUBTYPE_ARM64_ALL;
217 stubSize = sizeof(stubCode);
218 thunkSize = sizeof(thunkCode);
220 objcStubsFastSize = sizeof(objcStubsFastCode);
221 objcStubsFastAlignment = 32;
222 objcStubsSmallSize = sizeof(objcStubsSmallCode);
223 objcStubsSmallAlignment = 4;
225 // Branch immediate is two's complement 26 bits, which is implicitly
226 // multiplied by 4 (since all functions are 4-aligned: The branch range
227 // is -4*(2**(26-1))..4*(2**(26-1) - 1).
228 backwardBranchRange = 128 * 1024 * 1024;
229 forwardBranchRange = backwardBranchRange - 4;
231 modeDwarfEncoding = UNWIND_ARM64_MODE_DWARF;
232 subtractorRelocType = ARM64_RELOC_SUBTRACTOR;
233 unsignedRelocType = ARM64_RELOC_UNSIGNED;
235 stubHelperHeaderSize = sizeof(stubHelperHeaderCode);
236 stubHelperEntrySize = sizeof(stubHelperEntryCode);
238 relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()};
241 namespace {
242 struct Adrp {
243 uint32_t destRegister;
244 int64_t addend;
247 struct Add {
248 uint8_t destRegister;
249 uint8_t srcRegister;
250 uint32_t addend;
253 enum ExtendType { ZeroExtend = 1, Sign64 = 2, Sign32 = 3 };
255 struct Ldr {
256 uint8_t destRegister;
257 uint8_t baseRegister;
258 uint8_t p2Size;
259 bool isFloat;
260 ExtendType extendType;
261 int64_t offset;
263 } // namespace
265 static bool parseAdrp(uint32_t insn, Adrp &adrp) {
266 if ((insn & 0x9f000000) != 0x90000000)
267 return false;
268 adrp.destRegister = insn & 0x1f;
269 uint64_t immHi = (insn >> 5) & 0x7ffff;
270 uint64_t immLo = (insn >> 29) & 0x3;
271 adrp.addend = SignExtend64<21>(immLo | (immHi << 2)) * 4096;
272 return true;
275 static bool parseAdd(uint32_t insn, Add &add) {
276 if ((insn & 0xffc00000) != 0x91000000)
277 return false;
278 add.destRegister = insn & 0x1f;
279 add.srcRegister = (insn >> 5) & 0x1f;
280 add.addend = (insn >> 10) & 0xfff;
281 return true;
284 static bool parseLdr(uint32_t insn, Ldr &ldr) {
285 ldr.destRegister = insn & 0x1f;
286 ldr.baseRegister = (insn >> 5) & 0x1f;
287 uint8_t size = insn >> 30;
288 uint8_t opc = (insn >> 22) & 3;
290 if ((insn & 0x3fc00000) == 0x39400000) {
291 // LDR (immediate), LDRB (immediate), LDRH (immediate)
292 ldr.p2Size = size;
293 ldr.extendType = ZeroExtend;
294 ldr.isFloat = false;
295 } else if ((insn & 0x3f800000) == 0x39800000) {
296 // LDRSB (immediate), LDRSH (immediate), LDRSW (immediate)
297 ldr.p2Size = size;
298 ldr.extendType = static_cast<ExtendType>(opc);
299 ldr.isFloat = false;
300 } else if ((insn & 0x3f400000) == 0x3d400000) {
301 // LDR (immediate, SIMD&FP)
302 ldr.extendType = ZeroExtend;
303 ldr.isFloat = true;
304 if (opc == 1)
305 ldr.p2Size = size;
306 else if (size == 0 && opc == 3)
307 ldr.p2Size = 4;
308 else
309 return false;
310 } else {
311 return false;
313 ldr.offset = ((insn >> 10) & 0xfff) << ldr.p2Size;
314 return true;
317 static bool isValidAdrOffset(int32_t delta) { return isInt<21>(delta); }
319 static void writeAdr(void *loc, uint32_t dest, int32_t delta) {
320 assert(isValidAdrOffset(delta));
321 uint32_t opcode = 0x10000000;
322 uint32_t immHi = (delta & 0x001ffffc) << 3;
323 uint32_t immLo = (delta & 0x00000003) << 29;
324 write32le(loc, opcode | immHi | immLo | dest);
327 static void writeNop(void *loc) { write32le(loc, 0xd503201f); }
329 static bool isLiteralLdrEligible(const Ldr &ldr) {
330 return ldr.p2Size > 1 && isShiftedInt<19, 2>(ldr.offset);
333 static void writeLiteralLdr(void *loc, const Ldr &ldr) {
334 assert(isLiteralLdrEligible(ldr));
335 uint32_t imm19 = (ldr.offset / 4 & maskTrailingOnes<uint32_t>(19)) << 5;
336 uint32_t opcode;
337 switch (ldr.p2Size) {
338 case 2:
339 if (ldr.isFloat)
340 opcode = 0x1c000000;
341 else
342 opcode = ldr.extendType == Sign64 ? 0x98000000 : 0x18000000;
343 break;
344 case 3:
345 opcode = ldr.isFloat ? 0x5c000000 : 0x58000000;
346 break;
347 case 4:
348 opcode = 0x9c000000;
349 break;
350 default:
351 llvm_unreachable("Invalid literal ldr size");
353 write32le(loc, opcode | imm19 | ldr.destRegister);
356 static bool isImmediateLdrEligible(const Ldr &ldr) {
357 // Note: We deviate from ld64's behavior, which converts to immediate loads
358 // only if ldr.offset < 4096, even though the offset is divided by the load's
359 // size in the 12-bit immediate operand. Only the unsigned offset variant is
360 // supported.
