1 //===-- MinidumpParser.cpp ------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "MinidumpParser.h"
10 #include "NtStructures.h"
11 #include "RegisterContextMinidump_x86_32.h"
13 #include "Plugins/Process/Utility/LinuxProcMaps.h"
14 #include "lldb/Utility/LLDBAssert.h"
15 #include "lldb/Utility/LLDBLog.h"
16 #include "lldb/Utility/Log.h"
26 using namespace lldb_private
;
27 using namespace minidump
;
29 llvm::Expected
<MinidumpParser
>
30 MinidumpParser::Create(const lldb::DataBufferSP
&data_sp
) {
31 auto ExpectedFile
= llvm::object::MinidumpFile::create(
32 llvm::MemoryBufferRef(toStringRef(data_sp
->GetData()), "minidump"));
34 return ExpectedFile
.takeError();
36 return MinidumpParser(data_sp
, std::move(*ExpectedFile
));
39 MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp
,
40 std::unique_ptr
<llvm::object::MinidumpFile
> file
)
41 : m_data_sp(std::move(data_sp
)), m_file(std::move(file
)) {}
43 llvm::ArrayRef
<uint8_t> MinidumpParser::GetData() {
44 return llvm::ArrayRef
<uint8_t>(m_data_sp
->GetBytes(),
45 m_data_sp
->GetByteSize());
48 llvm::ArrayRef
<uint8_t> MinidumpParser::GetStream(StreamType stream_type
) {
49 return m_file
->getRawStream(stream_type
).value_or(llvm::ArrayRef
<uint8_t>());
52 std::optional
<llvm::ArrayRef
<uint8_t>>
53 MinidumpParser::GetRawStream(StreamType stream_type
) {
54 return m_file
->getRawStream(stream_type
);
57 UUID
MinidumpParser::GetModuleUUID(const minidump::Module
*module
) {
59 GetData().slice(module
->CvRecord
.RVA
, module
->CvRecord
.DataSize
);
61 // Read the CV record signature
62 const llvm::support::ulittle32_t
*signature
= nullptr;
63 Status error
= consumeObject(cv_record
, signature
);
67 const CvSignature cv_signature
=
68 static_cast<CvSignature
>(static_cast<uint32_t>(*signature
));
70 if (cv_signature
== CvSignature::Pdb70
) {
71 const UUID::CvRecordPdb70
*pdb70_uuid
= nullptr;
72 Status error
= consumeObject(cv_record
, pdb70_uuid
);
75 if (GetArchitecture().GetTriple().isOSBinFormatELF()) {
76 if (pdb70_uuid
->Age
!= 0)
77 return UUID(pdb70_uuid
, sizeof(*pdb70_uuid
));
78 return UUID(&pdb70_uuid
->Uuid
,
79 sizeof(pdb70_uuid
->Uuid
));
81 return UUID(*pdb70_uuid
);
82 } else if (cv_signature
== CvSignature::ElfBuildId
)
83 return UUID(cv_record
);
88 llvm::ArrayRef
<minidump::Thread
> MinidumpParser::GetThreads() {
89 auto ExpectedThreads
= GetMinidumpFile().getThreadList();
91 return *ExpectedThreads
;
93 LLDB_LOG_ERROR(GetLog(LLDBLog::Thread
), ExpectedThreads
.takeError(),
94 "Failed to read thread list: {0}");
98 llvm::ArrayRef
<uint8_t>
99 MinidumpParser::GetThreadContext(const LocationDescriptor
&location
) {
100 if (location
.RVA
+ location
.DataSize
> GetData().size())
102 return GetData().slice(location
.RVA
, location
.DataSize
);
105 llvm::ArrayRef
<uint8_t>
106 MinidumpParser::GetThreadContext(const minidump::Thread
&td
) {
107 return GetThreadContext(td
.Context
);
110 llvm::ArrayRef
<uint8_t>
111 MinidumpParser::GetThreadContextWow64(const minidump::Thread
&td
) {
112 // On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
113 // the minidump was captured with a 64-bit debugger, then the CONTEXT we just
114 // grabbed from the mini_dump_thread is the one for the 64-bit "native"
115 // process rather than the 32-bit "guest" process we care about. In this
116 // case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
117 // Block) of the 64-bit process.
