[ConstraintElim] Add support for decomposing gep nuw (#118639)
[llvm-project.git] / llvm / examples / IRTransforms / SimplifyCFG.cpp
bloba37060cedb4a7785df437dc34a57a23e11c901ca
1 //===- SimplifyCFG.cpp ----------------------------------------------------===//
2 //
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the control flow graph (CFG) simplifications
11 // presented as part of the 'Getting Started With LLVM: Basics' tutorial at the
12 // US LLVM Developers Meeting 2019. It also contains additional material.
14 // The current file contains three different CFG simplifications. There are
15 // multiple versions of each implementation (e.g. _v1 and _v2), which implement
16 // additional functionality (e.g. preserving analysis like the DominatorTree) or
17 // use additional utilities to simplify the code (e.g. LLVM's PatternMatch.h).
18 // The available simplifications are:
19 // 1. Trivially Dead block Removal (removeDeadBlocks_v[1,2]).
20 // This simplifications removes all blocks without predecessors in the CFG
21 // from a function.
22 // 2. Conditional Branch Elimination (eliminateCondBranches_v[1,2,3])
23 // This simplification replaces conditional branches with constant integer
24 // conditions with unconditional branches.
25 // 3. Single Predecessor Block Merging (mergeIntoSinglePredecessor_v[1,2])
26 // This simplification merges blocks with a single predecessor into the
27 // predecessor, if that block has a single successor.
29 // TODOs
30 // * Preserve LoopInfo.
31 // * Add fixed point iteration to delete all dead blocks
32 // * Add implementation using reachability to discover dead blocks.
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Analysis/DomTreeUpdater.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/PassManager.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/Passes/PassBuilder.h"
41 #include "llvm/Passes/PassPlugin.h"
42 #include "llvm/Support/CommandLine.h"
44 using namespace llvm;
45 using namespace PatternMatch;
47 enum TutorialVersion { V1, V2, V3 };
48 static cl::opt<TutorialVersion>
49 Version("tut-simplifycfg-version", cl::desc("Select tutorial version"),
50 cl::Hidden, cl::ValueOptional, cl::init(V1),
51 cl::values(clEnumValN(V1, "v1", "version 1"),
52 clEnumValN(V2, "v2", "version 2"),
53 clEnumValN(V3, "v3", "version 3"),
54 // Sentinel value for unspecified option.
55 clEnumValN(V3, "", "")));
57 #define DEBUG_TYPE "tut-simplifycfg"
59 // Remove trivially dead blocks. First version, not preserving the
60 // DominatorTree.
61 static bool removeDeadBlocks_v1(Function &F) {
62 bool Changed = false;
64 // Remove trivially dead blocks.
65 for (BasicBlock &BB : make_early_inc_range(F)) {
66 // Skip blocks we know to not be trivially dead. We know a block is
67 // guaranteed to be dead, iff it is neither the entry block nor
68 // has any predecessors.
69 if (&F.getEntryBlock() == &BB || !pred_empty(&BB))
70 continue;
72 // Notify successors of BB that BB is going to be removed. This removes
73 // incoming values from BB from PHIs in the successors. Note that this will
74 // not actually remove BB from the predecessor lists of its successors.
75 for (BasicBlock *Succ : successors(&BB))
76 Succ->removePredecessor(&BB);
77 // TODO: Find a better place to put such small variations.
78 // Alternatively, we can update the PHI nodes manually:
79 // for (PHINode &PN : make_early_inc_range(Succ->phis()))
80 // PN.removeIncomingValue(&BB);
82 // Replace all instructions in BB with a poison constant. The block is
83 // unreachable, so the results of the instructions should never get used.
84 while (!BB.empty()) {
85 Instruction &I = BB.back();
86 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
87 I.eraseFromParent();
90 // Finally remove the basic block.
91 BB.eraseFromParent();
92 Changed = true;
95 return Changed;
98 // Remove trivially dead blocks. This is the second version and preserves the
99 // dominator tree.
