1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
3 // The LLVM Compiler Infrastructure
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
9 //===----------------------------------------------------------------------===//
12 /// This file defines the implementation for the loop cache analysis.
13 /// The implementation is largely based on the following paper:
15 /// Compiler Optimizations for Improving Data Locality
16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
19 /// The general approach taken to estimate the number of cache lines used by the
20 /// memory references in an inner loop is:
21 /// 1. Partition memory references that exhibit temporal or spacial reuse
22 /// into reference groups.
23 /// 2. For each loop L in the a loop nest LN:
24 /// a. Compute the cost of the reference group
25 /// b. Compute the loop cost by summing up the reference groups costs
26 //===----------------------------------------------------------------------===//
28 #include "llvm/Analysis/LoopCacheAnalysis.h"
29 #include "llvm/ADT/BreadthFirstIterator.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/Delinearization.h"
34 #include "llvm/Analysis/DependenceAnalysis.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
43 #define DEBUG_TYPE "loop-cache-cost"
45 static cl::opt
<unsigned> DefaultTripCount(
46 "default-trip-count", cl::init(100), cl::Hidden
,
47 cl::desc("Use this to specify the default trip count of a loop"));
49 // In this analysis two array references are considered to exhibit temporal
50 // reuse if they access either the same memory location, or a memory location
51 // with distance smaller than a configurable threshold.
52 static cl::opt
<unsigned> TemporalReuseThreshold(
53 "temporal-reuse-threshold", cl::init(2), cl::Hidden
,
54 cl::desc("Use this to specify the max. distance between array elements "
55 "accessed in a loop so that the elements are classified to have "
58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
59 /// nullptr if any loops in the loop vector supplied has more than one sibling.
60 /// The loop vector is expected to contain loops collected in breadth-first
62 static Loop
*getInnerMostLoop(const LoopVectorTy
&Loops
) {
63 assert(!Loops
.empty() && "Expecting a non-empy loop vector");
65 Loop
*LastLoop
= Loops
.back();
66 Loop
*ParentLoop
= LastLoop
->getParentLoop();
68 if (ParentLoop
== nullptr) {
69 assert(Loops
.size() == 1 && "Expecting a single loop");
73 return (llvm::is_sorted(Loops
,
74 [](const Loop
*L1
, const Loop
*L2
) {
75 return L1
->getLoopDepth() < L2
->getLoopDepth();
81 static bool isOneDimensionalArray(const SCEV
&AccessFn
, const SCEV
&ElemSize
,
82 const Loop
&L
, ScalarEvolution
&SE
) {
83 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(&AccessFn
);
84 if (!AR
|| !AR
->isAffine())
87 assert(AR
->getLoop() && "AR should have a loop");
89 // Check that start and increment are not add recurrences.
90 const SCEV
*Start
= AR
->getStart();
91 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
92 if (isa
<SCEVAddRecExpr
>(Start
) || isa
<SCEVAddRecExpr
>(Step
))
95 // Check that start and increment are both invariant in the loop.
