1 //===-- Process.cpp -------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Support/ScopedPrinter.h"
16 #include "llvm/Support/Threading.h"
18 #include "lldb/Breakpoint/BreakpointLocation.h"
19 #include "lldb/Breakpoint/StoppointCallbackContext.h"
20 #include "lldb/Core/Debugger.h"
21 #include "lldb/Core/Module.h"
22 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/PluginManager.h"
24 #include "lldb/Core/Progress.h"
25 #include "lldb/Expression/DiagnosticManager.h"
26 #include "lldb/Expression/DynamicCheckerFunctions.h"
27 #include "lldb/Expression/UserExpression.h"
28 #include "lldb/Expression/UtilityFunction.h"
29 #include "lldb/Host/ConnectionFileDescriptor.h"
30 #include "lldb/Host/FileSystem.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostInfo.h"
33 #include "lldb/Host/OptionParser.h"
34 #include "lldb/Host/Pipe.h"
35 #include "lldb/Host/Terminal.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Interpreter/CommandInterpreter.h"
38 #include "lldb/Interpreter/OptionArgParser.h"
39 #include "lldb/Interpreter/OptionValueProperties.h"
40 #include "lldb/Symbol/Function.h"
41 #include "lldb/Symbol/Symbol.h"
42 #include "lldb/Target/ABI.h"
43 #include "lldb/Target/AssertFrameRecognizer.h"
44 #include "lldb/Target/DynamicLoader.h"
45 #include "lldb/Target/InstrumentationRuntime.h"
46 #include "lldb/Target/JITLoader.h"
47 #include "lldb/Target/JITLoaderList.h"
48 #include "lldb/Target/Language.h"
49 #include "lldb/Target/LanguageRuntime.h"
50 #include "lldb/Target/MemoryHistory.h"
51 #include "lldb/Target/MemoryRegionInfo.h"
52 #include "lldb/Target/OperatingSystem.h"
53 #include "lldb/Target/Platform.h"
54 #include "lldb/Target/Process.h"
55 #include "lldb/Target/RegisterContext.h"
56 #include "lldb/Target/StopInfo.h"
57 #include "lldb/Target/StructuredDataPlugin.h"
58 #include "lldb/Target/SystemRuntime.h"
59 #include "lldb/Target/Target.h"
60 #include "lldb/Target/TargetList.h"
61 #include "lldb/Target/Thread.h"
62 #include "lldb/Target/ThreadPlan.h"
63 #include "lldb/Target/ThreadPlanBase.h"
64 #include "lldb/Target/ThreadPlanCallFunction.h"
65 #include "lldb/Target/ThreadPlanStack.h"
66 #include "lldb/Target/UnixSignals.h"
67 #include "lldb/Target/VerboseTrapFrameRecognizer.h"
68 #include "lldb/Utility/AddressableBits.h"
69 #include "lldb/Utility/Event.h"
70 #include "lldb/Utility/LLDBLog.h"
71 #include "lldb/Utility/Log.h"
72 #include "lldb/Utility/NameMatches.h"
73 #include "lldb/Utility/ProcessInfo.h"
74 #include "lldb/Utility/SelectHelper.h"
75 #include "lldb/Utility/State.h"
76 #include "lldb/Utility/Timer.h"
79 using namespace lldb_private
;
80 using namespace std::chrono
;
82 // Comment out line below to disable memory caching, overriding the process
83 // setting target.process.disable-memory-cache
84 #define ENABLE_MEMORY_CACHING
86 #ifdef ENABLE_MEMORY_CACHING
87 #define DISABLE_MEM_CACHE_DEFAULT false
89 #define DISABLE_MEM_CACHE_DEFAULT true
92 class ProcessOptionValueProperties
93 : public Cloneable
<ProcessOptionValueProperties
, OptionValueProperties
> {
95 ProcessOptionValueProperties(llvm::StringRef name
) : Cloneable(name
) {}
98 GetPropertyAtIndex(size_t idx
,
99 const ExecutionContext
*exe_ctx
) const override
{
100 // When getting the value for a key from the process options, we will
101 // always try and grab the setting from the current process if there is
102 // one. Else we just use the one from this instance.
104 Process
*process
= exe_ctx
->GetProcessPtr();
106 ProcessOptionValueProperties
*instance_properties
=
107 static_cast<ProcessOptionValueProperties
*>(
108 process
->GetValueProperties().get());
109 if (this != instance_properties
)
110 return instance_properties
->ProtectedGetPropertyAtIndex(idx
);
113 return ProtectedGetPropertyAtIndex(idx
);
117 static constexpr OptionEnumValueElement g_follow_fork_mode_values
[] = {
121 "Continue tracing the parent process and detach the child.",
126 "Trace the child process and detach the parent.",
130 #define LLDB_PROPERTIES_process
131 #include "TargetProperties.inc"
134 #define LLDB_PROPERTIES_process
135 #include "TargetPropertiesEnum.inc"
136 ePropertyExperimental
,
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetProperties.inc"
143 #define LLDB_PROPERTIES_process_experimental
144 #include "TargetPropertiesEnum.inc"
147 class ProcessExperimentalOptionValueProperties
148 : public Cloneable
<ProcessExperimentalOptionValueProperties
,
149 OptionValueProperties
> {
151 ProcessExperimentalOptionValueProperties()
152 : Cloneable(Properties::GetExperimentalSettingsName()) {}
155 ProcessExperimentalProperties::ProcessExperimentalProperties()
156 : Properties(OptionValuePropertiesSP(
157 new ProcessExperimentalOptionValueProperties())) {
158 m_collection_sp
->Initialize(g_process_experimental_properties
);
161 ProcessProperties::ProcessProperties(lldb_private::Process
*process
)
163 m_process(process
) // Can be nullptr for global ProcessProperties
165 if (process
== nullptr) {
166 // Global process properties, set them up one time
167 m_collection_sp
= std::make_shared
<ProcessOptionValueProperties
>("process");
168 m_collection_sp
->Initialize(g_process_properties
);
169 m_collection_sp
->AppendProperty(
170 "thread", "Settings specific to threads.", true,
171 Thread::GetGlobalProperties().GetValueProperties());
174 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
175 m_collection_sp
->SetValueChangedCallback(
176 ePropertyPythonOSPluginPath
,
177 [this] { m_process
->LoadOperatingSystemPlugin(true); });
180 m_experimental_properties_up
=
181 std::make_unique
<ProcessExperimentalProperties
>();
182 m_collection_sp
->AppendProperty(
183 Properties::GetExperimentalSettingsName(),
184 "Experimental settings - setting these won't produce "
185 "errors if the setting is not present.",
186 true, m_experimental_properties_up
->GetValueProperties());
189 ProcessProperties::~ProcessProperties() = default;
191 bool ProcessProperties::GetDisableMemoryCache() const {
192 const uint32_t idx
= ePropertyDisableMemCache
;
193 return GetPropertyAtIndexAs
<bool>(
194 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
198 const uint32_t idx
= ePropertyMemCacheLineSize
;
199 return GetPropertyAtIndexAs
<uint64_t>(
200 idx
, g_process_properties
[idx
].default_uint_value
);
203 Args
ProcessProperties::GetExtraStartupCommands() const {
205 const uint32_t idx
= ePropertyExtraStartCommand
;
206 m_collection_sp
->GetPropertyAtIndexAsArgs(idx
, args
);
210 void ProcessProperties::SetExtraStartupCommands(const Args
&args
) {
211 const uint32_t idx
= ePropertyExtraStartCommand
;
212 m_collection_sp
->SetPropertyAtIndexFromArgs(idx
, args
);
215 FileSpec
ProcessProperties::GetPythonOSPluginPath() const {
216 const uint32_t idx
= ePropertyPythonOSPluginPath
;
217 return GetPropertyAtIndexAs
<FileSpec
>(idx
, {});
220 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
221 const uint32_t idx
= ePropertyVirtualAddressableBits
;
222 return GetPropertyAtIndexAs
<uint64_t>(
223 idx
, g_process_properties
[idx
].default_uint_value
);
226 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits
) {
227 const uint32_t idx
= ePropertyVirtualAddressableBits
;
228 SetPropertyAtIndex(idx
, static_cast<uint64_t>(bits
));
231 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
232 const uint32_t idx
= ePropertyHighmemVirtualAddressableBits
;
233 return GetPropertyAtIndexAs
<uint64_t>(
234 idx
, g_process_properties
[idx
].default_uint_value
);
237 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits
) {
238 const uint32_t idx
= ePropertyHighmemVirtualAddressableBits
;
239 SetPropertyAtIndex(idx
, static_cast<uint64_t>(bits
));
242 void ProcessProperties::SetPythonOSPluginPath(const FileSpec
&file
) {
243 const uint32_t idx
= ePropertyPythonOSPluginPath
;
244 SetPropertyAtIndex(idx
, file
);
247 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
248 const uint32_t idx
= ePropertyIgnoreBreakpointsInExpressions
;
249 return GetPropertyAtIndexAs
<bool>(
250 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
253 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore
) {
254 const uint32_t idx
= ePropertyIgnoreBreakpointsInExpressions
;
255 SetPropertyAtIndex(idx
, ignore
);
258 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
259 const uint32_t idx
= ePropertyUnwindOnErrorInExpressions
;
260 return GetPropertyAtIndexAs
<bool>(
261 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
264 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore
) {
265 const uint32_t idx
= ePropertyUnwindOnErrorInExpressions
;
266 SetPropertyAtIndex(idx
, ignore
);
269 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
270 const uint32_t idx
= ePropertyStopOnSharedLibraryEvents
;
271 return GetPropertyAtIndexAs
<bool>(
272 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
275 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop
) {
276 const uint32_t idx
= ePropertyStopOnSharedLibraryEvents
;
277 SetPropertyAtIndex(idx
, stop
);
280 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
281 const uint32_t idx
= ePropertyDisableLangRuntimeUnwindPlans
;
282 return GetPropertyAtIndexAs
<bool>(
283 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
286 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable
) {
287 const uint32_t idx
= ePropertyDisableLangRuntimeUnwindPlans
;
288 SetPropertyAtIndex(idx
, disable
);
292 bool ProcessProperties::GetDetachKeepsStopped() const {
293 const uint32_t idx
= ePropertyDetachKeepsStopped
;
294 return GetPropertyAtIndexAs
<bool>(
295 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
298 void ProcessProperties::SetDetachKeepsStopped(bool stop
) {
299 const uint32_t idx
= ePropertyDetachKeepsStopped
;
300 SetPropertyAtIndex(idx
, stop
);
303 bool ProcessProperties::GetWarningsOptimization() const {
304 const uint32_t idx
= ePropertyWarningOptimization
;
305 return GetPropertyAtIndexAs
<bool>(
306 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
309 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
310 const uint32_t idx
= ePropertyWarningUnsupportedLanguage
;
311 return GetPropertyAtIndexAs
<bool>(
312 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
315 bool ProcessProperties::GetStopOnExec() const {
316 const uint32_t idx
= ePropertyStopOnExec
;
317 return GetPropertyAtIndexAs
<bool>(
318 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
321 std::chrono::seconds
ProcessProperties::GetUtilityExpressionTimeout() const {
322 const uint32_t idx
= ePropertyUtilityExpressionTimeout
;
323 uint64_t value
= GetPropertyAtIndexAs
<uint64_t>(
324 idx
, g_process_properties
[idx
].default_uint_value
);
325 return std::chrono::seconds(value
);
328 std::chrono::seconds
ProcessProperties::GetInterruptTimeout() const {
329 const uint32_t idx
= ePropertyInterruptTimeout
;
330 uint64_t value
= GetPropertyAtIndexAs
<uint64_t>(
331 idx
, g_process_properties
[idx
].default_uint_value
);
332 return std::chrono::seconds(value
);
335 bool ProcessProperties::GetSteppingRunsAllThreads() const {
336 const uint32_t idx
= ePropertySteppingRunsAllThreads
;
337 return GetPropertyAtIndexAs
<bool>(
338 idx
, g_process_properties
[idx
].default_uint_value
!= 0);
341 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
342 const bool fail_value
= true;
343 const Property
*exp_property
=
344 m_collection_sp
->GetPropertyAtIndex(ePropertyExperimental
);
345 OptionValueProperties
*exp_values
=
346 exp_property
->GetValue()->GetAsProperties();
351 ->GetPropertyAtIndexAs
<bool>(ePropertyOSPluginReportsAllThreads
)
352 .value_or(fail_value
);
355 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report
) {
356 const Property
*exp_property
=
357 m_collection_sp
->GetPropertyAtIndex(ePropertyExperimental
);
358 OptionValueProperties
*exp_values
=
359 exp_property
->GetValue()->GetAsProperties();
361 exp_values
->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads
,
365 FollowForkMode
ProcessProperties::GetFollowForkMode() const {
366 const uint32_t idx
= ePropertyFollowForkMode
;
367 return GetPropertyAtIndexAs
<FollowForkMode
>(
368 idx
, static_cast<FollowForkMode
>(
369 g_process_properties
[idx
].default_uint_value
));
372 ProcessSP
Process::FindPlugin(lldb::TargetSP target_sp
,
373 llvm::StringRef plugin_name
,
374 ListenerSP listener_sp
,
375 const FileSpec
*crash_file_path
,
377 static uint32_t g_process_unique_id
= 0;
379 ProcessSP process_sp
;
380 ProcessCreateInstance create_callback
= nullptr;
381 if (!plugin_name
.empty()) {
383 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name
);
384 if (create_callback
) {
385 process_sp
= create_callback(target_sp
, listener_sp
, crash_file_path
,
388 if (process_sp
->CanDebug(target_sp
, true)) {
389 process_sp
->m_process_unique_id
= ++g_process_unique_id
;
395 for (uint32_t idx
= 0;
397 PluginManager::GetProcessCreateCallbackAtIndex(idx
)) != nullptr;
399 process_sp
= create_callback(target_sp
, listener_sp
, crash_file_path
,
402 if (process_sp
->CanDebug(target_sp
, false)) {
403 process_sp
->m_process_unique_id
= ++g_process_unique_id
;
413 llvm::StringRef
Process::GetStaticBroadcasterClass() {
414 static constexpr llvm::StringLiteral
class_name("lldb.process");
418 Process::Process(lldb::TargetSP target_sp
, ListenerSP listener_sp
)
419 : Process(target_sp
, listener_sp
, UnixSignals::CreateForHost()) {
420 // This constructor just delegates to the full Process constructor,
421 // defaulting to using the Host's UnixSignals.
424 Process::Process(lldb::TargetSP target_sp
, ListenerSP listener_sp
,
425 const UnixSignalsSP
&unix_signals_sp
)
426 : ProcessProperties(this),
427 Broadcaster((target_sp
->GetDebugger().GetBroadcasterManager()),
428 Process::GetStaticBroadcasterClass().str()),
429 m_target_wp(target_sp
), m_public_state(eStateUnloaded
),
430 m_private_state(eStateUnloaded
),
431 m_private_state_broadcaster(nullptr,
432 "lldb.process.internal_state_broadcaster"),
433 m_private_state_control_broadcaster(
434 nullptr, "lldb.process.internal_state_control_broadcaster"),
435 m_private_state_listener_sp(
436 Listener::MakeListener("lldb.process.internal_state_listener")),
437 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
438 m_thread_id_to_index_id_map(), m_exit_status(-1),
439 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
440 m_extended_thread_list(*this), m_extended_thread_stop_id(0),
441 m_queue_list(this), m_queue_list_stop_id(0),
442 m_unix_signals_sp(unix_signals_sp
), m_abi_sp(), m_process_input_reader(),
443 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
444 m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
445 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
446 m_memory_cache(*this), m_allocated_memory_cache(*this),
447 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
448 m_private_run_lock(), m_currently_handling_do_on_removals(false),
449 m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID
),
450 m_finalizing(false), m_destructing(false),
451 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
452 m_last_broadcast_state(eStateInvalid
), m_destroy_in_process(false),
453 m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
454 m_can_jit(eCanJITDontKnow
),
455 m_crash_info_dict_sp(new StructuredData::Dictionary()) {
456 CheckInWithManager();
458 Log
*log
= GetLog(LLDBLog::Object
);
459 LLDB_LOGF(log
, "%p Process::Process()", static_cast<void *>(this));
461 if (!m_unix_signals_sp
)
462 m_unix_signals_sp
= std::make_shared
<UnixSignals
>();
464 SetEventName(eBroadcastBitStateChanged
, "state-changed");
465 SetEventName(eBroadcastBitInterrupt
, "interrupt");
466 SetEventName(eBroadcastBitSTDOUT
, "stdout-available");
467 SetEventName(eBroadcastBitSTDERR
, "stderr-available");
468 SetEventName(eBroadcastBitProfileData
, "profile-data-available");
469 SetEventName(eBroadcastBitStructuredData
, "structured-data-available");
471 m_private_state_control_broadcaster
.SetEventName(
472 eBroadcastInternalStateControlStop
, "control-stop");
473 m_private_state_control_broadcaster
.SetEventName(
474 eBroadcastInternalStateControlPause
, "control-pause");
475 m_private_state_control_broadcaster
.SetEventName(
476 eBroadcastInternalStateControlResume
, "control-resume");
478 // The listener passed into process creation is the primary listener:
479 // It always listens for all the event bits for Process:
480 SetPrimaryListener(listener_sp
);
482 m_private_state_listener_sp
->StartListeningForEvents(
483 &m_private_state_broadcaster
,
484 eBroadcastBitStateChanged
| eBroadcastBitInterrupt
);
486 m_private_state_listener_sp
->StartListeningForEvents(
487 &m_private_state_control_broadcaster
,
488 eBroadcastInternalStateControlStop
| eBroadcastInternalStateControlPause
|
489 eBroadcastInternalStateControlResume
);
490 // We need something valid here, even if just the default UnixSignalsSP.
491 assert(m_unix_signals_sp
&& "null m_unix_signals_sp after initialization");
493 // Allow the platform to override the default cache line size
494 OptionValueSP value_sp
=
495 m_collection_sp
->GetPropertyAtIndex(ePropertyMemCacheLineSize
)
497 uint64_t platform_cache_line_size
=
498 target_sp
->GetPlatform()->GetDefaultMemoryCacheLineSize();
499 if (!value_sp
->OptionWasSet() && platform_cache_line_size
!= 0)
500 value_sp
->SetValueAs(platform_cache_line_size
);
502 // FIXME: Frame recognizer registration should not be done in Target.
503 // We should have a plugin do the registration instead, for example, a
504 // common C LanguageRuntime plugin.
505 RegisterAssertFrameRecognizer(this);
506 RegisterVerboseTrapFrameRecognizer(*this);
509 Process::~Process() {
510 Log
*log
= GetLog(LLDBLog::Object
);
511 LLDB_LOGF(log
, "%p Process::~Process()", static_cast<void *>(this));
512 StopPrivateStateThread();
514 // ThreadList::Clear() will try to acquire this process's mutex, so
515 // explicitly clear the thread list here to ensure that the mutex is not
516 // destroyed before the thread list.
517 m_thread_list
.Clear();
520 ProcessProperties
&Process::GetGlobalProperties() {
521 // NOTE: intentional leak so we don't crash if global destructor chain gets
522 // called as other threads still use the result of this function
523 static ProcessProperties
*g_settings_ptr
=
524 new ProcessProperties(nullptr);
525 return *g_settings_ptr
;
528 void Process::Finalize(bool destructing
) {
529 if (m_finalizing
.exchange(true))
532 m_destructing
.exchange(true);
534 // Destroy the process. This will call the virtual function DoDestroy under
535 // the hood, giving our derived class a chance to do the ncessary tear down.
538 // Clear our broadcaster before we proceed with destroying
539 Broadcaster::Clear();
541 // Do any cleanup needed prior to being destructed... Subclasses that
542 // override this method should call this superclass method as well.
544 // We need to destroy the loader before the derived Process class gets
545 // destroyed since it is very likely that undoing the loader will require
546 // access to the real process.
547 m_dynamic_checkers_up
.reset();
550 m_system_runtime_up
.reset();
552 m_jit_loaders_up
.reset();
553 m_thread_plans
.Clear();
554 m_thread_list_real
.Destroy();
555 m_thread_list
.Destroy();
556 m_extended_thread_list
.Destroy();
557 m_queue_list
.Clear();
558 m_queue_list_stop_id
= 0;
559 m_watchpoint_resource_list
.Clear();
560 std::vector
<Notifications
> empty_notifications
;
561 m_notifications
.swap(empty_notifications
);
562 m_image_tokens
.clear();
563 m_memory_cache
.Clear();
564 m_allocated_memory_cache
.Clear(/*deallocate_memory=*/true);
566 std::lock_guard
<std::recursive_mutex
> guard(m_language_runtimes_mutex
);
567 m_language_runtimes
.clear();
569 m_instrumentation_runtimes
.clear();
570 m_next_event_action_up
.reset();
571 // Clear the last natural stop ID since it has a strong reference to this
573 m_mod_id
.SetStopEventForLastNaturalStopID(EventSP());
574 // We have to be very careful here as the m_private_state_listener might
575 // contain events that have ProcessSP values in them which can keep this
576 // process around forever. These events need to be cleared out.
577 m_private_state_listener_sp
->Clear();
578 m_public_run_lock
.TrySetRunning(); // This will do nothing if already locked
579 m_public_run_lock
.SetStopped();
580 m_private_run_lock
.TrySetRunning(); // This will do nothing if already locked
581 m_private_run_lock
.SetStopped();
582 m_structured_data_plugin_map
.clear();
585 void Process::RegisterNotificationCallbacks(const Notifications
&callbacks
) {
586 m_notifications
.push_back(callbacks
);
587 if (callbacks
.initialize
!= nullptr)
588 callbacks
.initialize(callbacks
.baton
, this);
591 bool Process::UnregisterNotificationCallbacks(const Notifications
&callbacks
) {
592 std::vector
<Notifications
>::iterator pos
, end
= m_notifications
.end();
593 for (pos
= m_notifications
.begin(); pos
!= end
; ++pos
) {
594 if (pos
->baton
== callbacks
.baton
&&
595 pos
->initialize
== callbacks
.initialize
&&
596 pos
->process_state_changed
== callbacks
.process_state_changed
) {
597 m_notifications
.erase(pos
);
604 void Process::SynchronouslyNotifyStateChanged(StateType state
) {
605 std::vector
<Notifications
>::iterator notification_pos
,
606 notification_end
= m_notifications
.end();
607 for (notification_pos
= m_notifications
.begin();
608 notification_pos
!= notification_end
; ++notification_pos
) {
609 if (notification_pos
->process_state_changed
)
610 notification_pos
->process_state_changed(notification_pos
->baton
, this,
615 // FIXME: We need to do some work on events before the general Listener sees
617 // For instance if we are continuing from a breakpoint, we need to ensure that
618 // we do the little "insert real insn, step & stop" trick. But we can't do
619 // that when the event is delivered by the broadcaster - since that is done on
620 // the thread that is waiting for new events, so if we needed more than one
621 // event for our handling, we would stall. So instead we do it when we fetch
622 // the event off of the queue.
625 StateType
Process::GetNextEvent(EventSP
&event_sp
) {
626 StateType state
= eStateInvalid
;
628 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp
,
629 std::chrono::seconds(0)) &&
631 state
= Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
636 void Process::SyncIOHandler(uint32_t iohandler_id
,
637 const Timeout
<std::micro
> &timeout
) {
638 // don't sync (potentially context switch) in case where there is no process
640 if (!ProcessIOHandlerExists())
643 auto Result
= m_iohandler_sync
.WaitForValueNotEqualTo(iohandler_id
, timeout
);
645 Log
*log
= GetLog(LLDBLog::Process
);
649 "waited from m_iohandler_sync to change from {0}. New value is {1}.",
650 iohandler_id
, *Result
);
652 LLDB_LOG(log
, "timed out waiting for m_iohandler_sync to change from {0}.",
657 StateType
Process::WaitForProcessToStop(
658 const Timeout
<std::micro
> &timeout
, EventSP
*event_sp_ptr
, bool wait_always
,
659 ListenerSP hijack_listener_sp
, Stream
*stream
, bool use_run_lock
,
660 SelectMostRelevant select_most_relevant
) {
661 // We can't just wait for a "stopped" event, because the stopped event may
662 // have restarted the target. We have to actually check each event, and in
663 // the case of a stopped event check the restarted flag on the event.
665 event_sp_ptr
->reset();
666 StateType state
= GetState();
667 // If we are exited or detached, we won't ever get back to any other valid
669 if (state
== eStateDetached
|| state
== eStateExited
)
672 Log
*log
= GetLog(LLDBLog::Process
);
673 LLDB_LOG(log
, "timeout = {0}", timeout
);
675 if (!wait_always
&& StateIsStoppedState(state
, true) &&
676 StateIsStoppedState(GetPrivateState(), true)) {
678 "Process::%s returning without waiting for events; process "
679 "private and public states are already 'stopped'.",
681 // We need to toggle the run lock as this won't get done in
682 // SetPublicState() if the process is hijacked.
683 if (hijack_listener_sp
&& use_run_lock
)
684 m_public_run_lock
.SetStopped();
688 while (state
!= eStateInvalid
) {
690 state
= GetStateChangedEvents(event_sp
, timeout
, hijack_listener_sp
);
691 if (event_sp_ptr
&& event_sp
)
692 *event_sp_ptr
= event_sp
;
694 bool pop_process_io_handler
= (hijack_listener_sp
.get() != nullptr);
695 Process::HandleProcessStateChangedEvent(
696 event_sp
, stream
, select_most_relevant
, pop_process_io_handler
);
703 // We need to toggle the run lock as this won't get done in
704 // SetPublicState() if the process is hijacked.
705 if (hijack_listener_sp
&& use_run_lock
)
706 m_public_run_lock
.SetStopped();
709 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp
.get()))
712 // We need to toggle the run lock as this won't get done in
713 // SetPublicState() if the process is hijacked.
714 if (hijack_listener_sp
&& use_run_lock
)
715 m_public_run_lock
.SetStopped();
725 bool Process::HandleProcessStateChangedEvent(
726 const EventSP
&event_sp
, Stream
*stream
,
727 SelectMostRelevant select_most_relevant
,
728 bool &pop_process_io_handler
) {
729 const bool handle_pop
= pop_process_io_handler
;
731 pop_process_io_handler
= false;
732 ProcessSP process_sp
=
733 Process::ProcessEventData::GetProcessFromEvent(event_sp
.get());
738 StateType event_state
=
739 Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
740 if (event_state
== eStateInvalid
)
743 switch (event_state
) {
746 case eStateAttaching
:
747 case eStateLaunching
:
751 stream
->Printf("Process %" PRIu64
" %s\n", process_sp
->GetID(),
752 StateAsCString(event_state
));
753 if (event_state
== eStateDetached
)
754 pop_process_io_handler
= true;
757 case eStateConnected
:
759 // Don't be chatty when we run...
764 process_sp
->GetStatus(*stream
);
765 pop_process_io_handler
= true;
770 case eStateSuspended
:
771 // Make sure the program hasn't been auto-restarted:
772 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp
.get())) {
775 Process::ProcessEventData::GetNumRestartedReasons(event_sp
.get());
776 if (num_reasons
> 0) {
777 // FIXME: Do we want to report this, or would that just be annoyingly
779 if (num_reasons
== 1) {
781 Process::ProcessEventData::GetRestartedReasonAtIndex(
783 stream
->Printf("Process %" PRIu64
" stopped and restarted: %s\n",
785 reason
? reason
: "<UNKNOWN REASON>");
787 stream
->Printf("Process %" PRIu64
788 " stopped and restarted, reasons:\n",
789 process_sp
->GetID());
791 for (size_t i
= 0; i
< num_reasons
; i
++) {
793 Process::ProcessEventData::GetRestartedReasonAtIndex(
795 stream
->Printf("\t%s\n", reason
? reason
: "<UNKNOWN REASON>");
801 StopInfoSP curr_thread_stop_info_sp
;
802 // Lock the thread list so it doesn't change on us, this is the scope for
805 ThreadList
&thread_list
= process_sp
->GetThreadList();
806 std::lock_guard
<std::recursive_mutex
> guard(thread_list
.GetMutex());
808 ThreadSP
curr_thread(thread_list
.GetSelectedThread());
810 StopReason curr_thread_stop_reason
= eStopReasonInvalid
;
811 bool prefer_curr_thread
= false;
812 if (curr_thread
&& curr_thread
->IsValid()) {
813 curr_thread_stop_reason
= curr_thread
->GetStopReason();
814 switch (curr_thread_stop_reason
) {
815 case eStopReasonNone
:
816 case eStopReasonInvalid
:
817 // Don't prefer the current thread if it didn't stop for a reason.
819 case eStopReasonSignal
: {
820 // We need to do the same computation we do for other threads
821 // below in case the current thread happens to be the one that
822 // stopped for the no-stop signal.
823 uint64_t signo
= curr_thread
->GetStopInfo()->GetValue();
824 if (process_sp
->GetUnixSignals()->GetShouldStop(signo
))
825 prefer_curr_thread
= true;
828 prefer_curr_thread
= true;
831 curr_thread_stop_info_sp
= curr_thread
->GetStopInfo();
834 if (!prefer_curr_thread
) {
835 // Prefer a thread that has just completed its plan over another
836 // thread as current thread.
837 ThreadSP plan_thread
;
838 ThreadSP other_thread
;
840 const size_t num_threads
= thread_list
.GetSize();
842 for (i
= 0; i
< num_threads
; ++i
) {
843 thread
= thread_list
.GetThreadAtIndex(i
);
844 StopReason thread_stop_reason
= thread
->GetStopReason();
845 switch (thread_stop_reason
) {
846 case eStopReasonInvalid
:
847 case eStopReasonNone
:
850 case eStopReasonSignal
: {
851 // Don't select a signal thread if we weren't going to stop at
852 // that signal. We have to have had another reason for stopping
853 // here, and the user doesn't want to see this thread.
