1 //===-- x86AssemblyInspectionEngine.cpp -----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "x86AssemblyInspectionEngine.h"
13 #include "llvm-c/Disassembler.h"
15 #include "lldb/Core/Address.h"
16 #include "lldb/Symbol/UnwindPlan.h"
17 #include "lldb/Target/RegisterContext.h"
18 #include "lldb/Target/UnwindAssembly.h"
20 using namespace lldb_private
;
23 x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec
&arch
)
24 : m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM
),
25 m_machine_sp_regnum(LLDB_INVALID_REGNUM
),
26 m_machine_fp_regnum(LLDB_INVALID_REGNUM
),
27 m_machine_alt_fp_regnum(LLDB_INVALID_REGNUM
),
28 m_lldb_ip_regnum(LLDB_INVALID_REGNUM
),
29 m_lldb_sp_regnum(LLDB_INVALID_REGNUM
),
30 m_lldb_fp_regnum(LLDB_INVALID_REGNUM
),
31 m_lldb_alt_fp_regnum(LLDB_INVALID_REGNUM
), m_reg_map(), m_arch(arch
),
32 m_cpu(k_cpu_unspecified
), m_wordsize(-1),
33 m_register_map_initialized(false), m_disasm_context() {
35 ::LLVMCreateDisasm(arch
.GetTriple().getTriple().c_str(), nullptr,
36 /*TagType=*/1, nullptr, nullptr);
39 x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
40 ::LLVMDisasmDispose(m_disasm_context
);
43 void x86AssemblyInspectionEngine::Initialize(RegisterContextSP
®_ctx
) {
44 m_cpu
= k_cpu_unspecified
;
46 m_register_map_initialized
= false;
48 const llvm::Triple::ArchType cpu
= m_arch
.GetMachine();
49 if (cpu
== llvm::Triple::x86
)
51 else if (cpu
== llvm::Triple::x86_64
)
54 if (m_cpu
== k_cpu_unspecified
)
57 if (reg_ctx
.get() == nullptr)
60 if (m_cpu
== k_i386
) {
61 m_machine_ip_regnum
= k_machine_eip
;
62 m_machine_sp_regnum
= k_machine_esp
;
63 m_machine_fp_regnum
= k_machine_ebp
;
64 m_machine_alt_fp_regnum
= k_machine_ebx
;
67 struct lldb_reg_info reginfo
;
69 m_reg_map
[k_machine_eax
] = reginfo
;
71 m_reg_map
[k_machine_edx
] = reginfo
;
73 m_reg_map
[k_machine_esp
] = reginfo
;
75 m_reg_map
[k_machine_esi
] = reginfo
;
77 m_reg_map
[k_machine_eip
] = reginfo
;
79 m_reg_map
[k_machine_ecx
] = reginfo
;
81 m_reg_map
[k_machine_ebx
] = reginfo
;
83 m_reg_map
[k_machine_ebp
] = reginfo
;
85 m_reg_map
[k_machine_edi
] = reginfo
;
87 m_machine_ip_regnum
= k_machine_rip
;
88 m_machine_sp_regnum
= k_machine_rsp
;
89 m_machine_fp_regnum
= k_machine_rbp
;
90 m_machine_alt_fp_regnum
= k_machine_rbx
;
93 struct lldb_reg_info reginfo
;
95 m_reg_map
[k_machine_rax
] = reginfo
;
97 m_reg_map
[k_machine_rdx
] = reginfo
;
99 m_reg_map
[k_machine_rsp
] = reginfo
;
100 reginfo
.name
= "rsi";
101 m_reg_map
[k_machine_rsi
] = reginfo
;
103 m_reg_map
[k_machine_r8
] = reginfo
;
104 reginfo
.name
= "r10";
105 m_reg_map
[k_machine_r10
] = reginfo
;
106 reginfo
.name
= "r12";
107 m_reg_map
[k_machine_r12
] = reginfo
;
108 reginfo
.name
= "r14";
109 m_reg_map
[k_machine_r14
] = reginfo
;
110 reginfo
.name
= "rip";
111 m_reg_map
[k_machine_rip
] = reginfo
;
112 reginfo
.name
= "rcx";
113 m_reg_map
[k_machine_rcx
] = reginfo
;
114 reginfo
.name
= "rbx";
115 m_reg_map
[k_machine_rbx
] = reginfo
;
116 reginfo
.name
= "rbp";
117 m_reg_map
[k_machine_rbp
] = reginfo
;
118 reginfo
.name
= "rdi";
119 m_reg_map
[k_machine_rdi
] = reginfo
;
121 m_reg_map
[k_machine_r9
] = reginfo
;
122 reginfo
.name
= "r11";
123 m_reg_map
[k_machine_r11
] = reginfo
;
124 reginfo
.name
= "r13";
125 m_reg_map
[k_machine_r13
] = reginfo
;
126 reginfo
.name
= "r15";
127 m_reg_map
[k_machine_r15
] = reginfo
;
130 for (MachineRegnumToNameAndLLDBRegnum::iterator it
= m_reg_map
.begin();
131 it
!= m_reg_map
.end(); ++it
) {
132 const RegisterInfo
*ri
= reg_ctx
->GetRegisterInfoByName(it
->second
.name
);
134 it
->second
.lldb_regnum
= ri
->kinds
[eRegisterKindLLDB
];
138 if (machine_regno_to_lldb_regno(m_machine_sp_regnum
, lldb_regno
))
139 m_lldb_sp_regnum
= lldb_regno
;
140 if (machine_regno_to_lldb_regno(m_machine_fp_regnum
, lldb_regno
))
141 m_lldb_fp_regnum
= lldb_regno
;
142 if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum
, lldb_regno
))
143 m_lldb_alt_fp_regnum
= lldb_regno
;
144 if (machine_regno_to_lldb_regno(m_machine_ip_regnum
, lldb_regno
))
145 m_lldb_ip_regnum
= lldb_regno
;
147 m_register_map_initialized
= true;
150 void x86AssemblyInspectionEngine::Initialize(
151 std::vector
<lldb_reg_info
> ®_info
) {
152 m_cpu
= k_cpu_unspecified
;
154 m_register_map_initialized
= false;
156 const llvm::Triple::ArchType cpu
= m_arch
.GetMachine();
157 if (cpu
== llvm::Triple::x86
)
159 else if (cpu
== llvm::Triple::x86_64
)
162 if (m_cpu
== k_cpu_unspecified
)
165 if (m_cpu
== k_i386
) {
166 m_machine_ip_regnum
= k_machine_eip
;
167 m_machine_sp_regnum
= k_machine_esp
;
168 m_machine_fp_regnum
= k_machine_ebp
;
169 m_machine_alt_fp_regnum
= k_machine_ebx
;
172 struct lldb_reg_info reginfo
;
173 reginfo
.name
= "eax";
174 m_reg_map
[k_machine_eax
