[lld/COFF] Demangle symbol name in discarded section relocation error message (#119726)
[llvm-project.git] / llvm / lib / Analysis / ModuleSummaryAnalysis.cpp
blob611d4bfbc69e8fe5db9441bce109794dc36f9cf9
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TypeMetadataUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSummaryIndex.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Object/ModuleSymbolTable.h"
50 #include "llvm/Object/SymbolicFile.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/FileSystem.h"
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
59 using namespace llvm;
60 using namespace llvm::memprof;
62 #define DEBUG_TYPE "module-summary-analysis"
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68 FunctionSummary::FSHT_None;
69 } // namespace llvm
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73 cl::desc("Force all edges in the function summary to cold"),
74 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75 clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76 "all-non-critical", "All non-critical edges."),
77 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
79 static cl::opt<std::string> ModuleSummaryDotFile(
80 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81 cl::desc("File to emit dot graph of new summary into"));
83 static cl::opt<bool> EnableMemProfIndirectCallSupport(
84 "enable-memprof-indirect-call-support", cl::init(false), cl::Hidden,
85 cl::desc(
86 "Enable MemProf support for summarizing and cloning indirect calls"));
88 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
90 extern cl::opt<unsigned> MaxNumVTableAnnotations;
92 extern cl::opt<bool> MemProfReportHintedSizes;
94 // Walk through the operands of a given User via worklist iteration and populate
95 // the set of GlobalValue references encountered. Invoked either on an
96 // Instruction or a GlobalVariable (which walks its initializer).
97 // Return true if any of the operands contains blockaddress. This is important
98 // to know when computing summary for global var, because if global variable
99 // references basic block address we can't import it separately from function
100 // containing that basic block. For simplicity we currently don't import such
101 // global vars at all. When importing function we aren't interested if any
102 // instruction in it takes an address of any basic block, because instruction
103 // can only take an address of basic block located in the same function.
104 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a
105 // local-linkage ifunc.
106 static bool
107 findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
108 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &RefEdges,
109 SmallPtrSet<const User *, 8> &Visited,
110 bool &RefLocalLinkageIFunc) {
111 bool HasBlockAddress = false;
112 SmallVector<const User *, 32> Worklist;
113 if (Visited.insert(CurUser).second)
114 Worklist.push_back(CurUser);
116 while (!Worklist.empty()) {
117 const User *U = Worklist.pop_back_val();
118 const auto *CB = dyn_cast<CallBase>(U);
120 for (const auto &OI : U->operands()) {
121 const User *Operand = dyn_cast<User>(OI);
122 if (!Operand)
123 continue;
124 if (isa<BlockAddress>(Operand)) {
125 HasBlockAddress = true;
126 continue;
128 if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
129 // We have a reference to a global value. This should be added to
130 // the reference set unless it is a callee. Callees are handled
131 // specially by WriteFunction and are added to a separate list.
132 if (!(CB && CB->isCallee(&OI))) {
133 // If an ifunc has local linkage, do not add it into ref edges, and
134 // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible
135 // for import. An ifunc doesn't have summary and ThinLTO cannot
136 // promote it; importing the referencer may cause linkage errors.
137 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(GV);
138 GI && GI->hasLocalLinkage()) {
139 RefLocalLinkageIFunc = true;
140 continue;
142 RefEdges.insert(Index.getOrInsertValueInfo(GV));
144 continue;
146 if (Visited.insert(Operand).second)
147 Worklist.push_back(Operand);
151 const Instruction *I = dyn_cast<Instruction>(CurUser);
152 if (I) {
153 uint64_t TotalCount = 0;
154 // MaxNumVTableAnnotations is the maximum number of vtables annotated on
155 // the instruction.
