[flang] Fix crash in HLFIR generation (#118399)
[llvm-project.git] / lld / MachO / ICF.cpp
blob32dd44ab729e616b9117d2592816d89cfe3ca522
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ICF.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "InputSection.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "UnwindInfoSection.h"
17 #include "lld/Common/CommonLinkerContext.h"
18 #include "llvm/Support/LEB128.h"
19 #include "llvm/Support/Parallel.h"
20 #include "llvm/Support/TimeProfiler.h"
21 #include "llvm/Support/xxhash.h"
23 #include <atomic>
25 using namespace llvm;
26 using namespace lld;
27 using namespace lld::macho;
29 static constexpr bool verboseDiagnostics = false;
31 class ICF {
32 public:
33 ICF(std::vector<ConcatInputSection *> &inputs);
34 void run();
36 using EqualsFn = bool (ICF::*)(const ConcatInputSection *,
37 const ConcatInputSection *);
38 void segregate(size_t begin, size_t end, EqualsFn);
39 size_t findBoundary(size_t begin, size_t end);
40 void forEachClassRange(size_t begin, size_t end,
41 llvm::function_ref<void(size_t, size_t)> func);
42 void forEachClass(llvm::function_ref<void(size_t, size_t)> func);
44 bool equalsConstant(const ConcatInputSection *ia,
45 const ConcatInputSection *ib);
46 bool equalsVariable(const ConcatInputSection *ia,
47 const ConcatInputSection *ib);
48 void applySafeThunksToRange(size_t begin, size_t end);
50 // ICF needs a copy of the inputs vector because its equivalence-class
51 // segregation algorithm destroys the proper sequence.
52 std::vector<ConcatInputSection *> icfInputs;
54 unsigned icfPass = 0;
55 std::atomic<bool> icfRepeat{false};
56 std::atomic<uint64_t> equalsConstantCount{0};
57 std::atomic<uint64_t> equalsVariableCount{0};
60 ICF::ICF(std::vector<ConcatInputSection *> &inputs) {
61 icfInputs.assign(inputs.begin(), inputs.end());
64 // ICF = Identical Code Folding
66 // We only fold __TEXT,__text, so this is really "code" folding, and not
67 // "COMDAT" folding. String and scalar constant literals are deduplicated
68 // elsewhere.
70 // Summary of segments & sections:
72 // The __TEXT segment is readonly at the MMU. Some sections are already
73 // deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are
74 // synthetic and inherently free of duplicates (__TEXT,__stubs &
75 // __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const,
76 // because doing so induces many test failures.
78 // The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and
79 // thus ineligible for ICF.
81 // The __DATA_CONST segment is read/write at the MMU, but is logically const to
82 // the application after dyld applies fixups to pointer data. We currently
83 // fold only the __DATA_CONST,__cfstring section.
85 // The __DATA segment is read/write at the MMU, and as application-writeable
86 // data, none of its sections are eligible for ICF.
88 // Please see the large block comment in lld/ELF/ICF.cpp for an explanation
89 // of the segregation algorithm.
91 // FIXME(gkm): implement keep-unique attributes
92 // FIXME(gkm): implement address-significance tables for MachO object files
94 // Compare "non-moving" parts of two ConcatInputSections, namely everything
95 // except references to other ConcatInputSections.
96 bool ICF::equalsConstant(const ConcatInputSection *ia,
97 const ConcatInputSection *ib) {
98 if (verboseDiagnostics)
99 ++equalsConstantCount;
100 // We can only fold within the same OutputSection.