] = reginfo
;
175 reginfo
.name
= "edx";
176 m_reg_map
[k_machine_edx
] = reginfo
;
177 reginfo
.name
= "esp";
178 m_reg_map
[k_machine_esp
] = reginfo
;
179 reginfo
.name
= "esi";
180 m_reg_map
[k_machine_esi
] = reginfo
;
181 reginfo
.name
= "eip";
182 m_reg_map
[k_machine_eip
] = reginfo
;
183 reginfo
.name
= "ecx";
184 m_reg_map
[k_machine_ecx
] = reginfo
;
185 reginfo
.name
= "ebx";
186 m_reg_map
[k_machine_ebx
] = reginfo
;
187 reginfo
.name
= "ebp";
188 m_reg_map
[k_machine_ebp
] = reginfo
;
189 reginfo
.name
= "edi";
190 m_reg_map
[k_machine_edi
] = reginfo
;
192 m_machine_ip_regnum
= k_machine_rip
;
193 m_machine_sp_regnum
= k_machine_rsp
;
194 m_machine_fp_regnum
= k_machine_rbp
;
195 m_machine_alt_fp_regnum
= k_machine_rbx
;
198 struct lldb_reg_info reginfo
;
199 reginfo
.name
= "rax";
200 m_reg_map
[k_machine_rax
] = reginfo
;
201 reginfo
.name
= "rdx";
202 m_reg_map
[k_machine_rdx
] = reginfo
;
203 reginfo
.name
= "rsp";
204 m_reg_map
[k_machine_rsp
] = reginfo
;
205 reginfo
.name
= "rsi";
206 m_reg_map
[k_machine_rsi
] = reginfo
;
208 m_reg_map
[k_machine_r8
] = reginfo
;
209 reginfo
.name
= "r10";
210 m_reg_map
[k_machine_r10
] = reginfo
;
211 reginfo
.name
= "r12";
212 m_reg_map
[k_machine_r12
] = reginfo
;
213 reginfo
.name
= "r14";
214 m_reg_map
[k_machine_r14
] = reginfo
;
215 reginfo
.name
= "rip";
216 m_reg_map
[k_machine_rip
] = reginfo
;
217 reginfo
.name
= "rcx";
218 m_reg_map
[k_machine_rcx
] = reginfo
;
219 reginfo
.name
= "rbx";
220 m_reg_map
[k_machine_rbx
] = reginfo
;
221 reginfo
.name
= "rbp";
222 m_reg_map
[k_machine_rbp
] = reginfo
;
223 reginfo
.name
= "rdi";
224 m_reg_map
[k_machine_rdi
] = reginfo
;
226 m_reg_map
[k_machine_r9
] = reginfo
;
227 reginfo
.name
= "r11";
228 m_reg_map
[k_machine_r11
] = reginfo
;
229 reginfo
.name
= "r13";
230 m_reg_map
[k_machine_r13
] = reginfo
;
231 reginfo
.name
= "r15";
232 m_reg_map
[k_machine_r15
] = reginfo
;
235 for (MachineRegnumToNameAndLLDBRegnum::iterator it
= m_reg_map
.begin();
236 it
!= m_reg_map
.end(); ++it
) {
237 for (size_t i
= 0; i
< reg_info
.size(); ++i
) {
238 if (::strcmp(reg_info
[i
].name
, it
->second
.name
) == 0) {
239 it
->second
.lldb_regnum
= reg_info
[i
].lldb_regnum
;
246 if (machine_regno_to_lldb_regno(m_machine_sp_regnum
, lldb_regno
))
247 m_lldb_sp_regnum
= lldb_regno
;
248 if (machine_regno_to_lldb_regno(m_machine_fp_regnum
, lldb_regno
))
249 m_lldb_fp_regnum
= lldb_regno
;
250 if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum
, lldb_regno
))
251 m_lldb_alt_fp_regnum
= lldb_regno
;
252 if (machine_regno_to_lldb_regno(m_machine_ip_regnum
, lldb_regno
))
253 m_lldb_ip_regnum
= lldb_regno
;
255 m_register_map_initialized
= true;
258 // This function expects an x86 native register number (i.e. the bits stripped
259 // out of the actual instruction), not an lldb register number.
261 // FIXME: This is ABI dependent, it shouldn't be hardcoded here.
263 bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno
) {
264 if (m_cpu
== k_i386
) {
265 switch (machine_regno
) {
267 case k_machine_ebp
: // not actually a nonvolatile but often treated as such
277 if (m_cpu
== k_x86_64
) {
278 switch (machine_regno
) {
281 case k_machine_rbp
: // not actually a nonvolatile but often treated as such
295 // Macro to detect if this is a REX mode prefix byte.
296 #define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
298 // The high bit which should be added to the source register number (the "R"
300 #define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
302 // The high bit which should be added to the destination register number (the
304 #define REX_W_DSTREG(opcode) ((opcode)&0x1)
307 bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
308 uint8_t *p
= m_cur_insn
;
312 // pushq $0 ; the first instruction in start() [0x6a 0x00]
313 bool x86AssemblyInspectionEngine::push_0_pattern_p() {
314 uint8_t *p
= m_cur_insn
;
315 return *p
== 0x6a && *(p
+ 1) == 0x0;
320 bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
321 uint8_t *p
= m_cur_insn
;
322 return *p
== 0x68 || *p
== 0x6a;
327 // e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
328 // 0x20(%rsp)' in an x86_64 program)
330 // 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
331 // three bits used to specify the opcode)
332 // mod == b01, opcode == b110, R/M == b100
334 // 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
336 bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
337 if (*m_cur_insn
== 0xff) {
338 // Get the 3 opcode bits from the ModR/M byte
339 uint8_t opcode
= (*(m_cur_insn
+ 1) >> 3) & 7;
341 // I'm only looking for 0xff /6 here - I
342 // don't really care what value is being pushed, just that we're pushing
343 // a 32/64 bit value on to the stack is enough.