96 if (!SE
.isLoopInvariant(Start
, &L
) || !SE
.isLoopInvariant(Step
, &L
))
99 const SCEV
*StepRec
= AR
->getStepRecurrence(SE
);
100 if (StepRec
&& SE
.isKnownNegative(StepRec
))
101 StepRec
= SE
.getNegativeSCEV(StepRec
);
103 return StepRec
== &ElemSize
;
106 /// Compute the trip count for the given loop \p L or assume a default value if
107 /// it is not a compile time constant. Return the SCEV expression for the trip
109 static const SCEV
*computeTripCount(const Loop
&L
, const SCEV
&ElemSize
,
110 ScalarEvolution
&SE
) {
111 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(&L
);
112 const SCEV
*TripCount
= (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
113 isa
<SCEVConstant
>(BackedgeTakenCount
))
114 ? SE
.getTripCountFromExitCount(BackedgeTakenCount
)
118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L
.getName()
119 << " could not be computed, using DefaultTripCount\n");
120 TripCount
= SE
.getConstant(ElemSize
.getType(), DefaultTripCount
);
126 //===----------------------------------------------------------------------===//
127 // IndexedReference implementation
129 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const IndexedReference
&R
) {
131 OS
<< R
.StoreOrLoadInst
;
132 OS
<< ", IsValid=false.";
136 OS
<< *R
.BasePointer
;
137 for (const SCEV
*Subscript
: R
.Subscripts
)
138 OS
<< "[" << *Subscript
<< "]";
141 for (const SCEV
*Size
: R
.Sizes
)
142 OS
<< "[" << *Size
<< "]";
147 IndexedReference::IndexedReference(Instruction
&StoreOrLoadInst
,
148 const LoopInfo
&LI
, ScalarEvolution
&SE
)
149 : StoreOrLoadInst(StoreOrLoadInst
), SE(SE
) {
150 assert((isa
<StoreInst
>(StoreOrLoadInst
) || isa
<LoadInst
>(StoreOrLoadInst
)) &&
151 "Expecting a load or store instruction");
153 IsValid
= delinearize(LI
);
155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
160 IndexedReference::hasSpacialReuse(const IndexedReference
&Other
, unsigned CLS
,
161 AAResults
&AA
) const {
162 assert(IsValid
&& "Expecting a valid reference");
164 if (BasePointer
!= Other
.getBasePointer() && !isAliased(Other
, AA
)) {
165 LLVM_DEBUG(dbgs().indent(2)
166 << "No spacial reuse: different base pointers\n");
170 unsigned NumSubscripts
= getNumSubscripts();
171 if (NumSubscripts
!= Other
.getNumSubscripts()) {
172 LLVM_DEBUG(dbgs().indent(2)
173 << "No spacial reuse: different number of subscripts\n");
177 // all subscripts must be equal, except the leftmost one (the last one).
178 for (auto SubNum
: seq
<unsigned>(0, NumSubscripts
- 1)) {
179 if (getSubscript(SubNum
) != Other
.getSubscript(SubNum
)) {
180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
181 << "\n\t" << *getSubscript(SubNum
) << "\n\t"
182 << *Other
.getSubscript(SubNum
) << "\n");
187 // the difference between the last subscripts must be less than the cache line
189 const SCEV
*LastSubscript
= getLastSubscript();
190 const SCEV
*OtherLastSubscript
= Other
.getLastSubscript();
191 const SCEVConstant
*Diff
= dyn_cast
<SCEVConstant
>(
192 SE
.getMinusSCEV(LastSubscript
, OtherLastSubscript
));
194 if (Diff
== nullptr) {
195 LLVM_DEBUG(dbgs().indent(2)
196 << "No spacial reuse, difference between subscript:\n\t"
197 << *LastSubscript
<< "\n\t" << OtherLastSubscript
198 << "\nis not constant.\n");
202 bool InSameCacheLine
= (Diff
->getValue()->getSExtValue() < CLS
);
206 dbgs().indent(2) << "Found spacial reuse.\n";
208 dbgs().indent(2) << "No spacial reuse.\n";
211 return InSameCacheLine
;
215 IndexedReference::hasTemporalReuse(const IndexedReference
&Other
,
216 unsigned MaxDistance
, const Loop
&L
,
217 DependenceInfo
&DI
, AAResults
&AA
) const {
218 assert(IsValid
&& "Expecting a valid reference");
220 if (BasePointer
!= Other
.getBasePointer() && !isAliased(Other
, AA
)) {
221 LLVM_DEBUG(dbgs().indent(2)
222 << "No temporal reuse: different base pointer\n");
226 std::unique_ptr
<Dependence
> D
=
227 DI
.depends(&StoreOrLoadInst
, &Other
.StoreOrLoadInst
, true);
230 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
234 if (D
->isLoopIndependent()) {
235 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
239 // Check the dependence distance at every loop level. There is temporal reuse
240 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
241 // it is zero at every other loop level.