100 static bool removeDeadBlocks_v2(Function &F, DominatorTree &DT) {
101 bool Changed = false;
102 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
103 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
105 // Remove trivially dead blocks.
106 for (BasicBlock &BB : make_early_inc_range(F)) {
107 // Skip blocks we know to not be trivially dead. We know a block is
108 // guaranteed to be dead, iff it is neither the entry block nor
109 // has any predecessors.
110 if (&F.getEntryBlock() == &BB || !pred_empty(&BB))
111 continue;
113 // Notify successors of BB that BB is going to be removed. This removes
114 // incoming values from BB from PHIs in the successors. Note that this will
115 // not actually remove BB from the predecessor lists of its successors.
116 for (BasicBlock *Succ : successors(&BB)) {
117 Succ->removePredecessor(&BB);
119 // Collect updates that need to be applied to the dominator tree.
120 DTUpdates.push_back({DominatorTree::Delete, &BB, Succ});
123 // Remove BB via the DomTreeUpdater. DomTreeUpdater::deleteBB conveniently
124 // removes the instructions in BB as well.
125 DTU.deleteBB(&BB);
126 Changed = true;
129 // Apply updates permissively, to remove duplicates.
130 DTU.applyUpdatesPermissive(DTUpdates);
132 return Changed;
135 // Eliminate branches with constant conditionals. This is the first version,
136 // which *does not* preserve the dominator tree.
137 static bool eliminateCondBranches_v1(Function &F) {
138 bool Changed = false;
140 // Eliminate branches with constant conditionals.
141 for (BasicBlock &BB : F) {
142 // Skip blocks without conditional branches as terminators.
143 BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator());
144 if (!BI || !BI->isConditional())
145 continue;
147 // Skip blocks with conditional branches without ConstantInt conditions.
148 ConstantInt *CI = dyn_cast<ConstantInt>(BI->getCondition());
149 if (!CI)
150 continue;
152 // We use the branch condition (CI), to select the successor we remove:
153 // if CI == 1 (true), we remove the second successor, otherwise the first.
154 BasicBlock *RemovedSucc = BI->getSuccessor(CI->isOne());
155 // Tell RemovedSucc we will remove BB from its predecessors.
156 RemovedSucc->removePredecessor(&BB);
158 // Replace the conditional branch with an unconditional one, by creating
159 // a new unconditional branch to the selected successor and removing the
160 // conditional one.
161 BranchInst::Create(BI->getSuccessor(CI->isZero()), BI->getIterator());
162 BI->eraseFromParent();
163 Changed = true;
166 return Changed;
169 // Eliminate branches with constant conditionals. This is the second
170 // version, which *does* preserve the dominator tree.
171 static bool eliminateCondBranches_v2(Function &F, DominatorTree &DT) {
172 bool Changed = false;
174 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
175 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
176 // Eliminate branches with constant conditionals.
177 for (BasicBlock &BB : F) {
178 // Skip blocks without conditional branches as terminators.
179 BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator());
180 if (!BI || !BI->isConditional())
181 continue;
183 // Skip blocks with conditional branches without ConstantInt conditions.
184 ConstantInt *CI = dyn_cast<ConstantInt>(BI->getCondition());
185 if (!CI)
186 continue;
188 // We use the branch condition (CI), to select the successor we remove:
189 // if CI == 1 (true), we remove the second successor, otherwise the first.
190 BasicBlock *RemovedSucc = BI->getSuccessor(CI->isOne());
191 // Tell RemovedSucc we will remove BB from its predecessors.
192 RemovedSucc->removePredecessor(&BB);
194 // Replace the conditional branch with an unconditional one, by creating
195 // a new unconditional branch to the selected successor and removing the
196 // conditional one.
197 BranchInst *NewBranch =
198 BranchInst::Create(BI->getSuccessor(CI->isZero()), BI->getIterator());
199 BI->eraseFromParent();
201 // Delete the edge between BB and RemovedSucc in the DominatorTree, iff
202 // the conditional branch did not use RemovedSucc as both the true and false
203 // branches.