350 // instructions only valid in 32-bit mode:
355 bool x86AssemblyInspectionEngine::push_misc_reg_p() {
356 uint8_t p
= *m_cur_insn
;
357 if (m_wordsize
== 4) {
358 if (p
== 0x0e || p
== 0x16 || p
== 0x1e || p
== 0x06)
366 bool x86AssemblyInspectionEngine::push_reg_p(int ®no
) {
367 uint8_t *p
= m_cur_insn
;
368 int regno_prefix_bit
= 0;
369 // If we have a rex prefix byte, check to see if a B bit is set
370 if (m_wordsize
== 8 && (*p
& 0xfe) == 0x40) {
371 regno_prefix_bit
= (*p
& 1) << 3;
374 if (*p
>= 0x50 && *p
<= 0x57) {
375 regno
= (*p
- 0x50) | regno_prefix_bit
;
381 // movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
382 // 0xec] or [0x89 0xe5]
383 bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
384 uint8_t *p
= m_cur_insn
;
385 if (m_wordsize
== 8 && *p
== 0x48)
387 if (*(p
) == 0x8b && *(p
+ 1) == 0xec)
389 if (*(p
) == 0x89 && *(p
+ 1) == 0xe5)
394 // movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
395 // movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
396 bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
397 uint8_t *p
= m_cur_insn
;
398 if (m_wordsize
== 8 && *p
== 0x48)
400 if (*(p
) == 0x8b && *(p
+ 1) == 0xdc)
402 if (*(p
) == 0x89 && *(p
+ 1) == 0xe3)
407 // movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
408 // movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
409 bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
410 uint8_t *p
= m_cur_insn
;
411 if (m_wordsize
== 8 && *p
== 0x48)
413 if (*(p
) == 0x8b && *(p
+ 1) == 0xe5)
415 if (*(p
) == 0x89 && *(p
+ 1) == 0xec)
420 // movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
421 // movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
422 bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
423 uint8_t *p
= m_cur_insn
;
424 if (m_wordsize
== 8 && *p
== 0x48)
426 if (*(p
) == 0x8b && *(p
+ 1) == 0xe3)
428 if (*(p
) == 0x89 && *(p
+ 1) == 0xdc)
434 bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount
) {
435 uint8_t *p
= m_cur_insn
;
436 if (m_wordsize
== 8 && *p
== 0x48)
438 // 8-bit immediate operand
439 if (*p
== 0x83 && *(p
+ 1) == 0xec) {
440 amount
= (int8_t) * (p
+ 2);
443 // 32-bit immediate operand
444 if (*p
== 0x81 && *(p
+ 1) == 0xec) {
445 amount
= (int32_t)extract_4(p
+ 2);
452 bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount
) {
453 uint8_t *p
= m_cur_insn
;
454 if (m_wordsize
== 8 && *p
== 0x48)
456 // 8-bit immediate operand
457 if (*p
== 0x83 && *(p
+ 1) == 0xc4) {
458 amount
= (int8_t) * (p
+ 2);
461 // 32-bit immediate operand
462 if (*p
== 0x81 && *(p
+ 1) == 0xc4) {
463 amount
= (int32_t)extract_4(p
+ 2);
469 // lea esp, [esp - 0x28]
470 // lea esp, [esp + 0x28]
471 bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount
) {
472 uint8_t *p
= m_cur_insn
;
473 if (m_wordsize
== 8 && *p
== 0x48)
480 // 8 bit displacement
481 if (*(p
+ 1) == 0x64 && (*(p
+ 2) & 0x3f) == 0x24) {
482 amount
= (int8_t) * (p
+ 3);
486 // 32 bit displacement
487 if (*(p
+ 1) == 0xa4 && (*(p
+ 2) & 0x3f) == 0x24) {
488 amount
= (int32_t)extract_4(p
+ 3);
495 // lea -0x28(%ebp), %esp
496 // (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
497 bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount
) {
498 uint8_t *p
= m_cur_insn
;
499 if (m_wordsize
== 8 && *p
== 0x48)
507 // 8 bit displacement
509 amount
= (int8_t)p
[1];
513 // 32 bit displacement
515 amount
= (int32_t)extract_4(p
+ 1);
522 // lea -0x28(%ebx), %esp
523 // (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
524 bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount
) {
525 uint8_t *p
= m_cur_insn
;
526 if (m_wordsize
== 8 && *p
== 0x48)
534 // 8 bit displacement
536 amount
= (int8_t)p
[1];
540 // 32 bit displacement
542 amount
= (int32_t)extract_4(p
+ 1);
549 // and -0xfffffff0, %esp
550 // (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
551 bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
552 uint8_t *p
= m_cur_insn
;
553 if (m_wordsize
== 8 && *p
== 0x48)
556 if (*p
!= 0x81 && *p
!= 0x83)
564 bool x86AssemblyInspectionEngine::pop_reg_p(int ®no
) {
565 uint8_t *p
= m_cur_insn
;
566 int regno_prefix_bit
= 0;
567 // If we have a rex prefix byte, check to see if a B bit is set
568 if (m_wordsize
== 8 && (*p
& 0xfe) == 0x40) {
569 regno_prefix_bit
= (*p
& 1) << 3;
572 if (*p
>= 0x58 && *p
<= 0x5f) {
573 regno
= (*p
- 0x58) | regno_prefix_bit
;
581 bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
582 uint8_t *p
= m_cur_insn
;
586 // instructions valid only in 32-bit mode:
590 bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
591 uint8_t p
= *m_cur_insn
;
592 if (m_wordsize
== 4) {
593 if (p
== 0x1f || p
== 0x07 || p
== 0x17)
600 bool x86AssemblyInspectionEngine::leave_pattern_p() {
601 uint8_t *p
= m_cur_insn
;
605 // call $0 [0xe8 0x0 0x0 0x0 0x0]
606 bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
607 uint8_t *p
= m_cur_insn
;
608 return (*p
== 0xe8) && (*(p
+ 1) == 0x0) && (*(p
+ 2) == 0x0) &&
609 (*(p
+ 3) == 0x0) && (*(p
+ 4) == 0x0);
612 // Look for an instruction sequence storing a nonvolatile register on to the
615 // movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
616 // movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
618 // The offset value returned in rbp_offset will be positive -- but it must be
619 // subtraced from the frame base register to get the actual location. The
620 // positive value returned for the offset is a convention used elsewhere for
621 // CFA offsets et al.
