[libc] Switch to using the generic `<gpuintrin.h>` implementations (#121810)
[llvm-project.git] / lldb / source / Target / Process.cpp
blob68485a40a3fcce2921b5fac4e1a6d280ea71c127
1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 #include <optional>
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Support/ScopedPrinter.h"
16 #include "llvm/Support/Threading.h"
18 #include "lldb/Breakpoint/BreakpointLocation.h"
19 #include "lldb/Breakpoint/StoppointCallbackContext.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/Module.h"
22 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/PluginManager.h"
24 #include "lldb/Core/Progress.h"
25 #include "lldb/Expression/DiagnosticManager.h"
26 #include "lldb/Expression/DynamicCheckerFunctions.h"
27 #include "lldb/Expression/UserExpression.h"
28 #include "lldb/Expression/UtilityFunction.h"
29 #include "lldb/Host/ConnectionFileDescriptor.h"
30 #include "lldb/Host/FileSystem.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostInfo.h"
33 #include "lldb/Host/OptionParser.h"
34 #include "lldb/Host/Pipe.h"
35 #include "lldb/Host/Terminal.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Interpreter/CommandInterpreter.h"
38 #include "lldb/Interpreter/OptionArgParser.h"
39 #include "lldb/Interpreter/OptionValueProperties.h"
40 #include "lldb/Symbol/Function.h"
41 #include "lldb/Symbol/Symbol.h"
42 #include "lldb/Target/ABI.h"
43 #include "lldb/Target/AssertFrameRecognizer.h"
44 #include "lldb/Target/DynamicLoader.h"
45 #include "lldb/Target/InstrumentationRuntime.h"
46 #include "lldb/Target/JITLoader.h"
47 #include "lldb/Target/JITLoaderList.h"
48 #include "lldb/Target/Language.h"
49 #include "lldb/Target/LanguageRuntime.h"
50 #include "lldb/Target/MemoryHistory.h"
51 #include "lldb/Target/MemoryRegionInfo.h"
52 #include "lldb/Target/OperatingSystem.h"
53 #include "lldb/Target/Platform.h"
54 #include "lldb/Target/Process.h"
55 #include "lldb/Target/RegisterContext.h"
56 #include "lldb/Target/StopInfo.h"
57 #include "lldb/Target/StructuredDataPlugin.h"
58 #include "lldb/Target/SystemRuntime.h"
59 #include "lldb/Target/Target.h"
60 #include "lldb/Target/TargetList.h"
61 #include "lldb/Target/Thread.h"
62 #include "lldb/Target/ThreadPlan.h"
63 #include "lldb/Target/ThreadPlanBase.h"
64 #include "lldb/Target/ThreadPlanCallFunction.h"
65 #include "lldb/Target/ThreadPlanStack.h"
66 #include "lldb/Target/UnixSignals.h"
67 #include "lldb/Target/VerboseTrapFrameRecognizer.h"
68 #include "lldb/Utility/AddressableBits.h"
69 #include "lldb/Utility/Event.h"
70 #include "lldb/Utility/LLDBLog.h"
71 #include "lldb/Utility/Log.h"
72 #include "lldb/Utility/NameMatches.h"
73 #include "lldb/Utility/ProcessInfo.h"
74 #include "lldb/Utility/SelectHelper.h"
75 #include "lldb/Utility/State.h"
76 #include "lldb/Utility/Timer.h"
78 using namespace lldb;
79 using namespace lldb_private;
80 using namespace std::chrono;
82 // Comment out line below to disable memory caching, overriding the process
83 // setting target.process.disable-memory-cache
84 #define ENABLE_MEMORY_CACHING
86 #ifdef ENABLE_MEMORY_CACHING
87 #define DISABLE_MEM_CACHE_DEFAULT false
88 #else
89 #define DISABLE_MEM_CACHE_DEFAULT true
90 #endif
92 class ProcessOptionValueProperties
93 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
94 public:
95 ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
97 const Property *
98 GetPropertyAtIndex(size_t idx,
99 const ExecutionContext *exe_ctx) const override {
100 // When getting the value for a key from the process options, we will
101 // always try and grab the setting from the current process if there is
102 // one. Else we just use the one from this instance.
103 if (exe_ctx) {
104 Process *process = exe_ctx->GetProcessPtr();
105 if (process) {
106 ProcessOptionValueProperties *instance_properties =
107 static_cast<ProcessOptionValueProperties *>(
108 process->GetValueProperties().get());
109 if (this != instance_properties)
110 return instance_properties->ProtectedGetPropertyAtIndex(idx);
113 return ProtectedGetPropertyAtIndex(idx);
117 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
119 eFollowParent,
120 "parent",
121 "Continue tracing the parent process and detach the child.",
124 eFollowChild,
125 "child",
126 "Trace the child process and detach the parent.",
130 #define LLDB_PROPERTIES_process
131 #include "TargetProperties.inc"
133 enum {
134 #define LLDB_PROPERTIES_process
135 #include "TargetPropertiesEnum.inc"
136 ePropertyExperimental,
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetProperties.inc"
142 enum {
143 #define LLDB_PROPERTIES_process_experimental
144 #include "TargetPropertiesEnum.inc"
147 class ProcessExperimentalOptionValueProperties
148 : public Cloneable<ProcessExperimentalOptionValueProperties,
149 OptionValueProperties> {
150 public:
151 ProcessExperimentalOptionValueProperties()
152 : Cloneable(Properties::GetExperimentalSettingsName()) {}
155 ProcessExperimentalProperties::ProcessExperimentalProperties()
156 : Properties(OptionValuePropertiesSP(
157 new ProcessExperimentalOptionValueProperties())) {
158 m_collection_sp->Initialize(g_process_experimental_properties);
161 ProcessProperties::ProcessProperties(lldb_private::Process *process)
162 : Properties(),
163 m_process(process) // Can be nullptr for global ProcessProperties
165 if (process == nullptr) {
166 // Global process properties, set them up one time
167 m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
168 m_collection_sp->Initialize(g_process_properties);
169 m_collection_sp->AppendProperty(
170 "thread", "Settings specific to threads.", true,
171 Thread::GetGlobalProperties().GetValueProperties());
172 } else {
173 m_collection_sp =
174 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
175 m_collection_sp->SetValueChangedCallback(
176 ePropertyPythonOSPluginPath,
177 [this] { m_process->LoadOperatingSystemPlugin(true); });
180 m_experimental_properties_up =
181 std::make_unique<ProcessExperimentalProperties>();
182 m_collection_sp->AppendProperty(
183 Properties::GetExperimentalSettingsName(),
184 "Experimental settings - setting these won't produce "
185 "errors if the setting is not present.",
186 true, m_experimental_properties_up->GetValueProperties());
189 ProcessProperties::~ProcessProperties() = default;
191 bool ProcessProperties::GetDisableMemoryCache() const {
192 const uint32_t idx = ePropertyDisableMemCache;
193 return GetPropertyAtIndexAs<bool>(
194 idx, g_process_properties[idx].default_uint_value != 0);
197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
198 const uint32_t idx = ePropertyMemCacheLineSize;
199 return GetPropertyAtIndexAs<uint64_t>(
200 idx, g_process_properties[idx].default_uint_value);
203 Args ProcessProperties::GetExtraStartupCommands() const {
204 Args args;
205 const uint32_t idx = ePropertyExtraStartCommand;
206 m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
207 return args;
210 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
211 const uint32_t idx = ePropertyExtraStartCommand;
212 m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
215 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
216 const uint32_t idx = ePropertyPythonOSPluginPath;
217 return GetPropertyAtIndexAs<FileSpec>(idx, {});
220 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
221 const uint32_t idx = ePropertyVirtualAddressableBits;
222 return GetPropertyAtIndexAs<uint64_t>(
223 idx, g_process_properties[idx].default_uint_value);
226 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
227 const uint32_t idx = ePropertyVirtualAddressableBits;
228 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
231 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
232 const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
233 return GetPropertyAtIndexAs<uint64_t>(
234 idx, g_process_properties[idx].default_uint_value);
237 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) {
238 const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
239 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
242 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
243 const uint32_t idx = ePropertyPythonOSPluginPath;
244 SetPropertyAtIndex(idx, file);
247 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
248 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
249 return GetPropertyAtIndexAs<bool>(
250 idx, g_process_properties[idx].default_uint_value != 0);
253 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
254 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
255 SetPropertyAtIndex(idx, ignore);
258 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
259 const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
260 return GetPropertyAtIndexAs<bool>(
261 idx, g_process_properties[idx].default_uint_value != 0);
264 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
265 const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
266 SetPropertyAtIndex(idx, ignore);
269 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
270 const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
271 return GetPropertyAtIndexAs<bool>(
272 idx, g_process_properties[idx].default_uint_value != 0);
275 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
276 const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
277 SetPropertyAtIndex(idx, stop);
280 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
281 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
282 return GetPropertyAtIndexAs<bool>(
283 idx, g_process_properties[idx].default_uint_value != 0);
286 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
287 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
288 SetPropertyAtIndex(idx, disable);
289 m_process->Flush();
292 bool ProcessProperties::GetDetachKeepsStopped() const {
293 const uint32_t idx = ePropertyDetachKeepsStopped;
294 return GetPropertyAtIndexAs<bool>(
295 idx, g_process_properties[idx].default_uint_value != 0);
298 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
299 const uint32_t idx = ePropertyDetachKeepsStopped;
300 SetPropertyAtIndex(idx, stop);
303 bool ProcessProperties::GetWarningsOptimization() const {
304 const uint32_t idx = ePropertyWarningOptimization;
305 return GetPropertyAtIndexAs<bool>(
306 idx, g_process_properties[idx].default_uint_value != 0);
309 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
310 const uint32_t idx = ePropertyWarningUnsupportedLanguage;
311 return GetPropertyAtIndexAs<bool>(
312 idx, g_process_properties[idx].default_uint_value != 0);
315 bool ProcessProperties::GetStopOnExec() const {
316 const uint32_t idx = ePropertyStopOnExec;
317 return GetPropertyAtIndexAs<bool>(
318 idx, g_process_properties[idx].default_uint_value != 0);
321 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
322 const uint32_t idx = ePropertyUtilityExpressionTimeout;
323 uint64_t value = GetPropertyAtIndexAs<uint64_t>(
324 idx, g_process_properties[idx].default_uint_value);
325 return std::chrono::seconds(value);
328 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
329 const uint32_t idx = ePropertyInterruptTimeout;
330 uint64_t value = GetPropertyAtIndexAs<uint64_t>(
331 idx, g_process_properties[idx].default_uint_value);
332 return std::chrono::seconds(value);
335 bool ProcessProperties::GetSteppingRunsAllThreads() const {
336 const uint32_t idx = ePropertySteppingRunsAllThreads;
337 return GetPropertyAtIndexAs<bool>(
338 idx, g_process_properties[idx].default_uint_value != 0);
341 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
342 const bool fail_value = true;
343 const Property *exp_property =
344 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
345 OptionValueProperties *exp_values =
346 exp_property->GetValue()->GetAsProperties();
347 if (!exp_values)
348 return fail_value;
350 return exp_values
351 ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
352 .value_or(fail_value);
355 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
356 const Property *exp_property =
357 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
358 OptionValueProperties *exp_values =
359 exp_property->GetValue()->GetAsProperties();
360 if (exp_values)
361 exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
362 does_report);
365 FollowForkMode ProcessProperties::GetFollowForkMode() const {
366 const uint32_t idx = ePropertyFollowForkMode;
367 return GetPropertyAtIndexAs<FollowForkMode>(
368 idx, static_cast<FollowForkMode>(
369 g_process_properties[idx].default_uint_value));
372 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
373 llvm::StringRef plugin_name,
374 ListenerSP listener_sp,
375 const FileSpec *crash_file_path,
376 bool can_connect) {
377 static uint32_t g_process_unique_id = 0;
379 ProcessSP process_sp;
380 ProcessCreateInstance create_callback = nullptr;
381 if (!plugin_name.empty()) {
382 create_callback =
383 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
384 if (create_callback) {
385 process_sp = create_callback(target_sp, listener_sp, crash_file_path,
386 can_connect);
387 if (process_sp) {
388 if (process_sp->CanDebug(target_sp, true)) {
389 process_sp->m_process_unique_id = ++g_process_unique_id;
390 } else
391 process_sp.reset();
394 } else {
395 for (uint32_t idx = 0;
396 (create_callback =
397 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
398 ++idx) {
399 process_sp = create_callback(target_sp, listener_sp, crash_file_path,
400 can_connect);
401 if (process_sp) {
402 if (process_sp->CanDebug(target_sp, false)) {
403 process_sp->m_process_unique_id = ++g_process_unique_id;
404 break;
405 } else
406 process_sp.reset();
410 return process_sp;
413 llvm::StringRef Process::GetStaticBroadcasterClass() {
414 static constexpr llvm::StringLiteral class_name("lldb.process");
415 return class_name;
418 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
419 : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
420 // This constructor just delegates to the full Process constructor,
421 // defaulting to using the Host's UnixSignals.
424 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
425 const UnixSignalsSP &unix_signals_sp)
426 : ProcessProperties(this),
427 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
428 Process::GetStaticBroadcasterClass().str()),
429 m_target_wp(target_sp), m_public_state(eStateUnloaded),
430 m_private_state(eStateUnloaded),
431 m_private_state_broadcaster(nullptr,
432 "lldb.process.internal_state_broadcaster"),
433 m_private_state_control_broadcaster(
434 nullptr, "lldb.process.internal_state_control_broadcaster"),
435 m_private_state_listener_sp(
436 Listener::MakeListener("lldb.process.internal_state_listener")),
437 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
438 m_thread_id_to_index_id_map(), m_exit_status(-1),
439 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
440 m_extended_thread_list(*this), m_extended_thread_stop_id(0),
441 m_queue_list(this), m_queue_list_stop_id(0),
442 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
443 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
444 m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
445 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
446 m_memory_cache(*this), m_allocated_memory_cache(*this),
447 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
448 m_private_run_lock(), m_currently_handling_do_on_removals(false),
449 m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID),
450 m_finalizing(false), m_destructing(false),
451 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
452 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
453 m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
454 m_can_jit(eCanJITDontKnow),
455 m_crash_info_dict_sp(new StructuredData::Dictionary()) {
456 CheckInWithManager();
458 Log *log = GetLog(LLDBLog::Object);
459 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
461 if (!m_unix_signals_sp)
462 m_unix_signals_sp = std::make_shared<UnixSignals>();
464 SetEventName(eBroadcastBitStateChanged, "state-changed");
465 SetEventName(eBroadcastBitInterrupt, "interrupt");
466 SetEventName(eBroadcastBitSTDOUT, "stdout-available");
467 SetEventName(eBroadcastBitSTDERR, "stderr-available");
468 SetEventName(eBroadcastBitProfileData, "profile-data-available");
469 SetEventName(eBroadcastBitStructuredData, "structured-data-available");
471 m_private_state_control_broadcaster.SetEventName(
472 eBroadcastInternalStateControlStop, "control-stop");
473 m_private_state_control_broadcaster.SetEventName(
474 eBroadcastInternalStateControlPause, "control-pause");
475 m_private_state_control_broadcaster.SetEventName(
476 eBroadcastInternalStateControlResume, "control-resume");
478 // The listener passed into process creation is the primary listener:
479 // It always listens for all the event bits for Process:
480 SetPrimaryListener(listener_sp);
482 m_private_state_listener_sp->StartListeningForEvents(
483 &m_private_state_broadcaster,
484 eBroadcastBitStateChanged | eBroadcastBitInterrupt);
486 m_private_state_listener_sp->StartListeningForEvents(
487 &m_private_state_control_broadcaster,
488 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
489 eBroadcastInternalStateControlResume);
490 // We need something valid here, even if just the default UnixSignalsSP.
491 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
493 // Allow the platform to override the default cache line size
494 OptionValueSP value_sp =
495 m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
496 ->GetValue();
497 uint64_t platform_cache_line_size =
498 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
499 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
500 value_sp->SetValueAs(platform_cache_line_size);
502 // FIXME: Frame recognizer registration should not be done in Target.
503 // We should have a plugin do the registration instead, for example, a
504 // common C LanguageRuntime plugin.
505 RegisterAssertFrameRecognizer(this);
506 RegisterVerboseTrapFrameRecognizer(*this);
509 Process::~Process() {
510 Log *log = GetLog(LLDBLog::Object);
511 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
512 StopPrivateStateThread();
514 // ThreadList::Clear() will try to acquire this process's mutex, so
515 // explicitly clear the thread list here to ensure that the mutex is not
516 // destroyed before the thread list.
517 m_thread_list.Clear();
520 ProcessProperties &Process::GetGlobalProperties() {
521 // NOTE: intentional leak so we don't crash if global destructor chain gets
522 // called as other threads still use the result of this function
523 static ProcessProperties *g_settings_ptr =
524 new ProcessProperties(nullptr);
525 return *g_settings_ptr;
528 void Process::Finalize(bool destructing) {
529 if (m_finalizing.exchange(true))
530 return;
531 if (destructing)
532 m_destructing.exchange(true);
534 // Destroy the process. This will call the virtual function DoDestroy under
535 // the hood, giving our derived class a chance to do the ncessary tear down.
536 DestroyImpl(false);
538 // Clear our broadcaster before we proceed with destroying
539 Broadcaster::Clear();
541 // Do any cleanup needed prior to being destructed... Subclasses that
542 // override this method should call this superclass method as well.
544 // We need to destroy the loader before the derived Process class gets
545 // destroyed since it is very likely that undoing the loader will require
546 // access to the real process.
547 m_dynamic_checkers_up.reset();
548 m_abi_sp.reset();
549 m_os_up.reset();
550 m_system_runtime_up.reset();
551 m_dyld_up.reset();
552 m_jit_loaders_up.reset();
553 m_thread_plans.Clear();
554 m_thread_list_real.Destroy();
555 m_thread_list.Destroy();
556 m_extended_thread_list.Destroy();
557 m_queue_list.Clear();
558 m_queue_list_stop_id = 0;
559 m_watchpoint_resource_list.Clear();
560 std::vector<Notifications> empty_notifications;
561 m_notifications.swap(empty_notifications);
562 m_image_tokens.clear();
563 m_memory_cache.Clear();
564 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
566 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
567 m_language_runtimes.clear();
569 m_instrumentation_runtimes.clear();
570 m_next_event_action_up.reset();
571 // Clear the last natural stop ID since it has a strong reference to this
572 // process
573 m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
574 // We have to be very careful here as the m_private_state_listener might
575 // contain events that have ProcessSP values in them which can keep this
576 // process around forever. These events need to be cleared out.
577 m_private_state_listener_sp->Clear();
578 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
579 m_public_run_lock.SetStopped();
580 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
581 m_private_run_lock.SetStopped();
582 m_structured_data_plugin_map.clear();
585 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
586 m_notifications.push_back(callbacks);
587 if (callbacks.initialize != nullptr)
588 callbacks.initialize(callbacks.baton, this);
591 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
592 std::vector<Notifications>::iterator pos, end = m_notifications.end();
593 for (pos = m_notifications.begin(); pos != end; ++pos) {
594 if (pos->baton == callbacks.baton &&
595 pos->initialize == callbacks.initialize &&
596 pos->process_state_changed == callbacks.process_state_changed) {
597 m_notifications.erase(pos);
598 return true;
601 return false;
604 void Process::SynchronouslyNotifyStateChanged(StateType state) {
605 std::vector<Notifications>::iterator notification_pos,
606 notification_end = m_notifications.end();
607 for (notification_pos = m_notifications.begin();
608 notification_pos != notification_end; ++notification_pos) {
609 if (notification_pos->process_state_changed)
610 notification_pos->process_state_changed(notification_pos->baton, this,
611 state);
615 // FIXME: We need to do some work on events before the general Listener sees
616 // them.
617 // For instance if we are continuing from a breakpoint, we need to ensure that
618 // we do the little "insert real insn, step & stop" trick. But we can't do
619 // that when the event is delivered by the broadcaster - since that is done on
620 // the thread that is waiting for new events, so if we needed more than one
621 // event for our handling, we would stall. So instead we do it when we fetch
622 // the event off of the queue.
625 StateType Process::GetNextEvent(EventSP &event_sp) {
626 StateType state = eStateInvalid;
628 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
629 std::chrono::seconds(0)) &&
630 event_sp)
631 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
633 return state;
636 void Process::SyncIOHandler(uint32_t iohandler_id,
637 const Timeout<std::micro> &timeout) {
638 // don't sync (potentially context switch) in case where there is no process
639 // IO
640 if (!ProcessIOHandlerExists())
641 return;
643 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
645 Log *log = GetLog(LLDBLog::Process);
646 if (Result) {
647 LLDB_LOG(
648 log,
649 "waited from m_iohandler_sync to change from {0}. New value is {1}.",
650 iohandler_id, *Result);
651 } else {
652 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
653 iohandler_id);
657 StateType Process::WaitForProcessToStop(
658 const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
659 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
660 SelectMostRelevant select_most_relevant) {
661 // We can't just wait for a "stopped" event, because the stopped event may
662 // have restarted the target. We have to actually check each event, and in
663 // the case of a stopped event check the restarted flag on the event.
664 if (event_sp_ptr)
665 event_sp_ptr->reset();
666 StateType state = GetState();
667 // If we are exited or detached, we won't ever get back to any other valid
668 // state...
669 if (state == eStateDetached || state == eStateExited)
670 return state;
672 Log *log = GetLog(LLDBLog::Process);
673 LLDB_LOG(log, "timeout = {0}", timeout);
675 if (!wait_always && StateIsStoppedState(state, true) &&
676 StateIsStoppedState(GetPrivateState(), true)) {
677 LLDB_LOGF(log,
678 "Process::%s returning without waiting for events; process "
679 "private and public states are already 'stopped'.",
680 __FUNCTION__);
681 // We need to toggle the run lock as this won't get done in
682 // SetPublicState() if the process is hijacked.
683 if (hijack_listener_sp && use_run_lock)
684 m_public_run_lock.SetStopped();
685 return state;
688 while (state != eStateInvalid) {
689 EventSP event_sp;
690 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
691 if (event_sp_ptr && event_sp)
692 *event_sp_ptr = event_sp;
694 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
695 Process::HandleProcessStateChangedEvent(
696 event_sp, stream, select_most_relevant, pop_process_io_handler);
698 switch (state) {
699 case eStateCrashed:
700 case eStateDetached:
701 case eStateExited:
702 case eStateUnloaded:
703 // We need to toggle the run lock as this won't get done in
704 // SetPublicState() if the process is hijacked.
705 if (hijack_listener_sp && use_run_lock)
706 m_public_run_lock.SetStopped();
707 return state;
708 case eStateStopped:
709 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
710 continue;
711 else {
712 // We need to toggle the run lock as this won't get done in
713 // SetPublicState() if the process is hijacked.
714 if (hijack_listener_sp && use_run_lock)
715 m_public_run_lock.SetStopped();
716 return state;
718 default:
719 continue;
722 return state;
725 bool Process::HandleProcessStateChangedEvent(
726 const EventSP &event_sp, Stream *stream,
727 SelectMostRelevant select_most_relevant,
728 bool &pop_process_io_handler) {
729 const bool handle_pop = pop_process_io_handler;
731 pop_process_io_handler = false;
732 ProcessSP process_sp =
733 Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
735 if (!process_sp)
736 return false;
738 StateType event_state =
739 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
740 if (event_state == eStateInvalid)
741 return false;
743 switch (event_state) {
744 case eStateInvalid:
745 case eStateUnloaded:
746 case eStateAttaching:
747 case eStateLaunching:
748 case eStateStepping:
749 case eStateDetached:
750 if (stream)
751 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
752 StateAsCString(event_state));
753 if (event_state == eStateDetached)
754 pop_process_io_handler = true;
755 break;
757 case eStateConnected:
758 case eStateRunning:
759 // Don't be chatty when we run...
760 break;
762 case eStateExited:
763 if (stream)
764 process_sp->GetStatus(*stream);
765 pop_process_io_handler = true;
766 break;
768 case eStateStopped:
769 case eStateCrashed:
770 case eStateSuspended:
771 // Make sure the program hasn't been auto-restarted:
772 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
773 if (stream) {
774 size_t num_reasons =
775 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
776 if (num_reasons > 0) {
777 // FIXME: Do we want to report this, or would that just be annoyingly
778 // chatty?
779 if (num_reasons == 1) {
780 const char *reason =
781 Process::ProcessEventData::GetRestartedReasonAtIndex(
782 event_sp.get(), 0);
783 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
784 process_sp->GetID(),
785 reason ? reason : "<UNKNOWN REASON>");
786 } else {
787 stream->Printf("Process %" PRIu64
788 " stopped and restarted, reasons:\n",
789 process_sp->GetID());
791 for (size_t i = 0; i < num_reasons; i++) {
792 const char *reason =
793 Process::ProcessEventData::GetRestartedReasonAtIndex(
794 event_sp.get(), i);
795 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
800 } else {
801 StopInfoSP curr_thread_stop_info_sp;
802 // Lock the thread list so it doesn't change on us, this is the scope for
803 // the locker:
805 ThreadList &thread_list = process_sp->GetThreadList();
806 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
808 ThreadSP curr_thread(thread_list.GetSelectedThread());
809 ThreadSP thread;
810 StopReason curr_thread_stop_reason = eStopReasonInvalid;
811 bool prefer_curr_thread = false;
812 if (curr_thread && curr_thread->IsValid()) {
813 curr_thread_stop_reason = curr_thread->GetStopReason();
814 switch (curr_thread_stop_reason) {
815 case eStopReasonNone:
816 case eStopReasonInvalid:
817 // Don't prefer the current thread if it didn't stop for a reason.
818 break;
819 case eStopReasonSignal: {
820 // We need to do the same computation we do for other threads
821 // below in case the current thread happens to be the one that
822 // stopped for the no-stop signal.
823 uint64_t signo = curr_thread->GetStopInfo()->GetValue();
824 if (process_sp->GetUnixSignals()->GetShouldStop(signo))
825 prefer_curr_thread = true;
826 } break;
827 default:
828 prefer_curr_thread = true;
829 break;
831 curr_thread_stop_info_sp = curr_thread->GetStopInfo();
834 if (!prefer_curr_thread) {
835 // Prefer a thread that has just completed its plan over another
836 // thread as current thread.