118 auto teb_mem
= GetMemory(td
.EnvironmentBlock
, sizeof(TEB64
));
122 const TEB64
*wow64teb
;
123 Status error
= consumeObject(teb_mem
, wow64teb
);
127 // Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
128 // that includes the 32-bit CONTEXT (after a ULONG). See:
129 // https://msdn.microsoft.com/en-us/library/ms681670.aspx
131 GetMemory(wow64teb
->tls_slots
[1] + 4, sizeof(MinidumpContext_x86_32
));
132 if (context
.size() < sizeof(MinidumpContext_x86_32
))
136 // NOTE: We don't currently use the TEB for anything else. If we
137 // need it in the future, the 32-bit TEB is located according to the address
138 // stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
141 ArchSpec
MinidumpParser::GetArchitecture() {
142 if (m_arch
.IsValid())
145 // Set the architecture in m_arch
146 llvm::Expected
<const SystemInfo
&> system_info
= m_file
->getSystemInfo();
149 LLDB_LOG_ERROR(GetLog(LLDBLog::Process
), system_info
.takeError(),
150 "Failed to read SystemInfo stream: {0}");
154 // TODO what to do about big endiand flavors of arm ?
155 // TODO set the arm subarch stuff if the minidump has info about it
158 triple
.setVendor(llvm::Triple::VendorType::UnknownVendor
);
160 switch (system_info
->ProcessorArch
) {
161 case ProcessorArchitecture::X86
:
162 triple
.setArch(llvm::Triple::ArchType::x86
);
164 case ProcessorArchitecture::AMD64
:
165 triple
.setArch(llvm::Triple::ArchType::x86_64
);
167 case ProcessorArchitecture::ARM
:
168 triple
.setArch(llvm::Triple::ArchType::arm
);
170 case ProcessorArchitecture::ARM64
:
171 case ProcessorArchitecture::BP_ARM64
:
172 triple
.setArch(llvm::Triple::ArchType::aarch64
);
175 triple
.setArch(llvm::Triple::ArchType::UnknownArch
);
179 // TODO add all of the OSes that Minidump/breakpad distinguishes?
180 switch (system_info
->PlatformId
) {
181 case OSPlatform::Win32S
:
182 case OSPlatform::Win32Windows
:
183 case OSPlatform::Win32NT
:
184 case OSPlatform::Win32CE
:
185 triple
.setOS(llvm::Triple::OSType::Win32
);
186 triple
.setVendor(llvm::Triple::VendorType::PC
);
188 case OSPlatform::Linux
:
189 triple
.setOS(llvm::Triple::OSType::Linux
);
191 case OSPlatform::MacOSX
:
192 triple
.setOS(llvm::Triple::OSType::MacOSX
);
193 triple
.setVendor(llvm::Triple::Apple
);
195 case OSPlatform::IOS
:
196 triple
.setOS(llvm::Triple::OSType::IOS
);
197 triple
.setVendor(llvm::Triple::Apple
);
199 case OSPlatform::Android
:
200 triple
.setOS(llvm::Triple::OSType::Linux
);
201 triple
.setEnvironment(llvm::Triple::EnvironmentType::Android
);
204 triple
.setOS(llvm::Triple::OSType::UnknownOS
);
205 auto ExpectedCSD
= m_file
->getString(system_info
->CSDVersionRVA
);
207 LLDB_LOG_ERROR(GetLog(LLDBLog::Process
), ExpectedCSD
.takeError(),
208 "Failed to CSD Version string: {0}");
210 if (ExpectedCSD
->find("Linux") != std::string::npos
)
211 triple
.setOS(llvm::Triple::OSType::Linux
);
216 m_arch
.SetTriple(triple
);
220 const MinidumpMiscInfo
*MinidumpParser::GetMiscInfo() {
221 llvm::ArrayRef
<uint8_t> data
= GetStream(StreamType::MiscInfo
);
223 if (data
.size() == 0)
226 return MinidumpMiscInfo::Parse(data
);
229 std::optional
<LinuxProcStatus
> MinidumpParser::GetLinuxProcStatus() {
230 llvm::ArrayRef
<uint8_t> data
= GetStream(StreamType::LinuxProcStatus