204 if (NewBranch->getSuccessor(0) != RemovedSucc)
205 DTUpdates.push_back({DominatorTree::Delete, &BB, RemovedSucc});
206 Changed = true;
209 // Apply updates permissively, to remove duplicates.
210 DTU.applyUpdatesPermissive(DTUpdates);
212 return Changed;
215 // Eliminate branches with constant conditionals. This is the third
216 // version, which uses PatternMatch.h.
217 static bool eliminateCondBranches_v3(Function &F, DominatorTree &DT) {
218 bool Changed = false;
219 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
220 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
222 // Eliminate branches with constant conditionals.
223 for (BasicBlock &BB : F) {
224 ConstantInt *CI = nullptr;
225 BasicBlock *TakenSucc, *RemovedSucc;
226 // Check if the terminator is a conditional branch, with constant integer
227 // condition and also capture the successor blocks as TakenSucc and
228 // RemovedSucc.
229 if (!match(BB.getTerminator(),
230 m_Br(m_ConstantInt(CI), m_BasicBlock(TakenSucc),
231 m_BasicBlock(RemovedSucc))))
232 continue;
234 // If the condition is false, swap TakenSucc and RemovedSucc.
235 if (CI->isZero())
236 std::swap(TakenSucc, RemovedSucc);
238 // Tell RemovedSucc we will remove BB from its predecessors.
239 RemovedSucc->removePredecessor(&BB);
241 // Replace the conditional branch with an unconditional one, by creating
242 // a new unconditional branch to the selected successor and removing the
243 // conditional one.
245 BranchInst *NewBranch =
246 BranchInst::Create(TakenSucc, BB.getTerminator()->getIterator());
247 BB.getTerminator()->eraseFromParent();
249 // Delete the edge between BB and RemovedSucc in the DominatorTree, iff
250 // the conditional branch did not use RemovedSucc as both the true and false
251 // branches.
252 if (NewBranch->getSuccessor(0) != RemovedSucc)
253 DTUpdates.push_back({DominatorTree::Delete, &BB, RemovedSucc});
254 Changed = true;
257 // Apply updates permissively, to remove duplicates.
258 DTU.applyUpdatesPermissive(DTUpdates);
259 return Changed;
262 // Merge basic blocks into their single predecessor, if their predecessor has a
263 // single successor. This is the first version and does not preserve the
264 // DominatorTree.
265 static bool mergeIntoSinglePredecessor_v1(Function &F) {
266 bool Changed = false;
268 // Merge blocks with single predecessors.
269 for (BasicBlock &BB : make_early_inc_range(F)) {
270 BasicBlock *Pred = BB.getSinglePredecessor();
271 // Make sure BB has a single predecessor Pred and BB is the single
272 // successor of Pred.
273 if (!Pred || Pred->getSingleSuccessor() != &BB)
274 continue;
276 // Do not try to merge self loops. That can happen in dead blocks.
277 if (Pred == &BB)
278 continue;
280 // Need to replace it before nuking the branch.
281 BB.replaceAllUsesWith(Pred);
282 // PHI nodes in BB can only have a single incoming value. Remove them.
283 for (PHINode &PN : make_early_inc_range(BB.phis())) {
284 PN.replaceAllUsesWith(PN.getIncomingValue(0));
285 PN.eraseFromParent();
287 // Move all instructions from BB to Pred.
288 for (Instruction &I : make_early_inc_range(BB))
289 I.moveBefore(Pred->getTerminator());
291 // Remove the Pred's terminator (which jumped to BB). BB's terminator
292 // will become Pred's terminator.
293 Pred->getTerminator()->eraseFromParent();
294 BB.eraseFromParent();
296 Changed = true;
299 return Changed;
302 // Merge basic blocks into their single predecessor, if their predecessor has a
303 // single successor. This is the second version and does preserve the
304 // DominatorTree.
305 static bool mergeIntoSinglePredecessor_v2(Function &F, DominatorTree &DT) {
306 bool Changed = false;
307 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
308 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
310 // Merge blocks with single predecessors.
