[RISCV] Match vcompress during shuffle lowering (#117748)
[llvm-project.git] / llvm / lib / Analysis / LoopAccessAnalysis.cpp
blob907bb7875dc807ee99e671f11920c27951e33bcb
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <utility>
65 #include <variant>
66 #include <vector>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
71 #define DEBUG_TYPE "loop-accesses"
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75 cl::desc("Sets the SIMD width. Zero is autoselect."),
76 cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81 cl::desc("Sets the vectorization interleave count. "
82 "Zero is autoselect."),
83 cl::location(
84 VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88 "runtime-memory-check-threshold", cl::Hidden,
89 cl::desc("When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96 "memory-check-merge-threshold", cl::Hidden,
97 cl::desc("Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
99 cl::init(100));
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106 MaxDependences("max-dependences", cl::Hidden,
107 cl::desc("Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
109 cl::init(100));
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 /// for (i = 0; i < N; ++i)
114 /// A[i * Stride1] += B[i * Stride2] ...
116 /// Will be roughly translated to
117 /// if (Stride1 == 1 && Stride2 == 1) {
118 /// for (i = 0; i < N; i+=4)
119 /// A[i:i+3] += ...
120 /// } else
121 /// ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124 cl::desc("Enable symbolic stride memory access versioning"));
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129 "store-to-load-forwarding-conflict-detection", cl::Hidden,
130 cl::desc("Enable conflict detection in loop-access analysis"),
131 cl::init(true));
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134 "max-forked-scev-depth", cl::Hidden,
135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136 cl::init(5));
138 static cl::opt<bool> SpeculateUnitStride(
139 "laa-speculate-unit-stride", cl::Hidden,
140 cl::desc("Speculate that non-constant strides are unit in LAA"),
141 cl::init(true));
143 static cl::opt<bool, true> HoistRuntimeChecks(
144 "hoist-runtime-checks", cl::Hidden,
145 cl::desc(
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks;
150 bool VectorizerParams::isInterleaveForced() {
151 return ::VectorizationInterleave.getNumOccurrences() > 0;
154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
155 const DenseMap<Value *, const SCEV *> &PtrToStride,
156 Value *Ptr) {
157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
159 // If there is an entry in the map return the SCEV of the pointer with the
160 // symbolic stride replaced by one.
161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162 if (SI == PtrToStride.end())
163 // For a non-symbolic stride, just return the original expression.
164 return OrigSCEV;
166 const SCEV *StrideSCEV = SI->second;
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
173 ScalarEvolution *SE = PSE.getSE();
174 const SCEV *CT = SE->getOne(StrideSCEV->getType());
175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176 const SCEV *Expr = PSE.getSCEV(Ptr);
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr << "\n");
180 return Expr;
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184 unsigned Index, const RuntimePointerChecking &RtCheck)
185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186 AddressSpace(RtCheck.Pointers[Index]
187 .PointerValue->getType()
188 ->getPointerAddressSpace()),
189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190 Members.push_back(Index);
193 /// Calculate Start and End points of memory access.
194 /// Let's assume A is the first access and B is a memory access on N-th loop
195 /// iteration. Then B is calculated as:
196 /// B = A + Step*N .
197 /// Step value may be positive or negative.
198 /// N is a calculated back-edge taken count:
199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200 /// Start and End points are calculated in the following way:
201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202 /// where SizeOfElt is the size of single memory access in bytes.
204 /// There is no conflict when the intervals are disjoint:
205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
208 PredicatedScalarEvolution &PSE,
209 DenseMap<std::pair<const SCEV *, Type *>,
210 std::pair<const SCEV *, const SCEV *>> &PointerBounds) {
211 ScalarEvolution *SE = PSE.getSE();
213 auto [Iter, Ins] = PointerBounds.insert(
214 {{PtrExpr, AccessTy},
215 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
216 if (!Ins)
217 return Iter->second;
219 const SCEV *ScStart;
220 const SCEV *ScEnd;
222 if (SE->isLoopInvariant(PtrExpr, Lp)) {
223 ScStart = ScEnd = PtrExpr;
224 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
225 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
227 ScStart = AR->getStart();
228 ScEnd = AR->evaluateAtIteration(Ex, *SE);
229 const SCEV *Step = AR->getStepRecurrence(*SE);
231 // For expressions with negative step, the upper bound is ScStart and the
232 // lower bound is ScEnd.
233 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
234 if (CStep->getValue()->isNegative())
235 std::swap(ScStart, ScEnd);
236 } else {
237 // Fallback case: the step is not constant, but we can still
238 // get the upper and lower bounds of the interval by using min/max
239 // expressions.
240 ScStart = SE->getUMinExpr(ScStart, ScEnd);
241 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
243 } else
244 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
246 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
247 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
249 // Add the size of the pointed element to ScEnd.
250 auto &DL = Lp->getHeader()->getDataLayout();
251 Type *IdxTy = DL.getIndexType(PtrExpr->getType());
252 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
253 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
255 Iter->second = {ScStart, ScEnd};
256 return Iter->second;
259 /// Calculate Start and End points of memory access using
260 /// getStartAndEndForAccess.
261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
262 Type *AccessTy, bool WritePtr,
263 unsigned DepSetId, unsigned ASId,
264 PredicatedScalarEvolution &PSE,
265 bool NeedsFreeze) {
266 const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
267 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
268 assert(!isa<SCEVCouldNotCompute>(ScStart) &&
269 !isa<SCEVCouldNotCompute>(ScEnd) &&
270 "must be able to compute both start and end expressions");
271 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
272 NeedsFreeze);
275 bool RuntimePointerChecking::tryToCreateDiffCheck(
276 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
277 // If either group contains multiple different pointers, bail out.
278 // TODO: Support multiple pointers by using the minimum or maximum pointer,
279 // depending on src & sink.
280 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
281 return false;
283 const PointerInfo *Src = &Pointers[CGI.Members[0]];
284 const PointerInfo *Sink = &Pointers[CGJ.Members[0]];
286 // If either pointer is read and written, multiple checks may be needed. Bail
287 // out.
288 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
289 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
290 return false;
292 ArrayRef<unsigned> AccSrc =
293 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
294 ArrayRef<unsigned> AccSink =
295 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
296 // If either pointer is accessed multiple times, there may not be a clear
297 // src/sink relation. Bail out for now.
298 if (AccSrc.size() != 1 || AccSink.size() != 1)
299 return false;
301 // If the sink is accessed before src, swap src/sink.
302 if (AccSink[0] < AccSrc[0])
303 std::swap(Src, Sink);
305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
307 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
308 SinkAR->getLoop() != DC.getInnermostLoop())
309 return false;
311 SmallVector<Instruction *, 4> SrcInsts =
312 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
313 SmallVector<Instruction *, 4> SinkInsts =
314 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
315 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
316 Type *DstTy = getLoadStoreType(SinkInsts[0]);
317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
318 return false;
320 const DataLayout &DL =
321 SinkAR->getLoop()->getHeader()->getDataLayout();
322 unsigned AllocSize =
323 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
325 // Only matching constant steps matching the AllocSize are supported at the
326 // moment. This simplifies the difference computation. Can be extended in the
327 // future.
328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
330 Step->getAPInt().abs() != AllocSize)
331 return false;
333 IntegerType *IntTy =
334 IntegerType::get(Src->PointerValue->getContext(),
335 DL.getPointerSizeInBits(CGI.AddressSpace));
337 // When counting down, the dependence distance needs to be swapped.
338 if (Step->getValue()->isNegative())
339 std::swap(SinkAR, SrcAR);
341 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
342 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
343 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
344 isa<SCEVCouldNotCompute>(SrcStartInt))
345 return false;
347 const Loop *InnerLoop = SrcAR->getLoop();
348 // If the start values for both Src and Sink also vary according to an outer
349 // loop, then it's probably better to avoid creating diff checks because
350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
351 // do the expanded full range overlap checks, which can be hoisted.
352 if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
356 const Loop *StartARLoop = SrcStartAR->getLoop();
357 if (StartARLoop == SinkStartAR->getLoop() &&
358 StartARLoop == InnerLoop->getParentLoop() &&
359 // If the diff check would already be loop invariant (due to the
360 // recurrences being the same), then we prefer to keep the diff checks
361 // because they are cheaper.
362 SrcStartAR->getStepRecurrence(*SE) !=
363 SinkStartAR->getStepRecurrence(*SE)) {
364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
365 "cannot be hoisted out of the outer loop\n");
366 return false;
370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
371 << "SrcStart: " << *SrcStartInt << '\n'
372 << "SinkStartInt: " << *SinkStartInt << '\n');
373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
374 Src->NeedsFreeze || Sink->NeedsFreeze);
375 return true;
378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
379 SmallVector<RuntimePointerCheck, 4> Checks;
381 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
382 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
383 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
384 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
386 if (needsChecking(CGI, CGJ)) {
387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
388 Checks.emplace_back(&CGI, &CGJ);
392 return Checks;
395 void RuntimePointerChecking::generateChecks(
396 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
397 assert(Checks.empty() && "Checks is not empty");
398 groupChecks(DepCands, UseDependencies);
399 Checks = generateChecks();
402 bool RuntimePointerChecking::needsChecking(
403 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
404 for (const auto &I : M.Members)
405 for (const auto &J : N.Members)
406 if (needsChecking(I, J))
407 return true;
408 return false;
411 /// Compare \p I and \p J and return the minimum.
412 /// Return nullptr in case we couldn't find an answer.
413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
414 ScalarEvolution *SE) {
415 std::optional<APInt> Diff = SE->computeConstantDifference(J, I);
416 if (!Diff)
417 return nullptr;
418 return Diff->isNegative() ? J : I;
421 bool RuntimeCheckingPtrGroup::addPointer(
422 unsigned Index, const RuntimePointerChecking &RtCheck) {
423 return addPointer(
424 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
425 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
426 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
429 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
430 const SCEV *End, unsigned AS,
431 bool NeedsFreeze,
432 ScalarEvolution &SE) {
433 assert(AddressSpace == AS &&
434 "all pointers in a checking group must be in the same address space");
436 // Compare the starts and ends with the known minimum and maximum
437 // of this set. We need to know how we compare against the min/max
438 // of the set in order to be able to emit memchecks.
439 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
440 if (!Min0)
441 return false;
443 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
444 if (!Min1)
445 return false;
447 // Update the low bound expression if we've found a new min value.
448 if (Min0 == Start)
449 Low = Start;
451 // Update the high bound expression if we've found a new max value.
452 if (Min1 != End)
453 High = End;
455 Members.push_back(Index);
456 this->NeedsFreeze |= NeedsFreeze;
457 return true;
460 void RuntimePointerChecking::groupChecks(
461 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
462 // We build the groups from dependency candidates equivalence classes
463 // because:
464 // - We know that pointers in the same equivalence class share
465 // the same underlying object and therefore there is a chance
466 // that we can compare pointers
467 // - We wouldn't be able to merge two pointers for which we need
468 // to emit a memcheck. The classes in DepCands are already
469 // conveniently built such that no two pointers in the same
470 // class need checking against each other.
472 // We use the following (greedy) algorithm to construct the groups
473 // For every pointer in the equivalence class:
474 // For each existing group:
475 // - if the difference between this pointer and the min/max bounds
476 // of the group is a constant, then make the pointer part of the
477 // group and update the min/max bounds of that group as required.
479 CheckingGroups.clear();
481 // If we need to check two pointers to the same underlying object
482 // with a non-constant difference, we shouldn't perform any pointer
483 // grouping with those pointers. This is because we can easily get
484 // into cases where the resulting check would return false, even when
485 // the accesses are safe.