101 if (ia->parent != ib->parent)
102 return false;
103 if (ia->data.size() != ib->data.size())
104 return false;
105 if (ia->data != ib->data)
106 return false;
107 if (ia->relocs.size() != ib->relocs.size())
108 return false;
109 auto f = [](const Reloc &ra, const Reloc &rb) {
110 if (ra.type != rb.type)
111 return false;
112 if (ra.pcrel != rb.pcrel)
113 return false;
114 if (ra.length != rb.length)
115 return false;
116 if (ra.offset != rb.offset)
117 return false;
118 if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>())
119 return false;
121 InputSection *isecA, *isecB;
123 uint64_t valueA = 0;
124 uint64_t valueB = 0;
125 if (ra.referent.is<Symbol *>()) {
126 const auto *sa = ra.referent.get<Symbol *>();
127 const auto *sb = rb.referent.get<Symbol *>();
128 if (sa->kind() != sb->kind())
129 return false;
130 // ICF runs before Undefineds are treated (and potentially converted into
131 // DylibSymbols).
132 if (isa<DylibSymbol>(sa) || isa<Undefined>(sa))
133 return sa == sb && ra.addend == rb.addend;
134 assert(isa<Defined>(sa));
135 const auto *da = cast<Defined>(sa);
136 const auto *db = cast<Defined>(sb);
137 if (!da->isec() || !db->isec()) {
138 assert(da->isAbsolute() && db->isAbsolute());
139 return da->value + ra.addend == db->value + rb.addend;
141 isecA = da->isec();
142 valueA = da->value;
143 isecB = db->isec();
144 valueB = db->value;
145 } else {
146 isecA = ra.referent.get<InputSection *>();
147 isecB = rb.referent.get<InputSection *>();
150 // Typically, we should not encounter sections marked with `keepUnique` at
151 // this point as they would have resulted in different hashes and therefore
152 // no need for a full comparison.
153 // However, in `safe_thunks` mode, it's possible for two different
154 // relocations to reference identical `keepUnique` functions that will be
155 // distinguished later via thunks - so we need to handle this case
156 // explicitly.
157 if ((isecA != isecB) && ((isecA->keepUnique && isCodeSection(isecA)) ||
158 (isecB->keepUnique && isCodeSection(isecB))))
159 return false;
161 if (isecA->parent != isecB->parent)
162 return false;
163 // Sections with identical parents should be of the same kind.
164 assert(isecA->kind() == isecB->kind());
165 // We will compare ConcatInputSection contents in equalsVariable.
166 if (isa<ConcatInputSection>(isecA))
167 return ra.addend == rb.addend;
168 // Else we have two literal sections. References to them are equal iff their
169 // offsets in the output section are equal.
170 if (ra.referent.is<Symbol *>())
171 // For symbol relocs, we compare the contents at the symbol address. We
172 // don't do `getOffset(value + addend)` because value + addend may not be
173 // a valid offset in the literal section.
174 return isecA->getOffset(valueA) == isecB->getOffset(valueB) &&
175 ra.addend == rb.addend;
176 else {
177 assert(valueA == 0 && valueB == 0);
178 // For section relocs, we compare the content at the section offset.
179 return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend);
182 return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
186 // Compare the "moving" parts of two ConcatInputSections -- i.e. everything not
187 // handled by equalsConstant().
188 bool ICF::equalsVariable(const ConcatInputSection *ia,
189 const ConcatInputSection *ib) {
190 if (verboseDiagnostics)
191 ++equalsVariableCount;
192 assert(ia->relocs.size() == ib->relocs.size());
193 auto f = [this](const Reloc &ra, const Reloc &rb) {
194 // We already filtered out mismatching values/addends in equalsConstant.
195 if (ra.referent == rb.referent)
196 return true;
197 const ConcatInputSection *isecA, *isecB;
198 if (ra.referent.is<Symbol *>()) {
199 // Matching DylibSymbols are already filtered out by the
200 // identical-referent check above. Non-matching DylibSymbols were filtered
201 // out in equalsConstant(). So we can safely cast to Defined here.
202 const auto *da = cast<Defined>(ra.referent.get<Symbol *>());
203 const auto *db = cast<Defined>(rb.referent.get<Symbol *>());
204 if (da->isAbsolute())
205 return true;
206 isecA = dyn_cast<ConcatInputSection>(da->isec());
207 if (!isecA)
208 return true; // literal sections were checked in equalsConstant.