242 int LoopDepth
= L
.getLoopDepth();
243 int Levels
= D
->getLevels();
244 for (int Level
= 1; Level
<= Levels
; ++Level
) {
245 const SCEV
*Distance
= D
->getDistance(Level
);
246 const SCEVConstant
*SCEVConst
= dyn_cast_or_null
<SCEVConstant
>(Distance
);
248 if (SCEVConst
== nullptr) {
249 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
253 const ConstantInt
&CI
= *SCEVConst
->getValue();
254 if (Level
!= LoopDepth
&& !CI
.isZero()) {
255 LLVM_DEBUG(dbgs().indent(2)
256 << "No temporal reuse: distance is not zero at depth=" << Level
259 } else if (Level
== LoopDepth
&& CI
.getSExtValue() > MaxDistance
) {
262 << "No temporal reuse: distance is greater than MaxDistance at depth="
268 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
272 CacheCostTy
IndexedReference::computeRefCost(const Loop
&L
,
273 unsigned CLS
) const {
274 assert(IsValid
&& "Expecting a valid reference");
276 dbgs().indent(2) << "Computing cache cost for:\n";
277 dbgs().indent(4) << *this << "\n";
280 // If the indexed reference is loop invariant the cost is one.
281 if (isLoopInvariant(L
)) {
282 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
286 const SCEV
*TripCount
= computeTripCount(L
, *Sizes
.back(), SE
);
287 assert(TripCount
&& "Expecting valid TripCount");
288 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount
<< "\n");
290 const SCEV
*RefCost
= nullptr;
291 const SCEV
*Stride
= nullptr;
292 if (isConsecutive(L
, Stride
, CLS
)) {
293 // If the indexed reference is 'consecutive' the cost is
294 // (TripCount*Stride)/CLS.
295 assert(Stride
!= nullptr &&
296 "Stride should not be null for consecutive access!");
297 Type
*WiderType
= SE
.getWiderType(Stride
->getType(), TripCount
->getType());
298 const SCEV
*CacheLineSize
= SE
.getConstant(WiderType
, CLS
);
299 Stride
= SE
.getNoopOrAnyExtend(Stride
, WiderType
);
300 TripCount
= SE
.getNoopOrZeroExtend(TripCount
, WiderType
);
301 const SCEV
*Numerator
= SE
.getMulExpr(Stride
, TripCount
);
302 // Round the fractional cost up to the nearest integer number.
303 // The impact is the most significant when cost is calculated
304 // to be a number less than one, because it makes more sense
305 // to say one cache line is used rather than zero cache line
307 RefCost
= SE
.getUDivCeilSCEV(Numerator
, CacheLineSize
);
309 LLVM_DEBUG(dbgs().indent(4)
310 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
311 << *RefCost
<< "\n");
313 // If the indexed reference is not 'consecutive' the cost is proportional to
314 // the trip count and the depth of the dimension which the subject loop
315 // subscript is accessing. We try to estimate this by multiplying the cost
316 // by the trip counts of loops corresponding to the inner dimensions. For
317 // example, given the indexed reference 'A[i][j][k]', and assuming the
318 // i-loop is in the innermost position, the cost would be equal to the
319 // iterations of the i-loop multiplied by iterations of the j-loop.
322 int Index
= getSubscriptIndex(L
);
323 assert(Index
>= 0 && "Could not locate a valid Index");
325 for (unsigned I
= Index
+ 1; I
< getNumSubscripts() - 1; ++I
) {
326 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(getSubscript(I
));
327 assert(AR
&& AR
->getLoop() && "Expecting valid loop");
328 const SCEV
*TripCount
=
329 computeTripCount(*AR
->getLoop(), *Sizes
.back(), SE
);
330 Type
*WiderType
= SE
.getWiderType(RefCost
->getType(), TripCount
->getType());
331 // For the multiplication result to fit, request a type twice as wide.