487 // The following example shows this:
488 // for (i = 0; i < 1000; ++i)
489 // a[5000 + i * m] = a[i] + a[i + 9000]
491 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
492 // (0, 10000) which is always false. However, if m is 1, there is no
493 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
494 // us to perform an accurate check in this case.
496 // The above case requires that we have an UnknownDependence between
497 // accesses to the same underlying object. This cannot happen unless
498 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
499 // is also false. In this case we will use the fallback path and create
500 // separate checking groups for all pointers.
502 // If we don't have the dependency partitions, construct a new
503 // checking pointer group for each pointer. This is also required
504 // for correctness, because in this case we can have checking between
505 // pointers to the same underlying object.
506 if (!UseDependencies) {
507 for (unsigned I = 0; I < Pointers.size(); ++I)
508 CheckingGroups.emplace_back(I, *this);
509 return;
512 unsigned TotalComparisons = 0;
514 DenseMap<Value *, SmallVector<unsigned>> PositionMap;
515 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
516 PositionMap[Pointers[Index].PointerValue].push_back(Index);
518 // We need to keep track of what pointers we've already seen so we
519 // don't process them twice.
520 SmallSet<unsigned, 2> Seen;
522 // Go through all equivalence classes, get the "pointer check groups"
523 // and add them to the overall solution. We use the order in which accesses
524 // appear in 'Pointers' to enforce determinism.
525 for (unsigned I = 0; I < Pointers.size(); ++I) {
526 // We've seen this pointer before, and therefore already processed
527 // its equivalence class.
528 if (Seen.count(I))
529 continue;
531 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
532 Pointers[I].IsWritePtr);
534 SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
535 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
537 // Because DepCands is constructed by visiting accesses in the order in
538 // which they appear in alias sets (which is deterministic) and the
539 // iteration order within an equivalence class member is only dependent on
540 // the order in which unions and insertions are performed on the
541 // equivalence class, the iteration order is deterministic.
542 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
543 MI != ME; ++MI) {
544 auto PointerI = PositionMap.find(MI->getPointer());
545 assert(PointerI != PositionMap.end() &&
546 "pointer in equivalence class not found in PositionMap");
547 for (unsigned Pointer : PointerI->second) {
548 bool Merged = false;
549 // Mark this pointer as seen.
550 Seen.insert(Pointer);
552 // Go through all the existing sets and see if we can find one
553 // which can include this pointer.
554 for (RuntimeCheckingPtrGroup &Group : Groups) {
555 // Don't perform more than a certain amount of comparisons.
556 // This should limit the cost of grouping the pointers to something
557 // reasonable. If we do end up hitting this threshold, the algorithm
558 // will create separate groups for all remaining pointers.
559 if (TotalComparisons > MemoryCheckMergeThreshold)
560 break;
562 TotalComparisons++;
564 if (Group.addPointer(Pointer, *this)) {
565 Merged = true;
566 break;
570 if (!Merged)
571 // We couldn't add this pointer to any existing set or the threshold
572 // for the number of comparisons has been reached. Create a new group
573 // to hold the current pointer.
574 Groups.emplace_back(Pointer, *this);
578 // We've computed the grouped checks for this partition.
579 // Save the results and continue with the next one.
580 llvm::copy(Groups, std::back_inserter(CheckingGroups));
584 bool RuntimePointerChecking::arePointersInSamePartition(
585 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
586 unsigned PtrIdx2) {
587 return (PtrToPartition[PtrIdx1] != -1 &&
588 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
591 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
592 const PointerInfo &PointerI = Pointers[I];
593 const PointerInfo &PointerJ = Pointers[J];
595 // No need to check if two readonly pointers intersect.
596 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
597 return false;
599 // Only need to check pointers between two different dependency sets.
600 if (PointerI.DependencySetId == PointerJ.DependencySetId)
601 return false;
603 // Only need to check pointers in the same alias set.
604 return PointerI.AliasSetId == PointerJ.AliasSetId;
607 void RuntimePointerChecking::printChecks(
608 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
609 unsigned Depth) const {
610 unsigned N = 0;
611 for (const auto &[Check1, Check2] : Checks) {
612 const auto &First = Check1->Members, &Second = Check2->Members;
614 OS.indent(Depth) << "Check " << N++ << ":\n";
616 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
617 for (unsigned K : First)
618 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
620 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
621 for (unsigned K : Second)
622 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
626 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
628 OS.indent(Depth) << "Run-time memory checks:\n";
629 printChecks(OS, Checks, Depth);
631 OS.indent(Depth) << "Grouped accesses:\n";
632 for (const auto &CG : CheckingGroups) {
633 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
634 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
635 << ")\n";
636 for (unsigned Member : CG.Members) {
637 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
642 namespace {
644 /// Analyses memory accesses in a loop.
646 /// Checks whether run time pointer checks are needed and builds sets for data
647 /// dependence checking.
648 class AccessAnalysis {
649 public:
650 /// Read or write access location.
651 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
652 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
654 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI,
655 MemoryDepChecker::DepCandidates &DA,
656 PredicatedScalarEvolution &PSE,
657 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
658 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
659 LoopAliasScopes(LoopAliasScopes) {
660 // We're analyzing dependences across loop iterations.
661 BAA.enableCrossIterationMode();
664 /// Register a load and whether it is only read from.
665 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
666 Value *Ptr = const_cast<Value *>(Loc.Ptr);
667 AST.add(adjustLoc(Loc));
668 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
669 if (IsReadOnly)
670 ReadOnlyPtr.insert(Ptr);
673 /// Register a store.
674 void addStore(const MemoryLocation &Loc, Type *AccessTy) {
675 Value *Ptr = const_cast<Value *>(Loc.Ptr);
676 AST.add(adjustLoc(Loc));
677 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
680 /// Check if we can emit a run-time no-alias check for \p Access.
682 /// Returns true if we can emit a run-time no alias check for \p Access.
683 /// If we can check this access, this also adds it to a dependence set and
684 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
685 /// we will attempt to use additional run-time checks in order to get
686 /// the bounds of the pointer.
687 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
688 MemAccessInfo Access, Type *AccessTy,
689 const DenseMap<Value *, const SCEV *> &Strides,
690 DenseMap<Value *, unsigned> &DepSetId,
691 Loop *TheLoop, unsigned &RunningDepId,
692 unsigned ASId, bool ShouldCheckStride, bool Assume);
694 /// Check whether we can check the pointers at runtime for
695 /// non-intersection.
697 /// Returns true if we need no check or if we do and we can generate them
698 /// (i.e. the pointers have computable bounds).
699 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
700 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
701 Value *&UncomputablePtr, bool ShouldCheckWrap = false);
703 /// Goes over all memory accesses, checks whether a RT check is needed
704 /// and builds sets of dependent accesses.
705 void buildDependenceSets() {
706 processMemAccesses();
709 /// Initial processing of memory accesses determined that we need to
710 /// perform dependency checking.
712 /// Note that this can later be cleared if we retry memcheck analysis without
713 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
714 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); }
716 /// We decided that no dependence analysis would be used. Reset the state.
717 void resetDepChecks(MemoryDepChecker &DepChecker) {
718 CheckDeps.clear();
719 DepChecker.clearDependences();
722 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; }
724 private:
725 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
727 /// Adjust the MemoryLocation so that it represents accesses to this
728 /// location across all iterations, rather than a single one.
729 MemoryLocation adjustLoc(MemoryLocation Loc) const {
730 // The accessed location varies within the loop, but remains within the
731 // underlying object.
732 Loc.Size = LocationSize::beforeOrAfterPointer();
733 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
734 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
735 return Loc;
738 /// Drop alias scopes that are only valid within a single loop iteration.
739 MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
740 if (!ScopeList)
741 return nullptr;
743 // For the sake of simplicity, drop the whole scope list if any scope is
744 // iteration-local.
745 if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
746 return LoopAliasScopes.contains(cast<MDNode>(Scope));
748 return nullptr;
750 return ScopeList;
753 /// Go over all memory access and check whether runtime pointer checks
754 /// are needed and build sets of dependency check candidates.
755 void processMemAccesses();
757 /// Map of all accesses. Values are the types used to access memory pointed to
758 /// by the pointer.
759 PtrAccessMap Accesses;
761 /// The loop being checked.
762 const Loop *TheLoop;
764 /// List of accesses that need a further dependence check.
765 MemAccessInfoList CheckDeps;
767 /// Set of pointers that are read only.
768 SmallPtrSet<Value*, 16> ReadOnlyPtr;
770 /// Batched alias analysis results.
771 BatchAAResults BAA;
773 /// An alias set tracker to partition the access set by underlying object and
774 //intrinsic property (such as TBAA metadata).
775 AliasSetTracker AST;
777 /// The LoopInfo of the loop being checked.
778 const LoopInfo *LI;
780 /// Sets of potentially dependent accesses - members of one set share an
781 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
782 /// dependence check.
783 MemoryDepChecker::DepCandidates &DepCands;
785 /// Initial processing of memory accesses determined that we may need
786 /// to add memchecks. Perform the analysis to determine the necessary checks.
788 /// Note that, this is different from isDependencyCheckNeeded. When we retry
789 /// memcheck analysis without dependency checking
790 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
791 /// cleared while this remains set if we have potentially dependent accesses.
792 bool IsRTCheckAnalysisNeeded = false;
794 /// The SCEV predicate containing all the SCEV-related assumptions.
795 PredicatedScalarEvolution &PSE;
797 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
799 /// Alias scopes that are declared inside the loop, and as such not valid
800 /// across iterations.
801 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
804 } // end anonymous namespace
806 /// Check whether a pointer can participate in a runtime bounds check.
807 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
808 /// by adding run-time checks (overflow checks) if necessary.
809 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
810 const SCEV *PtrScev, Loop *L, bool Assume) {
811 // The bounds for loop-invariant pointer is trivial.
812 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
813 return true;
815 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
817 if (!AR && Assume)
818 AR = PSE.getAsAddRec(Ptr);
820 if (!AR)
821 return false;
823 return AR->isAffine();
826 /// Check whether a pointer address cannot wrap.
827 static bool isNoWrap(PredicatedScalarEvolution &PSE,
828 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr,
829 Type *AccessTy, Loop *L, bool Assume) {
830 const SCEV *PtrScev = PSE.getSCEV(Ptr);
831 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
832 return true;
834 return getPtrStride(PSE, AccessTy, Ptr, L, Strides, Assume).has_value() ||
835 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
838 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
839 function_ref<void(Value *)> AddPointer) {
840 SmallPtrSet<Value *, 8> Visited;
841 SmallVector<Value *> WorkList;
842 WorkList.push_back(StartPtr);
844 while (!WorkList.empty()) {
845 Value *Ptr = WorkList.pop_back_val();
846 if (!Visited.insert(Ptr).second)
847 continue;
848 auto *PN = dyn_cast<PHINode>(Ptr);
849 // SCEV does not look through non-header PHIs inside the loop. Such phis
850 // can be analyzed by adding separate accesses for each incoming pointer
851 // value.
852 if (PN && InnermostLoop.contains(PN->getParent()) &&
853 PN->getParent() != InnermostLoop.getHeader()) {
854 for (const Use &Inc : PN->incoming_values())
855 WorkList.push_back(Inc);
856 } else
857 AddPointer(Ptr);
861 // Walk back through the IR for a pointer, looking for a select like the
862 // following:
864 // %offset = select i1 %cmp, i64 %a, i64 %b
865 // %addr = getelementptr double, double* %base, i64 %offset
866 // %ld = load double, double* %addr, align 8
868 // We won't be able to form a single SCEVAddRecExpr from this since the
869 // address for each loop iteration depends on %cmp. We could potentially
870 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
871 // memory safety/aliasing if needed.
