1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
32 #ifdef EXPENSIVE_CHECKS
33 #include "llvm/ADT/ScopeExit.h"
38 #define DEBUG_TYPE "lcg"
40 template struct LLVM_EXPORT_TEMPLATE
Any::TypeId
<const LazyCallGraph::SCC
*>;
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node
&TargetN
,
44 EdgeIndexMap
.try_emplace(&TargetN
, Edges
.size());
45 Edges
.emplace_back(TargetN
, EK
);
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node
&TargetN
, Edge::Kind EK
) {
49 Edges
[EdgeIndexMap
.find(&TargetN
)->second
].setKind(EK
);
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node
&TargetN
) {
53 auto IndexMapI
= EdgeIndexMap
.find(&TargetN
);
54 if (IndexMapI
== EdgeIndexMap
.end())
57 Edges
[IndexMapI
->second
] = Edge();
58 EdgeIndexMap
.erase(IndexMapI
);
62 static void addEdge(SmallVectorImpl
<LazyCallGraph::Edge
> &Edges
,
63 DenseMap
<LazyCallGraph::Node
*, int> &EdgeIndexMap
,
64 LazyCallGraph::Node
&N
, LazyCallGraph::Edge::Kind EK
) {
65 if (!EdgeIndexMap
.try_emplace(&N
, Edges
.size()).second
)
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N
.getName() << "\n");
69 Edges
.emplace_back(LazyCallGraph::Edge(N
, EK
));
72 LazyCallGraph::EdgeSequence
&LazyCallGraph::Node::populateSlow() {
73 assert(!Edges
&& "Must not have already populated the edges for this node!");
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
78 Edges
= EdgeSequence();
80 SmallVector
<Constant
*, 16> Worklist
;
81 SmallPtrSet
<Function
*, 4> Callees
;
82 SmallPtrSet
<Constant
*, 16> Visited
;
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock
&BB
: *F
)
101 for (Instruction
&I
: BB
) {
102 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
103 if (Function
*Callee
= CB
->getCalledFunction())
104 if (!Callee
->isDeclaration())
105 if (Callees
.insert(Callee
).second
) {
106 Visited
.insert(Callee
);
107 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*Callee
),
108 LazyCallGraph::Edge::Call
);
111 for (Value
*Op
: I
.operand_values())
112 if (Constant
*C
= dyn_cast
<Constant
>(Op
))
113 if (Visited
.insert(C
).second
)
114 Worklist
.push_back(C
);
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
121 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(F
),
122 LazyCallGraph::Edge::Ref
);
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F
: G
->LibFunctions
)
128 if (!Visited
.count(F
))
129 addEdge(Edges
->Edges
, Edges
->EdgeIndexMap
, G
->get(*F
),
130 LazyCallGraph::Edge::Ref
);
135 void LazyCallGraph::Node::replaceFunction(Function
&NewF
) {
136 assert(F
!= &NewF
&& "Must not replace a function with itself!");
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD
void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
146 static bool isKnownLibFunction(Function
&F
, TargetLibraryInfo
&TLI
) {
149 // Either this is a normal library function or a "vectorizable"
150 // function. Not using the VFDatabase here because this query
151 // is related only to libraries handled via the TLI.
152 return TLI
.getLibFunc(F
, LF
) ||
153 TLI
.isKnownVectorFunctionInLibrary(F
.getName());
156 LazyCallGraph::LazyCallGraph(
157 Module
&M
, function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
158 LLVM_DEBUG(dbgs() << "Building CG for module: " << M
.getModuleIdentifier()
160 for (Function
&F
: M
) {
161 if (F
.isDeclaration())
163 // If this function is a known lib function to LLVM then we want to
164 // synthesize reference edges to it to model the fact that LLVM can turn
165 // arbitrary code into a library function call.
166 if (isKnownLibFunction(F
, GetTLI(F
)))
167 LibFunctions
.insert(&F
);
169 if (F
.hasLocalLinkage())
172 // External linkage defined functions have edges to them from other
174 LLVM_DEBUG(dbgs() << " Adding '" << F
.getName()
175 << "' to entry set of the graph.\n");
176 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
), Edge::Ref
);
179 // Externally visible aliases of internal functions are also viable entry
180 // edges to the module.
181 for (auto &A
: M
.aliases()) {
182 if (A
.hasLocalLinkage())
184 if (Function
* F
= dyn_cast
<Function
>(A
.getAliasee())) {
185 LLVM_DEBUG(dbgs() << " Adding '" << F
->getName()
186 << "' with alias '" << A
.getName()
187 << "' to entry set of the graph.\n");
188 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(*F
), Edge::Ref
);
192 // Now add entry nodes for functions reachable via initializers to globals.
193 SmallVector
<Constant
*, 16> Worklist
;
194 SmallPtrSet
<Constant
*, 16> Visited
;
195 for (GlobalVariable
&GV
: M
.globals())
196 if (GV
.hasInitializer())
197 if (Visited
.insert(GV
.getInitializer()).second
)
198 Worklist
.push_back(GV
.getInitializer());
201 dbgs() << " Adding functions referenced by global initializers to the "
203 visitReferences(Worklist
, Visited
, [&](Function
&F
) {
204 addEdge(EntryEdges
.Edges
, EntryEdges
.EdgeIndexMap
, get(F
),
205 LazyCallGraph::Edge::Ref
);
209 LazyCallGraph::LazyCallGraph(LazyCallGraph
&&G
)
210 : BPA(std::move(G
.BPA
)), NodeMap(std::move(G
.NodeMap
)),
211 EntryEdges(std::move(G
.EntryEdges
)), SCCBPA(std::move(G
.SCCBPA
)),
212 SCCMap(std::move(G
.SCCMap
)), LibFunctions(std::move(G
.LibFunctions
)) {
216 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
217 void LazyCallGraph::verify() {
218 for (RefSCC
&RC
: postorder_ref_sccs()) {
224 bool LazyCallGraph::invalidate(Module
&, const PreservedAnalyses
&PA
,
225 ModuleAnalysisManager::Invalidator
&) {
226 // Check whether the analysis, all analyses on functions, or the function's
227 // CFG have been preserved.
228 auto PAC
= PA
.getChecker
<llvm::LazyCallGraphAnalysis
>();
229 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>());
232 LazyCallGraph
&LazyCallGraph::operator=(LazyCallGraph
&&G
) {
233 BPA
= std::move(G
.BPA
);
234 NodeMap
= std::move(G
.NodeMap
);
235 EntryEdges
= std::move(G
.EntryEdges
);
236 SCCBPA
= std::move(G
.SCCBPA
);
237 SCCMap
= std::move(G
.SCCMap
);
238 LibFunctions
= std::move(G
.LibFunctions
);
243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
244 LLVM_DUMP_METHOD
void LazyCallGraph::SCC::dump() const {
245 dbgs() << *this << '\n';
249 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
250 void LazyCallGraph::SCC::verify() {
251 assert(OuterRefSCC
&& "Can't have a null RefSCC!");
252 assert(!Nodes
.empty() && "Can't have an empty SCC!");
254 for (Node
*N
: Nodes
) {
255 assert(N
&& "Can't have a null node!");
256 assert(OuterRefSCC
->G
->lookupSCC(*N
) == this &&
257 "Node does not map to this SCC!");
258 assert(N
->DFSNumber
== -1 &&
259 "Must set DFS numbers to -1 when adding a node to an SCC!");
260 assert(N
->LowLink
== -1 &&
261 "Must set low link to -1 when adding a node to an SCC!");
263 assert(E
.getNode().isPopulated() && "Can't have an unpopulated node!");
265 #ifdef EXPENSIVE_CHECKS
266 // Verify that all nodes in this SCC can reach all other nodes.
267 SmallVector
<Node
*, 4> Worklist
;
268 SmallPtrSet
<Node
*, 4> Visited
;
269 Worklist
.push_back(N
);
270 while (!Worklist
.empty()) {
271 Node
*VisitingNode
= Worklist
.pop_back_val();
272 if (!Visited
.insert(VisitingNode
).second
)
274 for (Edge
&E
: (*VisitingNode
)->calls())
275 Worklist
.push_back(&E
.getNode());
277 for (Node
*NodeToVisit
: Nodes
) {
278 assert(Visited
.contains(NodeToVisit
) &&
279 "Cannot reach all nodes within SCC");
286 bool LazyCallGraph::SCC::isParentOf(const SCC
&C
) const {
290 for (Node
&N
: *this)
291 for (Edge
&E
: N
->calls())
292 if (OuterRefSCC
->G
->lookupSCC(E
.getNode()) == &C
)
299 bool LazyCallGraph::SCC::isAncestorOf(const SCC
&TargetC
) const {
300 if (this == &TargetC
)
303 LazyCallGraph
&G
= *OuterRefSCC
->G
;
305 // Start with this SCC.
306 SmallPtrSet
<const SCC
*, 16> Visited
= {this};
307 SmallVector
<const SCC
*, 16> Worklist
= {this};
309 // Walk down the graph until we run out of edges or find a path to TargetC.
311 const SCC
&C
= *Worklist
.pop_back_val();
313 for (Edge
&E
: N
->calls()) {
314 SCC
*CalleeC
= G
.lookupSCC(E
.getNode());
318 // If the callee's SCC is the TargetC, we're done.
319 if (CalleeC
== &TargetC
)
322 // If this is the first time we've reached this SCC, put it on the
323 // worklist to recurse through.