837 ThreadSP plan_thread;
838 ThreadSP other_thread;
840 const size_t num_threads = thread_list.GetSize();
841 size_t i;
842 for (i = 0; i < num_threads; ++i) {
843 thread = thread_list.GetThreadAtIndex(i);
844 StopReason thread_stop_reason = thread->GetStopReason();
845 switch (thread_stop_reason) {
846 case eStopReasonInvalid:
847 case eStopReasonNone:
848 break;
850 case eStopReasonSignal: {
851 // Don't select a signal thread if we weren't going to stop at
852 // that signal. We have to have had another reason for stopping
853 // here, and the user doesn't want to see this thread.
854 uint64_t signo = thread->GetStopInfo()->GetValue();
855 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
856 if (!other_thread)
857 other_thread = thread;
859 break;
861 case eStopReasonTrace:
862 case eStopReasonBreakpoint:
863 case eStopReasonWatchpoint:
864 case eStopReasonException:
865 case eStopReasonExec:
866 case eStopReasonFork:
867 case eStopReasonVFork:
868 case eStopReasonVForkDone:
869 case eStopReasonThreadExiting:
870 case eStopReasonInstrumentation:
871 case eStopReasonProcessorTrace:
872 case eStopReasonInterrupt:
873 if (!other_thread)
874 other_thread = thread;
875 break;
876 case eStopReasonPlanComplete:
877 if (!plan_thread)
878 plan_thread = thread;
879 break;
882 if (plan_thread)
883 thread_list.SetSelectedThreadByID(plan_thread->GetID());
884 else if (other_thread)
885 thread_list.SetSelectedThreadByID(other_thread->GetID());
886 else {
887 if (curr_thread && curr_thread->IsValid())
888 thread = curr_thread;
889 else
890 thread = thread_list.GetThreadAtIndex(0);
892 if (thread)
893 thread_list.SetSelectedThreadByID(thread->GetID());
897 // Drop the ThreadList mutex by here, since GetThreadStatus below might
898 // have to run code, e.g. for Data formatters, and if we hold the
899 // ThreadList mutex, then the process is going to have a hard time
900 // restarting the process.
901 if (stream) {
902 Debugger &debugger = process_sp->GetTarget().GetDebugger();
903 if (debugger.GetTargetList().GetSelectedTarget().get() ==
904 &process_sp->GetTarget()) {
905 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
907 if (!thread_sp || !thread_sp->IsValid())
908 return false;
910 const bool only_threads_with_stop_reason = true;
911 const uint32_t start_frame =
912 thread_sp->GetSelectedFrameIndex(select_most_relevant);
913 const uint32_t num_frames = 1;
914 const uint32_t num_frames_with_source = 1;
915 const bool stop_format = true;
917 process_sp->GetStatus(*stream);
918 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
919 start_frame, num_frames,
920 num_frames_with_source,
921 stop_format);
922 if (curr_thread_stop_info_sp) {
923 lldb::addr_t crashing_address;
924 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
925 curr_thread_stop_info_sp, &crashing_address);
926 if (valobj_sp) {
927 const ValueObject::GetExpressionPathFormat format =
928 ValueObject::GetExpressionPathFormat::
929 eGetExpressionPathFormatHonorPointers;
930 stream->PutCString("Likely cause: ");
931 valobj_sp->GetExpressionPath(*stream, format);
932 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
935 } else {
936 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
937 process_sp->GetTarget().shared_from_this());
938 if (target_idx != UINT32_MAX)
939 stream->Printf("Target %d: (", target_idx);
940 else
941 stream->Printf("Target <unknown index>: (");
942 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
943 stream->Printf(") stopped.\n");
947 // Pop the process IO handler
948 pop_process_io_handler = true;
950 break;
953 if (handle_pop && pop_process_io_handler)
954 process_sp->PopProcessIOHandler();
956 return true;
959 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
960 if (listener_sp) {
961 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
962 eBroadcastBitInterrupt);
963 } else
964 return false;
967 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
969 StateType Process::GetStateChangedEvents(EventSP &event_sp,
970 const Timeout<std::micro> &timeout,
971 ListenerSP hijack_listener_sp) {
972 Log *log = GetLog(LLDBLog::Process);
973 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
975 ListenerSP listener_sp = hijack_listener_sp;
976 if (!listener_sp)
977 listener_sp = GetPrimaryListener();
979 StateType state = eStateInvalid;
980 if (listener_sp->GetEventForBroadcasterWithType(
981 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
982 timeout)) {
983 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
984 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
985 else
986 LLDB_LOG(log, "got no event or was interrupted.");
989 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
990 return state;
993 Event *Process::PeekAtStateChangedEvents() {
994 Log *log = GetLog(LLDBLog::Process);
996 LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
998 Event *event_ptr;
999 event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
1000 this, eBroadcastBitStateChanged);
1001 if (log) {
1002 if (event_ptr) {
1003 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
1004 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
1005 } else {
1006 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
1009 return event_ptr;
1012 StateType
1013 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1014 const Timeout<std::micro> &timeout) {
1015 Log *log = GetLog(LLDBLog::Process);
1016 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1018 StateType state = eStateInvalid;
1019 if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1020 &m_private_state_broadcaster,
1021 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1022 timeout))
1023 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1024 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1026 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1027 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1028 return state;
1031 bool Process::GetEventsPrivate(EventSP &event_sp,
1032 const Timeout<std::micro> &timeout,
1033 bool control_only) {
1034 Log *log = GetLog(LLDBLog::Process);
1035 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1037 if (control_only)
1038 return m_private_state_listener_sp->GetEventForBroadcaster(
1039 &m_private_state_control_broadcaster, event_sp, timeout);
1040 else
1041 return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1044 bool Process::IsRunning() const {
1045 return StateIsRunningState(m_public_state.GetValue());
1048 int Process::GetExitStatus() {
1049 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1051 if (m_public_state.GetValue() == eStateExited)
1052 return m_exit_status;
1053 return -1;
1056 const char *Process::GetExitDescription() {
1057 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1059 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1060 return m_exit_string.c_str();
1061 return nullptr;
1064 bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
1065 // Use a mutex to protect setting the exit status.
1066 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1068 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1069 LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1070 GetPluginName(), status, exit_string);
1072 // We were already in the exited state
1073 if (m_private_state.GetValue() == eStateExited) {
1074 LLDB_LOG(
1075 log,
1076 "(plugin = {0}) ignoring exit status because state was already set "
1077 "to eStateExited",
1078 GetPluginName());
1079 return false;
1082 m_exit_status = status;
1083 if (!exit_string.empty())
1084 m_exit_string = exit_string.str();
1085 else
1086 m_exit_string.clear();
1088 // Clear the last natural stop ID since it has a strong reference to this
1089 // process
1090 m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1092 SetPrivateState(eStateExited);
1094 // Allow subclasses to do some cleanup
1095 DidExit();
1097 return true;
1100 bool Process::IsAlive() {
1101 switch (m_private_state.GetValue()) {
1102 case eStateConnected:
1103 case eStateAttaching:
1104 case eStateLaunching:
1105 case eStateStopped:
1106 case eStateRunning:
1107 case eStateStepping:
1108 case eStateCrashed:
1109 case eStateSuspended:
1110 return true;
1111 default:
1112 return false;
1116 // This static callback can be used to watch for local child processes on the
1117 // current host. The child process exits, the process will be found in the
1118 // global target list (we want to be completely sure that the
1119 // lldb_private::Process doesn't go away before we can deliver the signal.
1120 bool Process::SetProcessExitStatus(
1121 lldb::pid_t pid, bool exited,
1122 int signo, // Zero for no signal
1123 int exit_status // Exit value of process if signal is zero
1125 Log *log = GetLog(LLDBLog::Process);
1126 LLDB_LOGF(log,
1127 "Process::SetProcessExitStatus (pid=%" PRIu64
1128 ", exited=%i, signal=%i, exit_status=%i)\n",
1129 pid, exited, signo, exit_status);
1131 if (exited) {
1132 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1133 if (target_sp) {
1134 ProcessSP process_sp(target_sp->GetProcessSP());
1135 if (process_sp) {
1136 llvm::StringRef signal_str =
1137 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
1138 process_sp->SetExitStatus(exit_status, signal_str);
1141 return true;
1143 return false;
1146 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1147 ThreadList &new_thread_list) {
1148 m_thread_plans.ClearThreadCache();
1149 return DoUpdateThreadList(old_thread_list, new_thread_list);
1152 void Process::UpdateThreadListIfNeeded() {
1153 const uint32_t stop_id = GetStopID();
1154 if (m_thread_list.GetSize(false) == 0 ||
1155 stop_id != m_thread_list.GetStopID()) {
1156 bool clear_unused_threads = true;
1157 const StateType state = GetPrivateState();
1158 if (StateIsStoppedState(state, true)) {
1159 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1160 m_thread_list.SetStopID(stop_id);
1162 // m_thread_list does have its own mutex, but we need to hold onto the
1163 // mutex between the call to UpdateThreadList(...) and the
1164 // os->UpdateThreadList(...) so it doesn't change on us
1165 ThreadList &old_thread_list = m_thread_list;
1166 ThreadList real_thread_list(*this);
1167 ThreadList new_thread_list(*this);
1168 // Always update the thread list with the protocol specific thread list,
1169 // but only update if "true" is returned
1170 if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1171 // Don't call into the OperatingSystem to update the thread list if we
1172 // are shutting down, since that may call back into the SBAPI's,
1173 // requiring the API lock which is already held by whoever is shutting
1174 // us down, causing a deadlock.
1175 OperatingSystem *os = GetOperatingSystem();
1176 if (os && !m_destroy_in_process) {
1177 // Clear any old backing threads where memory threads might have been
1178 // backed by actual threads from the lldb_private::Process subclass
1179 size_t num_old_threads = old_thread_list.GetSize(false);
1180 for (size_t i = 0; i < num_old_threads; ++i)
1181 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1182 // See if the OS plugin reports all threads. If it does, then
1183 // it is safe to clear unseen thread's plans here. Otherwise we
1184 // should preserve them in case they show up again:
1185 clear_unused_threads = GetOSPluginReportsAllThreads();
1187 // Turn off dynamic types to ensure we don't run any expressions.
1188 // Objective-C can run an expression to determine if a SBValue is a
1189 // dynamic type or not and we need to avoid this. OperatingSystem
1190 // plug-ins can't run expressions that require running code...
1192 Target &target = GetTarget();
1193 const lldb::DynamicValueType saved_prefer_dynamic =
1194 target.GetPreferDynamicValue();
1195 if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1196 target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1198 // Now let the OperatingSystem plug-in update the thread list
1200 os->UpdateThreadList(
1201 old_thread_list, // Old list full of threads created by OS plug-in
1202 real_thread_list, // The actual thread list full of threads
1203 // created by each lldb_private::Process
1204 // subclass
1205 new_thread_list); // The new thread list that we will show to the
1206 // user that gets filled in
1208 if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1209 target.SetPreferDynamicValue(saved_prefer_dynamic);
1210 } else {
1211 // No OS plug-in, the new thread list is the same as the real thread
1212 // list.
1213 new_thread_list = real_thread_list;
1216 m_thread_list_real.Update(real_thread_list);
1217 m_thread_list.Update(new_thread_list);
1218 m_thread_list.SetStopID(stop_id);
1220 if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1221 // Clear any extended threads that we may have accumulated previously
1222 m_extended_thread_list.Clear();
1223 m_extended_thread_stop_id = GetLastNaturalStopID();
1225 m_queue_list.Clear();
1226 m_queue_list_stop_id = GetLastNaturalStopID();
1229 // Now update the plan stack map.
1230 // If we do have an OS plugin, any absent real threads in the
1231 // m_thread_list have already been removed from the ThreadPlanStackMap.
1232 // So any remaining threads are OS Plugin threads, and those we want to
1233 // preserve in case they show up again.
1234 m_thread_plans.Update(m_thread_list, clear_unused_threads);
1239 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1240 return m_thread_plans.Find(tid);
1243 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1244 return m_thread_plans.PrunePlansForTID(tid);
1247 void Process::PruneThreadPlans() {
1248 m_thread_plans.Update(GetThreadList(), true, false);
1251 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1252 lldb::DescriptionLevel desc_level,
1253 bool internal, bool condense_trivial,
1254 bool skip_unreported_plans) {
1255 return m_thread_plans.DumpPlansForTID(
1256 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1258 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1259 bool internal, bool condense_trivial,
1260 bool skip_unreported_plans) {
1261 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1262 skip_unreported_plans);
1265 void Process::UpdateQueueListIfNeeded() {
1266 if (m_system_runtime_up) {
1267 if (m_queue_list.GetSize() == 0 ||
1268 m_queue_list_stop_id != GetLastNaturalStopID()) {
1269 const StateType state = GetPrivateState();
1270 if (StateIsStoppedState(state, true)) {
1271 m_system_runtime_up->PopulateQueueList(m_queue_list);
1272 m_queue_list_stop_id = GetLastNaturalStopID();
1278 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1279 OperatingSystem *os = GetOperatingSystem();
1280 if (os)
1281 return os->CreateThread(tid, context);
1282 return ThreadSP();
1285 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1286 return AssignIndexIDToThread(thread_id);
1289 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1290 return (m_thread_id_to_index_id_map.find(thread_id) !=
1291 m_thread_id_to_index_id_map.end());
1294 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1295 uint32_t result = 0;
1296 std::map<uint64_t, uint32_t>::iterator iterator =
1297 m_thread_id_to_index_id_map.find(thread_id);
1298 if (iterator == m_thread_id_to_index_id_map.end()) {
1299 result = ++m_thread_index_id;
1300 m_thread_id_to_index_id_map[thread_id] = result;
1301 } else {
1302 result = iterator->second;
1305 return result;
1308 StateType Process::GetState() {
1309 if (CurrentThreadIsPrivateStateThread())
1310 return m_private_state.GetValue();
1311 else
1312 return m_public_state.GetValue();
1315 void Process::SetPublicState(StateType new_state, bool restarted) {
1316 const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1317 if (new_state_is_stopped) {
1318 // This will only set the time if the public stop time has no value, so
1319 // it is ok to call this multiple times. With a public stop we can't look
1320 // at the stop ID because many private stops might have happened, so we
1321 // can't check for a stop ID of zero. This allows the "statistics" command
1322 // to dump the time it takes to reach somewhere in your code, like a
1323 // breakpoint you set.
1324 GetTarget().GetStatistics().SetFirstPublicStopTime();
1327 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1328 LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
1329 GetPluginName().data(), StateAsCString(new_state), restarted);
1330 const StateType old_state = m_public_state.GetValue();
1331 m_public_state.SetValue(new_state);
1333 // On the transition from Run to Stopped, we unlock the writer end of the run
1334 // lock. The lock gets locked in Resume, which is the public API to tell the
1335 // program to run.
1336 if (!StateChangedIsExternallyHijacked()) {
1337 if (new_state == eStateDetached) {
1338 LLDB_LOGF(log,
1339 "(plugin = %s, state = %s) -- unlocking run lock for detach",
1340 GetPluginName().data(), StateAsCString(new_state));
1341 m_public_run_lock.SetStopped();
1342 } else {
1343 const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1344 if ((old_state_is_stopped != new_state_is_stopped)) {
1345 if (new_state_is_stopped && !restarted) {
1346 LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
1347 GetPluginName().data(), StateAsCString(new_state));
1348 m_public_run_lock.SetStopped();
1355 Status Process::Resume() {
1356 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1357 LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
1358 if (!m_public_run_lock.TrySetRunning()) {
1359 LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1360 GetPluginName().data());
1361 return Status::FromErrorString(
1362 "Resume request failed - process still running.");
1364 Status error = PrivateResume();
1365 if (!error.Success()) {
1366 // Undo running state change
1367 m_public_run_lock.SetStopped();
1369 return error;
1372 Status Process::ResumeSynchronous(Stream *stream) {
1373 Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1374 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1375 if (!m_public_run_lock.TrySetRunning()) {
1376 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1377 return Status::FromErrorString(
1378 "Resume request failed - process still running.");
1381 ListenerSP listener_sp(
1382 Listener::MakeListener(ResumeSynchronousHijackListenerName.data()));
1383 HijackProcessEvents(listener_sp);
1385 Status error = PrivateResume();
1386 if (error.Success()) {
1387 StateType state =
1388 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
1389 true /* use_run_lock */, SelectMostRelevantFrame);
1390 const bool must_be_alive =
1391 false; // eStateExited is ok, so this must be false
1392 if (!StateIsStoppedState(state, must_be_alive))
1393 error = Status::FromErrorStringWithFormat(
1394 "process not in stopped state after synchronous resume: %s",
1395 StateAsCString(state));
1396 } else {
1397 // Undo running state change
1398 m_public_run_lock.SetStopped();
1401 // Undo the hijacking of process events...
1402 RestoreProcessEvents();
1404 return error;
1407 bool Process::StateChangedIsExternallyHijacked() {
1408 if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1409 llvm::StringRef hijacking_name = GetHijackingListenerName();
1410 if (!hijacking_name.starts_with("lldb.internal"))
1411 return true;
1413 return false;
1416 bool Process::StateChangedIsHijackedForSynchronousResume() {
1417 if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1418 llvm::StringRef hijacking_name = GetHijackingListenerName();
1419 if (hijacking_name == ResumeSynchronousHijackListenerName)
1420 return true;
1422 return false;
1425 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1427 void Process::SetPrivateState(StateType new_state) {
1428 // Use m_destructing not m_finalizing here. If we are finalizing a process
1429 // that we haven't started tearing down, we'd like to be able to nicely
1430 // detach if asked, but that requires the event system be live. That will
1431 // not be true for an in-the-middle-of-being-destructed Process, since the
1432 // event system relies on Process::shared_from_this, which may have already
1433 // been destroyed.
1434 if (m_destructing)
1435 return;
1437 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1438 bool state_changed = false;
1440 LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
1441 StateAsCString(new_state));
1443 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1444 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1446 const StateType old_state = m_private_state.GetValueNoLock();
1447 state_changed = old_state != new_state;
1449 const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1450 const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1451 if (old_state_is_stopped != new_state_is_stopped) {
1452 if (new_state_is_stopped)
1453 m_private_run_lock.SetStopped();
1454 else
1455 m_private_run_lock.SetRunning();
1458 if (state_changed) {
1459 m_private_state.SetValueNoLock(new_state);
1460 EventSP event_sp(
1461 new Event(eBroadcastBitStateChanged,
1462 new ProcessEventData(shared_from_this(), new_state)));
1463 if (StateIsStoppedState(new_state, false)) {
1464 // Note, this currently assumes that all threads in the list stop when
1465 // the process stops. In the future we will want to support a debugging
1466 // model where some threads continue to run while others are stopped.
1467 // When that happens we will either need a way for the thread list to
1468 // identify which threads are stopping or create a special thread list
1469 // containing only threads which actually stopped.
1471 // The process plugin is responsible for managing the actual behavior of
1472 // the threads and should have stopped any threads that are going to stop
1473 // before we get here.
1474 m_thread_list.DidStop();
1476 if (m_mod_id.BumpStopID() == 0)
1477 GetTarget().GetStatistics().SetFirstPrivateStopTime();
1479 if (!m_mod_id.IsLastResumeForUserExpression())
1480 m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1481 m_memory_cache.Clear();
1482 LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
1483 GetPluginName().data(), StateAsCString(new_state),
1484 m_mod_id.GetStopID());
1487 m_private_state_broadcaster.BroadcastEvent(event_sp);
1488 } else {
1489 LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1490 GetPluginName().data(), StateAsCString(new_state));
1494 void Process::SetRunningUserExpression(bool on) {
1495 m_mod_id.SetRunningUserExpression(on);
1498 void Process::SetRunningUtilityFunction(bool on) {
1499 m_mod_id.SetRunningUtilityFunction(on);
1502 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1504 const lldb::ABISP &Process::GetABI() {
1505 if (!m_abi_sp)
1506 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1507 return m_abi_sp;
1510 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1511 std::vector<LanguageRuntime *> language_runtimes;
1513 if (m_finalizing)
1514 return language_runtimes;
1516 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1517 // Before we pass off a copy of the language runtimes, we must make sure that
1518 // our collection is properly populated. It's possible that some of the
1519 // language runtimes were not loaded yet, either because nobody requested it
1520 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1521 // hadn't been loaded).
1522 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1523 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1524 language_runtimes.emplace_back(runtime);
1527 return language_runtimes;
1530 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1531 if (m_finalizing)
1532 return nullptr;
1534 LanguageRuntime *runtime = nullptr;
1536 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1537 LanguageRuntimeCollection::iterator pos;
1538 pos = m_language_runtimes.find(language);
1539 if (pos == m_language_runtimes.end() || !pos->second) {
1540 lldb::LanguageRuntimeSP runtime_sp(
1541 LanguageRuntime::FindPlugin(this, language));
1543 m_language_runtimes[language] = runtime_sp;
1544 runtime = runtime_sp.get();
1545 } else
1546 runtime = pos->second.get();
1548 if (runtime)
1549 // It's possible that a language runtime can support multiple LanguageTypes,
1550 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1551 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1552 // primary language type and make sure that our runtime supports it.
1553 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1555 return runtime;
1558 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1559 if (m_finalizing)
1560 return false;
1562 if (in_value.IsDynamic())
1563 return false;
1564 LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1566 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1567 LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1568 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1571 for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1572 if (runtime->CouldHaveDynamicValue(in_value))
1573 return true;
1576 return false;
1579 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1580 m_dynamic_checkers_up.reset(dynamic_checkers);
1583 StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() {
1584 return m_breakpoint_site_list;
1587 const StopPointSiteList<BreakpointSite> &
1588 Process::GetBreakpointSiteList() const {
1589 return m_breakpoint_site_list;
1592 void Process::DisableAllBreakpointSites() {
1593 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1594 // bp_site->SetEnabled(true);
1595 DisableBreakpointSite(bp_site);
1599 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1600 Status error(DisableBreakpointSiteByID(break_id));
1602 if (error.Success())
1603 m_breakpoint_site_list.Remove(break_id);
1605 return error;
1608 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1609 Status error;
1610 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1611 if (bp_site_sp) {
1612 if (bp_site_sp->IsEnabled())
1613 error = DisableBreakpointSite(bp_site_sp.get());
1614 } else {
1615 error = Status::FromErrorStringWithFormat(
1616 "invalid breakpoint site ID: %" PRIu64, break_id);
1619 return error;
1622 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1623 Status error;
1624 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1625 if (bp_site_sp) {
1626 if (!bp_site_sp->IsEnabled())
1627 error = EnableBreakpointSite(bp_site_sp.get());
1628 } else {
1629 error = Status::FromErrorStringWithFormat(
1630 "invalid breakpoint site ID: %" PRIu64, break_id);
1632 return error;
1635 lldb::break_id_t
1636 Process::CreateBreakpointSite(const BreakpointLocationSP &constituent,
1637 bool use_hardware) {
1638 addr_t load_addr = LLDB_INVALID_ADDRESS;
1640 bool show_error = true;
1641 switch (GetState()) {
1642 case eStateInvalid:
1643 case eStateUnloaded:
1644 case eStateConnected:
1645 case eStateAttaching:
1646 case eStateLaunching:
1647 case eStateDetached:
1648 case eStateExited:
1649 show_error = false;
1650 break;
1652 case eStateStopped:
1653 case eStateRunning:
1654 case eStateStepping:
1655 case eStateCrashed:
1656 case eStateSuspended:
1657 show_error = IsAlive();
1658 break;
1661 // Reset the IsIndirect flag here, in case the location changes from pointing
1662 // to a indirect symbol to a regular symbol.
1663 constituent->SetIsIndirect(false);
1665 if (constituent->ShouldResolveIndirectFunctions()) {
1666 Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
1667 if (symbol && symbol->IsIndirect()) {
1668 Status error;
1669 Address symbol_address = symbol->GetAddress();
1670 load_addr = ResolveIndirectFunction(&symbol_address, error);
1671 if (!error.Success() && show_error) {
1672 GetTarget().GetDebugger().GetErrorStream().Printf(
1673 "warning: failed to resolve indirect function at 0x%" PRIx64
1674 " for breakpoint %i.%i: %s\n",
1675 symbol->GetLoadAddress(&GetTarget()),
1676 constituent->GetBreakpoint().GetID(), constituent->GetID(),
1677 error.AsCString() ? error.AsCString() : "unknown error");
1678 return LLDB_INVALID_BREAK_ID;
1680 Address resolved_address(load_addr);
1681 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1682 constituent->SetIsIndirect(true);
1683 } else
1684 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1685 } else
1686 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1688 if (load_addr != LLDB_INVALID_ADDRESS) {
1689 BreakpointSiteSP bp_site_sp;
1691 // Look up this breakpoint site. If it exists, then add this new
1692 // constituent, otherwise create a new breakpoint site and add it.
1694 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1696 if (bp_site_sp) {
1697 bp_site_sp->AddConstituent(constituent);
1698 constituent->SetBreakpointSite(bp_site_sp);
1699 return bp_site_sp->GetID();
1700 } else {
1701 bp_site_sp.reset(
1702 new BreakpointSite(constituent, load_addr, use_hardware));
1703 if (bp_site_sp) {
1704 Status error = EnableBreakpointSite(bp_site_sp.get());
1705 if (error.Success()) {
1706 constituent->SetBreakpointSite(bp_site_sp);
1707 return m_breakpoint_site_list.Add(bp_site_sp);
1708 } else {
1709 if (show_error || use_hardware) {
1710 // Report error for setting breakpoint...
1711 GetTarget().GetDebugger().GetErrorStream().Printf(
1712 "warning: failed to set breakpoint site at 0x%" PRIx64
1713 " for breakpoint %i.%i: %s\n",
1714 load_addr, constituent->GetBreakpoint().GetID(),
1715 constituent->GetID(),
1716 error.AsCString() ? error.AsCString() : "unknown error");
1722 // We failed to enable the breakpoint
1723 return LLDB_INVALID_BREAK_ID;
1726 void Process::RemoveConstituentFromBreakpointSite(
1727 lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
1728 BreakpointSiteSP &bp_site_sp) {
1729 uint32_t num_constituents =
1730 bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
1731 if (num_constituents == 0) {
1732 // Don't try to disable the site if we don't have a live process anymore.