873 // If we encounter some IR we don't yet handle, or something obviously fine
874 // like a constant, then we just add the SCEV for that term to the list passed
875 // in by the caller. If we have a node that may potentially yield a valid
876 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
877 // ourselves before adding to the list.
878 static void findForkedSCEVs(
879 ScalarEvolution *SE, const Loop *L, Value *Ptr,
880 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
881 unsigned Depth) {
882 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
883 // we've exceeded our limit on recursion, just return whatever we have
884 // regardless of whether it can be used for a forked pointer or not, along
885 // with an indication of whether it might be a poison or undef value.
886 const SCEV *Scev = SE->getSCEV(Ptr);
887 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
888 !isa<Instruction>(Ptr) || Depth == 0) {
889 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
890 return;
893 Depth--;
895 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
896 return get<1>(S);
899 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
900 switch (Opcode) {
901 case Instruction::Add:
902 return SE->getAddExpr(L, R);
903 case Instruction::Sub:
904 return SE->getMinusSCEV(L, R);
905 default:
906 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
910 Instruction *I = cast<Instruction>(Ptr);
911 unsigned Opcode = I->getOpcode();
912 switch (Opcode) {
913 case Instruction::GetElementPtr: {
914 auto *GEP = cast<GetElementPtrInst>(I);
915 Type *SourceTy = GEP->getSourceElementType();
916 // We only handle base + single offset GEPs here for now.
917 // Not dealing with preexisting gathers yet, so no vectors.
918 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
919 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
920 break;
922 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
923 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
924 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
925 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
927 // See if we need to freeze our fork...
928 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
929 any_of(OffsetScevs, UndefPoisonCheck);
931 // Check that we only have a single fork, on either the base or the offset.
932 // Copy the SCEV across for the one without a fork in order to generate
933 // the full SCEV for both sides of the GEP.
934 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
935 BaseScevs.push_back(BaseScevs[0]);
936 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
937 OffsetScevs.push_back(OffsetScevs[0]);
938 else {
939 ScevList.emplace_back(Scev, NeedsFreeze);
940 break;
943 // Find the pointer type we need to extend to.
944 Type *IntPtrTy = SE->getEffectiveSCEVType(
945 SE->getSCEV(GEP->getPointerOperand())->getType());
947 // Find the size of the type being pointed to. We only have a single
948 // index term (guarded above) so we don't need to index into arrays or
949 // structures, just get the size of the scalar value.
950 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
952 // Scale up the offsets by the size of the type, then add to the bases.
953 const SCEV *Scaled1 = SE->getMulExpr(
954 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
955 const SCEV *Scaled2 = SE->getMulExpr(
956 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
957 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
958 NeedsFreeze);
959 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
960 NeedsFreeze);
961 break;
963 case Instruction::Select: {
964 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
965 // A select means we've found a forked pointer, but we currently only
966 // support a single select per pointer so if there's another behind this
967 // then we just bail out and return the generic SCEV.
968 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
969 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
970 if (ChildScevs.size() == 2) {
971 ScevList.push_back(ChildScevs[0]);
972 ScevList.push_back(ChildScevs[1]);
973 } else
974 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
975 break;
977 case Instruction::PHI: {
978 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
979 // A phi means we've found a forked pointer, but we currently only
980 // support a single phi per pointer so if there's another behind this
981 // then we just bail out and return the generic SCEV.
982 if (I->getNumOperands() == 2) {
983 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
984 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
986 if (ChildScevs.size() == 2) {
987 ScevList.push_back(ChildScevs[0]);
988 ScevList.push_back(ChildScevs[1]);
989 } else
990 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
991 break;
993 case Instruction::Add:
994 case Instruction::Sub: {
995 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
996 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
997 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
998 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1000 // See if we need to freeze our fork...
1001 bool NeedsFreeze =
1002 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1004 // Check that we only have a single fork, on either the left or right side.
1005 // Copy the SCEV across for the one without a fork in order to generate
1006 // the full SCEV for both sides of the BinOp.
1007 if (LScevs.size() == 2 && RScevs.size() == 1)
1008 RScevs.push_back(RScevs[0]);
1009 else if (RScevs.size() == 2 && LScevs.size() == 1)
1010 LScevs.push_back(LScevs[0]);
1011 else {
1012 ScevList.emplace_back(Scev, NeedsFreeze);
1013 break;
1016 ScevList.emplace_back(
1017 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1018 NeedsFreeze);
1019 ScevList.emplace_back(
1020 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1021 NeedsFreeze);
1022 break;
1024 default:
1025 // Just return the current SCEV if we haven't handled the instruction yet.
1026 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1027 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1028 break;
1032 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1033 findForkedPointer(PredicatedScalarEvolution &PSE,
1034 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1035 const Loop *L) {
1036 ScalarEvolution *SE = PSE.getSE();
1037 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1038 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1039 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1041 // For now, we will only accept a forked pointer with two possible SCEVs
1042 // that are either SCEVAddRecExprs or loop invariant.
1043 if (Scevs.size() == 2 &&
1044 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1045 SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1046 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1047 SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1048 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1049 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1050 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1051 return Scevs;
1054 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1057 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1058 MemAccessInfo Access, Type *AccessTy,
1059 const DenseMap<Value *, const SCEV *> &StridesMap,
1060 DenseMap<Value *, unsigned> &DepSetId,
1061 Loop *TheLoop, unsigned &RunningDepId,
1062 unsigned ASId, bool ShouldCheckWrap,
1063 bool Assume) {
1064 Value *Ptr = Access.getPointer();
1066 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1067 findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1069 for (const auto &P : TranslatedPtrs) {
1070 const SCEV *PtrExpr = get<0>(P);
1071 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1072 return false;
1074 // When we run after a failing dependency check we have to make sure
1075 // we don't have wrapping pointers.
1076 if (ShouldCheckWrap) {
1077 // Skip wrap checking when translating pointers.
1078 if (TranslatedPtrs.size() > 1)
1079 return false;
1081 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop, Assume))
1082 return false;
1084 // If there's only one option for Ptr, look it up after bounds and wrap
1085 // checking, because assumptions might have been added to PSE.
1086 if (TranslatedPtrs.size() == 1)
1087 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1088 false};
1091 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1092 // The id of the dependence set.
1093 unsigned DepId;
1095 if (isDependencyCheckNeeded()) {
1096 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1097 unsigned &LeaderId = DepSetId[Leader];
1098 if (!LeaderId)
1099 LeaderId = RunningDepId++;
1100 DepId = LeaderId;
1101 } else
1102 // Each access has its own dependence set.
1103 DepId = RunningDepId++;
1105 bool IsWrite = Access.getInt();
1106 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1107 NeedsFreeze);
1108 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1111 return true;
1114 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1115 ScalarEvolution *SE, Loop *TheLoop,
1116 const DenseMap<Value *, const SCEV *> &StridesMap,
1117 Value *&UncomputablePtr, bool ShouldCheckWrap) {
1118 // Find pointers with computable bounds. We are going to use this information
1119 // to place a runtime bound check.
1120 bool CanDoRT = true;
1122 bool MayNeedRTCheck = false;
1123 if (!IsRTCheckAnalysisNeeded) return true;
1125 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1127 // We assign a consecutive id to access from different alias sets.
1128 // Accesses between different groups doesn't need to be checked.
1129 unsigned ASId = 0;
1130 for (const auto &AS : AST) {
1131 int NumReadPtrChecks = 0;
1132 int NumWritePtrChecks = 0;
1133 bool CanDoAliasSetRT = true;
1134 ++ASId;
1135 auto ASPointers = AS.getPointers();
1137 // We assign consecutive id to access from different dependence sets.
1138 // Accesses within the same set don't need a runtime check.
1139 unsigned RunningDepId = 1;
1140 DenseMap<Value *, unsigned> DepSetId;
1142 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1144 // First, count how many write and read accesses are in the alias set. Also
1145 // collect MemAccessInfos for later.
1146 SmallVector<MemAccessInfo, 4> AccessInfos;
1147 for (const Value *ConstPtr : ASPointers) {
1148 Value *Ptr = const_cast<Value *>(ConstPtr);
1149 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1150 if (IsWrite)
1151 ++NumWritePtrChecks;
1152 else
1153 ++NumReadPtrChecks;
1154 AccessInfos.emplace_back(Ptr, IsWrite);
1157 // We do not need runtime checks for this alias set, if there are no writes
1158 // or a single write and no reads.
1159 if (NumWritePtrChecks == 0 ||
1160 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1161 assert((ASPointers.size() <= 1 ||
1162 all_of(ASPointers,
1163 [this](const Value *Ptr) {
1164 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1165 true);
1166 return DepCands.findValue(AccessWrite) == DepCands.end();
1167 })) &&
1168 "Can only skip updating CanDoRT below, if all entries in AS "
1169 "are reads or there is at most 1 entry");
1170 continue;
1173 for (auto &Access : AccessInfos) {
1174 for (const auto &AccessTy : Accesses[Access]) {
1175 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1176 DepSetId, TheLoop, RunningDepId, ASId,
1177 ShouldCheckWrap, false)) {
1178 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1179 << *Access.getPointer() << '\n');
1180 Retries.emplace_back(Access, AccessTy);
1181 CanDoAliasSetRT = false;
1186 // Note that this function computes CanDoRT and MayNeedRTCheck
1187 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1188 // we have a pointer for which we couldn't find the bounds but we don't
1189 // actually need to emit any checks so it does not matter.
1191 // We need runtime checks for this alias set, if there are at least 2
1192 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1193 // any bound checks (because in that case the number of dependence sets is
1194 // incomplete).
1195 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1197 // We need to perform run-time alias checks, but some pointers had bounds
1198 // that couldn't be checked.
1199 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1200 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1201 // We know that we need these checks, so we can now be more aggressive
1202 // and add further checks if required (overflow checks).
1203 CanDoAliasSetRT = true;
1204 for (const auto &[Access, AccessTy] : Retries) {
1205 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1206 DepSetId, TheLoop, RunningDepId, ASId,
1207 ShouldCheckWrap, /*Assume=*/true)) {
1208 CanDoAliasSetRT = false;
1209 UncomputablePtr = Access.getPointer();
1210 break;
1215 CanDoRT &= CanDoAliasSetRT;
1216 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1217 ++ASId;
1220 // If the pointers that we would use for the bounds comparison have different
1221 // address spaces, assume the values aren't directly comparable, so we can't
1222 // use them for the runtime check. We also have to assume they could
1223 // overlap. In the future there should be metadata for whether address spaces
1224 // are disjoint.
1225 unsigned NumPointers = RtCheck.Pointers.size();
1226 for (unsigned i = 0; i < NumPointers; ++i) {
1227 for (unsigned j = i + 1; j < NumPointers; ++j) {
1228 // Only need to check pointers between two different dependency sets.
1229 if (RtCheck.Pointers[i].DependencySetId ==
1230 RtCheck.Pointers[j].DependencySetId)
1231 continue;
1232 // Only need to check pointers in the same alias set.
1233 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1234 continue;
1236 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1237 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1239 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1240 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1241 if (ASi != ASj) {
1242 LLVM_DEBUG(
1243 dbgs() << "LAA: Runtime check would require comparison between"
1244 " different address spaces\n");
1245 return false;
1250 if (MayNeedRTCheck && CanDoRT)
1251 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1253 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1254 << " pointer comparisons.\n");
1256 // If we can do run-time checks, but there are no checks, no runtime checks
1257 // are needed. This can happen when all pointers point to the same underlying
1258 // object for example.
1259 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1261 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1262 if (!CanDoRTIfNeeded)
1263 RtCheck.reset();
1264 return CanDoRTIfNeeded;
1267 void AccessAnalysis::processMemAccesses() {
1268 // We process the set twice: first we process read-write pointers, last we
1269 // process read-only pointers. This allows us to skip dependence tests for
1270 // read-only pointers.