623 bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
624 int ®no
, int &rbp_offset
) {
625 uint8_t *p
= m_cur_insn
;
626 int src_reg_prefix_bit
= 0;
627 int target_reg_prefix_bit
= 0;
629 if (m_wordsize
== 8 && REX_W_PREFIX_P(*p
)) {
630 src_reg_prefix_bit
= REX_W_SRCREG(*p
) << 3;
631 target_reg_prefix_bit
= REX_W_DSTREG(*p
) << 3;
632 if (target_reg_prefix_bit
== 1) {
633 // rbp/ebp don't need a prefix bit - we know this isn't the reg we care
641 /* Mask off the 3-5 bits which indicate the destination register
642 if this is a ModR/M byte. */
643 int opcode_destreg_masked_out
= *(p
+ 1) & (~0x38);
645 /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
646 and three bits between them, e.g. 01nnn101
647 We're looking for a destination of ebp-disp8 or ebp-disp32. */
649 if (opcode_destreg_masked_out
== 0x45)
651 else if (opcode_destreg_masked_out
== 0x85)
658 offset
= (int8_t) * (p
+ 2);
660 offset
= (uint32_t)extract_4(p
+ 2);
664 regno
= ((*(p
+ 1) >> 3) & 0x7) | src_reg_prefix_bit
;
665 rbp_offset
= offset
> 0 ? offset
: -offset
;
671 // Returns true if this is a jmp instruction where we can't
672 // know the destination address statically.
676 // ff 60 28 jmpq *0x28(%rax)
677 // ff 60 60 jmpq *0x60(%rax)
678 bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
679 if (*m_cur_insn
!= 0xff)
682 // The second byte is a ModR/M /4 byte, strip off the registers
683 uint8_t second_byte_sans_reg
= *(m_cur_insn
+ 1) & ~7;
686 if (second_byte_sans_reg
== 0x20)
690 if (second_byte_sans_reg
== 0x60)
694 if (second_byte_sans_reg
== 0xa0)
698 if (second_byte_sans_reg
== 0xe0)
704 // Detect branches to fixed pc-relative offsets.
705 // Returns the offset from the address of the next instruction
706 // that may be branch/jumped to.
708 // Cannot determine the offset of a JMP that jumps to the address in
709 // a register ("jmpq *%rax") or offset from a register value
710 // ("jmpq *0x28(%rax)"), this method will return false on those
713 // These instructions all end in either a relative 8/16/32 bit value
714 // depending on the instruction and the current execution mode of the
715 // inferior process. Once we know the size of the opcode instruction,
716 // we can use the total instruction length to determine the size of
717 // the relative offset without having to compute it correctly.
719 bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
720 const int instruction_length
, int &offset
)
724 uint8_t b1
= m_cur_insn
[0];
727 case 0x77: // JA/JNBE rel8
728 case 0x73: // JAE/JNB/JNC rel8
729 case 0x72: // JB/JC/JNAE rel8
730 case 0x76: // JBE/JNA rel8
731 case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
732 case 0x74: // JE/JZ rel8
733 case 0x7f: // JG/JNLE rel8
734 case 0x7d: // JGE/JNL rel8
735 case 0x7c: // JL/JNGE rel8
736 case 0x7e: // JNG/JLE rel8
737 case 0x71: // JNO rel8
738 case 0x7b: // JNP/JPO rel8
739 case 0x79: // JNS rel8
740 case 0x75: // JNE/JNZ rel8
741 case 0x70: // JO rel8
742 case 0x7a: // JP/JPE rel8
743 case 0x78: // JS rel8
744 case 0xeb: // JMP rel8
745 case 0xe9: // JMP rel16/rel32
751 if (b1
== 0x0f && opcode_size
== 0) {
752 uint8_t b2
= m_cur_insn
[1];
754 case 0x87: // JA/JNBE rel16/rel32
755 case 0x86: // JBE/JNA rel16/rel32
756 case 0x84: // JE/JZ rel16/rel32
757 case 0x8f: // JG/JNLE rel16/rel32
758 case 0x8d: // JNL/JGE rel16/rel32
759 case 0x8e: // JLE rel16/rel32
760 case 0x82: // JB/JC/JNAE rel16/rel32
761 case 0x83: // JAE/JNB/JNC rel16/rel32
762 case 0x85: // JNE/JNZ rel16/rel32
763 case 0x8c: // JL/JNGE rel16/rel32
764 case 0x81: // JNO rel16/rel32
765 case 0x8b: // JNP/JPO rel16/rel32
766 case 0x89: // JNS rel16/rel32
767 case 0x80: // JO rel16/rel32
768 case 0x8a: // JP rel16/rel32
769 case 0x88: // JS rel16/rel32
777 if (opcode_size
== 0)
781 if (instruction_length
- opcode_size
== 1) {
782 int8_t rel8
= (int8_t) *(m_cur_insn
+ opcode_size
);
784 } else if (instruction_length
- opcode_size
== 2) {
785 int16_t rel16
= extract_2_signed (m_cur_insn
+ opcode_size
);
787 } else if (instruction_length
- opcode_size
== 4) {
788 int32_t rel32
= extract_4_signed (m_cur_insn
+ opcode_size
);
796 // Returns true if this instruction is a intra-function branch or jump -
797 // a branch/jump within the bounds of this same function.
798 // Cannot predict where a jump through a register value ("jmpq *%rax")
799 // will go, so it will return false on that instruction.
800 bool x86AssemblyInspectionEngine::local_branch_p (
801 const addr_t current_func_text_offset
,
802 const AddressRange
&func_range
,
803 const int instruction_length
,
804 addr_t
&target_insn_offset
) {
806 if (pc_rel_branch_or_jump_p (instruction_length
, offset
) && offset
!= 0) {
807 addr_t next_pc_value
= current_func_text_offset
+ instruction_length
;
808 if (offset
< 0 && addr_t(-offset
) > current_func_text_offset
) {
809 // Branch target is before the start of this function
812 if (offset
+ next_pc_value
>= func_range
.GetByteSize()) {
813 // Branch targets outside this function's bounds
816 // This instruction branches to target_insn_offset (byte offset into the function)
817 target_insn_offset
= next_pc_value
+ offset
;
823 // Returns true if this instruction is a inter-function branch or jump - a
824 // branch/jump to another function.
825 // Cannot predict where a jump through a register value ("jmpq *%rax")
826 // will go, so it will return false on that instruction.