);
232 if (data
.size() == 0)
235 return LinuxProcStatus::Parse(data
);
238 std::optional
<lldb::pid_t
> MinidumpParser::GetPid() {
239 const MinidumpMiscInfo
*misc_info
= GetMiscInfo();
240 if (misc_info
!= nullptr) {
241 return misc_info
->GetPid();
244 std::optional
<LinuxProcStatus
> proc_status
= GetLinuxProcStatus();
246 return proc_status
->GetPid();
252 llvm::ArrayRef
<minidump::Module
> MinidumpParser::GetModuleList() {
253 auto ExpectedModules
= GetMinidumpFile().getModuleList();
255 return *ExpectedModules
;
257 LLDB_LOG_ERROR(GetLog(LLDBLog::Modules
), ExpectedModules
.takeError(),
258 "Failed to read module list: {0}");
263 CreateRegionsCacheFromLinuxMaps(MinidumpParser
&parser
,
264 std::vector
<MemoryRegionInfo
> ®ions
) {
265 auto data
= parser
.GetStream(StreamType::LinuxMaps
);
269 Log
*log
= GetLog(LLDBLog::Expressions
);
270 ParseLinuxMapRegions(
271 llvm::toStringRef(data
),
272 [®ions
, &log
](llvm::Expected
<MemoryRegionInfo
> region
) -> bool {
274 regions
.push_back(*region
);
276 LLDB_LOG_ERROR(log
, region
.takeError(),
277 "Reading memory region from minidump failed: {0}");
280 return !regions
.empty();
283 /// Check for the memory regions starting at \a load_addr for a contiguous
284 /// section that has execute permissions that matches the module path.
286 /// When we load a breakpad generated minidump file, we might have the
287 /// /proc/<pid>/maps text for a process that details the memory map of the
288 /// process that the minidump is describing. This checks the sorted memory
289 /// regions for a section that has execute permissions. A sample maps files
292 /// 00400000-00401000 r--p 00000000 fd:01 2838574 /tmp/a.out
293 /// 00401000-00402000 r-xp 00001000 fd:01 2838574 /tmp/a.out
294 /// 00402000-00403000 r--p 00002000 fd:01 2838574 /tmp/a.out
295 /// 00403000-00404000 r--p 00002000 fd:01 2838574 /tmp/a.out
296 /// 00404000-00405000 rw-p 00003000 fd:01 2838574 /tmp/a.out
299 /// This function should return true when given 0x00400000 and "/tmp/a.out"
300 /// is passed in as the path since it has a consecutive memory region for
301 /// "/tmp/a.out" that has execute permissions at 0x00401000. This will help us
302 /// differentiate if a file has been memory mapped into a process for reading
303 /// and breakpad ends up saving a minidump file that has two module entries for
304 /// a given file: one that is read only for the entire file, and then one that
305 /// is the real executable that is loaded into memory for execution. For memory
306 /// mapped files they will typically show up and r--p permissions and a range
307 /// matcning the entire range of the file on disk:
309 /// 00800000-00805000 r--p 00000000 fd:01 2838574 /tmp/a.out
310 /// 00805000-00806000 r-xp 00001000 fd:01 1234567 /usr/lib/libc.so
312 /// This function should return false when asked about 0x00800000 with
313 /// "/tmp/a.out" as the path.
316 /// The path to the module to check for in the memory regions. Only sequential
317 /// memory regions whose paths match this path will be considered when looking
318 /// for execute permissions.
320 /// \param[in] regions
321 /// A sorted list of memory regions obtained from a call to
322 /// CreateRegionsCacheFromLinuxMaps.