854 uint64_t signo
= thread
->GetStopInfo()->GetValue();
855 if (process_sp
->GetUnixSignals()->GetShouldStop(signo
)) {
857 other_thread
= thread
;
861 case eStopReasonTrace
:
862 case eStopReasonBreakpoint
:
863 case eStopReasonWatchpoint
:
864 case eStopReasonException
:
865 case eStopReasonExec
:
866 case eStopReasonFork
:
867 case eStopReasonVFork
:
868 case eStopReasonVForkDone
:
869 case eStopReasonThreadExiting
:
870 case eStopReasonInstrumentation
:
871 case eStopReasonProcessorTrace
:
872 case eStopReasonInterrupt
:
874 other_thread
= thread
;
876 case eStopReasonPlanComplete
:
878 plan_thread
= thread
;
883 thread_list
.SetSelectedThreadByID(plan_thread
->GetID());
884 else if (other_thread
)
885 thread_list
.SetSelectedThreadByID(other_thread
->GetID());
887 if (curr_thread
&& curr_thread
->IsValid())
888 thread
= curr_thread
;
890 thread
= thread_list
.GetThreadAtIndex(0);
893 thread_list
.SetSelectedThreadByID(thread
->GetID());
897 // Drop the ThreadList mutex by here, since GetThreadStatus below might
898 // have to run code, e.g. for Data formatters, and if we hold the
899 // ThreadList mutex, then the process is going to have a hard time
900 // restarting the process.
902 Debugger
&debugger
= process_sp
->GetTarget().GetDebugger();
903 if (debugger
.GetTargetList().GetSelectedTarget().get() ==
904 &process_sp
->GetTarget()) {
905 ThreadSP thread_sp
= process_sp
->GetThreadList().GetSelectedThread();
907 if (!thread_sp
|| !thread_sp
->IsValid())
910 const bool only_threads_with_stop_reason
= true;
911 const uint32_t start_frame
=
912 thread_sp
->GetSelectedFrameIndex(select_most_relevant
);
913 const uint32_t num_frames
= 1;
914 const uint32_t num_frames_with_source
= 1;
915 const bool stop_format
= true;
917 process_sp
->GetStatus(*stream
);
918 process_sp
->GetThreadStatus(*stream
, only_threads_with_stop_reason
,
919 start_frame
, num_frames
,
920 num_frames_with_source
,
922 if (curr_thread_stop_info_sp
) {
923 lldb::addr_t crashing_address
;
924 ValueObjectSP valobj_sp
= StopInfo::GetCrashingDereference(
925 curr_thread_stop_info_sp
, &crashing_address
);
927 const ValueObject::GetExpressionPathFormat format
=
928 ValueObject::GetExpressionPathFormat::
929 eGetExpressionPathFormatHonorPointers
;
930 stream
->PutCString("Likely cause: ");
931 valobj_sp
->GetExpressionPath(*stream
, format
);
932 stream
->Printf(" accessed 0x%" PRIx64
"\n", crashing_address
);
936 uint32_t target_idx
= debugger
.GetTargetList().GetIndexOfTarget(
937 process_sp
->GetTarget().shared_from_this());
938 if (target_idx
!= UINT32_MAX
)
939 stream
->Printf("Target %d: (", target_idx
);
941 stream
->Printf("Target <unknown index>: (");
942 process_sp
->GetTarget().Dump(stream
, eDescriptionLevelBrief
);
943 stream
->Printf(") stopped.\n");
947 // Pop the process IO handler
948 pop_process_io_handler
= true;
953 if (handle_pop
&& pop_process_io_handler
)
954 process_sp
->PopProcessIOHandler();
959 bool Process::HijackProcessEvents(ListenerSP listener_sp
) {
961 return HijackBroadcaster(listener_sp
, eBroadcastBitStateChanged
|
962 eBroadcastBitInterrupt
);
967 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
969 StateType
Process::GetStateChangedEvents(EventSP
&event_sp
,
970 const Timeout
<std::micro
> &timeout
,
971 ListenerSP hijack_listener_sp
) {
972 Log
*log
= GetLog(LLDBLog::Process
);
973 LLDB_LOG(log
, "timeout = {0}, event_sp)...", timeout
);
975 ListenerSP listener_sp
= hijack_listener_sp
;
977 listener_sp
= GetPrimaryListener();
979 StateType state
= eStateInvalid
;
980 if (listener_sp
->GetEventForBroadcasterWithType(
981 this, eBroadcastBitStateChanged
| eBroadcastBitInterrupt
, event_sp
,
983 if (event_sp
&& event_sp
->GetType() == eBroadcastBitStateChanged
)
984 state
= Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
986 LLDB_LOG(log
, "got no event or was interrupted.");
989 LLDB_LOG(log
, "timeout = {0}, event_sp) => {1}", timeout
, state
);
993 Event
*Process::PeekAtStateChangedEvents() {
994 Log
*log
= GetLog(LLDBLog::Process
);
996 LLDB_LOGF(log
, "Process::%s...", __FUNCTION__
);
999 event_ptr
= GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
1000 this, eBroadcastBitStateChanged
);
1003 LLDB_LOGF(log
, "Process::%s (event_ptr) => %s", __FUNCTION__
,
1004 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr
)));
1006 LLDB_LOGF(log
, "Process::%s no events found", __FUNCTION__
);
1013 Process::GetStateChangedEventsPrivate(EventSP
&event_sp
,
1014 const Timeout
<std::micro
> &timeout
) {
1015 Log
*log
= GetLog(LLDBLog::Process
);
1016 LLDB_LOG(log
, "timeout = {0}, event_sp)...", timeout
);
1018 StateType state
= eStateInvalid
;
1019 if (m_private_state_listener_sp
->GetEventForBroadcasterWithType(
1020 &m_private_state_broadcaster
,
1021 eBroadcastBitStateChanged
| eBroadcastBitInterrupt
, event_sp
,
1023 if (event_sp
&& event_sp
->GetType() == eBroadcastBitStateChanged
)
1024 state
= Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
1026 LLDB_LOG(log
, "timeout = {0}, event_sp) => {1}", timeout
,
1027 state
== eStateInvalid
? "TIMEOUT" : StateAsCString(state
));
1031 bool Process::GetEventsPrivate(EventSP
&event_sp
,
1032 const Timeout
<std::micro
> &timeout
,
1033 bool control_only
) {
1034 Log
*log
= GetLog(LLDBLog::Process
);
1035 LLDB_LOG(log
, "timeout = {0}, event_sp)...", timeout
);
1038 return m_private_state_listener_sp
->GetEventForBroadcaster(
1039 &m_private_state_control_broadcaster
, event_sp
, timeout
);
1041 return m_private_state_listener_sp
->GetEvent(event_sp
, timeout
);
1044 bool Process::IsRunning() const {
1045 return StateIsRunningState(m_public_state
.GetValue());
1048 int Process::GetExitStatus() {
1049 std::lock_guard
<std::mutex
> guard(m_exit_status_mutex
);
1051 if (m_public_state
.GetValue() == eStateExited
)
1052 return m_exit_status
;
1056 const char *Process::GetExitDescription() {
1057 std::lock_guard
<std::mutex
> guard(m_exit_status_mutex
);
1059 if (m_public_state
.GetValue() == eStateExited
&& !m_exit_string
.empty())
1060 return m_exit_string
.c_str();
1064 bool Process::SetExitStatus(int status
, llvm::StringRef exit_string
) {
1065 // Use a mutex to protect setting the exit status.
1066 std::lock_guard
<std::mutex
> guard(m_exit_status_mutex
);
1068 Log
*log(GetLog(LLDBLog::State
| LLDBLog::Process
));
1069 LLDB_LOG(log
, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1070 GetPluginName(), status
, exit_string
);
1072 // We were already in the exited state
1073 if (m_private_state
.GetValue() == eStateExited
) {
1076 "(plugin = {0}) ignoring exit status because state was already set "
1082 m_exit_status
= status
;
1083 if (!exit_string
.empty())
1084 m_exit_string
= exit_string
.str();
1086 m_exit_string
.clear();
1088 // Clear the last natural stop ID since it has a strong reference to this
1090 m_mod_id
.SetStopEventForLastNaturalStopID(EventSP());
1092 SetPrivateState(eStateExited
);
1094 // Allow subclasses to do some cleanup
1100 bool Process::IsAlive() {
1101 switch (m_private_state
.GetValue()) {
1102 case eStateConnected
:
1103 case eStateAttaching
:
1104 case eStateLaunching
:
1107 case eStateStepping
:
1109 case eStateSuspended
:
1116 // This static callback can be used to watch for local child processes on the
1117 // current host. The child process exits, the process will be found in the
1118 // global target list (we want to be completely sure that the
1119 // lldb_private::Process doesn't go away before we can deliver the signal.
1120 bool Process::SetProcessExitStatus(
1121 lldb::pid_t pid
, bool exited
,
1122 int signo
, // Zero for no signal
1123 int exit_status
// Exit value of process if signal is zero
1125 Log
*log
= GetLog(LLDBLog::Process
);
1127 "Process::SetProcessExitStatus (pid=%" PRIu64
1128 ", exited=%i, signal=%i, exit_status=%i)\n",
1129 pid
, exited
, signo
, exit_status
);
1132 TargetSP
target_sp(Debugger::FindTargetWithProcessID(pid
));
1134 ProcessSP
process_sp(target_sp
->GetProcessSP());
1136 llvm::StringRef signal_str
=
1137 process_sp
->GetUnixSignals()->GetSignalAsStringRef(signo
);
1138 process_sp
->SetExitStatus(exit_status
, signal_str
);
1146 bool Process::UpdateThreadList(ThreadList
&old_thread_list
,
1147 ThreadList
&new_thread_list
) {
1148 m_thread_plans
.ClearThreadCache();
1149 return DoUpdateThreadList(old_thread_list
, new_thread_list
);
1152 void Process::UpdateThreadListIfNeeded() {
1153 const uint32_t stop_id
= GetStopID();
1154 if (m_thread_list
.GetSize(false) == 0 ||
1155 stop_id
!= m_thread_list
.GetStopID()) {
1156 bool clear_unused_threads
= true;
1157 const StateType state
= GetPrivateState();
1158 if (StateIsStoppedState(state
, true)) {
1159 std::lock_guard
<std::recursive_mutex
> guard(m_thread_list
.GetMutex());
1160 m_thread_list
.SetStopID(stop_id
);
1162 // m_thread_list does have its own mutex, but we need to hold onto the
1163 // mutex between the call to UpdateThreadList(...) and the
1164 // os->UpdateThreadList(...) so it doesn't change on us
1165 ThreadList
&old_thread_list
= m_thread_list
;
1166 ThreadList
real_thread_list(*this);
1167 ThreadList
new_thread_list(*this);
1168 // Always update the thread list with the protocol specific thread list,
1169 // but only update if "true" is returned
1170 if (UpdateThreadList(m_thread_list_real
, real_thread_list
)) {
1171 // Don't call into the OperatingSystem to update the thread list if we
1172 // are shutting down, since that may call back into the SBAPI's,
1173 // requiring the API lock which is already held by whoever is shutting
1174 // us down, causing a deadlock.
1175 OperatingSystem
*os
= GetOperatingSystem();
1176 if (os
&& !m_destroy_in_process
) {
1177 // Clear any old backing threads where memory threads might have been
1178 // backed by actual threads from the lldb_private::Process subclass
1179 size_t num_old_threads
= old_thread_list
.GetSize(false);
1180 for (size_t i
= 0; i
< num_old_threads
; ++i
)
1181 old_thread_list
.GetThreadAtIndex(i
, false)->ClearBackingThread();
1182 // See if the OS plugin reports all threads. If it does, then
1183 // it is safe to clear unseen thread's plans here. Otherwise we
1184 // should preserve them in case they show up again:
1185 clear_unused_threads
= GetOSPluginReportsAllThreads();
1187 // Turn off dynamic types to ensure we don't run any expressions.
1188 // Objective-C can run an expression to determine if a SBValue is a
1189 // dynamic type or not and we need to avoid this. OperatingSystem
1190 // plug-ins can't run expressions that require running code...
1192 Target
&target
= GetTarget();
1193 const lldb::DynamicValueType saved_prefer_dynamic
=
1194 target
.GetPreferDynamicValue();
1195 if (saved_prefer_dynamic
!= lldb::eNoDynamicValues
)
1196 target
.SetPreferDynamicValue(lldb::eNoDynamicValues
);
1198 // Now let the OperatingSystem plug-in update the thread list
1200 os
->UpdateThreadList(
1201 old_thread_list
, // Old list full of threads created by OS plug-in
1202 real_thread_list
, // The actual thread list full of threads
1203 // created by each lldb_private::Process
1205 new_thread_list
); // The new thread list that we will show to the
1206 // user that gets filled in
1208 if (saved_prefer_dynamic
!= lldb::eNoDynamicValues
)
1209 target
.SetPreferDynamicValue(saved_prefer_dynamic
);
1211 // No OS plug-in, the new thread list is the same as the real thread
1213 new_thread_list
= real_thread_list
;
1216 m_thread_list_real
.Update(real_thread_list
);
1217 m_thread_list
.Update(new_thread_list
);
1218 m_thread_list
.SetStopID(stop_id
);
1220 if (GetLastNaturalStopID() != m_extended_thread_stop_id
) {
1221 // Clear any extended threads that we may have accumulated previously
1222 m_extended_thread_list
.Clear();
1223 m_extended_thread_stop_id
= GetLastNaturalStopID();
1225 m_queue_list
.Clear();
1226 m_queue_list_stop_id
= GetLastNaturalStopID();
1229 // Now update the plan stack map.
1230 // If we do have an OS plugin, any absent real threads in the
1231 // m_thread_list have already been removed from the ThreadPlanStackMap.
1232 // So any remaining threads are OS Plugin threads, and those we want to
1233 // preserve in case they show up again.
1234 m_thread_plans
.Update(m_thread_list
, clear_unused_threads
);
1239 ThreadPlanStack
*Process::FindThreadPlans(lldb::tid_t tid
) {
1240 return m_thread_plans
.Find(tid
);
1243 bool Process::PruneThreadPlansForTID(lldb::tid_t tid
) {
1244 return m_thread_plans
.PrunePlansForTID(tid
);
1247 void Process::PruneThreadPlans() {
1248 m_thread_plans
.Update(GetThreadList(), true, false);
1251 bool Process::DumpThreadPlansForTID(Stream
&strm
, lldb::tid_t tid
,
1252 lldb::DescriptionLevel desc_level
,
1253 bool internal
, bool condense_trivial
,
1254 bool skip_unreported_plans
) {
1255 return m_thread_plans
.DumpPlansForTID(
1256 strm
, tid
, desc_level
, internal
, condense_trivial
, skip_unreported_plans
);
1258 void Process::DumpThreadPlans(Stream
&strm
, lldb::DescriptionLevel desc_level
,
1259 bool internal
, bool condense_trivial
,
1260 bool skip_unreported_plans
) {
1261 m_thread_plans
.DumpPlans(strm
, desc_level
, internal
, condense_trivial
,
1262 skip_unreported_plans
);
1265 void Process::UpdateQueueListIfNeeded() {
1266 if (m_system_runtime_up
) {
1267 if (m_queue_list
.GetSize() == 0 ||
1268 m_queue_list_stop_id
!= GetLastNaturalStopID()) {
1269 const StateType state
= GetPrivateState();
1270 if (StateIsStoppedState(state
, true)) {
1271 m_system_runtime_up
->PopulateQueueList(m_queue_list
);
1272 m_queue_list_stop_id
= GetLastNaturalStopID();
1278 ThreadSP
Process::CreateOSPluginThread(lldb::tid_t tid
, lldb::addr_t context
) {
1279 OperatingSystem
*os
= GetOperatingSystem();
1281 return os
->CreateThread(tid
, context
);
1285 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id
) {
1286 return AssignIndexIDToThread(thread_id
);
1289 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id
) {
1290 return (m_thread_id_to_index_id_map
.find(thread_id
) !=
1291 m_thread_id_to_index_id_map
.end());
1294 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id
) {
1295 uint32_t result
= 0;
1296 std::map
<uint64_t, uint32_t>::iterator iterator
=
1297 m_thread_id_to_index_id_map
.find(thread_id
);
1298 if (iterator
== m_thread_id_to_index_id_map
.end()) {
1299 result
= ++m_thread_index_id
;
1300 m_thread_id_to_index_id_map
[thread_id
] = result
;
1302 result
= iterator
->second
;
1308 StateType
Process::GetState() {
1309 if (CurrentThreadIsPrivateStateThread())
1310 return m_private_state
.GetValue();
1312 return m_public_state
.GetValue();
1315 void Process::SetPublicState(StateType new_state
, bool restarted
) {
1316 const bool new_state_is_stopped
= StateIsStoppedState(new_state
, false);
1317 if (new_state_is_stopped
) {
1318 // This will only set the time if the public stop time has no value, so
1319 // it is ok to call this multiple times. With a public stop we can't look
1320 // at the stop ID because many private stops might have happened, so we
1321 // can't check for a stop ID of zero. This allows the "statistics" command
1322 // to dump the time it takes to reach somewhere in your code, like a
1323 // breakpoint you set.
1324 GetTarget().GetStatistics().SetFirstPublicStopTime();
1327 Log
*log(GetLog(LLDBLog::State
| LLDBLog::Process
));
1328 LLDB_LOGF(log
, "(plugin = %s, state = %s, restarted = %i)",
1329 GetPluginName().data(), StateAsCString(new_state
), restarted
);
1330 const StateType old_state
= m_public_state
.GetValue();
1331 m_public_state
.SetValue(new_state
);
1333 // On the transition from Run to Stopped, we unlock the writer end of the run
1334 // lock. The lock gets locked in Resume, which is the public API to tell the
1336 if (!StateChangedIsExternallyHijacked()) {
1337 if (new_state
== eStateDetached
) {
1339 "(plugin = %s, state = %s) -- unlocking run lock for detach",
1340 GetPluginName().data(), StateAsCString(new_state
));
1341 m_public_run_lock
.SetStopped();
1343 const bool old_state_is_stopped
= StateIsStoppedState(old_state
, false);
1344 if ((old_state_is_stopped
!= new_state_is_stopped
)) {
1345 if (new_state_is_stopped
&& !restarted
) {
1346 LLDB_LOGF(log
, "(plugin = %s, state = %s) -- unlocking run lock",
1347 GetPluginName().data(), StateAsCString(new_state
));
1348 m_public_run_lock
.SetStopped();
1355 Status
Process::Resume() {
1356 Log
*log(GetLog(LLDBLog::State
| LLDBLog::Process
));
1357 LLDB_LOGF(log
, "(plugin = %s) -- locking run lock", GetPluginName().data());
1358 if (!m_public_run_lock
.TrySetRunning()) {
1359 LLDB_LOGF(log
, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1360 GetPluginName().data());
1361 return Status::FromErrorString(
1362 "Resume request failed - process still running.");
1364 Status error
= PrivateResume();
1365 if (!error
.Success()) {
1366 // Undo running state change
1367 m_public_run_lock
.SetStopped();
1372 Status
Process::ResumeSynchronous(Stream
*stream
) {
1373 Log
*log(GetLog(LLDBLog::State
| LLDBLog::Process
));
1374 LLDB_LOGF(log
, "Process::ResumeSynchronous -- locking run lock");
1375 if (!m_public_run_lock
.TrySetRunning()) {
1376 LLDB_LOGF(log
, "Process::Resume: -- TrySetRunning failed, not resuming.");
1377 return Status::FromErrorString(
1378 "Resume request failed - process still running.");
1381 ListenerSP
listener_sp(
1382 Listener::MakeListener(ResumeSynchronousHijackListenerName
.data()));
1383 HijackProcessEvents(listener_sp
);
1385 Status error
= PrivateResume();
1386 if (error
.Success()) {
1388 WaitForProcessToStop(std::nullopt
, nullptr, true, listener_sp
, stream
,
1389 true /* use_run_lock */, SelectMostRelevantFrame
);
1390 const bool must_be_alive
=
1391 false; // eStateExited is ok, so this must be false
1392 if (!StateIsStoppedState(state
, must_be_alive
))
1393 error
= Status::FromErrorStringWithFormat(
1394 "process not in stopped state after synchronous resume: %s",
1395 StateAsCString(state
));
1397 // Undo running state change
1398 m_public_run_lock
.SetStopped();
1401 // Undo the hijacking of process events...
1402 RestoreProcessEvents();
1407 bool Process::StateChangedIsExternallyHijacked() {
1408 if (IsHijackedForEvent(eBroadcastBitStateChanged
)) {
1409 llvm::StringRef hijacking_name
= GetHijackingListenerName();
1410 if (!hijacking_name
.starts_with("lldb.internal"))
1416 bool Process::StateChangedIsHijackedForSynchronousResume() {
1417 if (IsHijackedForEvent(eBroadcastBitStateChanged
)) {
1418 llvm::StringRef hijacking_name
= GetHijackingListenerName();
1419 if (hijacking_name
== ResumeSynchronousHijackListenerName
)
1425 StateType
Process::GetPrivateState() { return m_private_state
.GetValue(); }
1427 void Process::SetPrivateState(StateType new_state
) {
1428 // Use m_destructing not m_finalizing here. If we are finalizing a process
1429 // that we haven't started tearing down, we'd like to be able to nicely
1430 // detach if asked, but that requires the event system be live. That will
1431 // not be true for an in-the-middle-of-being-destructed Process, since the
1432 // event system relies on Process::shared_from_this, which may have already
1437 Log
*log(GetLog(LLDBLog::State
| LLDBLog::Process
| LLDBLog::Unwind
));
1438 bool state_changed
= false;
1440 LLDB_LOGF(log
, "(plugin = %s, state = %s)", GetPluginName().data(),
1441 StateAsCString(new_state
));
1443 std::lock_guard
<std::recursive_mutex
> thread_guard(m_thread_list
.GetMutex());
1444 std::lock_guard
<std::recursive_mutex
> guard(m_private_state
.GetMutex());
1446 const StateType old_state
= m_private_state
.GetValueNoLock();
1447 state_changed
= old_state
!= new_state
;
1449 const bool old_state_is_stopped
= StateIsStoppedState(old_state
, false);
1450 const bool new_state_is_stopped
= StateIsStoppedState(new_state
, false);
1451 if (old_state_is_stopped
!= new_state_is_stopped
) {
1452 if (new_state_is_stopped
)
1453 m_private_run_lock
.SetStopped();
1455 m_private_run_lock
.SetRunning();
1458 if (state_changed
) {
1459 m_private_state
.SetValueNoLock(new_state
);
1461 new Event(eBroadcastBitStateChanged
,
1462 new ProcessEventData(shared_from_this(), new_state
)));
1463 if (StateIsStoppedState(new_state
, false)) {
1464 // Note, this currently assumes that all threads in the list stop when
1465 // the process stops. In the future we will want to support a debugging
1466 // model where some threads continue to run while others are stopped.
1467 // When that happens we will either need a way for the thread list to
1468 // identify which threads are stopping or create a special thread list
1469 // containing only threads which actually stopped.
1471 // The process plugin is responsible for managing the actual behavior of
1472 // the threads and should have stopped any threads that are going to stop
1473 // before we get here.
1474 m_thread_list
.DidStop();
1476 if (m_mod_id
.BumpStopID() == 0)
1477 GetTarget().GetStatistics().SetFirstPrivateStopTime();
1479 if (!m_mod_id
.IsLastResumeForUserExpression())
1480 m_mod_id
.SetStopEventForLastNaturalStopID(event_sp
);
1481 m_memory_cache
.Clear();
1482 LLDB_LOGF(log
, "(plugin = %s, state = %s, stop_id = %u",
1483 GetPluginName().data(), StateAsCString(new_state
),
1484 m_mod_id
.GetStopID());
1487 m_private_state_broadcaster
.BroadcastEvent(event_sp
);
1489 LLDB_LOGF(log
, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1490 GetPluginName().data(), StateAsCString(new_state
));
1494 void Process::SetRunningUserExpression(bool on
) {
1495 m_mod_id
.SetRunningUserExpression(on
);
1498 void Process::SetRunningUtilityFunction(bool on
) {
1499 m_mod_id
.SetRunningUtilityFunction(on
);
1502 addr_t
Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS
; }
1504 const lldb::ABISP
&Process::GetABI() {
1506 m_abi_sp
= ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1510 std::vector
<LanguageRuntime
*> Process::GetLanguageRuntimes() {
1511 std::vector
<LanguageRuntime
*> language_runtimes
;
1514 return language_runtimes
;
1516 std::lock_guard
<std::recursive_mutex
> guard(m_language_runtimes_mutex
);
1517 // Before we pass off a copy of the language runtimes, we must make sure that
1518 // our collection is properly populated. It's possible that some of the
1519 // language runtimes were not loaded yet, either because nobody requested it
1520 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1521 // hadn't been loaded).
1522 for (const lldb::LanguageType lang_type
: Language::GetSupportedLanguages()) {
1523 if (LanguageRuntime
*runtime
= GetLanguageRuntime(lang_type
))
1524 language_runtimes
.emplace_back(runtime
);
1527 return language_runtimes
;
1530 LanguageRuntime
*Process::GetLanguageRuntime(lldb::LanguageType language
) {
1534 LanguageRuntime
*runtime
= nullptr;
1536 std::lock_guard
<std::recursive_mutex
> guard(m_language_runtimes_mutex
);
1537 LanguageRuntimeCollection::iterator pos
;
1538 pos
= m_language_runtimes
.find(language
);
1539 if (pos
== m_language_runtimes
.end() || !pos
->second
) {
1540 lldb::LanguageRuntimeSP
runtime_sp(
1541 LanguageRuntime::FindPlugin(this, language
));
1543 m_language_runtimes
[language
] = runtime_sp
;
1544 runtime
= runtime_sp
.get();
1546 runtime
= pos
->second
.get();
1549 // It's possible that a language runtime can support multiple LanguageTypes,
1550 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1551 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1552 // primary language type and make sure that our runtime supports it.
1553 assert(runtime
->GetLanguageType() == Language::GetPrimaryLanguage(language
));
1558 bool Process::IsPossibleDynamicValue(ValueObject
&in_value
) {
1562 if (in_value
.IsDynamic())
1564 LanguageType known_type
= in_value
.GetObjectRuntimeLanguage();
1566 if (known_type
!= eLanguageTypeUnknown
&& known_type
!= eLanguageTypeC
) {
1567 LanguageRuntime
*runtime
= GetLanguageRuntime(known_type
);
1568 return runtime
? runtime
->CouldHaveDynamicValue(in_value
) : false;
1571 for (LanguageRuntime
*runtime
: GetLanguageRuntimes()) {
1572 if (runtime
->CouldHaveDynamicValue(in_value
))
1579 void Process::SetDynamicCheckers(DynamicCheckerFunctions
*dynamic_checkers
) {
1580 m_dynamic_checkers_up
.reset(dynamic_checkers
);
1583 StopPointSiteList
<BreakpointSite
> &Process::GetBreakpointSiteList() {
1584 return m_breakpoint_site_list
;
1587 const StopPointSiteList
<BreakpointSite
> &
1588 Process::GetBreakpointSiteList() const {
1589 return m_breakpoint_site_list
;
1592 void Process::DisableAllBreakpointSites() {
1593 m_breakpoint_site_list
.ForEach([this](BreakpointSite
*bp_site
) -> void {
1594 // bp_site->SetEnabled(true);
1595 DisableBreakpointSite(bp_site
);
1599 Status
Process::ClearBreakpointSiteByID(lldb::user_id_t break_id
) {
1600 Status
error(DisableBreakpointSiteByID(break_id
));
1602 if (error
.Success())
1603 m_breakpoint_site_list
.Remove(break_id
);
1608 Status
Process::DisableBreakpointSiteByID(lldb::user_id_t break_id
) {
1610 BreakpointSiteSP bp_site_sp
= m_breakpoint_site_list
.FindByID(break_id
);
1612 if (bp_site_sp
->IsEnabled())
1613 error
= DisableBreakpointSite(bp_site_sp
.get());
1615 error
= Status::FromErrorStringWithFormat(
1616 "invalid breakpoint site ID: %" PRIu64
, break_id
);
1622 Status
Process::EnableBreakpointSiteByID(lldb::user_id_t break_id
) {
1624 BreakpointSiteSP bp_site_sp
= m_breakpoint_site_list
.FindByID(break_id
);
1626 if (!bp_site_sp
->IsEnabled())
1627 error
= EnableBreakpointSite(bp_site_sp
.get());
1629 error
= Status::FromErrorStringWithFormat(
1630 "invalid breakpoint site ID: %" PRIu64
, break_id
);
1636 Process::CreateBreakpointSite(const BreakpointLocationSP
&constituent
,
1637 bool use_hardware
) {
1638 addr_t load_addr
= LLDB_INVALID_ADDRESS
;
1640 bool show_error
= true;
1641 switch (GetState()) {
1643 case eStateUnloaded
:
1644 case eStateConnected
:
1645 case eStateAttaching
:
1646 case eStateLaunching
:
1647 case eStateDetached
:
1654 case eStateStepping
:
1656 case eStateSuspended
:
1657 show_error
= IsAlive();
1661 // Reset the IsIndirect flag here, in case the location changes from pointing
1662 // to a indirect symbol to a regular symbol.