827 bool x86AssemblyInspectionEngine::non_local_branch_p (
828 const addr_t current_func_text_offset
,
829 const AddressRange
&func_range
,
830 const int instruction_length
) {
832 addr_t target_insn_offset
;
833 if (pc_rel_branch_or_jump_p (instruction_length
, offset
)) {
834 return !local_branch_p(current_func_text_offset
,func_range
,instruction_length
,target_insn_offset
);
839 // ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
840 bool x86AssemblyInspectionEngine::ret_pattern_p() {
841 uint8_t *p
= m_cur_insn
;
842 return *p
== 0xc3 || *p
== 0xc2 || *p
== 0xca || *p
== 0xcb;
845 uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b
) {
847 for (int i
= 1; i
>= 0; i
--)
852 int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b
) {
854 for (int i
= 1; i
>= 0; i
--)
859 uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b
) {
861 for (int i
= 3; i
>= 0; i
--)
866 int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b
) {
868 for (int i
= 3; i
>= 0; i
--)
874 bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p
,
876 uint32_t buffer_remaining_bytes
) {
878 uint32_t max_op_byte_size
= std::min(buffer_remaining_bytes
, m_arch
.GetMaximumOpcodeByteSize());
879 llvm::SmallVector
<uint8_t, 32> opcode_data
;
880 opcode_data
.resize(max_op_byte_size
);
882 char out_string
[512];
883 const size_t inst_size
=
884 ::LLVMDisasmInstruction(m_disasm_context
, insn_p
, max_op_byte_size
, 0,
885 out_string
, sizeof(out_string
));
891 bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
892 int machine_regno
, uint32_t &lldb_regno
) {
893 MachineRegnumToNameAndLLDBRegnum::iterator it
= m_reg_map
.find(machine_regno
);
894 if (it
!= m_reg_map
.end()) {
895 lldb_regno
= it
->second
.lldb_regnum
;
901 bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
902 uint8_t *data
, size_t size
, AddressRange
&func_range
,
903 UnwindPlan
&unwind_plan
) {
906 if (data
== nullptr || size
== 0)
909 if (!m_register_map_initialized
)
912 if (m_disasm_context
== nullptr)
915 addr_t current_func_text_offset
= 0;
916 int current_sp_bytes_offset_from_fa
= 0;
917 bool is_aligned
= false;
918 UnwindPlan::Row::AbstractRegisterLocation initial_regloc
;
919 UnwindPlan::RowSP
row(new UnwindPlan::Row
);
921 unwind_plan
.SetPlanValidAddressRange(func_range
);
922 unwind_plan
.SetRegisterKind(eRegisterKindLLDB
);
924 // At the start of the function, find the CFA by adding wordsize to the SP
926 row
->SetOffset(current_func_text_offset
);
927 row
->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum
, m_wordsize
);
929 // caller's stack pointer value before the call insn is the CFA address
930 initial_regloc
.SetIsCFAPlusOffset(0);
931 row
->SetRegisterInfo(m_lldb_sp_regnum
, initial_regloc
);
933 // saved instruction pointer can be found at CFA - wordsize.
934 current_sp_bytes_offset_from_fa
= m_wordsize
;
935 initial_regloc
.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa
);
936 row
->SetRegisterInfo(m_lldb_ip_regnum
, initial_regloc
);
938 unwind_plan
.AppendRow(row
);
940 // Allocate a new Row, populate it with the existing Row contents.
941 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
942 *newrow
= *row
.get();
945 // Track which registers have been saved so far in the prologue. If we see
946 // another push of that register, it's not part of the prologue. The register
947 // numbers used here are the machine register #'s (i386_register_numbers,
948 // x86_64_register_numbers).
949 std::vector
<bool> saved_registers(32, false);
951 // Once the prologue has completed we'll save a copy of the unwind
952 // instructions If there is an epilogue in the middle of the function, after
953 // that epilogue we'll reinstate the unwind setup -- we assume that some code
954 // path jumps over the mid-function epilogue
956 UnwindPlan::RowSP prologue_completed_row
; // copy of prologue row of CFI
957 int prologue_completed_sp_bytes_offset_from_cfa
= 0; // The sp value before the
958 // epilogue started executed
959 bool prologue_completed_is_aligned
= false;
960 std::vector
<bool> prologue_completed_saved_registers
;
962 while (current_func_text_offset
< size
) {
963 int stack_offset
, insn_len
;
964 int machine_regno
; // register numbers masked directly out of instructions
965 uint32_t lldb_regno
; // register numbers in lldb's eRegisterKindLLDB
968 bool in_epilogue
= false; // we're in the middle of an epilogue sequence
969 bool row_updated
= false; // The UnwindPlan::Row 'row' has been updated
970 bool current_sp_offset_updated
=
971 false; // current_sp_bytes_offset_from_fa has been updated this insn
973 m_cur_insn
= data
+ current_func_text_offset
;
974 if (!instruction_length(m_cur_insn
, insn_len
, size
- current_func_text_offset
)
976 || insn_len
> kMaxInstructionByteSize
) {
977 // An unrecognized/junk instruction
981 auto &cfa_value
= row
->GetCFAValue();
982 auto &afa_value
= row
->GetAFAValue();
983 auto fa_value_ptr
= is_aligned
? &afa_value
: &cfa_value
;
985 if (mov_rsp_rbp_pattern_p()) {
986 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
987 fa_value_ptr
->SetIsRegisterPlusOffset(
988 m_lldb_fp_regnum
, fa_value_ptr
->GetOffset());
993 else if (mov_rsp_rbx_pattern_p()) {
994 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
995 fa_value_ptr
->SetIsRegisterPlusOffset(
996 m_lldb_alt_fp_regnum
, fa_value_ptr
->GetOffset());
1001 else if (and_rsp_pattern_p()) {
1002 current_sp_bytes_offset_from_fa
= 0;
1003 afa_value
.SetIsRegisterPlusOffset(
1004 m_lldb_sp_regnum
, current_sp_bytes_offset_from_fa
);
1005 fa_value_ptr
= &afa_value
;
1010 else if (mov_rbp_rsp_pattern_p()) {
1011 if (is_aligned
&& cfa_value
.GetRegisterNumber() == m_lldb_fp_regnum
)
1014 fa_value_ptr
= &cfa_value
;
1015 afa_value
.SetUnspecified();
1018 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_fp_regnum
) {
1019 current_sp_bytes_offset_from_fa
= fa_value_ptr
->GetOffset();
1020 current_sp_offset_updated
= true;
1024 else if (mov_rbx_rsp_pattern_p()) {
1025 if (is_aligned
&& cfa_value
.GetRegisterNumber() == m_lldb_alt_fp_regnum
)
1028 fa_value_ptr
= &cfa_value
;
1029 afa_value
.SetUnspecified();
1032 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_alt_fp_regnum
) {
1033 current_sp_bytes_offset_from_fa
= fa_value_ptr
->GetOffset();
1034 current_sp_offset_updated
= true;
1038 // This is the start() function (or a pthread equivalent), it starts with a
1039 // pushl $0x0 which puts the saved pc value of 0 on the stack. In this
1040 // case we want to pretend we didn't see a stack movement at all --
1041 // normally the saved pc value is already on the stack by the time the
1042 // function starts executing.