324 if (Visited
.insert(CalleeC
).second
)
325 Worklist
.push_back(CalleeC
);
327 } while (!Worklist
.empty());
333 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph
&G
) : G(&G
) {}
335 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
336 LLVM_DUMP_METHOD
void LazyCallGraph::RefSCC::dump() const {
337 dbgs() << *this << '\n';
341 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
342 void LazyCallGraph::RefSCC::verify() {
343 assert(G
&& "Can't have a null graph!");
344 assert(!SCCs
.empty() && "Can't have an empty SCC!");
346 // Verify basic properties of the SCCs.
347 SmallPtrSet
<SCC
*, 4> SCCSet
;
348 for (SCC
*C
: SCCs
) {
349 assert(C
&& "Can't have a null SCC!");
351 assert(&C
->getOuterRefSCC() == this &&
352 "SCC doesn't think it is inside this RefSCC!");
353 bool Inserted
= SCCSet
.insert(C
).second
;
354 assert(Inserted
&& "Found a duplicate SCC!");
355 auto IndexIt
= SCCIndices
.find(C
);
356 assert(IndexIt
!= SCCIndices
.end() &&
357 "Found an SCC that doesn't have an index!");
360 // Check that our indices map correctly.
361 for (auto [C
, I
] : SCCIndices
) {
362 assert(C
&& "Can't have a null SCC in the indices!");
363 assert(SCCSet
.count(C
) && "Found an index for an SCC not in the RefSCC!");
364 assert(SCCs
[I
] == C
&& "Index doesn't point to SCC!");
367 // Check that the SCCs are in fact in post-order.
368 for (int I
= 0, Size
= SCCs
.size(); I
< Size
; ++I
) {
369 SCC
&SourceSCC
= *SCCs
[I
];
370 for (Node
&N
: SourceSCC
)
374 SCC
&TargetSCC
= *G
->lookupSCC(E
.getNode());
375 if (&TargetSCC
.getOuterRefSCC() == this) {
376 assert(SCCIndices
.find(&TargetSCC
)->second
<= I
&&
377 "Edge between SCCs violates post-order relationship.");
383 #ifdef EXPENSIVE_CHECKS
384 // Verify that all nodes in this RefSCC can reach all other nodes.
385 SmallVector
<Node
*> Nodes
;
386 for (SCC
*C
: SCCs
) {
390 for (Node
*N
: Nodes
) {
391 SmallVector
<Node
*, 4> Worklist
;
392 SmallPtrSet
<Node
*, 4> Visited
;
393 Worklist
.push_back(N
);
394 while (!Worklist
.empty()) {
395 Node
*VisitingNode
= Worklist
.pop_back_val();
396 if (!Visited
.insert(VisitingNode
).second
)
398 for (Edge
&E
: **VisitingNode
)
399 Worklist
.push_back(&E
.getNode());
401 for (Node
*NodeToVisit
: Nodes
) {
402 assert(Visited
.contains(NodeToVisit
) &&
403 "Cannot reach all nodes within RefSCC");
410 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC
&RC
) const {
414 // Search all edges to see if this is a parent.
418 if (G
->lookupRefSCC(E
.getNode()) == &RC
)
424 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC
&RC
) const {
428 // For each descendant of this RefSCC, see if one of its children is the
429 // argument. If not, add that descendant to the worklist and continue
431 SmallVector
<const RefSCC
*, 4> Worklist
;
432 SmallPtrSet
<const RefSCC
*, 4> Visited
;
433 Worklist
.push_back(this);
434 Visited
.insert(this);
436 const RefSCC
&DescendantRC
= *Worklist
.pop_back_val();
437 for (SCC
&C
: DescendantRC
)
440 auto *ChildRC
= G
->lookupRefSCC(E
.getNode());
443 if (!ChildRC
|| !Visited
.insert(ChildRC
).second
)
445 Worklist
.push_back(ChildRC
);
447 } while (!Worklist
.empty());
452 /// Generic helper that updates a postorder sequence of SCCs for a potentially
453 /// cycle-introducing edge insertion.
455 /// A postorder sequence of SCCs of a directed graph has one fundamental
456 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
457 /// all edges in the SCC DAG point to prior SCCs in the sequence.
459 /// This routine both updates a postorder sequence and uses that sequence to
460 /// compute the set of SCCs connected into a cycle. It should only be called to
461 /// insert a "downward" edge which will require changing the sequence to
462 /// restore it to a postorder.
464 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
465 /// sequence, all of the SCCs which may be impacted are in the closed range of
466 /// those two within the postorder sequence. The algorithm used here to restore
467 /// the state is as follows:
469 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
470 /// source SCC consisting of just the source SCC. Then scan toward the
471 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
472 /// in the set, add it to the set. Otherwise, the source SCC is not
473 /// a successor, move it in the postorder sequence to immediately before
474 /// the source SCC, shifting the source SCC and all SCCs in the set one
475 /// position toward the target SCC. Stop scanning after processing the
477 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
478 /// and thus the new edge will flow toward the start, we are done.
479 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
480 /// SCC between the source and the target, and add them to the set of
481 /// connected SCCs, then recurse through them. Once a complete set of the
482 /// SCCs the target connects to is known, hoist the remaining SCCs between
483 /// the source and the target to be above the target. Note that there is no
484 /// need to process the source SCC, it is already known to connect.
485 /// 4) At this point, all of the SCCs in the closed range between the source
486 /// SCC and the target SCC in the postorder sequence are connected,
487 /// including the target SCC and the source SCC. Inserting the edge from
488 /// the source SCC to the target SCC will form a cycle out of precisely
489 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
492 /// This process has various important properties:
493 /// - Only mutates the SCCs when adding the edge actually changes the SCC
495 /// - Never mutates SCCs which are unaffected by the change.
496 /// - Updates the postorder sequence to correctly satisfy the postorder
497 /// constraint after the edge is inserted.
498 /// - Only reorders SCCs in the closed postorder sequence from the source to
499 /// the target, so easy to bound how much has changed even in the ordering.
500 /// - Big-O is the number of edges in the closed postorder range of SCCs from
501 /// source to target.
503 /// This helper routine, in addition to updating the postorder sequence itself
504 /// will also update a map from SCCs to indices within that sequence.
506 /// The sequence and the map must operate on pointers to the SCC type.
508 /// Two callbacks must be provided. The first computes the subset of SCCs in
509 /// the postorder closed range from the source to the target which connect to
510 /// the source SCC via some (transitive) set of edges. The second computes the
511 /// subset of the same range which the target SCC connects to via some
512 /// (transitive) set of edges. Both callbacks should populate the set argument
514 template <typename SCCT
, typename PostorderSequenceT
, typename SCCIndexMapT
,
515 typename ComputeSourceConnectedSetCallableT
,
516 typename ComputeTargetConnectedSetCallableT
>
517 static iterator_range
<typename
PostorderSequenceT::iterator
>
518 updatePostorderSequenceForEdgeInsertion(
519 SCCT
&SourceSCC
, SCCT
&TargetSCC
, PostorderSequenceT
&SCCs
,
520 SCCIndexMapT
&SCCIndices
,
521 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet
,
522 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet
) {
523 int SourceIdx
= SCCIndices
[&SourceSCC
];
524 int TargetIdx
= SCCIndices
[&TargetSCC
];
525 assert(SourceIdx
< TargetIdx
&& "Cannot have equal indices here!");
527 SmallPtrSet
<SCCT
*, 4> ConnectedSet
;
529 // Compute the SCCs which (transitively) reach the source.
530 ComputeSourceConnectedSet(ConnectedSet
);
532 // Partition the SCCs in this part of the port-order sequence so only SCCs
533 // connecting to the source remain between it and the target. This is
534 // a benign partition as it preserves postorder.
535 auto SourceI
= std::stable_partition(
536 SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
+ 1,
537 [&ConnectedSet
](SCCT
*C
) { return !ConnectedSet
.count(C
); });
538 for (int I
= SourceIdx
, E
= TargetIdx
+ 1; I
< E
; ++I
)
539 SCCIndices
.find(SCCs
[I
])->second
= I
;
541 // If the target doesn't connect to the source, then we've corrected the
542 // post-order and there are no cycles formed.
543 if (!ConnectedSet
.count(&TargetSCC
)) {
544 assert(SourceI
> (SCCs
.begin() + SourceIdx
) &&
545 "Must have moved the source to fix the post-order.");
546 assert(*std::prev(SourceI
) == &TargetSCC
&&
547 "Last SCC to move should have bene the target.");
549 // Return an empty range at the target SCC indicating there is nothing to
551 return make_range(std::prev(SourceI
), std::prev(SourceI
));
554 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
555 "Should not have moved target if connected!");
556 SourceIdx
= SourceI
- SCCs
.begin();
557 assert(SCCs
[SourceIdx
] == &SourceSCC
&&
558 "Bad updated index computation for the source SCC!");
560 // See whether there are any remaining intervening SCCs between the source
561 // and target. If so we need to make sure they all are reachable form the
563 if (SourceIdx
+ 1 < TargetIdx
) {
564 ConnectedSet
.clear();
565 ComputeTargetConnectedSet(ConnectedSet
);
567 // Partition SCCs so that only SCCs reached from the target remain between
568 // the source and the target. This preserves postorder.