1733 if (IsAlive())
1734 DisableBreakpointSite(bp_site_sp.get());
1735 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1739 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1740 uint8_t *buf) const {
1741 size_t bytes_removed = 0;
1742 StopPointSiteList<BreakpointSite> bp_sites_in_range;
1744 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1745 bp_sites_in_range)) {
1746 bp_sites_in_range.ForEach([bp_addr, size,
1747 buf](BreakpointSite *bp_site) -> void {
1748 if (bp_site->GetType() == BreakpointSite::eSoftware) {
1749 addr_t intersect_addr;
1750 size_t intersect_size;
1751 size_t opcode_offset;
1752 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1753 &intersect_size, &opcode_offset)) {
1754 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1755 assert(bp_addr < intersect_addr + intersect_size &&
1756 intersect_addr + intersect_size <= bp_addr + size);
1757 assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1758 size_t buf_offset = intersect_addr - bp_addr;
1759 ::memcpy(buf + buf_offset,
1760 bp_site->GetSavedOpcodeBytes() + opcode_offset,
1761 intersect_size);
1766 return bytes_removed;
1769 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1770 PlatformSP platform_sp(GetTarget().GetPlatform());
1771 if (platform_sp)
1772 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1773 return 0;
1776 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1777 Status error;
1778 assert(bp_site != nullptr);
1779 Log *log = GetLog(LLDBLog::Breakpoints);
1780 const addr_t bp_addr = bp_site->GetLoadAddress();
1781 LLDB_LOGF(
1782 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1783 bp_site->GetID(), (uint64_t)bp_addr);
1784 if (bp_site->IsEnabled()) {
1785 LLDB_LOGF(
1786 log,
1787 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1788 " -- already enabled",
1789 bp_site->GetID(), (uint64_t)bp_addr);
1790 return error;
1793 if (bp_addr == LLDB_INVALID_ADDRESS) {
1794 error = Status::FromErrorString(
1795 "BreakpointSite contains an invalid load address.");
1796 return error;
1798 // Ask the lldb::Process subclass to fill in the correct software breakpoint
1799 // trap for the breakpoint site
1800 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1802 if (bp_opcode_size == 0) {
1803 error = Status::FromErrorStringWithFormat(
1804 "Process::GetSoftwareBreakpointTrapOpcode() "
1805 "returned zero, unable to get breakpoint "
1806 "trap for address 0x%" PRIx64,
1807 bp_addr);
1808 } else {
1809 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1811 if (bp_opcode_bytes == nullptr) {
1812 error = Status::FromErrorString(
1813 "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1814 return error;
1817 // Save the original opcode by reading it
1818 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1819 error) == bp_opcode_size) {
1820 // Write a software breakpoint in place of the original opcode
1821 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1822 bp_opcode_size) {
1823 uint8_t verify_bp_opcode_bytes[64];
1824 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1825 error) == bp_opcode_size) {
1826 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1827 bp_opcode_size) == 0) {
1828 bp_site->SetEnabled(true);
1829 bp_site->SetType(BreakpointSite::eSoftware);
1830 LLDB_LOGF(log,
1831 "Process::EnableSoftwareBreakpoint (site_id = %d) "
1832 "addr = 0x%" PRIx64 " -- SUCCESS",
1833 bp_site->GetID(), (uint64_t)bp_addr);
1834 } else
1835 error = Status::FromErrorString(
1836 "failed to verify the breakpoint trap in memory.");
1837 } else
1838 error = Status::FromErrorString(
1839 "Unable to read memory to verify breakpoint trap.");
1840 } else
1841 error = Status::FromErrorString(
1842 "Unable to write breakpoint trap to memory.");
1843 } else
1844 error = Status::FromErrorString(
1845 "Unable to read memory at breakpoint address.");
1847 if (log && error.Fail())
1848 LLDB_LOGF(
1849 log,
1850 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1851 " -- FAILED: %s",
1852 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1853 return error;
1856 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1857 Status error;
1858 assert(bp_site != nullptr);
1859 Log *log = GetLog(LLDBLog::Breakpoints);
1860 addr_t bp_addr = bp_site->GetLoadAddress();
1861 lldb::user_id_t breakID = bp_site->GetID();
1862 LLDB_LOGF(log,
1863 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1864 ") addr = 0x%" PRIx64,
1865 breakID, (uint64_t)bp_addr);
1867 if (bp_site->IsHardware()) {
1868 error =
1869 Status::FromErrorString("Breakpoint site is a hardware breakpoint.");
1870 } else if (bp_site->IsEnabled()) {
1871 const size_t break_op_size = bp_site->GetByteSize();
1872 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1873 if (break_op_size > 0) {
1874 // Clear a software breakpoint instruction
1875 uint8_t curr_break_op[8];
1876 assert(break_op_size <= sizeof(curr_break_op));
1877 bool break_op_found = false;
1879 // Read the breakpoint opcode
1880 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1881 break_op_size) {
1882 bool verify = false;
1883 // Make sure the breakpoint opcode exists at this address
1884 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1885 break_op_found = true;
1886 // We found a valid breakpoint opcode at this address, now restore
1887 // the saved opcode.
1888 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1889 break_op_size, error) == break_op_size) {
1890 verify = true;
1891 } else
1892 error = Status::FromErrorString(
1893 "Memory write failed when restoring original opcode.");
1894 } else {
1895 error = Status::FromErrorString(
1896 "Original breakpoint trap is no longer in memory.");
1897 // Set verify to true and so we can check if the original opcode has
1898 // already been restored
1899 verify = true;
1902 if (verify) {
1903 uint8_t verify_opcode[8];
1904 assert(break_op_size < sizeof(verify_opcode));
1905 // Verify that our original opcode made it back to the inferior
1906 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1907 break_op_size) {
1908 // compare the memory we just read with the original opcode
1909 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1910 break_op_size) == 0) {
1911 // SUCCESS
1912 bp_site->SetEnabled(false);
1913 LLDB_LOGF(log,
1914 "Process::DisableSoftwareBreakpoint (site_id = %d) "
1915 "addr = 0x%" PRIx64 " -- SUCCESS",
1916 bp_site->GetID(), (uint64_t)bp_addr);
1917 return error;
1918 } else {
1919 if (break_op_found)
1920 error = Status::FromErrorString(
1921 "Failed to restore original opcode.");
1923 } else
1924 error =
1925 Status::FromErrorString("Failed to read memory to verify that "
1926 "breakpoint trap was restored.");
1928 } else
1929 error = Status::FromErrorString(
1930 "Unable to read memory that should contain the breakpoint trap.");
1932 } else {
1933 LLDB_LOGF(
1934 log,
1935 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1936 " -- already disabled",
1937 bp_site->GetID(), (uint64_t)bp_addr);
1938 return error;
1941 LLDB_LOGF(
1942 log,
1943 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1944 " -- FAILED: %s",
1945 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1946 return error;
1949 // Uncomment to verify memory caching works after making changes to caching
1950 // code
1951 //#define VERIFY_MEMORY_READS
1953 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1954 if (ABISP abi_sp = GetABI())
1955 addr = abi_sp->FixAnyAddress(addr);
1957 error.Clear();
1958 if (!GetDisableMemoryCache()) {
1959 #if defined(VERIFY_MEMORY_READS)
1960 // Memory caching is enabled, with debug verification
1962 if (buf && size) {
1963 // Uncomment the line below to make sure memory caching is working.
1964 // I ran this through the test suite and got no assertions, so I am
1965 // pretty confident this is working well. If any changes are made to
1966 // memory caching, uncomment the line below and test your changes!
1968 // Verify all memory reads by using the cache first, then redundantly
1969 // reading the same memory from the inferior and comparing to make sure
1970 // everything is exactly the same.
1971 std::string verify_buf(size, '\0');
1972 assert(verify_buf.size() == size);
1973 const size_t cache_bytes_read =
1974 m_memory_cache.Read(this, addr, buf, size, error);
1975 Status verify_error;
1976 const size_t verify_bytes_read =
1977 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1978 verify_buf.size(), verify_error);
1979 assert(cache_bytes_read == verify_bytes_read);
1980 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1981 assert(verify_error.Success() == error.Success());
1982 return cache_bytes_read;
1984 return 0;
1985 #else // !defined(VERIFY_MEMORY_READS)
1986 // Memory caching is enabled, without debug verification
1988 return m_memory_cache.Read(addr, buf, size, error);
1989 #endif // defined (VERIFY_MEMORY_READS)
1990 } else {
1991 // Memory caching is disabled
1993 return ReadMemoryFromInferior(addr, buf, size, error);
1997 void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr,
1998 const uint8_t *buf, size_t size,
1999 AddressRanges &matches, size_t alignment,
2000 size_t max_matches) {
2001 // Inputs are already validated in FindInMemory() functions.
2002 assert(buf != nullptr);
2003 assert(size > 0);
2004 assert(alignment > 0);
2005 assert(max_matches > 0);
2006 assert(start_addr != LLDB_INVALID_ADDRESS);
2007 assert(end_addr != LLDB_INVALID_ADDRESS);
2008 assert(start_addr < end_addr);
2010 lldb::addr_t start = llvm::alignTo(start_addr, alignment);
2011 while (matches.size() < max_matches && (start + size) < end_addr) {
2012 const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size);
2013 if (found_addr == LLDB_INVALID_ADDRESS)
2014 break;
2016 if (found_addr % alignment) {
2017 // We need to check the alignment because the FindInMemory uses a special
2018 // algorithm to efficiently search mememory but doesn't support alignment.
2019 start = llvm::alignTo(start + 1, alignment);
2020 continue;
2023 matches.emplace_back(found_addr, size);
2024 start = found_addr + alignment;
2028 AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size,
2029 const AddressRanges &ranges,
2030 size_t alignment, size_t max_matches,
2031 Status &error) {
2032 AddressRanges matches;
2033 if (buf == nullptr) {
2034 error = Status::FromErrorString("buffer is null");
2035 return matches;
2037 if (size == 0) {
2038 error = Status::FromErrorString("buffer size is zero");
2039 return matches;
2041 if (ranges.empty()) {
2042 error = Status::FromErrorString("empty ranges");
2043 return matches;
2045 if (alignment == 0) {
2046 error = Status::FromErrorString("alignment must be greater than zero");
2047 return matches;
2049 if (max_matches == 0) {
2050 error = Status::FromErrorString("max_matches must be greater than zero");
2051 return matches;
2054 int resolved_ranges = 0;
2055 Target &target = GetTarget();
2056 for (size_t i = 0; i < ranges.size(); ++i) {
2057 if (matches.size() >= max_matches)
2058 break;
2059 const AddressRange &range = ranges[i];
2060 if (range.IsValid() == false)
2061 continue;
2063 const lldb::addr_t start_addr =
2064 range.GetBaseAddress().GetLoadAddress(&target);
2065 if (start_addr == LLDB_INVALID_ADDRESS)
2066 continue;
2068 ++resolved_ranges;
2069 const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2070 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment,
2071 max_matches);
2074 if (resolved_ranges > 0)
2075 error.Clear();
2076 else
2077 error = Status::FromErrorString("unable to resolve any ranges");
2079 return matches;
2082 lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size,
2083 const AddressRange &range, size_t alignment,
2084 Status &error) {
2085 if (buf == nullptr) {
2086 error = Status::FromErrorString("buffer is null");
2087 return LLDB_INVALID_ADDRESS;
2089 if (size == 0) {
2090 error = Status::FromErrorString("buffer size is zero");
2091 return LLDB_INVALID_ADDRESS;
2093 if (!range.IsValid()) {
2094 error = Status::FromErrorString("range is invalid");
2095 return LLDB_INVALID_ADDRESS;
2097 if (alignment == 0) {
2098 error = Status::FromErrorString("alignment must be greater than zero");
2099 return LLDB_INVALID_ADDRESS;
2102 Target &target = GetTarget();
2103 const lldb::addr_t start_addr =
2104 range.GetBaseAddress().GetLoadAddress(&target);
2105 if (start_addr == LLDB_INVALID_ADDRESS) {
2106 error = Status::FromErrorString("range load address is invalid");
2107 return LLDB_INVALID_ADDRESS;
2109 const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2111 AddressRanges matches;
2112 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1);
2113 if (matches.empty())
2114 return LLDB_INVALID_ADDRESS;
2116 error.Clear();
2117 return matches[0].GetBaseAddress().GetLoadAddress(&target);
2120 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
2121 Status &error) {
2122 char buf[256];
2123 out_str.clear();
2124 addr_t curr_addr = addr;
2125 while (true) {
2126 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
2127 if (length == 0)
2128 break;
2129 out_str.append(buf, length);
2130 // If we got "length - 1" bytes, we didn't get the whole C string, we need
2131 // to read some more characters
2132 if (length == sizeof(buf) - 1)
2133 curr_addr += length;
2134 else
2135 break;
2137 return out_str.size();
2140 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2141 // correct code to find null terminators.
2142 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2143 size_t dst_max_len,
2144 Status &result_error) {
2145 size_t total_cstr_len = 0;
2146 if (dst && dst_max_len) {
2147 result_error.Clear();
2148 // NULL out everything just to be safe
2149 memset(dst, 0, dst_max_len);
2150 addr_t curr_addr = addr;
2151 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2152 size_t bytes_left = dst_max_len - 1;
2153 char *curr_dst = dst;
2155 while (bytes_left > 0) {
2156 addr_t cache_line_bytes_left =
2157 cache_line_size - (curr_addr % cache_line_size);
2158 addr_t bytes_to_read =
2159 std::min<addr_t>(bytes_left, cache_line_bytes_left);
2160 Status error;
2161 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2163 if (bytes_read == 0) {
2164 result_error = std::move(error);
2165 dst[total_cstr_len] = '\0';
2166 break;
2168 const size_t len = strlen(curr_dst);
2170 total_cstr_len += len;
2172 if (len < bytes_to_read)
2173 break;
2175 curr_dst += bytes_read;
2176 curr_addr += bytes_read;
2177 bytes_left -= bytes_read;
2179 } else {
2180 if (dst == nullptr)
2181 result_error = Status::FromErrorString("invalid arguments");
2182 else
2183 result_error.Clear();
2185 return total_cstr_len;
2188 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2189 Status &error) {
2190 LLDB_SCOPED_TIMER();
2192 if (ABISP abi_sp = GetABI())
2193 addr = abi_sp->FixAnyAddress(addr);
2195 if (buf == nullptr || size == 0)
2196 return 0;
2198 size_t bytes_read = 0;
2199 uint8_t *bytes = (uint8_t *)buf;
2201 while (bytes_read < size) {
2202 const size_t curr_size = size - bytes_read;
2203 const size_t curr_bytes_read =
2204 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2205 bytes_read += curr_bytes_read;
2206 if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2207 break;
2210 // Replace any software breakpoint opcodes that fall into this range back
2211 // into "buf" before we return
2212 if (bytes_read > 0)
2213 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2214 return bytes_read;
2217 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2218 size_t integer_byte_size,
2219 uint64_t fail_value,
2220 Status &error) {
2221 Scalar scalar;
2222 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2223 error))
2224 return scalar.ULongLong(fail_value);
2225 return fail_value;
2228 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2229 size_t integer_byte_size,
2230 int64_t fail_value,
2231 Status &error) {
2232 Scalar scalar;
2233 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2234 error))
2235 return scalar.SLongLong(fail_value);
2236 return fail_value;
2239 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2240 Scalar scalar;
2241 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2242 error))
2243 return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2244 return LLDB_INVALID_ADDRESS;
2247 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2248 Status &error) {
2249 Scalar scalar;
2250 const uint32_t addr_byte_size = GetAddressByteSize();
2251 if (addr_byte_size <= 4)
2252 scalar = (uint32_t)ptr_value;
2253 else
2254 scalar = ptr_value;
2255 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2256 addr_byte_size;
2259 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2260 Status &error) {
2261 size_t bytes_written = 0;
2262 const uint8_t *bytes = (const uint8_t *)buf;
2264 while (bytes_written < size) {
2265 const size_t curr_size = size - bytes_written;
2266 const size_t curr_bytes_written = DoWriteMemory(
2267 addr + bytes_written, bytes + bytes_written, curr_size, error);
2268 bytes_written += curr_bytes_written;
2269 if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2270 break;
2272 return bytes_written;
2275 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2276 Status &error) {
2277 if (ABISP abi_sp = GetABI())
2278 addr = abi_sp->FixAnyAddress(addr);
2280 #if defined(ENABLE_MEMORY_CACHING)
2281 m_memory_cache.Flush(addr, size);
2282 #endif
2284 if (buf == nullptr || size == 0)
2285 return 0;
2287 m_mod_id.BumpMemoryID();
2289 // We need to write any data that would go where any current software traps
2290 // (enabled software breakpoints) any software traps (breakpoints) that we
2291 // may have placed in our tasks memory.
2293 StopPointSiteList<BreakpointSite> bp_sites_in_range;
2294 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2295 return WriteMemoryPrivate(addr, buf, size, error);
2297 // No breakpoint sites overlap
2298 if (bp_sites_in_range.IsEmpty())
2299 return WriteMemoryPrivate(addr, buf, size, error);
2301 const uint8_t *ubuf = (const uint8_t *)buf;
2302 uint64_t bytes_written = 0;
2304 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2305 &error](BreakpointSite *bp) -> void {
2306 if (error.Fail())
2307 return;
2309 if (bp->GetType() != BreakpointSite::eSoftware)
2310 return;
2312 addr_t intersect_addr;
2313 size_t intersect_size;
2314 size_t opcode_offset;
2315 const bool intersects = bp->IntersectsRange(
2316 addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2317 UNUSED_IF_ASSERT_DISABLED(intersects);
2318 assert(intersects);
2319 assert(addr <= intersect_addr && intersect_addr < addr + size);
2320 assert(addr < intersect_addr + intersect_size &&
2321 intersect_addr + intersect_size <= addr + size);
2322 assert(opcode_offset + intersect_size <= bp->GetByteSize());
2324 // Check for bytes before this breakpoint
2325 const addr_t curr_addr = addr + bytes_written;
2326 if (intersect_addr > curr_addr) {
2327 // There are some bytes before this breakpoint that we need to just
2328 // write to memory
2329 size_t curr_size = intersect_addr - curr_addr;
2330 size_t curr_bytes_written =
2331 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2332 bytes_written += curr_bytes_written;
2333 if (curr_bytes_written != curr_size) {
2334 // We weren't able to write all of the requested bytes, we are
2335 // done looping and will return the number of bytes that we have
2336 // written so far.
2337 if (error.Success())
2338 error = Status::FromErrorString("could not write all bytes");
2341 // Now write any bytes that would cover up any software breakpoints
2342 // directly into the breakpoint opcode buffer
2343 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2344 intersect_size);
2345 bytes_written += intersect_size;
2348 // Write any remaining bytes after the last breakpoint if we have any left
2349 if (bytes_written < size)
2350 bytes_written +=
2351 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2352 size - bytes_written, error);
2354 return bytes_written;
2357 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2358 size_t byte_size, Status &error) {
2359 if (byte_size == UINT32_MAX)
2360 byte_size = scalar.GetByteSize();
2361 if (byte_size > 0) {
2362 uint8_t buf[32];
2363 const size_t mem_size =
2364 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2365 if (mem_size > 0)
2366 return WriteMemory(addr, buf, mem_size, error);
2367 else
2368 error = Status::FromErrorString("failed to get scalar as memory data");
2369 } else {
2370 error = Status::FromErrorString("invalid scalar value");
2372 return 0;
2375 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2376 bool is_signed, Scalar &scalar,
2377 Status &error) {
2378 uint64_t uval = 0;
2379 if (byte_size == 0) {
2380 error = Status::FromErrorString("byte size is zero");
2381 } else if (byte_size & (byte_size - 1)) {
2382 error = Status::FromErrorStringWithFormat(
2383 "byte size %u is not a power of 2", byte_size);
2384 } else if (byte_size <= sizeof(uval)) {
2385 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2386 if (bytes_read == byte_size) {
2387 DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2388 GetAddressByteSize());
2389 lldb::offset_t offset = 0;
2390 if (byte_size <= 4)
2391 scalar = data.GetMaxU32(&offset, byte_size);
2392 else
2393 scalar = data.GetMaxU64(&offset, byte_size);
2394 if (is_signed)
2395 scalar.SignExtend(byte_size * 8);
2396 return bytes_read;
2398 } else {
2399 error = Status::FromErrorStringWithFormat(
2400 "byte size of %u is too large for integer scalar type", byte_size);
2402 return 0;
2405 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2406 Status error;
2407 for (const auto &Entry : entries) {
2408 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2409 error);
2410 if (!error.Success())
2411 break;
2413 return error;
2416 #define USE_ALLOCATE_MEMORY_CACHE 1
2417 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2418 Status &error) {
2419 if (GetPrivateState() != eStateStopped) {
2420 error = Status::FromErrorString(
2421 "cannot allocate memory while process is running");
2422 return LLDB_INVALID_ADDRESS;
2425 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2426 return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2427 #else
2428 addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2429 Log *log = GetLog(LLDBLog::Process);
2430 LLDB_LOGF(log,
2431 "Process::AllocateMemory(size=%" PRIu64
2432 ", permissions=%s) => 0x%16.16" PRIx64
2433 " (m_stop_id = %u m_memory_id = %u)",
2434 (uint64_t)size, GetPermissionsAsCString(permissions),
2435 (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2436 m_mod_id.GetMemoryID());
2437 return allocated_addr;
2438 #endif
2441 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2442 Status &error) {
2443 addr_t return_addr = AllocateMemory(size, permissions, error);
2444 if (error.Success()) {
2445 std::string buffer(size, 0);
2446 WriteMemory(return_addr, buffer.c_str(), size, error);
2448 return return_addr;
2451 bool Process::CanJIT() {
2452 if (m_can_jit == eCanJITDontKnow) {
2453 Log *log = GetLog(LLDBLog::Process);
2454 Status err;
2456 uint64_t allocated_memory = AllocateMemory(
2457 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2458 err);
2460 if (err.Success()) {
2461 m_can_jit = eCanJITYes;
2462 LLDB_LOGF(log,
2463 "Process::%s pid %" PRIu64
2464 " allocation test passed, CanJIT () is true",
2465 __FUNCTION__, GetID());
2466 } else {
2467 m_can_jit = eCanJITNo;
2468 LLDB_LOGF(log,
2469 "Process::%s pid %" PRIu64
2470 " allocation test failed, CanJIT () is false: %s",
2471 __FUNCTION__, GetID(), err.AsCString());
2474 DeallocateMemory(allocated_memory);
2477 return m_can_jit == eCanJITYes;
2480 void Process::SetCanJIT(bool can_jit) {
2481 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2484 void Process::SetCanRunCode(bool can_run_code) {
2485 SetCanJIT(can_run_code);
2486 m_can_interpret_function_calls = can_run_code;
2489 Status Process::DeallocateMemory(addr_t ptr) {
2490 Status error;
2491 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2492 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2493 error = Status::FromErrorStringWithFormat(
2494 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2496 #else
2497 error = DoDeallocateMemory(ptr);
2499 Log *log = GetLog(LLDBLog::Process);
2500 LLDB_LOGF(log,
2501 "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2502 ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2503 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2504 m_mod_id.GetMemoryID());
2505 #endif
2506 return error;
2509 bool Process::GetWatchpointReportedAfter() {
2510 if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
2511 return *subclass_override;
2513 bool reported_after = true;
2514 const ArchSpec &arch = GetTarget().GetArchitecture();
2515 if (!arch.IsValid())
2516 return reported_after;
2517 llvm::Triple triple = arch.GetTriple();
2519 if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
2520 triple.isAArch64() || triple.isArmMClass() || triple.isARM() ||
2521 triple.isLoongArch())
2522 reported_after = false;
2524 return reported_after;
2527 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2528 lldb::addr_t header_addr,
2529 size_t size_to_read) {
2530 Log *log = GetLog(LLDBLog::Host);
2531 if (log) {
2532 LLDB_LOGF(log,
2533 "Process::ReadModuleFromMemory reading %s binary from memory",
2534 file_spec.GetPath().c_str());
2536 ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2537 if (module_sp) {
2538 Status error;
2539 std::unique_ptr<Progress> progress_up;
2540 // Reading an ObjectFile from a local corefile is very fast,
2541 // only print a progress update if we're reading from a
2542 // live session which might go over gdb remote serial protocol.
2543 if (IsLiveDebugSession())
2544 progress_up = std::make_unique<Progress>(
2545 "Reading binary from memory", file_spec.GetFilename().GetString());
2547 ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2548 shared_from_this(), header_addr, error, size_to_read);
2549 if (objfile)
2550 return module_sp;
2552 return ModuleSP();
2555 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2556 uint32_t &permissions) {
2557 MemoryRegionInfo range_info;
2558 permissions = 0;
2559 Status error(GetMemoryRegionInfo(load_addr, range_info));
2560 if (!error.Success())
2561 return false;
2562 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2563 range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2564 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2565 return false;
2567 permissions = range_info.GetLLDBPermissions();
2568 return true;
2571 Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
2572 Status error;
2573 error = Status::FromErrorString("watchpoints are not supported");
2574 return error;
2577 Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
2578 Status error;
2579 error = Status::FromErrorString("watchpoints are not supported");
2580 return error;
2583 StateType
2584 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2585 const Timeout<std::micro> &timeout) {
2586 StateType state;
2588 while (true) {
2589 event_sp.reset();
2590 state = GetStateChangedEventsPrivate(event_sp, timeout);
2592 if (StateIsStoppedState(state, false))
2593 break;
2595 // If state is invalid, then we timed out
2596 if (state == eStateInvalid)
2597 break;
2599 if (event_sp)
2600 HandlePrivateEvent(event_sp);
2602 return state;
2605 void Process::LoadOperatingSystemPlugin(bool flush) {
2606 std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
2607 if (flush)
2608 m_thread_list.Clear();
2609 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2610 if (flush)
2611 Flush();
2614 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2615 StateType state_after_launch = eStateInvalid;
2616 EventSP first_stop_event_sp;
2617 Status status =
2618 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2619 if (status.Fail())
2620 return status;
2622 if (state_after_launch != eStateStopped &&
2623 state_after_launch != eStateCrashed)
2624 return Status();
2626 // Note, the stop event was consumed above, but not handled. This
2627 // was done to give DidLaunch a chance to run. The target is either
2628 // stopped or crashed. Directly set the state. This is done to
2629 // prevent a stop message with a bunch of spurious output on thread
2630 // status, as well as not pop a ProcessIOHandler.