156 auto ValueDataArray = getValueProfDataFromInst(
157 *I, IPVK_VTableTarget, MaxNumVTableAnnotations, TotalCount);
159 for (const auto &V : ValueDataArray)
160 RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */
161 V.Value));
163 return HasBlockAddress;
166 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
167 ProfileSummaryInfo *PSI) {
168 if (!PSI)
169 return CalleeInfo::HotnessType::Unknown;
170 if (PSI->isHotCount(ProfileCount))
171 return CalleeInfo::HotnessType::Hot;
172 if (PSI->isColdCount(ProfileCount))
173 return CalleeInfo::HotnessType::Cold;
174 return CalleeInfo::HotnessType::None;
177 static bool isNonRenamableLocal(const GlobalValue &GV) {
178 return GV.hasSection() && GV.hasLocalLinkage();
181 /// Determine whether this call has all constant integer arguments (excluding
182 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
183 static void addVCallToSet(
184 DevirtCallSite Call, GlobalValue::GUID Guid,
185 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
186 &VCalls,
187 SetVector<FunctionSummary::ConstVCall,
188 std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
189 std::vector<uint64_t> Args;
190 // Start from the second argument to skip the "this" pointer.
191 for (auto &Arg : drop_begin(Call.CB.args())) {
192 auto *CI = dyn_cast<ConstantInt>(Arg);
193 if (!CI || CI->getBitWidth() > 64) {
194 VCalls.insert({Guid, Call.Offset});
195 return;
197 Args.push_back(CI->getZExtValue());
199 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
202 /// If this intrinsic call requires that we add information to the function
203 /// summary, do so via the non-constant reference arguments.
204 static void addIntrinsicToSummary(
205 const CallInst *CI,
206 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
207 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
208 &TypeTestAssumeVCalls,
209 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
210 &TypeCheckedLoadVCalls,
211 SetVector<FunctionSummary::ConstVCall,
212 std::vector<FunctionSummary::ConstVCall>>
213 &TypeTestAssumeConstVCalls,
214 SetVector<FunctionSummary::ConstVCall,
215 std::vector<FunctionSummary::ConstVCall>>
216 &TypeCheckedLoadConstVCalls,
217 DominatorTree &DT) {
218 switch (CI->getCalledFunction()->getIntrinsicID()) {
219 case Intrinsic::type_test:
220 case Intrinsic::public_type_test: {
221 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
222 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
223 if (!TypeId)
224 break;
225 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
227 // Produce a summary from type.test intrinsics. We only summarize type.test
228 // intrinsics that are used other than by an llvm.assume intrinsic.
229 // Intrinsics that are assumed are relevant only to the devirtualization
230 // pass, not the type test lowering pass.
231 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
232 return !isa<AssumeInst>(CIU.getUser());
234 if (HasNonAssumeUses)
235 TypeTests.insert(Guid);
237 SmallVector<DevirtCallSite, 4> DevirtCalls;
238 SmallVector<CallInst *, 4> Assumes;
239 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
240 for (auto &Call : DevirtCalls)
241 addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
242 TypeTestAssumeConstVCalls);
244 break;
247 case Intrinsic::type_checked_load_relative:
248 case Intrinsic::type_checked_load: {
249 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
250 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
251 if (!TypeId)
252 break;
253 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
255 SmallVector<DevirtCallSite, 4> DevirtCalls;
256 SmallVector<Instruction *, 4> LoadedPtrs;
257 SmallVector<Instruction *, 4> Preds;
258 bool HasNonCallUses = false;
259 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
260 HasNonCallUses, CI, DT);
261 // Any non-call uses of the result of llvm.type.checked.load will
262 // prevent us from optimizing away the llvm.type.test.
263 if (HasNonCallUses)
264 TypeTests.insert(Guid);
265 for (auto &Call : DevirtCalls)
266 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
267 TypeCheckedLoadConstVCalls);
269 break;
271 default:
272 break;
276 static bool isNonVolatileLoad(const Instruction *I) {
277 if (const auto *LI = dyn_cast<LoadInst>(I))
278 return !LI->isVolatile();
280 return false;
283 static bool isNonVolatileStore(const Instruction *I) {
284 if (const auto *SI = dyn_cast<StoreInst>(I))
285 return !SI->isVolatile();
287 return false;
290 // Returns true if the function definition must be unreachable.
292 // Note if this helper function returns true, `F` is guaranteed
293 // to be unreachable; if it returns false, `F` might still
294 // be unreachable but not covered by this helper function.