569 auto TargetI
= std::stable_partition(
570 SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1,
571 [&ConnectedSet
](SCCT
*C
) { return ConnectedSet
.count(C
); });
572 for (int I
= SourceIdx
+ 1, E
= TargetIdx
+ 1; I
< E
; ++I
)
573 SCCIndices
.find(SCCs
[I
])->second
= I
;
574 TargetIdx
= std::prev(TargetI
) - SCCs
.begin();
575 assert(SCCs
[TargetIdx
] == &TargetSCC
&&
576 "Should always end with the target!");
579 // At this point, we know that connecting source to target forms a cycle
580 // because target connects back to source, and we know that all the SCCs
581 // between the source and target in the postorder sequence participate in that
583 return make_range(SCCs
.begin() + SourceIdx
, SCCs
.begin() + TargetIdx
);
586 bool LazyCallGraph::RefSCC::switchInternalEdgeToCall(
587 Node
&SourceN
, Node
&TargetN
,
588 function_ref
<void(ArrayRef
<SCC
*> MergeSCCs
)> MergeCB
) {
589 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
590 SmallVector
<SCC
*, 1> DeletedSCCs
;
592 #ifdef EXPENSIVE_CHECKS
594 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
597 SCC
&SourceSCC
= *G
->lookupSCC(SourceN
);
598 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
600 // If the two nodes are already part of the same SCC, we're also done as
601 // we've just added more connectivity.
602 if (&SourceSCC
== &TargetSCC
) {
603 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
604 return false; // No new cycle.
607 // At this point we leverage the postorder list of SCCs to detect when the
608 // insertion of an edge changes the SCC structure in any way.
610 // First and foremost, we can eliminate the need for any changes when the
611 // edge is toward the beginning of the postorder sequence because all edges
612 // flow in that direction already. Thus adding a new one cannot form a cycle.
613 int SourceIdx
= SCCIndices
[&SourceSCC
];
614 int TargetIdx
= SCCIndices
[&TargetSCC
];
615 if (TargetIdx
< SourceIdx
) {
616 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
617 return false; // No new cycle.
620 // Compute the SCCs which (transitively) reach the source.
621 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
622 #ifdef EXPENSIVE_CHECKS
623 // Check that the RefSCC is still valid before computing this as the
624 // results will be nonsensical of we've broken its invariants.
627 ConnectedSet
.insert(&SourceSCC
);
628 auto IsConnected
= [&](SCC
&C
) {
630 for (Edge
&E
: N
->calls())
631 if (ConnectedSet
.count(G
->lookupSCC(E
.getNode())))
638 make_range(SCCs
.begin() + SourceIdx
+ 1, SCCs
.begin() + TargetIdx
+ 1))
640 ConnectedSet
.insert(C
);
643 // Use a normal worklist to find which SCCs the target connects to. We still
644 // bound the search based on the range in the postorder list we care about,
645 // but because this is forward connectivity we just "recurse" through the
647 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<SCC
*> &ConnectedSet
) {
648 #ifdef EXPENSIVE_CHECKS
649 // Check that the RefSCC is still valid before computing this as the
650 // results will be nonsensical of we've broken its invariants.
653 ConnectedSet
.insert(&TargetSCC
);
654 SmallVector
<SCC
*, 4> Worklist
;
655 Worklist
.push_back(&TargetSCC
);
657 SCC
&C
= *Worklist
.pop_back_val();
662 SCC
&EdgeC
= *G
->lookupSCC(E
.getNode());
663 if (&EdgeC
.getOuterRefSCC() != this)
664 // Not in this RefSCC...
666 if (SCCIndices
.find(&EdgeC
)->second
<= SourceIdx
)
667 // Not in the postorder sequence between source and target.
670 if (ConnectedSet
.insert(&EdgeC
).second
)
671 Worklist
.push_back(&EdgeC
);
673 } while (!Worklist
.empty());
676 // Use a generic helper to update the postorder sequence of SCCs and return
677 // a range of any SCCs connected into a cycle by inserting this edge. This
678 // routine will also take care of updating the indices into the postorder
680 auto MergeRange
= updatePostorderSequenceForEdgeInsertion(
681 SourceSCC
, TargetSCC
, SCCs
, SCCIndices
, ComputeSourceConnectedSet
,
682 ComputeTargetConnectedSet
);
684 // Run the user's callback on the merged SCCs before we actually merge them.
686 MergeCB(ArrayRef(MergeRange
.begin(), MergeRange
.end()));
688 // If the merge range is empty, then adding the edge didn't actually form any
689 // new cycles. We're done.
690 if (MergeRange
.empty()) {
691 // Now that the SCC structure is finalized, flip the kind to call.
692 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
693 return false; // No new cycle.
696 #ifdef EXPENSIVE_CHECKS
697 // Before merging, check that the RefSCC remains valid after all the
698 // postorder updates.
702 // Otherwise we need to merge all the SCCs in the cycle into a single result
705 // NB: We merge into the target because all of these functions were already
706 // reachable from the target, meaning any SCC-wide properties deduced about it
707 // other than the set of functions within it will not have changed.
708 for (SCC
*C
: MergeRange
) {
709 assert(C
!= &TargetSCC
&&
710 "We merge *into* the target and shouldn't process it here!");
712 TargetSCC
.Nodes
.append(C
->Nodes
.begin(), C
->Nodes
.end());
713 for (Node
*N
: C
->Nodes
)
714 G
->SCCMap
[N
] = &TargetSCC
;
716 DeletedSCCs
.push_back(C
);
719 // Erase the merged SCCs from the list and update the indices of the
721 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
722 auto EraseEnd
= SCCs
.erase(MergeRange
.begin(), MergeRange
.end());
723 for (SCC
*C
: make_range(EraseEnd
, SCCs
.end()))
724 SCCIndices
[C
] -= IndexOffset
;
726 // Now that the SCC structure is finalized, flip the kind to call.
727 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
729 // And we're done, but we did form a new cycle.
733 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node
&SourceN
,
735 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
737 #ifdef EXPENSIVE_CHECKS
739 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
742 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
743 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
744 assert(G
->lookupSCC(SourceN
) != G
->lookupSCC(TargetN
) &&
745 "Source and Target must be in separate SCCs for this to be trivial!");
747 // Set the edge kind.
748 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
751 iterator_range
<LazyCallGraph::RefSCC::iterator
>
752 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node
&SourceN
, Node
&TargetN
) {
753 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
755 #ifdef EXPENSIVE_CHECKS
757 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
760 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
761 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
763 SCC
&TargetSCC
= *G
->lookupSCC(TargetN
);
764 assert(G
->lookupSCC(SourceN
) == &TargetSCC
&& "Source and Target must be in "
765 "the same SCC to require the "
768 // Set the edge kind.
769 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
771 // Otherwise we are removing a call edge from a single SCC. This may break
772 // the cycle. In order to compute the new set of SCCs, we need to do a small
773 // DFS over the nodes within the SCC to form any sub-cycles that remain as
774 // distinct SCCs and compute a postorder over the resulting SCCs.
776 // However, we specially handle the target node. The target node is known to
777 // reach all other nodes in the original SCC by definition. This means that
778 // we want the old SCC to be replaced with an SCC containing that node as it
779 // will be the root of whatever SCC DAG results from the DFS. Assumptions
780 // about an SCC such as the set of functions called will continue to hold,
783 SCC
&OldSCC
= TargetSCC
;
784 SmallVector
<std::pair
<Node
*, EdgeSequence::call_iterator
>, 16> DFSStack
;
785 SmallVector
<Node
*, 16> PendingSCCStack
;
786 SmallVector
<SCC
*, 4> NewSCCs
;
788 // Prepare the nodes for a fresh DFS.
789 SmallVector
<Node
*, 16> Worklist
;
790 Worklist
.swap(OldSCC
.Nodes
);
791 for (Node
*N
: Worklist
) {
792 N
->DFSNumber
= N
->LowLink
= 0;
796 // Force the target node to be in the old SCC. This also enables us to take
797 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
798 // below: whenever we build an edge that reaches the target node, we know
799 // that the target node eventually connects back to all other nodes in our
800 // walk. As a consequence, we can detect and handle participants in that
801 // cycle without walking all the edges that form this connection, and instead
802 // by relying on the fundamental guarantee coming into this operation (all
803 // nodes are reachable from the target due to previously forming an SCC).
804 TargetN
.DFSNumber
= TargetN
.LowLink
= -1;
805 OldSCC
.Nodes
.push_back(&TargetN
);
806 G
->SCCMap
[&TargetN
] = &OldSCC
;
808 // Scan down the stack and DFS across the call edges.
809 for (Node
*RootN
: Worklist
) {
810 assert(DFSStack
.empty() &&
811 "Cannot begin a new root with a non-empty DFS stack!");
812 assert(PendingSCCStack
.empty() &&
813 "Cannot begin a new root with pending nodes for an SCC!");
815 // Skip any nodes we've already reached in the DFS.
816 if (RootN
->DFSNumber
!= 0) {
817 assert(RootN
->DFSNumber
== -1 &&
818 "Shouldn't have any mid-DFS root nodes!");
822 RootN
->DFSNumber
= RootN
->LowLink
= 1;
823 int NextDFSNumber
= 2;
825 DFSStack
.emplace_back(RootN
, (*RootN
)->call_begin());
827 auto [N
, I
] = DFSStack
.pop_back_val();
828 auto E
= (*N
)->call_end();
830 Node
&ChildN
= I
->getNode();
831 if (ChildN
.DFSNumber
== 0) {
832 // We haven't yet visited this child, so descend, pushing the current
833 // node onto the stack.
834 DFSStack
.emplace_back(N
, I
);
836 assert(!G
->SCCMap
.count(&ChildN
) &&
837 "Found a node with 0 DFS number but already in an SCC!");
838 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
840 I
= (*N
)->call_begin();
841 E
= (*N
)->call_end();
845 // Check for the child already being part of some component.