2631 SetPublicState(state_after_launch, false);
2633 if (PrivateStateThreadIsValid())
2634 ResumePrivateStateThread();
2635 else
2636 StartPrivateStateThread();
2638 // Target was stopped at entry as was intended. Need to notify the
2639 // listeners about it.
2640 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2641 HandlePrivateEvent(first_stop_event_sp);
2643 return Status();
2646 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2647 EventSP &event_sp) {
2648 Status error;
2649 m_abi_sp.reset();
2650 m_dyld_up.reset();
2651 m_jit_loaders_up.reset();
2652 m_system_runtime_up.reset();
2653 m_os_up.reset();
2656 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2657 m_process_input_reader.reset();
2660 Module *exe_module = GetTarget().GetExecutableModulePointer();
2662 // The "remote executable path" is hooked up to the local Executable
2663 // module. But we should be able to debug a remote process even if the
2664 // executable module only exists on the remote. However, there needs to
2665 // be a way to express this path, without actually having a module.
2666 // The way to do that is to set the ExecutableFile in the LaunchInfo.
2667 // Figure that out here:
2669 FileSpec exe_spec_to_use;
2670 if (!exe_module) {
2671 if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
2672 error = Status::FromErrorString("executable module does not exist");
2673 return error;
2675 exe_spec_to_use = launch_info.GetExecutableFile();
2676 } else
2677 exe_spec_to_use = exe_module->GetFileSpec();
2679 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2680 // Install anything that might need to be installed prior to launching.
2681 // For host systems, this will do nothing, but if we are connected to a
2682 // remote platform it will install any needed binaries
2683 error = GetTarget().Install(&launch_info);
2684 if (error.Fail())
2685 return error;
2688 // Listen and queue events that are broadcasted during the process launch.
2689 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2690 HijackProcessEvents(listener_sp);
2691 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2693 if (PrivateStateThreadIsValid())
2694 PausePrivateStateThread();
2696 error = WillLaunch(exe_module);
2697 if (error.Fail()) {
2698 std::string local_exec_file_path = exe_spec_to_use.GetPath();
2699 return Status::FromErrorStringWithFormat("file doesn't exist: '%s'",
2700 local_exec_file_path.c_str());
2703 const bool restarted = false;
2704 SetPublicState(eStateLaunching, restarted);
2705 m_should_detach = false;
2707 if (m_public_run_lock.TrySetRunning()) {
2708 // Now launch using these arguments.
2709 error = DoLaunch(exe_module, launch_info);
2710 } else {
2711 // This shouldn't happen
2712 error = Status::FromErrorString("failed to acquire process run lock");
2715 if (error.Fail()) {
2716 if (GetID() != LLDB_INVALID_PROCESS_ID) {
2717 SetID(LLDB_INVALID_PROCESS_ID);
2718 const char *error_string = error.AsCString();
2719 if (error_string == nullptr)
2720 error_string = "launch failed";
2721 SetExitStatus(-1, error_string);
2723 return error;
2726 // Now wait for the process to launch and return control to us, and then
2727 // call DidLaunch:
2728 state = WaitForProcessStopPrivate(event_sp, seconds(10));
2730 if (state == eStateInvalid || !event_sp) {
2731 // We were able to launch the process, but we failed to catch the
2732 // initial stop.
2733 error = Status::FromErrorString("failed to catch stop after launch");
2734 SetExitStatus(0, error.AsCString());
2735 Destroy(false);
2736 return error;
2739 if (state == eStateExited) {
2740 // We exited while trying to launch somehow. Don't call DidLaunch
2741 // as that's not likely to work, and return an invalid pid.
2742 HandlePrivateEvent(event_sp);
2743 return Status();
2746 if (state == eStateStopped || state == eStateCrashed) {
2747 DidLaunch();
2749 // Now that we know the process type, update its signal responses from the
2750 // ones stored in the Target:
2751 if (m_unix_signals_sp) {
2752 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2753 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2756 DynamicLoader *dyld = GetDynamicLoader();
2757 if (dyld)
2758 dyld->DidLaunch();
2760 GetJITLoaders().DidLaunch();
2762 SystemRuntime *system_runtime = GetSystemRuntime();
2763 if (system_runtime)
2764 system_runtime->DidLaunch();
2766 if (!m_os_up)
2767 LoadOperatingSystemPlugin(false);
2769 // We successfully launched the process and stopped, now it the
2770 // right time to set up signal filters before resuming.
2771 UpdateAutomaticSignalFiltering();
2772 return Status();
2775 return Status::FromErrorStringWithFormat(
2776 "Unexpected process state after the launch: %s, expected %s, "
2777 "%s, %s or %s",
2778 StateAsCString(state), StateAsCString(eStateInvalid),
2779 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2780 StateAsCString(eStateCrashed));
2783 Status Process::LoadCore() {
2784 Status error = DoLoadCore();
2785 if (error.Success()) {
2786 ListenerSP listener_sp(
2787 Listener::MakeListener("lldb.process.load_core_listener"));
2788 HijackProcessEvents(listener_sp);
2790 if (PrivateStateThreadIsValid())
2791 ResumePrivateStateThread();
2792 else
2793 StartPrivateStateThread();
2795 DynamicLoader *dyld = GetDynamicLoader();
2796 if (dyld)
2797 dyld->DidAttach();
2799 GetJITLoaders().DidAttach();
2801 SystemRuntime *system_runtime = GetSystemRuntime();
2802 if (system_runtime)
2803 system_runtime->DidAttach();
2805 if (!m_os_up)
2806 LoadOperatingSystemPlugin(false);
2808 // We successfully loaded a core file, now pretend we stopped so we can
2809 // show all of the threads in the core file and explore the crashed state.
2810 SetPrivateState(eStateStopped);
2812 // Wait for a stopped event since we just posted one above...
2813 lldb::EventSP event_sp;
2814 StateType state =
2815 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
2816 nullptr, true, SelectMostRelevantFrame);
2818 if (!StateIsStoppedState(state, false)) {
2819 Log *log = GetLog(LLDBLog::Process);
2820 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2821 StateAsCString(state));
2822 error = Status::FromErrorString(
2823 "Did not get stopped event after loading the core file.");
2825 RestoreProcessEvents();
2827 return error;
2830 DynamicLoader *Process::GetDynamicLoader() {
2831 if (!m_dyld_up)
2832 m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2833 return m_dyld_up.get();
2836 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) {
2837 m_dyld_up = std::move(dyld_up);
2840 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2842 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2843 return false;
2846 JITLoaderList &Process::GetJITLoaders() {
2847 if (!m_jit_loaders_up) {
2848 m_jit_loaders_up = std::make_unique<JITLoaderList>();
2849 JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2851 return *m_jit_loaders_up;
2854 SystemRuntime *Process::GetSystemRuntime() {
2855 if (!m_system_runtime_up)
2856 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2857 return m_system_runtime_up.get();
2860 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2861 uint32_t exec_count)
2862 : NextEventAction(process), m_exec_count(exec_count) {
2863 Log *log = GetLog(LLDBLog::Process);
2864 LLDB_LOGF(
2865 log,
2866 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2867 __FUNCTION__, static_cast<void *>(process), exec_count);
2870 Process::NextEventAction::EventActionResult
2871 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2872 Log *log = GetLog(LLDBLog::Process);
2874 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2875 LLDB_LOGF(log,
2876 "Process::AttachCompletionHandler::%s called with state %s (%d)",
2877 __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2879 switch (state) {
2880 case eStateAttaching:
2881 return eEventActionSuccess;
2883 case eStateRunning:
2884 case eStateConnected:
2885 return eEventActionRetry;
2887 case eStateStopped:
2888 case eStateCrashed:
2889 // During attach, prior to sending the eStateStopped event,
2890 // lldb_private::Process subclasses must set the new process ID.
2891 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2892 // We don't want these events to be reported, so go set the
2893 // ShouldReportStop here:
2894 m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2896 if (m_exec_count > 0) {
2897 --m_exec_count;
2899 LLDB_LOGF(log,
2900 "Process::AttachCompletionHandler::%s state %s: reduced "
2901 "remaining exec count to %" PRIu32 ", requesting resume",
2902 __FUNCTION__, StateAsCString(state), m_exec_count);
2904 RequestResume();
2905 return eEventActionRetry;
2906 } else {
2907 LLDB_LOGF(log,
2908 "Process::AttachCompletionHandler::%s state %s: no more "
2909 "execs expected to start, continuing with attach",
2910 __FUNCTION__, StateAsCString(state));
2912 m_process->CompleteAttach();
2913 return eEventActionSuccess;
2915 break;
2917 default:
2918 case eStateExited:
2919 case eStateInvalid:
2920 break;
2923 m_exit_string.assign("No valid Process");
2924 return eEventActionExit;
2927 Process::NextEventAction::EventActionResult
2928 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2929 return eEventActionSuccess;
2932 const char *Process::AttachCompletionHandler::GetExitString() {
2933 return m_exit_string.c_str();
2936 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2937 if (m_listener_sp)
2938 return m_listener_sp;
2939 else
2940 return debugger.GetListener();
2943 Status Process::WillLaunch(Module *module) {
2944 return DoWillLaunch(module);
2947 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) {
2948 return DoWillAttachToProcessWithID(pid);
2951 Status Process::WillAttachToProcessWithName(const char *process_name,
2952 bool wait_for_launch) {
2953 return DoWillAttachToProcessWithName(process_name, wait_for_launch);
2956 Status Process::Attach(ProcessAttachInfo &attach_info) {
2957 m_abi_sp.reset();
2959 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2960 m_process_input_reader.reset();
2962 m_dyld_up.reset();
2963 m_jit_loaders_up.reset();
2964 m_system_runtime_up.reset();
2965 m_os_up.reset();
2967 lldb::pid_t attach_pid = attach_info.GetProcessID();
2968 Status error;
2969 if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2970 char process_name[PATH_MAX];
2972 if (attach_info.GetExecutableFile().GetPath(process_name,
2973 sizeof(process_name))) {
2974 const bool wait_for_launch = attach_info.GetWaitForLaunch();
2976 if (wait_for_launch) {
2977 error = WillAttachToProcessWithName(process_name, wait_for_launch);
2978 if (error.Success()) {
2979 if (m_public_run_lock.TrySetRunning()) {
2980 m_should_detach = true;
2981 const bool restarted = false;
2982 SetPublicState(eStateAttaching, restarted);
2983 // Now attach using these arguments.
2984 error = DoAttachToProcessWithName(process_name, attach_info);
2985 } else {
2986 // This shouldn't happen
2987 error =
2988 Status::FromErrorString("failed to acquire process run lock");
2991 if (error.Fail()) {
2992 if (GetID() != LLDB_INVALID_PROCESS_ID) {
2993 SetID(LLDB_INVALID_PROCESS_ID);
2994 if (error.AsCString() == nullptr)
2995 error = Status::FromErrorString("attach failed");
2997 SetExitStatus(-1, error.AsCString());
2999 } else {
3000 SetNextEventAction(new Process::AttachCompletionHandler(
3001 this, attach_info.GetResumeCount()));
3002 StartPrivateStateThread();
3004 return error;
3006 } else {
3007 ProcessInstanceInfoList process_infos;
3008 PlatformSP platform_sp(GetTarget().GetPlatform());
3010 if (platform_sp) {
3011 ProcessInstanceInfoMatch match_info;
3012 match_info.GetProcessInfo() = attach_info;
3013 match_info.SetNameMatchType(NameMatch::Equals);
3014 platform_sp->FindProcesses(match_info, process_infos);
3015 const uint32_t num_matches = process_infos.size();
3016 if (num_matches == 1) {
3017 attach_pid = process_infos[0].GetProcessID();
3018 // Fall through and attach using the above process ID
3019 } else {
3020 match_info.GetProcessInfo().GetExecutableFile().GetPath(
3021 process_name, sizeof(process_name));
3022 if (num_matches > 1) {
3023 StreamString s;
3024 ProcessInstanceInfo::DumpTableHeader(s, true, false);
3025 for (size_t i = 0; i < num_matches; i++) {
3026 process_infos[i].DumpAsTableRow(
3027 s, platform_sp->GetUserIDResolver(), true, false);
3029 error = Status::FromErrorStringWithFormat(
3030 "more than one process named %s:\n%s", process_name,
3031 s.GetData());
3032 } else
3033 error = Status::FromErrorStringWithFormat(
3034 "could not find a process named %s", process_name);
3036 } else {
3037 error = Status::FromErrorString(
3038 "invalid platform, can't find processes by name");
3039 return error;
3042 } else {
3043 error = Status::FromErrorString("invalid process name");
3047 if (attach_pid != LLDB_INVALID_PROCESS_ID) {
3048 error = WillAttachToProcessWithID(attach_pid);
3049 if (error.Success()) {
3051 if (m_public_run_lock.TrySetRunning()) {
3052 // Now attach using these arguments.
3053 m_should_detach = true;
3054 const bool restarted = false;
3055 SetPublicState(eStateAttaching, restarted);
3056 error = DoAttachToProcessWithID(attach_pid, attach_info);
3057 } else {
3058 // This shouldn't happen
3059 error = Status::FromErrorString("failed to acquire process run lock");
3062 if (error.Success()) {
3063 SetNextEventAction(new Process::AttachCompletionHandler(
3064 this, attach_info.GetResumeCount()));
3065 StartPrivateStateThread();
3066 } else {
3067 if (GetID() != LLDB_INVALID_PROCESS_ID)
3068 SetID(LLDB_INVALID_PROCESS_ID);
3070 const char *error_string = error.AsCString();
3071 if (error_string == nullptr)
3072 error_string = "attach failed";
3074 SetExitStatus(-1, error_string);
3078 return error;
3081 void Process::CompleteAttach() {
3082 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
3083 LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
3085 // Let the process subclass figure out at much as it can about the process
3086 // before we go looking for a dynamic loader plug-in.
3087 ArchSpec process_arch;
3088 DidAttach(process_arch);
3090 if (process_arch.IsValid()) {
3091 LLDB_LOG(log,
3092 "Process::{0} replacing process architecture with DidAttach() "
3093 "architecture: \"{1}\"",
3094 __FUNCTION__, process_arch.GetTriple().getTriple());
3095 GetTarget().SetArchitecture(process_arch);
3098 // We just attached. If we have a platform, ask it for the process
3099 // architecture, and if it isn't the same as the one we've already set,
3100 // switch architectures.
3101 PlatformSP platform_sp(GetTarget().GetPlatform());
3102 assert(platform_sp);
3103 ArchSpec process_host_arch = GetSystemArchitecture();
3104 if (platform_sp) {
3105 const ArchSpec &target_arch = GetTarget().GetArchitecture();
3106 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
3107 target_arch, process_host_arch,
3108 ArchSpec::CompatibleMatch, nullptr)) {
3109 ArchSpec platform_arch;
3110 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
3111 target_arch, process_host_arch, &platform_arch);
3112 if (platform_sp) {
3113 GetTarget().SetPlatform(platform_sp);
3114 GetTarget().SetArchitecture(platform_arch);
3115 LLDB_LOG(log,
3116 "switching platform to {0} and architecture to {1} based on "
3117 "info from attach",
3118 platform_sp->GetName(), platform_arch.GetTriple().getTriple());
3120 } else if (!process_arch.IsValid()) {
3121 ProcessInstanceInfo process_info;
3122 GetProcessInfo(process_info);
3123 const ArchSpec &process_arch = process_info.GetArchitecture();
3124 const ArchSpec &target_arch = GetTarget().GetArchitecture();
3125 if (process_arch.IsValid() &&
3126 target_arch.IsCompatibleMatch(process_arch) &&
3127 !target_arch.IsExactMatch(process_arch)) {
3128 GetTarget().SetArchitecture(process_arch);
3129 LLDB_LOGF(log,
3130 "Process::%s switching architecture to %s based on info "
3131 "the platform retrieved for pid %" PRIu64,
3132 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
3133 GetID());
3137 // Now that we know the process type, update its signal responses from the
3138 // ones stored in the Target:
3139 if (m_unix_signals_sp) {
3140 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
3141 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
3144 // We have completed the attach, now it is time to find the dynamic loader
3145 // plug-in
3146 DynamicLoader *dyld = GetDynamicLoader();
3147 if (dyld) {
3148 dyld->DidAttach();
3149 if (log) {
3150 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3151 LLDB_LOG(log,
3152 "after DynamicLoader::DidAttach(), target "
3153 "executable is {0} (using {1} plugin)",
3154 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3155 dyld->GetPluginName());
3159 GetJITLoaders().DidAttach();
3161 SystemRuntime *system_runtime = GetSystemRuntime();
3162 if (system_runtime) {
3163 system_runtime->DidAttach();
3164 if (log) {
3165 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3166 LLDB_LOG(log,
3167 "after SystemRuntime::DidAttach(), target "
3168 "executable is {0} (using {1} plugin)",
3169 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3170 system_runtime->GetPluginName());
3174 if (!m_os_up) {
3175 LoadOperatingSystemPlugin(false);
3176 if (m_os_up) {
3177 // Somebody might have gotten threads before now, but we need to force the
3178 // update after we've loaded the OperatingSystem plugin or it won't get a
3179 // chance to process the threads.
3180 m_thread_list.Clear();
3181 UpdateThreadListIfNeeded();
3184 // Figure out which one is the executable, and set that in our target:
3185 ModuleSP new_executable_module_sp;
3186 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
3187 if (module_sp && module_sp->IsExecutable()) {
3188 if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3189 new_executable_module_sp = module_sp;
3190 break;
3193 if (new_executable_module_sp) {
3194 GetTarget().SetExecutableModule(new_executable_module_sp,
3195 eLoadDependentsNo);
3196 if (log) {
3197 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3198 LLDB_LOGF(
3199 log,
3200 "Process::%s after looping through modules, target executable is %s",
3201 __FUNCTION__,
3202 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3203 : "<none>");
3208 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3209 m_abi_sp.reset();
3211 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3212 m_process_input_reader.reset();
3215 // Find the process and its architecture. Make sure it matches the
3216 // architecture of the current Target, and if not adjust it.
3218 Status error(DoConnectRemote(remote_url));
3219 if (error.Success()) {
3220 if (GetID() != LLDB_INVALID_PROCESS_ID) {
3221 EventSP event_sp;
3222 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
3224 if (state == eStateStopped || state == eStateCrashed) {
3225 // If we attached and actually have a process on the other end, then
3226 // this ended up being the equivalent of an attach.
3227 CompleteAttach();
3229 // This delays passing the stopped event to listeners till
3230 // CompleteAttach gets a chance to complete...
3231 HandlePrivateEvent(event_sp);
3235 if (PrivateStateThreadIsValid())
3236 ResumePrivateStateThread();
3237 else
3238 StartPrivateStateThread();
3240 return error;
3243 Status Process::PrivateResume() {
3244 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3245 LLDB_LOGF(log,
3246 "Process::PrivateResume() m_stop_id = %u, public state: %s "
3247 "private state: %s",
3248 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3249 StateAsCString(m_private_state.GetValue()));
3251 // If signals handing status changed we might want to update our signal
3252 // filters before resuming.
3253 UpdateAutomaticSignalFiltering();
3254 // Clear any crash info we accumulated for this stop, but don't do so if we
3255 // are running functions; we don't want to wipe out the real stop's info.
3256 if (!GetModID().IsLastResumeForUserExpression())
3257 ResetExtendedCrashInfoDict();
3259 Status error(WillResume());
3260 // Tell the process it is about to resume before the thread list
3261 if (error.Success()) {
3262 // Now let the thread list know we are about to resume so it can let all of
3263 // our threads know that they are about to be resumed. Threads will each be
3264 // called with Thread::WillResume(StateType) where StateType contains the
3265 // state that they are supposed to have when the process is resumed
3266 // (suspended/running/stepping). Threads should also check their resume
3267 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3268 // start back up with a signal.
3269 if (m_thread_list.WillResume()) {
3270 // Last thing, do the PreResumeActions.
3271 if (!RunPreResumeActions()) {
3272 error = Status::FromErrorString(
3273 "Process::PrivateResume PreResumeActions failed, not resuming.");
3274 } else {
3275 m_mod_id.BumpResumeID();
3276 error = DoResume();
3277 if (error.Success()) {
3278 DidResume();
3279 m_thread_list.DidResume();
3280 LLDB_LOGF(log, "Process thinks the process has resumed.");
3281 } else {
3282 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3283 return error;
3286 } else {
3287 // Somebody wanted to run without running (e.g. we were faking a step
3288 // from one frame of a set of inlined frames that share the same PC to
3289 // another.) So generate a continue & a stopped event, and let the world
3290 // handle them.
3291 LLDB_LOGF(log,
3292 "Process::PrivateResume() asked to simulate a start & stop.");
3294 SetPrivateState(eStateRunning);
3295 SetPrivateState(eStateStopped);
3297 } else
3298 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3299 error.AsCString("<unknown error>"));
3300 return error;
3303 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3304 if (!StateIsRunningState(m_public_state.GetValue()))
3305 return Status::FromErrorString("Process is not running.");
3307 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3308 // case it was already set and some thread plan logic calls halt on its own.
3309 m_clear_thread_plans_on_stop |= clear_thread_plans;
3311 ListenerSP halt_listener_sp(
3312 Listener::MakeListener("lldb.process.halt_listener"));
3313 HijackProcessEvents(halt_listener_sp);
3315 EventSP event_sp;
3317 SendAsyncInterrupt();
3319 if (m_public_state.GetValue() == eStateAttaching) {
3320 // Don't hijack and eat the eStateExited as the code that was doing the
3321 // attach will be waiting for this event...
3322 RestoreProcessEvents();
3323 Destroy(false);
3324 SetExitStatus(SIGKILL, "Cancelled async attach.");
3325 return Status();
3328 // Wait for the process halt timeout seconds for the process to stop.
3329 // If we are going to use the run lock, that means we're stopping out to the
3330 // user, so we should also select the most relevant frame.
3331 SelectMostRelevant select_most_relevant =
3332 use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame;
3333 StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3334 halt_listener_sp, nullptr,
3335 use_run_lock, select_most_relevant);
3336 RestoreProcessEvents();
3338 if (state == eStateInvalid || !event_sp) {
3339 // We timed out and didn't get a stop event...
3340 return Status::FromErrorStringWithFormat("Halt timed out. State = %s",
3341 StateAsCString(GetState()));
3344 BroadcastEvent(event_sp);
3346 return Status();
3349 lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high,
3350 const uint8_t *buf, size_t size) {
3351 const size_t region_size = high - low;
3353 if (region_size < size)
3354 return LLDB_INVALID_ADDRESS;
3356 // See "Boyer-Moore string search algorithm".
3357 std::vector<size_t> bad_char_heuristic(256, size);
3358 for (size_t idx = 0; idx < size - 1; idx++) {
3359 decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx];
3360 bad_char_heuristic[bcu_idx] = size - idx - 1;
3363 // Memory we're currently searching through.
3364 llvm::SmallVector<uint8_t, 0> mem;
3365 // Position of the memory buffer.
3366 addr_t mem_pos = low;
3367 // Maximum number of bytes read (and buffered). We need to read at least
3368 // `size` bytes for a successful match.
3369 const size_t max_read_size = std::max<size_t>(size, 0x10000);
3371 for (addr_t cur_addr = low; cur_addr <= (high - size);) {
3372 if (cur_addr + size > mem_pos + mem.size()) {
3373 // We need to read more data. We don't attempt to reuse the data we've
3374 // already read (up to `size-1` bytes from `cur_addr` to
3375 // `mem_pos+mem.size()`). This is fine for patterns much smaller than
3376 // max_read_size. For very
3377 // long patterns we may need to do something more elaborate.
3378 mem.resize_for_overwrite(max_read_size);
3379 Status error;
3380 mem.resize(ReadMemory(cur_addr, mem.data(),
3381 std::min<addr_t>(mem.size(), high - cur_addr),
3382 error));
3383 mem_pos = cur_addr;
3384 if (size > mem.size()) {
3385 // We didn't read enough data. Skip to the next memory region.
3386 MemoryRegionInfo info;
3387 error = GetMemoryRegionInfo(mem_pos + mem.size(), info);
3388 if (error.Fail())
3389 break;
3390 cur_addr = info.GetRange().GetRangeEnd();
3391 continue;
3394 int64_t j = size - 1;
3395 while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos])
3396 j--;
3397 if (j < 0)
3398 return cur_addr; // We have a match.
3399 cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]];
3402 return LLDB_INVALID_ADDRESS;
3405 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3406 Status error;
3408 // Check both the public & private states here. If we're hung evaluating an
3409 // expression, for instance, then the public state will be stopped, but we
3410 // still need to interrupt.
3411 if (m_public_state.GetValue() == eStateRunning ||
3412 m_private_state.GetValue() == eStateRunning) {
3413 Log *log = GetLog(LLDBLog::Process);
3414 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3416 ListenerSP listener_sp(
3417 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3418 HijackProcessEvents(listener_sp);
3420 SendAsyncInterrupt();
3422 // Consume the interrupt event.
3423 StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3424 &exit_event_sp, true, listener_sp);
3426 RestoreProcessEvents();
3428 // If the process exited while we were waiting for it to stop, put the
3429 // exited event into the shared pointer passed in and return. Our caller
3430 // doesn't need to do anything else, since they don't have a process
3431 // anymore...
3433 if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3434 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3435 __FUNCTION__);
3436 return error;
3437 } else
3438 exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3440 if (state != eStateStopped) {
3441 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3442 StateAsCString(state));
3443 // If we really couldn't stop the process then we should just error out
3444 // here, but if the lower levels just bobbled sending the event and we
3445 // really are stopped, then continue on.