324 /// \param[in] base_of_image
325 /// The load address of this module from BaseOfImage in the modules list.
328 /// True if a contiguous region of memory belonging to the module with a
329 /// matching path exists that has executable permissions. Returns false if
330 /// \a regions is empty or if there are no regions with execute permissions
331 /// that match \a path.
333 static bool CheckForLinuxExecutable(ConstString path
,
334 const MemoryRegionInfos
®ions
,
335 lldb::addr_t base_of_image
) {
338 lldb::addr_t addr
= base_of_image
;
339 MemoryRegionInfo region
= MinidumpParser::GetMemoryRegionInfo(regions
, addr
);
340 while (region
.GetName() == path
) {
341 if (region
.GetExecutable() == MemoryRegionInfo::eYes
)
343 addr
+= region
.GetRange().GetByteSize();
344 region
= MinidumpParser::GetMemoryRegionInfo(regions
, addr
);
349 std::vector
<const minidump::Module
*> MinidumpParser::GetFilteredModuleList() {
350 Log
*log
= GetLog(LLDBLog::Modules
);
351 auto ExpectedModules
= GetMinidumpFile().getModuleList();
352 if (!ExpectedModules
) {
353 LLDB_LOG_ERROR(log
, ExpectedModules
.takeError(),
354 "Failed to read module list: {0}");
358 // Create memory regions from the linux maps only. We do this to avoid issues
359 // with breakpad generated minidumps where if someone has mmap'ed a shared
360 // library into memory to access its data in the object file, we can get a
361 // minidump with two mappings for a binary: one whose base image points to a
362 // memory region that is read + execute and one that is read only.
363 MemoryRegionInfos linux_regions
;
364 if (CreateRegionsCacheFromLinuxMaps(*this, linux_regions
))
365 llvm::sort(linux_regions
);
367 // map module_name -> filtered_modules index
368 typedef llvm::StringMap
<size_t> MapType
;
369 MapType module_name_to_filtered_index
;
371 std::vector
<const minidump::Module
*> filtered_modules
;
373 for (const auto &module
: *ExpectedModules
) {
374 auto ExpectedName
= m_file
->getString(module
.ModuleNameRVA
);
376 LLDB_LOG_ERROR(log
, ExpectedName
.takeError(),
377 "Failed to get module name: {0}");
381 MapType::iterator iter
;
383 // See if we have inserted this module aready into filtered_modules. If we
384 // haven't insert an entry into module_name_to_filtered_index with the
385 // index where we will insert it if it isn't in the vector already.
386 std::tie(iter
, inserted
) = module_name_to_filtered_index
.try_emplace(
387 *ExpectedName
, filtered_modules
.size());
390 // This module has not been seen yet, insert it into filtered_modules at
391 // the index that was inserted into module_name_to_filtered_index using
392 // "filtered_modules.size()" above.
393 filtered_modules
.push_back(&module
);
395 // We have a duplicate module entry. Check the linux regions to see if
396 // either module is not really a mapped executable. If one but not the
397 // other is a real mapped executable, prefer the executable one. This
398 // can happen when a process mmap's in the file for an executable in
399 // order to read bytes from the executable file. A memory region mapping
400 // will exist for the mmap'ed version and for the loaded executable, but
401 // only one will have a consecutive region that is executable in the
403 auto dup_module
= filtered_modules
[iter
->second
];
404 ConstString
name(*ExpectedName
);
406 CheckForLinuxExecutable(name
, linux_regions
, module
.BaseOfImage
);
407 bool dup_is_executable
=
408 CheckForLinuxExecutable(name
, linux_regions
, dup_module
->BaseOfImage
);
410 if (is_executable
!= dup_is_executable
) {
412 filtered_modules
[iter
->second
] = &module
;
415 // This module has been seen. Modules are sometimes mentioned multiple
416 // times when they are mapped discontiguously, so find the module with
417 // the lowest "base_of_image" and use that as the filtered module.