846 if (ChildN
.DFSNumber
== -1) {
847 if (G
->lookupSCC(ChildN
) == &OldSCC
) {
848 // If the child is part of the old SCC, we know that it can reach
849 // every other node, so we have formed a cycle. Pull the entire DFS
850 // and pending stacks into it. See the comment above about setting
851 // up the old SCC for why we do this.
852 int OldSize
= OldSCC
.size();
853 OldSCC
.Nodes
.push_back(N
);
854 OldSCC
.Nodes
.append(PendingSCCStack
.begin(), PendingSCCStack
.end());
855 PendingSCCStack
.clear();
856 while (!DFSStack
.empty())
857 OldSCC
.Nodes
.push_back(DFSStack
.pop_back_val().first
);
858 for (Node
&N
: drop_begin(OldSCC
, OldSize
)) {
859 N
.DFSNumber
= N
.LowLink
= -1;
860 G
->SCCMap
[&N
] = &OldSCC
;
866 // If the child has already been added to some child component, it
867 // couldn't impact the low-link of this parent because it isn't
868 // connected, and thus its low-link isn't relevant so skip it.
873 // Track the lowest linked child as the lowest link for this node.
874 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
875 if (ChildN
.LowLink
< N
->LowLink
)
876 N
->LowLink
= ChildN
.LowLink
;
878 // Move to the next edge.
882 // Cleared the DFS early, start another round.
885 // We've finished processing N and its descendants, put it on our pending
886 // SCC stack to eventually get merged into an SCC of nodes.
887 PendingSCCStack
.push_back(N
);
889 // If this node is linked to some lower entry, continue walking up the
891 if (N
->LowLink
!= N
->DFSNumber
)
894 // Otherwise, we've completed an SCC. Append it to our post order list of
896 int RootDFSNumber
= N
->DFSNumber
;
897 // Find the range of the node stack by walking down until we pass the
899 auto SCCNodes
= make_range(
900 PendingSCCStack
.rbegin(),
901 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
902 return N
->DFSNumber
< RootDFSNumber
;
905 // Form a new SCC out of these nodes and then clear them off our pending
907 NewSCCs
.push_back(G
->createSCC(*this, SCCNodes
));
908 for (Node
&N
: *NewSCCs
.back()) {
909 N
.DFSNumber
= N
.LowLink
= -1;
910 G
->SCCMap
[&N
] = NewSCCs
.back();
912 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
913 } while (!DFSStack
.empty());
916 // Insert the remaining SCCs before the old one. The old SCC can reach all
917 // other SCCs we form because it contains the target node of the removed edge
918 // of the old SCC. This means that we will have edges into all the new SCCs,
919 // which means the old one must come last for postorder.
920 int OldIdx
= SCCIndices
[&OldSCC
];
921 SCCs
.insert(SCCs
.begin() + OldIdx
, NewSCCs
.begin(), NewSCCs
.end());
923 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
924 // old SCC from the mapping.
925 for (int Idx
= OldIdx
, Size
= SCCs
.size(); Idx
< Size
; ++Idx
)
926 SCCIndices
[SCCs
[Idx
]] = Idx
;
928 return make_range(SCCs
.begin() + OldIdx
,
929 SCCs
.begin() + OldIdx
+ NewSCCs
.size());
932 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node
&SourceN
,
934 assert(!(*SourceN
)[TargetN
].isCall() && "Must start with a ref edge!");
936 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
937 assert(G
->lookupRefSCC(TargetN
) != this &&
938 "Target must not be in this RefSCC.");
939 #ifdef EXPENSIVE_CHECKS
940 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
941 "Target must be a descendant of the Source.");
944 // Edges between RefSCCs are the same regardless of call or ref, so we can
945 // just flip the edge here.
946 SourceN
->setEdgeKind(TargetN
, Edge::Call
);
948 #ifdef EXPENSIVE_CHECKS
953 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node
&SourceN
,
955 assert((*SourceN
)[TargetN
].isCall() && "Must start with a call edge!");
957 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
958 assert(G
->lookupRefSCC(TargetN
) != this &&
959 "Target must not be in this RefSCC.");
960 #ifdef EXPENSIVE_CHECKS
961 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
962 "Target must be a descendant of the Source.");
965 // Edges between RefSCCs are the same regardless of call or ref, so we can
966 // just flip the edge here.
967 SourceN
->setEdgeKind(TargetN
, Edge::Ref
);
969 #ifdef EXPENSIVE_CHECKS
974 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node
&SourceN
,
976 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
977 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
979 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
981 #ifdef EXPENSIVE_CHECKS
986 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node
&SourceN
, Node
&TargetN
,
988 // First insert it into the caller.
989 SourceN
->insertEdgeInternal(TargetN
, EK
);
991 assert(G
->lookupRefSCC(SourceN
) == this && "Source must be in this RefSCC.");
993 assert(G
->lookupRefSCC(TargetN
) != this &&
994 "Target must not be in this RefSCC.");
995 #ifdef EXPENSIVE_CHECKS
996 assert(G
->lookupRefSCC(TargetN
)->isDescendantOf(*this) &&
997 "Target must be a descendant of the Source.");
1000 #ifdef EXPENSIVE_CHECKS
1005 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1006 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node
&SourceN
, Node
&TargetN
) {
1007 assert(G
->lookupRefSCC(TargetN
) == this && "Target must be in this RefSCC.");
1008 RefSCC
&SourceC
= *G
->lookupRefSCC(SourceN
);
1009 assert(&SourceC
!= this && "Source must not be in this RefSCC.");
1010 #ifdef EXPENSIVE_CHECKS
1011 assert(SourceC
.isDescendantOf(*this) &&
1012 "Source must be a descendant of the Target.");
1015 SmallVector
<RefSCC
*, 1> DeletedRefSCCs
;
1017 #ifdef EXPENSIVE_CHECKS
1019 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1022 int SourceIdx
= G
->RefSCCIndices
[&SourceC
];
1023 int TargetIdx
= G
->RefSCCIndices
[this];
1024 assert(SourceIdx
< TargetIdx
&&
1025 "Postorder list doesn't see edge as incoming!");
1027 // Compute the RefSCCs which (transitively) reach the source. We do this by
1028 // working backwards from the source using the parent set in each RefSCC,
1029 // skipping any RefSCCs that don't fall in the postorder range. This has the
1030 // advantage of walking the sparser parent edge (in high fan-out graphs) but
1031 // more importantly this removes examining all forward edges in all RefSCCs
1032 // within the postorder range which aren't in fact connected. Only connected
1033 // RefSCCs (and their edges) are visited here.
1034 auto ComputeSourceConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1035 Set
.insert(&SourceC
);
1036 auto IsConnected
= [&](RefSCC
&RC
) {
1040 if (Set
.count(G
->lookupRefSCC(E
.getNode())))
1046 for (RefSCC
*C
: make_range(G
->PostOrderRefSCCs
.begin() + SourceIdx
+ 1,
1047 G
->PostOrderRefSCCs
.begin() + TargetIdx
+ 1))
1048 if (IsConnected(*C
))
1052 // Use a normal worklist to find which SCCs the target connects to. We still
1053 // bound the search based on the range in the postorder list we care about,
1054 // but because this is forward connectivity we just "recurse" through the
1056 auto ComputeTargetConnectedSet
= [&](SmallPtrSetImpl
<RefSCC
*> &Set
) {
1058 SmallVector
<RefSCC
*, 4> Worklist
;
1059 Worklist
.push_back(this);
1061 RefSCC
&RC
= *Worklist
.pop_back_val();
1064 for (Edge
&E
: *N
) {
1065 RefSCC
&EdgeRC
= *G
->lookupRefSCC(E
.getNode());
1066 if (G
->getRefSCCIndex(EdgeRC
) <= SourceIdx
)
1067 // Not in the postorder sequence between source and target.
1070 if (Set
.insert(&EdgeRC
).second
)
1071 Worklist
.push_back(&EdgeRC
);
1073 } while (!Worklist
.empty());
1076 // Use a generic helper to update the postorder sequence of RefSCCs and return
1077 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1078 // routine will also take care of updating the indices into the postorder
1080 iterator_range
<SmallVectorImpl
<RefSCC
*>::iterator
> MergeRange
=
1081 updatePostorderSequenceForEdgeInsertion(
1082 SourceC
, *this, G
->PostOrderRefSCCs
, G
->RefSCCIndices
,
1083 ComputeSourceConnectedSet
, ComputeTargetConnectedSet
);
1085 // Build a set, so we can do fast tests for whether a RefSCC will end up as
1086 // part of the merged RefSCC.
1087 SmallPtrSet
<RefSCC
*, 16> MergeSet(MergeRange
.begin(), MergeRange
.end());
1089 // This RefSCC will always be part of that set, so just insert it here.
1090 MergeSet
.insert(this);
1092 // Now that we have identified all the SCCs which need to be merged into
1093 // a connected set with the inserted edge, merge all of them into this SCC.
1094 SmallVector
<SCC
*, 16> MergedSCCs
;
1096 for (RefSCC
*RC
: MergeRange
) {
1097 assert(RC
!= this && "We're merging into the target RefSCC, so it "
1098 "shouldn't be in the range.");
1100 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1101 // update any parent sets.
1102 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1103 // walk by updating the parent sets in some other manner.
1104 for (SCC
&InnerC
: *RC
) {
1105 InnerC
.OuterRefSCC
= this;
1106 SCCIndices
[&InnerC
] = SCCIndex
++;
1107 for (Node
&N
: InnerC
)
1108 G
->SCCMap
[&N
] = &InnerC
;
1111 // Now merge in the SCCs. We can actually move here so try to reuse storage
1112 // the first time through.