1043 else if (push_0_pattern_p()) {
1046 else if (push_reg_p(machine_regno
)) {
1047 current_sp_bytes_offset_from_fa
+= m_wordsize
;
1048 current_sp_offset_updated
= true;
1049 // the PUSH instruction has moved the stack pointer - if the FA is set
1050 // in terms of the stack pointer, we need to add a new row of
1052 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1053 fa_value_ptr
->SetOffset(current_sp_bytes_offset_from_fa
);
1056 // record where non-volatile (callee-saved, spilled) registers are saved
1058 if (nonvolatile_reg_p(machine_regno
) &&
1059 machine_regno_to_lldb_regno(machine_regno
, lldb_regno
) &&
1060 !saved_registers
[machine_regno
]) {
1061 UnwindPlan::Row::AbstractRegisterLocation regloc
;
1063 regloc
.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa
);
1065 regloc
.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa
);
1066 row
->SetRegisterInfo(lldb_regno
, regloc
);
1067 saved_registers
[machine_regno
] = true;
1072 else if (pop_reg_p(machine_regno
)) {
1073 current_sp_bytes_offset_from_fa
-= m_wordsize
;
1074 current_sp_offset_updated
= true;
1076 if (nonvolatile_reg_p(machine_regno
) &&
1077 machine_regno_to_lldb_regno(machine_regno
, lldb_regno
) &&
1078 saved_registers
[machine_regno
]) {
1079 saved_registers
[machine_regno
] = false;
1080 row
->RemoveRegisterInfo(lldb_regno
);
1082 if (lldb_regno
== fa_value_ptr
->GetRegisterNumber()) {
1083 fa_value_ptr
->SetIsRegisterPlusOffset(
1084 m_lldb_sp_regnum
, fa_value_ptr
->GetOffset());
1091 // the POP instruction has moved the stack pointer - if the FA is set in
1092 // terms of the stack pointer, we need to add a new row of instructions.
1093 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1094 fa_value_ptr
->SetIsRegisterPlusOffset(
1095 m_lldb_sp_regnum
, current_sp_bytes_offset_from_fa
);
1100 else if (pop_misc_reg_p()) {
1101 current_sp_bytes_offset_from_fa
-= m_wordsize
;
1102 current_sp_offset_updated
= true;
1103 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1104 fa_value_ptr
->SetIsRegisterPlusOffset(
1105 m_lldb_sp_regnum
, current_sp_bytes_offset_from_fa
);
1110 // The LEAVE instruction moves the value from rbp into rsp and pops a value
1111 // off the stack into rbp (restoring the caller's rbp value). It is the
1112 // opposite of ENTER, or 'push rbp, mov rsp rbp'.
1113 else if (leave_pattern_p()) {
1114 if (saved_registers
[m_machine_fp_regnum
]) {
1115 saved_registers
[m_machine_fp_regnum
] = false;
1116 row
->RemoveRegisterInfo(m_lldb_fp_regnum
);
1121 if (is_aligned
&& cfa_value
.GetRegisterNumber() == m_lldb_fp_regnum
)
1124 fa_value_ptr
= &cfa_value
;
1125 afa_value
.SetUnspecified();
1129 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_fp_regnum
)
1131 fa_value_ptr
->SetIsRegisterPlusOffset(
1132 m_lldb_sp_regnum
, fa_value_ptr
->GetOffset());
1134 current_sp_bytes_offset_from_fa
= fa_value_ptr
->GetOffset();
1137 current_sp_bytes_offset_from_fa
-= m_wordsize
;
1138 current_sp_offset_updated
= true;
1140 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1141 fa_value_ptr
->SetIsRegisterPlusOffset(
1142 m_lldb_sp_regnum
, current_sp_bytes_offset_from_fa
);
1149 else if (mov_reg_to_local_stack_frame_p(machine_regno
, stack_offset
) &&
1150 nonvolatile_reg_p(machine_regno
) &&
1151 machine_regno_to_lldb_regno(machine_regno
, lldb_regno
) &&
1152 !saved_registers
[machine_regno
]) {
1153 saved_registers
[machine_regno
] = true;
1155 UnwindPlan::Row::AbstractRegisterLocation regloc
;
1157 // stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
1158 // want to express this as the offset from the FA. If the frame base is
1159 // rbp (like the above instruction), the FA offset for rbp is probably
1160 // 16. So we want to say that the value is stored at the FA address -
1163 regloc
.SetAtAFAPlusOffset(-(stack_offset
+ fa_value_ptr
->GetOffset()));
1165 regloc
.SetAtCFAPlusOffset(-(stack_offset
+ fa_value_ptr
->GetOffset()));
1167 row
->SetRegisterInfo(lldb_regno
, regloc
);
1172 else if (sub_rsp_pattern_p(stack_offset
)) {
1173 current_sp_bytes_offset_from_fa
+= stack_offset
;
1174 current_sp_offset_updated
= true;
1175 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1176 fa_value_ptr
->SetOffset(current_sp_bytes_offset_from_fa
);
1181 else if (add_rsp_pattern_p(stack_offset
)) {
1182 current_sp_bytes_offset_from_fa
-= stack_offset
;
1183 current_sp_offset_updated
= true;
1184 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1185 fa_value_ptr
->SetOffset(current_sp_bytes_offset_from_fa
);
1191 else if (push_extended_pattern_p() || push_imm_pattern_p() ||
1192 push_misc_reg_p()) {
1193 current_sp_bytes_offset_from_fa
+= m_wordsize
;
1194 current_sp_offset_updated
= true;
1195 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1196 fa_value_ptr
->SetOffset(current_sp_bytes_offset_from_fa
);
1201 else if (lea_rsp_pattern_p(stack_offset
)) {
1202 current_sp_bytes_offset_from_fa
-= stack_offset
;
1203 current_sp_offset_updated
= true;
1204 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1205 fa_value_ptr
->SetOffset(current_sp_bytes_offset_from_fa
);
1208 if (stack_offset
> 0)
1212 else if (lea_rbp_rsp_pattern_p(stack_offset
)) {
1214 cfa_value
.GetRegisterNumber() == m_lldb_fp_regnum
) {
1216 fa_value_ptr
= &cfa_value
;
1217 afa_value
.SetUnspecified();
1220 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_fp_regnum
) {
1221 current_sp_bytes_offset_from_fa
=
1222 fa_value_ptr
->GetOffset() - stack_offset
;
1223 current_sp_offset_updated
= true;
1227 else if (lea_rbx_rsp_pattern_p(stack_offset
)) {
1229 cfa_value
.GetRegisterNumber() == m_lldb_alt_fp_regnum
) {
1231 fa_value_ptr
= &cfa_value
;
1232 afa_value
.SetUnspecified();
1235 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_alt_fp_regnum
) {
1236 current_sp_bytes_offset_from_fa
= fa_value_ptr
->GetOffset() - stack_offset
;
1237 current_sp_offset_updated
= true;
1241 else if (prologue_completed_row
.get() &&
1243 non_local_branch_p (current_func_text_offset
, func_range
, insn_len
) ||
1245 // Check if the current instruction is the end of an epilogue sequence,
1246 // and if so, re-instate the prologue-completed unwind state.