1663 constituent
->SetIsIndirect(false);
1665 if (constituent
->ShouldResolveIndirectFunctions()) {
1666 Symbol
*symbol
= constituent
->GetAddress().CalculateSymbolContextSymbol();
1667 if (symbol
&& symbol
->IsIndirect()) {
1669 Address symbol_address
= symbol
->GetAddress();
1670 load_addr
= ResolveIndirectFunction(&symbol_address
, error
);
1671 if (!error
.Success() && show_error
) {
1672 GetTarget().GetDebugger().GetErrorStream().Printf(
1673 "warning: failed to resolve indirect function at 0x%" PRIx64
1674 " for breakpoint %i.%i: %s\n",
1675 symbol
->GetLoadAddress(&GetTarget()),
1676 constituent
->GetBreakpoint().GetID(), constituent
->GetID(),
1677 error
.AsCString() ? error
.AsCString() : "unknown error");
1678 return LLDB_INVALID_BREAK_ID
;
1680 Address
resolved_address(load_addr
);
1681 load_addr
= resolved_address
.GetOpcodeLoadAddress(&GetTarget());
1682 constituent
->SetIsIndirect(true);
1684 load_addr
= constituent
->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1686 load_addr
= constituent
->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1688 if (load_addr
!= LLDB_INVALID_ADDRESS
) {
1689 BreakpointSiteSP bp_site_sp
;
1691 // Look up this breakpoint site. If it exists, then add this new
1692 // constituent, otherwise create a new breakpoint site and add it.
1694 bp_site_sp
= m_breakpoint_site_list
.FindByAddress(load_addr
);
1697 bp_site_sp
->AddConstituent(constituent
);
1698 constituent
->SetBreakpointSite(bp_site_sp
);
1699 return bp_site_sp
->GetID();
1702 new BreakpointSite(constituent
, load_addr
, use_hardware
));
1704 Status error
= EnableBreakpointSite(bp_site_sp
.get());
1705 if (error
.Success()) {
1706 constituent
->SetBreakpointSite(bp_site_sp
);
1707 return m_breakpoint_site_list
.Add(bp_site_sp
);
1709 if (show_error
|| use_hardware
) {
1710 // Report error for setting breakpoint...
1711 GetTarget().GetDebugger().GetErrorStream().Printf(
1712 "warning: failed to set breakpoint site at 0x%" PRIx64
1713 " for breakpoint %i.%i: %s\n",
1714 load_addr
, constituent
->GetBreakpoint().GetID(),
1715 constituent
->GetID(),
1716 error
.AsCString() ? error
.AsCString() : "unknown error");
1722 // We failed to enable the breakpoint
1723 return LLDB_INVALID_BREAK_ID
;
1726 void Process::RemoveConstituentFromBreakpointSite(
1727 lldb::user_id_t constituent_id
, lldb::user_id_t constituent_loc_id
,
1728 BreakpointSiteSP
&bp_site_sp
) {
1729 uint32_t num_constituents
=
1730 bp_site_sp
->RemoveConstituent(constituent_id
, constituent_loc_id
);
1731 if (num_constituents
== 0) {
1732 // Don't try to disable the site if we don't have a live process anymore.
1734 DisableBreakpointSite(bp_site_sp
.get());
1735 m_breakpoint_site_list
.RemoveByAddress(bp_site_sp
->GetLoadAddress());
1739 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr
, size_t size
,
1740 uint8_t *buf
) const {
1741 size_t bytes_removed
= 0;
1742 StopPointSiteList
<BreakpointSite
> bp_sites_in_range
;
1744 if (m_breakpoint_site_list
.FindInRange(bp_addr
, bp_addr
+ size
,
1745 bp_sites_in_range
)) {
1746 bp_sites_in_range
.ForEach([bp_addr
, size
,
1747 buf
](BreakpointSite
*bp_site
) -> void {
1748 if (bp_site
->GetType() == BreakpointSite::eSoftware
) {
1749 addr_t intersect_addr
;
1750 size_t intersect_size
;
1751 size_t opcode_offset
;
1752 if (bp_site
->IntersectsRange(bp_addr
, size
, &intersect_addr
,
1753 &intersect_size
, &opcode_offset
)) {
1754 assert(bp_addr
<= intersect_addr
&& intersect_addr
< bp_addr
+ size
);
1755 assert(bp_addr
< intersect_addr
+ intersect_size
&&
1756 intersect_addr
+ intersect_size
<= bp_addr
+ size
);
1757 assert(opcode_offset
+ intersect_size
<= bp_site
->GetByteSize());
1758 size_t buf_offset
= intersect_addr
- bp_addr
;
1759 ::memcpy(buf
+ buf_offset
,
1760 bp_site
->GetSavedOpcodeBytes() + opcode_offset
,
1766 return bytes_removed
;
1769 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite
*bp_site
) {
1770 PlatformSP
platform_sp(GetTarget().GetPlatform());
1772 return platform_sp
->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site
);
1776 Status
Process::EnableSoftwareBreakpoint(BreakpointSite
*bp_site
) {
1778 assert(bp_site
!= nullptr);
1779 Log
*log
= GetLog(LLDBLog::Breakpoints
);
1780 const addr_t bp_addr
= bp_site
->GetLoadAddress();
1782 log
, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
,
1783 bp_site
->GetID(), (uint64_t)bp_addr
);
1784 if (bp_site
->IsEnabled()) {
1787 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1788 " -- already enabled",
1789 bp_site
->GetID(), (uint64_t)bp_addr
);
1793 if (bp_addr
== LLDB_INVALID_ADDRESS
) {
1794 error
= Status::FromErrorString(
1795 "BreakpointSite contains an invalid load address.");
1798 // Ask the lldb::Process subclass to fill in the correct software breakpoint
1799 // trap for the breakpoint site
1800 const size_t bp_opcode_size
= GetSoftwareBreakpointTrapOpcode(bp_site
);
1802 if (bp_opcode_size
== 0) {
1803 error
= Status::FromErrorStringWithFormat(
1804 "Process::GetSoftwareBreakpointTrapOpcode() "
1805 "returned zero, unable to get breakpoint "
1806 "trap for address 0x%" PRIx64
,
1809 const uint8_t *const bp_opcode_bytes
= bp_site
->GetTrapOpcodeBytes();
1811 if (bp_opcode_bytes
== nullptr) {
1812 error
= Status::FromErrorString(
1813 "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1817 // Save the original opcode by reading it
1818 if (DoReadMemory(bp_addr
, bp_site
->GetSavedOpcodeBytes(), bp_opcode_size
,
1819 error
) == bp_opcode_size
) {
1820 // Write a software breakpoint in place of the original opcode
1821 if (DoWriteMemory(bp_addr
, bp_opcode_bytes
, bp_opcode_size
, error
) ==
1823 uint8_t verify_bp_opcode_bytes
[64];
1824 if (DoReadMemory(bp_addr
, verify_bp_opcode_bytes
, bp_opcode_size
,
1825 error
) == bp_opcode_size
) {
1826 if (::memcmp(bp_opcode_bytes
, verify_bp_opcode_bytes
,
1827 bp_opcode_size
) == 0) {
1828 bp_site
->SetEnabled(true);
1829 bp_site
->SetType(BreakpointSite::eSoftware
);
1831 "Process::EnableSoftwareBreakpoint (site_id = %d) "
1832 "addr = 0x%" PRIx64
" -- SUCCESS",
1833 bp_site
->GetID(), (uint64_t)bp_addr
);
1835 error
= Status::FromErrorString(
1836 "failed to verify the breakpoint trap in memory.");
1838 error
= Status::FromErrorString(
1839 "Unable to read memory to verify breakpoint trap.");
1841 error
= Status::FromErrorString(
1842 "Unable to write breakpoint trap to memory.");
1844 error
= Status::FromErrorString(
1845 "Unable to read memory at breakpoint address.");
1847 if (log
&& error
.Fail())
1850 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1852 bp_site
->GetID(), (uint64_t)bp_addr
, error
.AsCString());
1856 Status
Process::DisableSoftwareBreakpoint(BreakpointSite
*bp_site
) {
1858 assert(bp_site
!= nullptr);
1859 Log
*log
= GetLog(LLDBLog::Breakpoints
);
1860 addr_t bp_addr
= bp_site
->GetLoadAddress();
1861 lldb::user_id_t breakID
= bp_site
->GetID();
1863 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1864 ") addr = 0x%" PRIx64
,
1865 breakID
, (uint64_t)bp_addr
);
1867 if (bp_site
->IsHardware()) {
1869 Status::FromErrorString("Breakpoint site is a hardware breakpoint.");
1870 } else if (bp_site
->IsEnabled()) {
1871 const size_t break_op_size
= bp_site
->GetByteSize();
1872 const uint8_t *const break_op
= bp_site
->GetTrapOpcodeBytes();
1873 if (break_op_size
> 0) {
1874 // Clear a software breakpoint instruction
1875 uint8_t curr_break_op
[8];
1876 assert(break_op_size
<= sizeof(curr_break_op
));
1877 bool break_op_found
= false;
1879 // Read the breakpoint opcode
1880 if (DoReadMemory(bp_addr
, curr_break_op
, break_op_size
, error
) ==
1882 bool verify
= false;
1883 // Make sure the breakpoint opcode exists at this address
1884 if (::memcmp(curr_break_op
, break_op
, break_op_size
) == 0) {
1885 break_op_found
= true;
1886 // We found a valid breakpoint opcode at this address, now restore
1887 // the saved opcode.
1888 if (DoWriteMemory(bp_addr
, bp_site
->GetSavedOpcodeBytes(),
1889 break_op_size
, error
) == break_op_size
) {
1892 error
= Status::FromErrorString(
1893 "Memory write failed when restoring original opcode.");
1895 error
= Status::FromErrorString(
1896 "Original breakpoint trap is no longer in memory.");
1897 // Set verify to true and so we can check if the original opcode has
1898 // already been restored
1903 uint8_t verify_opcode
[8];
1904 assert(break_op_size
< sizeof(verify_opcode
));
1905 // Verify that our original opcode made it back to the inferior
1906 if (DoReadMemory(bp_addr
, verify_opcode
, break_op_size
, error
) ==
1908 // compare the memory we just read with the original opcode
1909 if (::memcmp(bp_site
->GetSavedOpcodeBytes(), verify_opcode
,
1910 break_op_size
) == 0) {
1912 bp_site
->SetEnabled(false);
1914 "Process::DisableSoftwareBreakpoint (site_id = %d) "
1915 "addr = 0x%" PRIx64
" -- SUCCESS",
1916 bp_site
->GetID(), (uint64_t)bp_addr
);
1920 error
= Status::FromErrorString(
1921 "Failed to restore original opcode.");
1925 Status::FromErrorString("Failed to read memory to verify that "
1926 "breakpoint trap was restored.");
1929 error
= Status::FromErrorString(
1930 "Unable to read memory that should contain the breakpoint trap.");
1935 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1936 " -- already disabled",
1937 bp_site
->GetID(), (uint64_t)bp_addr
);
1943 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1945 bp_site
->GetID(), (uint64_t)bp_addr
, error
.AsCString());
1949 // Uncomment to verify memory caching works after making changes to caching
1951 //#define VERIFY_MEMORY_READS
1953 size_t Process::ReadMemory(addr_t addr
, void *buf
, size_t size
, Status
&error
) {
1954 if (ABISP abi_sp
= GetABI())
1955 addr
= abi_sp
->FixAnyAddress(addr
);
1958 if (!GetDisableMemoryCache()) {
1959 #if defined(VERIFY_MEMORY_READS)
1960 // Memory caching is enabled, with debug verification
1963 // Uncomment the line below to make sure memory caching is working.
1964 // I ran this through the test suite and got no assertions, so I am
1965 // pretty confident this is working well. If any changes are made to
1966 // memory caching, uncomment the line below and test your changes!
1968 // Verify all memory reads by using the cache first, then redundantly
1969 // reading the same memory from the inferior and comparing to make sure
1970 // everything is exactly the same.
1971 std::string
verify_buf(size
, '\0');
1972 assert(verify_buf
.size() == size
);
1973 const size_t cache_bytes_read
=
1974 m_memory_cache
.Read(this, addr
, buf
, size
, error
);
1975 Status verify_error
;
1976 const size_t verify_bytes_read
=
1977 ReadMemoryFromInferior(addr
, const_cast<char *>(verify_buf
.data()),
1978 verify_buf
.size(), verify_error
);
1979 assert(cache_bytes_read
== verify_bytes_read
);
1980 assert(memcmp(buf
, verify_buf
.data(), verify_buf
.size()) == 0);
1981 assert(verify_error
.Success() == error
.Success());
1982 return cache_bytes_read
;
1985 #else // !defined(VERIFY_MEMORY_READS)
1986 // Memory caching is enabled, without debug verification
1988 return m_memory_cache
.Read(addr
, buf
, size
, error
);
1989 #endif // defined (VERIFY_MEMORY_READS)
1991 // Memory caching is disabled
1993 return ReadMemoryFromInferior(addr
, buf
, size
, error
);
1997 void Process::DoFindInMemory(lldb::addr_t start_addr
, lldb::addr_t end_addr
,
1998 const uint8_t *buf
, size_t size
,
1999 AddressRanges
&matches
, size_t alignment
,
2000 size_t max_matches
) {
2001 // Inputs are already validated in FindInMemory() functions.
2002 assert(buf
!= nullptr);
2004 assert(alignment
> 0);
2005 assert(max_matches
> 0);
2006 assert(start_addr
!= LLDB_INVALID_ADDRESS
);
2007 assert(end_addr
!= LLDB_INVALID_ADDRESS
);
2008 assert(start_addr
< end_addr
);
2010 lldb::addr_t start
= llvm::alignTo(start_addr
, alignment
);
2011 while (matches
.size() < max_matches
&& (start
+ size
) < end_addr
) {
2012 const lldb::addr_t found_addr
= FindInMemory(start
, end_addr
, buf
, size
);
2013 if (found_addr
== LLDB_INVALID_ADDRESS
)
2016 if (found_addr
% alignment
) {
2017 // We need to check the alignment because the FindInMemory uses a special
2018 // algorithm to efficiently search mememory but doesn't support alignment.
2019 start
= llvm::alignTo(start
+ 1, alignment
);
2023 matches
.emplace_back(found_addr
, size
);
2024 start
= found_addr
+ alignment
;
2028 AddressRanges
Process::FindRangesInMemory(const uint8_t *buf
, uint64_t size
,
2029 const AddressRanges
&ranges
,
2030 size_t alignment
, size_t max_matches
,
2032 AddressRanges matches
;
2033 if (buf
== nullptr) {
2034 error
= Status::FromErrorString("buffer is null");
2038 error
= Status::FromErrorString("buffer size is zero");
2041 if (ranges
.empty()) {
2042 error
= Status::FromErrorString("empty ranges");
2045 if (alignment
== 0) {
2046 error
= Status::FromErrorString("alignment must be greater than zero");
2049 if (max_matches
== 0) {
2050 error
= Status::FromErrorString("max_matches must be greater than zero");
2054 int resolved_ranges
= 0;
2055 Target
&target
= GetTarget();
2056 for (size_t i
= 0; i
< ranges
.size(); ++i
) {
2057 if (matches
.size() >= max_matches
)
2059 const AddressRange
&range
= ranges
[i
];
2060 if (range
.IsValid() == false)
2063 const lldb::addr_t start_addr
=
2064 range
.GetBaseAddress().GetLoadAddress(&target
);
2065 if (start_addr
== LLDB_INVALID_ADDRESS
)
2069 const lldb::addr_t end_addr
= start_addr
+ range
.GetByteSize();
2070 DoFindInMemory(start_addr
, end_addr
, buf
, size
, matches
, alignment
,
2074 if (resolved_ranges
> 0)
2077 error
= Status::FromErrorString("unable to resolve any ranges");
2082 lldb::addr_t
Process::FindInMemory(const uint8_t *buf
, uint64_t size
,
2083 const AddressRange
&range
, size_t alignment
,
2085 if (buf
== nullptr) {
2086 error
= Status::FromErrorString("buffer is null");
2087 return LLDB_INVALID_ADDRESS
;
2090 error
= Status::FromErrorString("buffer size is zero");
2091 return LLDB_INVALID_ADDRESS
;
2093 if (!range
.IsValid()) {
2094 error
= Status::FromErrorString("range is invalid");
2095 return LLDB_INVALID_ADDRESS
;
2097 if (alignment
== 0) {
2098 error
= Status::FromErrorString("alignment must be greater than zero");
2099 return LLDB_INVALID_ADDRESS
;
2102 Target
&target
= GetTarget();
2103 const lldb::addr_t start_addr
=
2104 range
.GetBaseAddress().GetLoadAddress(&target
);
2105 if (start_addr
== LLDB_INVALID_ADDRESS
) {
2106 error
= Status::FromErrorString("range load address is invalid");
2107 return LLDB_INVALID_ADDRESS
;
2109 const lldb::addr_t end_addr
= start_addr
+ range
.GetByteSize();
2111 AddressRanges matches
;
2112 DoFindInMemory(start_addr
, end_addr
, buf
, size
, matches
, alignment
, 1);
2113 if (matches
.empty())
2114 return LLDB_INVALID_ADDRESS
;
2117 return matches
[0].GetBaseAddress().GetLoadAddress(&target
);
2120 size_t Process::ReadCStringFromMemory(addr_t addr
, std::string
&out_str
,
2124 addr_t curr_addr
= addr
;
2126 size_t length
= ReadCStringFromMemory(curr_addr
, buf
, sizeof(buf
), error
);
2129 out_str
.append(buf
, length
);
2130 // If we got "length - 1" bytes, we didn't get the whole C string, we need
2131 // to read some more characters
2132 if (length
== sizeof(buf
) - 1)
2133 curr_addr
+= length
;
2137 return out_str
.size();
2140 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2141 // correct code to find null terminators.
2142 size_t Process::ReadCStringFromMemory(addr_t addr
, char *dst
,
2144 Status
&result_error
) {
2145 size_t total_cstr_len
= 0;
2146 if (dst
&& dst_max_len
) {
2147 result_error
.Clear();
2148 // NULL out everything just to be safe
2149 memset(dst
, 0, dst_max_len
);
2150 addr_t curr_addr
= addr
;
2151 const size_t cache_line_size
= m_memory_cache
.GetMemoryCacheLineSize();
2152 size_t bytes_left
= dst_max_len
- 1;
2153 char *curr_dst
= dst
;
2155 while (bytes_left
> 0) {
2156 addr_t cache_line_bytes_left
=
2157 cache_line_size
- (curr_addr
% cache_line_size
);
2158 addr_t bytes_to_read
=
2159 std::min
<addr_t
>(bytes_left
, cache_line_bytes_left
);
2161 size_t bytes_read
= ReadMemory(curr_addr
, curr_dst
, bytes_to_read
, error
);
2163 if (bytes_read
== 0) {
2164 result_error
= std::move(error
);
2165 dst
[total_cstr_len
] = '\0';
2168 const size_t len
= strlen(curr_dst
);
2170 total_cstr_len
+= len
;
2172 if (len
< bytes_to_read
)
2175 curr_dst
+= bytes_read
;
2176 curr_addr
+= bytes_read
;
2177 bytes_left
-= bytes_read
;
2181 result_error
= Status::FromErrorString("invalid arguments");
2183 result_error
.Clear();
2185 return total_cstr_len
;
2188 size_t Process::ReadMemoryFromInferior(addr_t addr
, void *buf
, size_t size
,
2190 LLDB_SCOPED_TIMER();
2192 if (ABISP abi_sp
= GetABI())
2193 addr
= abi_sp
->FixAnyAddress(addr
);
2195 if (buf
== nullptr || size
== 0)
2198 size_t bytes_read
= 0;
2199 uint8_t *bytes
= (uint8_t *)buf
;
2201 while (bytes_read
< size
) {
2202 const size_t curr_size
= size
- bytes_read
;
2203 const size_t curr_bytes_read
=
2204 DoReadMemory(addr
+ bytes_read
, bytes
+ bytes_read
, curr_size
, error
);
2205 bytes_read
+= curr_bytes_read
;
2206 if (curr_bytes_read
== curr_size
|| curr_bytes_read
== 0)
2210 // Replace any software breakpoint opcodes that fall into this range back
2211 // into "buf" before we return
2213 RemoveBreakpointOpcodesFromBuffer(addr
, bytes_read
, (uint8_t *)buf
);
2217 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr
,
2218 size_t integer_byte_size
,
2219 uint64_t fail_value
,
2222 if (ReadScalarIntegerFromMemory(vm_addr
, integer_byte_size
, false, scalar
,
2224 return scalar
.ULongLong(fail_value
);
2228 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr
,
2229 size_t integer_byte_size
,
2233 if (ReadScalarIntegerFromMemory(vm_addr
, integer_byte_size
, true, scalar
,
2235 return scalar
.SLongLong(fail_value
);
2239 addr_t
Process::ReadPointerFromMemory(lldb::addr_t vm_addr
, Status
&error
) {
2241 if (ReadScalarIntegerFromMemory(vm_addr
, GetAddressByteSize(), false, scalar
,
2243 return scalar
.ULongLong(LLDB_INVALID_ADDRESS
);
2244 return LLDB_INVALID_ADDRESS
;
2247 bool Process::WritePointerToMemory(lldb::addr_t vm_addr
, lldb::addr_t ptr_value
,
2250 const uint32_t addr_byte_size
= GetAddressByteSize();
2251 if (addr_byte_size
<= 4)
2252 scalar
= (uint32_t)ptr_value
;
2255 return WriteScalarToMemory(vm_addr
, scalar
, addr_byte_size
, error
) ==
2259 size_t Process::WriteMemoryPrivate(addr_t addr
, const void *buf
, size_t size
,
2261 size_t bytes_written
= 0;
2262 const uint8_t *bytes
= (const uint8_t *)buf
;
2264 while (bytes_written
< size
) {
2265 const size_t curr_size
= size
- bytes_written
;
2266 const size_t curr_bytes_written
= DoWriteMemory(
2267 addr
+ bytes_written
, bytes
+ bytes_written
, curr_size
, error
);
2268 bytes_written
+= curr_bytes_written
;
2269 if (curr_bytes_written
== curr_size
|| curr_bytes_written
== 0)
2272 return bytes_written
;
2275 size_t Process::WriteMemory(addr_t addr
, const void *buf
, size_t size
,
2277 if (ABISP abi_sp
= GetABI())
2278 addr
= abi_sp
->FixAnyAddress(addr
);
2280 #if defined(ENABLE_MEMORY_CACHING)
2281 m_memory_cache
.Flush(addr
, size
);
2284 if (buf
== nullptr || size
== 0)
2287 m_mod_id
.BumpMemoryID();
2289 // We need to write any data that would go where any current software traps
2290 // (enabled software breakpoints) any software traps (breakpoints) that we
2291 // may have placed in our tasks memory.
2293 StopPointSiteList
<BreakpointSite
> bp_sites_in_range
;
2294 if (!m_breakpoint_site_list
.FindInRange(addr
, addr
+ size
, bp_sites_in_range
))
2295 return WriteMemoryPrivate(addr
, buf
, size
, error
);
2297 // No breakpoint sites overlap
2298 if (bp_sites_in_range
.IsEmpty())
2299 return WriteMemoryPrivate(addr
, buf
, size
, error
);
2301 const uint8_t *ubuf
= (const uint8_t *)buf
;
2302 uint64_t bytes_written
= 0;
2304 bp_sites_in_range
.ForEach([this, addr
, size
, &bytes_written
, &ubuf
,
2305 &error
](BreakpointSite
*bp
) -> void {
2309 if (bp
->GetType() != BreakpointSite::eSoftware
)
2312 addr_t intersect_addr
;
2313 size_t intersect_size
;
2314 size_t opcode_offset
;
2315 const bool intersects
= bp
->IntersectsRange(
2316 addr
, size
, &intersect_addr
, &intersect_size
, &opcode_offset
);
2317 UNUSED_IF_ASSERT_DISABLED(intersects
);
2319 assert(addr
<= intersect_addr
&& intersect_addr
< addr
+ size
);
2320 assert(addr
< intersect_addr
+ intersect_size
&&
2321 intersect_addr
+ intersect_size
<= addr
+ size
);
2322 assert(opcode_offset
+ intersect_size
<= bp
->GetByteSize());
2324 // Check for bytes before this breakpoint
2325 const addr_t curr_addr
= addr
+ bytes_written
;
2326 if (intersect_addr
> curr_addr
) {
2327 // There are some bytes before this breakpoint that we need to just
2329 size_t curr_size
= intersect_addr
- curr_addr
;
2330 size_t curr_bytes_written
=
2331 WriteMemoryPrivate(curr_addr
, ubuf
+ bytes_written
, curr_size
, error
);
2332 bytes_written
+= curr_bytes_written
;
2333 if (curr_bytes_written
!= curr_size
) {
2334 // We weren't able to write all of the requested bytes, we are
2335 // done looping and will return the number of bytes that we have
2337 if (error
.Success())
2338 error
= Status::FromErrorString("could not write all bytes");
2341 // Now write any bytes that would cover up any software breakpoints
2342 // directly into the breakpoint opcode buffer
2343 ::memcpy(bp
->GetSavedOpcodeBytes() + opcode_offset
, ubuf
+ bytes_written
,
2345 bytes_written
+= intersect_size
;
2348 // Write any remaining bytes after the last breakpoint if we have any left
2349 if (bytes_written
< size
)
2351 WriteMemoryPrivate(addr
+ bytes_written
, ubuf
+ bytes_written
,
2352 size
- bytes_written
, error
);
2354 return bytes_written
;
2357 size_t Process::WriteScalarToMemory(addr_t addr
, const Scalar
&scalar
,
2358 size_t byte_size
, Status
&error
) {
2359 if (byte_size
== UINT32_MAX
)
2360 byte_size
= scalar
.GetByteSize();
2361 if (byte_size
> 0) {
2363 const size_t mem_size
=
2364 scalar
.GetAsMemoryData(buf
, byte_size
, GetByteOrder(), error
);
2366 return WriteMemory(addr
, buf
, mem_size
, error
);
2368 error
= Status::FromErrorString("failed to get scalar as memory data");
2370 error
= Status::FromErrorString("invalid scalar value");
2375 size_t Process::ReadScalarIntegerFromMemory(addr_t addr
, uint32_t byte_size
,
2376 bool is_signed
, Scalar
&scalar
,
2379 if (byte_size
== 0) {
2380 error
= Status::FromErrorString("byte size is zero");
2381 } else if (byte_size
& (byte_size
- 1)) {
2382 error
= Status::FromErrorStringWithFormat(
2383 "byte size %u is not a power of 2", byte_size
);
2384 } else if (byte_size
<= sizeof(uval
)) {
2385 const size_t bytes_read
= ReadMemory(addr
, &uval
, byte_size
, error
);
2386 if (bytes_read
== byte_size
) {
2387 DataExtractor
data(&uval
, sizeof(uval
), GetByteOrder(),
2388 GetAddressByteSize());
2389 lldb::offset_t offset
= 0;
2391 scalar
= data
.GetMaxU32(&offset
, byte_size
);
2393 scalar
= data
.GetMaxU64(&offset
, byte_size
);
2395 scalar
.SignExtend(byte_size
* 8);
2399 error
= Status::FromErrorStringWithFormat(
2400 "byte size of %u is too large for integer scalar type", byte_size
);
2405 Status
Process::WriteObjectFile(std::vector
<ObjectFile::LoadableData
> entries
) {
2407 for (const auto &Entry
: entries
) {
2408 WriteMemory(Entry
.Dest
, Entry
.Contents
.data(), Entry
.Contents
.size(),
2410 if (!error
.Success())
2416 #define USE_ALLOCATE_MEMORY_CACHE 1
2417 addr_t
Process::AllocateMemory(size_t size
, uint32_t permissions
,
2419 if (GetPrivateState() != eStateStopped
) {
2420 error
= Status::FromErrorString(
2421 "cannot allocate memory while process is running");
2422 return LLDB_INVALID_ADDRESS
;
2425 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2426 return m_allocated_memory_cache
.AllocateMemory(size
, permissions
, error
);
2428 addr_t allocated_addr
= DoAllocateMemory(size
, permissions
, error
);
2429 Log
*log
= GetLog(LLDBLog::Process
);
2431 "Process::AllocateMemory(size=%" PRIu64
2432 ", permissions=%s) => 0x%16.16" PRIx64
2433 " (m_stop_id = %u m_memory_id = %u)",
2434 (uint64_t)size
, GetPermissionsAsCString(permissions
),
2435 (uint64_t)allocated_addr
, m_mod_id
.GetStopID(),
2436 m_mod_id
.GetMemoryID());
2437 return allocated_addr
;
2441 addr_t
Process::CallocateMemory(size_t size
, uint32_t permissions
,
2443 addr_t return_addr
= AllocateMemory(size
, permissions
, error
);
2444 if (error
.Success()) {
2445 std::string
buffer(size
, 0);
2446 WriteMemory(return_addr
, buffer
.c_str(), size
, error
);
2451 bool Process::CanJIT() {
2452 if (m_can_jit
== eCanJITDontKnow
) {
2453 Log
*log
= GetLog(LLDBLog::Process
);
2456 uint64_t allocated_memory
= AllocateMemory(
2457 8, ePermissionsReadable
| ePermissionsWritable
| ePermissionsExecutable
,
2460 if (err
.Success()) {
2461 m_can_jit
= eCanJITYes
;
2463 "Process::%s pid %" PRIu64
2464 " allocation test passed, CanJIT () is true",
2465 __FUNCTION__
, GetID());
2467 m_can_jit
= eCanJITNo
;
2469 "Process::%s pid %" PRIu64
2470 " allocation test failed, CanJIT () is false: %s",
2471 __FUNCTION__
, GetID(), err
.AsCString());
2474 DeallocateMemory(allocated_memory
);
2477 return m_can_jit
== eCanJITYes
;
2480 void Process::SetCanJIT(bool can_jit
) {
2481 m_can_jit
= (can_jit
? eCanJITYes
: eCanJITNo
);
2484 void Process::SetCanRunCode(bool can_run_code
) {
2485 SetCanJIT(can_run_code
);
2486 m_can_interpret_function_calls
= can_run_code
;
2489 Status
Process::DeallocateMemory(addr_t ptr
) {
2491 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2492 if (!m_allocated_memory_cache
.DeallocateMemory(ptr
)) {
2493 error
= Status::FromErrorStringWithFormat(
2494 "deallocation of memory at 0x%" PRIx64
" failed.", (uint64_t)ptr
);
2497 error
= DoDeallocateMemory(ptr
);
2499 Log
*log
= GetLog(LLDBLog::Process
);
2501 "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2502 ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2503 ptr
, error
.AsCString("SUCCESS"), m_mod_id
.GetStopID(),
2504 m_mod_id
.GetMemoryID());
2509 bool Process::GetWatchpointReportedAfter() {
2510 if (std::optional
<bool> subclass_override
= DoGetWatchpointReportedAfter())
2511 return *subclass_override
;
2513 bool reported_after
= true;
2514 const ArchSpec
&arch
= GetTarget().GetArchitecture();
2515 if (!arch
.IsValid())
2516 return reported_after
;
2517 llvm::Triple triple
= arch
.GetTriple();
2519 if (triple
.isMIPS() || triple
.isPPC64() || triple
.isRISCV() ||
2520 triple
.isAArch64() || triple
.isArmMClass() || triple
.isARM() ||
2521 triple
.isLoongArch())
2522 reported_after
= false;
2524 return reported_after
;
2527 ModuleSP
Process::ReadModuleFromMemory(const FileSpec
&file_spec
,
2528 lldb::addr_t header_addr
,
2529 size_t size_to_read
) {
2530 Log
*log
= GetLog(LLDBLog::Host
);
2533 "Process::ReadModuleFromMemory reading %s binary from memory",
2534 file_spec
.GetPath().c_str());
2536 ModuleSP
module_sp(new Module(file_spec
, ArchSpec()));
2539 std::unique_ptr
<Progress
> progress_up
;
2540 // Reading an ObjectFile from a local corefile is very fast,
2541 // only print a progress update if we're reading from a
2542 // live session which might go over gdb remote serial protocol.