362 uint32_t size = 1 << ldr.p2Size;
363 return ldr.offset >= 0 && (ldr.offset % size) == 0 &&
364 isUInt<12>(ldr.offset >> ldr.p2Size);
367 static void writeImmediateLdr(void *loc, const Ldr &ldr) {
368 assert(isImmediateLdrEligible(ldr));
369 uint32_t opcode = 0x39000000;
370 if (ldr.isFloat) {
371 opcode |= 0x04000000;
372 assert(ldr.extendType == ZeroExtend);
374 opcode |= ldr.destRegister;
375 opcode |= ldr.baseRegister << 5;
376 uint8_t size, opc;
377 if (ldr.p2Size == 4) {
378 size = 0;
379 opc = 3;
380 } else {
381 opc = ldr.extendType;
382 size = ldr.p2Size;
384 uint32_t immBits = ldr.offset >> ldr.p2Size;
385 write32le(loc, opcode | (immBits << 10) | (opc << 22) | (size << 30));
388 // Transforms a pair of adrp+add instructions into an adr instruction if the
389 // target is within the +/- 1 MiB range allowed by the adr's 21 bit signed
390 // immediate offset.
392 // adrp xN, _foo@PAGE
393 // add xM, xN, _foo@PAGEOFF
394 // ->
395 // adr xM, _foo
396 // nop
397 static void applyAdrpAdd(uint8_t *buf, const ConcatInputSection *isec,
398 uint64_t offset1, uint64_t offset2) {
399 uint32_t ins1 = read32le(buf + offset1);
400 uint32_t ins2 = read32le(buf + offset2);
401 Adrp adrp;
402 Add add;
403 if (!parseAdrp(ins1, adrp) || !parseAdd(ins2, add))
404 return;
405 if (adrp.destRegister != add.srcRegister)
406 return;
408 uint64_t addr1 = isec->getVA() + offset1;
409 uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
410 int64_t delta = referent - addr1;
411 if (!isValidAdrOffset(delta))
412 return;
414 writeAdr(buf + offset1, add.destRegister, delta);
415 writeNop(buf + offset2);
418 // Transforms two adrp instructions into a single adrp if their referent
419 // addresses are located on the same 4096 byte page.
421 // adrp xN, _foo@PAGE
422 // adrp xN, _bar@PAGE
423 // ->
424 // adrp xN, _foo@PAGE
425 // nop
426 static void applyAdrpAdrp(uint8_t *buf, const ConcatInputSection *isec,
427 uint64_t offset1, uint64_t offset2) {
428 uint32_t ins1 = read32le(buf + offset1);
429 uint32_t ins2 = read32le(buf + offset2);
430 Adrp adrp1, adrp2;
431 if (!parseAdrp(ins1, adrp1) || !parseAdrp(ins2, adrp2))
432 return;
433 if (adrp1.destRegister != adrp2.destRegister)
434 return;
436 uint64_t page1 = pageBits(offset1 + isec->getVA()) + adrp1.addend;
437 uint64_t page2 = pageBits(offset2 + isec->getVA()) + adrp2.addend;
438 if (page1 != page2)
439 return;
441 writeNop(buf + offset2);
444 // Transforms a pair of adrp+ldr (immediate) instructions into an ldr (literal)
445 // load from a PC-relative address if it is 4-byte aligned and within +/- 1 MiB,
446 // as ldr can encode a signed 19-bit offset that gets multiplied by 4.