1272 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1273 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
1274 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
1275 LLVM_DEBUG({
1276 for (const auto &[A, _] : Accesses)
1277 dbgs() << "\t" << *A.getPointer() << " ("
1278 << (A.getInt() ? "write"
1279 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1280 : "read"))
1281 << ")\n";
1284 // The AliasSetTracker has nicely partitioned our pointers by metadata
1285 // compatibility and potential for underlying-object overlap. As a result, we
1286 // only need to check for potential pointer dependencies within each alias
1287 // set.
1288 for (const auto &AS : AST) {
1289 // Note that both the alias-set tracker and the alias sets themselves used
1290 // ordered collections internally and so the iteration order here is
1291 // deterministic.
1292 auto ASPointers = AS.getPointers();
1294 bool SetHasWrite = false;
1296 // Map of pointers to last access encountered.
1297 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1298 UnderlyingObjToAccessMap ObjToLastAccess;
1300 // Set of access to check after all writes have been processed.
1301 PtrAccessMap DeferredAccesses;
1303 // Iterate over each alias set twice, once to process read/write pointers,
1304 // and then to process read-only pointers.
1305 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1306 bool UseDeferred = SetIteration > 0;
1307 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1309 for (const Value *ConstPtr : ASPointers) {
1310 Value *Ptr = const_cast<Value *>(ConstPtr);
1312 // For a single memory access in AliasSetTracker, Accesses may contain
1313 // both read and write, and they both need to be handled for CheckDeps.
1314 for (const auto &[AC, _] : S) {
1315 if (AC.getPointer() != Ptr)
1316 continue;
1318 bool IsWrite = AC.getInt();
1320 // If we're using the deferred access set, then it contains only
1321 // reads.
1322 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1323 if (UseDeferred && !IsReadOnlyPtr)
1324 continue;
1325 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1326 // read or a write.
1327 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1328 S.count(MemAccessInfo(Ptr, false))) &&
1329 "Alias-set pointer not in the access set?");
1331 MemAccessInfo Access(Ptr, IsWrite);
1332 DepCands.insert(Access);
1334 // Memorize read-only pointers for later processing and skip them in
1335 // the first round (they need to be checked after we have seen all
1336 // write pointers). Note: we also mark pointer that are not
1337 // consecutive as "read-only" pointers (so that we check
1338 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1339 if (!UseDeferred && IsReadOnlyPtr) {
1340 // We only use the pointer keys, the types vector values don't
1341 // matter.
1342 DeferredAccesses.insert({Access, {}});
1343 continue;
1346 // If this is a write - check other reads and writes for conflicts. If
1347 // this is a read only check other writes for conflicts (but only if
1348 // there is no other write to the ptr - this is an optimization to
1349 // catch "a[i] = a[i] + " without having to do a dependence check).
1350 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1351 CheckDeps.push_back(Access);
1352 IsRTCheckAnalysisNeeded = true;
1355 if (IsWrite)
1356 SetHasWrite = true;
1358 // Create sets of pointers connected by a shared alias set and
1359 // underlying object.
1360 typedef SmallVector<const Value *, 16> ValueVector;
1361 ValueVector TempObjects;
1363 UnderlyingObjects[Ptr] = {};
1364 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1365 ::getUnderlyingObjects(Ptr, UOs, LI);
1366 LLVM_DEBUG(dbgs()
1367 << "Underlying objects for pointer " << *Ptr << "\n");
1368 for (const Value *UnderlyingObj : UOs) {
1369 // nullptr never alias, don't join sets for pointer that have "null"
1370 // in their UnderlyingObjects list.
1371 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1372 !NullPointerIsDefined(
1373 TheLoop->getHeader()->getParent(),
1374 UnderlyingObj->getType()->getPointerAddressSpace()))
1375 continue;
1377 UnderlyingObjToAccessMap::iterator Prev =
1378 ObjToLastAccess.find(UnderlyingObj);
1379 if (Prev != ObjToLastAccess.end())
1380 DepCands.unionSets(Access, Prev->second);
1382 ObjToLastAccess[UnderlyingObj] = Access;
1383 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
1391 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1392 /// i.e. monotonically increasing/decreasing.
1393 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1394 PredicatedScalarEvolution &PSE, const Loop *L) {
1396 // FIXME: This should probably only return true for NUW.
1397 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1398 return true;
1400 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1401 return true;
1403 // Scalar evolution does not propagate the non-wrapping flags to values that
1404 // are derived from a non-wrapping induction variable because non-wrapping
1405 // could be flow-sensitive.
1407 // Look through the potentially overflowing instruction to try to prove
1408 // non-wrapping for the *specific* value of Ptr.
1410 // The arithmetic implied by an nusw GEP can't overflow.
1411 const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1412 if (!GEP || !GEP->hasNoUnsignedSignedWrap())
1413 return false;
1415 // Make sure there is only one non-const index and analyze that.
1416 Value *NonConstIndex = nullptr;
1417 for (Value *Index : GEP->indices())
1418 if (!isa<ConstantInt>(Index)) {
1419 if (NonConstIndex)
1420 return false;
1421 NonConstIndex = Index;
1423 if (!NonConstIndex)
1424 // The recurrence is on the pointer, ignore for now.
1425 return false;
1427 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1428 // AddRec using a NSW operation.
1429 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1430 if (OBO->hasNoSignedWrap() &&
1431 // Assume constant for other the operand so that the AddRec can be
1432 // easily found.
1433 isa<ConstantInt>(OBO->getOperand(1))) {
1434 const SCEV *OpScev = PSE.getSCEV(OBO->getOperand(0));
1436 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1437 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1440 return false;
1443 /// Check whether the access through \p Ptr has a constant stride.
1444 std::optional<int64_t>
1445 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
1446 const Loop *Lp,
1447 const DenseMap<Value *, const SCEV *> &StridesMap,
1448 bool Assume, bool ShouldCheckWrap) {
1449 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1450 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1451 return {0};
1453 Type *Ty = Ptr->getType();
1454 assert(Ty->isPointerTy() && "Unexpected non-ptr");
1455 if (isa<ScalableVectorType>(AccessTy)) {
1456 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1457 << "\n");
1458 return std::nullopt;
1461 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1462 if (Assume && !AR)
1463 AR = PSE.getAsAddRec(Ptr);
1465 if (!AR) {
1466 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1467 << " SCEV: " << *PtrScev << "\n");
1468 return std::nullopt;
1471 // The access function must stride over the innermost loop.
1472 if (Lp != AR->getLoop()) {
1473 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1474 << *Ptr << " SCEV: " << *AR << "\n");
1475 return std::nullopt;
1478 // Check the step is constant.
1479 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1481 // Calculate the pointer stride and check if it is constant.
1482 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1483 if (!C) {
1484 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1485 << " SCEV: " << *AR << "\n");
1486 return std::nullopt;
1489 const auto &DL = Lp->getHeader()->getDataLayout();
1490 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1491 int64_t Size = AllocSize.getFixedValue();
1492 const APInt &APStepVal = C->getAPInt();
1494 // Huge step value - give up.
1495 if (APStepVal.getBitWidth() > 64)
1496 return std::nullopt;
1498 int64_t StepVal = APStepVal.getSExtValue();
1500 // Strided access.
1501 int64_t Stride = StepVal / Size;
1502 int64_t Rem = StepVal % Size;
1503 if (Rem)
1504 return std::nullopt;
1506 if (!ShouldCheckWrap)
1507 return Stride;
1509 // The address calculation must not wrap. Otherwise, a dependence could be
1510 // inverted.
1511 if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1512 return Stride;
1514 // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap,
1515 // the distance between the previously accessed location and the wrapped
1516 // location will be larger than half the pointer index type space. In that
1517 // case, the GEP would be poison and any memory access dependent on it would
1518 // be immediate UB when executed.
1519 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1520 GEP && GEP->hasNoUnsignedSignedWrap())
1521 return Stride;
1523 // If the null pointer is undefined, then a access sequence which would
1524 // otherwise access it can be assumed not to unsigned wrap. Note that this
1525 // assumes the object in memory is aligned to the natural alignment.
1526 unsigned AddrSpace = Ty->getPointerAddressSpace();
1527 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1528 (Stride == 1 || Stride == -1))
1529 return Stride;
1531 if (Assume) {
1532 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1533 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1534 << "LAA: Pointer: " << *Ptr << "\n"
1535 << "LAA: SCEV: " << *AR << "\n"
1536 << "LAA: Added an overflow assumption\n");
1537 return Stride;
1539 LLVM_DEBUG(
1540 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1541 << *Ptr << " SCEV: " << *AR << "\n");
1542 return std::nullopt;
1545 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1546 Type *ElemTyB, Value *PtrB,
1547 const DataLayout &DL,
1548 ScalarEvolution &SE, bool StrictCheck,
1549 bool CheckType) {
1550 assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1552 // Make sure that A and B are different pointers.
1553 if (PtrA == PtrB)
1554 return 0;
1556 // Make sure that the element types are the same if required.
1557 if (CheckType && ElemTyA != ElemTyB)
1558 return std::nullopt;
1560 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1561 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1563 // Check that the address spaces match.
1564 if (ASA != ASB)
1565 return std::nullopt;
1566 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1568 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1569 const Value *PtrA1 =
1570 PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1571 const Value *PtrB1 =
1572 PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1574 int Val;
1575 if (PtrA1 == PtrB1) {
1576 // Retrieve the address space again as pointer stripping now tracks through
1577 // `addrspacecast`.
1578 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1579 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1580 // Check that the address spaces match and that the pointers are valid.
1581 if (ASA != ASB)
1582 return std::nullopt;
1584 IdxWidth = DL.getIndexSizeInBits(ASA);
1585 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1586 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1588 OffsetB -= OffsetA;
1589 Val = OffsetB.getSExtValue();
1590 } else {
1591 // Otherwise compute the distance with SCEV between the base pointers.
1592 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1593 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1594 std::optional<APInt> Diff =
1595 SE.computeConstantDifference(PtrSCEVB, PtrSCEVA);
1596 if (!Diff)
1597 return std::nullopt;
1598 Val = Diff->getSExtValue();
1600 int Size = DL.getTypeStoreSize(ElemTyA);
1601 int Dist = Val / Size;
1603 // Ensure that the calculated distance matches the type-based one after all
1604 // the bitcasts removal in the provided pointers.
1605 if (!StrictCheck || Dist * Size == Val)
1606 return Dist;
1607 return std::nullopt;
1610 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1611 const DataLayout &DL, ScalarEvolution &SE,
1612 SmallVectorImpl<unsigned> &SortedIndices) {
1613 assert(llvm::all_of(
1614 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1615 "Expected list of pointer operands.");
1616 // Walk over the pointers, and map each of them to an offset relative to
1617 // first pointer in the array.
1618 Value *Ptr0 = VL[0];
1620 using DistOrdPair = std::pair<int64_t, int>;
1621 auto Compare = llvm::less_first();
1622 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1623 Offsets.emplace(0, 0);
1624 bool IsConsecutive = true;
1625 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1626 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1627 /*StrictCheck=*/true);
1628 if (!Diff)
1629 return false;
1631 // Check if the pointer with the same offset is found.
1632 int64_t Offset = *Diff;
1633 auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1634 if (!IsInserted)
1635 return false;
1636 // Consecutive order if the inserted element is the last one.
1637 IsConsecutive &= std::next(It) == Offsets.end();
1639 SortedIndices.clear();
1640 if (!IsConsecutive) {
1641 // Fill SortedIndices array only if it is non-consecutive.
1642 SortedIndices.resize(VL.size());
1643 for (auto [Idx, Off] : enumerate(Offsets))
1644 SortedIndices[Idx] = Off.second;
1646 return true;
1649 /// Returns true if the memory operations \p A and \p B are consecutive.