332 WiderType
= WiderType
->getExtendedType();
333 RefCost
= SE
.getMulExpr(SE
.getNoopOrZeroExtend(RefCost
, WiderType
),
334 SE
.getNoopOrZeroExtend(TripCount
, WiderType
));
337 LLVM_DEBUG(dbgs().indent(4)
338 << "Access is not consecutive: RefCost=" << *RefCost
<< "\n");
340 assert(RefCost
&& "Expecting a valid RefCost");
342 // Attempt to fold RefCost into a constant.
343 // CacheCostTy is a signed integer, but the tripcount value can be large
344 // and may not fit, so saturate/limit the value to the maximum signed
346 if (auto ConstantCost
= dyn_cast
<SCEVConstant
>(RefCost
))
347 return ConstantCost
->getValue()->getLimitedValue(
348 std::numeric_limits
<int64_t>::max());
350 LLVM_DEBUG(dbgs().indent(4)
351 << "RefCost is not a constant! Setting to RefCost=InvalidCost "
352 "(invalid value).\n");
354 return CacheCostTy::getInvalid();
357 bool IndexedReference::tryDelinearizeFixedSize(
358 const SCEV
*AccessFn
, SmallVectorImpl
<const SCEV
*> &Subscripts
) {
359 SmallVector
<int, 4> ArraySizes
;
360 if (!tryDelinearizeFixedSizeImpl(&SE
, &StoreOrLoadInst
, AccessFn
, Subscripts
,
364 // Populate Sizes with scev expressions to be used in calculations later.
365 for (auto Idx
: seq
<unsigned>(1, Subscripts
.size()))
367 SE
.getConstant(Subscripts
[Idx
]->getType(), ArraySizes
[Idx
- 1]));
370 dbgs() << "Delinearized subscripts of fixed-size array\n"
371 << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst
)
377 bool IndexedReference::delinearize(const LoopInfo
&LI
) {
378 assert(Subscripts
.empty() && "Subscripts should be empty");
379 assert(Sizes
.empty() && "Sizes should be empty");
380 assert(!IsValid
&& "Should be called once from the constructor");
381 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst
<< "\n");
383 const SCEV
*ElemSize
= SE
.getElementSize(&StoreOrLoadInst
);
384 const BasicBlock
*BB
= StoreOrLoadInst
.getParent();
386 if (Loop
*L
= LI
.getLoopFor(BB
)) {
387 const SCEV
*AccessFn
=
388 SE
.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst
), L
);
390 BasePointer
= dyn_cast
<SCEVUnknown
>(SE
.getPointerBase(AccessFn
));
391 if (BasePointer
== nullptr) {
394 << "ERROR: failed to delinearize, can't identify base pointer\n");
398 bool IsFixedSize
= false;
399 // Try to delinearize fixed-size arrays.
400 if (tryDelinearizeFixedSize(AccessFn
, Subscripts
)) {
402 // The last element of Sizes is the element size.
403 Sizes
.push_back(ElemSize
);
404 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L
->getName()
405 << "', AccessFn: " << *AccessFn
<< "\n");
408 AccessFn
= SE
.getMinusSCEV(AccessFn
, BasePointer
);
410 // Try to delinearize parametric-size arrays.
412 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L
->getName()
413 << "', AccessFn: " << *AccessFn
<< "\n");
414 llvm::delinearize(SE
, AccessFn
, Subscripts
, Sizes
,
415 SE
.getElementSize(&StoreOrLoadInst
));
418 if (Subscripts
.empty() || Sizes
.empty() ||
419 Subscripts
.size() != Sizes
.size()) {
420 // Attempt to determine whether we have a single dimensional array access.
422 if (!isOneDimensionalArray(*AccessFn
, *ElemSize
, *L
, SE
)) {
423 LLVM_DEBUG(dbgs().indent(2)
424 << "ERROR: failed to delinearize reference\n");
430 // The array may be accessed in reverse, for example:
431 // for (i = N; i > 0; i--)
433 // In this case, reconstruct the access function using the absolute value
434 // of the step recurrence.