209 isecB = cast<ConcatInputSection>(db->isec());
210 } else {
211 const auto *sa = ra.referent.get<InputSection *>();
212 const auto *sb = rb.referent.get<InputSection *>();
213 isecA = dyn_cast<ConcatInputSection>(sa);
214 if (!isecA)
215 return true;
216 isecB = cast<ConcatInputSection>(sb);
218 return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2];
220 if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f))
221 return false;
223 // If there are symbols with associated unwind info, check that the unwind
224 // info matches. For simplicity, we only handle the case where there are only
225 // symbols at offset zero within the section (which is typically the case with
226 // .subsections_via_symbols.)
227 auto hasUnwind = [](Defined *d) { return d->unwindEntry() != nullptr; };
228 const auto *itA = llvm::find_if(ia->symbols, hasUnwind);
229 const auto *itB = llvm::find_if(ib->symbols, hasUnwind);
230 if (itA == ia->symbols.end())
231 return itB == ib->symbols.end();
232 if (itB == ib->symbols.end())
233 return false;
234 const Defined *da = *itA;
235 const Defined *db = *itB;
236 if (da->unwindEntry()->icfEqClass[icfPass % 2] !=
237 db->unwindEntry()->icfEqClass[icfPass % 2] ||
238 da->value != 0 || db->value != 0)
239 return false;
240 auto isZero = [](Defined *d) { return d->value == 0; };
241 return std::find_if_not(std::next(itA), ia->symbols.end(), isZero) ==
242 ia->symbols.end() &&
243 std::find_if_not(std::next(itB), ib->symbols.end(), isZero) ==
244 ib->symbols.end();
247 // Find the first InputSection after BEGIN whose equivalence class differs
248 size_t ICF::findBoundary(size_t begin, size_t end) {
249 uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2];
250 for (size_t i = begin + 1; i < end; ++i)
251 if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2])
252 return i;
253 return end;
256 // Invoke FUNC on subranges with matching equivalence class
257 void ICF::forEachClassRange(size_t begin, size_t end,
258 llvm::function_ref<void(size_t, size_t)> func) {
259 while (begin < end) {
260 size_t mid = findBoundary(begin, end);
261 func(begin, mid);
262 begin = mid;
266 // Given a range of identical icfInputs, replace address significant functions
267 // with a thunk that is just a direct branch to the first function in the
268 // series. This way we keep only one main body of the function but we still
269 // retain the address uniqueness of relevant functions by having them be a
270 // direct branch thunk rather than containing a full copy of the actual function
271 // body.
272 void ICF::applySafeThunksToRange(size_t begin, size_t end) {
273 // If the functions we're dealing with are smaller than the thunk size, then
274 // just leave them all as-is - creating thunks would be a net loss.
275 uint32_t thunkSize = target->getICFSafeThunkSize();
276 if (icfInputs[begin]->data.size() <= thunkSize)
277 return;
279 // When creating a unique ICF thunk, use the first section as the section that
280 // all thunks will branch to.
281 ConcatInputSection *masterIsec = icfInputs[begin];
283 for (size_t i = begin + 1; i < end; ++i) {
284 ConcatInputSection *isec = icfInputs[i];
285 // When we're done processing keepUnique entries, we can stop. Sorting
286 // guaratees that all keepUnique will be at the front.
287 if (!isec->keepUnique)
288 break;
290 ConcatInputSection *thunk =
291 makeSyntheticInputSection(isec->getSegName(), isec->getName());
292 addInputSection(thunk);
294 target->initICFSafeThunkBody(thunk, masterIsec);
295 thunk->foldIdentical(isec, Symbol::ICFFoldKind::Thunk);
297 // Since we're folding the target function into a thunk, we need to adjust
298 // the symbols that now got relocated from the target function to the thunk.
299 // Since the thunk is only one branch, we move all symbols to offset 0 and
300 // make sure that the size of all non-zero-size symbols is equal to the size
301 // of the branch.