418 if (module
.BaseOfImage
< dup_module
->BaseOfImage
)
419 filtered_modules
[iter
->second
] = &module
;
422 return filtered_modules
;
425 llvm::iterator_range
<ExceptionStreamsIterator
>
426 MinidumpParser::GetExceptionStreams() {
427 return GetMinidumpFile().getExceptionStreams();
430 std::optional
<minidump::Range
>
431 MinidumpParser::FindMemoryRange(lldb::addr_t addr
) {
432 Log
*log
= GetLog(LLDBLog::Modules
);
434 auto ExpectedMemory
= GetMinidumpFile().getMemoryList();
435 if (!ExpectedMemory
) {
436 LLDB_LOG_ERROR(log
, ExpectedMemory
.takeError(),
437 "Failed to read memory list: {0}");
439 for (const auto &memory_desc
: *ExpectedMemory
) {
440 const LocationDescriptor
&loc_desc
= memory_desc
.Memory
;
441 const lldb::addr_t range_start
= memory_desc
.StartOfMemoryRange
;
442 const size_t range_size
= loc_desc
.DataSize
;
444 if (loc_desc
.RVA
+ loc_desc
.DataSize
> GetData().size())
447 if (range_start
<= addr
&& addr
< range_start
+ range_size
) {
448 auto ExpectedSlice
= GetMinidumpFile().getRawData(loc_desc
);
449 if (!ExpectedSlice
) {
450 LLDB_LOG_ERROR(log
, ExpectedSlice
.takeError(),
451 "Failed to get memory slice: {0}");
454 return minidump::Range(range_start
, *ExpectedSlice
);
459 if (!GetStream(StreamType::Memory64List
).empty()) {
460 llvm::Error err
= llvm::Error::success();
461 for (const auto &memory_desc
: GetMinidumpFile().getMemory64List(err
)) {
462 if (memory_desc
.first
.StartOfMemoryRange
<= addr
463 && addr
< memory_desc
.first
.StartOfMemoryRange
+ memory_desc
.first
.DataSize
) {
464 return minidump::Range(memory_desc
.first
.StartOfMemoryRange
, memory_desc
.second
);
469 LLDB_LOG_ERROR(log
, std::move(err
), "Failed to read memory64 list: {0}");
475 llvm::ArrayRef
<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr
,
477 // I don't have a sense of how frequently this is called or how many memory
478 // ranges a Minidump typically has, so I'm not sure if searching for the
479 // appropriate range linearly each time is stupid. Perhaps we should build
480 // an index for faster lookups.
481 std::optional
<minidump::Range
> range
= FindMemoryRange(addr
);
485 // There's at least some overlap between the beginning of the desired range
486 // (addr) and the current range. Figure out where the overlap begins and how
487 // much overlap there is.
489 const size_t offset
= addr
- range
->start
;
491 if (addr
< range
->start
|| offset
>= range
->range_ref
.size())
494 const size_t overlap
= std::min(size
, range
->range_ref
.size() - offset
);
495 return range
->range_ref
.slice(offset
, overlap
);
498 llvm::iterator_range
<FallibleMemory64Iterator
> MinidumpParser::GetMemory64Iterator(llvm::Error
&err
) {
499 llvm::ErrorAsOutParameter
ErrAsOutParam(&err
);
500 return m_file
->getMemory64List(err
);
504 CreateRegionsCacheFromMemoryInfoList(MinidumpParser
&parser
,
505 std::vector
<MemoryRegionInfo
> ®ions
) {
506 Log
*log
= GetLog(LLDBLog::Modules
);
507 auto ExpectedInfo
= parser
.GetMinidumpFile().getMemoryInfoList();