3446 StateType private_state = m_private_state.GetValue();
3447 if (private_state != eStateStopped) {
3448 return Status::FromErrorStringWithFormat(
3449 "Attempt to stop the target in order to detach timed out. "
3450 "State = %s",
3451 StateAsCString(GetState()));
3455 return error;
3458 Status Process::Detach(bool keep_stopped) {
3459 EventSP exit_event_sp;
3460 Status error;
3461 m_destroy_in_process = true;
3463 error = WillDetach();
3465 if (error.Success()) {
3466 if (DetachRequiresHalt()) {
3467 error = StopForDestroyOrDetach(exit_event_sp);
3468 if (!error.Success()) {
3469 m_destroy_in_process = false;
3470 return error;
3471 } else if (exit_event_sp) {
3472 // We shouldn't need to do anything else here. There's no process left
3473 // to detach from...
3474 StopPrivateStateThread();
3475 m_destroy_in_process = false;
3476 return error;
3480 m_thread_list.DiscardThreadPlans();
3481 DisableAllBreakpointSites();
3483 error = DoDetach(keep_stopped);
3484 if (error.Success()) {
3485 DidDetach();
3486 StopPrivateStateThread();
3487 } else {
3488 return error;
3491 m_destroy_in_process = false;
3493 // If we exited when we were waiting for a process to stop, then forward the
3494 // event here so we don't lose the event
3495 if (exit_event_sp) {
3496 // Directly broadcast our exited event because we shut down our private
3497 // state thread above
3498 BroadcastEvent(exit_event_sp);
3501 // If we have been interrupted (to kill us) in the middle of running, we may
3502 // not end up propagating the last events through the event system, in which
3503 // case we might strand the write lock. Unlock it here so when we do to tear
3504 // down the process we don't get an error destroying the lock.
3506 m_public_run_lock.SetStopped();
3507 return error;
3510 Status Process::Destroy(bool force_kill) {
3511 // If we've already called Process::Finalize then there's nothing useful to
3512 // be done here. Finalize has actually called Destroy already.
3513 if (m_finalizing)
3514 return {};
3515 return DestroyImpl(force_kill);
3518 Status Process::DestroyImpl(bool force_kill) {
3519 // Tell ourselves we are in the process of destroying the process, so that we
3520 // don't do any unnecessary work that might hinder the destruction. Remember
3521 // to set this back to false when we are done. That way if the attempt
3522 // failed and the process stays around for some reason it won't be in a
3523 // confused state.
3525 if (force_kill)
3526 m_should_detach = false;
3528 if (GetShouldDetach()) {
3529 // FIXME: This will have to be a process setting:
3530 bool keep_stopped = false;
3531 Detach(keep_stopped);
3534 m_destroy_in_process = true;
3536 Status error(WillDestroy());
3537 if (error.Success()) {
3538 EventSP exit_event_sp;
3539 if (DestroyRequiresHalt()) {
3540 error = StopForDestroyOrDetach(exit_event_sp);
3543 if (m_public_state.GetValue() == eStateStopped) {
3544 // Ditch all thread plans, and remove all our breakpoints: in case we
3545 // have to restart the target to kill it, we don't want it hitting a
3546 // breakpoint... Only do this if we've stopped, however, since if we
3547 // didn't manage to halt it above, then we're not going to have much luck
3548 // doing this now.
3549 m_thread_list.DiscardThreadPlans();
3550 DisableAllBreakpointSites();
3553 error = DoDestroy();
3554 if (error.Success()) {
3555 DidDestroy();
3556 StopPrivateStateThread();
3558 m_stdio_communication.StopReadThread();
3559 m_stdio_communication.Disconnect();
3560 m_stdin_forward = false;
3563 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3564 if (m_process_input_reader) {
3565 m_process_input_reader->SetIsDone(true);
3566 m_process_input_reader->Cancel();
3567 m_process_input_reader.reset();
3571 // If we exited when we were waiting for a process to stop, then forward
3572 // the event here so we don't lose the event
3573 if (exit_event_sp) {
3574 // Directly broadcast our exited event because we shut down our private
3575 // state thread above
3576 BroadcastEvent(exit_event_sp);
3579 // If we have been interrupted (to kill us) in the middle of running, we
3580 // may not end up propagating the last events through the event system, in
3581 // which case we might strand the write lock. Unlock it here so when we do
3582 // to tear down the process we don't get an error destroying the lock.
3583 m_public_run_lock.SetStopped();
3586 m_destroy_in_process = false;
3588 return error;
3591 Status Process::Signal(int signal) {
3592 Status error(WillSignal());
3593 if (error.Success()) {
3594 error = DoSignal(signal);
3595 if (error.Success())
3596 DidSignal();
3598 return error;
3601 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3602 assert(signals_sp && "null signals_sp");
3603 m_unix_signals_sp = std::move(signals_sp);
3606 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3607 assert(m_unix_signals_sp && "null m_unix_signals_sp");
3608 return m_unix_signals_sp;
3611 lldb::ByteOrder Process::GetByteOrder() const {
3612 return GetTarget().GetArchitecture().GetByteOrder();
3615 uint32_t Process::GetAddressByteSize() const {
3616 return GetTarget().GetArchitecture().GetAddressByteSize();
3619 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3620 const StateType state =
3621 Process::ProcessEventData::GetStateFromEvent(event_ptr);
3622 bool return_value = true;
3623 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3625 switch (state) {
3626 case eStateDetached:
3627 case eStateExited:
3628 case eStateUnloaded:
3629 m_stdio_communication.SynchronizeWithReadThread();
3630 m_stdio_communication.StopReadThread();
3631 m_stdio_communication.Disconnect();
3632 m_stdin_forward = false;
3634 [[fallthrough]];
3635 case eStateConnected:
3636 case eStateAttaching:
3637 case eStateLaunching:
3638 // These events indicate changes in the state of the debugging session,
3639 // always report them.
3640 return_value = true;
3641 break;
3642 case eStateInvalid:
3643 // We stopped for no apparent reason, don't report it.
3644 return_value = false;
3645 break;
3646 case eStateRunning:
3647 case eStateStepping:
3648 // If we've started the target running, we handle the cases where we are
3649 // already running and where there is a transition from stopped to running
3650 // differently. running -> running: Automatically suppress extra running
3651 // events stopped -> running: Report except when there is one or more no
3652 // votes
3653 // and no yes votes.
3654 SynchronouslyNotifyStateChanged(state);
3655 if (m_force_next_event_delivery)
3656 return_value = true;
3657 else {
3658 switch (m_last_broadcast_state) {
3659 case eStateRunning:
3660 case eStateStepping:
3661 // We always suppress multiple runnings with no PUBLIC stop in between.
3662 return_value = false;
3663 break;
3664 default:
3665 // TODO: make this work correctly. For now always report
3666 // run if we aren't running so we don't miss any running events. If I
3667 // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3668 // and hit the breakpoints on multiple threads, then somehow during the
3669 // stepping over of all breakpoints no run gets reported.
3671 // This is a transition from stop to run.
3672 switch (m_thread_list.ShouldReportRun(event_ptr)) {
3673 case eVoteYes:
3674 case eVoteNoOpinion:
3675 return_value = true;
3676 break;
3677 case eVoteNo:
3678 return_value = false;
3679 break;
3681 break;
3684 break;
3685 case eStateStopped:
3686 case eStateCrashed:
3687 case eStateSuspended:
3688 // We've stopped. First see if we're going to restart the target. If we
3689 // are going to stop, then we always broadcast the event. If we aren't
3690 // going to stop, let the thread plans decide if we're going to report this
3691 // event. If no thread has an opinion, we don't report it.
3693 m_stdio_communication.SynchronizeWithReadThread();
3694 RefreshStateAfterStop();
3695 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3696 LLDB_LOGF(log,
3697 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3698 "interrupt, state: %s",
3699 static_cast<void *>(event_ptr), StateAsCString(state));
3700 // Even though we know we are going to stop, we should let the threads
3701 // have a look at the stop, so they can properly set their state.
3702 m_thread_list.ShouldStop(event_ptr);
3703 return_value = true;
3704 } else {
3705 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3706 bool should_resume = false;
3708 // It makes no sense to ask "ShouldStop" if we've already been
3709 // restarted... Asking the thread list is also not likely to go well,
3710 // since we are running again. So in that case just report the event.
3712 if (!was_restarted)
3713 should_resume = !m_thread_list.ShouldStop(event_ptr);
3715 if (was_restarted || should_resume || m_resume_requested) {
3716 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3717 LLDB_LOGF(log,
3718 "Process::ShouldBroadcastEvent: should_resume: %i state: "
3719 "%s was_restarted: %i report_stop_vote: %d.",
3720 should_resume, StateAsCString(state), was_restarted,
3721 report_stop_vote);
3723 switch (report_stop_vote) {
3724 case eVoteYes:
3725 return_value = true;
3726 break;
3727 case eVoteNoOpinion:
3728 case eVoteNo:
3729 return_value = false;
3730 break;
3733 if (!was_restarted) {
3734 LLDB_LOGF(log,
3735 "Process::ShouldBroadcastEvent (%p) Restarting process "
3736 "from state: %s",
3737 static_cast<void *>(event_ptr), StateAsCString(state));
3738 ProcessEventData::SetRestartedInEvent(event_ptr, true);
3739 PrivateResume();
3741 } else {
3742 return_value = true;
3743 SynchronouslyNotifyStateChanged(state);
3746 break;
3749 // Forcing the next event delivery is a one shot deal. So reset it here.
3750 m_force_next_event_delivery = false;
3752 // We do some coalescing of events (for instance two consecutive running
3753 // events get coalesced.) But we only coalesce against events we actually
3754 // broadcast. So we use m_last_broadcast_state to track that. NB - you
3755 // can't use "m_public_state.GetValue()" for that purpose, as was originally
3756 // done, because the PublicState reflects the last event pulled off the
3757 // queue, and there may be several events stacked up on the queue unserviced.
3758 // So the PublicState may not reflect the last broadcasted event yet.
3759 // m_last_broadcast_state gets updated here.
3761 if (return_value)
3762 m_last_broadcast_state = state;
3764 LLDB_LOGF(log,
3765 "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3766 "broadcast state: %s - %s",
3767 static_cast<void *>(event_ptr), StateAsCString(state),
3768 StateAsCString(m_last_broadcast_state),
3769 return_value ? "YES" : "NO");
3770 return return_value;
3773 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3774 Log *log = GetLog(LLDBLog::Events);
3776 bool already_running = PrivateStateThreadIsValid();
3777 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3778 already_running ? " already running"
3779 : " starting private state thread");
3781 if (!is_secondary_thread && already_running)
3782 return true;
3784 // Create a thread that watches our internal state and controls which events
3785 // make it to clients (into the DCProcess event queue).
3786 char thread_name[1024];
3787 uint32_t max_len = llvm::get_max_thread_name_length();
3788 if (max_len > 0 && max_len <= 30) {
3789 // On platforms with abbreviated thread name lengths, choose thread names
3790 // that fit within the limit.
3791 if (already_running)
3792 snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3793 else
3794 snprintf(thread_name, sizeof(thread_name), "intern-state");
3795 } else {
3796 if (already_running)
3797 snprintf(thread_name, sizeof(thread_name),
3798 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3799 GetID());
3800 else
3801 snprintf(thread_name, sizeof(thread_name),
3802 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3805 llvm::Expected<HostThread> private_state_thread =
3806 ThreadLauncher::LaunchThread(
3807 thread_name,
3808 [this, is_secondary_thread] {
3809 return RunPrivateStateThread(is_secondary_thread);
3811 8 * 1024 * 1024);
3812 if (!private_state_thread) {
3813 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
3814 "failed to launch host thread: {0}");
3815 return false;
3818 assert(private_state_thread->IsJoinable());
3819 m_private_state_thread = *private_state_thread;
3820 ResumePrivateStateThread();
3821 return true;
3824 void Process::PausePrivateStateThread() {
3825 ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3828 void Process::ResumePrivateStateThread() {
3829 ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3832 void Process::StopPrivateStateThread() {
3833 if (m_private_state_thread.IsJoinable())
3834 ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3835 else {
3836 Log *log = GetLog(LLDBLog::Process);
3837 LLDB_LOGF(
3838 log,
3839 "Went to stop the private state thread, but it was already invalid.");
3843 void Process::ControlPrivateStateThread(uint32_t signal) {
3844 Log *log = GetLog(LLDBLog::Process);
3846 assert(signal == eBroadcastInternalStateControlStop ||
3847 signal == eBroadcastInternalStateControlPause ||
3848 signal == eBroadcastInternalStateControlResume);
3850 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3852 // Signal the private state thread
3853 if (m_private_state_thread.IsJoinable()) {
3854 // Broadcast the event.
3855 // It is important to do this outside of the if below, because it's
3856 // possible that the thread state is invalid but that the thread is waiting
3857 // on a control event instead of simply being on its way out (this should
3858 // not happen, but it apparently can).
3859 LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3860 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3861 m_private_state_control_broadcaster.BroadcastEvent(signal,
3862 event_receipt_sp);
3864 // Wait for the event receipt or for the private state thread to exit
3865 bool receipt_received = false;
3866 if (PrivateStateThreadIsValid()) {
3867 while (!receipt_received) {
3868 // Check for a receipt for n seconds and then check if the private
3869 // state thread is still around.
3870 receipt_received =
3871 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3872 if (!receipt_received) {
3873 // Check if the private state thread is still around. If it isn't
3874 // then we are done waiting
3875 if (!PrivateStateThreadIsValid())
3876 break; // Private state thread exited or is exiting, we are done
3881 if (signal == eBroadcastInternalStateControlStop) {
3882 thread_result_t result = {};
3883 m_private_state_thread.Join(&result);
3884 m_private_state_thread.Reset();
3886 } else {
3887 LLDB_LOGF(
3888 log,
3889 "Private state thread already dead, no need to signal it to stop.");
3893 void Process::SendAsyncInterrupt(Thread *thread) {
3894 if (thread != nullptr)
3895 m_interrupt_tid = thread->GetProtocolID();
3896 else
3897 m_interrupt_tid = LLDB_INVALID_THREAD_ID;
3898 if (PrivateStateThreadIsValid())
3899 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3900 nullptr);
3901 else
3902 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3905 void Process::HandlePrivateEvent(EventSP &event_sp) {
3906 Log *log = GetLog(LLDBLog::Process);
3907 m_resume_requested = false;
3909 const StateType new_state =
3910 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3912 // First check to see if anybody wants a shot at this event:
3913 if (m_next_event_action_up) {
3914 NextEventAction::EventActionResult action_result =
3915 m_next_event_action_up->PerformAction(event_sp);
3916 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3918 switch (action_result) {
3919 case NextEventAction::eEventActionSuccess:
3920 SetNextEventAction(nullptr);
3921 break;
3923 case NextEventAction::eEventActionRetry:
3924 break;
3926 case NextEventAction::eEventActionExit:
3927 // Handle Exiting Here. If we already got an exited event, we should
3928 // just propagate it. Otherwise, swallow this event, and set our state
3929 // to exit so the next event will kill us.
3930 if (new_state != eStateExited) {
3931 // FIXME: should cons up an exited event, and discard this one.
3932 SetExitStatus(0, m_next_event_action_up->GetExitString());
3933 SetNextEventAction(nullptr);
3934 return;
3936 SetNextEventAction(nullptr);
3937 break;
3941 // See if we should broadcast this state to external clients?
3942 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3944 if (should_broadcast) {
3945 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3946 if (log) {
3947 LLDB_LOGF(log,
3948 "Process::%s (pid = %" PRIu64
3949 ") broadcasting new state %s (old state %s) to %s",
3950 __FUNCTION__, GetID(), StateAsCString(new_state),
3951 StateAsCString(GetState()),
3952 is_hijacked ? "hijacked" : "public");
3954 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3955 if (StateIsRunningState(new_state)) {
3956 // Only push the input handler if we aren't fowarding events, as this
3957 // means the curses GUI is in use... Or don't push it if we are launching
3958 // since it will come up stopped.
3959 if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3960 new_state != eStateLaunching && new_state != eStateAttaching) {
3961 PushProcessIOHandler();
3962 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3963 eBroadcastAlways);
3964 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3965 __FUNCTION__, m_iohandler_sync.GetValue());
3967 } else if (StateIsStoppedState(new_state, false)) {
3968 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3969 // If the lldb_private::Debugger is handling the events, we don't want
3970 // to pop the process IOHandler here, we want to do it when we receive
3971 // the stopped event so we can carefully control when the process
3972 // IOHandler is popped because when we stop we want to display some
3973 // text stating how and why we stopped, then maybe some
3974 // process/thread/frame info, and then we want the "(lldb) " prompt to
3975 // show up. If we pop the process IOHandler here, then we will cause
3976 // the command interpreter to become the top IOHandler after the
3977 // process pops off and it will update its prompt right away... See the
3978 // Debugger.cpp file where it calls the function as
3979 // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3980 // Otherwise we end up getting overlapping "(lldb) " prompts and
3981 // garbled output.
3983 // If we aren't handling the events in the debugger (which is indicated
3984 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3985 // we are hijacked, then we always pop the process IO handler manually.
3986 // Hijacking happens when the internal process state thread is running
3987 // thread plans, or when commands want to run in synchronous mode and
3988 // they call "process->WaitForProcessToStop()". An example of something
3989 // that will hijack the events is a simple expression:
3991 // (lldb) expr (int)puts("hello")
3993 // This will cause the internal process state thread to resume and halt
3994 // the process (and _it_ will hijack the eBroadcastBitStateChanged
3995 // events) and we do need the IO handler to be pushed and popped
3996 // correctly.
3998 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3999 PopProcessIOHandler();
4003 BroadcastEvent(event_sp);
4004 } else {
4005 if (log) {
4006 LLDB_LOGF(
4007 log,
4008 "Process::%s (pid = %" PRIu64
4009 ") suppressing state %s (old state %s): should_broadcast == false",
4010 __FUNCTION__, GetID(), StateAsCString(new_state),
4011 StateAsCString(GetState()));
4016 Status Process::HaltPrivate() {
4017 EventSP event_sp;
4018 Status error(WillHalt());
4019 if (error.Fail())
4020 return error;
4022 // Ask the process subclass to actually halt our process
4023 bool caused_stop;
4024 error = DoHalt(caused_stop);
4026 DidHalt();
4027 return error;
4030 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
4031 bool control_only = true;
4033 Log *log = GetLog(LLDBLog::Process);
4034 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
4035 __FUNCTION__, static_cast<void *>(this), GetID());
4037 bool exit_now = false;
4038 bool interrupt_requested = false;
4039 while (!exit_now) {
4040 EventSP event_sp;
4041 GetEventsPrivate(event_sp, std::nullopt, control_only);
4042 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
4043 LLDB_LOGF(log,
4044 "Process::%s (arg = %p, pid = %" PRIu64
4045 ") got a control event: %d",
4046 __FUNCTION__, static_cast<void *>(this), GetID(),
4047 event_sp->GetType());
4049 switch (event_sp->GetType()) {
4050 case eBroadcastInternalStateControlStop:
4051 exit_now = true;
4052 break; // doing any internal state management below
4054 case eBroadcastInternalStateControlPause:
4055 control_only = true;
4056 break;
4058 case eBroadcastInternalStateControlResume:
4059 control_only = false;
4060 break;
4063 continue;
4064 } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
4065 if (m_public_state.GetValue() == eStateAttaching) {
4066 LLDB_LOGF(log,
4067 "Process::%s (arg = %p, pid = %" PRIu64
4068 ") woke up with an interrupt while attaching - "
4069 "forwarding interrupt.",
4070 __FUNCTION__, static_cast<void *>(this), GetID());
4071 // The server may be spinning waiting for a process to appear, in which
4072 // case we should tell it to stop doing that. Normally, we don't NEED
4073 // to do that because we will next close the communication to the stub
4074 // and that will get it to shut down. But there are remote debugging
4075 // cases where relying on that side-effect causes the shutdown to be
4076 // flakey, so we should send a positive signal to interrupt the wait.
4077 Status error = HaltPrivate();
4078 BroadcastEvent(eBroadcastBitInterrupt, nullptr);
4079 } else if (StateIsRunningState(m_last_broadcast_state)) {
4080 LLDB_LOGF(log,
4081 "Process::%s (arg = %p, pid = %" PRIu64
4082 ") woke up with an interrupt - Halting.",
4083 __FUNCTION__, static_cast<void *>(this), GetID());
4084 Status error = HaltPrivate();
4085 if (error.Fail() && log)
4086 LLDB_LOGF(log,
4087 "Process::%s (arg = %p, pid = %" PRIu64
4088 ") failed to halt the process: %s",
4089 __FUNCTION__, static_cast<void *>(this), GetID(),
4090 error.AsCString());
4091 // Halt should generate a stopped event. Make a note of the fact that
4092 // we were doing the interrupt, so we can set the interrupted flag
4093 // after we receive the event. We deliberately set this to true even if
4094 // HaltPrivate failed, so that we can interrupt on the next natural
4095 // stop.
4096 interrupt_requested = true;
4097 } else {
4098 // This can happen when someone (e.g. Process::Halt) sees that we are
4099 // running and sends an interrupt request, but the process actually
4100 // stops before we receive it. In that case, we can just ignore the
4101 // request. We use m_last_broadcast_state, because the Stopped event
4102 // may not have been popped of the event queue yet, which is when the
4103 // public state gets updated.
4104 LLDB_LOGF(log,
4105 "Process::%s ignoring interrupt as we have already stopped.",
4106 __FUNCTION__);
4108 continue;
4111 const StateType internal_state =
4112 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4114 if (internal_state != eStateInvalid) {
4115 if (m_clear_thread_plans_on_stop &&
4116 StateIsStoppedState(internal_state, true)) {
4117 m_clear_thread_plans_on_stop = false;
4118 m_thread_list.DiscardThreadPlans();
4121 if (interrupt_requested) {
4122 if (StateIsStoppedState(internal_state, true)) {
4123 // Only mark interrupt event if it is not thread specific async
4124 // interrupt.
4125 if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) {
4126 // We requested the interrupt, so mark this as such in the stop
4127 // event so clients can tell an interrupted process from a natural
4128 // stop
4129 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
4131 interrupt_requested = false;
4132 } else if (log) {
4133 LLDB_LOGF(log,
4134 "Process::%s interrupt_requested, but a non-stopped "
4135 "state '%s' received.",
4136 __FUNCTION__, StateAsCString(internal_state));
4140 HandlePrivateEvent(event_sp);
4143 if (internal_state == eStateInvalid || internal_state == eStateExited ||
4144 internal_state == eStateDetached) {
4145 LLDB_LOGF(log,
4146 "Process::%s (arg = %p, pid = %" PRIu64
4147 ") about to exit with internal state %s...",
4148 __FUNCTION__, static_cast<void *>(this), GetID(),
4149 StateAsCString(internal_state));
4151 break;
4155 // Verify log is still enabled before attempting to write to it...
4156 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
4157 __FUNCTION__, static_cast<void *>(this), GetID());
4159 // If we are a secondary thread, then the primary thread we are working for
4160 // will have already acquired the public_run_lock, and isn't done with what
4161 // it was doing yet, so don't try to change it on the way out.
4162 if (!is_secondary_thread)
4163 m_public_run_lock.SetStopped();
4164 return {};
4167 // Process Event Data
4169 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
4171 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
4172 StateType state)
4173 : EventData(), m_process_wp(), m_state(state) {
4174 if (process_sp)
4175 m_process_wp = process_sp;
4178 Process::ProcessEventData::~ProcessEventData() = default;
4180 llvm::StringRef Process::ProcessEventData::GetFlavorString() {
4181 return "Process::ProcessEventData";
4184 llvm::StringRef Process::ProcessEventData::GetFlavor() const {
4185 return ProcessEventData::GetFlavorString();
4188 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
4189 bool &found_valid_stopinfo) {
4190 found_valid_stopinfo = false;
4192 ProcessSP process_sp(m_process_wp.lock());
4193 if (!process_sp)
4194 return false;
4196 ThreadList &curr_thread_list = process_sp->GetThreadList();
4197 uint32_t num_threads = curr_thread_list.GetSize();
4199 // The actions might change one of the thread's stop_info's opinions about
4200 // whether we should stop the process, so we need to query that as we go.
4202 // One other complication here, is that we try to catch any case where the
4203 // target has run (except for expressions) and immediately exit, but if we
4204 // get that wrong (which is possible) then the thread list might have
4205 // changed, and that would cause our iteration here to crash. We could
4206 // make a copy of the thread list, but we'd really like to also know if it
4207 // has changed at all, so we store the original thread ID's of all threads and
4208 // check what we get back against this list & bag out if anything differs.
4209 std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads;
4210 for (uint32_t idx = 0; idx < num_threads; ++idx) {
4211 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
4214 Filter out all suspended threads, they could not be the reason
4215 of stop and no need to perform any actions on them.
4217 if (thread_sp->GetResumeState() != eStateSuspended)
4218 not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID());
4221 // Use this to track whether we should continue from here. We will only
4222 // continue the target running if no thread says we should stop. Of course
4223 // if some thread's PerformAction actually sets the target running, then it
4224 // doesn't matter what the other threads say...
4226 bool still_should_stop = false;
4228 // Sometimes - for instance if we have a bug in the stub we are talking to,
4229 // we stop but no thread has a valid stop reason. In that case we should
4230 // just stop, because we have no way of telling what the right thing to do
4231 // is, and it's better to let the user decide than continue behind their
4232 // backs.
4234 for (auto [thread_sp, thread_index] : not_suspended_threads) {
4235 if (curr_thread_list.GetSize() != num_threads) {
4236 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4237 LLDB_LOGF(
4238 log,
4239 "Number of threads changed from %u to %u while processing event.",
4240 num_threads, curr_thread_list.GetSize());
4241 break;
4244 if (thread_sp->GetIndexID() != thread_index) {
4245 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4246 LLDB_LOG(log,
4247 "The thread {0} changed from {1} to {2} while processing event.",
4248 thread_sp.get(), thread_index, thread_sp->GetIndexID());
4249 break;
4252 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4253 if (stop_info_sp && stop_info_sp->IsValid()) {
4254 found_valid_stopinfo = true;
4255 bool this_thread_wants_to_stop;
4256 if (stop_info_sp->GetOverrideShouldStop()) {
4257 this_thread_wants_to_stop =
4258 stop_info_sp->GetOverriddenShouldStopValue();
4259 } else {
4260 stop_info_sp->PerformAction(event_ptr);
4261 // The stop action might restart the target. If it does, then we
4262 // want to mark that in the event so that whoever is receiving it
4263 // will know to wait for the running event and reflect that state
4264 // appropriately. We also need to stop processing actions, since they
4265 // aren't expecting the target to be running.