302 for (auto *sym : thunk->symbols) {
303 sym->value = 0;
304 if (sym->size != 0)
305 sym->size = thunkSize;
310 // Split icfInputs into shards, then parallelize invocation of FUNC on subranges
311 // with matching equivalence class
312 void ICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) {
313 // Only use threads when the benefits outweigh the overhead.
314 const size_t threadingThreshold = 1024;
315 if (icfInputs.size() < threadingThreshold) {
316 forEachClassRange(0, icfInputs.size(), func);
317 ++icfPass;
318 return;
321 // Shard into non-overlapping intervals, and call FUNC in parallel. The
322 // sharding must be completed before any calls to FUNC are made so that FUNC
323 // can modify the InputSection in its shard without causing data races.
324 const size_t shards = 256;
325 size_t step = icfInputs.size() / shards;
326 size_t boundaries[shards + 1];
327 boundaries[0] = 0;
328 boundaries[shards] = icfInputs.size();
329 parallelFor(1, shards, [&](size_t i) {
330 boundaries[i] = findBoundary((i - 1) * step, icfInputs.size());
332 parallelFor(1, shards + 1, [&](size_t i) {
333 if (boundaries[i - 1] < boundaries[i]) {
334 forEachClassRange(boundaries[i - 1], boundaries[i], func);
337 ++icfPass;
340 void ICF::run() {
341 // Into each origin-section hash, combine all reloc referent section hashes.
342 for (icfPass = 0; icfPass < 2; ++icfPass) {
343 parallelForEach(icfInputs, [&](ConcatInputSection *isec) {
344 uint32_t hash = isec->icfEqClass[icfPass % 2];
345 for (const Reloc &r : isec->relocs) {
346 if (auto *sym = r.referent.dyn_cast<Symbol *>()) {
347 if (auto *defined = dyn_cast<Defined>(sym)) {
348 if (defined->isec()) {
349 if (auto *referentIsec =
350 dyn_cast<ConcatInputSection>(defined->isec()))
351 hash += defined->value + referentIsec->icfEqClass[icfPass % 2];
352 else
353 hash += defined->isec()->kind() +
354 defined->isec()->getOffset(defined->value);
355 } else {
356 hash += defined->value;
358 } else {
359 // ICF runs before Undefined diags
360 assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym));
364 // Set MSB to 1 to avoid collisions with non-hashed classes.
365 isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31);
369 llvm::stable_sort(
370 icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) {
371 // When using safe_thunks, ensure that we first sort by icfEqClass and
372 // then by keepUnique (descending). This guarantees that within an
373 // equivalence class, the keepUnique inputs are always first.
374 if (config->icfLevel == ICFLevel::safe_thunks)
375 if (a->icfEqClass[0] == b->icfEqClass[0])
376 return a->keepUnique > b->keepUnique;
377 return a->icfEqClass[0] < b->icfEqClass[0];
379 forEachClass([&](size_t begin, size_t end) {
380 segregate(begin, end, &ICF::equalsConstant);
383 // Split equivalence groups by comparing relocations until convergence
384 do {
385 icfRepeat = false;
386 forEachClass([&](size_t begin, size_t end) {
387 segregate(begin, end, &ICF::equalsVariable);
389 } while (icfRepeat);
390 log("ICF needed " + Twine(icfPass) + " iterations");
391 if (verboseDiagnostics) {
392 log("equalsConstant() called " + Twine(equalsConstantCount) + " times");
393 log("equalsVariable() called " + Twine(equalsVariableCount) + " times");
396 // When using safe_thunks, we need to create thunks for all keepUnique
397 // functions that can be deduplicated. Since we're creating / adding new
398 // InputSections, we can't paralellize this.
399 if (config->icfLevel == ICFLevel::safe_thunks)
400 forEachClassRange(0, icfInputs.size(), [&](size_t begin, size_t end) {
401 applySafeThunksToRange(begin, end);
404 // Fold sections within equivalence classes
405 forEachClass([&](size_t begin, size_t end) {
406 if (end - begin < 2)
407 return;
408 bool useSafeThunks = config->icfLevel == ICFLevel::safe_thunks;
410 // For ICF level safe_thunks, replace keepUnique function bodies with
411 // thunks. For all other ICF levles, directly merge the functions.