1113 if (MergedSCCs
.empty())
1114 MergedSCCs
= std::move(RC
->SCCs
);
1116 MergedSCCs
.append(RC
->SCCs
.begin(), RC
->SCCs
.end());
1118 DeletedRefSCCs
.push_back(RC
);
1121 // Append our original SCCs to the merged list and move it into place.
1122 for (SCC
&InnerC
: *this)
1123 SCCIndices
[&InnerC
] = SCCIndex
++;
1124 MergedSCCs
.append(SCCs
.begin(), SCCs
.end());
1125 SCCs
= std::move(MergedSCCs
);
1127 // Remove the merged away RefSCCs from the post order sequence.
1128 for (RefSCC
*RC
: MergeRange
)
1129 G
->RefSCCIndices
.erase(RC
);
1130 int IndexOffset
= MergeRange
.end() - MergeRange
.begin();
1132 G
->PostOrderRefSCCs
.erase(MergeRange
.begin(), MergeRange
.end());
1133 for (RefSCC
*RC
: make_range(EraseEnd
, G
->PostOrderRefSCCs
.end()))
1134 G
->RefSCCIndices
[RC
] -= IndexOffset
;
1136 // At this point we have a merged RefSCC with a post-order SCCs list, just
1137 // connect the nodes to form the new edge.
1138 SourceN
->insertEdgeInternal(TargetN
, Edge::Ref
);
1140 // We return the list of SCCs which were merged so that callers can
1141 // invalidate any data they have associated with those SCCs. Note that these
1142 // SCCs are no longer in an interesting state (they are totally empty) but
1143 // the pointers will remain stable for the life of the graph itself.
1144 return DeletedRefSCCs
;
1147 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node
&SourceN
, Node
&TargetN
) {
1148 assert(G
->lookupRefSCC(SourceN
) == this &&
1149 "The source must be a member of this RefSCC.");
1150 assert(G
->lookupRefSCC(TargetN
) != this &&
1151 "The target must not be a member of this RefSCC");
1153 #ifdef EXPENSIVE_CHECKS
1155 auto VerifyOnExit
= make_scope_exit([&]() { verify(); });
1158 // First remove it from the node.
1159 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1161 assert(Removed
&& "Target not in the edge set for this caller?");
1164 SmallVector
<LazyCallGraph::RefSCC
*, 1>
1165 LazyCallGraph::RefSCC::removeInternalRefEdges(
1166 ArrayRef
<std::pair
<Node
*, Node
*>> Edges
) {
1167 // We return a list of the resulting *new* RefSCCs in post-order.
1168 SmallVector
<RefSCC
*, 1> Result
;
1170 #ifdef EXPENSIVE_CHECKS
1171 // Verify the RefSCC is valid to start with and that either we return an empty
1172 // list of result RefSCCs and this RefSCC remains valid, or we return new
1173 // RefSCCs and this RefSCC is dead.
1175 auto VerifyOnExit
= make_scope_exit([&]() {
1176 // If we didn't replace our RefSCC with new ones, check that this one
1183 // First remove the actual edges.
1184 for (auto [SourceN
, TargetN
] : Edges
) {
1185 assert(!(**SourceN
)[*TargetN
].isCall() &&
1186 "Cannot remove a call edge, it must first be made a ref edge");
1188 bool Removed
= (*SourceN
)->removeEdgeInternal(*TargetN
);
1190 assert(Removed
&& "Target not in the edge set for this caller?");
1193 // Direct self references don't impact the ref graph at all.
1194 // If all targets are in the same SCC as the source, because no call edges
1195 // were removed there is no RefSCC structure change.
1196 if (llvm::all_of(Edges
, [&](std::pair
<Node
*, Node
*> E
) {
1197 return E
.first
== E
.second
||
1198 G
->lookupSCC(*E
.first
) == G
->lookupSCC(*E
.second
);
1202 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1203 // for each inner SCC. We store these inside the low-link field of the nodes
1204 // rather than associated with SCCs because this saves a round-trip through
1205 // the node->SCC map and in the common case, SCCs are small. We will verify
1206 // that we always give the same number to every node in the SCC such that
1207 // these are equivalent.
1208 int PostOrderNumber
= 0;
1210 // Reset all the other nodes to prepare for a DFS over them, and add them to
1212 SmallVector
<Node
*, 8> Worklist
;
1213 for (SCC
*C
: SCCs
) {
1215 N
.DFSNumber
= N
.LowLink
= 0;
1217 Worklist
.append(C
->Nodes
.begin(), C
->Nodes
.end());
1220 // Track the number of nodes in this RefSCC so that we can quickly recognize
1221 // an important special case of the edge removal not breaking the cycle of
1223 const int NumRefSCCNodes
= Worklist
.size();
1225 SmallVector
<std::pair
<Node
*, EdgeSequence::iterator
>, 4> DFSStack
;
1226 SmallVector
<Node
*, 4> PendingRefSCCStack
;
1228 assert(DFSStack
.empty() &&
1229 "Cannot begin a new root with a non-empty DFS stack!");
1230 assert(PendingRefSCCStack
.empty() &&
1231 "Cannot begin a new root with pending nodes for an SCC!");
1233 Node
*RootN
= Worklist
.pop_back_val();
1234 // Skip any nodes we've already reached in the DFS.
1235 if (RootN
->DFSNumber
!= 0) {
1236 assert(RootN
->DFSNumber
== -1 &&
1237 "Shouldn't have any mid-DFS root nodes!");
1241 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1242 int NextDFSNumber
= 2;
1244 DFSStack
.emplace_back(RootN
, (*RootN
)->begin());
1246 auto [N
, I
] = DFSStack
.pop_back_val();
1247 auto E
= (*N
)->end();
1249 assert(N
->DFSNumber
!= 0 && "We should always assign a DFS number "
1250 "before processing a node.");
1253 Node
&ChildN
= I
->getNode();
1254 if (ChildN
.DFSNumber
== 0) {
1255 // Mark that we should start at this child when next this node is the
1256 // top of the stack. We don't start at the next child to ensure this
1257 // child's lowlink is reflected.
1258 DFSStack
.emplace_back(N
, I
);
1260 // Continue, resetting to the child node.
1261 ChildN
.LowLink
= ChildN
.DFSNumber
= NextDFSNumber
++;
1263 I
= ChildN
->begin();
1267 if (ChildN
.DFSNumber
== -1) {
1268 // If this child isn't currently in this RefSCC, no need to process
1274 // Track the lowest link of the children, if any are still in the stack.
1275 // Any child not on the stack will have a LowLink of -1.
1276 assert(ChildN
.LowLink
!= 0 &&
1277 "Low-link must not be zero with a non-zero DFS number.");
1278 if (ChildN
.LowLink
>= 0 && ChildN
.LowLink
< N
->LowLink
)
1279 N
->LowLink
= ChildN
.LowLink
;
1283 // We've finished processing N and its descendants, put it on our pending
1284 // stack to eventually get merged into a RefSCC.
1285 PendingRefSCCStack
.push_back(N
);
1287 // If this node is linked to some lower entry, continue walking up the
1289 if (N
->LowLink
!= N
->DFSNumber
) {
1290 assert(!DFSStack
.empty() &&
1291 "We never found a viable root for a RefSCC to pop off!");
1295 // Otherwise, form a new RefSCC from the top of the pending node stack.
1296 int RefSCCNumber
= PostOrderNumber
++;
1297 int RootDFSNumber
= N
->DFSNumber
;
1299 // Find the range of the node stack by walking down until we pass the
1300 // root DFS number. Update the DFS numbers and low link numbers in the
1301 // process to avoid re-walking this list where possible.
1302 auto StackRI
= find_if(reverse(PendingRefSCCStack
), [&](Node
*N
) {
1303 if (N
->DFSNumber
< RootDFSNumber
)
1304 // We've found the bottom.
1307 // Update this node and keep scanning.
1309 // Save the post-order number in the lowlink field so that we can use
1310 // it to map SCCs into new RefSCCs after we finish the DFS.
1311 N
->LowLink
= RefSCCNumber
;
1314 auto RefSCCNodes
= make_range(StackRI
.base(), PendingRefSCCStack
.end());
1316 // If we find a cycle containing all nodes originally in this RefSCC then
1317 // the removal hasn't changed the structure at all. This is an important
1318 // special case, and we can directly exit the entire routine more
1319 // efficiently as soon as we discover it.
1320 if (llvm::size(RefSCCNodes
) == NumRefSCCNodes
) {
1321 // Clear out the low link field as we won't need it.
1322 for (Node
*N
: RefSCCNodes
)
1324 // Return the empty result immediately.
1328 // We've already marked the nodes internally with the RefSCC number so
1329 // just clear them off the stack and continue.
1330 PendingRefSCCStack
.erase(RefSCCNodes
.begin(), PendingRefSCCStack
.end());
1331 } while (!DFSStack
.empty());
1333 assert(DFSStack
.empty() && "Didn't flush the entire DFS stack!");
1334 assert(PendingRefSCCStack
.empty() && "Didn't flush all pending nodes!");
1335 } while (!Worklist
.empty());
1337 assert(PostOrderNumber
> 1 &&
1338 "Should never finish the DFS when the existing RefSCC remains valid!");
1340 // Otherwise we create a collection of new RefSCC nodes and build
1341 // a radix-sort style map from postorder number to these new RefSCCs. We then
1342 // append SCCs to each of these RefSCCs in the order they occurred in the
1343 // original SCCs container.