1650 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1651 ScalarEvolution &SE, bool CheckType) {
1652 Value *PtrA = getLoadStorePointerOperand(A);
1653 Value *PtrB = getLoadStorePointerOperand(B);
1654 if (!PtrA || !PtrB)
1655 return false;
1656 Type *ElemTyA = getLoadStoreType(A);
1657 Type *ElemTyB = getLoadStoreType(B);
1658 std::optional<int> Diff =
1659 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1660 /*StrictCheck=*/true, CheckType);
1661 return Diff && *Diff == 1;
1664 void MemoryDepChecker::addAccess(StoreInst *SI) {
1665 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1666 [this, SI](Value *Ptr) {
1667 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1668 InstMap.push_back(SI);
1669 ++AccessIdx;
1673 void MemoryDepChecker::addAccess(LoadInst *LI) {
1674 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1675 [this, LI](Value *Ptr) {
1676 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1677 InstMap.push_back(LI);
1678 ++AccessIdx;
1682 MemoryDepChecker::VectorizationSafetyStatus
1683 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1684 switch (Type) {
1685 case NoDep:
1686 case Forward:
1687 case BackwardVectorizable:
1688 return VectorizationSafetyStatus::Safe;
1690 case Unknown:
1691 return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1692 case ForwardButPreventsForwarding:
1693 case Backward:
1694 case BackwardVectorizableButPreventsForwarding:
1695 case IndirectUnsafe:
1696 return VectorizationSafetyStatus::Unsafe;
1698 llvm_unreachable("unexpected DepType!");
1701 bool MemoryDepChecker::Dependence::isBackward() const {
1702 switch (Type) {
1703 case NoDep:
1704 case Forward:
1705 case ForwardButPreventsForwarding:
1706 case Unknown:
1707 case IndirectUnsafe:
1708 return false;
1710 case BackwardVectorizable:
1711 case Backward:
1712 case BackwardVectorizableButPreventsForwarding:
1713 return true;
1715 llvm_unreachable("unexpected DepType!");
1718 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1719 return isBackward() || Type == Unknown || Type == IndirectUnsafe;
1722 bool MemoryDepChecker::Dependence::isForward() const {
1723 switch (Type) {
1724 case Forward:
1725 case ForwardButPreventsForwarding:
1726 return true;
1728 case NoDep:
1729 case Unknown:
1730 case BackwardVectorizable:
1731 case Backward:
1732 case BackwardVectorizableButPreventsForwarding:
1733 case IndirectUnsafe:
1734 return false;
1736 llvm_unreachable("unexpected DepType!");
1739 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1740 uint64_t TypeByteSize) {
1741 // If loads occur at a distance that is not a multiple of a feasible vector
1742 // factor store-load forwarding does not take place.
1743 // Positive dependences might cause troubles because vectorizing them might
1744 // prevent store-load forwarding making vectorized code run a lot slower.
1745 // a[i] = a[i-3] ^ a[i-8];
1746 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1747 // hence on your typical architecture store-load forwarding does not take
1748 // place. Vectorizing in such cases does not make sense.
1749 // Store-load forwarding distance.
1751 // After this many iterations store-to-load forwarding conflicts should not
1752 // cause any slowdowns.
1753 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1754 // Maximum vector factor.
1755 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1756 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1758 // Compute the smallest VF at which the store and load would be misaligned.
1759 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1760 VF *= 2) {
1761 // If the number of vector iteration between the store and the load are
1762 // small we could incur conflicts.
1763 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1764 MaxVFWithoutSLForwardIssues = (VF >> 1);
1765 break;
1769 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1770 LLVM_DEBUG(
1771 dbgs() << "LAA: Distance " << Distance
1772 << " that could cause a store-load forwarding conflict\n");
1773 return true;
1776 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1777 MaxVFWithoutSLForwardIssues !=
1778 VectorizerParams::MaxVectorWidth * TypeByteSize)
1779 MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1780 return false;
1783 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1784 if (Status < S)
1785 Status = S;
1788 /// Given a dependence-distance \p Dist between two
1789 /// memory accesses, that have strides in the same direction whose absolute
1790 /// value of the maximum stride is given in \p MaxStride, and that have the same
1791 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1792 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1793 /// distance is larger than the range that the accesses will travel through the
1794 /// execution of the loop. If so, return true; false otherwise. This is useful
1795 /// for example in loops such as the following (PR31098):
1796 /// for (i = 0; i < D; ++i) {
1797 /// = out[i];
1798 /// out[i+D] =
1799 /// }
1800 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1801 const SCEV &MaxBTC, const SCEV &Dist,
1802 uint64_t MaxStride,
1803 uint64_t TypeByteSize) {
1805 // If we can prove that
1806 // (**) |Dist| > MaxBTC * Step
1807 // where Step is the absolute stride of the memory accesses in bytes,
1808 // then there is no dependence.
1810 // Rationale:
1811 // We basically want to check if the absolute distance (|Dist/Step|)
1812 // is >= the loop iteration count (or > MaxBTC).
1813 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1814 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1815 // that the dependence distance is >= VF; This is checked elsewhere.
1816 // But in some cases we can prune dependence distances early, and
1817 // even before selecting the VF, and without a runtime test, by comparing
1818 // the distance against the loop iteration count. Since the vectorized code
1819 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1820 // also guarantees that distance >= VF.
1822 const uint64_t ByteStride = MaxStride * TypeByteSize;
1823 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1824 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1826 const SCEV *CastedDist = &Dist;
1827 const SCEV *CastedProduct = Product;
1828 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1829 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1831 // The dependence distance can be positive/negative, so we sign extend Dist;
1832 // The multiplication of the absolute stride in bytes and the
1833 // backedgeTakenCount is non-negative, so we zero extend Product.
1834 if (DistTypeSizeBits > ProductTypeSizeBits)
1835 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1836 else
1837 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1839 // Is Dist - (MaxBTC * Step) > 0 ?
1840 // (If so, then we have proven (**) because |Dist| >= Dist)
1841 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1842 if (SE.isKnownPositive(Minus))
1843 return true;
1845 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1846 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1847 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1848 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1849 return SE.isKnownPositive(Minus);
1852 /// Check the dependence for two accesses with the same stride \p Stride.
1853 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1854 /// bytes.
1856 /// \returns true if they are independent.
1857 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1858 uint64_t TypeByteSize) {
1859 assert(Stride > 1 && "The stride must be greater than 1");
1860 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1861 assert(Distance > 0 && "The distance must be non-zero");
1863 // Skip if the distance is not multiple of type byte size.
1864 if (Distance % TypeByteSize)
1865 return false;
1867 uint64_t ScaledDist = Distance / TypeByteSize;
1869 // No dependence if the scaled distance is not multiple of the stride.
1870 // E.g.
1871 // for (i = 0; i < 1024 ; i += 4)
1872 // A[i+2] = A[i] + 1;
1874 // Two accesses in memory (scaled distance is 2, stride is 4):
1875 // | A[0] | | | | A[4] | | | |
1876 // | | | A[2] | | | | A[6] | |
1878 // E.g.
1879 // for (i = 0; i < 1024 ; i += 3)
1880 // A[i+4] = A[i] + 1;
1882 // Two accesses in memory (scaled distance is 4, stride is 3):
1883 // | A[0] | | | A[3] | | | A[6] | | |
1884 // | | | | | A[4] | | | A[7] | |
1885 return ScaledDist % Stride;
1888 std::variant<MemoryDepChecker::Dependence::DepType,
1889 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1890 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1891 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1892 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
1893 const auto &DL = InnermostLoop->getHeader()->getDataLayout();
1894 auto &SE = *PSE.getSE();
1895 const auto &[APtr, AIsWrite] = A;
1896 const auto &[BPtr, BIsWrite] = B;
1898 // Two reads are independent.
1899 if (!AIsWrite && !BIsWrite)
1900 return MemoryDepChecker::Dependence::NoDep;
1902 Type *ATy = getLoadStoreType(AInst);
1903 Type *BTy = getLoadStoreType(BInst);
1905 // We cannot check pointers in different address spaces.
1906 if (APtr->getType()->getPointerAddressSpace() !=
1907 BPtr->getType()->getPointerAddressSpace())
1908 return MemoryDepChecker::Dependence::Unknown;
1910 std::optional<int64_t> StrideAPtr =
1911 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true);
1912 std::optional<int64_t> StrideBPtr =
1913 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true);
1915 const SCEV *Src = PSE.getSCEV(APtr);
1916 const SCEV *Sink = PSE.getSCEV(BPtr);
1918 // If the induction step is negative we have to invert source and sink of the
1919 // dependence when measuring the distance between them. We should not swap
1920 // AIsWrite with BIsWrite, as their uses expect them in program order.
1921 if (StrideAPtr && *StrideAPtr < 0) {
1922 std::swap(Src, Sink);
1923 std::swap(AInst, BInst);
1924 std::swap(StrideAPtr, StrideBPtr);
1927 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1929 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1930 << "\n");
1931 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1932 << ": " << *Dist << "\n");
1934 // Check if we can prove that Sink only accesses memory after Src's end or
1935 // vice versa. At the moment this is limited to cases where either source or
1936 // sink are loop invariant to avoid compile-time increases. This is not
1937 // required for correctness.
1938 if (SE.isLoopInvariant(Src, InnermostLoop) ||
1939 SE.isLoopInvariant(Sink, InnermostLoop)) {
1940 const auto &[SrcStart_, SrcEnd_] =
1941 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
1942 const auto &[SinkStart_, SinkEnd_] =
1943 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
1944 if (!isa<SCEVCouldNotCompute>(SrcStart_) &&
1945 !isa<SCEVCouldNotCompute>(SrcEnd_) &&
1946 !isa<SCEVCouldNotCompute>(SinkStart_) &&
1947 !isa<SCEVCouldNotCompute>(SinkEnd_)) {
1948 if (!LoopGuards)
1949 LoopGuards.emplace(
1950 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
1951 auto SrcEnd = SE.applyLoopGuards(SrcEnd_, *LoopGuards);
1952 auto SinkStart = SE.applyLoopGuards(SinkStart_, *LoopGuards);
1953 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
1954 return MemoryDepChecker::Dependence::NoDep;
1956 auto SinkEnd = SE.applyLoopGuards(SinkEnd_, *LoopGuards);
1957 auto SrcStart = SE.applyLoopGuards(SrcStart_, *LoopGuards);
1958 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
1959 return MemoryDepChecker::Dependence::NoDep;
1963 // Need accesses with constant strides and the same direction for further
1964 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1965 // similar code or pointer arithmetic that could wrap in the address space.
1967 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1968 // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1969 // dependence further and also cannot generate runtime checks.
1970 if (!StrideAPtr || !StrideBPtr) {
1971 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1972 return MemoryDepChecker::Dependence::IndirectUnsafe;
1975 int64_t StrideAPtrInt = *StrideAPtr;
1976 int64_t StrideBPtrInt = *StrideBPtr;
1977 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt
1978 << " Sink induction step: " << StrideBPtrInt << "\n");
1979 // At least Src or Sink are loop invariant and the other is strided or
1980 // invariant. We can generate a runtime check to disambiguate the accesses.
1981 if (StrideAPtrInt == 0 || StrideBPtrInt == 0)
1982 return MemoryDepChecker::Dependence::Unknown;
1984 // Both Src and Sink have a constant stride, check if they are in the same
1985 // direction.