2543 if (IsLiveDebugSession())
2544 progress_up
= std::make_unique
<Progress
>(
2545 "Reading binary from memory", file_spec
.GetFilename().GetString());
2547 ObjectFile
*objfile
= module_sp
->GetMemoryObjectFile(
2548 shared_from_this(), header_addr
, error
, size_to_read
);
2555 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr
,
2556 uint32_t &permissions
) {
2557 MemoryRegionInfo range_info
;
2559 Status
error(GetMemoryRegionInfo(load_addr
, range_info
));
2560 if (!error
.Success())
2562 if (range_info
.GetReadable() == MemoryRegionInfo::eDontKnow
||
2563 range_info
.GetWritable() == MemoryRegionInfo::eDontKnow
||
2564 range_info
.GetExecutable() == MemoryRegionInfo::eDontKnow
) {
2567 permissions
= range_info
.GetLLDBPermissions();
2571 Status
Process::EnableWatchpoint(WatchpointSP wp_sp
, bool notify
) {
2573 error
= Status::FromErrorString("watchpoints are not supported");
2577 Status
Process::DisableWatchpoint(WatchpointSP wp_sp
, bool notify
) {
2579 error
= Status::FromErrorString("watchpoints are not supported");
2584 Process::WaitForProcessStopPrivate(EventSP
&event_sp
,
2585 const Timeout
<std::micro
> &timeout
) {
2590 state
= GetStateChangedEventsPrivate(event_sp
, timeout
);
2592 if (StateIsStoppedState(state
, false))
2595 // If state is invalid, then we timed out
2596 if (state
== eStateInvalid
)
2600 HandlePrivateEvent(event_sp
);
2605 void Process::LoadOperatingSystemPlugin(bool flush
) {
2606 std::lock_guard
<std::recursive_mutex
> guard(m_thread_mutex
);
2608 m_thread_list
.Clear();
2609 m_os_up
.reset(OperatingSystem::FindPlugin(this, nullptr));
2614 Status
Process::Launch(ProcessLaunchInfo
&launch_info
) {
2615 StateType state_after_launch
= eStateInvalid
;
2616 EventSP first_stop_event_sp
;
2618 LaunchPrivate(launch_info
, state_after_launch
, first_stop_event_sp
);
2622 if (state_after_launch
!= eStateStopped
&&
2623 state_after_launch
!= eStateCrashed
)
2626 // Note, the stop event was consumed above, but not handled. This
2627 // was done to give DidLaunch a chance to run. The target is either
2628 // stopped or crashed. Directly set the state. This is done to
2629 // prevent a stop message with a bunch of spurious output on thread
2630 // status, as well as not pop a ProcessIOHandler.
2631 SetPublicState(state_after_launch
, false);
2633 if (PrivateStateThreadIsValid())
2634 ResumePrivateStateThread();
2636 StartPrivateStateThread();
2638 // Target was stopped at entry as was intended. Need to notify the
2639 // listeners about it.
2640 if (launch_info
.GetFlags().Test(eLaunchFlagStopAtEntry
))
2641 HandlePrivateEvent(first_stop_event_sp
);
2646 Status
Process::LaunchPrivate(ProcessLaunchInfo
&launch_info
, StateType
&state
,
2647 EventSP
&event_sp
) {
2651 m_jit_loaders_up
.reset();
2652 m_system_runtime_up
.reset();
2656 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
2657 m_process_input_reader
.reset();
2660 Module
*exe_module
= GetTarget().GetExecutableModulePointer();
2662 // The "remote executable path" is hooked up to the local Executable
2663 // module. But we should be able to debug a remote process even if the
2664 // executable module only exists on the remote. However, there needs to
2665 // be a way to express this path, without actually having a module.
2666 // The way to do that is to set the ExecutableFile in the LaunchInfo.
2667 // Figure that out here:
2669 FileSpec exe_spec_to_use
;
2671 if (!launch_info
.GetExecutableFile() && !launch_info
.IsScriptedProcess()) {
2672 error
= Status::FromErrorString("executable module does not exist");
2675 exe_spec_to_use
= launch_info
.GetExecutableFile();
2677 exe_spec_to_use
= exe_module
->GetFileSpec();
2679 if (exe_module
&& FileSystem::Instance().Exists(exe_module
->GetFileSpec())) {
2680 // Install anything that might need to be installed prior to launching.
2681 // For host systems, this will do nothing, but if we are connected to a
2682 // remote platform it will install any needed binaries
2683 error
= GetTarget().Install(&launch_info
);
2688 // Listen and queue events that are broadcasted during the process launch.
2689 ListenerSP
listener_sp(Listener::MakeListener("LaunchEventHijack"));
2690 HijackProcessEvents(listener_sp
);
2691 auto on_exit
= llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2693 if (PrivateStateThreadIsValid())
2694 PausePrivateStateThread();
2696 error
= WillLaunch(exe_module
);
2698 std::string local_exec_file_path
= exe_spec_to_use
.GetPath();
2699 return Status::FromErrorStringWithFormat("file doesn't exist: '%s'",
2700 local_exec_file_path
.c_str());
2703 const bool restarted
= false;
2704 SetPublicState(eStateLaunching
, restarted
);
2705 m_should_detach
= false;
2707 if (m_public_run_lock
.TrySetRunning()) {
2708 // Now launch using these arguments.
2709 error
= DoLaunch(exe_module
, launch_info
);
2711 // This shouldn't happen
2712 error
= Status::FromErrorString("failed to acquire process run lock");
2716 if (GetID() != LLDB_INVALID_PROCESS_ID
) {
2717 SetID(LLDB_INVALID_PROCESS_ID
);
2718 const char *error_string
= error
.AsCString();
2719 if (error_string
== nullptr)
2720 error_string
= "launch failed";
2721 SetExitStatus(-1, error_string
);
2726 // Now wait for the process to launch and return control to us, and then
2728 state
= WaitForProcessStopPrivate(event_sp
, seconds(10));
2730 if (state
== eStateInvalid
|| !event_sp
) {
2731 // We were able to launch the process, but we failed to catch the
2733 error
= Status::FromErrorString("failed to catch stop after launch");
2734 SetExitStatus(0, error
.AsCString());
2739 if (state
== eStateExited
) {
2740 // We exited while trying to launch somehow. Don't call DidLaunch
2741 // as that's not likely to work, and return an invalid pid.
2742 HandlePrivateEvent(event_sp
);
2746 if (state
== eStateStopped
|| state
== eStateCrashed
) {
2749 // Now that we know the process type, update its signal responses from the
2750 // ones stored in the Target:
2751 if (m_unix_signals_sp
) {
2752 StreamSP warning_strm
= GetTarget().GetDebugger().GetAsyncErrorStream();
2753 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp
, warning_strm
);
2756 DynamicLoader
*dyld
= GetDynamicLoader();
2760 GetJITLoaders().DidLaunch();
2762 SystemRuntime
*system_runtime
= GetSystemRuntime();
2764 system_runtime
->DidLaunch();
2767 LoadOperatingSystemPlugin(false);
2769 // We successfully launched the process and stopped, now it the
2770 // right time to set up signal filters before resuming.
2771 UpdateAutomaticSignalFiltering();
2775 return Status::FromErrorStringWithFormat(
2776 "Unexpected process state after the launch: %s, expected %s, "
2778 StateAsCString(state
), StateAsCString(eStateInvalid
),
2779 StateAsCString(eStateExited
), StateAsCString(eStateStopped
),
2780 StateAsCString(eStateCrashed
));
2783 Status
Process::LoadCore() {
2784 Status error
= DoLoadCore();
2785 if (error
.Success()) {
2786 ListenerSP
listener_sp(
2787 Listener::MakeListener("lldb.process.load_core_listener"));
2788 HijackProcessEvents(listener_sp
);
2790 if (PrivateStateThreadIsValid())
2791 ResumePrivateStateThread();
2793 StartPrivateStateThread();
2795 DynamicLoader
*dyld
= GetDynamicLoader();
2799 GetJITLoaders().DidAttach();
2801 SystemRuntime
*system_runtime
= GetSystemRuntime();
2803 system_runtime
->DidAttach();
2806 LoadOperatingSystemPlugin(false);
2808 // We successfully loaded a core file, now pretend we stopped so we can
2809 // show all of the threads in the core file and explore the crashed state.
2810 SetPrivateState(eStateStopped
);
2812 // Wait for a stopped event since we just posted one above...
2813 lldb::EventSP event_sp
;
2815 WaitForProcessToStop(std::nullopt
, &event_sp
, true, listener_sp
,
2816 nullptr, true, SelectMostRelevantFrame
);
2818 if (!StateIsStoppedState(state
, false)) {
2819 Log
*log
= GetLog(LLDBLog::Process
);
2820 LLDB_LOGF(log
, "Process::Halt() failed to stop, state is: %s",
2821 StateAsCString(state
));
2822 error
= Status::FromErrorString(
2823 "Did not get stopped event after loading the core file.");
2825 RestoreProcessEvents();
2830 DynamicLoader
*Process::GetDynamicLoader() {
2832 m_dyld_up
.reset(DynamicLoader::FindPlugin(this, ""));
2833 return m_dyld_up
.get();
2836 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up
) {
2837 m_dyld_up
= std::move(dyld_up
);
2840 DataExtractor
Process::GetAuxvData() { return DataExtractor(); }
2842 llvm::Expected
<bool> Process::SaveCore(llvm::StringRef outfile
) {
2846 JITLoaderList
&Process::GetJITLoaders() {
2847 if (!m_jit_loaders_up
) {
2848 m_jit_loaders_up
= std::make_unique
<JITLoaderList
>();
2849 JITLoader::LoadPlugins(this, *m_jit_loaders_up
);
2851 return *m_jit_loaders_up
;
2854 SystemRuntime
*Process::GetSystemRuntime() {
2855 if (!m_system_runtime_up
)
2856 m_system_runtime_up
.reset(SystemRuntime::FindPlugin(this));
2857 return m_system_runtime_up
.get();
2860 Process::AttachCompletionHandler::AttachCompletionHandler(Process
*process
,
2861 uint32_t exec_count
)
2862 : NextEventAction(process
), m_exec_count(exec_count
) {
2863 Log
*log
= GetLog(LLDBLog::Process
);
2866 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32
,
2867 __FUNCTION__
, static_cast<void *>(process
), exec_count
);
2870 Process::NextEventAction::EventActionResult
2871 Process::AttachCompletionHandler::PerformAction(lldb::EventSP
&event_sp
) {
2872 Log
*log
= GetLog(LLDBLog::Process
);
2874 StateType state
= ProcessEventData::GetStateFromEvent(event_sp
.get());
2876 "Process::AttachCompletionHandler::%s called with state %s (%d)",
2877 __FUNCTION__
, StateAsCString(state
), static_cast<int>(state
));
2880 case eStateAttaching
:
2881 return eEventActionSuccess
;
2884 case eStateConnected
:
2885 return eEventActionRetry
;
2889 // During attach, prior to sending the eStateStopped event,
2890 // lldb_private::Process subclasses must set the new process ID.
2891 assert(m_process
->GetID() != LLDB_INVALID_PROCESS_ID
);
2892 // We don't want these events to be reported, so go set the
2893 // ShouldReportStop here:
2894 m_process
->GetThreadList().SetShouldReportStop(eVoteNo
);
2896 if (m_exec_count
> 0) {
2900 "Process::AttachCompletionHandler::%s state %s: reduced "
2901 "remaining exec count to %" PRIu32
", requesting resume",
2902 __FUNCTION__
, StateAsCString(state
), m_exec_count
);
2905 return eEventActionRetry
;
2908 "Process::AttachCompletionHandler::%s state %s: no more "
2909 "execs expected to start, continuing with attach",
2910 __FUNCTION__
, StateAsCString(state
));
2912 m_process
->CompleteAttach();
2913 return eEventActionSuccess
;
2923 m_exit_string
.assign("No valid Process");
2924 return eEventActionExit
;
2927 Process::NextEventAction::EventActionResult
2928 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2929 return eEventActionSuccess
;
2932 const char *Process::AttachCompletionHandler::GetExitString() {
2933 return m_exit_string
.c_str();
2936 ListenerSP
ProcessAttachInfo::GetListenerForProcess(Debugger
&debugger
) {
2938 return m_listener_sp
;
2940 return debugger
.GetListener();
2943 Status
Process::WillLaunch(Module
*module
) {
2944 return DoWillLaunch(module
);
2947 Status
Process::WillAttachToProcessWithID(lldb::pid_t pid
) {
2948 return DoWillAttachToProcessWithID(pid
);
2951 Status
Process::WillAttachToProcessWithName(const char *process_name
,
2952 bool wait_for_launch
) {
2953 return DoWillAttachToProcessWithName(process_name
, wait_for_launch
);
2956 Status
Process::Attach(ProcessAttachInfo
&attach_info
) {
2959 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
2960 m_process_input_reader
.reset();
2963 m_jit_loaders_up
.reset();
2964 m_system_runtime_up
.reset();
2967 lldb::pid_t attach_pid
= attach_info
.GetProcessID();
2969 if (attach_pid
== LLDB_INVALID_PROCESS_ID
) {
2970 char process_name
[PATH_MAX
];
2972 if (attach_info
.GetExecutableFile().GetPath(process_name
,
2973 sizeof(process_name
))) {
2974 const bool wait_for_launch
= attach_info
.GetWaitForLaunch();
2976 if (wait_for_launch
) {
2977 error
= WillAttachToProcessWithName(process_name
, wait_for_launch
);
2978 if (error
.Success()) {
2979 if (m_public_run_lock
.TrySetRunning()) {
2980 m_should_detach
= true;
2981 const bool restarted
= false;
2982 SetPublicState(eStateAttaching
, restarted
);
2983 // Now attach using these arguments.
2984 error
= DoAttachToProcessWithName(process_name
, attach_info
);
2986 // This shouldn't happen
2988 Status::FromErrorString("failed to acquire process run lock");
2992 if (GetID() != LLDB_INVALID_PROCESS_ID
) {
2993 SetID(LLDB_INVALID_PROCESS_ID
);
2994 if (error
.AsCString() == nullptr)
2995 error
= Status::FromErrorString("attach failed");
2997 SetExitStatus(-1, error
.AsCString());
3000 SetNextEventAction(new Process::AttachCompletionHandler(
3001 this, attach_info
.GetResumeCount()));
3002 StartPrivateStateThread();
3007 ProcessInstanceInfoList process_infos
;
3008 PlatformSP
platform_sp(GetTarget().GetPlatform());
3011 ProcessInstanceInfoMatch match_info
;
3012 match_info
.GetProcessInfo() = attach_info
;
3013 match_info
.SetNameMatchType(NameMatch::Equals
);
3014 platform_sp
->FindProcesses(match_info
, process_infos
);
3015 const uint32_t num_matches
= process_infos
.size();
3016 if (num_matches
== 1) {
3017 attach_pid
= process_infos
[0].GetProcessID();
3018 // Fall through and attach using the above process ID
3020 match_info
.GetProcessInfo().GetExecutableFile().GetPath(
3021 process_name
, sizeof(process_name
));
3022 if (num_matches
> 1) {
3024 ProcessInstanceInfo::DumpTableHeader(s
, true, false);
3025 for (size_t i
= 0; i
< num_matches
; i
++) {
3026 process_infos
[i
].DumpAsTableRow(
3027 s
, platform_sp
->GetUserIDResolver(), true, false);
3029 error
= Status::FromErrorStringWithFormat(
3030 "more than one process named %s:\n%s", process_name
,
3033 error
= Status::FromErrorStringWithFormat(
3034 "could not find a process named %s", process_name
);
3037 error
= Status::FromErrorString(
3038 "invalid platform, can't find processes by name");
3043 error
= Status::FromErrorString("invalid process name");
3047 if (attach_pid
!= LLDB_INVALID_PROCESS_ID
) {
3048 error
= WillAttachToProcessWithID(attach_pid
);
3049 if (error
.Success()) {
3051 if (m_public_run_lock
.TrySetRunning()) {
3052 // Now attach using these arguments.
3053 m_should_detach
= true;
3054 const bool restarted
= false;
3055 SetPublicState(eStateAttaching
, restarted
);
3056 error
= DoAttachToProcessWithID(attach_pid
, attach_info
);
3058 // This shouldn't happen
3059 error
= Status::FromErrorString("failed to acquire process run lock");
3062 if (error
.Success()) {
3063 SetNextEventAction(new Process::AttachCompletionHandler(
3064 this, attach_info
.GetResumeCount()));
3065 StartPrivateStateThread();
3067 if (GetID() != LLDB_INVALID_PROCESS_ID
)
3068 SetID(LLDB_INVALID_PROCESS_ID
);
3070 const char *error_string
= error
.AsCString();
3071 if (error_string
== nullptr)
3072 error_string
= "attach failed";
3074 SetExitStatus(-1, error_string
);
3081 void Process::CompleteAttach() {
3082 Log
*log(GetLog(LLDBLog::Process
| LLDBLog::Target
));
3083 LLDB_LOGF(log
, "Process::%s()", __FUNCTION__
);
3085 // Let the process subclass figure out at much as it can about the process
3086 // before we go looking for a dynamic loader plug-in.
3087 ArchSpec process_arch
;
3088 DidAttach(process_arch
);
3090 if (process_arch
.IsValid()) {
3092 "Process::{0} replacing process architecture with DidAttach() "
3093 "architecture: \"{1}\"",
3094 __FUNCTION__
, process_arch
.GetTriple().getTriple());
3095 GetTarget().SetArchitecture(process_arch
);
3098 // We just attached. If we have a platform, ask it for the process
3099 // architecture, and if it isn't the same as the one we've already set,
3100 // switch architectures.
3101 PlatformSP
platform_sp(GetTarget().GetPlatform());
3102 assert(platform_sp
);
3103 ArchSpec process_host_arch
= GetSystemArchitecture();
3105 const ArchSpec
&target_arch
= GetTarget().GetArchitecture();
3106 if (target_arch
.IsValid() && !platform_sp
->IsCompatibleArchitecture(
3107 target_arch
, process_host_arch
,
3108 ArchSpec::CompatibleMatch
, nullptr)) {
3109 ArchSpec platform_arch
;
3110 platform_sp
= GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
3111 target_arch
, process_host_arch
, &platform_arch
);
3113 GetTarget().SetPlatform(platform_sp
);
3114 GetTarget().SetArchitecture(platform_arch
);
3116 "switching platform to {0} and architecture to {1} based on "
3118 platform_sp
->GetName(), platform_arch
.GetTriple().getTriple());
3120 } else if (!process_arch
.IsValid()) {
3121 ProcessInstanceInfo process_info
;
3122 GetProcessInfo(process_info
);
3123 const ArchSpec
&process_arch
= process_info
.GetArchitecture();
3124 const ArchSpec
&target_arch
= GetTarget().GetArchitecture();
3125 if (process_arch
.IsValid() &&
3126 target_arch
.IsCompatibleMatch(process_arch
) &&
3127 !target_arch
.IsExactMatch(process_arch
)) {
3128 GetTarget().SetArchitecture(process_arch
);
3130 "Process::%s switching architecture to %s based on info "
3131 "the platform retrieved for pid %" PRIu64
,
3132 __FUNCTION__
, process_arch
.GetTriple().getTriple().c_str(),
3137 // Now that we know the process type, update its signal responses from the
3138 // ones stored in the Target:
3139 if (m_unix_signals_sp
) {
3140 StreamSP warning_strm
= GetTarget().GetDebugger().GetAsyncErrorStream();
3141 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp
, warning_strm
);
3144 // We have completed the attach, now it is time to find the dynamic loader
3146 DynamicLoader
*dyld
= GetDynamicLoader();
3150 ModuleSP exe_module_sp
= GetTarget().GetExecutableModule();
3152 "after DynamicLoader::DidAttach(), target "
3153 "executable is {0} (using {1} plugin)",
3154 exe_module_sp
? exe_module_sp
->GetFileSpec() : FileSpec(),
3155 dyld
->GetPluginName());
3159 GetJITLoaders().DidAttach();
3161 SystemRuntime
*system_runtime
= GetSystemRuntime();
3162 if (system_runtime
) {
3163 system_runtime
->DidAttach();
3165 ModuleSP exe_module_sp
= GetTarget().GetExecutableModule();
3167 "after SystemRuntime::DidAttach(), target "
3168 "executable is {0} (using {1} plugin)",
3169 exe_module_sp
? exe_module_sp
->GetFileSpec() : FileSpec(),
3170 system_runtime
->GetPluginName());
3175 LoadOperatingSystemPlugin(false);
3177 // Somebody might have gotten threads before now, but we need to force the
3178 // update after we've loaded the OperatingSystem plugin or it won't get a
3179 // chance to process the threads.
3180 m_thread_list
.Clear();
3181 UpdateThreadListIfNeeded();
3184 // Figure out which one is the executable, and set that in our target:
3185 ModuleSP new_executable_module_sp
;
3186 for (ModuleSP module_sp
: GetTarget().GetImages().Modules()) {
3187 if (module_sp
&& module_sp
->IsExecutable()) {
3188 if (GetTarget().GetExecutableModulePointer() != module_sp
.get())
3189 new_executable_module_sp
= module_sp
;
3193 if (new_executable_module_sp
) {
3194 GetTarget().SetExecutableModule(new_executable_module_sp
,
3197 ModuleSP exe_module_sp
= GetTarget().GetExecutableModule();
3200 "Process::%s after looping through modules, target executable is %s",
3202 exe_module_sp
? exe_module_sp
->GetFileSpec().GetPath().c_str()
3208 Status
Process::ConnectRemote(llvm::StringRef remote_url
) {
3211 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
3212 m_process_input_reader
.reset();
3215 // Find the process and its architecture. Make sure it matches the
3216 // architecture of the current Target, and if not adjust it.
3218 Status
error(DoConnectRemote(remote_url
));
3219 if (error
.Success()) {
3220 if (GetID() != LLDB_INVALID_PROCESS_ID
) {
3222 StateType state
= WaitForProcessStopPrivate(event_sp
, std::nullopt
);
3224 if (state
== eStateStopped
|| state
== eStateCrashed
) {
3225 // If we attached and actually have a process on the other end, then
3226 // this ended up being the equivalent of an attach.
3229 // This delays passing the stopped event to listeners till
3230 // CompleteAttach gets a chance to complete...
3231 HandlePrivateEvent(event_sp
);
3235 if (PrivateStateThreadIsValid())
3236 ResumePrivateStateThread();
3238 StartPrivateStateThread();
3243 Status
Process::PrivateResume() {
3244 Log
*log(GetLog(LLDBLog::Process
| LLDBLog::Step
));
3246 "Process::PrivateResume() m_stop_id = %u, public state: %s "
3247 "private state: %s",
3248 m_mod_id
.GetStopID(), StateAsCString(m_public_state
.GetValue()),
3249 StateAsCString(m_private_state
.GetValue()));
3251 // If signals handing status changed we might want to update our signal
3252 // filters before resuming.
3253 UpdateAutomaticSignalFiltering();
3254 // Clear any crash info we accumulated for this stop, but don't do so if we
3255 // are running functions; we don't want to wipe out the real stop's info.
3256 if (!GetModID().IsLastResumeForUserExpression())
3257 ResetExtendedCrashInfoDict();
3259 Status
error(WillResume());
3260 // Tell the process it is about to resume before the thread list
3261 if (error
.Success()) {
3262 // Now let the thread list know we are about to resume so it can let all of
3263 // our threads know that they are about to be resumed. Threads will each be
3264 // called with Thread::WillResume(StateType) where StateType contains the
3265 // state that they are supposed to have when the process is resumed
3266 // (suspended/running/stepping). Threads should also check their resume
3267 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3268 // start back up with a signal.
3269 if (m_thread_list
.WillResume()) {
3270 // Last thing, do the PreResumeActions.
3271 if (!RunPreResumeActions()) {
3272 error
= Status::FromErrorString(
3273 "Process::PrivateResume PreResumeActions failed, not resuming.");
3275 m_mod_id
.BumpResumeID();
3277 if (error
.Success()) {
3279 m_thread_list
.DidResume();
3280 LLDB_LOGF(log
, "Process thinks the process has resumed.");
3282 LLDB_LOGF(log
, "Process::PrivateResume() DoResume failed.");
3287 // Somebody wanted to run without running (e.g. we were faking a step
3288 // from one frame of a set of inlined frames that share the same PC to
3289 // another.) So generate a continue & a stopped event, and let the world
3292 "Process::PrivateResume() asked to simulate a start & stop.");
3294 SetPrivateState(eStateRunning
);
3295 SetPrivateState(eStateStopped
);
3298 LLDB_LOGF(log
, "Process::PrivateResume() got an error \"%s\".",
3299 error
.AsCString("<unknown error>"));
3303 Status
Process::Halt(bool clear_thread_plans
, bool use_run_lock
) {
3304 if (!StateIsRunningState(m_public_state
.GetValue()))
3305 return Status::FromErrorString("Process is not running.");
3307 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3308 // case it was already set and some thread plan logic calls halt on its own.
3309 m_clear_thread_plans_on_stop
|= clear_thread_plans
;
3311 ListenerSP
halt_listener_sp(
3312 Listener::MakeListener("lldb.process.halt_listener"));
3313 HijackProcessEvents(halt_listener_sp
);
3317 SendAsyncInterrupt();
3319 if (m_public_state
.GetValue() == eStateAttaching
) {
3320 // Don't hijack and eat the eStateExited as the code that was doing the
3321 // attach will be waiting for this event...
3322 RestoreProcessEvents();
3324 SetExitStatus(SIGKILL
, "Cancelled async attach.");
3328 // Wait for the process halt timeout seconds for the process to stop.
3329 // If we are going to use the run lock, that means we're stopping out to the
3330 // user, so we should also select the most relevant frame.
3331 SelectMostRelevant select_most_relevant
=
3332 use_run_lock
? SelectMostRelevantFrame
: DoNoSelectMostRelevantFrame
;
3333 StateType state
= WaitForProcessToStop(GetInterruptTimeout(), &event_sp
, true,
3334 halt_listener_sp
, nullptr,
3335 use_run_lock
, select_most_relevant
);
3336 RestoreProcessEvents();
3338 if (state
== eStateInvalid
|| !event_sp
) {
3339 // We timed out and didn't get a stop event...
3340 return Status::FromErrorStringWithFormat("Halt timed out. State = %s",
3341 StateAsCString(GetState()));
3344 BroadcastEvent(event_sp
);
3349 lldb::addr_t
Process::FindInMemory(lldb::addr_t low
, lldb::addr_t high
,
3350 const uint8_t *buf
, size_t size
) {
3351 const size_t region_size
= high
- low
;
3353 if (region_size
< size
)
3354 return LLDB_INVALID_ADDRESS
;
3356 // See "Boyer-Moore string search algorithm".
3357 std::vector
<size_t> bad_char_heuristic(256, size
);
3358 for (size_t idx
= 0; idx
< size
- 1; idx
++) {
3359 decltype(bad_char_heuristic
)::size_type bcu_idx
= buf
[idx
];
3360 bad_char_heuristic
[bcu_idx
] = size
- idx
- 1;
3363 // Memory we're currently searching through.
3364 llvm::SmallVector
<uint8_t, 0> mem
;
3365 // Position of the memory buffer.
3366 addr_t mem_pos
= low
;
3367 // Maximum number of bytes read (and buffered). We need to read at least
3368 // `size` bytes for a successful match.
3369 const size_t max_read_size
= std::max
<size_t>(size
, 0x10000);
3371 for (addr_t cur_addr
= low
; cur_addr
<= (high
- size
);) {
3372 if (cur_addr
+ size
> mem_pos
+ mem
.size()) {
3373 // We need to read more data. We don't attempt to reuse the data we've
3374 // already read (up to `size-1` bytes from `cur_addr` to
3375 // `mem_pos+mem.size()`). This is fine for patterns much smaller than
3376 // max_read_size. For very
3377 // long patterns we may need to do something more elaborate.
3378 mem
.resize_for_overwrite(max_read_size
);
3380 mem
.resize(ReadMemory(cur_addr
, mem
.data(),
3381 std::min
<addr_t
>(mem
.size(), high
- cur_addr
),
3384 if (size
> mem
.size()) {
3385 // We didn't read enough data. Skip to the next memory region.