509 LLDB_LOG_ERROR(log
, ExpectedInfo
.takeError(),
510 "Failed to read memory info list: {0}");
513 constexpr auto yes
= MemoryRegionInfo::eYes
;
514 constexpr auto no
= MemoryRegionInfo::eNo
;
515 for (const MemoryInfo
&entry
: *ExpectedInfo
) {
516 MemoryRegionInfo region
;
517 region
.GetRange().SetRangeBase(entry
.BaseAddress
);
518 region
.GetRange().SetByteSize(entry
.RegionSize
);
520 MemoryProtection prot
= entry
.Protect
;
521 region
.SetReadable(bool(prot
& MemoryProtection::NoAccess
) ? no
: yes
);
523 bool(prot
& (MemoryProtection::ReadWrite
| MemoryProtection::WriteCopy
|
524 MemoryProtection::ExecuteReadWrite
|
525 MemoryProtection::ExeciteWriteCopy
))
528 region
.SetExecutable(
529 bool(prot
& (MemoryProtection::Execute
| MemoryProtection::ExecuteRead
|
530 MemoryProtection::ExecuteReadWrite
|
531 MemoryProtection::ExeciteWriteCopy
))
534 region
.SetMapped(entry
.State
!= MemoryState::Free
? yes
: no
);
535 regions
.push_back(region
);
537 return !regions
.empty();
541 CreateRegionsCacheFromMemoryList(MinidumpParser
&parser
,
542 std::vector
<MemoryRegionInfo
> ®ions
) {
543 Log
*log
= GetLog(LLDBLog::Modules
);
544 // Cache the expected memory32 into an optional
545 // because it is possible to just have a memory64 list
546 auto ExpectedMemory
= parser
.GetMinidumpFile().getMemoryList();
547 if (!ExpectedMemory
) {
548 LLDB_LOG_ERROR(log
, ExpectedMemory
.takeError(),
549 "Failed to read memory list: {0}");
551 for (const MemoryDescriptor
&memory_desc
: *ExpectedMemory
) {
552 if (memory_desc
.Memory
.DataSize
== 0)
554 MemoryRegionInfo region
;
555 region
.GetRange().SetRangeBase(memory_desc
.StartOfMemoryRange
);
556 region
.GetRange().SetByteSize(memory_desc
.Memory
.DataSize
);
557 region
.SetReadable(MemoryRegionInfo::eYes
);
558 region
.SetMapped(MemoryRegionInfo::eYes
);
559 regions
.push_back(region
);
563 if (!parser
.GetStream(StreamType::Memory64List
).empty()) {
564 llvm::Error err
= llvm::Error::success();
565 for (const auto &memory_desc
: parser
.GetMemory64Iterator(err
)) {
566 if (memory_desc
.first
.DataSize
== 0)
568 MemoryRegionInfo region
;
569 region
.GetRange().SetRangeBase(memory_desc
.first
.StartOfMemoryRange
);
570 region
.GetRange().SetByteSize(memory_desc
.first
.DataSize
);
571 region
.SetReadable(MemoryRegionInfo::eYes
);
572 region
.SetMapped(MemoryRegionInfo::eYes
);
573 regions
.push_back(region
);
577 LLDB_LOG_ERROR(log
, std::move(err
), "Failed to read memory64 list: {0}");
582 regions
.shrink_to_fit();
583 return !regions
.empty();
586 std::pair
<MemoryRegionInfos
, bool> MinidumpParser::BuildMemoryRegions() {
587 // We create the region cache using the best source. We start with
588 // the linux maps since they are the most complete and have names for the
589 // regions. Next we try the MemoryInfoList since it has
590 // read/write/execute/map data, and then fall back to the MemoryList and
591 // Memory64List to just get a list of the memory that is mapped in this