1986 if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) ||
1987 (StrideAPtrInt < 0 && StrideBPtrInt > 0)) {
1988 LLVM_DEBUG(
1989 dbgs() << "Pointer access with strides in different directions\n");
1990 return MemoryDepChecker::Dependence::Unknown;
1993 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1994 bool HasSameSize =
1995 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1996 if (!HasSameSize)
1997 TypeByteSize = 0;
1998 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt),
1999 std::abs(StrideBPtrInt), TypeByteSize,
2000 AIsWrite, BIsWrite);
2003 MemoryDepChecker::Dependence::DepType
2004 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
2005 const MemAccessInfo &B, unsigned BIdx) {
2006 assert(AIdx < BIdx && "Must pass arguments in program order");
2008 // Get the dependence distance, stride, type size and what access writes for
2009 // the dependence between A and B.
2010 auto Res =
2011 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
2012 if (std::holds_alternative<Dependence::DepType>(Res))
2013 return std::get<Dependence::DepType>(Res);
2015 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
2016 std::get<DepDistanceStrideAndSizeInfo>(Res);
2017 bool HasSameSize = TypeByteSize > 0;
2019 std::optional<uint64_t> CommonStride =
2020 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt;
2021 if (isa<SCEVCouldNotCompute>(Dist)) {
2022 // TODO: Relax requirement that there is a common stride to retry with
2023 // non-constant distance dependencies.
2024 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2025 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2026 return Dependence::Unknown;
2029 ScalarEvolution &SE = *PSE.getSE();
2030 auto &DL = InnermostLoop->getHeader()->getDataLayout();
2031 uint64_t MaxStride = std::max(StrideA, StrideB);
2033 // If the distance between the acecsses is larger than their maximum absolute
2034 // stride multiplied by the symbolic maximum backedge taken count (which is an
2035 // upper bound of the number of iterations), the accesses are independet, i.e.
2036 // they are far enough appart that accesses won't access the same location
2037 // across all loop ierations.
2038 if (HasSameSize && isSafeDependenceDistance(
2039 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
2040 *Dist, MaxStride, TypeByteSize))
2041 return Dependence::NoDep;
2043 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
2045 // Attempt to prove strided accesses independent.
2046 if (C) {
2047 const APInt &Val = C->getAPInt();
2048 int64_t Distance = Val.getSExtValue();
2050 // If the distance between accesses and their strides are known constants,
2051 // check whether the accesses interlace each other.
2052 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
2053 HasSameSize &&
2054 areStridedAccessesIndependent(std::abs(Distance), *CommonStride,
2055 TypeByteSize)) {
2056 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2057 return Dependence::NoDep;
2059 } else {
2060 if (!LoopGuards)
2061 LoopGuards.emplace(
2062 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2063 Dist = SE.applyLoopGuards(Dist, *LoopGuards);
2066 // Negative distances are not plausible dependencies.
2067 if (SE.isKnownNonPositive(Dist)) {
2068 if (SE.isKnownNonNegative(Dist)) {
2069 if (HasSameSize) {
2070 // Write to the same location with the same size.
2071 return Dependence::Forward;
2073 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2074 "different type sizes\n");
2075 return Dependence::Unknown;
2078 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2079 // Check if the first access writes to a location that is read in a later
2080 // iteration, where the distance between them is not a multiple of a vector
2081 // factor and relatively small.
2083 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2084 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2085 // forward dependency will allow vectorization using any width.
2087 if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2088 if (!C) {
2089 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2090 // condition to consider retrying with runtime checks. Historically, we
2091 // did not set it when strides were different but there is no inherent
2092 // reason to.
2093 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2094 return Dependence::Unknown;
2096 if (!HasSameSize ||
2097 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(),
2098 TypeByteSize)) {
2099 LLVM_DEBUG(
2100 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2101 return Dependence::ForwardButPreventsForwarding;
2105 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2106 return Dependence::Forward;
2109 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2110 // Below we only handle strictly positive distances.
2111 if (MinDistance <= 0) {
2112 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2113 return Dependence::Unknown;
2116 if (!isa<SCEVConstant>(Dist)) {
2117 // Previously this case would be treated as Unknown, possibly setting
2118 // FoundNonConstantDistanceDependence to force re-trying with runtime
2119 // checks. Until the TODO below is addressed, set it here to preserve
2120 // original behavior w.r.t. re-trying with runtime checks.
2121 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2122 // condition to consider retrying with runtime checks. Historically, we
2123 // did not set it when strides were different but there is no inherent
2124 // reason to.
2125 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2128 if (!HasSameSize) {
2129 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2130 "different type sizes\n");
2131 return Dependence::Unknown;
2134 if (!CommonStride)
2135 return Dependence::Unknown;
2137 // Bail out early if passed-in parameters make vectorization not feasible.
2138 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2139 VectorizerParams::VectorizationFactor : 1);
2140 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2141 VectorizerParams::VectorizationInterleave : 1);
2142 // The minimum number of iterations for a vectorized/unrolled version.
2143 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2145 // It's not vectorizable if the distance is smaller than the minimum distance
2146 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2147 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2148 // TypeByteSize (No need to plus the last gap distance).
2150 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2151 // foo(int *A) {
2152 // int *B = (int *)((char *)A + 14);
2153 // for (i = 0 ; i < 1024 ; i += 2)
2154 // B[i] = A[i] + 1;
2155 // }
2157 // Two accesses in memory (stride is 2):
2158 // | A[0] | | A[2] | | A[4] | | A[6] | |
2159 // | B[0] | | B[2] | | B[4] |
2161 // MinDistance needs for vectorizing iterations except the last iteration:
2162 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2163 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2165 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2166 // 12, which is less than distance.
2168 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2169 // the minimum distance needed is 28, which is greater than distance. It is
2170 // not safe to do vectorization.
2172 // We know that Dist is positive, but it may not be constant. Use the signed
2173 // minimum for computations below, as this ensures we compute the closest
2174 // possible dependence distance.
2175 uint64_t MinDistanceNeeded =
2176 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2177 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2178 if (!isa<SCEVConstant>(Dist)) {
2179 // For non-constant distances, we checked the lower bound of the
2180 // dependence distance and the distance may be larger at runtime (and safe
2181 // for vectorization). Classify it as Unknown, so we re-try with runtime
2182 // checks.
2183 return Dependence::Unknown;
2185 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2186 << MinDistance << '\n');
2187 return Dependence::Backward;
2190 // Unsafe if the minimum distance needed is greater than smallest dependence
2191 // distance distance.
2192 if (MinDistanceNeeded > MinDepDistBytes) {
2193 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2194 << MinDistanceNeeded << " size in bytes\n");
2195 return Dependence::Backward;
2198 // Positive distance bigger than max vectorization factor.
2199 // FIXME: Should use max factor instead of max distance in bytes, which could
2200 // not handle different types.
2201 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2202 // void foo (int *A, char *B) {
2203 // for (unsigned i = 0; i < 1024; i++) {
2204 // A[i+2] = A[i] + 1;
2205 // B[i+2] = B[i] + 1;
2206 // }
2207 // }
2209 // This case is currently unsafe according to the max safe distance. If we
2210 // analyze the two accesses on array B, the max safe dependence distance
2211 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2212 // is 8, which is less than 2 and forbidden vectorization, But actually
2213 // both A and B could be vectorized by 2 iterations.
2214 MinDepDistBytes =
2215 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2217 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2218 uint64_t MinDepDistBytesOld = MinDepDistBytes;
2219 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2220 isa<SCEVConstant>(Dist) &&
2221 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2222 // Sanity check that we didn't update MinDepDistBytes when calling
2223 // couldPreventStoreLoadForward
2224 assert(MinDepDistBytes == MinDepDistBytesOld &&
2225 "An update to MinDepDistBytes requires an update to "
2226 "MaxSafeVectorWidthInBits");
2227 (void)MinDepDistBytesOld;
2228 return Dependence::BackwardVectorizableButPreventsForwarding;
2231 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2232 // since there is a backwards dependency.
2233 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2234 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2235 << " with max VF = " << MaxVF << '\n');
2237 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2238 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
2239 // For non-constant distances, we checked the lower bound of the dependence
2240 // distance and the distance may be larger at runtime (and safe for
2241 // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2242 return Dependence::Unknown;
2245 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2246 return Dependence::BackwardVectorizable;
2249 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets,
2250 const MemAccessInfoList &CheckDeps) {
2252 MinDepDistBytes = -1;
2253 SmallPtrSet<MemAccessInfo, 8> Visited;
2254 for (MemAccessInfo CurAccess : CheckDeps) {
2255 if (Visited.count(CurAccess))
2256 continue;
2258 // Get the relevant memory access set.
2259 EquivalenceClasses<MemAccessInfo>::iterator I =
2260 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2262 // Check accesses within this set.
2263 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2264 AccessSets.member_begin(I);
2265 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2266 AccessSets.member_end();
2268 // Check every access pair.
2269 while (AI != AE) {
2270 Visited.insert(*AI);
2271 bool AIIsWrite = AI->getInt();
2272 // Check loads only against next equivalent class, but stores also against
2273 // other stores in the same equivalence class - to the same address.
2274 EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2275 (AIIsWrite ? AI : std::next(AI));
2276 while (OI != AE) {
2277 // Check every accessing instruction pair in program order.
2278 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2279 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2280 // Scan all accesses of another equivalence class, but only the next
2281 // accesses of the same equivalent class.
2282 for (std::vector<unsigned>::iterator
2283 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2284 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2285 I2 != I2E; ++I2) {
2286 auto A = std::make_pair(&*AI, *I1);
2287 auto B = std::make_pair(&*OI, *I2);
2289 assert(*I1 != *I2);
2290 if (*I1 > *I2)
2291 std::swap(A, B);
2293 Dependence::DepType Type =
2294 isDependent(*A.first, A.second, *B.first, B.second);
2295 mergeInStatus(Dependence::isSafeForVectorization(Type));
2297 // Gather dependences unless we accumulated MaxDependences
2298 // dependences. In that case return as soon as we find the first
2299 // unsafe dependence. This puts a limit on this quadratic
2300 // algorithm.
2301 if (RecordDependences) {
2302 if (Type != Dependence::NoDep)
2303 Dependences.emplace_back(A.second, B.second, Type);
2305 if (Dependences.size() >= MaxDependences) {
2306 RecordDependences = false;
2307 Dependences.clear();
2308 LLVM_DEBUG(dbgs()
2309 << "Too many dependences, stopped recording\n");
2312 if (!RecordDependences && !isSafeForVectorization())
2313 return false;
2315 ++OI;
2317 ++AI;
2321 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2322 return isSafeForVectorization();
2325 SmallVector<Instruction *, 4>
2326 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
2327 MemAccessInfo Access(Ptr, IsWrite);
2328 auto &IndexVector = Accesses.find(Access)->second;
2330 SmallVector<Instruction *, 4> Insts;
2331 transform(IndexVector,
2332 std::back_inserter(Insts),
2333 [&](unsigned Idx) { return this->InstMap[Idx]; });
2334 return Insts;
2337 const char *MemoryDepChecker::Dependence::DepName[] = {
2338 "NoDep",
2339 "Unknown",
2340 "IndirectUnsafe",
2341 "Forward",
2342 "ForwardButPreventsForwarding",
2343 "Backward",
2344 "BackwardVectorizable",
2345 "BackwardVectorizableButPreventsForwarding"};
2347 void MemoryDepChecker::Dependence::print(
2348 raw_ostream &OS, unsigned Depth,
2349 const SmallVectorImpl<Instruction *> &Instrs) const {
2350 OS.indent(Depth) << DepName[Type] << ":\n";
2351 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2352 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2355 bool LoopAccessInfo::canAnalyzeLoop() {
2356 // We need to have a loop header.
2357 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2358 << TheLoop->getHeader()->getParent()->getName() << "' from "
2359 << TheLoop->getLocStr() << "\n");
2361 // We can only analyze innermost loops.
2362 if (!TheLoop->isInnermost()) {
2363 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2364 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2365 return false;
2368 // We must have a single backedge.