3386 MemoryRegionInfo info
;
3387 error
= GetMemoryRegionInfo(mem_pos
+ mem
.size(), info
);
3390 cur_addr
= info
.GetRange().GetRangeEnd();
3394 int64_t j
= size
- 1;
3395 while (j
>= 0 && buf
[j
] == mem
[cur_addr
+ j
- mem_pos
])
3398 return cur_addr
; // We have a match.
3399 cur_addr
+= bad_char_heuristic
[mem
[cur_addr
+ size
- 1 - mem_pos
]];
3402 return LLDB_INVALID_ADDRESS
;
3405 Status
Process::StopForDestroyOrDetach(lldb::EventSP
&exit_event_sp
) {
3408 // Check both the public & private states here. If we're hung evaluating an
3409 // expression, for instance, then the public state will be stopped, but we
3410 // still need to interrupt.
3411 if (m_public_state
.GetValue() == eStateRunning
||
3412 m_private_state
.GetValue() == eStateRunning
) {
3413 Log
*log
= GetLog(LLDBLog::Process
);
3414 LLDB_LOGF(log
, "Process::%s() About to stop.", __FUNCTION__
);
3416 ListenerSP
listener_sp(
3417 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3418 HijackProcessEvents(listener_sp
);
3420 SendAsyncInterrupt();
3422 // Consume the interrupt event.
3423 StateType state
= WaitForProcessToStop(GetInterruptTimeout(),
3424 &exit_event_sp
, true, listener_sp
);
3426 RestoreProcessEvents();
3428 // If the process exited while we were waiting for it to stop, put the
3429 // exited event into the shared pointer passed in and return. Our caller
3430 // doesn't need to do anything else, since they don't have a process
3433 if (state
== eStateExited
|| m_private_state
.GetValue() == eStateExited
) {
3434 LLDB_LOGF(log
, "Process::%s() Process exited while waiting to stop.",
3438 exit_event_sp
.reset(); // It is ok to consume any non-exit stop events
3440 if (state
!= eStateStopped
) {
3441 LLDB_LOGF(log
, "Process::%s() failed to stop, state is: %s", __FUNCTION__
,
3442 StateAsCString(state
));
3443 // If we really couldn't stop the process then we should just error out
3444 // here, but if the lower levels just bobbled sending the event and we
3445 // really are stopped, then continue on.
3446 StateType private_state
= m_private_state
.GetValue();
3447 if (private_state
!= eStateStopped
) {
3448 return Status::FromErrorStringWithFormat(
3449 "Attempt to stop the target in order to detach timed out. "
3451 StateAsCString(GetState()));
3458 Status
Process::Detach(bool keep_stopped
) {
3459 EventSP exit_event_sp
;
3461 m_destroy_in_process
= true;
3463 error
= WillDetach();
3465 if (error
.Success()) {
3466 if (DetachRequiresHalt()) {
3467 error
= StopForDestroyOrDetach(exit_event_sp
);
3468 if (!error
.Success()) {
3469 m_destroy_in_process
= false;
3471 } else if (exit_event_sp
) {
3472 // We shouldn't need to do anything else here. There's no process left
3473 // to detach from...
3474 StopPrivateStateThread();
3475 m_destroy_in_process
= false;
3480 m_thread_list
.DiscardThreadPlans();
3481 DisableAllBreakpointSites();
3483 error
= DoDetach(keep_stopped
);
3484 if (error
.Success()) {
3486 StopPrivateStateThread();
3491 m_destroy_in_process
= false;
3493 // If we exited when we were waiting for a process to stop, then forward the
3494 // event here so we don't lose the event
3495 if (exit_event_sp
) {
3496 // Directly broadcast our exited event because we shut down our private
3497 // state thread above
3498 BroadcastEvent(exit_event_sp
);
3501 // If we have been interrupted (to kill us) in the middle of running, we may
3502 // not end up propagating the last events through the event system, in which
3503 // case we might strand the write lock. Unlock it here so when we do to tear
3504 // down the process we don't get an error destroying the lock.
3506 m_public_run_lock
.SetStopped();
3510 Status
Process::Destroy(bool force_kill
) {
3511 // If we've already called Process::Finalize then there's nothing useful to
3512 // be done here. Finalize has actually called Destroy already.
3515 return DestroyImpl(force_kill
);
3518 Status
Process::DestroyImpl(bool force_kill
) {
3519 // Tell ourselves we are in the process of destroying the process, so that we
3520 // don't do any unnecessary work that might hinder the destruction. Remember
3521 // to set this back to false when we are done. That way if the attempt
3522 // failed and the process stays around for some reason it won't be in a
3526 m_should_detach
= false;
3528 if (GetShouldDetach()) {
3529 // FIXME: This will have to be a process setting:
3530 bool keep_stopped
= false;
3531 Detach(keep_stopped
);
3534 m_destroy_in_process
= true;
3536 Status
error(WillDestroy());
3537 if (error
.Success()) {
3538 EventSP exit_event_sp
;
3539 if (DestroyRequiresHalt()) {
3540 error
= StopForDestroyOrDetach(exit_event_sp
);
3543 if (m_public_state
.GetValue() == eStateStopped
) {
3544 // Ditch all thread plans, and remove all our breakpoints: in case we
3545 // have to restart the target to kill it, we don't want it hitting a
3546 // breakpoint... Only do this if we've stopped, however, since if we
3547 // didn't manage to halt it above, then we're not going to have much luck
3549 m_thread_list
.DiscardThreadPlans();
3550 DisableAllBreakpointSites();
3553 error
= DoDestroy();
3554 if (error
.Success()) {
3556 StopPrivateStateThread();
3558 m_stdio_communication
.StopReadThread();
3559 m_stdio_communication
.Disconnect();
3560 m_stdin_forward
= false;
3563 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
3564 if (m_process_input_reader
) {
3565 m_process_input_reader
->SetIsDone(true);
3566 m_process_input_reader
->Cancel();
3567 m_process_input_reader
.reset();
3571 // If we exited when we were waiting for a process to stop, then forward
3572 // the event here so we don't lose the event
3573 if (exit_event_sp
) {
3574 // Directly broadcast our exited event because we shut down our private
3575 // state thread above
3576 BroadcastEvent(exit_event_sp
);
3579 // If we have been interrupted (to kill us) in the middle of running, we
3580 // may not end up propagating the last events through the event system, in
3581 // which case we might strand the write lock. Unlock it here so when we do
3582 // to tear down the process we don't get an error destroying the lock.
3583 m_public_run_lock
.SetStopped();
3586 m_destroy_in_process
= false;
3591 Status
Process::Signal(int signal
) {
3592 Status
error(WillSignal());
3593 if (error
.Success()) {
3594 error
= DoSignal(signal
);
3595 if (error
.Success())
3601 void Process::SetUnixSignals(UnixSignalsSP
&&signals_sp
) {
3602 assert(signals_sp
&& "null signals_sp");
3603 m_unix_signals_sp
= std::move(signals_sp
);
3606 const lldb::UnixSignalsSP
&Process::GetUnixSignals() {
3607 assert(m_unix_signals_sp
&& "null m_unix_signals_sp");
3608 return m_unix_signals_sp
;
3611 lldb::ByteOrder
Process::GetByteOrder() const {
3612 return GetTarget().GetArchitecture().GetByteOrder();
3615 uint32_t Process::GetAddressByteSize() const {
3616 return GetTarget().GetArchitecture().GetAddressByteSize();
3619 bool Process::ShouldBroadcastEvent(Event
*event_ptr
) {
3620 const StateType state
=
3621 Process::ProcessEventData::GetStateFromEvent(event_ptr
);
3622 bool return_value
= true;
3623 Log
*log(GetLog(LLDBLog::Events
| LLDBLog::Process
));
3626 case eStateDetached
:
3628 case eStateUnloaded
:
3629 m_stdio_communication
.SynchronizeWithReadThread();
3630 m_stdio_communication
.StopReadThread();
3631 m_stdio_communication
.Disconnect();
3632 m_stdin_forward
= false;
3635 case eStateConnected
:
3636 case eStateAttaching
:
3637 case eStateLaunching
:
3638 // These events indicate changes in the state of the debugging session,
3639 // always report them.
3640 return_value
= true;
3643 // We stopped for no apparent reason, don't report it.
3644 return_value
= false;
3647 case eStateStepping
:
3648 // If we've started the target running, we handle the cases where we are
3649 // already running and where there is a transition from stopped to running
3650 // differently. running -> running: Automatically suppress extra running
3651 // events stopped -> running: Report except when there is one or more no
3653 // and no yes votes.
3654 SynchronouslyNotifyStateChanged(state
);
3655 if (m_force_next_event_delivery
)
3656 return_value
= true;
3658 switch (m_last_broadcast_state
) {
3660 case eStateStepping
:
3661 // We always suppress multiple runnings with no PUBLIC stop in between.
3662 return_value
= false;
3665 // TODO: make this work correctly. For now always report
3666 // run if we aren't running so we don't miss any running events. If I
3667 // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3668 // and hit the breakpoints on multiple threads, then somehow during the
3669 // stepping over of all breakpoints no run gets reported.
3671 // This is a transition from stop to run.
3672 switch (m_thread_list
.ShouldReportRun(event_ptr
)) {
3674 case eVoteNoOpinion
:
3675 return_value
= true;
3678 return_value
= false;
3687 case eStateSuspended
:
3688 // We've stopped. First see if we're going to restart the target. If we
3689 // are going to stop, then we always broadcast the event. If we aren't
3690 // going to stop, let the thread plans decide if we're going to report this
3691 // event. If no thread has an opinion, we don't report it.
3693 m_stdio_communication
.SynchronizeWithReadThread();
3694 RefreshStateAfterStop();
3695 if (ProcessEventData::GetInterruptedFromEvent(event_ptr
)) {
3697 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3698 "interrupt, state: %s",
3699 static_cast<void *>(event_ptr
), StateAsCString(state
));
3700 // Even though we know we are going to stop, we should let the threads
3701 // have a look at the stop, so they can properly set their state.
3702 m_thread_list
.ShouldStop(event_ptr
);
3703 return_value
= true;
3705 bool was_restarted
= ProcessEventData::GetRestartedFromEvent(event_ptr
);
3706 bool should_resume
= false;
3708 // It makes no sense to ask "ShouldStop" if we've already been
3709 // restarted... Asking the thread list is also not likely to go well,
3710 // since we are running again. So in that case just report the event.
3713 should_resume
= !m_thread_list
.ShouldStop(event_ptr
);
3715 if (was_restarted
|| should_resume
|| m_resume_requested
) {
3716 Vote report_stop_vote
= m_thread_list
.ShouldReportStop(event_ptr
);
3718 "Process::ShouldBroadcastEvent: should_resume: %i state: "
3719 "%s was_restarted: %i report_stop_vote: %d.",
3720 should_resume
, StateAsCString(state
), was_restarted
,
3723 switch (report_stop_vote
) {
3725 return_value
= true;
3727 case eVoteNoOpinion
:
3729 return_value
= false;
3733 if (!was_restarted
) {
3735 "Process::ShouldBroadcastEvent (%p) Restarting process "
3737 static_cast<void *>(event_ptr
), StateAsCString(state
));
3738 ProcessEventData::SetRestartedInEvent(event_ptr
, true);
3742 return_value
= true;
3743 SynchronouslyNotifyStateChanged(state
);
3749 // Forcing the next event delivery is a one shot deal. So reset it here.
3750 m_force_next_event_delivery
= false;
3752 // We do some coalescing of events (for instance two consecutive running
3753 // events get coalesced.) But we only coalesce against events we actually
3754 // broadcast. So we use m_last_broadcast_state to track that. NB - you
3755 // can't use "m_public_state.GetValue()" for that purpose, as was originally
3756 // done, because the PublicState reflects the last event pulled off the
3757 // queue, and there may be several events stacked up on the queue unserviced.
3758 // So the PublicState may not reflect the last broadcasted event yet.
3759 // m_last_broadcast_state gets updated here.
3762 m_last_broadcast_state
= state
;
3765 "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3766 "broadcast state: %s - %s",
3767 static_cast<void *>(event_ptr
), StateAsCString(state
),
3768 StateAsCString(m_last_broadcast_state
),
3769 return_value
? "YES" : "NO");
3770 return return_value
;
3773 bool Process::StartPrivateStateThread(bool is_secondary_thread
) {
3774 Log
*log
= GetLog(LLDBLog::Events
);
3776 bool already_running
= PrivateStateThreadIsValid();
3777 LLDB_LOGF(log
, "Process::%s()%s ", __FUNCTION__
,
3778 already_running
? " already running"
3779 : " starting private state thread");
3781 if (!is_secondary_thread
&& already_running
)
3784 // Create a thread that watches our internal state and controls which events
3785 // make it to clients (into the DCProcess event queue).
3786 char thread_name
[1024];
3787 uint32_t max_len
= llvm::get_max_thread_name_length();
3788 if (max_len
> 0 && max_len
<= 30) {
3789 // On platforms with abbreviated thread name lengths, choose thread names
3790 // that fit within the limit.
3791 if (already_running
)
3792 snprintf(thread_name
, sizeof(thread_name
), "intern-state-OV");
3794 snprintf(thread_name
, sizeof(thread_name
), "intern-state");
3796 if (already_running
)
3797 snprintf(thread_name
, sizeof(thread_name
),
3798 "<lldb.process.internal-state-override(pid=%" PRIu64
")>",
3801 snprintf(thread_name
, sizeof(thread_name
),
3802 "<lldb.process.internal-state(pid=%" PRIu64
")>", GetID());
3805 llvm::Expected
<HostThread
> private_state_thread
=
3806 ThreadLauncher::LaunchThread(
3808 [this, is_secondary_thread
] {
3809 return RunPrivateStateThread(is_secondary_thread
);
3812 if (!private_state_thread
) {
3813 LLDB_LOG_ERROR(GetLog(LLDBLog::Host
), private_state_thread
.takeError(),
3814 "failed to launch host thread: {0}");
3818 assert(private_state_thread
->IsJoinable());
3819 m_private_state_thread
= *private_state_thread
;
3820 ResumePrivateStateThread();
3824 void Process::PausePrivateStateThread() {
3825 ControlPrivateStateThread(eBroadcastInternalStateControlPause
);
3828 void Process::ResumePrivateStateThread() {
3829 ControlPrivateStateThread(eBroadcastInternalStateControlResume
);
3832 void Process::StopPrivateStateThread() {
3833 if (m_private_state_thread
.IsJoinable())
3834 ControlPrivateStateThread(eBroadcastInternalStateControlStop
);
3836 Log
*log
= GetLog(LLDBLog::Process
);
3839 "Went to stop the private state thread, but it was already invalid.");
3843 void Process::ControlPrivateStateThread(uint32_t signal
) {
3844 Log
*log
= GetLog(LLDBLog::Process
);
3846 assert(signal
== eBroadcastInternalStateControlStop
||
3847 signal
== eBroadcastInternalStateControlPause
||
3848 signal
== eBroadcastInternalStateControlResume
);
3850 LLDB_LOGF(log
, "Process::%s (signal = %d)", __FUNCTION__
, signal
);
3852 // Signal the private state thread
3853 if (m_private_state_thread
.IsJoinable()) {
3854 // Broadcast the event.
3855 // It is important to do this outside of the if below, because it's
3856 // possible that the thread state is invalid but that the thread is waiting
3857 // on a control event instead of simply being on its way out (this should
3858 // not happen, but it apparently can).
3859 LLDB_LOGF(log
, "Sending control event of type: %d.", signal
);
3860 std::shared_ptr
<EventDataReceipt
> event_receipt_sp(new EventDataReceipt());
3861 m_private_state_control_broadcaster
.BroadcastEvent(signal
,
3864 // Wait for the event receipt or for the private state thread to exit
3865 bool receipt_received
= false;
3866 if (PrivateStateThreadIsValid()) {
3867 while (!receipt_received
) {
3868 // Check for a receipt for n seconds and then check if the private
3869 // state thread is still around.
3871 event_receipt_sp
->WaitForEventReceived(GetUtilityExpressionTimeout());
3872 if (!receipt_received
) {
3873 // Check if the private state thread is still around. If it isn't
3874 // then we are done waiting
3875 if (!PrivateStateThreadIsValid())
3876 break; // Private state thread exited or is exiting, we are done
3881 if (signal
== eBroadcastInternalStateControlStop
) {
3882 thread_result_t result
= {};
3883 m_private_state_thread
.Join(&result
);
3884 m_private_state_thread
.Reset();
3889 "Private state thread already dead, no need to signal it to stop.");
3893 void Process::SendAsyncInterrupt(Thread
*thread
) {
3894 if (thread
!= nullptr)
3895 m_interrupt_tid
= thread
->GetProtocolID();
3897 m_interrupt_tid
= LLDB_INVALID_THREAD_ID
;
3898 if (PrivateStateThreadIsValid())
3899 m_private_state_broadcaster
.BroadcastEvent(Process::eBroadcastBitInterrupt
,
3902 BroadcastEvent(Process::eBroadcastBitInterrupt
, nullptr);
3905 void Process::HandlePrivateEvent(EventSP
&event_sp
) {
3906 Log
*log
= GetLog(LLDBLog::Process
);
3907 m_resume_requested
= false;
3909 const StateType new_state
=
3910 Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
3912 // First check to see if anybody wants a shot at this event:
3913 if (m_next_event_action_up
) {
3914 NextEventAction::EventActionResult action_result
=
3915 m_next_event_action_up
->PerformAction(event_sp
);
3916 LLDB_LOGF(log
, "Ran next event action, result was %d.", action_result
);
3918 switch (action_result
) {
3919 case NextEventAction::eEventActionSuccess
:
3920 SetNextEventAction(nullptr);
3923 case NextEventAction::eEventActionRetry
:
3926 case NextEventAction::eEventActionExit
:
3927 // Handle Exiting Here. If we already got an exited event, we should
3928 // just propagate it. Otherwise, swallow this event, and set our state
3929 // to exit so the next event will kill us.
3930 if (new_state
!= eStateExited
) {
3931 // FIXME: should cons up an exited event, and discard this one.
3932 SetExitStatus(0, m_next_event_action_up
->GetExitString());
3933 SetNextEventAction(nullptr);
3936 SetNextEventAction(nullptr);
3941 // See if we should broadcast this state to external clients?
3942 const bool should_broadcast
= ShouldBroadcastEvent(event_sp
.get());
3944 if (should_broadcast
) {
3945 const bool is_hijacked
= IsHijackedForEvent(eBroadcastBitStateChanged
);
3948 "Process::%s (pid = %" PRIu64
3949 ") broadcasting new state %s (old state %s) to %s",
3950 __FUNCTION__
, GetID(), StateAsCString(new_state
),
3951 StateAsCString(GetState()),
3952 is_hijacked
? "hijacked" : "public");
3954 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp
.get());
3955 if (StateIsRunningState(new_state
)) {
3956 // Only push the input handler if we aren't fowarding events, as this
3957 // means the curses GUI is in use... Or don't push it if we are launching
3958 // since it will come up stopped.
3959 if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3960 new_state
!= eStateLaunching
&& new_state
!= eStateAttaching
) {
3961 PushProcessIOHandler();
3962 m_iohandler_sync
.SetValue(m_iohandler_sync
.GetValue() + 1,
3964 LLDB_LOGF(log
, "Process::%s updated m_iohandler_sync to %d",
3965 __FUNCTION__
, m_iohandler_sync
.GetValue());
3967 } else if (StateIsStoppedState(new_state
, false)) {
3968 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp
.get())) {
3969 // If the lldb_private::Debugger is handling the events, we don't want
3970 // to pop the process IOHandler here, we want to do it when we receive
3971 // the stopped event so we can carefully control when the process
3972 // IOHandler is popped because when we stop we want to display some
3973 // text stating how and why we stopped, then maybe some
3974 // process/thread/frame info, and then we want the "(lldb) " prompt to
3975 // show up. If we pop the process IOHandler here, then we will cause
3976 // the command interpreter to become the top IOHandler after the
3977 // process pops off and it will update its prompt right away... See the
3978 // Debugger.cpp file where it calls the function as
3979 // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3980 // Otherwise we end up getting overlapping "(lldb) " prompts and
3983 // If we aren't handling the events in the debugger (which is indicated
3984 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3985 // we are hijacked, then we always pop the process IO handler manually.
3986 // Hijacking happens when the internal process state thread is running
3987 // thread plans, or when commands want to run in synchronous mode and
3988 // they call "process->WaitForProcessToStop()". An example of something
3989 // that will hijack the events is a simple expression:
3991 // (lldb) expr (int)puts("hello")
3993 // This will cause the internal process state thread to resume and halt
3994 // the process (and _it_ will hijack the eBroadcastBitStateChanged
3995 // events) and we do need the IO handler to be pushed and popped
3998 if (is_hijacked
|| !GetTarget().GetDebugger().IsHandlingEvents())
3999 PopProcessIOHandler();
4003 BroadcastEvent(event_sp
);
4008 "Process::%s (pid = %" PRIu64
4009 ") suppressing state %s (old state %s): should_broadcast == false",
4010 __FUNCTION__
, GetID(), StateAsCString(new_state
),
4011 StateAsCString(GetState()));
4016 Status
Process::HaltPrivate() {
4018 Status
error(WillHalt());
4022 // Ask the process subclass to actually halt our process
4024 error
= DoHalt(caused_stop
);
4030 thread_result_t
Process::RunPrivateStateThread(bool is_secondary_thread
) {
4031 bool control_only
= true;
4033 Log
*log
= GetLog(LLDBLog::Process
);
4034 LLDB_LOGF(log
, "Process::%s (arg = %p, pid = %" PRIu64
") thread starting...",
4035 __FUNCTION__
, static_cast<void *>(this), GetID());
4037 bool exit_now
= false;
4038 bool interrupt_requested
= false;
4041 GetEventsPrivate(event_sp
, std::nullopt
, control_only
);
4042 if (event_sp
->BroadcasterIs(&m_private_state_control_broadcaster
)) {
4044 "Process::%s (arg = %p, pid = %" PRIu64
4045 ") got a control event: %d",
4046 __FUNCTION__
, static_cast<void *>(this), GetID(),
4047 event_sp
->GetType());
4049 switch (event_sp
->GetType()) {
4050 case eBroadcastInternalStateControlStop
:
4052 break; // doing any internal state management below
4054 case eBroadcastInternalStateControlPause
:
4055 control_only
= true;
4058 case eBroadcastInternalStateControlResume
:
4059 control_only
= false;
4064 } else if (event_sp
->GetType() == eBroadcastBitInterrupt
) {
4065 if (m_public_state
.GetValue() == eStateAttaching
) {
4067 "Process::%s (arg = %p, pid = %" PRIu64
4068 ") woke up with an interrupt while attaching - "
4069 "forwarding interrupt.",
4070 __FUNCTION__
, static_cast<void *>(this), GetID());
4071 // The server may be spinning waiting for a process to appear, in which
4072 // case we should tell it to stop doing that. Normally, we don't NEED
4073 // to do that because we will next close the communication to the stub
4074 // and that will get it to shut down. But there are remote debugging
4075 // cases where relying on that side-effect causes the shutdown to be
4076 // flakey, so we should send a positive signal to interrupt the wait.
4077 Status error
= HaltPrivate();
4078 BroadcastEvent(eBroadcastBitInterrupt
, nullptr);
4079 } else if (StateIsRunningState(m_last_broadcast_state
)) {
4081 "Process::%s (arg = %p, pid = %" PRIu64
4082 ") woke up with an interrupt - Halting.",
4083 __FUNCTION__
, static_cast<void *>(this), GetID());
4084 Status error
= HaltPrivate();
4085 if (error
.Fail() && log
)
4087 "Process::%s (arg = %p, pid = %" PRIu64
4088 ") failed to halt the process: %s",
4089 __FUNCTION__
, static_cast<void *>(this), GetID(),
4091 // Halt should generate a stopped event. Make a note of the fact that
4092 // we were doing the interrupt, so we can set the interrupted flag
4093 // after we receive the event. We deliberately set this to true even if
4094 // HaltPrivate failed, so that we can interrupt on the next natural
4096 interrupt_requested
= true;
4098 // This can happen when someone (e.g. Process::Halt) sees that we are
4099 // running and sends an interrupt request, but the process actually
4100 // stops before we receive it. In that case, we can just ignore the
4101 // request. We use m_last_broadcast_state, because the Stopped event
4102 // may not have been popped of the event queue yet, which is when the
4103 // public state gets updated.
4105 "Process::%s ignoring interrupt as we have already stopped.",
4111 const StateType internal_state
=
4112 Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
4114 if (internal_state
!= eStateInvalid
) {
4115 if (m_clear_thread_plans_on_stop
&&
4116 StateIsStoppedState(internal_state
, true)) {
4117 m_clear_thread_plans_on_stop
= false;
4118 m_thread_list
.DiscardThreadPlans();
4121 if (interrupt_requested
) {
4122 if (StateIsStoppedState(internal_state
, true)) {
4123 // Only mark interrupt event if it is not thread specific async
4125 if (m_interrupt_tid
== LLDB_INVALID_THREAD_ID
) {
4126 // We requested the interrupt, so mark this as such in the stop
4127 // event so clients can tell an interrupted process from a natural
4129 ProcessEventData::SetInterruptedInEvent(event_sp
.get(), true);
4131 interrupt_requested
= false;
4134 "Process::%s interrupt_requested, but a non-stopped "
4135 "state '%s' received.",
4136 __FUNCTION__
, StateAsCString(internal_state
));
4140 HandlePrivateEvent(event_sp
);
4143 if (internal_state
== eStateInvalid
|| internal_state
== eStateExited
||
4144 internal_state
== eStateDetached
) {
4146 "Process::%s (arg = %p, pid = %" PRIu64
4147 ") about to exit with internal state %s...",
4148 __FUNCTION__
, static_cast<void *>(this), GetID(),
4149 StateAsCString(internal_state
));
4155 // Verify log is still enabled before attempting to write to it...
4156 LLDB_LOGF(log
, "Process::%s (arg = %p, pid = %" PRIu64
") thread exiting...",
4157 __FUNCTION__
, static_cast<void *>(this), GetID());
4159 // If we are a secondary thread, then the primary thread we are working for
4160 // will have already acquired the public_run_lock, and isn't done with what
4161 // it was doing yet, so don't try to change it on the way out.
4162 if (!is_secondary_thread
)
4163 m_public_run_lock
.SetStopped();
4167 // Process Event Data
4169 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
4171 Process::ProcessEventData::ProcessEventData(const ProcessSP
&process_sp
,
4173 : EventData(), m_process_wp(), m_state(state
) {
4175 m_process_wp
= process_sp
;
4178 Process::ProcessEventData::~ProcessEventData() = default;
4180 llvm::StringRef
Process::ProcessEventData::GetFlavorString() {
4181 return "Process::ProcessEventData";
4184 llvm::StringRef
Process::ProcessEventData::GetFlavor() const {
4185 return ProcessEventData::GetFlavorString();
4188 bool Process::ProcessEventData::ShouldStop(Event
*event_ptr
,
4189 bool &found_valid_stopinfo
) {
4190 found_valid_stopinfo
= false;
4192 ProcessSP
process_sp(m_process_wp
.lock());
4196 ThreadList
&curr_thread_list
= process_sp
->GetThreadList();
4197 uint32_t num_threads
= curr_thread_list
.GetSize();
4199 // The actions might change one of the thread's stop_info's opinions about
4200 // whether we should stop the process, so we need to query that as we go.
4202 // One other complication here, is that we try to catch any case where the
4203 // target has run (except for expressions) and immediately exit, but if we
4204 // get that wrong (which is possible) then the thread list might have
4205 // changed, and that would cause our iteration here to crash. We could
4206 // make a copy of the thread list, but we'd really like to also know if it
4207 // has changed at all, so we store the original thread ID's of all threads and
4208 // check what we get back against this list & bag out if anything differs.
4209 std::vector
<std::pair
<ThreadSP
, size_t>> not_suspended_threads
;
4210 for (uint32_t idx
= 0; idx
< num_threads
; ++idx
) {
4211 lldb::ThreadSP thread_sp
= curr_thread_list
.GetThreadAtIndex(idx
);
4214 Filter out all suspended threads, they could not be the reason
4215 of stop and no need to perform any actions on them.
4217 if (thread_sp
->GetResumeState() != eStateSuspended
)
4218 not_suspended_threads
.emplace_back(thread_sp
, thread_sp
->GetIndexID());
4221 // Use this to track whether we should continue from here. We will only
4222 // continue the target running if no thread says we should stop. Of course
4223 // if some thread's PerformAction actually sets the target running, then it
4224 // doesn't matter what the other threads say...
4226 bool still_should_stop
= false;
4228 // Sometimes - for instance if we have a bug in the stub we are talking to,
4229 // we stop but no thread has a valid stop reason. In that case we should
4230 // just stop, because we have no way of telling what the right thing to do
4231 // is, and it's better to let the user decide than continue behind their
4234 for (auto [thread_sp
, thread_index
] : not_suspended_threads
) {
4235 if (curr_thread_list
.GetSize() != num_threads
) {
4236 Log
*log(GetLog(LLDBLog::Step
| LLDBLog::Process
));
4239 "Number of threads changed from %u to %u while processing event.",
4240 num_threads
, curr_thread_list
.GetSize());
4244 if (thread_sp
->GetIndexID() != thread_index
) {
4245 Log
*log(GetLog(LLDBLog::Step
| LLDBLog::Process
));
4247 "The thread {0} changed from {1} to {2} while processing event.",
4248 thread_sp
.get(), thread_index
, thread_sp
->GetIndexID());
4252 StopInfoSP stop_info_sp
= thread_sp
->GetStopInfo();
4253 if (stop_info_sp
&& stop_info_sp
->IsValid()) {
4254 found_valid_stopinfo
= true;
4255 bool this_thread_wants_to_stop
;
4256 if (stop_info_sp
->GetOverrideShouldStop()) {
4257 this_thread_wants_to_stop
=
4258 stop_info_sp
->GetOverriddenShouldStopValue();
4260 stop_info_sp
->PerformAction(event_ptr
);
4261 // The stop action might restart the target. If it does, then we
4262 // want to mark that in the event so that whoever is receiving it
4263 // will know to wait for the running event and reflect that state
4264 // appropriately. We also need to stop processing actions, since they
4265 // aren't expecting the target to be running.