1344 for (int I
= 0; I
< PostOrderNumber
; ++I
)
1345 Result
.push_back(G
->createRefSCC(*G
));
1347 // Insert the resulting postorder sequence into the global graph postorder
1348 // sequence before the current RefSCC in that sequence, and then remove the
1351 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1352 // range over the global postorder sequence and generally use that sequence
1353 // rather than building a separate result vector here.
1354 int Idx
= G
->getRefSCCIndex(*this);
1355 G
->PostOrderRefSCCs
.erase(G
->PostOrderRefSCCs
.begin() + Idx
);
1356 G
->PostOrderRefSCCs
.insert(G
->PostOrderRefSCCs
.begin() + Idx
, Result
.begin(),
1358 for (int I
: seq
<int>(Idx
, G
->PostOrderRefSCCs
.size()))
1359 G
->RefSCCIndices
[G
->PostOrderRefSCCs
[I
]] = I
;
1361 for (SCC
*C
: SCCs
) {
1362 // We store the SCC number in the node's low-link field above.
1363 int SCCNumber
= C
->begin()->LowLink
;
1364 // Clear out all the SCC's node's low-link fields now that we're done
1365 // using them as side-storage.
1366 for (Node
&N
: *C
) {
1367 assert(N
.LowLink
== SCCNumber
&&
1368 "Cannot have different numbers for nodes in the same SCC!");
1372 RefSCC
&RC
= *Result
[SCCNumber
];
1373 int SCCIndex
= RC
.SCCs
.size();
1374 RC
.SCCs
.push_back(C
);
1375 RC
.SCCIndices
[C
] = SCCIndex
;
1376 C
->OuterRefSCC
= &RC
;
1379 // Now that we've moved things into the new RefSCCs, clear out our current
1385 #ifdef EXPENSIVE_CHECKS
1386 // Verify the new RefSCCs we've built.
1387 for (RefSCC
*RC
: Result
)
1391 // Return the new list of SCCs.
1395 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node
&SourceN
,
1397 #ifdef EXPENSIVE_CHECKS
1398 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1400 // Check that we aren't breaking some invariants of the SCC graph. Note that
1401 // this is quadratic in the number of edges in the call graph!
1402 SCC
&SourceC
= *G
->lookupSCC(SourceN
);
1403 SCC
&TargetC
= *G
->lookupSCC(TargetN
);
1404 if (&SourceC
!= &TargetC
)
1405 assert(SourceC
.isAncestorOf(TargetC
) &&
1406 "Call edge is not trivial in the SCC graph!");
1409 // First insert it into the source or find the existing edge.
1410 auto [Iterator
, Inserted
] =
1411 SourceN
->EdgeIndexMap
.try_emplace(&TargetN
, SourceN
->Edges
.size());
1413 // Already an edge, just update it.
1414 Edge
&E
= SourceN
->Edges
[Iterator
->second
];
1416 return; // Nothing to do!
1417 E
.setKind(Edge::Call
);
1419 // Create the new edge.
1420 SourceN
->Edges
.emplace_back(TargetN
, Edge::Call
);
1424 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node
&SourceN
, Node
&TargetN
) {
1425 #ifdef EXPENSIVE_CHECKS
1426 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1428 // Check that we aren't breaking some invariants of the RefSCC graph.
1429 RefSCC
&SourceRC
= *G
->lookupRefSCC(SourceN
);
1430 RefSCC
&TargetRC
= *G
->lookupRefSCC(TargetN
);
1431 if (&SourceRC
!= &TargetRC
)
1432 assert(SourceRC
.isAncestorOf(TargetRC
) &&
1433 "Ref edge is not trivial in the RefSCC graph!");
1436 // First insert it into the source or find the existing edge.
1437 auto [Iterator
, Inserted
] =
1438 SourceN
->EdgeIndexMap
.try_emplace(&TargetN
, SourceN
->Edges
.size());
1441 // Already an edge, we're done.
1444 // Create the new edge.
1445 SourceN
->Edges
.emplace_back(TargetN
, Edge::Ref
);
1448 void LazyCallGraph::RefSCC::replaceNodeFunction(Node
&N
, Function
&NewF
) {
1449 Function
&OldF
= N
.getFunction();
1451 #ifdef EXPENSIVE_CHECKS
1452 auto ExitVerifier
= make_scope_exit([this] { verify(); });
1454 assert(G
->lookupRefSCC(N
) == this &&
1455 "Cannot replace the function of a node outside this RefSCC.");
1457 assert(G
->NodeMap
.find(&NewF
) == G
->NodeMap
.end() &&
1458 "Must not have already walked the new function!'");
1460 // It is important that this replacement not introduce graph changes so we
1461 // insist that the caller has already removed every use of the original
1462 // function and that all uses of the new function correspond to existing
1463 // edges in the graph. The common and expected way to use this is when
1464 // replacing the function itself in the IR without changing the call graph
1465 // shape and just updating the analysis based on that.
1466 assert(&OldF
!= &NewF
&& "Cannot replace a function with itself!");
1467 assert(OldF
.use_empty() &&
1468 "Must have moved all uses from the old function to the new!");
1471 N
.replaceFunction(NewF
);
1473 // Update various call graph maps.
1474 G
->NodeMap
.erase(&OldF
);
1475 G
->NodeMap
[&NewF
] = &N
;
1477 // Update lib functions.
1478 if (G
->isLibFunction(OldF
)) {
1479 G
->LibFunctions
.remove(&OldF
);
1480 G
->LibFunctions
.insert(&NewF
);
1484 void LazyCallGraph::insertEdge(Node
&SourceN
, Node
&TargetN
, Edge::Kind EK
) {
1485 assert(SCCMap
.empty() &&
1486 "This method cannot be called after SCCs have been formed!");
1488 return SourceN
->insertEdgeInternal(TargetN
, EK
);
1491 void LazyCallGraph::removeEdge(Node
&SourceN
, Node
&TargetN
) {
1492 assert(SCCMap
.empty() &&
1493 "This method cannot be called after SCCs have been formed!");
1495 bool Removed
= SourceN
->removeEdgeInternal(TargetN
);
1497 assert(Removed
&& "Target not in the edge set for this caller?");
1500 void LazyCallGraph::markDeadFunction(Function
&F
) {
1501 // FIXME: This is unnecessarily restrictive. We should be able to remove
1502 // functions which recursively call themselves.
1503 assert(F
.hasZeroLiveUses() &&
1504 "This routine should only be called on trivially dead functions!");
1506 // We shouldn't remove library functions as they are never really dead while
1507 // the call graph is in use -- every function definition refers to them.
1508 assert(!isLibFunction(F
) &&
1509 "Must not remove lib functions from the call graph!");
1511 auto NI
= NodeMap
.find(&F
);
1512 assert(NI
!= NodeMap
.end() && "Removed function should be known!");
1514 Node
&N
= *NI
->second
;
1516 // Remove all call edges out of dead function.
1519 N
->setEdgeKind(E
.getNode(), Edge::Ref
);
1523 void LazyCallGraph::removeDeadFunctions(ArrayRef
<Function
*> DeadFs
) {
1527 // Group dead functions by the RefSCC they're in.
1528 DenseMap
<RefSCC
*, SmallVector
<Node
*, 1>> RCs
;
1529 for (Function
*DeadF
: DeadFs
) {
1530 Node
*N
= lookup(*DeadF
);
1532 for (Edge
&E
: **N
) {
1533 assert(!E
.isCall() &&
1534 "dead function shouldn't have any outgoing call edges");
1537 RefSCC
*RC
= lookupRefSCC(*N
);
1538 RCs
[RC
].push_back(N
);
1540 // Remove outgoing edges from all dead functions. Dead functions should
1541 // already have had their call edges removed in markDeadFunction(), so we only
1542 // need to worry about spurious ref edges.
1543 for (auto [RC
, DeadNs
] : RCs
) {
1544 SmallVector
<std::pair
<Node
*, Node
*>> InternalEdgesToRemove
;
1545 for (Node
*DeadN
: DeadNs
) {
1546 for (Edge
&E
: **DeadN
) {
1547 if (lookupRefSCC(E
.getNode()) == RC
)
1548 InternalEdgesToRemove
.push_back({DeadN
, &E
.getNode()});
1550 RC
->removeOutgoingEdge(*DeadN
, E
.getNode());
1553 // We ignore the returned RefSCCs since at this point we're done with CGSCC
1554 // iteration and don't need to add it to any worklists.
1555 (void)RC
->removeInternalRefEdges(InternalEdgesToRemove
);
1556 for (Node
*DeadN
: DeadNs
) {
1557 RefSCC
*DeadRC
= lookupRefSCC(*DeadN
);
1558 assert(DeadRC
->size() == 1);
1559 assert(DeadRC
->begin()->size() == 1);
1561 DeadRC
->G
= nullptr;
1564 // Clean up data structures.
1565 for (Function
*DeadF
: DeadFs
) {
1566 Node
&N
= *lookup(*DeadF
);
1568 EntryEdges
.removeEdgeInternal(N
);
1569 SCCMap
.erase(SCCMap
.find(&N
));
1570 NodeMap
.erase(NodeMap
.find(DeadF
));
1578 // Gets the Edge::Kind from one function to another by looking at the function's
1579 // instructions. Asserts if there is no edge.
1580 // Useful for determining what type of edge should exist between functions when
1581 // the edge hasn't been created yet.