1248 // The current instruction is a branch/jump outside this function,
1249 // a ret, or a jump through a register value which we cannot
1250 // determine the effcts of. Verify that the stack frame state
1251 // has been unwound to the same as it was at function entry to avoid
1252 // mis-identifying a JMP instruction as an epilogue.
1253 UnwindPlan::Row::AbstractRegisterLocation sp
, pc
;
1254 if (row
->GetRegisterInfo(m_lldb_sp_regnum
, sp
) &&
1255 row
->GetRegisterInfo(m_lldb_ip_regnum
, pc
)) {
1256 // Any ret instruction variant is definitely indicative of an
1257 // epilogue; for other insn patterns verify that we're back to
1258 // the original unwind state.
1259 if (ret_pattern_p() ||
1260 (sp
.IsCFAPlusOffset() && sp
.GetOffset() == 0 &&
1261 pc
.IsAtCFAPlusOffset() && pc
.GetOffset() == -m_wordsize
)) {
1262 // Reinstate the saved prologue setup for any instructions that come
1263 // after the epilogue
1265 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
1266 *newrow
= *prologue_completed_row
.get();
1268 current_sp_bytes_offset_from_fa
=
1269 prologue_completed_sp_bytes_offset_from_cfa
;
1270 current_sp_offset_updated
= true;
1271 is_aligned
= prologue_completed_is_aligned
;
1273 saved_registers
.clear();
1274 saved_registers
.resize(prologue_completed_saved_registers
.size(), false);
1275 for (size_t i
= 0; i
< prologue_completed_saved_registers
.size(); ++i
) {
1276 saved_registers
[i
] = prologue_completed_saved_registers
[i
];
1285 // call next instruction
1288 // This is used in i386 programs to get the PIC base address for finding
1290 else if (call_next_insn_pattern_p()) {
1291 current_sp_bytes_offset_from_fa
+= m_wordsize
;
1292 current_sp_offset_updated
= true;
1293 if (fa_value_ptr
->GetRegisterNumber() == m_lldb_sp_regnum
) {
1294 fa_value_ptr
->SetOffset(current_sp_bytes_offset_from_fa
);
1300 if (current_func_text_offset
+ insn_len
< size
) {
1301 row
->SetOffset(current_func_text_offset
+ insn_len
);
1302 unwind_plan
.AppendRow(row
);
1303 // Allocate a new Row, populate it with the existing Row contents.
1304 newrow
= new UnwindPlan::Row
;
1305 *newrow
= *row
.get();
1310 if (!in_epilogue
&& row_updated
) {
1311 // If we're not in an epilogue sequence, save the updated Row
1312 UnwindPlan::Row
*newrow
= new UnwindPlan::Row
;
1313 *newrow
= *row
.get();
1314 prologue_completed_row
.reset(newrow
);
1316 prologue_completed_saved_registers
.clear();
1317 prologue_completed_saved_registers
.resize(saved_registers
.size(), false);
1318 for (size_t i
= 0; i
< saved_registers
.size(); ++i
) {
1319 prologue_completed_saved_registers
[i
] = saved_registers
[i
];
1323 // We may change the sp value without adding a new Row necessarily -- keep
1324 // track of it either way.
1325 if (!in_epilogue
&& current_sp_offset_updated
) {
1326 prologue_completed_sp_bytes_offset_from_cfa
=
1327 current_sp_bytes_offset_from_fa
;
1328 prologue_completed_is_aligned
= is_aligned
;
1331 m_cur_insn
= m_cur_insn
+ insn_len
;
1332 current_func_text_offset
+= insn_len
;
1335 unwind_plan
.SetSourceName("assembly insn profiling");
1336 unwind_plan
.SetSourcedFromCompiler(eLazyBoolNo
);
1337 unwind_plan
.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes
);
1338 unwind_plan
.SetUnwindPlanForSignalTrap(eLazyBoolNo
);
1343 bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
1344 uint8_t *data
, size_t size
, AddressRange
&func_range
,
1345 UnwindPlan
&unwind_plan
, RegisterContextSP
®_ctx
) {
1346 Address addr_start
= func_range
.GetBaseAddress();
1347 if (!addr_start
.IsValid())
1350 // We either need a live RegisterContext, or we need the UnwindPlan to
1351 // already be in the lldb register numbering scheme.
1352 if (reg_ctx
.get() == nullptr &&
1353 unwind_plan
.GetRegisterKind() != eRegisterKindLLDB
)
1356 // Is original unwind_plan valid?
1357 // unwind_plan should have at least one row which is ABI-default (CFA
1358 // register is sp), and another row in mid-function.
1359 if (unwind_plan
.GetRowCount() < 2)
1362 UnwindPlan::RowSP first_row
= unwind_plan
.GetRowAtIndex(0);
1363 if (first_row
->GetOffset() != 0)
1365 uint32_t cfa_reg
= first_row
->GetCFAValue().GetRegisterNumber();
1366 if (unwind_plan
.GetRegisterKind() != eRegisterKindLLDB
) {
1367 cfa_reg
= reg_ctx
->ConvertRegisterKindToRegisterNumber(
1368 unwind_plan
.GetRegisterKind(),
1369 first_row
->GetCFAValue().GetRegisterNumber());
1371 if (cfa_reg
!= m_lldb_sp_regnum
||
1372 first_row
->GetCFAValue().GetOffset() != m_wordsize
)
1375 UnwindPlan::RowSP original_last_row
= unwind_plan
.GetRowForFunctionOffset(-1);
1379 bool unwind_plan_updated
= false;
1380 UnwindPlan::RowSP
row(new UnwindPlan::Row(*first_row
));
1382 // After a mid-function epilogue we will need to re-insert the original
1383 // unwind rules so unwinds work for the remainder of the function. These
1384 // aren't common with clang/gcc on x86 but it is possible.
1385 bool reinstate_unwind_state
= false;
1387 while (offset
< size
) {
1388 m_cur_insn
= data
+ offset
;
1390 if (!instruction_length(m_cur_insn
, insn_len
, size
- offset
) ||
1391 insn_len
== 0 || insn_len
> kMaxInstructionByteSize
) {
1392 // An unrecognized/junk instruction.
1399 // offset is pointing beyond the bounds of the function; stop looping.