435 const SCEVAddRecExpr
*AccessFnAR
= dyn_cast
<SCEVAddRecExpr
>(AccessFn
);
436 const SCEV
*StepRec
= AccessFnAR
? AccessFnAR
->getStepRecurrence(SE
) : nullptr;
438 if (StepRec
&& SE
.isKnownNegative(StepRec
))
439 AccessFn
= SE
.getAddRecExpr(AccessFnAR
->getStart(),
440 SE
.getNegativeSCEV(StepRec
),
441 AccessFnAR
->getLoop(),
442 AccessFnAR
->getNoWrapFlags());
443 const SCEV
*Div
= SE
.getUDivExactExpr(AccessFn
, ElemSize
);
444 Subscripts
.push_back(Div
);
445 Sizes
.push_back(ElemSize
);
448 return all_of(Subscripts
, [&](const SCEV
*Subscript
) {
449 return isSimpleAddRecurrence(*Subscript
, *L
);
456 bool IndexedReference::isLoopInvariant(const Loop
&L
) const {
457 Value
*Addr
= getPointerOperand(&StoreOrLoadInst
);
458 assert(Addr
!= nullptr && "Expecting either a load or a store instruction");
459 assert(SE
.isSCEVable(Addr
->getType()) && "Addr should be SCEVable");
461 if (SE
.isLoopInvariant(SE
.getSCEV(Addr
), &L
))
464 // The indexed reference is loop invariant if none of the coefficients use
465 // the loop induction variable.
466 bool allCoeffForLoopAreZero
= all_of(Subscripts
, [&](const SCEV
*Subscript
) {
467 return isCoeffForLoopZeroOrInvariant(*Subscript
, L
);
470 return allCoeffForLoopAreZero
;
473 bool IndexedReference::isConsecutive(const Loop
&L
, const SCEV
*&Stride
,
474 unsigned CLS
) const {
475 // The indexed reference is 'consecutive' if the only coefficient that uses
476 // the loop induction variable is the last one...
477 const SCEV
*LastSubscript
= Subscripts
.back();
478 for (const SCEV
*Subscript
: Subscripts
) {
479 if (Subscript
== LastSubscript
)
481 if (!isCoeffForLoopZeroOrInvariant(*Subscript
, L
))
485 // ...and the access stride is less than the cache line size.
486 const SCEV
*Coeff
= getLastCoefficient();
487 const SCEV
*ElemSize
= Sizes
.back();
488 Type
*WiderType
= SE
.getWiderType(Coeff
->getType(), ElemSize
->getType());
489 // FIXME: This assumes that all values are signed integers which may
490 // be incorrect in unusual codes and incorrectly use sext instead of zext.
491 // for (uint32_t i = 0; i < 512; ++i) {
492 // uint8_t trunc = i;
495 // This consecutively iterates twice over A. If `trunc` is sign-extended,
496 // we would conclude that this may iterate backwards over the array.
497 // However, LoopCacheAnalysis is heuristic anyway and transformations must
498 // not result in wrong optimizations if the heuristic was incorrect.