1582 static LazyCallGraph::Edge::Kind
getEdgeKind(Function
&OriginalFunction
,
1583 Function
&NewFunction
) {
1584 // In release builds, assume that if there are no direct calls to the new
1585 // function, then there is a ref edge. In debug builds, keep track of
1586 // references to assert that there is actually a ref edge if there is no call
1589 SmallVector
<Constant
*, 16> Worklist
;
1590 SmallPtrSet
<Constant
*, 16> Visited
;
1593 for (Instruction
&I
: instructions(OriginalFunction
)) {
1594 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
1595 if (Function
*Callee
= CB
->getCalledFunction()) {
1596 if (Callee
== &NewFunction
)
1597 return LazyCallGraph::Edge::Kind::Call
;
1601 for (Value
*Op
: I
.operand_values()) {
1602 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
1603 if (Visited
.insert(C
).second
)
1604 Worklist
.push_back(C
);
1611 bool FoundNewFunction
= false;
1612 LazyCallGraph::visitReferences(Worklist
, Visited
, [&](Function
&F
) {
1613 if (&F
== &NewFunction
)
1614 FoundNewFunction
= true;
1616 assert(FoundNewFunction
&& "No edge from original function to new function");
1619 return LazyCallGraph::Edge::Kind::Ref
;
1622 void LazyCallGraph::addSplitFunction(Function
&OriginalFunction
,
1623 Function
&NewFunction
) {
1624 assert(lookup(OriginalFunction
) &&
1625 "Original function's node should already exist");
1626 Node
&OriginalN
= get(OriginalFunction
);
1627 SCC
*OriginalC
= lookupSCC(OriginalN
);
1628 RefSCC
*OriginalRC
= lookupRefSCC(OriginalN
);
1630 #ifdef EXPENSIVE_CHECKS
1631 OriginalRC
->verify();
1632 auto VerifyOnExit
= make_scope_exit([&]() { OriginalRC
->verify(); });
1635 assert(!lookup(NewFunction
) &&
1636 "New function's node should not already exist");
1637 Node
&NewN
= initNode(NewFunction
);
1639 Edge::Kind EK
= getEdgeKind(OriginalFunction
, NewFunction
);
1641 SCC
*NewC
= nullptr;
1642 for (Edge
&E
: *NewN
) {
1643 Node
&EN
= E
.getNode();
1644 if (EK
== Edge::Kind::Call
&& E
.isCall() && lookupSCC(EN
) == OriginalC
) {
1645 // If the edge to the new function is a call edge and there is a call edge
1646 // from the new function to any function in the original function's SCC,
1647 // it is in the same SCC (and RefSCC) as the original function.
1649 NewC
->Nodes
.push_back(&NewN
);
1655 for (Edge
&E
: *NewN
) {
1656 Node
&EN
= E
.getNode();
1657 if (lookupRefSCC(EN
) == OriginalRC
) {
1658 // If there is any edge from the new function to any function in the
1659 // original function's RefSCC, it is in the same RefSCC as the original
1660 // function but a new SCC.
1661 RefSCC
*NewRC
= OriginalRC
;
1662 NewC
= createSCC(*NewRC
, SmallVector
<Node
*, 1>({&NewN
}));
1664 // The new function's SCC is not the same as the original function's
1665 // SCC, since that case was handled earlier. If the edge from the
1666 // original function to the new function was a call edge, then we need
1667 // to insert the newly created function's SCC before the original
1668 // function's SCC. Otherwise, either the new SCC comes after the
1669 // original function's SCC, or it doesn't matter, and in both cases we
1670 // can add it to the very end.
1671 int InsertIndex
= EK
== Edge::Kind::Call
? NewRC
->SCCIndices
[OriginalC
]
1672 : NewRC
->SCCIndices
.size();
1673 NewRC
->SCCs
.insert(NewRC
->SCCs
.begin() + InsertIndex
, NewC
);
1674 for (int I
= InsertIndex
, Size
= NewRC
->SCCs
.size(); I
< Size
; ++I
)
1675 NewRC
->SCCIndices
[NewRC
->SCCs
[I
]] = I
;
1683 // We didn't find any edges back to the original function's RefSCC, so the
1684 // new function belongs in a new RefSCC. The new RefSCC goes before the
1685 // original function's RefSCC.
1686 RefSCC
*NewRC
= createRefSCC(*this);
1687 NewC
= createSCC(*NewRC
, SmallVector
<Node
*, 1>({&NewN
}));
1688 NewRC
->SCCIndices
[NewC
] = 0;
1689 NewRC
->SCCs
.push_back(NewC
);
1690 auto OriginalRCIndex
= RefSCCIndices
.find(OriginalRC
)->second
;
1691 PostOrderRefSCCs
.insert(PostOrderRefSCCs
.begin() + OriginalRCIndex
, NewRC
);
1692 for (int I
= OriginalRCIndex
, Size
= PostOrderRefSCCs
.size(); I
< Size
; ++I
)
1693 RefSCCIndices
[PostOrderRefSCCs
[I
]] = I
;
1696 SCCMap
[&NewN
] = NewC
;
1698 OriginalN
->insertEdgeInternal(NewN
, EK
);
1701 void LazyCallGraph::addSplitRefRecursiveFunctions(
1702 Function
&OriginalFunction
, ArrayRef
<Function
*> NewFunctions
) {
1703 assert(!NewFunctions
.empty() && "Can't add zero functions");
1704 assert(lookup(OriginalFunction
) &&
1705 "Original function's node should already exist");
1706 Node
&OriginalN
= get(OriginalFunction
);
1707 RefSCC
*OriginalRC
= lookupRefSCC(OriginalN
);
1709 #ifdef EXPENSIVE_CHECKS
1710 OriginalRC
->verify();
1711 auto VerifyOnExit
= make_scope_exit([&]() {
1712 OriginalRC
->verify();
1713 for (Function
*NewFunction
: NewFunctions
)
1714 lookupRefSCC(get(*NewFunction
))->verify();
1718 bool ExistsRefToOriginalRefSCC
= false;
1720 for (Function
*NewFunction
: NewFunctions
) {
1721 Node
&NewN
= initNode(*NewFunction
);
1723 OriginalN
->insertEdgeInternal(NewN
, Edge::Kind::Ref
);
1725 // Check if there is any edge from any new function back to any function in
1726 // the original function's RefSCC.
1727 for (Edge
&E
: *NewN
) {
1728 if (lookupRefSCC(E
.getNode()) == OriginalRC
) {
1729 ExistsRefToOriginalRefSCC
= true;
1736 if (ExistsRefToOriginalRefSCC
) {
1737 // If there is any edge from any new function to any function in the
1738 // original function's RefSCC, all new functions will be in the same RefSCC
1739 // as the original function.
1742 // Otherwise the new functions are in their own RefSCC.
1743 NewRC
= createRefSCC(*this);
1744 // The new RefSCC goes before the original function's RefSCC in postorder
1745 // since there are only edges from the original function's RefSCC to the new
1747 auto OriginalRCIndex
= RefSCCIndices
.find(OriginalRC
)->second
;
1748 PostOrderRefSCCs
.insert(PostOrderRefSCCs
.begin() + OriginalRCIndex
, NewRC
);
1749 for (int I
= OriginalRCIndex
, Size
= PostOrderRefSCCs
.size(); I
< Size
; ++I
)
1750 RefSCCIndices
[PostOrderRefSCCs
[I
]] = I
;
1753 for (Function
*NewFunction
: NewFunctions
) {
1754 Node
&NewN
= get(*NewFunction
);
1755 // Each new function is in its own new SCC. The original function can only
1756 // have a ref edge to new functions, and no other existing functions can
1757 // have references to new functions. Each new function only has a ref edge
1758 // to the other new functions.
1759 SCC
*NewC
= createSCC(*NewRC
, SmallVector
<Node
*, 1>({&NewN
}));
1760 // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1761 // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1763 auto Index
= NewRC
->SCCIndices
.size();
1764 NewRC
->SCCIndices
[NewC
] = Index
;
1765 NewRC
->SCCs
.push_back(NewC
);
1766 SCCMap
[&NewN
] = NewC
;
1770 for (Function
*F1
: NewFunctions
) {
1771 assert(getEdgeKind(OriginalFunction
, *F1
) == Edge::Kind::Ref
&&
1772 "Expected ref edges from original function to every new function");
1773 Node
&N1
= get(*F1
);
1774 for (Function
*F2
: NewFunctions
) {
1777 Node
&N2
= get(*F2
);
1778 assert(!N1
->lookup(N2
)->isCall() &&
1779 "Edges between new functions must be ref edges");
1785 LazyCallGraph::Node
&LazyCallGraph::insertInto(Function
&F
, Node
*&MappedN
) {
1786 return *new (MappedN
= BPA
.Allocate()) Node(*this, F
);
1789 void LazyCallGraph::updateGraphPtrs() {
1790 // Walk the node map to update their graph pointers. While this iterates in
1791 // an unstable order, the order has no effect, so it remains correct.
1792 for (auto &FunctionNodePair
: NodeMap
)
1793 FunctionNodePair
.second
->G
= this;
1795 for (auto *RC
: PostOrderRefSCCs
)
1799 LazyCallGraph::Node
&LazyCallGraph::initNode(Function
&F
) {
1801 N
.DFSNumber
= N
.LowLink
= -1;
1807 template <typename RootsT
, typename GetBeginT
, typename GetEndT
,
1808 typename GetNodeT
, typename FormSCCCallbackT
>
1809 void LazyCallGraph::buildGenericSCCs(RootsT
&&Roots
, GetBeginT
&&GetBegin
,
1810 GetEndT
&&GetEnd
, GetNodeT
&&GetNode
,
1811 FormSCCCallbackT
&&FormSCC
) {
1812 using EdgeItT
= decltype(GetBegin(std::declval
<Node
&>()));
1814 SmallVector
<std::pair
<Node
*, EdgeItT
>, 16> DFSStack
;
1815 SmallVector
<Node
*, 16> PendingSCCStack
;
1817 // Scan down the stack and DFS across the call edges.