4267 // FIXME: we might have run.
4268 if (stop_info_sp
->HasTargetRunSinceMe()) {
4273 this_thread_wants_to_stop
= stop_info_sp
->ShouldStop(event_ptr
);
4276 if (!still_should_stop
)
4277 still_should_stop
= this_thread_wants_to_stop
;
4281 return still_should_stop
;
4284 bool Process::ProcessEventData::ForwardEventToPendingListeners(
4286 // STDIO and the other async event notifications should always be forwarded.
4287 if (event_ptr
->GetType() != Process::eBroadcastBitStateChanged
)
4290 // For state changed events, if the update state is zero, we are handling
4291 // this on the private state thread. We should wait for the public event.
4292 return m_update_state
== 1;
4295 void Process::ProcessEventData::DoOnRemoval(Event
*event_ptr
) {
4296 // We only have work to do for state changed events:
4297 if (event_ptr
->GetType() != Process::eBroadcastBitStateChanged
)
4300 ProcessSP
process_sp(m_process_wp
.lock());
4305 // This function gets called twice for each event, once when the event gets
4306 // pulled off of the private process event queue, and then any number of
4307 // times, first when it gets pulled off of the public event queue, then other
4308 // times when we're pretending that this is where we stopped at the end of
4309 // expression evaluation. m_update_state is used to distinguish these three
4310 // cases; it is 0 when we're just pulling it off for private handling, and >
4311 // 1 for expression evaluation, and we don't want to do the breakpoint
4312 // command handling then.
4313 if (m_update_state
!= 1)
4316 process_sp
->SetPublicState(
4317 m_state
, Process::ProcessEventData::GetRestartedFromEvent(event_ptr
));
4319 if (m_state
== eStateStopped
&& !m_restarted
) {
4320 // Let process subclasses know we are about to do a public stop and do
4321 // anything they might need to in order to speed up register and memory
4323 process_sp
->WillPublicStop();
4326 // If this is a halt event, even if the halt stopped with some reason other
4327 // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4328 // the halt request came through) don't do the StopInfo actions, as they may
4329 // end up restarting the process.
4333 // If we're not stopped or have restarted, then skip the StopInfo actions:
4334 if (m_state
!= eStateStopped
|| m_restarted
) {
4338 bool does_anybody_have_an_opinion
= false;
4339 bool still_should_stop
= ShouldStop(event_ptr
, does_anybody_have_an_opinion
);
4341 if (GetRestarted()) {
4345 if (!still_should_stop
&& does_anybody_have_an_opinion
) {
4346 // We've been asked to continue, so do that here.
4348 // Use the private resume method here, since we aren't changing the run
4350 process_sp
->PrivateResume();
4352 bool hijacked
= process_sp
->IsHijackedForEvent(eBroadcastBitStateChanged
) &&
4353 !process_sp
->StateChangedIsHijackedForSynchronousResume();
4356 // If we didn't restart, run the Stop Hooks here.
4357 // Don't do that if state changed events aren't hooked up to the
4358 // public (or SyncResume) broadcasters. StopHooks are just for
4359 // real public stops. They might also restart the target,
4360 // so watch for that.
4361 if (process_sp
->GetTarget().RunStopHooks())
4367 void Process::ProcessEventData::Dump(Stream
*s
) const {
4368 ProcessSP
process_sp(m_process_wp
.lock());
4371 s
->Printf(" process = %p (pid = %" PRIu64
"), ",
4372 static_cast<void *>(process_sp
.get()), process_sp
->GetID());
4374 s
->PutCString(" process = NULL, ");
4376 s
->Printf("state = %s", StateAsCString(GetState()));
4379 const Process::ProcessEventData
*
4380 Process::ProcessEventData::GetEventDataFromEvent(const Event
*event_ptr
) {
4382 const EventData
*event_data
= event_ptr
->GetData();
4384 event_data
->GetFlavor() == ProcessEventData::GetFlavorString())
4385 return static_cast<const ProcessEventData
*>(event_ptr
->GetData());
4391 Process::ProcessEventData::GetProcessFromEvent(const Event
*event_ptr
) {
4392 ProcessSP process_sp
;
4393 const ProcessEventData
*data
= GetEventDataFromEvent(event_ptr
);
4395 process_sp
= data
->GetProcessSP();
4399 StateType
Process::ProcessEventData::GetStateFromEvent(const Event
*event_ptr
) {
4400 const ProcessEventData
*data
= GetEventDataFromEvent(event_ptr
);
4401 if (data
== nullptr)
4402 return eStateInvalid
;
4404 return data
->GetState();
4407 bool Process::ProcessEventData::GetRestartedFromEvent(const Event
*event_ptr
) {
4408 const ProcessEventData
*data
= GetEventDataFromEvent(event_ptr
);
4409 if (data
== nullptr)
4412 return data
->GetRestarted();
4415 void Process::ProcessEventData::SetRestartedInEvent(Event
*event_ptr
,
4417 ProcessEventData
*data
=
4418 const_cast<ProcessEventData
*>(GetEventDataFromEvent(event_ptr
));
4419 if (data
!= nullptr)
4420 data
->SetRestarted(new_value
);
4424 Process::ProcessEventData::GetNumRestartedReasons(const Event
*event_ptr
) {
4425 ProcessEventData
*data
=
4426 const_cast<ProcessEventData
*>(GetEventDataFromEvent(event_ptr
));
4427 if (data
!= nullptr)
4428 return data
->GetNumRestartedReasons();
4434 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event
*event_ptr
,
4436 ProcessEventData
*data
=
4437 const_cast<ProcessEventData
*>(GetEventDataFromEvent(event_ptr
));
4438 if (data
!= nullptr)
4439 return data
->GetRestartedReasonAtIndex(idx
);
4444 void Process::ProcessEventData::AddRestartedReason(Event
*event_ptr
,
4445 const char *reason
) {
4446 ProcessEventData
*data
=
4447 const_cast<ProcessEventData
*>(GetEventDataFromEvent(event_ptr
));
4448 if (data
!= nullptr)
4449 data
->AddRestartedReason(reason
);
4452 bool Process::ProcessEventData::GetInterruptedFromEvent(
4453 const Event
*event_ptr
) {
4454 const ProcessEventData
*data
= GetEventDataFromEvent(event_ptr
);
4455 if (data
== nullptr)
4458 return data
->GetInterrupted();
4461 void Process::ProcessEventData::SetInterruptedInEvent(Event
*event_ptr
,
4463 ProcessEventData
*data
=
4464 const_cast<ProcessEventData
*>(GetEventDataFromEvent(event_ptr
));
4465 if (data
!= nullptr)
4466 data
->SetInterrupted(new_value
);
4469 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event
*event_ptr
) {
4470 ProcessEventData
*data
=
4471 const_cast<ProcessEventData
*>(GetEventDataFromEvent(event_ptr
));
4473 data
->SetUpdateStateOnRemoval();
4479 lldb::TargetSP
Process::CalculateTarget() { return m_target_wp
.lock(); }
4481 void Process::CalculateExecutionContext(ExecutionContext
&exe_ctx
) {
4482 exe_ctx
.SetTargetPtr(&GetTarget());
4483 exe_ctx
.SetProcessPtr(this);
4484 exe_ctx
.SetThreadPtr(nullptr);
4485 exe_ctx
.SetFramePtr(nullptr);
4489 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4490 // std::vector<lldb::pid_t> &pids)
4496 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4498 // return Host::GetArchSpecForExistingProcess (pid);
4502 // Process::GetArchSpecForExistingProcess (const char *process_name)
4504 // return Host::GetArchSpecForExistingProcess (process_name);
4507 EventSP
Process::CreateEventFromProcessState(uint32_t event_type
) {
4508 auto event_data_sp
=
4509 std::make_shared
<ProcessEventData
>(shared_from_this(), GetState());
4510 return std::make_shared
<Event
>(event_type
, event_data_sp
);
4513 void Process::AppendSTDOUT(const char *s
, size_t len
) {
4514 std::lock_guard
<std::recursive_mutex
> guard(m_stdio_communication_mutex
);
4515 m_stdout_data
.append(s
, len
);
4516 auto event_sp
= CreateEventFromProcessState(eBroadcastBitSTDOUT
);
4517 BroadcastEventIfUnique(event_sp
);
4520 void Process::AppendSTDERR(const char *s
, size_t len
) {
4521 std::lock_guard
<std::recursive_mutex
> guard(m_stdio_communication_mutex
);
4522 m_stderr_data
.append(s
, len
);
4523 auto event_sp
= CreateEventFromProcessState(eBroadcastBitSTDERR
);
4524 BroadcastEventIfUnique(event_sp
);
4527 void Process::BroadcastAsyncProfileData(const std::string
&one_profile_data
) {
4528 std::lock_guard
<std::recursive_mutex
> guard(m_profile_data_comm_mutex
);
4529 m_profile_data
.push_back(one_profile_data
);
4530 auto event_sp
= CreateEventFromProcessState(eBroadcastBitProfileData
);
4531 BroadcastEventIfUnique(event_sp
);
4534 void Process::BroadcastStructuredData(const StructuredData::ObjectSP
&object_sp
,
4535 const StructuredDataPluginSP
&plugin_sp
) {
4536 auto data_sp
= std::make_shared
<EventDataStructuredData
>(
4537 shared_from_this(), object_sp
, plugin_sp
);
4538 BroadcastEvent(eBroadcastBitStructuredData
, data_sp
);
4541 StructuredDataPluginSP
4542 Process::GetStructuredDataPlugin(llvm::StringRef type_name
) const {
4543 auto find_it
= m_structured_data_plugin_map
.find(type_name
);
4544 if (find_it
!= m_structured_data_plugin_map
.end())
4545 return find_it
->second
;
4547 return StructuredDataPluginSP();
4550 size_t Process::GetAsyncProfileData(char *buf
, size_t buf_size
, Status
&error
) {
4551 std::lock_guard
<std::recursive_mutex
> guard(m_profile_data_comm_mutex
);
4552 if (m_profile_data
.empty())
4555 std::string
&one_profile_data
= m_profile_data
.front();
4556 size_t bytes_available
= one_profile_data
.size();
4557 if (bytes_available
> 0) {
4558 Log
*log
= GetLog(LLDBLog::Process
);
4559 LLDB_LOGF(log
, "Process::GetProfileData (buf = %p, size = %" PRIu64
")",
4560 static_cast<void *>(buf
), static_cast<uint64_t>(buf_size
));
4561 if (bytes_available
> buf_size
) {
4562 memcpy(buf
, one_profile_data
.c_str(), buf_size
);
4563 one_profile_data
.erase(0, buf_size
);
4564 bytes_available
= buf_size
;
4566 memcpy(buf
, one_profile_data
.c_str(), bytes_available
);
4567 m_profile_data
.erase(m_profile_data
.begin());
4570 return bytes_available
;
4575 size_t Process::GetSTDOUT(char *buf
, size_t buf_size
, Status
&error
) {
4576 std::lock_guard
<std::recursive_mutex
> guard(m_stdio_communication_mutex
);
4577 size_t bytes_available
= m_stdout_data
.size();
4578 if (bytes_available
> 0) {
4579 Log
*log
= GetLog(LLDBLog::Process
);
4580 LLDB_LOGF(log
, "Process::GetSTDOUT (buf = %p, size = %" PRIu64
")",
4581 static_cast<void *>(buf
), static_cast<uint64_t>(buf_size
));
4582 if (bytes_available
> buf_size
) {
4583 memcpy(buf
, m_stdout_data
.c_str(), buf_size
);
4584 m_stdout_data
.erase(0, buf_size
);
4585 bytes_available
= buf_size
;
4587 memcpy(buf
, m_stdout_data
.c_str(), bytes_available
);
4588 m_stdout_data
.clear();
4591 return bytes_available
;
4594 size_t Process::GetSTDERR(char *buf
, size_t buf_size
, Status
&error
) {
4595 std::lock_guard
<std::recursive_mutex
> gaurd(m_stdio_communication_mutex
);
4596 size_t bytes_available
= m_stderr_data
.size();
4597 if (bytes_available
> 0) {
4598 Log
*log
= GetLog(LLDBLog::Process
);
4599 LLDB_LOGF(log
, "Process::GetSTDERR (buf = %p, size = %" PRIu64
")",
4600 static_cast<void *>(buf
), static_cast<uint64_t>(buf_size
));
4601 if (bytes_available
> buf_size
) {
4602 memcpy(buf
, m_stderr_data
.c_str(), buf_size
);
4603 m_stderr_data
.erase(0, buf_size
);
4604 bytes_available
= buf_size
;
4606 memcpy(buf
, m_stderr_data
.c_str(), bytes_available
);
4607 m_stderr_data
.clear();
4610 return bytes_available
;
4613 void Process::STDIOReadThreadBytesReceived(void *baton
, const void *src
,
4615 Process
*process
= (Process
*)baton
;
4616 process
->AppendSTDOUT(static_cast<const char *>(src
), src_len
);
4619 class IOHandlerProcessSTDIO
: public IOHandler
{
4621 IOHandlerProcessSTDIO(Process
*process
, int write_fd
)
4622 : IOHandler(process
->GetTarget().GetDebugger(),
4623 IOHandler::Type::ProcessIO
),
4625 m_read_file(GetInputFD(), File::eOpenOptionReadOnly
, false),
4626 m_write_file(write_fd
, File::eOpenOptionWriteOnly
, false) {
4627 m_pipe
.CreateNew(false);
4630 ~IOHandlerProcessSTDIO() override
= default;
4632 void SetIsRunning(bool running
) {
4633 std::lock_guard
<std::mutex
> guard(m_mutex
);
4634 SetIsDone(!running
);
4635 m_is_running
= running
;
4638 // Each IOHandler gets to run until it is done. It should read data from the
4639 // "in" and place output into "out" and "err and return when done.
4640 void Run() override
{
4641 if (!m_read_file
.IsValid() || !m_write_file
.IsValid() ||
4642 !m_pipe
.CanRead() || !m_pipe
.CanWrite()) {
4648 const int read_fd
= m_read_file
.GetDescriptor();
4649 Terminal
terminal(read_fd
);
4650 TerminalState
terminal_state(terminal
, false);
4651 // FIXME: error handling?
4652 llvm::consumeError(terminal
.SetCanonical(false));
4653 llvm::consumeError(terminal
.SetEcho(false));
4654 // FD_ZERO, FD_SET are not supported on windows
4656 const int pipe_read_fd
= m_pipe
.GetReadFileDescriptor();
4660 std::lock_guard
<std::mutex
> guard(m_mutex
);
4665 SelectHelper select_helper
;
4666 select_helper
.FDSetRead(read_fd
);
4667 select_helper
.FDSetRead(pipe_read_fd
);
4668 Status error
= select_helper
.Select();
4675 if (select_helper
.FDIsSetRead(read_fd
)) {
4677 if (m_read_file
.Read(&ch
, n
).Success() && n
== 1) {
4678 if (m_write_file
.Write(&ch
, n
).Fail() || n
!= 1)
4684 if (select_helper
.FDIsSetRead(pipe_read_fd
)) {
4686 // Consume the interrupt byte
4687 Status error
= m_pipe
.Read(&ch
, 1, bytes_read
);
4688 if (error
.Success()) {
4692 if (StateIsRunningState(m_process
->GetState()))
4693 m_process
->SendAsyncInterrupt();
4697 SetIsRunning(false);
4701 void Cancel() override
{
4702 std::lock_guard
<std::mutex
> guard(m_mutex
);
4704 // Only write to our pipe to cancel if we are in
4705 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4706 // is being run from the command interpreter:
4708 // (lldb) step_process_thousands_of_times
4710 // In this case the command interpreter will be in the middle of handling
4711 // the command and if the process pushes and pops the IOHandler thousands
4712 // of times, we can end up writing to m_pipe without ever consuming the
4713 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4714 // deadlocking when the pipe gets fed up and blocks until data is consumed.
4716 char ch
= 'q'; // Send 'q' for quit
4717 size_t bytes_written
= 0;
4718 m_pipe
.Write(&ch
, 1, bytes_written
);
4722 bool Interrupt() override
{
4723 // Do only things that are safe to do in an interrupt context (like in a
4724 // SIGINT handler), like write 1 byte to a file descriptor. This will
4725 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4726 // that was written to the pipe and then call
4727 // m_process->SendAsyncInterrupt() from a much safer location in code.
4729 char ch
= 'i'; // Send 'i' for interrupt
4730 size_t bytes_written
= 0;
4731 Status result
= m_pipe
.Write(&ch
, 1, bytes_written
);
4732 return result
.Success();
4734 // This IOHandler might be pushed on the stack, but not being run
4735 // currently so do the right thing if we aren't actively watching for
4736 // STDIN by sending the interrupt to the process. Otherwise the write to
4737 // the pipe above would do nothing. This can happen when the command
4738 // interpreter is running and gets a "expression ...". It will be on the
4739 // IOHandler thread and sending the input is complete to the delegate
4740 // which will cause the expression to run, which will push the process IO
4741 // handler, but not run it.
4743 if (StateIsRunningState(m_process
->GetState())) {
4744 m_process
->SendAsyncInterrupt();
4751 void GotEOF() override
{}
4755 NativeFile m_read_file
; // Read from this file (usually actual STDIN for LLDB
4756 NativeFile m_write_file
; // Write to this file (usually the primary pty for
4757 // getting io to debuggee)
4760 bool m_is_running
= false;
4763 void Process::SetSTDIOFileDescriptor(int fd
) {
4764 // First set up the Read Thread for reading/handling process I/O
4765 m_stdio_communication
.SetConnection(
4766 std::make_unique
<ConnectionFileDescriptor
>(fd
, true));
4767 if (m_stdio_communication
.IsConnected()) {
4768 m_stdio_communication
.SetReadThreadBytesReceivedCallback(
4769 STDIOReadThreadBytesReceived
, this);
4770 m_stdio_communication
.StartReadThread();
4772 // Now read thread is set up, set up input reader.
4774 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
4775 if (!m_process_input_reader
)
4776 m_process_input_reader
=
4777 std::make_shared
<IOHandlerProcessSTDIO
>(this, fd
);
4782 bool Process::ProcessIOHandlerIsActive() {
4783 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
4784 IOHandlerSP
io_handler_sp(m_process_input_reader
);
4786 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp
);
4790 bool Process::PushProcessIOHandler() {
4791 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
4792 IOHandlerSP
io_handler_sp(m_process_input_reader
);
4793 if (io_handler_sp
) {
4794 Log
*log
= GetLog(LLDBLog::Process
);
4795 LLDB_LOGF(log
, "Process::%s pushing IO handler", __FUNCTION__
);
4797 io_handler_sp
->SetIsDone(false);
4798 // If we evaluate an utility function, then we don't cancel the current
4799 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4800 // existing IOHandler that potentially provides the user interface (e.g.
4801 // the IOHandler for Editline).
4802 bool cancel_top_handler
= !m_mod_id
.IsRunningUtilityFunction();
4803 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp
,
4804 cancel_top_handler
);
4810 bool Process::PopProcessIOHandler() {
4811 std::lock_guard
<std::mutex
> guard(m_process_input_reader_mutex
);
4812 IOHandlerSP
io_handler_sp(m_process_input_reader
);
4814 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp
);
4818 // The process needs to know about installed plug-ins
4819 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4821 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4824 // RestorePlanState is used to record the "is private", "is controlling" and
4826 // to discard" fields of the plan we are running, and reset it on Clean or on
4827 // destruction. It will only reset the state once, so you can call Clean and
4828 // then monkey with the state and it won't get reset on you again.
4830 class RestorePlanState
{
4832 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp
)
4833 : m_thread_plan_sp(thread_plan_sp
) {
4834 if (m_thread_plan_sp
) {
4835 m_private
= m_thread_plan_sp
->GetPrivate();
4836 m_is_controlling
= m_thread_plan_sp
->IsControllingPlan();
4837 m_okay_to_discard
= m_thread_plan_sp
->OkayToDiscard();
4841 ~RestorePlanState() { Clean(); }
4844 if (!m_already_reset
&& m_thread_plan_sp
) {
4845 m_already_reset
= true;
4846 m_thread_plan_sp
->SetPrivate(m_private
);
4847 m_thread_plan_sp
->SetIsControllingPlan(m_is_controlling
);
4848 m_thread_plan_sp
->SetOkayToDiscard(m_okay_to_discard
);
4853 lldb::ThreadPlanSP m_thread_plan_sp
;
4854 bool m_already_reset
= false;
4855 bool m_private
= false;
4856 bool m_is_controlling
= false;
4857 bool m_okay_to_discard
= false;
4859 } // anonymous namespace
4862 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions
&options
) {
4863 const milliseconds
default_one_thread_timeout(250);
4865 // If the overall wait is forever, then we don't need to worry about it.
4866 if (!options
.GetTimeout()) {
4867 return options
.GetOneThreadTimeout() ? *options
.GetOneThreadTimeout()
4868 : default_one_thread_timeout
;
4871 // If the one thread timeout is set, use it.
4872 if (options
.GetOneThreadTimeout())
4873 return *options
.GetOneThreadTimeout();
4875 // Otherwise use half the total timeout, bounded by the
4876 // default_one_thread_timeout.
4877 return std::min
<microseconds
>(default_one_thread_timeout
,
4878 *options
.GetTimeout() / 2);
4881 static Timeout
<std::micro
>
4882 GetExpressionTimeout(const EvaluateExpressionOptions
&options
,
4883 bool before_first_timeout
) {
4884 // If we are going to run all threads the whole time, or if we are only going
4885 // to run one thread, we can just return the overall timeout.
4886 if (!options
.GetStopOthers() || !options
.GetTryAllThreads())
4887 return options
.GetTimeout();
4889 if (before_first_timeout
)
4890 return GetOneThreadExpressionTimeout(options
);
4892 if (!options
.GetTimeout())
4893 return std::nullopt
;
4895 return *options
.GetTimeout() - GetOneThreadExpressionTimeout(options
);
4898 static std::optional
<ExpressionResults
>
4899 HandleStoppedEvent(lldb::tid_t thread_id
, const ThreadPlanSP
&thread_plan_sp
,
4900 RestorePlanState
&restorer
, const EventSP
&event_sp
,
4901 EventSP
&event_to_broadcast_sp
,
4902 const EvaluateExpressionOptions
&options
,
4903 bool handle_interrupts
) {
4904 Log
*log
= GetLog(LLDBLog::Step
| LLDBLog::Process
);
4906 ThreadSP thread_sp
= thread_plan_sp
->GetTarget()
4909 .FindThreadByID(thread_id
);
4912 "The thread on which we were running the "
4913 "expression: tid = {0}, exited while "
4914 "the expression was running.",
4916 return eExpressionThreadVanished
;
4919 ThreadPlanSP plan
= thread_sp
->GetCompletedPlan();
4920 if (plan
== thread_plan_sp
&& plan
->PlanSucceeded()) {
4921 LLDB_LOG(log
, "execution completed successfully");
4923 // Restore the plan state so it will get reported as intended when we are
4926 return eExpressionCompleted
;
4929 StopInfoSP stop_info_sp
= thread_sp
->GetStopInfo();
4930 if (stop_info_sp
&& stop_info_sp
->GetStopReason() == eStopReasonBreakpoint
&&
4931 stop_info_sp
->ShouldNotify(event_sp
.get())) {
4932 LLDB_LOG(log
, "stopped for breakpoint: {0}.", stop_info_sp
->GetDescription());
4933 if (!options
.DoesIgnoreBreakpoints()) {
4934 // Restore the plan state and then force Private to false. We are going
4935 // to stop because of this plan so we need it to become a public plan or
4936 // it won't report correctly when we continue to its termination later
4939 thread_plan_sp
->SetPrivate(false);
4940 event_to_broadcast_sp
= event_sp
;
4942 return eExpressionHitBreakpoint
;
4945 if (!handle_interrupts
&&
4946 Process::ProcessEventData::GetInterruptedFromEvent(event_sp
.get()))
4947 return std::nullopt
;
4949 LLDB_LOG(log
, "thread plan did not successfully complete");
4950 if (!options
.DoesUnwindOnError())
4951 event_to_broadcast_sp
= event_sp
;
4952 return eExpressionInterrupted
;
4956 Process::RunThreadPlan(ExecutionContext
&exe_ctx
,
4957 lldb::ThreadPlanSP
&thread_plan_sp
,
4958 const EvaluateExpressionOptions
&options
,
4959 DiagnosticManager
&diagnostic_manager
) {
4960 ExpressionResults return_value
= eExpressionSetupError
;
4962 std::lock_guard
<std::mutex
> run_thread_plan_locker(m_run_thread_plan_lock
);
4964 if (!thread_plan_sp
) {
4965 diagnostic_manager
.PutString(
4966 lldb::eSeverityError
, "RunThreadPlan called with empty thread plan.");
4967 return eExpressionSetupError
;
4970 if (!thread_plan_sp
->ValidatePlan(nullptr)) {
4971 diagnostic_manager
.PutString(
4972 lldb::eSeverityError
,
4973 "RunThreadPlan called with an invalid thread plan.");
4974 return eExpressionSetupError
;
4977 if (exe_ctx
.GetProcessPtr() != this) {
4978 diagnostic_manager
.PutString(lldb::eSeverityError
,
4979 "RunThreadPlan called on wrong process.");
4980 return eExpressionSetupError
;
4983 Thread
*thread
= exe_ctx
.GetThreadPtr();
4984 if (thread
== nullptr) {
4985 diagnostic_manager
.PutString(lldb::eSeverityError
,
4986 "RunThreadPlan called with invalid thread.");
4987 return eExpressionSetupError
;
4990 // Record the thread's id so we can tell when a thread we were using
4991 // to run the expression exits during the expression evaluation.
4992 lldb::tid_t expr_thread_id
= thread
->GetID();
4994 // We need to change some of the thread plan attributes for the thread plan
4995 // runner. This will restore them when we are done:
4997 RestorePlanState
thread_plan_restorer(thread_plan_sp
);
4999 // We rely on the thread plan we are running returning "PlanCompleted" if
5000 // when it successfully completes. For that to be true the plan can't be
5001 // private - since private plans suppress themselves in the GetCompletedPlan
5004 thread_plan_sp
->SetPrivate(false);
5006 // The plans run with RunThreadPlan also need to be terminal controlling plans
5007 // or when they are done we will end up asking the plan above us whether we
5008 // should stop, which may give the wrong answer.
5010 thread_plan_sp
->SetIsControllingPlan(true);
5011 thread_plan_sp
->SetOkayToDiscard(false);
5013 // If we are running some utility expression for LLDB, we now have to mark
5014 // this in the ProcesModID of this process. This RAII takes care of marking
5015 // and reverting the mark it once we are done running the expression.
5016 UtilityFunctionScope
util_scope(options
.IsForUtilityExpr() ? this : nullptr);
5018 if (m_private_state
.GetValue() != eStateStopped
) {
5019 diagnostic_manager
.PutString(
5020 lldb::eSeverityError
,
5021 "RunThreadPlan called while the private state was not stopped.");
5022 return eExpressionSetupError
;
5025 // Save the thread & frame from the exe_ctx for restoration after we run
5026 const uint32_t thread_idx_id
= thread
->GetIndexID();
5027 StackFrameSP selected_frame_sp
=
5028 thread
->GetSelectedFrame(DoNoSelectMostRelevantFrame
);
5029 if (!selected_frame_sp
) {
5030 thread
->SetSelectedFrame(nullptr);
5031 selected_frame_sp
= thread
->GetSelectedFrame(DoNoSelectMostRelevantFrame
);
5032 if (!selected_frame_sp
) {
5033 diagnostic_manager
.Printf(
5034 lldb::eSeverityError
,
5035 "RunThreadPlan called without a selected frame on thread %d",
5037 return eExpressionSetupError
;
5041 // Make sure the timeout values make sense. The one thread timeout needs to
5042 // be smaller than the overall timeout.
5043 if (options
.GetOneThreadTimeout() && options
.GetTimeout() &&
5044 *options
.GetTimeout() < *options
.GetOneThreadTimeout()) {
5045 diagnostic_manager
.PutString(lldb::eSeverityError
,
5046 "RunThreadPlan called with one thread "
5047 "timeout greater than total timeout");
5048 return eExpressionSetupError
;
5051 StackID ctx_frame_id
= selected_frame_sp
->GetStackID();
5053 // N.B. Running the target may unset the currently selected thread and frame.
5054 // We don't want to do that either, so we should arrange to reset them as
5057 lldb::ThreadSP selected_thread_sp
= GetThreadList().GetSelectedThread();
5059 uint32_t selected_tid
;
5060 StackID selected_stack_id
;
5061 if (selected_thread_sp
) {
5062 selected_tid
= selected_thread_sp
->GetIndexID();
5064 selected_thread_sp
->GetSelectedFrame(DoNoSelectMostRelevantFrame
)
5067 selected_tid
= LLDB_INVALID_THREAD_ID
;
5070 HostThread backup_private_state_thread
;
5071 lldb::StateType old_state
= eStateInvalid
;
5072 lldb::ThreadPlanSP stopper_base_plan_sp
;
5074 Log
*log(GetLog(LLDBLog::Step
| LLDBLog::Process
));
5075 if (m_private_state_thread
.EqualsThread(Host::GetCurrentThread())) {
5076 // Yikes, we are running on the private state thread! So we can't wait for
5077 // public events on this thread, since we are the thread that is generating
5078 // public events. The simplest thing to do is to spin up a temporary thread
5079 // to handle private state thread events while we are fielding public
5081 LLDB_LOGF(log
, "Running thread plan on private state thread, spinning up "
5082 "another state thread to handle the events.");
5084 backup_private_state_thread
= m_private_state_thread
;
5086 // One other bit of business: we want to run just this thread plan and
5087 // anything it pushes, and then stop, returning control here. But in the
5088 // normal course of things, the plan above us on the stack would be given a
5089 // shot at the stop event before deciding to stop, and we don't want that.