499 Stride
= SE
.getMulExpr(SE
.getNoopOrSignExtend(Coeff
, WiderType
),
500 SE
.getNoopOrSignExtend(ElemSize
, WiderType
));
501 const SCEV
*CacheLineSize
= SE
.getConstant(Stride
->getType(), CLS
);
503 Stride
= SE
.isKnownNegative(Stride
) ? SE
.getNegativeSCEV(Stride
) : Stride
;
504 return SE
.isKnownPredicate(ICmpInst::ICMP_ULT
, Stride
, CacheLineSize
);
507 int IndexedReference::getSubscriptIndex(const Loop
&L
) const {
508 for (auto Idx
: seq
<int>(0, getNumSubscripts())) {
509 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(getSubscript(Idx
));
510 if (AR
&& AR
->getLoop() == &L
) {
517 const SCEV
*IndexedReference::getLastCoefficient() const {
518 const SCEV
*LastSubscript
= getLastSubscript();
519 auto *AR
= cast
<SCEVAddRecExpr
>(LastSubscript
);
520 return AR
->getStepRecurrence(SE
);
523 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV
&Subscript
,
524 const Loop
&L
) const {
525 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(&Subscript
);
526 return (AR
!= nullptr) ? AR
->getLoop() != &L
527 : SE
.isLoopInvariant(&Subscript
, &L
);
530 bool IndexedReference::isSimpleAddRecurrence(const SCEV
&Subscript
,
531 const Loop
&L
) const {
532 if (!isa
<SCEVAddRecExpr
>(Subscript
))
535 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(&Subscript
);
536 assert(AR
->getLoop() && "AR should have a loop");
541 const SCEV
*Start
= AR
->getStart();
542 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
544 if (!SE
.isLoopInvariant(Start
, &L
) || !SE
.isLoopInvariant(Step
, &L
))
550 bool IndexedReference::isAliased(const IndexedReference
&Other
,
551 AAResults
&AA
) const {
552 const auto &Loc1
= MemoryLocation::get(&StoreOrLoadInst
);
553 const auto &Loc2
= MemoryLocation::get(&Other
.StoreOrLoadInst
);
554 return AA
.isMustAlias(Loc1
, Loc2
);
557 //===----------------------------------------------------------------------===//
558 // CacheCost implementation
560 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const CacheCost
&CC
) {
561 for (const auto &LC
: CC
.LoopCosts
) {
562 const Loop
*L
= LC
.first
;
563 OS
<< "Loop '" << L
->getName() << "' has cost = " << LC
.second
<< "\n";
568 CacheCost::CacheCost(const LoopVectorTy
&Loops
, const LoopInfo
&LI
,
569 ScalarEvolution
&SE
, TargetTransformInfo
&TTI
,
570 AAResults
&AA
, DependenceInfo
&DI
,
571 std::optional
<unsigned> TRT
)
572 : Loops(Loops
), TRT(TRT
.value_or(TemporalReuseThreshold
)), LI(LI
), SE(SE
),
573 TTI(TTI
), AA(AA
), DI(DI
) {
574 assert(!Loops
.empty() && "Expecting a non-empty loop vector.");
576 for (const Loop
*L
: Loops
) {
577 unsigned TripCount
= SE
.getSmallConstantTripCount(L
);
578 TripCount
= (TripCount
== 0) ? DefaultTripCount
: TripCount
;
579 TripCounts
.push_back({L
, TripCount
});
582 calculateCacheFootprint();
585 std::unique_ptr
<CacheCost
>
586 CacheCost::getCacheCost(Loop
&Root
, LoopStandardAnalysisResults
&AR
,
587 DependenceInfo
&DI
, std::optional
<unsigned> TRT
) {
588 if (!Root
.isOutermost()) {
589 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
594 append_range(Loops
, breadth_first(&Root
));
596 if (!getInnerMostLoop(Loops
)) {
597 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
598 "than one innermost loop\n");
602 return std::make_unique
<CacheCost
>(Loops
, AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AA
, DI
, TRT
);
605 void CacheCost::calculateCacheFootprint() {
606 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
607 ReferenceGroupsTy RefGroups
;
608 if (!populateReferenceGroups(RefGroups
))
611 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
612 for (const Loop
*L
: Loops
) {
613 assert(llvm::none_of(
615 [L
](const LoopCacheCostTy
&LCC
) { return LCC