4267 // FIXME: we might have run.
4268 if (stop_info_sp->HasTargetRunSinceMe()) {
4269 SetRestarted(true);
4270 break;
4273 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4276 if (!still_should_stop)
4277 still_should_stop = this_thread_wants_to_stop;
4281 return still_should_stop;
4284 bool Process::ProcessEventData::ForwardEventToPendingListeners(
4285 Event *event_ptr) {
4286 // STDIO and the other async event notifications should always be forwarded.
4287 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4288 return true;
4290 // For state changed events, if the update state is zero, we are handling
4291 // this on the private state thread. We should wait for the public event.
4292 return m_update_state == 1;
4295 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4296 // We only have work to do for state changed events:
4297 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4298 return;
4300 ProcessSP process_sp(m_process_wp.lock());
4302 if (!process_sp)
4303 return;
4305 // This function gets called twice for each event, once when the event gets
4306 // pulled off of the private process event queue, and then any number of
4307 // times, first when it gets pulled off of the public event queue, then other
4308 // times when we're pretending that this is where we stopped at the end of
4309 // expression evaluation. m_update_state is used to distinguish these three
4310 // cases; it is 0 when we're just pulling it off for private handling, and >
4311 // 1 for expression evaluation, and we don't want to do the breakpoint
4312 // command handling then.
4313 if (m_update_state != 1)
4314 return;
4316 process_sp->SetPublicState(
4317 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4319 if (m_state == eStateStopped && !m_restarted) {
4320 // Let process subclasses know we are about to do a public stop and do
4321 // anything they might need to in order to speed up register and memory
4322 // accesses.
4323 process_sp->WillPublicStop();
4326 // If this is a halt event, even if the halt stopped with some reason other
4327 // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4328 // the halt request came through) don't do the StopInfo actions, as they may
4329 // end up restarting the process.
4330 if (m_interrupted)
4331 return;
4333 // If we're not stopped or have restarted, then skip the StopInfo actions:
4334 if (m_state != eStateStopped || m_restarted) {
4335 return;
4338 bool does_anybody_have_an_opinion = false;
4339 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4341 if (GetRestarted()) {
4342 return;
4345 if (!still_should_stop && does_anybody_have_an_opinion) {
4346 // We've been asked to continue, so do that here.
4347 SetRestarted(true);
4348 // Use the private resume method here, since we aren't changing the run
4349 // lock state.
4350 process_sp->PrivateResume();
4351 } else {
4352 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4353 !process_sp->StateChangedIsHijackedForSynchronousResume();
4355 if (!hijacked) {
4356 // If we didn't restart, run the Stop Hooks here.
4357 // Don't do that if state changed events aren't hooked up to the
4358 // public (or SyncResume) broadcasters. StopHooks are just for
4359 // real public stops. They might also restart the target,
4360 // so watch for that.
4361 if (process_sp->GetTarget().RunStopHooks())
4362 SetRestarted(true);
4367 void Process::ProcessEventData::Dump(Stream *s) const {
4368 ProcessSP process_sp(m_process_wp.lock());
4370 if (process_sp)
4371 s->Printf(" process = %p (pid = %" PRIu64 "), ",
4372 static_cast<void *>(process_sp.get()), process_sp->GetID());
4373 else
4374 s->PutCString(" process = NULL, ");
4376 s->Printf("state = %s", StateAsCString(GetState()));
4379 const Process::ProcessEventData *
4380 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4381 if (event_ptr) {
4382 const EventData *event_data = event_ptr->GetData();
4383 if (event_data &&
4384 event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4385 return static_cast<const ProcessEventData *>(event_ptr->GetData());
4387 return nullptr;
4390 ProcessSP
4391 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4392 ProcessSP process_sp;
4393 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4394 if (data)
4395 process_sp = data->GetProcessSP();
4396 return process_sp;
4399 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4400 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4401 if (data == nullptr)
4402 return eStateInvalid;
4403 else
4404 return data->GetState();
4407 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4408 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4409 if (data == nullptr)
4410 return false;
4411 else
4412 return data->GetRestarted();
4415 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4416 bool new_value) {
4417 ProcessEventData *data =
4418 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4419 if (data != nullptr)
4420 data->SetRestarted(new_value);
4423 size_t
4424 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4425 ProcessEventData *data =
4426 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4427 if (data != nullptr)
4428 return data->GetNumRestartedReasons();
4429 else
4430 return 0;
4433 const char *
4434 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4435 size_t idx) {
4436 ProcessEventData *data =
4437 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4438 if (data != nullptr)
4439 return data->GetRestartedReasonAtIndex(idx);
4440 else
4441 return nullptr;
4444 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4445 const char *reason) {
4446 ProcessEventData *data =
4447 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4448 if (data != nullptr)
4449 data->AddRestartedReason(reason);
4452 bool Process::ProcessEventData::GetInterruptedFromEvent(
4453 const Event *event_ptr) {
4454 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4455 if (data == nullptr)
4456 return false;
4457 else
4458 return data->GetInterrupted();
4461 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4462 bool new_value) {
4463 ProcessEventData *data =
4464 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4465 if (data != nullptr)
4466 data->SetInterrupted(new_value);
4469 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4470 ProcessEventData *data =
4471 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4472 if (data) {
4473 data->SetUpdateStateOnRemoval();
4474 return true;
4476 return false;
4479 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4481 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4482 exe_ctx.SetTargetPtr(&GetTarget());
4483 exe_ctx.SetProcessPtr(this);
4484 exe_ctx.SetThreadPtr(nullptr);
4485 exe_ctx.SetFramePtr(nullptr);
4488 // uint32_t
4489 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4490 // std::vector<lldb::pid_t> &pids)
4492 // return 0;
4495 // ArchSpec
4496 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4498 // return Host::GetArchSpecForExistingProcess (pid);
4501 // ArchSpec
4502 // Process::GetArchSpecForExistingProcess (const char *process_name)
4504 // return Host::GetArchSpecForExistingProcess (process_name);
4507 EventSP Process::CreateEventFromProcessState(uint32_t event_type) {
4508 auto event_data_sp =
4509 std::make_shared<ProcessEventData>(shared_from_this(), GetState());
4510 return std::make_shared<Event>(event_type, event_data_sp);
4513 void Process::AppendSTDOUT(const char *s, size_t len) {
4514 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4515 m_stdout_data.append(s, len);
4516 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT);
4517 BroadcastEventIfUnique(event_sp);
4520 void Process::AppendSTDERR(const char *s, size_t len) {
4521 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4522 m_stderr_data.append(s, len);
4523 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR);
4524 BroadcastEventIfUnique(event_sp);
4527 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4528 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4529 m_profile_data.push_back(one_profile_data);
4530 auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData);
4531 BroadcastEventIfUnique(event_sp);
4534 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4535 const StructuredDataPluginSP &plugin_sp) {
4536 auto data_sp = std::make_shared<EventDataStructuredData>(
4537 shared_from_this(), object_sp, plugin_sp);
4538 BroadcastEvent(eBroadcastBitStructuredData, data_sp);
4541 StructuredDataPluginSP
4542 Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
4543 auto find_it = m_structured_data_plugin_map.find(type_name);
4544 if (find_it != m_structured_data_plugin_map.end())
4545 return find_it->second;
4546 else
4547 return StructuredDataPluginSP();
4550 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4551 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4552 if (m_profile_data.empty())
4553 return 0;
4555 std::string &one_profile_data = m_profile_data.front();
4556 size_t bytes_available = one_profile_data.size();
4557 if (bytes_available > 0) {
4558 Log *log = GetLog(LLDBLog::Process);
4559 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4560 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4561 if (bytes_available > buf_size) {
4562 memcpy(buf, one_profile_data.c_str(), buf_size);
4563 one_profile_data.erase(0, buf_size);
4564 bytes_available = buf_size;
4565 } else {
4566 memcpy(buf, one_profile_data.c_str(), bytes_available);
4567 m_profile_data.erase(m_profile_data.begin());
4570 return bytes_available;
4573 // Process STDIO
4575 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4576 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4577 size_t bytes_available = m_stdout_data.size();
4578 if (bytes_available > 0) {
4579 Log *log = GetLog(LLDBLog::Process);
4580 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4581 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4582 if (bytes_available > buf_size) {
4583 memcpy(buf, m_stdout_data.c_str(), buf_size);
4584 m_stdout_data.erase(0, buf_size);
4585 bytes_available = buf_size;
4586 } else {
4587 memcpy(buf, m_stdout_data.c_str(), bytes_available);
4588 m_stdout_data.clear();
4591 return bytes_available;
4594 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4595 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4596 size_t bytes_available = m_stderr_data.size();
4597 if (bytes_available > 0) {
4598 Log *log = GetLog(LLDBLog::Process);
4599 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4600 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4601 if (bytes_available > buf_size) {
4602 memcpy(buf, m_stderr_data.c_str(), buf_size);
4603 m_stderr_data.erase(0, buf_size);
4604 bytes_available = buf_size;
4605 } else {
4606 memcpy(buf, m_stderr_data.c_str(), bytes_available);
4607 m_stderr_data.clear();
4610 return bytes_available;
4613 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4614 size_t src_len) {
4615 Process *process = (Process *)baton;
4616 process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4619 class IOHandlerProcessSTDIO : public IOHandler {
4620 public:
4621 IOHandlerProcessSTDIO(Process *process, int write_fd)
4622 : IOHandler(process->GetTarget().GetDebugger(),
4623 IOHandler::Type::ProcessIO),
4624 m_process(process),
4625 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4626 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4627 m_pipe.CreateNew(false);
4630 ~IOHandlerProcessSTDIO() override = default;
4632 void SetIsRunning(bool running) {
4633 std::lock_guard<std::mutex> guard(m_mutex);
4634 SetIsDone(!running);
4635 m_is_running = running;
4638 // Each IOHandler gets to run until it is done. It should read data from the
4639 // "in" and place output into "out" and "err and return when done.
4640 void Run() override {
4641 if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4642 !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4643 SetIsDone(true);
4644 return;
4647 SetIsDone(false);
4648 const int read_fd = m_read_file.GetDescriptor();
4649 Terminal terminal(read_fd);
4650 TerminalState terminal_state(terminal, false);
4651 // FIXME: error handling?
4652 llvm::consumeError(terminal.SetCanonical(false));
4653 llvm::consumeError(terminal.SetEcho(false));
4654 // FD_ZERO, FD_SET are not supported on windows
4655 #ifndef _WIN32
4656 const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4657 SetIsRunning(true);
4658 while (true) {
4660 std::lock_guard<std::mutex> guard(m_mutex);
4661 if (GetIsDone())
4662 break;
4665 SelectHelper select_helper;
4666 select_helper.FDSetRead(read_fd);
4667 select_helper.FDSetRead(pipe_read_fd);
4668 Status error = select_helper.Select();
4670 if (error.Fail())
4671 break;
4673 char ch = 0;
4674 size_t n;
4675 if (select_helper.FDIsSetRead(read_fd)) {
4676 n = 1;
4677 if (m_read_file.Read(&ch, n).Success() && n == 1) {
4678 if (m_write_file.Write(&ch, n).Fail() || n != 1)
4679 break;
4680 } else
4681 break;
4684 if (select_helper.FDIsSetRead(pipe_read_fd)) {
4685 size_t bytes_read;
4686 // Consume the interrupt byte
4687 Status error = m_pipe.Read(&ch, 1, bytes_read);
4688 if (error.Success()) {
4689 if (ch == 'q')
4690 break;
4691 if (ch == 'i')
4692 if (StateIsRunningState(m_process->GetState()))
4693 m_process->SendAsyncInterrupt();
4697 SetIsRunning(false);
4698 #endif
4701 void Cancel() override {
4702 std::lock_guard<std::mutex> guard(m_mutex);
4703 SetIsDone(true);
4704 // Only write to our pipe to cancel if we are in
4705 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4706 // is being run from the command interpreter:
4708 // (lldb) step_process_thousands_of_times
4710 // In this case the command interpreter will be in the middle of handling
4711 // the command and if the process pushes and pops the IOHandler thousands
4712 // of times, we can end up writing to m_pipe without ever consuming the
4713 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4714 // deadlocking when the pipe gets fed up and blocks until data is consumed.
4715 if (m_is_running) {
4716 char ch = 'q'; // Send 'q' for quit
4717 size_t bytes_written = 0;
4718 m_pipe.Write(&ch, 1, bytes_written);
4722 bool Interrupt() override {
4723 // Do only things that are safe to do in an interrupt context (like in a
4724 // SIGINT handler), like write 1 byte to a file descriptor. This will
4725 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4726 // that was written to the pipe and then call
4727 // m_process->SendAsyncInterrupt() from a much safer location in code.
4728 if (m_active) {
4729 char ch = 'i'; // Send 'i' for interrupt
4730 size_t bytes_written = 0;
4731 Status result = m_pipe.Write(&ch, 1, bytes_written);
4732 return result.Success();
4733 } else {
4734 // This IOHandler might be pushed on the stack, but not being run
4735 // currently so do the right thing if we aren't actively watching for
4736 // STDIN by sending the interrupt to the process. Otherwise the write to
4737 // the pipe above would do nothing. This can happen when the command
4738 // interpreter is running and gets a "expression ...". It will be on the
4739 // IOHandler thread and sending the input is complete to the delegate
4740 // which will cause the expression to run, which will push the process IO
4741 // handler, but not run it.
4743 if (StateIsRunningState(m_process->GetState())) {
4744 m_process->SendAsyncInterrupt();
4745 return true;
4748 return false;
4751 void GotEOF() override {}
4753 protected:
4754 Process *m_process;
4755 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB
4756 NativeFile m_write_file; // Write to this file (usually the primary pty for
4757 // getting io to debuggee)
4758 Pipe m_pipe;
4759 std::mutex m_mutex;
4760 bool m_is_running = false;
4763 void Process::SetSTDIOFileDescriptor(int fd) {
4764 // First set up the Read Thread for reading/handling process I/O
4765 m_stdio_communication.SetConnection(
4766 std::make_unique<ConnectionFileDescriptor>(fd, true));
4767 if (m_stdio_communication.IsConnected()) {
4768 m_stdio_communication.SetReadThreadBytesReceivedCallback(
4769 STDIOReadThreadBytesReceived, this);
4770 m_stdio_communication.StartReadThread();
4772 // Now read thread is set up, set up input reader.
4774 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4775 if (!m_process_input_reader)
4776 m_process_input_reader =
4777 std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4782 bool Process::ProcessIOHandlerIsActive() {
4783 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4784 IOHandlerSP io_handler_sp(m_process_input_reader);
4785 if (io_handler_sp)
4786 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4787 return false;
4790 bool Process::PushProcessIOHandler() {
4791 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4792 IOHandlerSP io_handler_sp(m_process_input_reader);
4793 if (io_handler_sp) {
4794 Log *log = GetLog(LLDBLog::Process);
4795 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4797 io_handler_sp->SetIsDone(false);
4798 // If we evaluate an utility function, then we don't cancel the current
4799 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4800 // existing IOHandler that potentially provides the user interface (e.g.
4801 // the IOHandler for Editline).
4802 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4803 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4804 cancel_top_handler);
4805 return true;
4807 return false;
4810 bool Process::PopProcessIOHandler() {
4811 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4812 IOHandlerSP io_handler_sp(m_process_input_reader);
4813 if (io_handler_sp)
4814 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4815 return false;
4818 // The process needs to know about installed plug-ins
4819 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4821 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4823 namespace {
4824 // RestorePlanState is used to record the "is private", "is controlling" and
4825 // "okay
4826 // to discard" fields of the plan we are running, and reset it on Clean or on
4827 // destruction. It will only reset the state once, so you can call Clean and
4828 // then monkey with the state and it won't get reset on you again.
4830 class RestorePlanState {
4831 public:
4832 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4833 : m_thread_plan_sp(thread_plan_sp) {
4834 if (m_thread_plan_sp) {
4835 m_private = m_thread_plan_sp->GetPrivate();
4836 m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4837 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4841 ~RestorePlanState() { Clean(); }
4843 void Clean() {
4844 if (!m_already_reset && m_thread_plan_sp) {
4845 m_already_reset = true;
4846 m_thread_plan_sp->SetPrivate(m_private);
4847 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4848 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4852 private:
4853 lldb::ThreadPlanSP m_thread_plan_sp;
4854 bool m_already_reset = false;
4855 bool m_private = false;
4856 bool m_is_controlling = false;
4857 bool m_okay_to_discard = false;
4859 } // anonymous namespace
4861 static microseconds
4862 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4863 const milliseconds default_one_thread_timeout(250);
4865 // If the overall wait is forever, then we don't need to worry about it.
4866 if (!options.GetTimeout()) {
4867 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4868 : default_one_thread_timeout;
4871 // If the one thread timeout is set, use it.
4872 if (options.GetOneThreadTimeout())
4873 return *options.GetOneThreadTimeout();
4875 // Otherwise use half the total timeout, bounded by the
4876 // default_one_thread_timeout.
4877 return std::min<microseconds>(default_one_thread_timeout,
4878 *options.GetTimeout() / 2);
4881 static Timeout<std::micro>
4882 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4883 bool before_first_timeout) {
4884 // If we are going to run all threads the whole time, or if we are only going
4885 // to run one thread, we can just return the overall timeout.
4886 if (!options.GetStopOthers() || !options.GetTryAllThreads())
4887 return options.GetTimeout();
4889 if (before_first_timeout)
4890 return GetOneThreadExpressionTimeout(options);
4892 if (!options.GetTimeout())
4893 return std::nullopt;
4894 else
4895 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4898 static std::optional<ExpressionResults>
4899 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4900 RestorePlanState &restorer, const EventSP &event_sp,
4901 EventSP &event_to_broadcast_sp,
4902 const EvaluateExpressionOptions &options,
4903 bool handle_interrupts) {
4904 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4906 ThreadSP thread_sp = thread_plan_sp->GetTarget()
4907 .GetProcessSP()
4908 ->GetThreadList()
4909 .FindThreadByID(thread_id);
4910 if (!thread_sp) {
4911 LLDB_LOG(log,
4912 "The thread on which we were running the "
4913 "expression: tid = {0}, exited while "
4914 "the expression was running.",
4915 thread_id);
4916 return eExpressionThreadVanished;
4919 ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4920 if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4921 LLDB_LOG(log, "execution completed successfully");
4923 // Restore the plan state so it will get reported as intended when we are
4924 // done.
4925 restorer.Clean();
4926 return eExpressionCompleted;
4929 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4930 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4931 stop_info_sp->ShouldNotify(event_sp.get())) {
4932 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4933 if (!options.DoesIgnoreBreakpoints()) {
4934 // Restore the plan state and then force Private to false. We are going
4935 // to stop because of this plan so we need it to become a public plan or
4936 // it won't report correctly when we continue to its termination later
4937 // on.
4938 restorer.Clean();
4939 thread_plan_sp->SetPrivate(false);
4940 event_to_broadcast_sp = event_sp;
4942 return eExpressionHitBreakpoint;
4945 if (!handle_interrupts &&
4946 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4947 return std::nullopt;
4949 LLDB_LOG(log, "thread plan did not successfully complete");
4950 if (!options.DoesUnwindOnError())
4951 event_to_broadcast_sp = event_sp;
4952 return eExpressionInterrupted;
4955 ExpressionResults
4956 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4957 lldb::ThreadPlanSP &thread_plan_sp,
4958 const EvaluateExpressionOptions &options,
4959 DiagnosticManager &diagnostic_manager) {
4960 ExpressionResults return_value = eExpressionSetupError;
4962 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4964 if (!thread_plan_sp) {
4965 diagnostic_manager.PutString(
4966 lldb::eSeverityError, "RunThreadPlan called with empty thread plan.");
4967 return eExpressionSetupError;
4970 if (!thread_plan_sp->ValidatePlan(nullptr)) {
4971 diagnostic_manager.PutString(
4972 lldb::eSeverityError,
4973 "RunThreadPlan called with an invalid thread plan.");
4974 return eExpressionSetupError;
4977 if (exe_ctx.GetProcessPtr() != this) {
4978 diagnostic_manager.PutString(lldb::eSeverityError,
4979 "RunThreadPlan called on wrong process.");
4980 return eExpressionSetupError;
4983 Thread *thread = exe_ctx.GetThreadPtr();
4984 if (thread == nullptr) {
4985 diagnostic_manager.PutString(lldb::eSeverityError,
4986 "RunThreadPlan called with invalid thread.");
4987 return eExpressionSetupError;
4990 // Record the thread's id so we can tell when a thread we were using
4991 // to run the expression exits during the expression evaluation.
4992 lldb::tid_t expr_thread_id = thread->GetID();
4994 // We need to change some of the thread plan attributes for the thread plan
4995 // runner. This will restore them when we are done:
4997 RestorePlanState thread_plan_restorer(thread_plan_sp);
4999 // We rely on the thread plan we are running returning "PlanCompleted" if
5000 // when it successfully completes. For that to be true the plan can't be
5001 // private - since private plans suppress themselves in the GetCompletedPlan
5002 // call.
5004 thread_plan_sp->SetPrivate(false);
5006 // The plans run with RunThreadPlan also need to be terminal controlling plans
5007 // or when they are done we will end up asking the plan above us whether we
5008 // should stop, which may give the wrong answer.
5010 thread_plan_sp->SetIsControllingPlan(true);
5011 thread_plan_sp->SetOkayToDiscard(false);
5013 // If we are running some utility expression for LLDB, we now have to mark
5014 // this in the ProcesModID of this process. This RAII takes care of marking
5015 // and reverting the mark it once we are done running the expression.
5016 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
5018 if (m_private_state.GetValue() != eStateStopped) {
5019 diagnostic_manager.PutString(
5020 lldb::eSeverityError,
5021 "RunThreadPlan called while the private state was not stopped.");
5022 return eExpressionSetupError;
5025 // Save the thread & frame from the exe_ctx for restoration after we run
5026 const uint32_t thread_idx_id = thread->GetIndexID();
5027 StackFrameSP selected_frame_sp =
5028 thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
5029 if (!selected_frame_sp) {
5030 thread->SetSelectedFrame(nullptr);
5031 selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
5032 if (!selected_frame_sp) {
5033 diagnostic_manager.Printf(
5034 lldb::eSeverityError,
5035 "RunThreadPlan called without a selected frame on thread %d",
5036 thread_idx_id);
5037 return eExpressionSetupError;
5041 // Make sure the timeout values make sense. The one thread timeout needs to
5042 // be smaller than the overall timeout.
5043 if (options.GetOneThreadTimeout() && options.GetTimeout() &&
5044 *options.GetTimeout() < *options.GetOneThreadTimeout()) {
5045 diagnostic_manager.PutString(lldb::eSeverityError,
5046 "RunThreadPlan called with one thread "
5047 "timeout greater than total timeout");
5048 return eExpressionSetupError;
5051 StackID ctx_frame_id = selected_frame_sp->GetStackID();
5053 // N.B. Running the target may unset the currently selected thread and frame.
5054 // We don't want to do that either, so we should arrange to reset them as
5055 // well.
5057 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
5059 uint32_t selected_tid;
5060 StackID selected_stack_id;
5061 if (selected_thread_sp) {
5062 selected_tid = selected_thread_sp->GetIndexID();
5063 selected_stack_id =
5064 selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame)
5065 ->GetStackID();
5066 } else {
5067 selected_tid = LLDB_INVALID_THREAD_ID;
5070 HostThread backup_private_state_thread;
5071 lldb::StateType old_state = eStateInvalid;
5072 lldb::ThreadPlanSP stopper_base_plan_sp;
5074 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
5075 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
5076 // Yikes, we are running on the private state thread! So we can't wait for
5077 // public events on this thread, since we are the thread that is generating
5078 // public events. The simplest thing to do is to spin up a temporary thread
5079 // to handle private state thread events while we are fielding public
5080 // events here.
5081 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
5082 "another state thread to handle the events.");
5084 backup_private_state_thread = m_private_state_thread;
5086 // One other bit of business: we want to run just this thread plan and
5087 // anything it pushes, and then stop, returning control here. But in the
5088 // normal course of things, the plan above us on the stack would be given a
5089 // shot at the stop event before deciding to stop, and we don't want that.
5090 // So we insert a "stopper" base plan on the stack before the plan we want
5091 // to run. Since base plans always stop and return control to the user,
5092 // that will do just what we want.
5093 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
5094 thread->QueueThreadPlan(stopper_base_plan_sp, false);
5095 // Have to make sure our public state is stopped, since otherwise the
5096 // reporting logic below doesn't work correctly.
5097 old_state = m_public_state.GetValue();
5098 m_public_state.SetValueNoLock(eStateStopped);
5100 // Now spin up the private state thread:
5101 StartPrivateStateThread(true);
5104 thread->QueueThreadPlan(
5105 thread_plan_sp, false); // This used to pass "true" does that make sense?
5107 if (options.GetDebug()) {
5108 // In this case, we aren't actually going to run, we just want to stop
5109 // right away. Flush this thread so we will refetch the stacks and show the
5110 // correct backtrace.
5111 // FIXME: To make this prettier we should invent some stop reason for this,
5112 // but that
5113 // is only cosmetic, and this functionality is only of use to lldb
5114 // developers who can live with not pretty...
5115 thread->Flush();
5116 return eExpressionStoppedForDebug;
5119 ListenerSP listener_sp(
5120 Listener::MakeListener("lldb.process.listener.run-thread-plan"));
5122 lldb::EventSP event_to_broadcast_sp;
5125 // This process event hijacker Hijacks the Public events and its destructor
5126 // makes sure that the process events get restored on exit to the function.