2369 if (TheLoop->getNumBackEdges() != 1) {
2370 LLVM_DEBUG(
2371 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2372 recordAnalysis("CFGNotUnderstood")
2373 << "loop control flow is not understood by analyzer";
2374 return false;
2377 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2378 // count, which is an upper bound on the number of loop iterations. The loop
2379 // may execute fewer iterations, if it exits via an uncountable exit.
2380 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2381 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2382 recordAnalysis("CantComputeNumberOfIterations")
2383 << "could not determine number of loop iterations";
2384 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2385 return false;
2388 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2389 << TheLoop->getHeader()->getName() << "\n");
2390 return true;
2393 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI,
2394 const TargetLibraryInfo *TLI,
2395 DominatorTree *DT) {
2396 // Holds the Load and Store instructions.
2397 SmallVector<LoadInst *, 16> Loads;
2398 SmallVector<StoreInst *, 16> Stores;
2399 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2401 // Holds all the different accesses in the loop.
2402 unsigned NumReads = 0;
2403 unsigned NumReadWrites = 0;
2405 bool HasComplexMemInst = false;
2407 // A runtime check is only legal to insert if there are no convergent calls.
2408 HasConvergentOp = false;
2410 PtrRtChecking->Pointers.clear();
2411 PtrRtChecking->Need = false;
2413 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2415 const bool EnableMemAccessVersioningOfLoop =
2416 EnableMemAccessVersioning &&
2417 !TheLoop->getHeader()->getParent()->hasOptSize();
2419 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2420 // loop info, as it may be arbitrary.
2421 LoopBlocksRPO RPOT(TheLoop);
2422 RPOT.perform(LI);
2423 for (BasicBlock *BB : RPOT) {
2424 // Scan the BB and collect legal loads and stores. Also detect any
2425 // convergent instructions.
2426 for (Instruction &I : *BB) {
2427 if (auto *Call = dyn_cast<CallBase>(&I)) {
2428 if (Call->isConvergent())
2429 HasConvergentOp = true;
2432 // With both a non-vectorizable memory instruction and a convergent
2433 // operation, found in this loop, no reason to continue the search.
2434 if (HasComplexMemInst && HasConvergentOp)
2435 return false;
2437 // Avoid hitting recordAnalysis multiple times.
2438 if (HasComplexMemInst)
2439 continue;
2441 // Record alias scopes defined inside the loop.
2442 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2443 for (Metadata *Op : Decl->getScopeList()->operands())
2444 LoopAliasScopes.insert(cast<MDNode>(Op));
2446 // Many math library functions read the rounding mode. We will only
2447 // vectorize a loop if it contains known function calls that don't set
2448 // the flag. Therefore, it is safe to ignore this read from memory.
2449 auto *Call = dyn_cast<CallInst>(&I);
2450 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2451 continue;
2453 // If this is a load, save it. If this instruction can read from memory
2454 // but is not a load, we only allow it if it's a call to a function with a
2455 // vector mapping and no pointer arguments.
2456 if (I.mayReadFromMemory()) {
2457 auto hasPointerArgs = [](CallBase *CB) {
2458 return any_of(CB->args(), [](Value const *Arg) {
2459 return Arg->getType()->isPointerTy();
2463 // If the function has an explicit vectorized counterpart, and does not
2464 // take output/input pointers, we can safely assume that it can be
2465 // vectorized.
2466 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2467 !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty())
2468 continue;
2470 auto *Ld = dyn_cast<LoadInst>(&I);
2471 if (!Ld) {
2472 recordAnalysis("CantVectorizeInstruction", Ld)
2473 << "instruction cannot be vectorized";
2474 HasComplexMemInst = true;
2475 continue;
2477 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2478 recordAnalysis("NonSimpleLoad", Ld)
2479 << "read with atomic ordering or volatile read";
2480 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2481 HasComplexMemInst = true;
2482 continue;
2484 NumLoads++;
2485 Loads.push_back(Ld);
2486 DepChecker->addAccess(Ld);
2487 if (EnableMemAccessVersioningOfLoop)
2488 collectStridedAccess(Ld);
2489 continue;
2492 // Save 'store' instructions. Abort if other instructions write to memory.
2493 if (I.mayWriteToMemory()) {
2494 auto *St = dyn_cast<StoreInst>(&I);
2495 if (!St) {
2496 recordAnalysis("CantVectorizeInstruction", St)
2497 << "instruction cannot be vectorized";
2498 HasComplexMemInst = true;
2499 continue;
2501 if (!St->isSimple() && !IsAnnotatedParallel) {
2502 recordAnalysis("NonSimpleStore", St)
2503 << "write with atomic ordering or volatile write";
2504 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2505 HasComplexMemInst = true;
2506 continue;
2508 NumStores++;
2509 Stores.push_back(St);
2510 DepChecker->addAccess(St);
2511 if (EnableMemAccessVersioningOfLoop)
2512 collectStridedAccess(St);
2514 } // Next instr.
2515 } // Next block.
2517 if (HasComplexMemInst)
2518 return false;
2520 // Now we have two lists that hold the loads and the stores.
2521 // Next, we find the pointers that they use.
2523 // Check if we see any stores. If there are no stores, then we don't
2524 // care if the pointers are *restrict*.
2525 if (!Stores.size()) {
2526 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2527 return true;
2530 MemoryDepChecker::DepCandidates DependentAccesses;
2531 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2532 LoopAliasScopes);
2534 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2535 // multiple times on the same object. If the ptr is accessed twice, once
2536 // for read and once for write, it will only appear once (on the write
2537 // list). This is okay, since we are going to check for conflicts between
2538 // writes and between reads and writes, but not between reads and reads.
2539 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2541 // Record uniform store addresses to identify if we have multiple stores
2542 // to the same address.
2543 SmallPtrSet<Value *, 16> UniformStores;
2545 for (StoreInst *ST : Stores) {
2546 Value *Ptr = ST->getPointerOperand();
2548 if (isInvariant(Ptr)) {
2549 // Record store instructions to loop invariant addresses
2550 StoresToInvariantAddresses.push_back(ST);
2551 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2552 !UniformStores.insert(Ptr).second;
2555 // If we did *not* see this pointer before, insert it to the read-write
2556 // list. At this phase it is only a 'write' list.
2557 Type *AccessTy = getLoadStoreType(ST);
2558 if (Seen.insert({Ptr, AccessTy}).second) {
2559 ++NumReadWrites;
2561 MemoryLocation Loc = MemoryLocation::get(ST);
2562 // The TBAA metadata could have a control dependency on the predication
2563 // condition, so we cannot rely on it when determining whether or not we
2564 // need runtime pointer checks.
2565 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2566 Loc.AATags.TBAA = nullptr;
2568 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2569 [&Accesses, AccessTy, Loc](Value *Ptr) {
2570 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2571 Accesses.addStore(NewLoc, AccessTy);
2576 if (IsAnnotatedParallel) {
2577 LLVM_DEBUG(
2578 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2579 << "checks.\n");
2580 return true;
2583 for (LoadInst *LD : Loads) {
2584 Value *Ptr = LD->getPointerOperand();
2585 // If we did *not* see this pointer before, insert it to the
2586 // read list. If we *did* see it before, then it is already in
2587 // the read-write list. This allows us to vectorize expressions
2588 // such as A[i] += x; Because the address of A[i] is a read-write
2589 // pointer. This only works if the index of A[i] is consecutive.
2590 // If the address of i is unknown (for example A[B[i]]) then we may
2591 // read a few words, modify, and write a few words, and some of the
2592 // words may be written to the same address.
2593 bool IsReadOnlyPtr = false;
2594 Type *AccessTy = getLoadStoreType(LD);
2595 if (Seen.insert({Ptr, AccessTy}).second ||
2596 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2597 ++NumReads;
2598 IsReadOnlyPtr = true;
2601 // See if there is an unsafe dependency between a load to a uniform address and
2602 // store to the same uniform address.
2603 if (UniformStores.count(Ptr)) {
2604 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2605 "load and uniform store to the same address!\n");
2606 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2609 MemoryLocation Loc = MemoryLocation::get(LD);
2610 // The TBAA metadata could have a control dependency on the predication
2611 // condition, so we cannot rely on it when determining whether or not we
2612 // need runtime pointer checks.
2613 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2614 Loc.AATags.TBAA = nullptr;
2616 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2617 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2618 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2619 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2623 // If we write (or read-write) to a single destination and there are no
2624 // other reads in this loop then is it safe to vectorize.
2625 if (NumReadWrites == 1 && NumReads == 0) {
2626 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2627 return true;
2630 // Build dependence sets and check whether we need a runtime pointer bounds
2631 // check.
2632 Accesses.buildDependenceSets();
2634 // Find pointers with computable bounds. We are going to use this information
2635 // to place a runtime bound check.
2636 Value *UncomputablePtr = nullptr;
2637 bool CanDoRTIfNeeded =
2638 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2639 SymbolicStrides, UncomputablePtr, false);
2640 if (!CanDoRTIfNeeded) {
2641 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2642 recordAnalysis("CantIdentifyArrayBounds", I)
2643 << "cannot identify array bounds";
2644 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2645 << "the array bounds.\n");
2646 return false;
2649 LLVM_DEBUG(
2650 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2652 bool DepsAreSafe = true;
2653 if (Accesses.isDependencyCheckNeeded()) {
2654 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2655 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2656 Accesses.getDependenciesToCheck());
2658 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2659 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2661 // Clear the dependency checks. We assume they are not needed.
2662 Accesses.resetDepChecks(*DepChecker);
2664 PtrRtChecking->reset();
2665 PtrRtChecking->Need = true;
2667 auto *SE = PSE->getSE();
2668 UncomputablePtr = nullptr;
2669 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2670 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2672 // Check that we found the bounds for the pointer.
2673 if (!CanDoRTIfNeeded) {
2674 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2675 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2676 << "cannot check memory dependencies at runtime";
2677 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2678 return false;
2680 DepsAreSafe = true;
2684 if (HasConvergentOp) {
2685 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2686 << "cannot add control dependency to convergent operation";
2687 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2688 "would be needed with a convergent operation\n");
2689 return false;
2692 if (DepsAreSafe) {
2693 LLVM_DEBUG(
2694 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2695 << (PtrRtChecking->Need ? "" : " don't")
2696 << " need runtime memory checks.\n");
2697 return true;
2700 emitUnsafeDependenceRemark();
2701 return false;
2704 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2705 const auto *Deps = getDepChecker().getDependences();
2706 if (!Deps)
2707 return;
2708 const auto *Found =
2709 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2710 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2711 MemoryDepChecker::VectorizationSafetyStatus::Safe;
2713 if (Found == Deps->end())
2714 return;
2715 MemoryDepChecker::Dependence Dep = *Found;
2717 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2719 // Emit remark for first unsafe dependence
2720 bool HasForcedDistribution = false;
2721 std::optional<const MDOperand *> Value =
2722 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2723 if (Value) {
2724 const MDOperand *Op = *Value;
2725 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2726 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2729 const std::string Info =
2730 HasForcedDistribution
2731 ? "unsafe dependent memory operations in loop."