.first
== L
; }) &&
616 "Should not add duplicate element");
617 CacheCostTy LoopCost
= computeLoopCacheCost(*L
, RefGroups
);
618 LoopCosts
.push_back(std::make_pair(L
, LoopCost
));
625 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy
&RefGroups
) const {
626 assert(RefGroups
.empty() && "Reference groups should be empty");
628 unsigned CLS
= TTI
.getCacheLineSize();
629 Loop
*InnerMostLoop
= getInnerMostLoop(Loops
);
630 assert(InnerMostLoop
!= nullptr && "Expecting a valid innermost loop");
632 for (BasicBlock
*BB
: InnerMostLoop
->getBlocks()) {
633 for (Instruction
&I
: *BB
) {
634 if (!isa
<StoreInst
>(I
) && !isa
<LoadInst
>(I
))
637 std::unique_ptr
<IndexedReference
> R(new IndexedReference(I
, LI
, SE
));
642 for (ReferenceGroupTy
&RefGroup
: RefGroups
) {
643 const IndexedReference
&Representative
= *RefGroup
.front();
645 dbgs() << "References:\n";
646 dbgs().indent(2) << *R
<< "\n";
647 dbgs().indent(2) << Representative
<< "\n";
651 // FIXME: Both positive and negative access functions will be placed
652 // into the same reference group, resulting in a bi-directional array
654 // for (i = N; i > 0; i--)
656 // having the same cost calculation as a single dimention access pattern
657 // for (i = 0; i < N; i++)
659 // when in actuality, depending on the array size, the first example
660 // should have a cost closer to 2x the second due to the two cache
661 // access per iteration from opposite ends of the array
662 std::optional
<bool> HasTemporalReuse
=
663 R
->hasTemporalReuse(Representative
, *TRT
, *InnerMostLoop
, DI
, AA
);
664 std::optional
<bool> HasSpacialReuse
=
665 R
->hasSpacialReuse(Representative
, CLS
, AA
);
667 if ((HasTemporalReuse
&& *HasTemporalReuse
) ||
668 (HasSpacialReuse
&& *HasSpacialReuse
)) {
669 RefGroup
.push_back(std::move(R
));
677 RG
.push_back(std::move(R
));
678 RefGroups
.push_back(std::move(RG
));
683 if (RefGroups
.empty())
687 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
689 for (const ReferenceGroupTy
&RG
: RefGroups
) {
690 dbgs().indent(2) << "RefGroup " << n
<< ":\n";
691 for (const auto &IR
: RG
)
692 dbgs().indent(4) << *IR
<< "\n";
702 CacheCost::computeLoopCacheCost(const Loop
&L
,
703 const ReferenceGroupsTy
&RefGroups
) const {
704 if (!L
.isLoopSimplifyForm())
705 return CacheCostTy::getInvalid();
707 LLVM_DEBUG(dbgs() << "Considering loop '" << L
.getName()
708 << "' as innermost loop.\n");
710 // Compute the product of the trip counts of each other loop in the nest.
711 CacheCostTy TripCountsProduct
= 1;
712 for (const auto &TC
: TripCounts
) {
715 TripCountsProduct
*= TC
.second
;
718 CacheCostTy LoopCost
= 0;
719 for (const ReferenceGroupTy
&RG
: RefGroups
) {
720 CacheCostTy RefGroupCost
= computeRefGroupCacheCost(RG
, L
);
721 LoopCost
+= RefGroupCost
* TripCountsProduct
;
724 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L
.getName()
725 << "' has cost=" << LoopCost
<< "\n");
730 CacheCostTy
CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy
&RG
,
731 const Loop
&L
) const {
732 assert(!RG
.empty() && "Reference group should have at least one member.");
734 const IndexedReference
*Representative
= RG
.front().get();
735 return Representative
->computeRefCost(L
, TTI
.getCacheLineSize());
738 //===----------------------------------------------------------------------===//
739 // LoopCachePrinterPass implementation
741 PreservedAnalyses
LoopCachePrinterPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
742 LoopStandardAnalysisResults
&AR
,
744 Function
*F
= L
.getHeader()->getParent();
745 DependenceInfo
DI(F
, &AR
.AA
, &AR
.SE
, &AR
.LI
);
747 if (auto CC
= CacheCost::getCacheCost(L
, AR
, DI
))
750 return PreservedAnalyses::all();