5128 // If the event needs to propagate beyond the hijacker (e.g., the process
5129 // exits during execution), then the event is put into
5130 // event_to_broadcast_sp for rebroadcasting.
5132 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
5134 if (log) {
5135 StreamString s;
5136 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
5137 LLDB_LOGF(log,
5138 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
5139 " to run thread plan \"%s\".",
5140 thread_idx_id, expr_thread_id, s.GetData());
5143 bool got_event;
5144 lldb::EventSP event_sp;
5145 lldb::StateType stop_state = lldb::eStateInvalid;
5147 bool before_first_timeout = true; // This is set to false the first time
5148 // that we have to halt the target.
5149 bool do_resume = true;
5150 bool handle_running_event = true;
5152 // This is just for accounting:
5153 uint32_t num_resumes = 0;
5155 // If we are going to run all threads the whole time, or if we are only
5156 // going to run one thread, then we don't need the first timeout. So we
5157 // pretend we are after the first timeout already.
5158 if (!options.GetStopOthers() || !options.GetTryAllThreads())
5159 before_first_timeout = false;
5161 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
5162 options.GetStopOthers(), options.GetTryAllThreads(),
5163 before_first_timeout);
5165 // This isn't going to work if there are unfetched events on the queue. Are
5166 // there cases where we might want to run the remaining events here, and
5167 // then try to call the function? That's probably being too tricky for our
5168 // own good.
5170 Event *other_events = listener_sp->PeekAtNextEvent();
5171 if (other_events != nullptr) {
5172 diagnostic_manager.PutString(
5173 lldb::eSeverityError,
5174 "RunThreadPlan called with pending events on the queue.");
5175 return eExpressionSetupError;
5178 // We also need to make sure that the next event is delivered. We might be
5179 // calling a function as part of a thread plan, in which case the last
5180 // delivered event could be the running event, and we don't want event
5181 // coalescing to cause us to lose OUR running event...
5182 ForceNextEventDelivery();
5184 // This while loop must exit out the bottom, there's cleanup that we need to do
5185 // when we are done. So don't call return anywhere within it.
5187 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5188 // It's pretty much impossible to write test cases for things like: One
5189 // thread timeout expires, I go to halt, but the process already stopped on
5190 // the function call stop breakpoint. Turning on this define will make us
5191 // not fetch the first event till after the halt. So if you run a quick
5192 // function, it will have completed, and the completion event will be
5193 // waiting, when you interrupt for halt. The expression evaluation should
5194 // still succeed.
5195 bool miss_first_event = true;
5196 #endif
5197 while (true) {
5198 // We usually want to resume the process if we get to the top of the
5199 // loop. The only exception is if we get two running events with no
5200 // intervening stop, which can happen, we will just wait for then next
5201 // stop event.
5202 LLDB_LOGF(log,
5203 "Top of while loop: do_resume: %i handle_running_event: %i "
5204 "before_first_timeout: %i.",
5205 do_resume, handle_running_event, before_first_timeout);
5207 if (do_resume || handle_running_event) {
5208 // Do the initial resume and wait for the running event before going
5209 // further.
5211 if (do_resume) {
5212 num_resumes++;
5213 Status resume_error = PrivateResume();
5214 if (!resume_error.Success()) {
5215 diagnostic_manager.Printf(
5216 lldb::eSeverityError,
5217 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
5218 resume_error.AsCString());
5219 return_value = eExpressionSetupError;
5220 break;
5224 got_event =
5225 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5226 if (!got_event) {
5227 LLDB_LOGF(log,
5228 "Process::RunThreadPlan(): didn't get any event after "
5229 "resume %" PRIu32 ", exiting.",
5230 num_resumes);
5232 diagnostic_manager.Printf(lldb::eSeverityError,
5233 "didn't get any event after resume %" PRIu32
5234 ", exiting.",
5235 num_resumes);
5236 return_value = eExpressionSetupError;
5237 break;
5240 stop_state =
5241 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5243 if (stop_state != eStateRunning) {
5244 bool restarted = false;
5246 if (stop_state == eStateStopped) {
5247 restarted = Process::ProcessEventData::GetRestartedFromEvent(
5248 event_sp.get());
5249 LLDB_LOGF(
5250 log,
5251 "Process::RunThreadPlan(): didn't get running event after "
5252 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
5253 "handle_running_event: %i).",
5254 num_resumes, StateAsCString(stop_state), restarted, do_resume,
5255 handle_running_event);
5258 if (restarted) {
5259 // This is probably an overabundance of caution, I don't think I
5260 // should ever get a stopped & restarted event here. But if I do,
5261 // the best thing is to Halt and then get out of here.
5262 const bool clear_thread_plans = false;
5263 const bool use_run_lock = false;
5264 Halt(clear_thread_plans, use_run_lock);
5267 diagnostic_manager.Printf(
5268 lldb::eSeverityError,
5269 "didn't get running event after initial resume, got %s instead.",
5270 StateAsCString(stop_state));
5271 return_value = eExpressionSetupError;
5272 break;
5275 if (log)
5276 log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
5277 // We need to call the function synchronously, so spin waiting for it
5278 // to return. If we get interrupted while executing, we're going to
5279 // lose our context, and won't be able to gather the result at this
5280 // point. We set the timeout AFTER the resume, since the resume takes
5281 // some time and we don't want to charge that to the timeout.
5282 } else {
5283 if (log)
5284 log->PutCString("Process::RunThreadPlan(): waiting for next event.");
5287 do_resume = true;
5288 handle_running_event = true;
5290 // Now wait for the process to stop again:
5291 event_sp.reset();
5293 Timeout<std::micro> timeout =
5294 GetExpressionTimeout(options, before_first_timeout);
5295 if (log) {
5296 if (timeout) {
5297 auto now = system_clock::now();
5298 LLDB_LOGF(log,
5299 "Process::RunThreadPlan(): about to wait - now is %s - "
5300 "endpoint is %s",
5301 llvm::to_string(now).c_str(),
5302 llvm::to_string(now + *timeout).c_str());
5303 } else {
5304 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5308 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5309 // See comment above...
5310 if (miss_first_event) {
5311 std::this_thread::sleep_for(std::chrono::milliseconds(1));
5312 miss_first_event = false;
5313 got_event = false;
5314 } else
5315 #endif
5316 got_event = listener_sp->GetEvent(event_sp, timeout);
5318 if (got_event) {
5319 if (event_sp) {
5320 bool keep_going = false;
5321 if (event_sp->GetType() == eBroadcastBitInterrupt) {
5322 const bool clear_thread_plans = false;
5323 const bool use_run_lock = false;
5324 Halt(clear_thread_plans, use_run_lock);
5325 return_value = eExpressionInterrupted;
5326 diagnostic_manager.PutString(lldb::eSeverityInfo,
5327 "execution halted by user interrupt.");
5328 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by "
5329 "eBroadcastBitInterrupted, exiting.");
5330 break;
5331 } else {
5332 stop_state =
5333 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5334 LLDB_LOGF(log,
5335 "Process::RunThreadPlan(): in while loop, got event: %s.",
5336 StateAsCString(stop_state));
5338 switch (stop_state) {
5339 case lldb::eStateStopped: {
5340 if (Process::ProcessEventData::GetRestartedFromEvent(
5341 event_sp.get())) {
5342 // If we were restarted, we just need to go back up to fetch
5343 // another event.
5344 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5345 "restart, so we'll continue waiting.");
5346 keep_going = true;
5347 do_resume = false;
5348 handle_running_event = true;
5349 } else {
5350 const bool handle_interrupts = true;
5351 return_value = *HandleStoppedEvent(
5352 expr_thread_id, thread_plan_sp, thread_plan_restorer,
5353 event_sp, event_to_broadcast_sp, options,
5354 handle_interrupts);
5355 if (return_value == eExpressionThreadVanished)
5356 keep_going = false;
5358 } break;
5360 case lldb::eStateRunning:
5361 // This shouldn't really happen, but sometimes we do get two
5362 // running events without an intervening stop, and in that case
5363 // we should just go back to waiting for the stop.
5364 do_resume = false;
5365 keep_going = true;
5366 handle_running_event = false;
5367 break;
5369 default:
5370 LLDB_LOGF(log,
5371 "Process::RunThreadPlan(): execution stopped with "
5372 "unexpected state: %s.",
5373 StateAsCString(stop_state));
5375 if (stop_state == eStateExited)
5376 event_to_broadcast_sp = event_sp;
5378 diagnostic_manager.PutString(
5379 lldb::eSeverityError,
5380 "execution stopped with unexpected state.");
5381 return_value = eExpressionInterrupted;
5382 break;
5386 if (keep_going)
5387 continue;
5388 else
5389 break;
5390 } else {
5391 if (log)
5392 log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5393 "the event pointer was null. How odd...");
5394 return_value = eExpressionInterrupted;
5395 break;
5397 } else {
5398 // If we didn't get an event that means we've timed out... We will
5399 // interrupt the process here. Depending on what we were asked to do
5400 // we will either exit, or try with all threads running for the same
5401 // timeout.
5403 if (log) {
5404 if (options.GetTryAllThreads()) {
5405 if (before_first_timeout) {
5406 LLDB_LOG(log,
5407 "Running function with one thread timeout timed out.");
5408 } else
5409 LLDB_LOG(log, "Restarting function with all threads enabled and "
5410 "timeout: {0} timed out, abandoning execution.",
5411 timeout);
5412 } else
5413 LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5414 "abandoning execution.",
5415 timeout);
5418 // It is possible that between the time we issued the Halt, and we get
5419 // around to calling Halt the target could have stopped. That's fine,
5420 // Halt will figure that out and send the appropriate Stopped event.
5421 // BUT it is also possible that we stopped & restarted (e.g. hit a
5422 // signal with "stop" set to false.) In
5423 // that case, we'll get the stopped & restarted event, and we should go
5424 // back to waiting for the Halt's stopped event. That's what this
5425 // while loop does.
5427 bool back_to_top = true;
5428 uint32_t try_halt_again = 0;
5429 bool do_halt = true;
5430 const uint32_t num_retries = 5;
5431 while (try_halt_again < num_retries) {
5432 Status halt_error;
5433 if (do_halt) {
5434 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5435 const bool clear_thread_plans = false;
5436 const bool use_run_lock = false;
5437 Halt(clear_thread_plans, use_run_lock);
5439 if (halt_error.Success()) {
5440 if (log)
5441 log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5443 got_event =
5444 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5446 if (got_event) {
5447 stop_state =
5448 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5449 if (log) {
5450 LLDB_LOGF(log,
5451 "Process::RunThreadPlan(): Stopped with event: %s",
5452 StateAsCString(stop_state));
5453 if (stop_state == lldb::eStateStopped &&
5454 Process::ProcessEventData::GetInterruptedFromEvent(
5455 event_sp.get()))
5456 log->PutCString(" Event was the Halt interruption event.");
5459 if (stop_state == lldb::eStateStopped) {
5460 if (Process::ProcessEventData::GetRestartedFromEvent(
5461 event_sp.get())) {
5462 if (log)
5463 log->PutCString("Process::RunThreadPlan(): Went to halt "
5464 "but got a restarted event, there must be "
5465 "an un-restarted stopped event so try "
5466 "again... "
5467 "Exiting wait loop.");
5468 try_halt_again++;
5469 do_halt = false;
5470 continue;
5473 // Between the time we initiated the Halt and the time we
5474 // delivered it, the process could have already finished its
5475 // job. Check that here:
5476 const bool handle_interrupts = false;
5477 if (auto result = HandleStoppedEvent(
5478 expr_thread_id, thread_plan_sp, thread_plan_restorer,
5479 event_sp, event_to_broadcast_sp, options,
5480 handle_interrupts)) {
5481 return_value = *result;
5482 back_to_top = false;
5483 break;
5486 if (!options.GetTryAllThreads()) {
5487 if (log)
5488 log->PutCString("Process::RunThreadPlan(): try_all_threads "
5489 "was false, we stopped so now we're "
5490 "quitting.");
5491 return_value = eExpressionInterrupted;
5492 back_to_top = false;
5493 break;
5496 if (before_first_timeout) {
5497 // Set all the other threads to run, and return to the top of
5498 // the loop, which will continue;
5499 before_first_timeout = false;
5500 thread_plan_sp->SetStopOthers(false);
5501 if (log)
5502 log->PutCString(
5503 "Process::RunThreadPlan(): about to resume.");
5505 back_to_top = true;
5506 break;
5507 } else {
5508 // Running all threads failed, so return Interrupted.
5509 if (log)
5510 log->PutCString("Process::RunThreadPlan(): running all "
5511 "threads timed out.");
5512 return_value = eExpressionInterrupted;
5513 back_to_top = false;
5514 break;
5517 } else {
5518 if (log)
5519 log->PutCString("Process::RunThreadPlan(): halt said it "
5520 "succeeded, but I got no event. "
5521 "I'm getting out of here passing Interrupted.");
5522 return_value = eExpressionInterrupted;
5523 back_to_top = false;
5524 break;
5526 } else {
5527 try_halt_again++;
5528 continue;
5532 if (!back_to_top || try_halt_again > num_retries)
5533 break;
5534 else
5535 continue;
5537 } // END WAIT LOOP
5539 // If we had to start up a temporary private state thread to run this
5540 // thread plan, shut it down now.
5541 if (backup_private_state_thread.IsJoinable()) {
5542 StopPrivateStateThread();
5543 Status error;
5544 m_private_state_thread = backup_private_state_thread;
5545 if (stopper_base_plan_sp) {
5546 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5548 if (old_state != eStateInvalid)
5549 m_public_state.SetValueNoLock(old_state);
5552 // If our thread went away on us, we need to get out of here without
5553 // doing any more work. We don't have to clean up the thread plan, that
5554 // will have happened when the Thread was destroyed.
5555 if (return_value == eExpressionThreadVanished) {
5556 return return_value;
5559 if (return_value != eExpressionCompleted && log) {
5560 // Print a backtrace into the log so we can figure out where we are:
5561 StreamString s;
5562 s.PutCString("Thread state after unsuccessful completion: \n");
5563 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX,
5564 /*show_hidden*/ true);
5565 log->PutString(s.GetString());
5567 // Restore the thread state if we are going to discard the plan execution.
5568 // There are three cases where this could happen: 1) The execution
5569 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5570 // was true 3) We got some other error, and discard_on_error was true
5571 bool should_unwind = (return_value == eExpressionInterrupted &&
5572 options.DoesUnwindOnError()) ||
5573 (return_value == eExpressionHitBreakpoint &&
5574 options.DoesIgnoreBreakpoints());
5576 if (return_value == eExpressionCompleted || should_unwind) {
5577 thread_plan_sp->RestoreThreadState();
5580 // Now do some processing on the results of the run:
5581 if (return_value == eExpressionInterrupted ||
5582 return_value == eExpressionHitBreakpoint) {
5583 if (log) {
5584 StreamString s;
5585 if (event_sp)
5586 event_sp->Dump(&s);
5587 else {
5588 log->PutCString("Process::RunThreadPlan(): Stop event that "
5589 "interrupted us is NULL.");
5592 StreamString ts;
5594 const char *event_explanation = nullptr;
5596 do {
5597 if (!event_sp) {
5598 event_explanation = "<no event>";
5599 break;
5600 } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5601 event_explanation = "<user interrupt>";
5602 break;
5603 } else {
5604 const Process::ProcessEventData *event_data =
5605 Process::ProcessEventData::GetEventDataFromEvent(
5606 event_sp.get());
5608 if (!event_data) {
5609 event_explanation = "<no event data>";
5610 break;
5613 Process *process = event_data->GetProcessSP().get();
5615 if (!process) {
5616 event_explanation = "<no process>";
5617 break;
5620 ThreadList &thread_list = process->GetThreadList();
5622 uint32_t num_threads = thread_list.GetSize();
5623 uint32_t thread_index;
5625 ts.Printf("<%u threads> ", num_threads);
5627 for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5628 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5630 if (!thread) {
5631 ts.Printf("<?> ");
5632 continue;
5635 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5636 RegisterContext *register_context =
5637 thread->GetRegisterContext().get();
5639 if (register_context)
5640 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5641 else
5642 ts.Printf("[ip unknown] ");
5644 // Show the private stop info here, the public stop info will be
5645 // from the last natural stop.
5646 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5647 if (stop_info_sp) {
5648 const char *stop_desc = stop_info_sp->GetDescription();
5649 if (stop_desc)
5650 ts.PutCString(stop_desc);
5652 ts.Printf(">");
5655 event_explanation = ts.GetData();
5657 } while (false);
5659 if (event_explanation)
5660 LLDB_LOGF(log,
5661 "Process::RunThreadPlan(): execution interrupted: %s %s",
5662 s.GetData(), event_explanation);
5663 else
5664 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5665 s.GetData());
5668 if (should_unwind) {
5669 LLDB_LOGF(log,
5670 "Process::RunThreadPlan: ExecutionInterrupted - "
5671 "discarding thread plans up to %p.",
5672 static_cast<void *>(thread_plan_sp.get()));
5673 thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5674 } else {
5675 LLDB_LOGF(log,
5676 "Process::RunThreadPlan: ExecutionInterrupted - for "
5677 "plan: %p not discarding.",
5678 static_cast<void *>(thread_plan_sp.get()));
5680 } else if (return_value == eExpressionSetupError) {
5681 if (log)
5682 log->PutCString("Process::RunThreadPlan(): execution set up error.");
5684 if (options.DoesUnwindOnError()) {
5685 thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5687 } else {
5688 if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5689 if (log)
5690 log->PutCString("Process::RunThreadPlan(): thread plan is done");
5691 return_value = eExpressionCompleted;
5692 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5693 if (log)
5694 log->PutCString(
5695 "Process::RunThreadPlan(): thread plan was discarded");
5696 return_value = eExpressionDiscarded;
5697 } else {
5698 if (log)
5699 log->PutCString(
5700 "Process::RunThreadPlan(): thread plan stopped in mid course");
5701 if (options.DoesUnwindOnError() && thread_plan_sp) {
5702 if (log)
5703 log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5704 "'cause unwind_on_error is set.");
5705 thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5710 // Thread we ran the function in may have gone away because we ran the
5711 // target Check that it's still there, and if it is put it back in the
5712 // context. Also restore the frame in the context if it is still present.
5713 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5714 if (thread) {
5715 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5718 // Also restore the current process'es selected frame & thread, since this
5719 // function calling may be done behind the user's back.
5721 if (selected_tid != LLDB_INVALID_THREAD_ID) {
5722 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5723 selected_stack_id.IsValid()) {
5724 // We were able to restore the selected thread, now restore the frame:
5725 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5726 StackFrameSP old_frame_sp =
5727 GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5728 selected_stack_id);
5729 if (old_frame_sp)
5730 GetThreadList().GetSelectedThread()->SetSelectedFrame(
5731 old_frame_sp.get());
5736 // If the process exited during the run of the thread plan, notify everyone.
5738 if (event_to_broadcast_sp) {
5739 if (log)
5740 log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5741 BroadcastEvent(event_to_broadcast_sp);
5744 return return_value;
5747 void Process::GetStatus(Stream &strm) {
5748 const StateType state = GetState();
5749 if (StateIsStoppedState(state, false)) {
5750 if (state == eStateExited) {
5751 int exit_status = GetExitStatus();
5752 const char *exit_description = GetExitDescription();
5753 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5754 GetID(), exit_status, exit_status,
5755 exit_description ? exit_description : "");
5756 } else {
5757 if (state == eStateConnected)
5758 strm.Printf("Connected to remote target.\n");
5759 else
5760 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5762 } else {
5763 strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5767 size_t Process::GetThreadStatus(Stream &strm,
5768 bool only_threads_with_stop_reason,
5769 uint32_t start_frame, uint32_t num_frames,
5770 uint32_t num_frames_with_source,
5771 bool stop_format) {
5772 size_t num_thread_infos_dumped = 0;
5774 // You can't hold the thread list lock while calling Thread::GetStatus. That
5775 // very well might run code (e.g. if we need it to get return values or
5776 // arguments.) For that to work the process has to be able to acquire it.
5777 // So instead copy the thread ID's, and look them up one by one:
5779 uint32_t num_threads;
5780 std::vector<lldb::tid_t> thread_id_array;
5781 // Scope for thread list locker;
5783 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5784 ThreadList &curr_thread_list = GetThreadList();
5785 num_threads = curr_thread_list.GetSize();
5786 uint32_t idx;
5787 thread_id_array.resize(num_threads);
5788 for (idx = 0; idx < num_threads; ++idx)
5789 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5792 for (uint32_t i = 0; i < num_threads; i++) {
5793 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5794 if (thread_sp) {
5795 if (only_threads_with_stop_reason) {
5796 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5797 if (!stop_info_sp || !stop_info_sp->IsValid())
5798 continue;
5800 thread_sp->GetStatus(strm, start_frame, num_frames,
5801 num_frames_with_source, stop_format,
5802 /*show_hidden*/ num_frames <= 1);
5803 ++num_thread_infos_dumped;
5804 } else {
5805 Log *log = GetLog(LLDBLog::Process);
5806 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5807 " vanished while running Thread::GetStatus.");
5810 return num_thread_infos_dumped;
5813 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5814 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5817 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5818 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5819 region.GetByteSize());
5822 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5823 void *baton) {
5824 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5827 bool Process::RunPreResumeActions() {
5828 bool result = true;
5829 while (!m_pre_resume_actions.empty()) {
5830 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5831 m_pre_resume_actions.pop_back();
5832 bool this_result = action.callback(action.baton);
5833 if (result)
5834 result = this_result;
5836 return result;
5839 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5841 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5843 PreResumeCallbackAndBaton element(callback, baton);
5844 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5845 if (found_iter != m_pre_resume_actions.end())
5847 m_pre_resume_actions.erase(found_iter);
5851 ProcessRunLock &Process::GetRunLock() {
5852 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5853 return m_private_run_lock;
5854 else
5855 return m_public_run_lock;
5858 bool Process::CurrentThreadIsPrivateStateThread()
5860 return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5864 void Process::Flush() {
5865 m_thread_list.Flush();
5866 m_extended_thread_list.Flush();
5867 m_extended_thread_stop_id = 0;
5868 m_queue_list.Clear();
5869 m_queue_list_stop_id = 0;
5872 lldb::addr_t Process::GetCodeAddressMask() {
5873 if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5874 return AddressableBits::AddressableBitToMask(num_bits_setting);
5876 return m_code_address_mask;
5879 lldb::addr_t Process::GetDataAddressMask() {
5880 if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5881 return AddressableBits::AddressableBitToMask(num_bits_setting);
5883 return m_data_address_mask;
5886 lldb::addr_t Process::GetHighmemCodeAddressMask() {
5887 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5888 return AddressableBits::AddressableBitToMask(num_bits_setting);
5890 if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK)
5891 return m_highmem_code_address_mask;
5892 return GetCodeAddressMask();
5895 lldb::addr_t Process::GetHighmemDataAddressMask() {
5896 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5897 return AddressableBits::AddressableBitToMask(num_bits_setting);
5899 if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK)
5900 return m_highmem_data_address_mask;
5901 return GetDataAddressMask();
5904 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) {
5905 LLDB_LOG(GetLog(LLDBLog::Process),
5906 "Setting Process code address mask to {0:x}", code_address_mask);
5907 m_code_address_mask = code_address_mask;
5910 void Process::SetDataAddressMask(lldb::addr_t data_address_mask) {
5911 LLDB_LOG(GetLog(LLDBLog::Process),
5912 "Setting Process data address mask to {0:x}", data_address_mask);
5913 m_data_address_mask = data_address_mask;
5916 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) {
5917 LLDB_LOG(GetLog(LLDBLog::Process),
5918 "Setting Process highmem code address mask to {0:x}",
5919 code_address_mask);
5920 m_highmem_code_address_mask = code_address_mask;
5923 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) {
5924 LLDB_LOG(GetLog(LLDBLog::Process),
5925 "Setting Process highmem data address mask to {0:x}",
5926 data_address_mask);
5927 m_highmem_data_address_mask = data_address_mask;
5930 addr_t Process::FixCodeAddress(addr_t addr) {
5931 if (ABISP abi_sp = GetABI())
5932 addr = abi_sp->FixCodeAddress(addr);
5933 return addr;
5936 addr_t Process::FixDataAddress(addr_t addr) {
5937 if (ABISP abi_sp = GetABI())
5938 addr = abi_sp->FixDataAddress(addr);
5939 return addr;
5942 addr_t Process::FixAnyAddress(addr_t addr) {
5943 if (ABISP abi_sp = GetABI())
5944 addr = abi_sp->FixAnyAddress(addr);
5945 return addr;
5948 void Process::DidExec() {
5949 Log *log = GetLog(LLDBLog::Process);
5950 LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5952 Target &target = GetTarget();
5953 target.CleanupProcess();
5954 target.ClearModules(false);
5955 m_dynamic_checkers_up.reset();
5956 m_abi_sp.reset();
5957 m_system_runtime_up.reset();
5958 m_os_up.reset();
5959 m_dyld_up.reset();
5960 m_jit_loaders_up.reset();
5961 m_image_tokens.clear();
5962 // After an exec, the inferior is a new process and these memory regions are
5963 // no longer allocated.
5964 m_allocated_memory_cache.Clear(/*deallocte_memory=*/false);
5966 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5967 m_language_runtimes.clear();
5969 m_instrumentation_runtimes.clear();
5970 m_thread_list.DiscardThreadPlans();
5971 m_memory_cache.Clear(true);
5972 DoDidExec();
5973 CompleteAttach();
5974 // Flush the process (threads and all stack frames) after running
5975 // CompleteAttach() in case the dynamic loader loaded things in new
5976 // locations.
5977 Flush();
5979 // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5980 // let the target know so it can do any cleanup it needs to.