295 static bool mustBeUnreachableFunction(const Function &F) {
296 // A function must be unreachable if its entry block ends with an
297 // 'unreachable'.
298 assert(!F.isDeclaration());
299 return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
302 static void computeFunctionSummary(
303 ModuleSummaryIndex &Index, const Module &M, const Function &F,
304 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
305 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
306 bool IsThinLTO,
307 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
308 // Summary not currently supported for anonymous functions, they should
309 // have been named.
310 assert(F.hasName());
312 unsigned NumInsts = 0;
313 // Map from callee ValueId to profile count. Used to accumulate profile
314 // counts for all static calls to a given callee.
315 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
316 SmallVector<FunctionSummary::EdgeTy, 0>>
317 CallGraphEdges;
318 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges, LoadRefEdges,
319 StoreRefEdges;
320 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
321 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
322 TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
323 SetVector<FunctionSummary::ConstVCall,
324 std::vector<FunctionSummary::ConstVCall>>
325 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
326 ICallPromotionAnalysis ICallAnalysis;
327 SmallPtrSet<const User *, 8> Visited;
329 // Add personality function, prefix data and prologue data to function's ref
330 // list.
331 bool HasLocalIFuncCallOrRef = false;
332 findRefEdges(Index, &F, RefEdges, Visited, HasLocalIFuncCallOrRef);
333 std::vector<const Instruction *> NonVolatileLoads;
334 std::vector<const Instruction *> NonVolatileStores;
336 std::vector<CallsiteInfo> Callsites;
337 std::vector<AllocInfo> Allocs;
339 #ifndef NDEBUG
340 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
341 #endif
343 bool HasInlineAsmMaybeReferencingInternal = false;
344 bool HasIndirBranchToBlockAddress = false;
345 bool HasUnknownCall = false;
346 bool MayThrow = false;
347 for (const BasicBlock &BB : F) {
348 // We don't allow inlining of function with indirect branch to blockaddress.
349 // If the blockaddress escapes the function, e.g., via a global variable,
350 // inlining may lead to an invalid cross-function reference. So we shouldn't
351 // import such function either.
352 if (BB.hasAddressTaken()) {
353 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
354 if (!isa<CallBrInst>(*U)) {
355 HasIndirBranchToBlockAddress = true;
356 break;
360 for (const Instruction &I : BB) {
361 if (I.isDebugOrPseudoInst())
362 continue;
363 ++NumInsts;
365 // Regular LTO module doesn't participate in ThinLTO import,
366 // so no reference from it can be read/writeonly, since this
367 // would require importing variable as local copy
368 if (IsThinLTO) {
369 if (isNonVolatileLoad(&I)) {
370 // Postpone processing of non-volatile load instructions
371 // See comments below
372 Visited.insert(&I);
373 NonVolatileLoads.push_back(&I);
374 continue;
375 } else if (isNonVolatileStore(&I)) {
376 Visited.insert(&I);
377 NonVolatileStores.push_back(&I);
378 // All references from second operand of store (destination address)
379 // can be considered write-only if they're not referenced by any
380 // non-store instruction. References from first operand of store
381 // (stored value) can't be treated either as read- or as write-only
382 // so we add them to RefEdges as we do with all other instructions
383 // except non-volatile load.
384 Value *Stored = I.getOperand(0);
385 if (auto *GV = dyn_cast<GlobalValue>(Stored))
386 // findRefEdges will try to examine GV operands, so instead
387 // of calling it we should add GV to RefEdges directly.
388 RefEdges.insert(Index.getOrInsertValueInfo(GV));
389 else if (auto *U = dyn_cast<User>(Stored))
390 findRefEdges(Index, U, RefEdges, Visited, HasLocalIFuncCallOrRef);
391 continue;
394 findRefEdges(Index, &I, RefEdges, Visited, HasLocalIFuncCallOrRef);
395 const auto *CB = dyn_cast<CallBase>(&I);
396 if (!CB) {
397 if (I.mayThrow())
398 MayThrow = true;
399 continue;
402 const auto *CI = dyn_cast<CallInst>(&I);
403 // Since we don't know exactly which local values are referenced in inline
404 // assembly, conservatively mark the function as possibly referencing
405 // a local value from inline assembly to ensure we don't export a
406 // reference (which would require renaming and promotion of the
407 // referenced value).