593 MemoryRegionInfos result
;
594 const auto &return_sorted
= [&](bool is_complete
) {
596 return std::make_pair(std::move(result
), is_complete
);
598 if (CreateRegionsCacheFromLinuxMaps(*this, result
))
599 return return_sorted(true);
600 if (CreateRegionsCacheFromMemoryInfoList(*this, result
))
601 return return_sorted(true);
602 CreateRegionsCacheFromMemoryList(*this, result
);
603 return return_sorted(false);
606 #define ENUM_TO_CSTR(ST) \
607 case StreamType::ST: \
611 MinidumpParser::GetStreamTypeAsString(StreamType stream_type
) {
612 switch (stream_type
) {
613 ENUM_TO_CSTR(Unused
);
614 ENUM_TO_CSTR(ThreadList
);
615 ENUM_TO_CSTR(ModuleList
);
616 ENUM_TO_CSTR(MemoryList
);
617 ENUM_TO_CSTR(Exception
);
618 ENUM_TO_CSTR(SystemInfo
);
619 ENUM_TO_CSTR(ThreadExList
);
620 ENUM_TO_CSTR(Memory64List
);
621 ENUM_TO_CSTR(CommentA
);
622 ENUM_TO_CSTR(CommentW
);
623 ENUM_TO_CSTR(HandleData
);
624 ENUM_TO_CSTR(FunctionTable
);
625 ENUM_TO_CSTR(UnloadedModuleList
);
626 ENUM_TO_CSTR(MiscInfo
);
627 ENUM_TO_CSTR(MemoryInfoList
);
628 ENUM_TO_CSTR(ThreadInfoList
);
629 ENUM_TO_CSTR(HandleOperationList
);
631 ENUM_TO_CSTR(JavascriptData
);
632 ENUM_TO_CSTR(SystemMemoryInfo
);
633 ENUM_TO_CSTR(ProcessVMCounters
);
634 ENUM_TO_CSTR(LastReserved
);
635 ENUM_TO_CSTR(BreakpadInfo
);
636 ENUM_TO_CSTR(AssertionInfo
);
637 ENUM_TO_CSTR(LinuxCPUInfo
);
638 ENUM_TO_CSTR(LinuxProcStatus
);
639 ENUM_TO_CSTR(LinuxLSBRelease
);
640 ENUM_TO_CSTR(LinuxCMDLine
);
641 ENUM_TO_CSTR(LinuxEnviron
);
642 ENUM_TO_CSTR(LinuxAuxv
);
643 ENUM_TO_CSTR(LinuxMaps
);
644 ENUM_TO_CSTR(LinuxDSODebug
);
645 ENUM_TO_CSTR(LinuxProcStat
);
646 ENUM_TO_CSTR(LinuxProcUptime
);
647 ENUM_TO_CSTR(LinuxProcFD
);
648 ENUM_TO_CSTR(FacebookAppCustomData
);
649 ENUM_TO_CSTR(FacebookBuildID
);
650 ENUM_TO_CSTR(FacebookAppVersionName
);
651 ENUM_TO_CSTR(FacebookJavaStack
);
652 ENUM_TO_CSTR(FacebookDalvikInfo
);
653 ENUM_TO_CSTR(FacebookUnwindSymbols
);
654 ENUM_TO_CSTR(FacebookDumpErrorLog
);
655 ENUM_TO_CSTR(FacebookAppStateLog
);
656 ENUM_TO_CSTR(FacebookAbortReason
);
657 ENUM_TO_CSTR(FacebookThreadName
);
658 ENUM_TO_CSTR(FacebookLogcat
);
659 ENUM_TO_CSTR(LLDBGenerated
);
661 return "unknown stream type";
665 MinidumpParser::GetMemoryRegionInfo(const MemoryRegionInfos
®ions
,
666 lldb::addr_t load_addr
) {
667 MemoryRegionInfo region
;
668 auto pos
= llvm::upper_bound(regions
, load_addr
);
669 if (pos
!= regions
.begin() &&
670 std::prev(pos
)->GetRange().Contains(load_addr
)) {
671 return *std::prev(pos
);
674 if (pos
== regions
.begin())
675 region
.GetRange().SetRangeBase(0);
677 region
.GetRange().SetRangeBase(std::prev(pos
)->GetRange().GetRangeEnd());
679 if (pos
== regions
.end())
680 region
.GetRange().SetRangeEnd(UINT64_MAX
);
682 region
.GetRange().SetRangeEnd(pos
->GetRange().GetRangeBase());
684 region
.SetReadable(MemoryRegionInfo::eNo
);
685 region
.SetWritable(MemoryRegionInfo::eNo
);
686 region
.SetExecutable(MemoryRegionInfo::eNo
);
687 region
.SetMapped(MemoryRegionInfo::eNo
);