413 ConcatInputSection *beginIsec = icfInputs[begin];
414 for (size_t i = begin + 1; i < end; ++i) {
415 // Skip keepUnique inputs when using safe_thunks (already handeled above)
416 if (useSafeThunks && icfInputs[i]->keepUnique) {
417 // Assert keepUnique sections are either small or replaced with thunks.
418 assert(!icfInputs[i]->live ||
419 icfInputs[i]->data.size() <= target->getICFSafeThunkSize());
420 assert(!icfInputs[i]->replacement ||
421 icfInputs[i]->replacement->data.size() ==
422 target->getICFSafeThunkSize());
423 continue;
425 beginIsec->foldIdentical(icfInputs[i]);
430 // Split an equivalence class into smaller classes.
431 void ICF::segregate(size_t begin, size_t end, EqualsFn equals) {
432 while (begin < end) {
433 // Divide [begin, end) into two. Let mid be the start index of the
434 // second group.
435 auto bound = std::stable_partition(
436 icfInputs.begin() + begin + 1, icfInputs.begin() + end,
437 [&](ConcatInputSection *isec) {
438 return (this->*equals)(icfInputs[begin], isec);
440 size_t mid = bound - icfInputs.begin();
442 // Split [begin, end) into [begin, mid) and [mid, end). We use mid as an
443 // equivalence class ID because every group ends with a unique index.
444 for (size_t i = begin; i < mid; ++i)
445 icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid;
447 // If we created a group, we need to iterate the main loop again.
448 if (mid != end)
449 icfRepeat = true;
451 begin = mid;
455 void macho::markSymAsAddrSig(Symbol *s) {
456 if (auto *d = dyn_cast_or_null<Defined>(s))
457 if (d->isec())
458 d->isec()->keepUnique = true;
461 void macho::markAddrSigSymbols() {
462 TimeTraceScope timeScope("Mark addrsig symbols");
463 for (InputFile *file : inputFiles) {
464 ObjFile *obj = dyn_cast<ObjFile>(file);
465 if (!obj)
466 continue;
468 Section *addrSigSection = obj->addrSigSection;
469 if (!addrSigSection)
470 continue;
471 assert(addrSigSection->subsections.size() == 1);
473 const InputSection *isec = addrSigSection->subsections[0].isec;
475 for (const Reloc &r : isec->relocs) {
476 if (auto *sym = r.referent.dyn_cast<Symbol *>())
477 markSymAsAddrSig(sym);
478 else
479 error(toString(isec) + ": unexpected section relocation");
484 // Given a symbol that was folded into a thunk, return the symbol pointing to
485 // the actual body of the function. We use this approach rather than storing the
486 // needed info in the Defined itself in order to minimize memory usage.
487 Defined *macho::getBodyForThunkFoldedSym(Defined *foldedSym) {
488 assert(isa<ConcatInputSection>(foldedSym->originalIsec) &&
489 "thunk-folded ICF symbol expected to be on a ConcatInputSection");
490 // foldedSec is the InputSection that was marked as deleted upon fold
491 ConcatInputSection *foldedSec =
492 cast<ConcatInputSection>(foldedSym->originalIsec);
494 // thunkBody is the actual live thunk, containing the code that branches to
495 // the actual body of the function.
496 InputSection *thunkBody = foldedSec->replacement;
498 // The actual (merged) body of the function that the thunk jumps to. This will
499 // end up in the final binary.