311 for (BasicBlock &BB : make_early_inc_range(F)) {
312 BasicBlock *Pred = BB.getSinglePredecessor();
313 // Make sure BB has a single predecessor Pred and BB is the single
314 // successor of Pred.
315 if (!Pred || Pred->getSingleSuccessor() != &BB)
316 continue;
318 // Do not try to merge self loops. That can happen in dead blocks.
319 if (Pred == &BB)
320 continue;
322 // Tell DTU about the changes to the CFG: All edges from BB to its
323 // successors get removed and we add edges between Pred and BB's successors.
324 for (BasicBlock *Succ : successors(&BB)) {
325 DTUpdates.push_back({DominatorTree::Delete, &BB, Succ});
326 DTUpdates.push_back({DominatorTree::Insert, Pred, Succ});
328 // Also remove the edge between Pred and BB.
329 DTUpdates.push_back({DominatorTree::Delete, Pred, &BB});
331 // Need to replace it before nuking the branch.
332 BB.replaceAllUsesWith(Pred);
333 // PHI nodes in BB can only have a single incoming value. Remove them.
334 for (PHINode &PN : make_early_inc_range(BB.phis())) {
335 PN.replaceAllUsesWith(PN.getIncomingValue(0));
336 PN.eraseFromParent();
338 // Move all instructions from BB to Pred.
339 for (Instruction &I : make_early_inc_range(BB))
340 I.moveBefore(Pred->getTerminator());
342 // Remove the Pred's terminator (which jumped to BB). BB's terminator
343 // will become Pred's terminator.
344 Pred->getTerminator()->eraseFromParent();
345 DTU.deleteBB(&BB);
347 Changed = true;
350 // Apply updates permissively, to remove duplicates.
351 DTU.applyUpdatesPermissive(DTUpdates);
352 return Changed;
355 static bool doSimplify_v1(Function &F) {
356 return (int)eliminateCondBranches_v1(F) | mergeIntoSinglePredecessor_v1(F) |
357 removeDeadBlocks_v1(F);
360 static bool doSimplify_v2(Function &F, DominatorTree &DT) {
361 return (int)eliminateCondBranches_v2(F, DT) |
362 mergeIntoSinglePredecessor_v2(F, DT) | removeDeadBlocks_v2(F, DT);
365 static bool doSimplify_v3(Function &F, DominatorTree &DT) {
366 return (int)eliminateCondBranches_v3(F, DT) |
367 mergeIntoSinglePredecessor_v2(F, DT) | removeDeadBlocks_v2(F, DT);
370 namespace {
371 struct SimplifyCFGPass : public PassInfoMixin<SimplifyCFGPass> {
372 PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM) {
373 switch (Version) {
374 case V1:
375 doSimplify_v1(F);
376 break;
377 case V2: {
378 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
379 doSimplify_v2(F, DT);
380 break;
382 case V3: {
383 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
384 doSimplify_v3(F, DT);
385 break;
389 return PreservedAnalyses::none();
392 } // namespace
394 /* New PM Registration */
395 llvm::PassPluginLibraryInfo getExampleIRTransformsPluginInfo() {
396 return {LLVM_PLUGIN_API_VERSION, "SimplifyCFG", LLVM_VERSION_STRING,
397 [](PassBuilder &PB) {
398 PB.registerPipelineParsingCallback(
399 [](StringRef Name, llvm::FunctionPassManager &PM,
400 ArrayRef<llvm::PassBuilder::PipelineElement>) {
401 if (Name == "tut-simplifycfg") {
402 PM.addPass(SimplifyCFGPass());
403 return true;
405 return false;
410 #ifndef LLVM_SIMPLIFYCFG_LINK_INTO_TOOLS
411 extern "C" LLVM_ATTRIBUTE_WEAK ::llvm::PassPluginLibraryInfo
412 llvmGetPassPluginInfo() {
413 return getExampleIRTransformsPluginInfo();
415 #endif