5090 // So we insert a "stopper" base plan on the stack before the plan we want
5091 // to run. Since base plans always stop and return control to the user,
5092 // that will do just what we want.
5093 stopper_base_plan_sp
.reset(new ThreadPlanBase(*thread
));
5094 thread
->QueueThreadPlan(stopper_base_plan_sp
, false);
5095 // Have to make sure our public state is stopped, since otherwise the
5096 // reporting logic below doesn't work correctly.
5097 old_state
= m_public_state
.GetValue();
5098 m_public_state
.SetValueNoLock(eStateStopped
);
5100 // Now spin up the private state thread:
5101 StartPrivateStateThread(true);
5104 thread
->QueueThreadPlan(
5105 thread_plan_sp
, false); // This used to pass "true" does that make sense?
5107 if (options
.GetDebug()) {
5108 // In this case, we aren't actually going to run, we just want to stop
5109 // right away. Flush this thread so we will refetch the stacks and show the
5110 // correct backtrace.
5111 // FIXME: To make this prettier we should invent some stop reason for this,
5113 // is only cosmetic, and this functionality is only of use to lldb
5114 // developers who can live with not pretty...
5116 return eExpressionStoppedForDebug
;
5119 ListenerSP
listener_sp(
5120 Listener::MakeListener("lldb.process.listener.run-thread-plan"));
5122 lldb::EventSP event_to_broadcast_sp
;
5125 // This process event hijacker Hijacks the Public events and its destructor
5126 // makes sure that the process events get restored on exit to the function.
5128 // If the event needs to propagate beyond the hijacker (e.g., the process
5129 // exits during execution), then the event is put into
5130 // event_to_broadcast_sp for rebroadcasting.
5132 ProcessEventHijacker
run_thread_plan_hijacker(*this, listener_sp
);
5136 thread_plan_sp
->GetDescription(&s
, lldb::eDescriptionLevelVerbose
);
5138 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
5139 " to run thread plan \"%s\".",
5140 thread_idx_id
, expr_thread_id
, s
.GetData());
5144 lldb::EventSP event_sp
;
5145 lldb::StateType stop_state
= lldb::eStateInvalid
;
5147 bool before_first_timeout
= true; // This is set to false the first time
5148 // that we have to halt the target.
5149 bool do_resume
= true;
5150 bool handle_running_event
= true;
5152 // This is just for accounting:
5153 uint32_t num_resumes
= 0;
5155 // If we are going to run all threads the whole time, or if we are only
5156 // going to run one thread, then we don't need the first timeout. So we
5157 // pretend we are after the first timeout already.
5158 if (!options
.GetStopOthers() || !options
.GetTryAllThreads())
5159 before_first_timeout
= false;
5161 LLDB_LOGF(log
, "Stop others: %u, try all: %u, before_first: %u.\n",
5162 options
.GetStopOthers(), options
.GetTryAllThreads(),
5163 before_first_timeout
);
5165 // This isn't going to work if there are unfetched events on the queue. Are
5166 // there cases where we might want to run the remaining events here, and
5167 // then try to call the function? That's probably being too tricky for our
5170 Event
*other_events
= listener_sp
->PeekAtNextEvent();
5171 if (other_events
!= nullptr) {
5172 diagnostic_manager
.PutString(
5173 lldb::eSeverityError
,
5174 "RunThreadPlan called with pending events on the queue.");
5175 return eExpressionSetupError
;
5178 // We also need to make sure that the next event is delivered. We might be
5179 // calling a function as part of a thread plan, in which case the last
5180 // delivered event could be the running event, and we don't want event
5181 // coalescing to cause us to lose OUR running event...
5182 ForceNextEventDelivery();
5184 // This while loop must exit out the bottom, there's cleanup that we need to do
5185 // when we are done. So don't call return anywhere within it.
5187 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5188 // It's pretty much impossible to write test cases for things like: One
5189 // thread timeout expires, I go to halt, but the process already stopped on
5190 // the function call stop breakpoint. Turning on this define will make us
5191 // not fetch the first event till after the halt. So if you run a quick
5192 // function, it will have completed, and the completion event will be
5193 // waiting, when you interrupt for halt. The expression evaluation should
5195 bool miss_first_event
= true;
5198 // We usually want to resume the process if we get to the top of the
5199 // loop. The only exception is if we get two running events with no
5200 // intervening stop, which can happen, we will just wait for then next
5203 "Top of while loop: do_resume: %i handle_running_event: %i "
5204 "before_first_timeout: %i.",
5205 do_resume
, handle_running_event
, before_first_timeout
);
5207 if (do_resume
|| handle_running_event
) {
5208 // Do the initial resume and wait for the running event before going
5213 Status resume_error
= PrivateResume();
5214 if (!resume_error
.Success()) {
5215 diagnostic_manager
.Printf(
5216 lldb::eSeverityError
,
5217 "couldn't resume inferior the %d time: \"%s\".", num_resumes
,
5218 resume_error
.AsCString());
5219 return_value
= eExpressionSetupError
;
5225 listener_sp
->GetEvent(event_sp
, GetUtilityExpressionTimeout());
5228 "Process::RunThreadPlan(): didn't get any event after "
5229 "resume %" PRIu32
", exiting.",
5232 diagnostic_manager
.Printf(lldb::eSeverityError
,
5233 "didn't get any event after resume %" PRIu32
5236 return_value
= eExpressionSetupError
;
5241 Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
5243 if (stop_state
!= eStateRunning
) {
5244 bool restarted
= false;
5246 if (stop_state
== eStateStopped
) {
5247 restarted
= Process::ProcessEventData::GetRestartedFromEvent(
5251 "Process::RunThreadPlan(): didn't get running event after "
5252 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
5253 "handle_running_event: %i).",
5254 num_resumes
, StateAsCString(stop_state
), restarted
, do_resume
,
5255 handle_running_event
);
5259 // This is probably an overabundance of caution, I don't think I
5260 // should ever get a stopped & restarted event here. But if I do,
5261 // the best thing is to Halt and then get out of here.
5262 const bool clear_thread_plans
= false;
5263 const bool use_run_lock
= false;
5264 Halt(clear_thread_plans
, use_run_lock
);
5267 diagnostic_manager
.Printf(
5268 lldb::eSeverityError
,
5269 "didn't get running event after initial resume, got %s instead.",
5270 StateAsCString(stop_state
));
5271 return_value
= eExpressionSetupError
;
5276 log
->PutCString("Process::RunThreadPlan(): resuming succeeded.");
5277 // We need to call the function synchronously, so spin waiting for it
5278 // to return. If we get interrupted while executing, we're going to
5279 // lose our context, and won't be able to gather the result at this
5280 // point. We set the timeout AFTER the resume, since the resume takes
5281 // some time and we don't want to charge that to the timeout.
5284 log
->PutCString("Process::RunThreadPlan(): waiting for next event.");
5288 handle_running_event
= true;
5290 // Now wait for the process to stop again:
5293 Timeout
<std::micro
> timeout
=
5294 GetExpressionTimeout(options
, before_first_timeout
);
5297 auto now
= system_clock::now();
5299 "Process::RunThreadPlan(): about to wait - now is %s - "
5301 llvm::to_string(now
).c_str(),
5302 llvm::to_string(now
+ *timeout
).c_str());
5304 LLDB_LOGF(log
, "Process::RunThreadPlan(): about to wait forever.");
5308 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5309 // See comment above...
5310 if (miss_first_event
) {
5311 std::this_thread::sleep_for(std::chrono::milliseconds(1));
5312 miss_first_event
= false;
5316 got_event
= listener_sp
->GetEvent(event_sp
, timeout
);
5320 bool keep_going
= false;
5321 if (event_sp
->GetType() == eBroadcastBitInterrupt
) {
5322 const bool clear_thread_plans
= false;
5323 const bool use_run_lock
= false;
5324 Halt(clear_thread_plans
, use_run_lock
);
5325 return_value
= eExpressionInterrupted
;
5326 diagnostic_manager
.PutString(lldb::eSeverityInfo
,
5327 "execution halted by user interrupt.");
5328 LLDB_LOGF(log
, "Process::RunThreadPlan(): Got interrupted by "
5329 "eBroadcastBitInterrupted, exiting.");
5333 Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
5335 "Process::RunThreadPlan(): in while loop, got event: %s.",
5336 StateAsCString(stop_state
));
5338 switch (stop_state
) {
5339 case lldb::eStateStopped
: {
5340 if (Process::ProcessEventData::GetRestartedFromEvent(
5342 // If we were restarted, we just need to go back up to fetch
5344 LLDB_LOGF(log
, "Process::RunThreadPlan(): Got a stop and "
5345 "restart, so we'll continue waiting.");
5348 handle_running_event
= true;
5350 const bool handle_interrupts
= true;
5351 return_value
= *HandleStoppedEvent(
5352 expr_thread_id
, thread_plan_sp
, thread_plan_restorer
,
5353 event_sp
, event_to_broadcast_sp
, options
,
5355 if (return_value
== eExpressionThreadVanished
)
5360 case lldb::eStateRunning
:
5361 // This shouldn't really happen, but sometimes we do get two
5362 // running events without an intervening stop, and in that case
5363 // we should just go back to waiting for the stop.
5366 handle_running_event
= false;
5371 "Process::RunThreadPlan(): execution stopped with "
5372 "unexpected state: %s.",
5373 StateAsCString(stop_state
));
5375 if (stop_state
== eStateExited
)
5376 event_to_broadcast_sp
= event_sp
;
5378 diagnostic_manager
.PutString(
5379 lldb::eSeverityError
,
5380 "execution stopped with unexpected state.");
5381 return_value
= eExpressionInterrupted
;
5392 log
->PutCString("Process::RunThreadPlan(): got_event was true, but "
5393 "the event pointer was null. How odd...");
5394 return_value
= eExpressionInterrupted
;
5398 // If we didn't get an event that means we've timed out... We will
5399 // interrupt the process here. Depending on what we were asked to do
5400 // we will either exit, or try with all threads running for the same
5404 if (options
.GetTryAllThreads()) {
5405 if (before_first_timeout
) {
5407 "Running function with one thread timeout timed out.");
5409 LLDB_LOG(log
, "Restarting function with all threads enabled and "
5410 "timeout: {0} timed out, abandoning execution.",
5413 LLDB_LOG(log
, "Running function with timeout: {0} timed out, "
5414 "abandoning execution.",
5418 // It is possible that between the time we issued the Halt, and we get
5419 // around to calling Halt the target could have stopped. That's fine,
5420 // Halt will figure that out and send the appropriate Stopped event.
5421 // BUT it is also possible that we stopped & restarted (e.g. hit a
5422 // signal with "stop" set to false.) In
5423 // that case, we'll get the stopped & restarted event, and we should go
5424 // back to waiting for the Halt's stopped event. That's what this
5427 bool back_to_top
= true;
5428 uint32_t try_halt_again
= 0;
5429 bool do_halt
= true;
5430 const uint32_t num_retries
= 5;
5431 while (try_halt_again
< num_retries
) {
5434 LLDB_LOGF(log
, "Process::RunThreadPlan(): Running Halt.");
5435 const bool clear_thread_plans
= false;
5436 const bool use_run_lock
= false;
5437 Halt(clear_thread_plans
, use_run_lock
);
5439 if (halt_error
.Success()) {
5441 log
->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5444 listener_sp
->GetEvent(event_sp
, GetUtilityExpressionTimeout());
5448 Process::ProcessEventData::GetStateFromEvent(event_sp
.get());
5451 "Process::RunThreadPlan(): Stopped with event: %s",
5452 StateAsCString(stop_state
));
5453 if (stop_state
== lldb::eStateStopped
&&
5454 Process::ProcessEventData::GetInterruptedFromEvent(
5456 log
->PutCString(" Event was the Halt interruption event.");
5459 if (stop_state
== lldb::eStateStopped
) {
5460 if (Process::ProcessEventData::GetRestartedFromEvent(
5463 log
->PutCString("Process::RunThreadPlan(): Went to halt "
5464 "but got a restarted event, there must be "
5465 "an un-restarted stopped event so try "
5467 "Exiting wait loop.");
5473 // Between the time we initiated the Halt and the time we
5474 // delivered it, the process could have already finished its
5475 // job. Check that here:
5476 const bool handle_interrupts
= false;
5477 if (auto result
= HandleStoppedEvent(
5478 expr_thread_id
, thread_plan_sp
, thread_plan_restorer
,
5479 event_sp
, event_to_broadcast_sp
, options
,
5480 handle_interrupts
)) {
5481 return_value
= *result
;
5482 back_to_top
= false;
5486 if (!options
.GetTryAllThreads()) {
5488 log
->PutCString("Process::RunThreadPlan(): try_all_threads "
5489 "was false, we stopped so now we're "
5491 return_value
= eExpressionInterrupted
;
5492 back_to_top
= false;
5496 if (before_first_timeout
) {
5497 // Set all the other threads to run, and return to the top of
5498 // the loop, which will continue;
5499 before_first_timeout
= false;
5500 thread_plan_sp
->SetStopOthers(false);
5503 "Process::RunThreadPlan(): about to resume.");
5508 // Running all threads failed, so return Interrupted.
5510 log
->PutCString("Process::RunThreadPlan(): running all "
5511 "threads timed out.");
5512 return_value
= eExpressionInterrupted
;
5513 back_to_top
= false;
5519 log
->PutCString("Process::RunThreadPlan(): halt said it "
5520 "succeeded, but I got no event. "
5521 "I'm getting out of here passing Interrupted.");
5522 return_value
= eExpressionInterrupted
;
5523 back_to_top
= false;
5532 if (!back_to_top
|| try_halt_again
> num_retries
)
5539 // If we had to start up a temporary private state thread to run this
5540 // thread plan, shut it down now.
5541 if (backup_private_state_thread
.IsJoinable()) {
5542 StopPrivateStateThread();
5544 m_private_state_thread
= backup_private_state_thread
;
5545 if (stopper_base_plan_sp
) {
5546 thread
->DiscardThreadPlansUpToPlan(stopper_base_plan_sp
);
5548 if (old_state
!= eStateInvalid
)
5549 m_public_state
.SetValueNoLock(old_state
);
5552 // If our thread went away on us, we need to get out of here without
5553 // doing any more work. We don't have to clean up the thread plan, that
5554 // will have happened when the Thread was destroyed.
5555 if (return_value
== eExpressionThreadVanished
) {
5556 return return_value
;
5559 if (return_value
!= eExpressionCompleted
&& log
) {
5560 // Print a backtrace into the log so we can figure out where we are:
5562 s
.PutCString("Thread state after unsuccessful completion: \n");
5563 thread
->GetStackFrameStatus(s
, 0, UINT32_MAX
, true, UINT32_MAX
,
5564 /*show_hidden*/ true);
5565 log
->PutString(s
.GetString());
5567 // Restore the thread state if we are going to discard the plan execution.
5568 // There are three cases where this could happen: 1) The execution
5569 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5570 // was true 3) We got some other error, and discard_on_error was true
5571 bool should_unwind
= (return_value
== eExpressionInterrupted
&&
5572 options
.DoesUnwindOnError()) ||
5573 (return_value
== eExpressionHitBreakpoint
&&
5574 options
.DoesIgnoreBreakpoints());
5576 if (return_value
== eExpressionCompleted
|| should_unwind
) {
5577 thread_plan_sp
->RestoreThreadState();
5580 // Now do some processing on the results of the run:
5581 if (return_value
== eExpressionInterrupted
||
5582 return_value
== eExpressionHitBreakpoint
) {
5588 log
->PutCString("Process::RunThreadPlan(): Stop event that "
5589 "interrupted us is NULL.");
5594 const char *event_explanation
= nullptr;
5598 event_explanation
= "<no event>";
5600 } else if (event_sp
->GetType() == eBroadcastBitInterrupt
) {
5601 event_explanation
= "<user interrupt>";
5604 const Process::ProcessEventData
*event_data
=
5605 Process::ProcessEventData::GetEventDataFromEvent(
5609 event_explanation
= "<no event data>";
5613 Process
*process
= event_data
->GetProcessSP().get();
5616 event_explanation
= "<no process>";
5620 ThreadList
&thread_list
= process
->GetThreadList();
5622 uint32_t num_threads
= thread_list
.GetSize();
5623 uint32_t thread_index
;
5625 ts
.Printf("<%u threads> ", num_threads
);
5627 for (thread_index
= 0; thread_index
< num_threads
; ++thread_index
) {
5628 Thread
*thread
= thread_list
.GetThreadAtIndex(thread_index
).get();
5635 ts
.Printf("<0x%4.4" PRIx64
" ", thread
->GetID());
5636 RegisterContext
*register_context
=
5637 thread
->GetRegisterContext().get();
5639 if (register_context
)
5640 ts
.Printf("[ip 0x%" PRIx64
"] ", register_context
->GetPC());
5642 ts
.Printf("[ip unknown] ");
5644 // Show the private stop info here, the public stop info will be
5645 // from the last natural stop.
5646 lldb::StopInfoSP stop_info_sp
= thread
->GetPrivateStopInfo();
5648 const char *stop_desc
= stop_info_sp
->GetDescription();
5650 ts
.PutCString(stop_desc
);
5655 event_explanation
= ts
.GetData();
5659 if (event_explanation
)
5661 "Process::RunThreadPlan(): execution interrupted: %s %s",
5662 s
.GetData(), event_explanation
);
5664 LLDB_LOGF(log
, "Process::RunThreadPlan(): execution interrupted: %s",
5668 if (should_unwind
) {
5670 "Process::RunThreadPlan: ExecutionInterrupted - "
5671 "discarding thread plans up to %p.",
5672 static_cast<void *>(thread_plan_sp
.get()));
5673 thread
->DiscardThreadPlansUpToPlan(thread_plan_sp
);
5676 "Process::RunThreadPlan: ExecutionInterrupted - for "
5677 "plan: %p not discarding.",
5678 static_cast<void *>(thread_plan_sp
.get()));
5680 } else if (return_value
== eExpressionSetupError
) {
5682 log
->PutCString("Process::RunThreadPlan(): execution set up error.");
5684 if (options
.DoesUnwindOnError()) {
5685 thread
->DiscardThreadPlansUpToPlan(thread_plan_sp
);
5688 if (thread
->IsThreadPlanDone(thread_plan_sp
.get())) {
5690 log
->PutCString("Process::RunThreadPlan(): thread plan is done");
5691 return_value
= eExpressionCompleted
;
5692 } else if (thread
->WasThreadPlanDiscarded(thread_plan_sp
.get())) {
5695 "Process::RunThreadPlan(): thread plan was discarded");
5696 return_value
= eExpressionDiscarded
;
5700 "Process::RunThreadPlan(): thread plan stopped in mid course");
5701 if (options
.DoesUnwindOnError() && thread_plan_sp
) {
5703 log
->PutCString("Process::RunThreadPlan(): discarding thread plan "
5704 "'cause unwind_on_error is set.");
5705 thread
->DiscardThreadPlansUpToPlan(thread_plan_sp
);
5710 // Thread we ran the function in may have gone away because we ran the
5711 // target Check that it's still there, and if it is put it back in the
5712 // context. Also restore the frame in the context if it is still present.
5713 thread
= GetThreadList().FindThreadByIndexID(thread_idx_id
, true).get();
5715 exe_ctx
.SetFrameSP(thread
->GetFrameWithStackID(ctx_frame_id
));
5718 // Also restore the current process'es selected frame & thread, since this
5719 // function calling may be done behind the user's back.
5721 if (selected_tid
!= LLDB_INVALID_THREAD_ID
) {
5722 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid
) &&
5723 selected_stack_id
.IsValid()) {
5724 // We were able to restore the selected thread, now restore the frame:
5725 std::lock_guard
<std::recursive_mutex
> guard(GetThreadList().GetMutex());
5726 StackFrameSP old_frame_sp
=
5727 GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5730 GetThreadList().GetSelectedThread()->SetSelectedFrame(
5731 old_frame_sp
.get());
5736 // If the process exited during the run of the thread plan, notify everyone.
5738 if (event_to_broadcast_sp
) {
5740 log
->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5741 BroadcastEvent(event_to_broadcast_sp
);
5744 return return_value
;
5747 void Process::GetStatus(Stream
&strm
) {
5748 const StateType state
= GetState();
5749 if (StateIsStoppedState(state
, false)) {
5750 if (state
== eStateExited
) {
5751 int exit_status
= GetExitStatus();
5752 const char *exit_description
= GetExitDescription();
5753 strm
.Printf("Process %" PRIu64
" exited with status = %i (0x%8.8x) %s\n",
5754 GetID(), exit_status
, exit_status
,
5755 exit_description
? exit_description
: "");
5757 if (state
== eStateConnected
)
5758 strm
.Printf("Connected to remote target.\n");
5760 strm
.Printf("Process %" PRIu64
" %s\n", GetID(), StateAsCString(state
));
5763 strm
.Printf("Process %" PRIu64
" is running.\n", GetID());
5767 size_t Process::GetThreadStatus(Stream
&strm
,
5768 bool only_threads_with_stop_reason
,
5769 uint32_t start_frame
, uint32_t num_frames
,
5770 uint32_t num_frames_with_source
,
5772 size_t num_thread_infos_dumped
= 0;
5774 // You can't hold the thread list lock while calling Thread::GetStatus. That
5775 // very well might run code (e.g. if we need it to get return values or
5776 // arguments.) For that to work the process has to be able to acquire it.
5777 // So instead copy the thread ID's, and look them up one by one:
5779 uint32_t num_threads
;
5780 std::vector
<lldb::tid_t
> thread_id_array
;
5781 // Scope for thread list locker;
5783 std::lock_guard
<std::recursive_mutex
> guard(GetThreadList().GetMutex());
5784 ThreadList
&curr_thread_list
= GetThreadList();
5785 num_threads
= curr_thread_list
.GetSize();
5787 thread_id_array
.resize(num_threads
);
5788 for (idx
= 0; idx
< num_threads
; ++idx
)
5789 thread_id_array
[idx
] = curr_thread_list
.GetThreadAtIndex(idx
)->GetID();
5792 for (uint32_t i
= 0; i
< num_threads
; i
++) {
5793 ThreadSP
thread_sp(GetThreadList().FindThreadByID(thread_id_array
[i
]));
5795 if (only_threads_with_stop_reason
) {
5796 StopInfoSP stop_info_sp
= thread_sp
->GetStopInfo();
5797 if (!stop_info_sp
|| !stop_info_sp
->IsValid())
5800 thread_sp
->GetStatus(strm
, start_frame
, num_frames
,
5801 num_frames_with_source
, stop_format
,
5802 /*show_hidden*/ num_frames
<= 1);
5803 ++num_thread_infos_dumped
;
5805 Log
*log
= GetLog(LLDBLog::Process
);
5806 LLDB_LOGF(log
, "Process::GetThreadStatus - thread 0x" PRIu64
5807 " vanished while running Thread::GetStatus.");
5810 return num_thread_infos_dumped
;
5813 void Process::AddInvalidMemoryRegion(const LoadRange
®ion
) {
5814 m_memory_cache
.AddInvalidRange(region
.GetRangeBase(), region
.GetByteSize());
5817 bool Process::RemoveInvalidMemoryRange(const LoadRange
®ion
) {
5818 return m_memory_cache
.RemoveInvalidRange(region
.GetRangeBase(),
5819 region
.GetByteSize());
5822 void Process::AddPreResumeAction(PreResumeActionCallback callback
,
5824 m_pre_resume_actions
.push_back(PreResumeCallbackAndBaton(callback
, baton
));
5827 bool Process::RunPreResumeActions() {
5829 while (!m_pre_resume_actions
.empty()) {
5830 struct PreResumeCallbackAndBaton action
= m_pre_resume_actions
.back();
5831 m_pre_resume_actions
.pop_back();
5832 bool this_result
= action
.callback(action
.baton
);
5834 result
= this_result
;
5839 void Process::ClearPreResumeActions() { m_pre_resume_actions
.clear(); }
5841 void Process::ClearPreResumeAction(PreResumeActionCallback callback
, void *baton
)
5843 PreResumeCallbackAndBaton
element(callback
, baton
);
5844 auto found_iter
= std::find(m_pre_resume_actions
.begin(), m_pre_resume_actions
.end(), element
);
5845 if (found_iter
!= m_pre_resume_actions
.end())
5847 m_pre_resume_actions
.erase(found_iter
);
5851 ProcessRunLock
&Process::GetRunLock() {
5852 if (m_private_state_thread
.EqualsThread(Host::GetCurrentThread()))
5853 return m_private_run_lock
;
5855 return m_public_run_lock
;
5858 bool Process::CurrentThreadIsPrivateStateThread()
5860 return m_private_state_thread
.EqualsThread(Host::GetCurrentThread());
5864 void Process::Flush() {
5865 m_thread_list
.Flush();
5866 m_extended_thread_list
.Flush();
5867 m_extended_thread_stop_id
= 0;
5868 m_queue_list
.Clear();
5869 m_queue_list_stop_id
= 0;
5872 lldb::addr_t
Process::GetCodeAddressMask() {
5873 if (uint32_t num_bits_setting
= GetVirtualAddressableBits())
5874 return AddressableBits::AddressableBitToMask(num_bits_setting
);
5876 return m_code_address_mask
;
5879 lldb::addr_t
Process::GetDataAddressMask() {
5880 if (uint32_t num_bits_setting
= GetVirtualAddressableBits())
5881 return AddressableBits::AddressableBitToMask(num_bits_setting
);
5883 return m_data_address_mask
;
5886 lldb::addr_t
Process::GetHighmemCodeAddressMask() {
5887 if (uint32_t num_bits_setting
= GetHighmemVirtualAddressableBits())
5888 return AddressableBits::AddressableBitToMask(num_bits_setting
);
5890 if (m_highmem_code_address_mask
!= LLDB_INVALID_ADDRESS_MASK
)
5891 return m_highmem_code_address_mask
;
5892 return GetCodeAddressMask();
5895 lldb::addr_t
Process::GetHighmemDataAddressMask() {
5896 if (uint32_t num_bits_setting
= GetHighmemVirtualAddressableBits())
5897 return AddressableBits::AddressableBitToMask(num_bits_setting
);
5899 if (m_highmem_data_address_mask
!= LLDB_INVALID_ADDRESS_MASK
)
5900 return m_highmem_data_address_mask
;
5901 return GetDataAddressMask();
5904 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask
) {
5905 LLDB_LOG(GetLog(LLDBLog::Process
),
5906 "Setting Process code address mask to {0:x}", code_address_mask
);
5907 m_code_address_mask
= code_address_mask
;
5910 void Process::SetDataAddressMask(lldb::addr_t data_address_mask
) {
5911 LLDB_LOG(GetLog(LLDBLog::Process
),
5912 "Setting Process data address mask to {0:x}", data_address_mask
);
5913 m_data_address_mask
= data_address_mask
;
5916 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask
) {
5917 LLDB_LOG(GetLog(LLDBLog::Process
),
5918 "Setting Process highmem code address mask to {0:x}",
5920 m_highmem_code_address_mask
= code_address_mask
;
5923 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask
) {
5924 LLDB_LOG(GetLog(LLDBLog::Process
),
5925 "Setting Process highmem data address mask to {0:x}",
5927 m_highmem_data_address_mask
= data_address_mask
;
5930 addr_t
Process::FixCodeAddress(addr_t addr
) {
5931 if (ABISP abi_sp
= GetABI())
5932 addr
= abi_sp
->FixCodeAddress(addr
);
5936 addr_t
Process::FixDataAddress(addr_t addr
) {
5937 if (ABISP abi_sp
= GetABI())
5938 addr
= abi_sp
->FixDataAddress(addr
);
5942 addr_t
Process::FixAnyAddress(addr_t addr
) {
5943 if (ABISP abi_sp
= GetABI())
5944 addr
= abi_sp
->FixAnyAddress(addr
);
5948 void Process::DidExec() {
5949 Log
*log
= GetLog(LLDBLog::Process
);
5950 LLDB_LOGF(log
, "Process::%s()", __FUNCTION__
);
5952 Target
&target
= GetTarget();
5953 target
.CleanupProcess();
5954 target
.ClearModules(false);
5955 m_dynamic_checkers_up
.reset();
5957 m_system_runtime_up
.reset();
5960 m_jit_loaders_up
.reset();
5961 m_image_tokens
.clear();
5962 // After an exec, the inferior is a new process and these memory regions are
5963 // no longer allocated.
5964 m_allocated_memory_cache
.Clear(/*deallocte_memory=*/false);
5966 std::lock_guard
<std::recursive_mutex
> guard(m_language_runtimes_mutex
);
5967 m_language_runtimes
.clear();
5969 m_instrumentation_runtimes
.clear();
5970 m_thread_list
.DiscardThreadPlans();
5971 m_memory_cache
.Clear(true);
5974 // Flush the process (threads and all stack frames) after running
5975 // CompleteAttach() in case the dynamic loader loaded things in new
5979 // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5980 // let the target know so it can do any cleanup it needs to.