500 InputSection *functionBody = target->getThunkBranchTarget(thunkBody);
502 for (Symbol *sym : functionBody->symbols) {
503 Defined *d = dyn_cast<Defined>(sym);
504 // The symbol needs to be at the start of the InputSection
505 if (d && d->value == 0)
506 return d;
509 llvm_unreachable("could not find body symbol for ICF-generated thunk");
511 void macho::foldIdenticalSections(bool onlyCfStrings) {
512 TimeTraceScope timeScope("Fold Identical Code Sections");
513 // The ICF equivalence-class segregation algorithm relies on pre-computed
514 // hashes of InputSection::data for the ConcatOutputSection::inputs and all
515 // sections referenced by their relocs. We could recursively traverse the
516 // relocs to find every referenced InputSection, but that precludes easy
517 // parallelization. Therefore, we hash every InputSection here where we have
518 // them all accessible as simple vectors.
520 // If an InputSection is ineligible for ICF, we give it a unique ID to force
521 // it into an unfoldable singleton equivalence class. Begin the unique-ID
522 // space at inputSections.size(), so that it will never intersect with
523 // equivalence-class IDs which begin at 0. Since hashes & unique IDs never
524 // coexist with equivalence-class IDs, this is not necessary, but might help
525 // someone keep the numbers straight in case we ever need to debug the
526 // ICF::segregate()
527 std::vector<ConcatInputSection *> foldable;
528 uint64_t icfUniqueID = inputSections.size();
529 for (ConcatInputSection *isec : inputSections) {
530 bool isFoldableWithAddendsRemoved = isCfStringSection(isec) ||
531 isClassRefsSection(isec) ||
532 isSelRefsSection(isec);
533 // NOTE: __objc_selrefs is typically marked as no_dead_strip by MC, but we
534 // can still fold it.
535 bool hasFoldableFlags = (isSelRefsSection(isec) ||
536 sectionType(isec->getFlags()) == MachO::S_REGULAR);
538 bool isCodeSec = isCodeSection(isec);
540 // When keepUnique is true, the section is not foldable. Unless we are at
541 // icf level safe_thunks, in which case we still want to fold code sections.
542 // When using safe_thunks we'll apply the safe_thunks logic at merge time
543 // based on the 'keepUnique' flag.
544 bool noUniqueRequirement =
545 !isec->keepUnique ||
546 ((config->icfLevel == ICFLevel::safe_thunks) && isCodeSec);
548 // FIXME: consider non-code __text sections as foldable?
549 bool isFoldable = (!onlyCfStrings || isCfStringSection(isec)) &&
550 (isCodeSec || isFoldableWithAddendsRemoved ||
551 isGccExceptTabSection(isec)) &&
552 noUniqueRequirement && !isec->hasAltEntry &&
553 !isec->shouldOmitFromOutput() && hasFoldableFlags;
554 if (isFoldable) {
555 foldable.push_back(isec);
556 for (Defined *d : isec->symbols)
557 if (d->unwindEntry())
558 foldable.push_back(d->unwindEntry());
560 // Some sections have embedded addends that foil ICF's hashing / equality
561 // checks. (We can ignore embedded addends when doing ICF because the same
562 // information gets recorded in our Reloc structs.) We therefore create a
563 // mutable copy of the section data and zero out the embedded addends
564 // before performing any hashing / equality checks.
565 if (isFoldableWithAddendsRemoved) {
566 // We have to do this copying serially as the BumpPtrAllocator is not
567 // thread-safe. FIXME: Make a thread-safe allocator.
568 MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc());
569 for (const Reloc &r : isec->relocs)
570 target->relocateOne(copy.data() + r.offset, r, /*va=*/0,
571 /*relocVA=*/0);
572 isec->data = copy;
574 } else if (!isEhFrameSection(isec)) {
575 // EH frames are gathered as foldables from unwindEntry above; give a
576 // unique ID to everything else.
577 isec->icfEqClass[0] = ++icfUniqueID;
580 parallelForEach(foldable, [](ConcatInputSection *isec) {
581 assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID!
582 // Turn-on the top bit to guarantee that valid hashes have no collisions
583 // with the small-integer unique IDs for ICF-ineligible sections
584 isec->icfEqClass[0] = xxh3_64bits(isec->data) | (1ull << 31);
586 // Now that every input section is either hashed or marked as unique, run the
587 // segregation algorithm to detect foldable subsections.
588 ICF(foldable).run();