448 // adrp xN, _foo@PAGE
449 // ldr xM, [xN, _foo@PAGEOFF]
450 // ->
451 // nop
452 // ldr xM, _foo
453 static void applyAdrpLdr(uint8_t *buf, const ConcatInputSection *isec,
454 uint64_t offset1, uint64_t offset2) {
455 uint32_t ins1 = read32le(buf + offset1);
456 uint32_t ins2 = read32le(buf + offset2);
457 Adrp adrp;
458 Ldr ldr;
459 if (!parseAdrp(ins1, adrp) || !parseLdr(ins2, ldr))
460 return;
461 if (adrp.destRegister != ldr.baseRegister)
462 return;
464 uint64_t addr1 = isec->getVA() + offset1;
465 uint64_t addr2 = isec->getVA() + offset2;
466 uint64_t referent = pageBits(addr1) + adrp.addend + ldr.offset;
467 ldr.offset = referent - addr2;
468 if (!isLiteralLdrEligible(ldr))
469 return;
471 writeNop(buf + offset1);
472 writeLiteralLdr(buf + offset2, ldr);
475 // GOT loads are emitted by the compiler as a pair of adrp and ldr instructions,
476 // but they may be changed to adrp+add by relaxGotLoad(). This hint performs
477 // the AdrpLdr or AdrpAdd transformation depending on whether it was relaxed.
478 static void applyAdrpLdrGot(uint8_t *buf, const ConcatInputSection *isec,
479 uint64_t offset1, uint64_t offset2) {
480 uint32_t ins2 = read32le(buf + offset2);
481 Add add;
482 Ldr ldr;
483 if (parseAdd(ins2, add))
484 applyAdrpAdd(buf, isec, offset1, offset2);
485 else if (parseLdr(ins2, ldr))
486 applyAdrpLdr(buf, isec, offset1, offset2);
489 // Optimizes an adrp+add+ldr sequence used for loading from a local symbol's
490 // address by loading directly if it's close enough, or to an adrp(p)+ldr
491 // sequence if it's not.
493 // adrp x0, _foo@PAGE
494 // add x1, x0, _foo@PAGEOFF
495 // ldr x2, [x1, #off]
496 static void applyAdrpAddLdr(uint8_t *buf, const ConcatInputSection *isec,
497 uint64_t offset1, uint64_t offset2,
498 uint64_t offset3) {
499 uint32_t ins1 = read32le(buf + offset1);
500 Adrp adrp;
501 if (!parseAdrp(ins1, adrp))
502 return;
503 uint32_t ins2 = read32le(buf + offset2);
504 Add add;
505 if (!parseAdd(ins2, add))
506 return;
507 uint32_t ins3 = read32le(buf + offset3);
508 Ldr ldr;
509 if (!parseLdr(ins3, ldr))
510 return;
511 if (adrp.destRegister != add.srcRegister)
512 return;
513 if (add.destRegister != ldr.baseRegister)
514 return;
516 // Load from the target address directly.
517 // nop
518 // nop
519 // ldr x2, [_foo + #off]
520 uint64_t addr1 = isec->getVA() + offset1;
521 uint64_t addr3 = isec->getVA() + offset3;
522 uint64_t referent = pageBits(addr1) + adrp.addend + add.addend;
523 Ldr literalLdr = ldr;
524 literalLdr.offset += referent - addr3;
525 if (isLiteralLdrEligible(literalLdr)) {
526 writeNop(buf + offset1);
527 writeNop(buf + offset2);
528 writeLiteralLdr(buf + offset3, literalLdr);
529 return;
532 // Load the target address into a register and load from there indirectly.
533 // adr x1, _foo
534 // nop
535 // ldr x2, [x1, #off]
536 int64_t adrOffset = referent - addr1;
537 if (isValidAdrOffset(adrOffset)) {
538 writeAdr(buf + offset1, ldr.baseRegister, adrOffset);
539 // Note: ld64 moves the offset into the adr instruction for AdrpAddLdr, but
540 // not for AdrpLdrGotLdr. Its effect is the same either way.
541 writeNop(buf + offset2);
542 return;
545 // Move the target's page offset into the ldr's immediate offset.