5984 addr_t
Process::ResolveIndirectFunction(const Address
*address
, Status
&error
) {
5985 if (address
== nullptr) {
5986 error
= Status::FromErrorString("Invalid address argument");
5987 return LLDB_INVALID_ADDRESS
;
5990 addr_t function_addr
= LLDB_INVALID_ADDRESS
;
5992 addr_t addr
= address
->GetLoadAddress(&GetTarget());
5993 std::map
<addr_t
, addr_t
>::const_iterator iter
=
5994 m_resolved_indirect_addresses
.find(addr
);
5995 if (iter
!= m_resolved_indirect_addresses
.end()) {
5996 function_addr
= (*iter
).second
;
5998 if (!CallVoidArgVoidPtrReturn(address
, function_addr
)) {
5999 Symbol
*symbol
= address
->CalculateSymbolContextSymbol();
6000 error
= Status::FromErrorStringWithFormat(
6001 "Unable to call resolver for indirect function %s",
6002 symbol
? symbol
->GetName().AsCString() : "<UNKNOWN>");
6003 function_addr
= LLDB_INVALID_ADDRESS
;
6005 if (ABISP abi_sp
= GetABI())
6006 function_addr
= abi_sp
->FixCodeAddress(function_addr
);
6007 m_resolved_indirect_addresses
.insert(
6008 std::pair
<addr_t
, addr_t
>(addr
, function_addr
));
6011 return function_addr
;
6014 void Process::ModulesDidLoad(ModuleList
&module_list
) {
6015 // Inform the system runtime of the modified modules.
6016 SystemRuntime
*sys_runtime
= GetSystemRuntime();
6018 sys_runtime
->ModulesDidLoad(module_list
);
6020 GetJITLoaders().ModulesDidLoad(module_list
);
6022 // Give the instrumentation runtimes a chance to be created before informing
6023 // them of the modified modules.
6024 InstrumentationRuntime::ModulesDidLoad(module_list
, this,
6025 m_instrumentation_runtimes
);
6026 for (auto &runtime
: m_instrumentation_runtimes
)
6027 runtime
.second
->ModulesDidLoad(module_list
);
6029 // Give the language runtimes a chance to be created before informing them of
6030 // the modified modules.
6031 for (const lldb::LanguageType lang_type
: Language::GetSupportedLanguages()) {
6032 if (LanguageRuntime
*runtime
= GetLanguageRuntime(lang_type
))
6033 runtime
->ModulesDidLoad(module_list
);
6036 // If we don't have an operating system plug-in, try to load one since
6037 // loading shared libraries might cause a new one to try and load
6039 LoadOperatingSystemPlugin(false);
6041 // Inform the structured-data plugins of the modified modules.
6042 for (auto &pair
: m_structured_data_plugin_map
) {
6044 pair
.second
->ModulesDidLoad(*this, module_list
);
6048 void Process::PrintWarningOptimization(const SymbolContext
&sc
) {
6049 if (!GetWarningsOptimization())
6051 if (!sc
.module_sp
|| !sc
.function
|| !sc
.function
->GetIsOptimized())
6053 sc
.module_sp
->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
6056 void Process::PrintWarningUnsupportedLanguage(const SymbolContext
&sc
) {
6057 if (!GetWarningsUnsupportedLanguage())
6061 LanguageType language
= sc
.GetLanguage();
6062 if (language
== eLanguageTypeUnknown
||
6063 language
== lldb::eLanguageTypeAssembly
||
6064 language
== lldb::eLanguageTypeMipsAssembler
)
6066 LanguageSet plugins
=
6067 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
6068 if (plugins
[language
])
6070 sc
.module_sp
->ReportWarningUnsupportedLanguage(
6071 language
, GetTarget().GetDebugger().GetID());
6074 bool Process::GetProcessInfo(ProcessInstanceInfo
&info
) {
6077 PlatformSP platform_sp
= GetTarget().GetPlatform();
6081 return platform_sp
->GetProcessInfo(GetID(), info
);
6084 lldb_private::UUID
Process::FindModuleUUID(const llvm::StringRef path
) {
6085 return lldb_private::UUID();
6088 ThreadCollectionSP
Process::GetHistoryThreads(lldb::addr_t addr
) {
6089 ThreadCollectionSP threads
;
6091 const MemoryHistorySP
&memory_history
=
6092 MemoryHistory::FindPlugin(shared_from_this());
6094 if (!memory_history
) {
6098 threads
= std::make_shared
<ThreadCollection
>(
6099 memory_history
->GetHistoryThreads(addr
));
6104 InstrumentationRuntimeSP
6105 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type
) {
6106 InstrumentationRuntimeCollection::iterator pos
;
6107 pos
= m_instrumentation_runtimes
.find(type
);
6108 if (pos
== m_instrumentation_runtimes
.end()) {
6109 return InstrumentationRuntimeSP();
6111 return (*pos
).second
;
6114 bool Process::GetModuleSpec(const FileSpec
&module_file_spec
,
6115 const ArchSpec
&arch
, ModuleSpec
&module_spec
) {
6116 module_spec
.Clear();
6120 size_t Process::AddImageToken(lldb::addr_t image_ptr
) {
6121 m_image_tokens
.push_back(image_ptr
);
6122 return m_image_tokens
.size() - 1;
6125 lldb::addr_t
Process::GetImagePtrFromToken(size_t token
) const {
6126 if (token
< m_image_tokens
.size())
6127 return m_image_tokens
[token
];
6128 return LLDB_INVALID_IMAGE_TOKEN
;
6131 void Process::ResetImageToken(size_t token
) {
6132 if (token
< m_image_tokens
.size())
6133 m_image_tokens
[token
] = LLDB_INVALID_IMAGE_TOKEN
;
6137 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr
,
6138 AddressRange range_bounds
) {
6139 Target
&target
= GetTarget();
6140 DisassemblerSP disassembler_sp
;
6141 InstructionList
*insn_list
= nullptr;
6143 Address retval
= default_stop_addr
;
6145 if (!target
.GetUseFastStepping())
6147 if (!default_stop_addr
.IsValid())
6150 const char *plugin_name
= nullptr;
6151 const char *flavor
= nullptr;
6152 const char *cpu
= nullptr;
6153 const char *features
= nullptr;
6154 disassembler_sp
= Disassembler::DisassembleRange(
6155 target
.GetArchitecture(), plugin_name
, flavor
, cpu
, features
, GetTarget(),
6157 if (disassembler_sp
)
6158 insn_list
= &disassembler_sp
->GetInstructionList();
6160 if (insn_list
== nullptr) {
6164 size_t insn_offset
=
6165 insn_list
->GetIndexOfInstructionAtAddress(default_stop_addr
);
6166 if (insn_offset
== UINT32_MAX
) {
6170 uint32_t branch_index
= insn_list
->GetIndexOfNextBranchInstruction(
6171 insn_offset
, false /* ignore_calls*/, nullptr);
6172 if (branch_index
== UINT32_MAX
) {
6176 if (branch_index
> insn_offset
) {
6177 Address next_branch_insn_address
=
6178 insn_list
->GetInstructionAtIndex(branch_index
)->GetAddress();
6179 if (next_branch_insn_address
.IsValid() &&
6180 range_bounds
.ContainsFileAddress(next_branch_insn_address
)) {
6181 retval
= next_branch_insn_address
;
6188 Status
Process::GetMemoryRegionInfo(lldb::addr_t load_addr
,
6189 MemoryRegionInfo
&range_info
) {
6190 if (const lldb::ABISP
&abi
= GetABI())
6191 load_addr
= abi
->FixAnyAddress(load_addr
);
6192 Status error
= DoGetMemoryRegionInfo(load_addr
, range_info
);
6193 // Reject a region that does not contain the requested address.
6194 if (error
.Success() && !range_info
.GetRange().Contains(load_addr
))
6195 error
= Status::FromErrorString("Invalid memory region");
6200 Status
Process::GetMemoryRegions(lldb_private::MemoryRegionInfos
®ion_list
) {
6203 lldb::addr_t range_end
= 0;
6204 const lldb::ABISP
&abi
= GetABI();
6206 region_list
.clear();
6208 lldb_private::MemoryRegionInfo region_info
;
6209 error
= GetMemoryRegionInfo(range_end
, region_info
);
6210 // GetMemoryRegionInfo should only return an error if it is unimplemented.
6212 region_list
.clear();
6216 // We only check the end address, not start and end, because we assume that
6217 // the start will not have non-address bits until the first unmappable
6218 // region. We will have exited the loop by that point because the previous
6219 // region, the last mappable region, will have non-address bits in its end
6221 range_end
= region_info
.GetRange().GetRangeEnd();
6222 if (region_info
.GetMapped() == MemoryRegionInfo::eYes
) {
6223 region_list
.push_back(std::move(region_info
));
6226 // For a process with no non-address bits, all address bits
6227 // set means the end of memory.
6228 range_end
!= LLDB_INVALID_ADDRESS
&&
6229 // If we have non-address bits and some are set then the end
6230 // is at or beyond the end of mappable memory.
6231 !(abi
&& (abi
->FixAnyAddress(range_end
) != range_end
)));
6237 Process::ConfigureStructuredData(llvm::StringRef type_name
,
6238 const StructuredData::ObjectSP
&config_sp
) {
6239 // If you get this, the Process-derived class needs to implement a method to
6240 // enable an already-reported asynchronous structured data feature. See
6241 // ProcessGDBRemote for an example implementation over gdb-remote.
6242 return Status::FromErrorString("unimplemented");
6245 void Process::MapSupportedStructuredDataPlugins(
6246 const StructuredData::Array
&supported_type_names
) {
6247 Log
*log
= GetLog(LLDBLog::Process
);
6249 // Bail out early if there are no type names to map.
6250 if (supported_type_names
.GetSize() == 0) {
6251 LLDB_LOG(log
, "no structured data types supported");
6255 // These StringRefs are backed by the input parameter.
6256 std::set
<llvm::StringRef
> type_names
;
6259 "the process supports the following async structured data types:");
6261 supported_type_names
.ForEach(
6262 [&type_names
, &log
](StructuredData::Object
*object
) {
6263 // There shouldn't be null objects in the array.
6267 // All type names should be strings.
6268 const llvm::StringRef type_name
= object
->GetStringValue();
6269 if (type_name
.empty())
6272 type_names
.insert(type_name
);
6273 LLDB_LOG(log
, "- {0}", type_name
);
6277 // For each StructuredDataPlugin, if the plugin handles any of the types in
6278 // the supported_type_names, map that type name to that plugin. Stop when
6279 // we've consumed all the type names.
6280 // FIXME: should we return an error if there are type names nobody
6282 for (uint32_t plugin_index
= 0; !type_names
.empty(); plugin_index
++) {
6283 auto create_instance
=
6284 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
6286 if (!create_instance
)
6289 // Create the plugin.
6290 StructuredDataPluginSP plugin_sp
= (*create_instance
)(*this);
6292 // This plugin doesn't think it can work with the process. Move on to the
6297 // For any of the remaining type names, map any that this plugin supports.
6298 std::vector
<llvm::StringRef
> names_to_remove
;
6299 for (llvm::StringRef type_name
: type_names
) {
6300 if (plugin_sp
->SupportsStructuredDataType(type_name
)) {
6301 m_structured_data_plugin_map
.insert(
6302 std::make_pair(type_name
, plugin_sp
));
6303 names_to_remove
.push_back(type_name
);
6304 LLDB_LOG(log
, "using plugin {0} for type name {1}",
6305 plugin_sp
->GetPluginName(), type_name
);
6309 // Remove the type names that were consumed by this plugin.
6310 for (llvm::StringRef type_name
: names_to_remove
)
6311 type_names
.erase(type_name
);
6315 bool Process::RouteAsyncStructuredData(
6316 const StructuredData::ObjectSP object_sp
) {
6317 // Nothing to do if there's no data.
6321 // The contract is this must be a dictionary, so we can look up the routing
6322 // key via the top-level 'type' string value within the dictionary.
6323 StructuredData::Dictionary
*dictionary
= object_sp
->GetAsDictionary();
6327 // Grab the async structured type name (i.e. the feature/plugin name).
6328 llvm::StringRef type_name
;
6329 if (!dictionary
->GetValueForKeyAsString("type", type_name
))
6332 // Check if there's a plugin registered for this type name.
6333 auto find_it
= m_structured_data_plugin_map
.find(type_name
);
6334 if (find_it
== m_structured_data_plugin_map
.end()) {
6335 // We don't have a mapping for this structured data type.
6339 // Route the structured data to the plugin.
6340 find_it
->second
->HandleArrivalOfStructuredData(*this, type_name
, object_sp
);
6344 Status
Process::UpdateAutomaticSignalFiltering() {
6345 // Default implementation does nothign.
6346 // No automatic signal filtering to speak of.
6350 UtilityFunction
*Process::GetLoadImageUtilityFunction(
6352 llvm::function_ref
<std::unique_ptr
<UtilityFunction
>()> factory
) {
6353 if (platform
!= GetTarget().GetPlatform().get())
6355 llvm::call_once(m_dlopen_utility_func_flag_once
,
6356 [&] { m_dlopen_utility_func_up
= factory(); });
6357 return m_dlopen_utility_func_up
.get();
6360 llvm::Expected
<TraceSupportedResponse
> Process::TraceSupported() {
6361 if (!IsLiveDebugSession())
6362 return llvm::createStringError(llvm::inconvertibleErrorCode(),
6363 "Can't trace a non-live process.");
6364 return llvm::make_error
<UnimplementedError
>();
6367 bool Process::CallVoidArgVoidPtrReturn(const Address
*address
,
6368 addr_t
&returned_func
,
6369 bool trap_exceptions
) {
6370 Thread
*thread
= GetThreadList().GetExpressionExecutionThread().get();
6371 if (thread
== nullptr || address
== nullptr)
6374 EvaluateExpressionOptions options
;
6375 options
.SetStopOthers(true);
6376 options
.SetUnwindOnError(true);
6377 options
.SetIgnoreBreakpoints(true);
6378 options
.SetTryAllThreads(true);
6379 options
.SetDebug(false);
6380 options
.SetTimeout(GetUtilityExpressionTimeout());
6381 options
.SetTrapExceptions(trap_exceptions
);
6383 auto type_system_or_err
=
6384 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC
);
6385 if (!type_system_or_err
) {
6386 llvm::consumeError(type_system_or_err
.takeError());
6389 auto ts
= *type_system_or_err
;
6392 CompilerType void_ptr_type
=
6393 ts
->GetBasicTypeFromAST(eBasicTypeVoid
).GetPointerType();
6394 lldb::ThreadPlanSP
call_plan_sp(new ThreadPlanCallFunction(
6395 *thread
, *address
, void_ptr_type
, llvm::ArrayRef
<addr_t
>(), options
));
6397 DiagnosticManager diagnostics
;
6399 StackFrame
*frame
= thread
->GetStackFrameAtIndex(0).get();
6401 ExecutionContext exe_ctx
;
6402 frame
->CalculateExecutionContext(exe_ctx
);
6403 ExpressionResults result
=
6404 RunThreadPlan(exe_ctx
, call_plan_sp
, options
, diagnostics
);
6405 if (result
== eExpressionCompleted
) {
6407 call_plan_sp
->GetReturnValueObject()->GetValueAsUnsigned(
6408 LLDB_INVALID_ADDRESS
);
6410 if (GetAddressByteSize() == 4) {
6411 if (returned_func
== UINT32_MAX
)
6413 } else if (GetAddressByteSize() == 8) {
6414 if (returned_func
== UINT64_MAX
)
6425 llvm::Expected
<const MemoryTagManager
*> Process::GetMemoryTagManager() {
6426 Architecture
*arch
= GetTarget().GetArchitecturePlugin();
6427 const MemoryTagManager
*tag_manager
=
6428 arch
? arch
->GetMemoryTagManager() : nullptr;
6429 if (!arch
|| !tag_manager
) {
6430 return llvm::createStringError(
6431 llvm::inconvertibleErrorCode(),
6432 "This architecture does not support memory tagging");
6435 if (!SupportsMemoryTagging()) {
6436 return llvm::createStringError(llvm::inconvertibleErrorCode(),
6437 "Process does not support memory tagging");
6443 llvm::Expected
<std::vector
<lldb::addr_t
>>
6444 Process::ReadMemoryTags(lldb::addr_t addr
, size_t len
) {
6445 llvm::Expected
<const MemoryTagManager
*> tag_manager_or_err
=
6446 GetMemoryTagManager();
6447 if (!tag_manager_or_err
)
6448 return tag_manager_or_err
.takeError();
6450 const MemoryTagManager
*tag_manager
= *tag_manager_or_err
;
6451 llvm::Expected
<std::vector
<uint8_t>> tag_data
=
6452 DoReadMemoryTags(addr
, len
, tag_manager
->GetAllocationTagType());
6454 return tag_data
.takeError();
6456 return tag_manager
->UnpackTagsData(*tag_data
,
6457 len
/ tag_manager
->GetGranuleSize());
6460 Status
Process::WriteMemoryTags(lldb::addr_t addr
, size_t len
,
6461 const std::vector
<lldb::addr_t
> &tags
) {
6462 llvm::Expected
<const MemoryTagManager
*> tag_manager_or_err
=
6463 GetMemoryTagManager();
6464 if (!tag_manager_or_err
)
6465 return Status::FromError(tag_manager_or_err
.takeError());
6467 const MemoryTagManager
*tag_manager
= *tag_manager_or_err
;
6468 llvm::Expected
<std::vector
<uint8_t>> packed_tags
=
6469 tag_manager
->PackTags(tags
);
6471 return Status::FromError(packed_tags
.takeError());
6474 return DoWriteMemoryTags(addr
, len
, tag_manager
->GetAllocationTagType(),
6478 // Create a CoreFileMemoryRange from a MemoryRegionInfo
6479 static CoreFileMemoryRange
6480 CreateCoreFileMemoryRange(const MemoryRegionInfo
®ion
) {
6481 const addr_t addr
= region
.GetRange().GetRangeBase();
6482 llvm::AddressRange
range(addr
, addr
+ region
.GetRange().GetByteSize());
6483 return {range
, region
.GetLLDBPermissions()};
6486 // Add dirty pages to the core file ranges and return true if dirty pages
6487 // were added. Return false if the dirty page information is not valid or in
6489 static bool AddDirtyPages(const MemoryRegionInfo
®ion
,
6490 CoreFileMemoryRanges
&ranges
) {
6491 const auto &dirty_page_list
= region
.GetDirtyPageList();
6492 if (!dirty_page_list
)
6494 const uint32_t lldb_permissions
= region
.GetLLDBPermissions();
6495 const addr_t page_size
= region
.GetPageSize();
6498 llvm::AddressRange
range(0, 0);
6499 for (addr_t page_addr
: *dirty_page_list
) {
6500 if (range
.empty()) {
6501 // No range yet, initialize the range with the current dirty page.
6502 range
= llvm::AddressRange(page_addr
, page_addr
+ page_size
);
6504 if (range
.end() == page_addr
) {
6505 // Combine consective ranges.
6506 range
= llvm::AddressRange(range
.start(), page_addr
+ page_size
);
6508 // Add previous contiguous range and init the new range with the
6509 // current dirty page.
6510 ranges
.Append(range
.start(), range
.size(), {range
, lldb_permissions
});
6511 range
= llvm::AddressRange(page_addr
, page_addr
+ page_size
);
6517 ranges
.Append(range
.start(), range
.size(), {range
, lldb_permissions
});
6521 // Given a region, add the region to \a ranges.
6523 // Only add the region if it isn't empty and if it has some permissions.
6524 // If \a try_dirty_pages is true, then try to add only the dirty pages for a
6525 // given region. If the region has dirty page information, only dirty pages
6526 // will be added to \a ranges, else the entire range will be added to \a
6528 static void AddRegion(const MemoryRegionInfo
®ion
, bool try_dirty_pages
,
6529 CoreFileMemoryRanges
&ranges
) {
6530 // Don't add empty ranges.
6531 if (region
.GetRange().GetByteSize() == 0)
6533 // Don't add ranges with no read permissions.
6534 if ((region
.GetLLDBPermissions() & lldb::ePermissionsReadable
) == 0)
6536 if (try_dirty_pages
&& AddDirtyPages(region
, ranges
))
6539 ranges
.Append(region
.GetRange().GetRangeBase(),
6540 region
.GetRange().GetByteSize(),
6541 CreateCoreFileMemoryRange(region
));
6544 static void SaveDynamicLoaderSections(Process
&process
,
6545 const SaveCoreOptions
&options
,
6546 CoreFileMemoryRanges
&ranges
,
6547 std::set
<addr_t
> &stack_ends
) {
6548 DynamicLoader
*dyld
= process
.GetDynamicLoader();
6552 std::vector
<MemoryRegionInfo
> dynamic_loader_mem_regions
;
6553 std::function
<bool(const lldb_private::Thread
&)> save_thread_predicate
=
6554 [&](const lldb_private::Thread
&t
) -> bool {
6555 return options
.ShouldThreadBeSaved(t
.GetID());
6557 dyld
->CalculateDynamicSaveCoreRanges(process
, dynamic_loader_mem_regions
,
6558 save_thread_predicate
);
6559 for (const auto ®ion
: dynamic_loader_mem_regions
) {
6560 // The Dynamic Loader can give us regions that could include a truncated
6562 if (stack_ends
.count(region
.GetRange().GetRangeEnd()) == 0)
6563 AddRegion(region
, true, ranges
);
6567 static void SaveOffRegionsWithStackPointers(Process
&process
,
6568 const SaveCoreOptions
&core_options
,
6569 const MemoryRegionInfos
®ions
,
6570 CoreFileMemoryRanges
&ranges
,
6571 std::set
<addr_t
> &stack_ends
) {
6572 const bool try_dirty_pages
= true;
6574 // Before we take any dump, we want to save off the used portions of the
6575 // stacks and mark those memory regions as saved. This prevents us from saving
6576 // the unused portion of the stack below the stack pointer. Saving space on
6578 for (lldb::ThreadSP thread_sp
: process
.GetThreadList().Threads()) {
6581 StackFrameSP frame_sp
= thread_sp
->GetStackFrameAtIndex(0);
6584 RegisterContextSP reg_ctx_sp
= frame_sp
->GetRegisterContext();
6587 const addr_t sp
= reg_ctx_sp
->GetSP();
6588 const size_t red_zone
= process
.GetABI()->GetRedZoneSize();
6589 lldb_private::MemoryRegionInfo sp_region
;
6590 if (process
.GetMemoryRegionInfo(sp
, sp_region
).Success()) {
6591 const size_t stack_head
= (sp
- red_zone
);
6592 const size_t stack_size
= sp_region
.GetRange().GetRangeEnd() - stack_head
;
6593 // Even if the SaveCoreOption doesn't want us to save the stack
6594 // we still need to populate the stack_ends set so it doesn't get saved
6595 // off in other calls
6596 sp_region
.GetRange().SetRangeBase(stack_head
);
6597 sp_region
.GetRange().SetByteSize(stack_size
);
6598 const addr_t range_end
= sp_region
.GetRange().GetRangeEnd();
6599 stack_ends
.insert(range_end
);
6600 // This will return true if the threadlist the user specified is empty,
6601 // or contains the thread id from thread_sp.
6602 if (core_options
.ShouldThreadBeSaved(thread_sp
->GetID())) {
6603 AddRegion(sp_region
, try_dirty_pages
, ranges
);
6609 // Save all memory regions that are not empty or have at least some permissions
6610 // for a full core file style.
6611 static void GetCoreFileSaveRangesFull(Process
&process
,
6612 const MemoryRegionInfos
®ions
,
6613 CoreFileMemoryRanges
&ranges
,
6614 std::set
<addr_t
> &stack_ends
) {
6616 // Don't add only dirty pages, add full regions.
6617 const bool try_dirty_pages
= false;
6618 for (const auto ®ion
: regions
)
6619 if (stack_ends
.count(region
.GetRange().GetRangeEnd()) == 0)
6620 AddRegion(region
, try_dirty_pages
, ranges
);
6623 // Save only the dirty pages to the core file. Make sure the process has at
6624 // least some dirty pages, as some OS versions don't support reporting what
6625 // pages are dirty within an memory region. If no memory regions have dirty
6626 // page information fall back to saving out all ranges with write permissions.
6627 static void GetCoreFileSaveRangesDirtyOnly(Process
&process
,
6628 const MemoryRegionInfos
®ions
,
6629 CoreFileMemoryRanges
&ranges
,
6630 std::set
<addr_t
> &stack_ends
) {
6632 // Iterate over the regions and find all dirty pages.
6633 bool have_dirty_page_info
= false;
6634 for (const auto ®ion
: regions
) {
6635 if (stack_ends
.count(region
.GetRange().GetRangeEnd()) == 0 &&
6636 AddDirtyPages(region
, ranges
))
6637 have_dirty_page_info
= true;
6640 if (!have_dirty_page_info
) {
6641 // We didn't find support for reporting dirty pages from the process
6642 // plug-in so fall back to any region with write access permissions.
6643 const bool try_dirty_pages
= false;
6644 for (const auto ®ion
: regions
)
6645 if (stack_ends
.count(region
.GetRange().GetRangeEnd()) == 0 &&
6646 region
.GetWritable() == MemoryRegionInfo::eYes
)
6647 AddRegion(region
, try_dirty_pages
, ranges
);
6651 // Save all thread stacks to the core file. Some OS versions support reporting
6652 // when a memory region is stack related. We check on this information, but we
6653 // also use the stack pointers of each thread and add those in case the OS
6654 // doesn't support reporting stack memory. This function also attempts to only
6655 // emit dirty pages from the stack if the memory regions support reporting
6656 // dirty regions as this will make the core file smaller. If the process
6657 // doesn't support dirty regions, then it will fall back to adding the full
6659 static void GetCoreFileSaveRangesStackOnly(Process
&process
,
6660 const MemoryRegionInfos
®ions
,
6661 CoreFileMemoryRanges
&ranges
,
6662 std::set
<addr_t
> &stack_ends
) {
6663 const bool try_dirty_pages
= true;
6664 // Some platforms support annotating the region information that tell us that
6665 // it comes from a thread stack. So look for those regions first.
6667 for (const auto ®ion
: regions
) {
6668 // Save all the stack memory ranges not associated with a stack pointer.
6669 if (stack_ends
.count(region
.GetRange().GetRangeEnd()) == 0 &&
6670 region
.IsStackMemory() == MemoryRegionInfo::eYes
)
6671 AddRegion(region
, try_dirty_pages
, ranges
);
6675 static void GetUserSpecifiedCoreFileSaveRanges(Process
&process
,
6676 const MemoryRegionInfos
®ions
,
6677 const SaveCoreOptions
&options
,
6678 CoreFileMemoryRanges
&ranges
) {
6679 const auto &option_ranges
= options
.GetCoreFileMemoryRanges();
6680 if (option_ranges
.IsEmpty())
6683 for (const auto &range
: regions
) {
6684 auto entry
= option_ranges
.FindEntryThatContains(range
.GetRange());
6686 ranges
.Append(range
.GetRange().GetRangeBase(),
6687 range
.GetRange().GetByteSize(),
6688 CreateCoreFileMemoryRange(range
));
6693 Status
Process::CalculateCoreFileSaveRanges(const SaveCoreOptions
&options
,
6694 CoreFileMemoryRanges
&ranges
) {
6695 lldb_private::MemoryRegionInfos regions
;
6696 Status err
= GetMemoryRegions(regions
);
6697 SaveCoreStyle core_style
= options
.GetStyle();
6700 if (regions
.empty())
6701 return Status::FromErrorString(
6702 "failed to get any valid memory regions from the process");
6703 if (core_style
== eSaveCoreUnspecified
)
6704 return Status::FromErrorString(
6705 "callers must set the core_style to something other than "
6706 "eSaveCoreUnspecified");
6708 GetUserSpecifiedCoreFileSaveRanges(*this, regions
, options
, ranges
);
6710 std::set
<addr_t
> stack_ends
;
6711 // For fully custom set ups, we don't want to even look at threads if there
6712 // are no threads specified.
6713 if (core_style
!= lldb::eSaveCoreCustomOnly
||
6714 options
.HasSpecifiedThreads()) {
6715 SaveOffRegionsWithStackPointers(*this, options
, regions
, ranges
,
6717 // Save off the dynamic loader sections, so if we are on an architecture
6718 // that supports Thread Locals, that we include those as well.
6719 SaveDynamicLoaderSections(*this, options
, ranges
, stack_ends
);
6722 switch (core_style
) {
6723 case eSaveCoreUnspecified
:
6724 case eSaveCoreCustomOnly
:
6728 GetCoreFileSaveRangesFull(*this, regions
, ranges
, stack_ends
);
6731 case eSaveCoreDirtyOnly
:
6732 GetCoreFileSaveRangesDirtyOnly(*this, regions
, ranges
, stack_ends
);
6735 case eSaveCoreStackOnly
:
6736 GetCoreFileSaveRangesStackOnly(*this, regions
, ranges
, stack_ends
);
6743 if (ranges
.IsEmpty())
6744 return Status::FromErrorStringWithFormat(
6745 "no valid address ranges found for core style");
6747 return ranges
.FinalizeCoreFileSaveRanges();
6750 std::vector
<ThreadSP
>
6751 Process::CalculateCoreFileThreadList(const SaveCoreOptions
&core_options
) {
6752 std::vector
<ThreadSP
> thread_list
;
6753 for (const lldb::ThreadSP
&thread_sp
: m_thread_list
.Threads()) {
6754 if (core_options
.ShouldThreadBeSaved(thread_sp
->GetID())) {
6755 thread_list
.push_back(thread_sp
);
6762 void Process::SetAddressableBitMasks(AddressableBits bit_masks
) {
6763 uint32_t low_memory_addr_bits
= bit_masks
.GetLowmemAddressableBits();
6764 uint32_t high_memory_addr_bits
= bit_masks
.GetHighmemAddressableBits();
6766 if (low_memory_addr_bits
== 0 && high_memory_addr_bits
== 0)
6769 if (low_memory_addr_bits
!= 0) {
6770 addr_t low_addr_mask
=
6771 AddressableBits::AddressableBitToMask(low_memory_addr_bits
);
6772 SetCodeAddressMask(low_addr_mask
);
6773 SetDataAddressMask(low_addr_mask
);
6776 if (high_memory_addr_bits
!= 0) {
6777 addr_t high_addr_mask
=
6778 AddressableBits::AddressableBitToMask(high_memory_addr_bits
);
6779 SetHighmemCodeAddressMask(high_addr_mask
);
6780 SetHighmemDataAddressMask(high_addr_mask
);