1818 for (Node
*RootN
: Roots
) {
1819 assert(DFSStack
.empty() &&
1820 "Cannot begin a new root with a non-empty DFS stack!");
1821 assert(PendingSCCStack
.empty() &&
1822 "Cannot begin a new root with pending nodes for an SCC!");
1824 // Skip any nodes we've already reached in the DFS.
1825 if (RootN
->DFSNumber
!= 0) {
1826 assert(RootN
->DFSNumber
== -1 &&
1827 "Shouldn't have any mid-DFS root nodes!");
1831 RootN
->DFSNumber
= RootN
->LowLink
= 1;
1832 int NextDFSNumber
= 2;
1834 DFSStack
.emplace_back(RootN
, GetBegin(*RootN
));
1836 auto [N
, I
] = DFSStack
.pop_back_val();
1837 auto E
= GetEnd(*N
);
1839 Node
&ChildN
= GetNode(I
);
1840 if (ChildN
.DFSNumber
== 0) {
1841 // We haven't yet visited this child, so descend, pushing the current
1842 // node onto the stack.
1843 DFSStack
.emplace_back(N
, I
);
1845 ChildN
.DFSNumber
= ChildN
.LowLink
= NextDFSNumber
++;
1852 // If the child has already been added to some child component, it
1853 // couldn't impact the low-link of this parent because it isn't
1854 // connected, and thus its low-link isn't relevant so skip it.
1855 if (ChildN
.DFSNumber
== -1) {
1860 // Track the lowest linked child as the lowest link for this node.
1861 assert(ChildN
.LowLink
> 0 && "Must have a positive low-link number!");
1862 if (ChildN
.LowLink
< N
->LowLink
)
1863 N
->LowLink
= ChildN
.LowLink
;
1865 // Move to the next edge.
1869 // We've finished processing N and its descendants, put it on our pending
1870 // SCC stack to eventually get merged into an SCC of nodes.
1871 PendingSCCStack
.push_back(N
);
1873 // If this node is linked to some lower entry, continue walking up the
1875 if (N
->LowLink
!= N
->DFSNumber
)
1878 // Otherwise, we've completed an SCC. Append it to our post order list of
1880 int RootDFSNumber
= N
->DFSNumber
;
1881 // Find the range of the node stack by walking down until we pass the
1883 auto SCCNodes
= make_range(
1884 PendingSCCStack
.rbegin(),
1885 find_if(reverse(PendingSCCStack
), [RootDFSNumber
](const Node
*N
) {
1886 return N
->DFSNumber
< RootDFSNumber
;
1888 // Form a new SCC out of these nodes and then clear them off our pending
1891 PendingSCCStack
.erase(SCCNodes
.end().base(), PendingSCCStack
.end());
1892 } while (!DFSStack
.empty());
1896 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1898 /// Appends the SCCs to the provided vector and updates the map with their
1899 /// indices. Both the vector and map must be empty when passed into this
1901 void LazyCallGraph::buildSCCs(RefSCC
&RC
, node_stack_range Nodes
) {
1902 assert(RC
.SCCs
.empty() && "Already built SCCs!");
1903 assert(RC
.SCCIndices
.empty() && "Already mapped SCC indices!");
1905 for (Node
*N
: Nodes
) {
1906 assert(N
->LowLink
>= (*Nodes
.begin())->LowLink
&&
1907 "We cannot have a low link in an SCC lower than its root on the "
1910 // This node will go into the next RefSCC, clear out its DFS and low link
1912 N
->DFSNumber
= N
->LowLink
= 0;
1915 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1916 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1917 // internal storage as we won't need it for the outer graph's DFS any longer.
1919 Nodes
, [](Node
&N
) { return N
->call_begin(); },
1920 [](Node
&N
) { return N
->call_end(); },
1921 [](EdgeSequence::call_iterator I
) -> Node
& { return I
->getNode(); },
1922 [this, &RC
](node_stack_range Nodes
) {
1923 RC
.SCCs
.push_back(createSCC(RC
, Nodes
));
1924 for (Node
&N
: *RC
.SCCs
.back()) {
1925 N
.DFSNumber
= N
.LowLink
= -1;
1926 SCCMap
[&N
] = RC
.SCCs
.back();
1930 // Wire up the SCC indices.
1931 for (int I
= 0, Size
= RC
.SCCs
.size(); I
< Size
; ++I
)
1932 RC
.SCCIndices
[RC
.SCCs
[I
]] = I
;
1935 void LazyCallGraph::buildRefSCCs() {
1936 if (EntryEdges
.empty() || !PostOrderRefSCCs
.empty())
1937 // RefSCCs are either non-existent or already built!
1940 assert(RefSCCIndices
.empty() && "Already mapped RefSCC indices!");
1942 SmallVector
<Node
*, 16> Roots
;
1943 for (Edge
&E
: *this)
1944 Roots
.push_back(&E
.getNode());
1946 // The roots will be iterated in order.
1950 // We need to populate each node as we begin to walk its edges.
1954 [](Node
&N
) { return N
->end(); },
1955 [](EdgeSequence::iterator I
) -> Node
& { return I
->getNode(); },
1956 [this](node_stack_range Nodes
) {
1957 RefSCC
*NewRC
= createRefSCC(*this);
1958 buildSCCs(*NewRC
, Nodes
);
1960 // Push the new node into the postorder list and remember its position
1961 // in the index map.
1963 RefSCCIndices
.try_emplace(NewRC
, PostOrderRefSCCs
.size()).second
;
1965 assert(Inserted
&& "Cannot already have this RefSCC in the index map!");
1966 PostOrderRefSCCs
.push_back(NewRC
);
1967 #ifdef EXPENSIVE_CHECKS
1973 void LazyCallGraph::visitReferences(SmallVectorImpl
<Constant
*> &Worklist
,
1974 SmallPtrSetImpl
<Constant
*> &Visited
,
1975 function_ref
<void(Function
&)> Callback
) {
1976 while (!Worklist
.empty()) {
1977 Constant
*C
= Worklist
.pop_back_val();
1979 if (Function
*F
= dyn_cast
<Function
>(C
)) {
1980 if (!F
->isDeclaration())
1985 // blockaddresses are weird and don't participate in the call graph anyway,
1987 if (isa
<BlockAddress
>(C
))
1990 for (Value
*Op
: C
->operand_values())
1991 if (Visited
.insert(cast
<Constant
>(Op
)).second
)
1992 Worklist
.push_back(cast
<Constant
>(Op
));
1996 AnalysisKey
LazyCallGraphAnalysis::Key
;
1998 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream
&OS
) : OS(OS
) {}
2000 static void printNode(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
2001 OS
<< " Edges in function: " << N
.getFunction().getName() << "\n";
2002 for (LazyCallGraph::Edge
&E
: N
.populate())
2003 OS
<< " " << (E
.isCall() ? "call" : "ref ") << " -> "
2004 << E
.getFunction().getName() << "\n";
2009 static void printSCC(raw_ostream
&OS
, LazyCallGraph::SCC
&C
) {
2010 OS
<< " SCC with " << C
.size() << " functions:\n";
2012 for (LazyCallGraph::Node
&N
: C
)
2013 OS
<< " " << N
.getFunction().getName() << "\n";
2016 static void printRefSCC(raw_ostream
&OS
, LazyCallGraph::RefSCC
&C
) {
2017 OS
<< " RefSCC with " << C
.size() << " call SCCs:\n";
2019 for (LazyCallGraph::SCC
&InnerC
: C
)
2020 printSCC(OS
, InnerC
);
2025 PreservedAnalyses
LazyCallGraphPrinterPass::run(Module
&M
,
2026 ModuleAnalysisManager
&AM
) {
2027 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
2029 OS
<< "Printing the call graph for module: " << M
.getModuleIdentifier()
2032 for (Function
&F
: M
)
2033 printNode(OS
, G
.get(F
));
2036 for (LazyCallGraph::RefSCC
&C
: G
.postorder_ref_sccs())
2039 return PreservedAnalyses::all();
2042 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream
&OS
)
2045 static void printNodeDOT(raw_ostream
&OS
, LazyCallGraph::Node
&N
) {
2047 "\"" + DOT::EscapeString(std::string(N
.getFunction().getName())) + "\"";
2049 for (LazyCallGraph::Edge
&E
: N
.populate()) {
2050 OS
<< " " << Name
<< " -> \""
2051 << DOT::EscapeString(std::string(E
.getFunction().getName())) << "\"";
2052 if (!E
.isCall()) // It is a ref edge.
2053 OS
<< " [style=dashed,label=\"ref\"]";
2060 PreservedAnalyses
LazyCallGraphDOTPrinterPass::run(Module
&M
,
2061 ModuleAnalysisManager
&AM
) {
2062 LazyCallGraph
&G
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
2064 OS
<< "digraph \"" << DOT::EscapeString(M
.getModuleIdentifier()) << "\" {\n";
2066 for (Function
&F
: M
)
2067 printNodeDOT(OS
, G
.get(F
));
2071 return PreservedAnalyses::all();