1403 if (reinstate_unwind_state
) {
1404 UnwindPlan::RowSP
new_row(new UnwindPlan::Row());
1405 *new_row
= *original_last_row
;
1406 new_row
->SetOffset(offset
);
1407 unwind_plan
.AppendRow(new_row
);
1408 row
= std::make_shared
<UnwindPlan::Row
>();
1410 reinstate_unwind_state
= false;
1411 unwind_plan_updated
= true;
1415 // If we already have one row for this instruction, we can continue.
1416 while (row_id
< unwind_plan
.GetRowCount() &&
1417 unwind_plan
.GetRowAtIndex(row_id
)->GetOffset() <= offset
) {
1420 UnwindPlan::RowSP original_row
= unwind_plan
.GetRowAtIndex(row_id
- 1);
1421 if (original_row
->GetOffset() == offset
) {
1422 *row
= *original_row
;
1427 // If we are here, compiler didn't generate CFI for prologue. This won't
1428 // happen to GCC or clang. In this case, bail out directly.
1432 // Inspect the instruction to check if we need a new row for it.
1433 cfa_reg
= row
->GetCFAValue().GetRegisterNumber();
1434 if (unwind_plan
.GetRegisterKind() != eRegisterKindLLDB
) {
1435 cfa_reg
= reg_ctx
->ConvertRegisterKindToRegisterNumber(
1436 unwind_plan
.GetRegisterKind(),
1437 row
->GetCFAValue().GetRegisterNumber());
1439 if (cfa_reg
== m_lldb_sp_regnum
) {
1440 // CFA register is sp.
1442 // call next instruction
1445 if (call_next_insn_pattern_p()) {
1446 row
->SetOffset(offset
);
1447 row
->GetCFAValue().IncOffset(m_wordsize
);
1449 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1450 unwind_plan
.InsertRow(new_row
);
1451 unwind_plan_updated
= true;
1455 // push/pop register
1457 if (push_reg_p(regno
)) {
1458 row
->SetOffset(offset
);
1459 row
->GetCFAValue().IncOffset(m_wordsize
);
1461 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1462 unwind_plan
.InsertRow(new_row
);
1463 unwind_plan_updated
= true;
1466 if (pop_reg_p(regno
)) {
1467 // Technically, this might be a nonvolatile register recover in
1468 // epilogue. We should reset RegisterInfo for the register. But in
1469 // practice, previous rule for the register is still valid... So we
1470 // ignore this case.
1472 row
->SetOffset(offset
);
1473 row
->GetCFAValue().IncOffset(-m_wordsize
);
1475 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1476 unwind_plan
.InsertRow(new_row
);
1477 unwind_plan_updated
= true;
1481 if (pop_misc_reg_p()) {
1482 row
->SetOffset(offset
);
1483 row
->GetCFAValue().IncOffset(-m_wordsize
);
1485 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1486 unwind_plan
.InsertRow(new_row
);
1487 unwind_plan_updated
= true;
1492 if (push_imm_pattern_p()) {
1493 row
->SetOffset(offset
);
1494 row
->GetCFAValue().IncOffset(m_wordsize
);
1495 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1496 unwind_plan
.InsertRow(new_row
);
1497 unwind_plan_updated
= true;
1502 if (push_extended_pattern_p() || push_misc_reg_p()) {
1503 row
->SetOffset(offset
);
1504 row
->GetCFAValue().IncOffset(m_wordsize
);
1505 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1506 unwind_plan
.InsertRow(new_row
);
1507 unwind_plan_updated
= true;
1511 // add/sub %rsp/%esp
1513 if (add_rsp_pattern_p(amount
)) {
1514 row
->SetOffset(offset
);
1515 row
->GetCFAValue().IncOffset(-amount
);
1517 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1518 unwind_plan
.InsertRow(new_row
);
1519 unwind_plan_updated
= true;
1522 if (sub_rsp_pattern_p(amount
)) {
1523 row
->SetOffset(offset
);
1524 row
->GetCFAValue().IncOffset(amount
);
1526 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1527 unwind_plan
.InsertRow(new_row
);
1528 unwind_plan_updated
= true;
1532 // lea %rsp, [%rsp + $offset]
1533 if (lea_rsp_pattern_p(amount
)) {
1534 row
->SetOffset(offset
);
1535 row
->GetCFAValue().IncOffset(-amount
);
1537 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1538 unwind_plan
.InsertRow(new_row
);
1539 unwind_plan_updated
= true;
1543 if (ret_pattern_p()) {
1544 reinstate_unwind_state
= true;
1547 } else if (cfa_reg
== m_lldb_fp_regnum
) {
1548 // CFA register is fp.
1550 // The only case we care about is epilogue:
1551 // [0x5d] pop %rbp/%ebp
1553 if (pop_rbp_pattern_p() || leave_pattern_p()) {
1555 if (ret_pattern_p()) {
1556 row
->SetOffset(offset
);
1557 row
->GetCFAValue().SetIsRegisterPlusOffset(
1558 first_row
->GetCFAValue().GetRegisterNumber(), m_wordsize
);
1560 UnwindPlan::RowSP
new_row(new UnwindPlan::Row(*row
));
1561 unwind_plan
.InsertRow(new_row
);
1562 unwind_plan_updated
= true;
1563 reinstate_unwind_state
= true;
1568 // CFA register is not sp or fp.
1570 // This must be hand-written assembly.
1571 // Just trust eh_frame and assume we have finished.
1576 unwind_plan
.SetPlanValidAddressRange(func_range
);
1577 if (unwind_plan_updated
) {
1578 std::string
unwind_plan_source(unwind_plan
.GetSourceName().AsCString());
1579 unwind_plan_source
+= " plus augmentation from assembly parsing";
1580 unwind_plan
.SetSourceName(unwind_plan_source
.c_str());
1581 unwind_plan
.SetSourcedFromCompiler(eLazyBoolNo
);
1582 unwind_plan
.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes
);
1587 bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
1588 uint8_t *data
, size_t size
, size_t &offset
) {
1591 if (!m_register_map_initialized
)
1594 if (m_disasm_context
== nullptr)
1597 while (offset
< size
) {
1602 m_cur_insn
= data
+ offset
;
1603 if (!instruction_length(m_cur_insn
, insn_len
, size
- offset
)
1604 || insn_len
> kMaxInstructionByteSize
1606 // An error parsing the instruction, i.e. probably data/garbage - stop
1611 if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
1612 sub_rsp_pattern_p(scratch
) || push_reg_p(regno
) ||
1613 mov_reg_to_local_stack_frame_p(regno
, scratch
) ||
1614 (lea_rsp_pattern_p(scratch
) && offset
== 0)) {
1619 // Unknown non-prologue instruction - stop scanning