546 // adrp x0, _foo@PAGE
547 // nop
548 // ldr x2, [x0, _foo@PAGEOFF + #off]
549 Ldr immediateLdr = ldr;
550 immediateLdr.baseRegister = adrp.destRegister;
551 immediateLdr.offset += add.addend;
552 if (isImmediateLdrEligible(immediateLdr)) {
553 writeNop(buf + offset2);
554 writeImmediateLdr(buf + offset3, immediateLdr);
555 return;
559 // Relaxes a GOT-indirect load.
560 // If the referenced symbol is external and its GOT entry is within +/- 1 MiB,
561 // the GOT entry can be loaded with a single literal ldr instruction.
562 // If the referenced symbol is local and thus has been relaxed to adrp+add+ldr,
563 // we perform the AdrpAddLdr transformation.
564 static void applyAdrpLdrGotLdr(uint8_t *buf, const ConcatInputSection *isec,
565 uint64_t offset1, uint64_t offset2,
566 uint64_t offset3) {
567 uint32_t ins2 = read32le(buf + offset2);
568 Add add;
569 Ldr ldr2;
571 if (parseAdd(ins2, add)) {
572 applyAdrpAddLdr(buf, isec, offset1, offset2, offset3);
573 } else if (parseLdr(ins2, ldr2)) {
574 // adrp x1, _foo@GOTPAGE
575 // ldr x2, [x1, _foo@GOTPAGEOFF]
576 // ldr x3, [x2, #off]
578 uint32_t ins1 = read32le(buf + offset1);
579 Adrp adrp;
580 if (!parseAdrp(ins1, adrp))
581 return;
582 uint32_t ins3 = read32le(buf + offset3);
583 Ldr ldr3;
584 if (!parseLdr(ins3, ldr3))
585 return;
587 if (ldr2.baseRegister != adrp.destRegister)
588 return;
589 if (ldr3.baseRegister != ldr2.destRegister)
590 return;
591 // Loads from the GOT must be pointer sized.
592 if (ldr2.p2Size != 3 || ldr2.isFloat)
593 return;
595 uint64_t addr1 = isec->getVA() + offset1;
596 uint64_t addr2 = isec->getVA() + offset2;
597 uint64_t referent = pageBits(addr1) + adrp.addend + ldr2.offset;
598 // Load the GOT entry's address directly.
599 // nop
600 // ldr x2, _foo@GOTPAGE + _foo@GOTPAGEOFF
601 // ldr x3, [x2, #off]
602 Ldr literalLdr = ldr2;
603 literalLdr.offset = referent - addr2;
604 if (isLiteralLdrEligible(literalLdr)) {
605 writeNop(buf + offset1);
606 writeLiteralLdr(buf + offset2, literalLdr);
611 static uint64_t readValue(const uint8_t *&ptr, const uint8_t *end) {
612 unsigned int n = 0;
613 uint64_t value = decodeULEB128(ptr, &n, end);
614 ptr += n;
615 return value;
618 template <typename Callback>
619 static void forEachHint(ArrayRef<uint8_t> data, Callback callback) {
620 std::array<uint64_t, 3> args;
622 for (const uint8_t *p = data.begin(), *end = data.end(); p < end;) {
623 uint64_t type = readValue(p, end);
624 if (type == 0)
625 break;
627 uint64_t argCount = readValue(p, end);
628 // All known LOH types as of 2022-09 have 3 or fewer arguments; skip others.
629 if (argCount > 3) {
630 for (unsigned i = 0; i < argCount; ++i)
631 readValue(p, end);
632 continue;
635 for (unsigned i = 0; i < argCount; ++i)
636 args[i] = readValue(p, end);
637 callback(type, ArrayRef<uint64_t>(args.data(), argCount));
641 // On RISC architectures like arm64, materializing a memory address generally
642 // takes multiple instructions. If the referenced symbol is located close enough
643 // in memory, fewer instructions are needed.
645 // Linker optimization hints record where addresses are computed. After
646 // addresses have been assigned, if possible, we change them to a shorter
647 // sequence of instructions. The size of the binary is not modified; the
648 // eliminated instructions are replaced with NOPs. This still leads to faster
649 // code as the CPU can skip over NOPs quickly.
651 // LOHs are specified by the LC_LINKER_OPTIMIZATION_HINTS load command, which
652 // points to a sequence of ULEB128-encoded numbers. Each entry specifies a
653 // transformation kind, and 2 or 3 addresses where the instructions are located.