2732 : "unsafe dependent memory operations in loop. Use "
2733 "#pragma clang loop distribute(enable) to allow loop distribution "
2734 "to attempt to isolate the offending operations into a separate "
2735 "loop";
2736 OptimizationRemarkAnalysis &R =
2737 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2739 switch (Dep.Type) {
2740 case MemoryDepChecker::Dependence::NoDep:
2741 case MemoryDepChecker::Dependence::Forward:
2742 case MemoryDepChecker::Dependence::BackwardVectorizable:
2743 llvm_unreachable("Unexpected dependence");
2744 case MemoryDepChecker::Dependence::Backward:
2745 R << "\nBackward loop carried data dependence.";
2746 break;
2747 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2748 R << "\nForward loop carried data dependence that prevents "
2749 "store-to-load forwarding.";
2750 break;
2751 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2752 R << "\nBackward loop carried data dependence that prevents "
2753 "store-to-load forwarding.";
2754 break;
2755 case MemoryDepChecker::Dependence::IndirectUnsafe:
2756 R << "\nUnsafe indirect dependence.";
2757 break;
2758 case MemoryDepChecker::Dependence::Unknown:
2759 R << "\nUnknown data dependence.";
2760 break;
2763 if (Instruction *I = Dep.getSource(getDepChecker())) {
2764 DebugLoc SourceLoc = I->getDebugLoc();
2765 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2766 SourceLoc = DD->getDebugLoc();
2767 if (SourceLoc)
2768 R << " Memory location is the same as accessed at "
2769 << ore::NV("Location", SourceLoc);
2773 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2774 DominatorTree *DT) {
2775 assert(TheLoop->contains(BB) && "Unknown block used");
2777 // Blocks that do not dominate the latch need predication.
2778 const BasicBlock *Latch = TheLoop->getLoopLatch();
2779 return !DT->dominates(BB, Latch);
2782 OptimizationRemarkAnalysis &
2783 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) {
2784 assert(!Report && "Multiple reports generated");
2786 const Value *CodeRegion = TheLoop->getHeader();
2787 DebugLoc DL = TheLoop->getStartLoc();
2789 if (I) {
2790 CodeRegion = I->getParent();
2791 // If there is no debug location attached to the instruction, revert back to
2792 // using the loop's.
2793 if (I->getDebugLoc())
2794 DL = I->getDebugLoc();
2797 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2798 CodeRegion);
2799 return *Report;
2802 bool LoopAccessInfo::isInvariant(Value *V) const {
2803 auto *SE = PSE->getSE();
2804 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2805 // trivially loop-invariant FP values to be considered invariant.
2806 if (!SE->isSCEVable(V->getType()))
2807 return false;
2808 const SCEV *S = SE->getSCEV(V);
2809 return SE->isLoopInvariant(S, TheLoop);
2812 /// Find the operand of the GEP that should be checked for consecutive
2813 /// stores. This ignores trailing indices that have no effect on the final
2814 /// pointer.
2815 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2816 const DataLayout &DL = Gep->getDataLayout();
2817 unsigned LastOperand = Gep->getNumOperands() - 1;
2818 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2820 // Walk backwards and try to peel off zeros.
2821 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2822 // Find the type we're currently indexing into.
2823 gep_type_iterator GEPTI = gep_type_begin(Gep);
2824 std::advance(GEPTI, LastOperand - 2);
2826 // If it's a type with the same allocation size as the result of the GEP we
2827 // can peel off the zero index.
2828 TypeSize ElemSize = GEPTI.isStruct()
2829 ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2830 : GEPTI.getSequentialElementStride(DL);
2831 if (ElemSize != GEPAllocSize)
2832 break;
2833 --LastOperand;
2836 return LastOperand;
2839 /// If the argument is a GEP, then returns the operand identified by
2840 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2841 /// operand, it returns that instead.
2842 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2843 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2844 if (!GEP)
2845 return Ptr;
2847 unsigned InductionOperand = getGEPInductionOperand(GEP);
2849 // Check that all of the gep indices are uniform except for our induction
2850 // operand.
2851 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2852 if (I != InductionOperand &&
2853 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2854 return Ptr;
2855 return GEP->getOperand(InductionOperand);
2858 /// Get the stride of a pointer access in a loop. Looks for symbolic
2859 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2860 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2861 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2862 if (!PtrTy || PtrTy->isAggregateType())
2863 return nullptr;
2865 // Try to remove a gep instruction to make the pointer (actually index at this
2866 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2867 // pointer, otherwise, we are analyzing the index.
2868 Value *OrigPtr = Ptr;
2870 // The size of the pointer access.
2871 int64_t PtrAccessSize = 1;
2873 Ptr = stripGetElementPtr(Ptr, SE, Lp);
2874 const SCEV *V = SE->getSCEV(Ptr);
2876 if (Ptr != OrigPtr)
2877 // Strip off casts.
2878 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2879 V = C->getOperand();
2881 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2882 if (!S)
2883 return nullptr;
2885 // If the pointer is invariant then there is no stride and it makes no
2886 // sense to add it here.
2887 if (Lp != S->getLoop())
2888 return nullptr;
2890 V = S->getStepRecurrence(*SE);
2891 if (!V)
2892 return nullptr;
2894 // Strip off the size of access multiplication if we are still analyzing the
2895 // pointer.
2896 if (OrigPtr == Ptr) {
2897 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2898 if (M->getOperand(0)->getSCEVType() != scConstant)
2899 return nullptr;
2901 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2903 // Huge step value - give up.
2904 if (APStepVal.getBitWidth() > 64)
2905 return nullptr;
2907 int64_t StepVal = APStepVal.getSExtValue();
2908 if (PtrAccessSize != StepVal)
2909 return nullptr;
2910 V = M->getOperand(1);
2914 // Note that the restriction after this loop invariant check are only
2915 // profitability restrictions.
2916 if (!SE->isLoopInvariant(V, Lp))
2917 return nullptr;
2919 // Look for the loop invariant symbolic value.
2920 if (isa<SCEVUnknown>(V))
2921 return V;
2923 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2924 if (isa<SCEVUnknown>(C->getOperand()))
2925 return V;
2927 return nullptr;
2930 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2931 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2932 if (!Ptr)
2933 return;
2935 // Note: getStrideFromPointer is a *profitability* heuristic. We
2936 // could broaden the scope of values returned here - to anything
2937 // which happens to be loop invariant and contributes to the
2938 // computation of an interesting IV - but we chose not to as we
2939 // don't have a cost model here, and broadening the scope exposes
2940 // far too many unprofitable cases.
2941 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2942 if (!StrideExpr)
2943 return;
2945 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2946 "versioning:");
2947 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2949 if (!SpeculateUnitStride) {
2950 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2951 return;
2954 // Avoid adding the "Stride == 1" predicate when we know that
2955 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2956 // or zero iteration loop, as Trip-Count <= Stride == 1.
2958 // TODO: We are currently not making a very informed decision on when it is
2959 // beneficial to apply stride versioning. It might make more sense that the
2960 // users of this analysis (such as the vectorizer) will trigger it, based on
2961 // their specific cost considerations; For example, in cases where stride
2962 // versioning does not help resolving memory accesses/dependences, the
2963 // vectorizer should evaluate the cost of the runtime test, and the benefit
2964 // of various possible stride specializations, considering the alternatives
2965 // of using gather/scatters (if available).
2967 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2969 // Match the types so we can compare the stride and the MaxBTC.
2970 // The Stride can be positive/negative, so we sign extend Stride;
2971 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2972 const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2973 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2974 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
2975 const SCEV *CastedStride = StrideExpr;
2976 const SCEV *CastedBECount = MaxBTC;
2977 ScalarEvolution *SE = PSE->getSE();
2978 if (BETypeSizeBits >= StrideTypeSizeBits)
2979 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
2980 else
2981 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
2982 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2983 // Since TripCount == BackEdgeTakenCount + 1, checking:
2984 // "Stride >= TripCount" is equivalent to checking:
2985 // Stride - MaxBTC> 0
2986 if (SE->isKnownPositive(StrideMinusBETaken)) {
2987 LLVM_DEBUG(
2988 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2989 "Stride==1 predicate will imply that the loop executes "
2990 "at most once.\n");
2991 return;
2993 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2995 // Strip back off the integer cast, and check that our result is a
2996 // SCEVUnknown as we expect.
2997 const SCEV *StrideBase = StrideExpr;
2998 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2999 StrideBase = C->getOperand();
3000 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3003 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
3004 const TargetTransformInfo *TTI,
3005 const TargetLibraryInfo *TLI, AAResults *AA,
3006 DominatorTree *DT, LoopInfo *LI)
3007 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3008 PtrRtChecking(nullptr), TheLoop(L) {
3009 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3010 if (TTI) {
3011 TypeSize FixedWidth =
3012 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
3013 if (FixedWidth.isNonZero()) {
3014 // Scale the vector width by 2 as rough estimate to also consider
3015 // interleaving.
3016 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3019 TypeSize ScalableWidth =
3020 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
3021 if (ScalableWidth.isNonZero())
3022 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3024 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3025 MaxTargetVectorWidthInBits);
3026 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3027 if (canAnalyzeLoop())
3028 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3031 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3032 if (CanVecMem) {
3033 OS.indent(Depth) << "Memory dependences are safe";
3034 const MemoryDepChecker &DC = getDepChecker();
3035 if (!DC.isSafeForAnyVectorWidth())
3036 OS << " with a maximum safe vector width of "
3037 << DC.getMaxSafeVectorWidthInBits() << " bits";
3038 if (PtrRtChecking->Need)
3039 OS << " with run-time checks";
3040 OS << "\n";
3043 if (HasConvergentOp)
3044 OS.indent(Depth) << "Has convergent operation in loop\n";
3046 if (Report)
3047 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3049 if (auto *Dependences = DepChecker->getDependences()) {
3050 OS.indent(Depth) << "Dependences:\n";
3051 for (const auto &Dep : *Dependences) {
3052 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3053 OS << "\n";
3055 } else
3056 OS.indent(Depth) << "Too many dependences, not recorded\n";
3058 // List the pair of accesses need run-time checks to prove independence.
3059 PtrRtChecking->print(OS, Depth);
3060 OS << "\n";
3062 OS.indent(Depth)
3063 << "Non vectorizable stores to invariant address were "
3064 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3065 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3066 ? ""
3067 : "not ")
3068 << "found in loop.\n";
3070 OS.indent(Depth) << "SCEV assumptions:\n";
3071 PSE->getPredicate().print(OS, Depth);
3073 OS << "\n";
3075 OS.indent(Depth) << "Expressions re-written:\n";
3076 PSE->print(OS, Depth);
3079 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3080 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3082 if (Inserted)
3083 It->second =
3084 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3086 return *It->second;
3088 void LoopAccessInfoManager::clear() {
3089 SmallVector<Loop *> ToRemove;
3090 // Collect LoopAccessInfo entries that may keep references to IR outside the
3091 // analyzed loop or SCEVs that may have been modified or invalidated. At the
3092 // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3093 // SCEVs, e.g. for pointer expressions.
3094 for (const auto &[L, LAI] : LoopAccessInfoMap) {
3095 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3096 LAI->getPSE().getPredicate().isAlwaysTrue())
3097 continue;
3098 ToRemove.push_back(L);
3101 for (Loop *L : ToRemove)
3102 LoopAccessInfoMap.erase(L);
3105 bool LoopAccessInfoManager::invalidate(
3106 Function &F, const PreservedAnalyses &PA,
3107 FunctionAnalysisManager::Invalidator &Inv) {
3108 // Check whether our analysis is preserved.
3109 auto PAC = PA.getChecker<LoopAccessAnalysis>();
3110 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3111 // If not, give up now.
3112 return true;
3114 // Check whether the analyses we depend on became invalid for any reason.
3115 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3116 // invalid.
3117 return Inv.invalidate<AAManager>(F, PA) ||
3118 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3119 Inv.invalidate<LoopAnalysis>(F, PA) ||
3120 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3123 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3124 FunctionAnalysisManager &FAM) {
3125 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3126 auto &AA = FAM.getResult<AAManager>(F);
3127 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3128 auto &LI = FAM.getResult<LoopAnalysis>(F);
3129 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3130 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3131 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3134 AnalysisKey LoopAccessAnalysis::Key;