5981 target.DidExec();
5984 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5985 if (address == nullptr) {
5986 error = Status::FromErrorString("Invalid address argument");
5987 return LLDB_INVALID_ADDRESS;
5990 addr_t function_addr = LLDB_INVALID_ADDRESS;
5992 addr_t addr = address->GetLoadAddress(&GetTarget());
5993 std::map<addr_t, addr_t>::const_iterator iter =
5994 m_resolved_indirect_addresses.find(addr);
5995 if (iter != m_resolved_indirect_addresses.end()) {
5996 function_addr = (*iter).second;
5997 } else {
5998 if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5999 Symbol *symbol = address->CalculateSymbolContextSymbol();
6000 error = Status::FromErrorStringWithFormat(
6001 "Unable to call resolver for indirect function %s",
6002 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
6003 function_addr = LLDB_INVALID_ADDRESS;
6004 } else {
6005 if (ABISP abi_sp = GetABI())
6006 function_addr = abi_sp->FixCodeAddress(function_addr);
6007 m_resolved_indirect_addresses.insert(
6008 std::pair<addr_t, addr_t>(addr, function_addr));
6011 return function_addr;
6014 void Process::ModulesDidLoad(ModuleList &module_list) {
6015 // Inform the system runtime of the modified modules.
6016 SystemRuntime *sys_runtime = GetSystemRuntime();
6017 if (sys_runtime)
6018 sys_runtime->ModulesDidLoad(module_list);
6020 GetJITLoaders().ModulesDidLoad(module_list);
6022 // Give the instrumentation runtimes a chance to be created before informing
6023 // them of the modified modules.
6024 InstrumentationRuntime::ModulesDidLoad(module_list, this,
6025 m_instrumentation_runtimes);
6026 for (auto &runtime : m_instrumentation_runtimes)
6027 runtime.second->ModulesDidLoad(module_list);
6029 // Give the language runtimes a chance to be created before informing them of
6030 // the modified modules.
6031 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
6032 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
6033 runtime->ModulesDidLoad(module_list);
6036 // If we don't have an operating system plug-in, try to load one since
6037 // loading shared libraries might cause a new one to try and load
6038 if (!m_os_up)
6039 LoadOperatingSystemPlugin(false);
6041 // Inform the structured-data plugins of the modified modules.
6042 for (auto &pair : m_structured_data_plugin_map) {
6043 if (pair.second)
6044 pair.second->ModulesDidLoad(*this, module_list);
6048 void Process::PrintWarningOptimization(const SymbolContext &sc) {
6049 if (!GetWarningsOptimization())
6050 return;
6051 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
6052 return;
6053 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
6056 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
6057 if (!GetWarningsUnsupportedLanguage())
6058 return;
6059 if (!sc.module_sp)
6060 return;
6061 LanguageType language = sc.GetLanguage();
6062 if (language == eLanguageTypeUnknown ||
6063 language == lldb::eLanguageTypeAssembly ||
6064 language == lldb::eLanguageTypeMipsAssembler)
6065 return;
6066 LanguageSet plugins =
6067 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
6068 if (plugins[language])
6069 return;
6070 sc.module_sp->ReportWarningUnsupportedLanguage(
6071 language, GetTarget().GetDebugger().GetID());
6074 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
6075 info.Clear();
6077 PlatformSP platform_sp = GetTarget().GetPlatform();
6078 if (!platform_sp)
6079 return false;
6081 return platform_sp->GetProcessInfo(GetID(), info);
6084 lldb_private::UUID Process::FindModuleUUID(const llvm::StringRef path) {
6085 return lldb_private::UUID();
6088 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
6089 ThreadCollectionSP threads;
6091 const MemoryHistorySP &memory_history =
6092 MemoryHistory::FindPlugin(shared_from_this());
6094 if (!memory_history) {
6095 return threads;
6098 threads = std::make_shared<ThreadCollection>(
6099 memory_history->GetHistoryThreads(addr));
6101 return threads;
6104 InstrumentationRuntimeSP
6105 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
6106 InstrumentationRuntimeCollection::iterator pos;
6107 pos = m_instrumentation_runtimes.find(type);
6108 if (pos == m_instrumentation_runtimes.end()) {
6109 return InstrumentationRuntimeSP();
6110 } else
6111 return (*pos).second;
6114 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
6115 const ArchSpec &arch, ModuleSpec &module_spec) {
6116 module_spec.Clear();
6117 return false;
6120 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
6121 m_image_tokens.push_back(image_ptr);
6122 return m_image_tokens.size() - 1;
6125 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
6126 if (token < m_image_tokens.size())
6127 return m_image_tokens[token];
6128 return LLDB_INVALID_IMAGE_TOKEN;
6131 void Process::ResetImageToken(size_t token) {
6132 if (token < m_image_tokens.size())
6133 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN;
6136 Address
6137 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
6138 AddressRange range_bounds) {
6139 Target &target = GetTarget();
6140 DisassemblerSP disassembler_sp;
6141 InstructionList *insn_list = nullptr;
6143 Address retval = default_stop_addr;
6145 if (!target.GetUseFastStepping())
6146 return retval;
6147 if (!default_stop_addr.IsValid())
6148 return retval;
6150 const char *plugin_name = nullptr;
6151 const char *flavor = nullptr;
6152 const char *cpu = nullptr;
6153 const char *features = nullptr;
6154 disassembler_sp = Disassembler::DisassembleRange(
6155 target.GetArchitecture(), plugin_name, flavor, cpu, features, GetTarget(),
6156 range_bounds);
6157 if (disassembler_sp)
6158 insn_list = &disassembler_sp->GetInstructionList();
6160 if (insn_list == nullptr) {
6161 return retval;
6164 size_t insn_offset =
6165 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
6166 if (insn_offset == UINT32_MAX) {
6167 return retval;
6170 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
6171 insn_offset, false /* ignore_calls*/, nullptr);
6172 if (branch_index == UINT32_MAX) {
6173 return retval;
6176 if (branch_index > insn_offset) {
6177 Address next_branch_insn_address =
6178 insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
6179 if (next_branch_insn_address.IsValid() &&
6180 range_bounds.ContainsFileAddress(next_branch_insn_address)) {
6181 retval = next_branch_insn_address;
6185 return retval;
6188 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
6189 MemoryRegionInfo &range_info) {
6190 if (const lldb::ABISP &abi = GetABI())
6191 load_addr = abi->FixAnyAddress(load_addr);
6192 Status error = DoGetMemoryRegionInfo(load_addr, range_info);
6193 // Reject a region that does not contain the requested address.
6194 if (error.Success() && !range_info.GetRange().Contains(load_addr))
6195 error = Status::FromErrorString("Invalid memory region");
6197 return error;
6200 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
6201 Status error;
6203 lldb::addr_t range_end = 0;
6204 const lldb::ABISP &abi = GetABI();
6206 region_list.clear();
6207 do {
6208 lldb_private::MemoryRegionInfo region_info;
6209 error = GetMemoryRegionInfo(range_end, region_info);
6210 // GetMemoryRegionInfo should only return an error if it is unimplemented.
6211 if (error.Fail()) {
6212 region_list.clear();
6213 break;
6216 // We only check the end address, not start and end, because we assume that
6217 // the start will not have non-address bits until the first unmappable
6218 // region. We will have exited the loop by that point because the previous
6219 // region, the last mappable region, will have non-address bits in its end
6220 // address.
6221 range_end = region_info.GetRange().GetRangeEnd();
6222 if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
6223 region_list.push_back(std::move(region_info));
6225 } while (
6226 // For a process with no non-address bits, all address bits
6227 // set means the end of memory.
6228 range_end != LLDB_INVALID_ADDRESS &&
6229 // If we have non-address bits and some are set then the end
6230 // is at or beyond the end of mappable memory.
6231 !(abi && (abi->FixAnyAddress(range_end) != range_end)));
6233 return error;
6236 Status
6237 Process::ConfigureStructuredData(llvm::StringRef type_name,
6238 const StructuredData::ObjectSP &config_sp) {
6239 // If you get this, the Process-derived class needs to implement a method to
6240 // enable an already-reported asynchronous structured data feature. See
6241 // ProcessGDBRemote for an example implementation over gdb-remote.
6242 return Status::FromErrorString("unimplemented");
6245 void Process::MapSupportedStructuredDataPlugins(
6246 const StructuredData::Array &supported_type_names) {
6247 Log *log = GetLog(LLDBLog::Process);
6249 // Bail out early if there are no type names to map.
6250 if (supported_type_names.GetSize() == 0) {
6251 LLDB_LOG(log, "no structured data types supported");
6252 return;
6255 // These StringRefs are backed by the input parameter.
6256 std::set<llvm::StringRef> type_names;
6258 LLDB_LOG(log,
6259 "the process supports the following async structured data types:");
6261 supported_type_names.ForEach(
6262 [&type_names, &log](StructuredData::Object *object) {
6263 // There shouldn't be null objects in the array.
6264 if (!object)
6265 return false;
6267 // All type names should be strings.
6268 const llvm::StringRef type_name = object->GetStringValue();
6269 if (type_name.empty())
6270 return false;
6272 type_names.insert(type_name);
6273 LLDB_LOG(log, "- {0}", type_name);
6274 return true;
6277 // For each StructuredDataPlugin, if the plugin handles any of the types in
6278 // the supported_type_names, map that type name to that plugin. Stop when
6279 // we've consumed all the type names.
6280 // FIXME: should we return an error if there are type names nobody
6281 // supports?
6282 for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) {
6283 auto create_instance =
6284 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
6285 plugin_index);
6286 if (!create_instance)
6287 break;
6289 // Create the plugin.
6290 StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
6291 if (!plugin_sp) {
6292 // This plugin doesn't think it can work with the process. Move on to the
6293 // next.
6294 continue;
6297 // For any of the remaining type names, map any that this plugin supports.
6298 std::vector<llvm::StringRef> names_to_remove;
6299 for (llvm::StringRef type_name : type_names) {
6300 if (plugin_sp->SupportsStructuredDataType(type_name)) {
6301 m_structured_data_plugin_map.insert(
6302 std::make_pair(type_name, plugin_sp));
6303 names_to_remove.push_back(type_name);
6304 LLDB_LOG(log, "using plugin {0} for type name {1}",
6305 plugin_sp->GetPluginName(), type_name);
6309 // Remove the type names that were consumed by this plugin.
6310 for (llvm::StringRef type_name : names_to_remove)
6311 type_names.erase(type_name);
6315 bool Process::RouteAsyncStructuredData(
6316 const StructuredData::ObjectSP object_sp) {
6317 // Nothing to do if there's no data.
6318 if (!object_sp)
6319 return false;
6321 // The contract is this must be a dictionary, so we can look up the routing
6322 // key via the top-level 'type' string value within the dictionary.
6323 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6324 if (!dictionary)
6325 return false;
6327 // Grab the async structured type name (i.e. the feature/plugin name).
6328 llvm::StringRef type_name;
6329 if (!dictionary->GetValueForKeyAsString("type", type_name))
6330 return false;
6332 // Check if there's a plugin registered for this type name.
6333 auto find_it = m_structured_data_plugin_map.find(type_name);
6334 if (find_it == m_structured_data_plugin_map.end()) {
6335 // We don't have a mapping for this structured data type.
6336 return false;
6339 // Route the structured data to the plugin.
6340 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6341 return true;
6344 Status Process::UpdateAutomaticSignalFiltering() {
6345 // Default implementation does nothign.
6346 // No automatic signal filtering to speak of.
6347 return Status();
6350 UtilityFunction *Process::GetLoadImageUtilityFunction(
6351 Platform *platform,
6352 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6353 if (platform != GetTarget().GetPlatform().get())
6354 return nullptr;
6355 llvm::call_once(m_dlopen_utility_func_flag_once,
6356 [&] { m_dlopen_utility_func_up = factory(); });
6357 return m_dlopen_utility_func_up.get();
6360 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6361 if (!IsLiveDebugSession())
6362 return llvm::createStringError(llvm::inconvertibleErrorCode(),
6363 "Can't trace a non-live process.");
6364 return llvm::make_error<UnimplementedError>();
6367 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6368 addr_t &returned_func,
6369 bool trap_exceptions) {
6370 Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6371 if (thread == nullptr || address == nullptr)
6372 return false;
6374 EvaluateExpressionOptions options;
6375 options.SetStopOthers(true);
6376 options.SetUnwindOnError(true);
6377 options.SetIgnoreBreakpoints(true);
6378 options.SetTryAllThreads(true);
6379 options.SetDebug(false);
6380 options.SetTimeout(GetUtilityExpressionTimeout());
6381 options.SetTrapExceptions(trap_exceptions);
6383 auto type_system_or_err =
6384 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6385 if (!type_system_or_err) {
6386 llvm::consumeError(type_system_or_err.takeError());
6387 return false;
6389 auto ts = *type_system_or_err;
6390 if (!ts)
6391 return false;
6392 CompilerType void_ptr_type =
6393 ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6394 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6395 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6396 if (call_plan_sp) {
6397 DiagnosticManager diagnostics;
6399 StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6400 if (frame) {
6401 ExecutionContext exe_ctx;
6402 frame->CalculateExecutionContext(exe_ctx);
6403 ExpressionResults result =
6404 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6405 if (result == eExpressionCompleted) {
6406 returned_func =
6407 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6408 LLDB_INVALID_ADDRESS);
6410 if (GetAddressByteSize() == 4) {
6411 if (returned_func == UINT32_MAX)
6412 return false;
6413 } else if (GetAddressByteSize() == 8) {
6414 if (returned_func == UINT64_MAX)
6415 return false;
6417 return true;
6422 return false;
6425 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6426 Architecture *arch = GetTarget().GetArchitecturePlugin();
6427 const MemoryTagManager *tag_manager =
6428 arch ? arch->GetMemoryTagManager() : nullptr;
6429 if (!arch || !tag_manager) {
6430 return llvm::createStringError(
6431 llvm::inconvertibleErrorCode(),
6432 "This architecture does not support memory tagging");
6435 if (!SupportsMemoryTagging()) {
6436 return llvm::createStringError(llvm::inconvertibleErrorCode(),
6437 "Process does not support memory tagging");
6440 return tag_manager;
6443 llvm::Expected<std::vector<lldb::addr_t>>
6444 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6445 llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6446 GetMemoryTagManager();
6447 if (!tag_manager_or_err)
6448 return tag_manager_or_err.takeError();
6450 const MemoryTagManager *tag_manager = *tag_manager_or_err;
6451 llvm::Expected<std::vector<uint8_t>> tag_data =
6452 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6453 if (!tag_data)
6454 return tag_data.takeError();
6456 return tag_manager->UnpackTagsData(*tag_data,
6457 len / tag_manager->GetGranuleSize());
6460 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6461 const std::vector<lldb::addr_t> &tags) {
6462 llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6463 GetMemoryTagManager();
6464 if (!tag_manager_or_err)
6465 return Status::FromError(tag_manager_or_err.takeError());
6467 const MemoryTagManager *tag_manager = *tag_manager_or_err;
6468 llvm::Expected<std::vector<uint8_t>> packed_tags =
6469 tag_manager->PackTags(tags);
6470 if (!packed_tags) {
6471 return Status::FromError(packed_tags.takeError());
6474 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6475 *packed_tags);
6478 // Create a CoreFileMemoryRange from a MemoryRegionInfo
6479 static CoreFileMemoryRange
6480 CreateCoreFileMemoryRange(const MemoryRegionInfo &region) {
6481 const addr_t addr = region.GetRange().GetRangeBase();
6482 llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize());
6483 return {range, region.GetLLDBPermissions()};
6486 // Add dirty pages to the core file ranges and return true if dirty pages
6487 // were added. Return false if the dirty page information is not valid or in
6488 // the region.
6489 static bool AddDirtyPages(const MemoryRegionInfo &region,
6490 CoreFileMemoryRanges &ranges) {
6491 const auto &dirty_page_list = region.GetDirtyPageList();
6492 if (!dirty_page_list)
6493 return false;
6494 const uint32_t lldb_permissions = region.GetLLDBPermissions();
6495 const addr_t page_size = region.GetPageSize();
6496 if (page_size == 0)
6497 return false;
6498 llvm::AddressRange range(0, 0);
6499 for (addr_t page_addr : *dirty_page_list) {
6500 if (range.empty()) {
6501 // No range yet, initialize the range with the current dirty page.
6502 range = llvm::AddressRange(page_addr, page_addr + page_size);
6503 } else {
6504 if (range.end() == page_addr) {
6505 // Combine consective ranges.
6506 range = llvm::AddressRange(range.start(), page_addr + page_size);
6507 } else {
6508 // Add previous contiguous range and init the new range with the
6509 // current dirty page.
6510 ranges.Append(range.start(), range.size(), {range, lldb_permissions});
6511 range = llvm::AddressRange(page_addr, page_addr + page_size);
6515 // The last range
6516 if (!range.empty())
6517 ranges.Append(range.start(), range.size(), {range, lldb_permissions});
6518 return true;
6521 // Given a region, add the region to \a ranges.
6523 // Only add the region if it isn't empty and if it has some permissions.
6524 // If \a try_dirty_pages is true, then try to add only the dirty pages for a
6525 // given region. If the region has dirty page information, only dirty pages
6526 // will be added to \a ranges, else the entire range will be added to \a
6527 // ranges.
6528 static void AddRegion(const MemoryRegionInfo &region, bool try_dirty_pages,
6529 CoreFileMemoryRanges &ranges) {
6530 // Don't add empty ranges.
6531 if (region.GetRange().GetByteSize() == 0)
6532 return;
6533 // Don't add ranges with no read permissions.
6534 if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0)
6535 return;
6536 if (try_dirty_pages && AddDirtyPages(region, ranges))
6537 return;
6539 ranges.Append(region.GetRange().GetRangeBase(),
6540 region.GetRange().GetByteSize(),
6541 CreateCoreFileMemoryRange(region));
6544 static void SaveDynamicLoaderSections(Process &process,
6545 const SaveCoreOptions &options,
6546 CoreFileMemoryRanges &ranges,
6547 std::set<addr_t> &stack_ends) {
6548 DynamicLoader *dyld = process.GetDynamicLoader();
6549 if (!dyld)
6550 return;
6552 std::vector<MemoryRegionInfo> dynamic_loader_mem_regions;
6553 std::function<bool(const lldb_private::Thread &)> save_thread_predicate =
6554 [&](const lldb_private::Thread &t) -> bool {
6555 return options.ShouldThreadBeSaved(t.GetID());
6557 dyld->CalculateDynamicSaveCoreRanges(process, dynamic_loader_mem_regions,
6558 save_thread_predicate);
6559 for (const auto &region : dynamic_loader_mem_regions) {
6560 // The Dynamic Loader can give us regions that could include a truncated
6561 // stack
6562 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
6563 AddRegion(region, true, ranges);
6567 static void SaveOffRegionsWithStackPointers(Process &process,
6568 const SaveCoreOptions &core_options,
6569 const MemoryRegionInfos &regions,
6570 CoreFileMemoryRanges &ranges,
6571 std::set<addr_t> &stack_ends) {
6572 const bool try_dirty_pages = true;
6574 // Before we take any dump, we want to save off the used portions of the
6575 // stacks and mark those memory regions as saved. This prevents us from saving
6576 // the unused portion of the stack below the stack pointer. Saving space on
6577 // the dump.
6578 for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) {
6579 if (!thread_sp)
6580 continue;
6581 StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0);
6582 if (!frame_sp)
6583 continue;
6584 RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext();
6585 if (!reg_ctx_sp)
6586 continue;
6587 const addr_t sp = reg_ctx_sp->GetSP();
6588 const size_t red_zone = process.GetABI()->GetRedZoneSize();
6589 lldb_private::MemoryRegionInfo sp_region;
6590 if (process.GetMemoryRegionInfo(sp, sp_region).Success()) {
6591 const size_t stack_head = (sp - red_zone);
6592 const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head;
6593 // Even if the SaveCoreOption doesn't want us to save the stack
6594 // we still need to populate the stack_ends set so it doesn't get saved
6595 // off in other calls
6596 sp_region.GetRange().SetRangeBase(stack_head);
6597 sp_region.GetRange().SetByteSize(stack_size);
6598 const addr_t range_end = sp_region.GetRange().GetRangeEnd();
6599 stack_ends.insert(range_end);
6600 // This will return true if the threadlist the user specified is empty,
6601 // or contains the thread id from thread_sp.
6602 if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) {
6603 AddRegion(sp_region, try_dirty_pages, ranges);
6609 // Save all memory regions that are not empty or have at least some permissions
6610 // for a full core file style.
6611 static void GetCoreFileSaveRangesFull(Process &process,
6612 const MemoryRegionInfos &regions,
6613 CoreFileMemoryRanges &ranges,
6614 std::set<addr_t> &stack_ends) {
6616 // Don't add only dirty pages, add full regions.
6617 const bool try_dirty_pages = false;
6618 for (const auto &region : regions)
6619 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
6620 AddRegion(region, try_dirty_pages, ranges);
6623 // Save only the dirty pages to the core file. Make sure the process has at
6624 // least some dirty pages, as some OS versions don't support reporting what
6625 // pages are dirty within an memory region. If no memory regions have dirty
6626 // page information fall back to saving out all ranges with write permissions.
6627 static void GetCoreFileSaveRangesDirtyOnly(Process &process,
6628 const MemoryRegionInfos &regions,
6629 CoreFileMemoryRanges &ranges,
6630 std::set<addr_t> &stack_ends) {
6632 // Iterate over the regions and find all dirty pages.
6633 bool have_dirty_page_info = false;
6634 for (const auto &region : regions) {
6635 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6636 AddDirtyPages(region, ranges))
6637 have_dirty_page_info = true;
6640 if (!have_dirty_page_info) {
6641 // We didn't find support for reporting dirty pages from the process
6642 // plug-in so fall back to any region with write access permissions.
6643 const bool try_dirty_pages = false;
6644 for (const auto &region : regions)
6645 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6646 region.GetWritable() == MemoryRegionInfo::eYes)
6647 AddRegion(region, try_dirty_pages, ranges);
6651 // Save all thread stacks to the core file. Some OS versions support reporting
6652 // when a memory region is stack related. We check on this information, but we
6653 // also use the stack pointers of each thread and add those in case the OS
6654 // doesn't support reporting stack memory. This function also attempts to only
6655 // emit dirty pages from the stack if the memory regions support reporting
6656 // dirty regions as this will make the core file smaller. If the process
6657 // doesn't support dirty regions, then it will fall back to adding the full
6658 // stack region.
6659 static void GetCoreFileSaveRangesStackOnly(Process &process,
6660 const MemoryRegionInfos &regions,
6661 CoreFileMemoryRanges &ranges,
6662 std::set<addr_t> &stack_ends) {
6663 const bool try_dirty_pages = true;
6664 // Some platforms support annotating the region information that tell us that
6665 // it comes from a thread stack. So look for those regions first.
6667 for (const auto &region : regions) {
6668 // Save all the stack memory ranges not associated with a stack pointer.
6669 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6670 region.IsStackMemory() == MemoryRegionInfo::eYes)
6671 AddRegion(region, try_dirty_pages, ranges);
6675 static void GetUserSpecifiedCoreFileSaveRanges(Process &process,
6676 const MemoryRegionInfos &regions,
6677 const SaveCoreOptions &options,
6678 CoreFileMemoryRanges &ranges) {
6679 const auto &option_ranges = options.GetCoreFileMemoryRanges();
6680 if (option_ranges.IsEmpty())
6681 return;
6683 for (const auto &range : regions) {
6684 auto entry = option_ranges.FindEntryThatContains(range.GetRange());
6685 if (entry) {
6686 ranges.Append(range.GetRange().GetRangeBase(),
6687 range.GetRange().GetByteSize(),
6688 CreateCoreFileMemoryRange(range));
6693 Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options,
6694 CoreFileMemoryRanges &ranges) {
6695 lldb_private::MemoryRegionInfos regions;
6696 Status err = GetMemoryRegions(regions);
6697 SaveCoreStyle core_style = options.GetStyle();
6698 if (err.Fail())
6699 return err;
6700 if (regions.empty())
6701 return Status::FromErrorString(
6702 "failed to get any valid memory regions from the process");
6703 if (core_style == eSaveCoreUnspecified)
6704 return Status::FromErrorString(
6705 "callers must set the core_style to something other than "
6706 "eSaveCoreUnspecified");
6708 GetUserSpecifiedCoreFileSaveRanges(*this, regions, options, ranges);
6710 std::set<addr_t> stack_ends;
6711 // For fully custom set ups, we don't want to even look at threads if there
6712 // are no threads specified.
6713 if (core_style != lldb::eSaveCoreCustomOnly ||
6714 options.HasSpecifiedThreads()) {
6715 SaveOffRegionsWithStackPointers(*this, options, regions, ranges,
6716 stack_ends);
6717 // Save off the dynamic loader sections, so if we are on an architecture
6718 // that supports Thread Locals, that we include those as well.
6719 SaveDynamicLoaderSections(*this, options, ranges, stack_ends);
6722 switch (core_style) {
6723 case eSaveCoreUnspecified:
6724 case eSaveCoreCustomOnly:
6725 break;
6727 case eSaveCoreFull:
6728 GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends);
6729 break;
6731 case eSaveCoreDirtyOnly:
6732 GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends);
6733 break;
6735 case eSaveCoreStackOnly:
6736 GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends);
6737 break;
6740 if (err.Fail())
6741 return err;
6743 if (ranges.IsEmpty())
6744 return Status::FromErrorStringWithFormat(
6745 "no valid address ranges found for core style");
6747 return ranges.FinalizeCoreFileSaveRanges();
6750 std::vector<ThreadSP>
6751 Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) {
6752 std::vector<ThreadSP> thread_list;
6753 for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) {
6754 if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) {
6755 thread_list.push_back(thread_sp);
6759 return thread_list;
6762 void Process::SetAddressableBitMasks(AddressableBits bit_masks) {
6763 uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits();
6764 uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits();
6766 if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0)
6767 return;
6769 if (low_memory_addr_bits != 0) {
6770 addr_t low_addr_mask =
6771 AddressableBits::AddressableBitToMask(low_memory_addr_bits);
6772 SetCodeAddressMask(low_addr_mask);
6773 SetDataAddressMask(low_addr_mask);
6776 if (high_memory_addr_bits != 0) {
6777 addr_t high_addr_mask =
6778 AddressableBits::AddressableBitToMask(high_memory_addr_bits);
6779 SetHighmemCodeAddressMask(high_addr_mask);
6780 SetHighmemDataAddressMask(high_addr_mask);