654 void ARM64::applyOptimizationHints(uint8_t *outBuf, const ObjFile &obj) const {
655 ArrayRef<uint8_t> data = obj.getOptimizationHints();
656 if (data.empty())
657 return;
659 const ConcatInputSection *section = nullptr;
660 uint64_t sectionAddr = 0;
661 uint8_t *buf = nullptr;
663 auto findSection = [&](uint64_t addr) {
664 if (section && addr >= sectionAddr &&
665 addr < sectionAddr + section->getSize())
666 return true;
668 if (obj.sections.empty())
669 return false;
670 auto secIt = std::prev(llvm::upper_bound(
671 obj.sections, addr,
672 [](uint64_t off, const Section *sec) { return off < sec->addr; }));
673 const Section *sec = *secIt;
675 if (sec->subsections.empty())
676 return false;
677 auto subsecIt = std::prev(llvm::upper_bound(
678 sec->subsections, addr - sec->addr,
679 [](uint64_t off, Subsection subsec) { return off < subsec.offset; }));
680 const Subsection &subsec = *subsecIt;
681 const ConcatInputSection *isec =
682 dyn_cast_or_null<ConcatInputSection>(subsec.isec);
683 if (!isec || isec->shouldOmitFromOutput())
684 return false;
686 section = isec;
687 sectionAddr = subsec.offset + sec->addr;
688 buf = outBuf + section->outSecOff + section->parent->fileOff;
689 return true;
692 auto isValidOffset = [&](uint64_t offset) {
693 if (offset < sectionAddr || offset >= sectionAddr + section->getSize()) {
694 error(toString(&obj) +
695 ": linker optimization hint spans multiple sections");
696 return false;
698 return true;
701 bool hasAdrpAdrp = false;
702 forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
703 if (kind == LOH_ARM64_ADRP_ADRP) {
704 hasAdrpAdrp = true;
705 return;
708 if (!findSection(args[0]))
709 return;
710 switch (kind) {
711 case LOH_ARM64_ADRP_ADD:
712 if (isValidOffset(args[1]))
713 applyAdrpAdd(buf, section, args[0] - sectionAddr,
714 args[1] - sectionAddr);
715 break;
716 case LOH_ARM64_ADRP_LDR:
717 if (isValidOffset(args[1]))
718 applyAdrpLdr(buf, section, args[0] - sectionAddr,
719 args[1] - sectionAddr);
720 break;
721 case LOH_ARM64_ADRP_LDR_GOT:
722 if (isValidOffset(args[1]))
723 applyAdrpLdrGot(buf, section, args[0] - sectionAddr,
724 args[1] - sectionAddr);
725 break;
726 case LOH_ARM64_ADRP_ADD_LDR:
727 if (isValidOffset(args[1]) && isValidOffset(args[2]))
728 applyAdrpAddLdr(buf, section, args[0] - sectionAddr,
729 args[1] - sectionAddr, args[2] - sectionAddr);
730 break;
731 case LOH_ARM64_ADRP_LDR_GOT_LDR:
732 if (isValidOffset(args[1]) && isValidOffset(args[2]))
733 applyAdrpLdrGotLdr(buf, section, args[0] - sectionAddr,
734 args[1] - sectionAddr, args[2] - sectionAddr);
735 break;
736 case LOH_ARM64_ADRP_ADD_STR:
737 case LOH_ARM64_ADRP_LDR_GOT_STR:
738 // TODO: Implement these
739 break;
743 if (!hasAdrpAdrp)
744 return;
746 // AdrpAdrp optimization hints are performed in a second pass because they
747 // might interfere with other transformations. For instance, consider the
748 // following input:
750 // adrp x0, _foo@PAGE
751 // add x1, x0, _foo@PAGEOFF
752 // adrp x0, _bar@PAGE
753 // add x2, x0, _bar@PAGEOFF
755 // If we perform the AdrpAdrp relaxation first, we get:
757 // adrp x0, _foo@PAGE
758 // add x1, x0, _foo@PAGEOFF
759 // nop
760 // add x2, x0, _bar@PAGEOFF
762 // If we then apply AdrpAdd to the first two instructions, the add will have a
763 // garbage value in x0:
765 // adr x1, _foo
766 // nop
767 // nop
768 // add x2, x0, _bar@PAGEOFF
769 forEachHint(data, [&](uint64_t kind, ArrayRef<uint64_t> args) {
770 if (kind != LOH_ARM64_ADRP_ADRP)
771 return;
772 if (!findSection(args[0]))
773 return;
774 if (isValidOffset(args[1]))
775 applyAdrpAdrp(buf, section, args[0] - sectionAddr, args[1] - sectionAddr);
779 TargetInfo *macho::createARM64TargetInfo() {
780 static ARM64 t;
781 return &t;