408 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
409 HasInlineAsmMaybeReferencingInternal = true;
411 // Compute this once per indirect call.
412 uint32_t NumCandidates = 0;
413 uint64_t TotalCount = 0;
414 MutableArrayRef<InstrProfValueData> CandidateProfileData;
416 auto *CalledValue = CB->getCalledOperand();
417 auto *CalledFunction = CB->getCalledFunction();
418 if (CalledValue && !CalledFunction) {
419 CalledValue = CalledValue->stripPointerCasts();
420 // Stripping pointer casts can reveal a called function.
421 CalledFunction = dyn_cast<Function>(CalledValue);
423 // Check if this is an alias to a function. If so, get the
424 // called aliasee for the checks below.
425 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
426 assert(!CalledFunction && "Expected null called function in callsite for alias");
427 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
429 // Check if this is a direct call to a known function or a known
430 // intrinsic, or an indirect call with profile data.
431 if (CalledFunction) {
432 if (CI && CalledFunction->isIntrinsic()) {
433 addIntrinsicToSummary(
434 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
435 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
436 continue;
438 // We should have named any anonymous globals
439 assert(CalledFunction->hasName());
440 auto ScaledCount = PSI->getProfileCount(*CB, BFI);
441 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
442 : CalleeInfo::HotnessType::Unknown;
443 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
444 Hotness = CalleeInfo::HotnessType::Cold;
446 // Use the original CalledValue, in case it was an alias. We want
447 // to record the call edge to the alias in that case. Eventually
448 // an alias summary will be created to associate the alias and
449 // aliasee.
450 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
451 cast<GlobalValue>(CalledValue))];
452 ValueInfo.updateHotness(Hotness);
453 if (CB->isTailCall())
454 ValueInfo.setHasTailCall(true);
455 // Add the relative block frequency to CalleeInfo if there is no profile
456 // information.
457 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
458 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
459 uint64_t EntryFreq = BFI->getEntryFreq().getFrequency();
460 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
462 } else {
463 HasUnknownCall = true;
464 // If F is imported, a local linkage ifunc (e.g. target_clones on a
465 // static function) called by F will be cloned. Since summaries don't
466 // track ifunc, we do not know implementation functions referenced by
467 // the ifunc resolver need to be promoted in the exporter, and we will
468 // get linker errors due to cloned declarations for implementation
469 // functions. As a simple fix, just mark F as not eligible for import.
470 // Non-local ifunc is not cloned and does not have the issue.
471 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
472 if (GI->hasLocalLinkage())
473 HasLocalIFuncCallOrRef = true;
474 // Skip inline assembly calls.
475 if (CI && CI->isInlineAsm())
476 continue;
477 // Skip direct calls.
478 if (!CalledValue || isa<Constant>(CalledValue))
479 continue;
481 // Check if the instruction has a callees metadata. If so, add callees
482 // to CallGraphEdges to reflect the references from the metadata, and
483 // to enable importing for subsequent indirect call promotion and
484 // inlining.
485 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
486 for (const auto &Op : MD->operands()) {
487 Function *Callee = mdconst::extract_or_null<Function>(Op);
488 if (Callee)
489 CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
493 CandidateProfileData =
494 ICallAnalysis.getPromotionCandidatesForInstruction(&I, TotalCount,
495 NumCandidates);
496 for (const auto &Candidate : CandidateProfileData)
497 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
498 .updateHotness(getHotness(Candidate.Count, PSI));
501 // Summarize memprof related metadata. This is only needed for ThinLTO.
502 if (!IsThinLTO)
503 continue;
505 // Skip indirect calls if we haven't enabled memprof ICP.
506 if (!CalledFunction && !EnableMemProfIndirectCallSupport)
507 continue;
509 // Ensure we keep this analysis in sync with the handling in the ThinLTO
510 // backend (see MemProfContextDisambiguation::applyImport). Save this call
511 // so that we can skip it in checking the reverse case later.
512 assert(mayHaveMemprofSummary(CB));
513 #ifndef NDEBUG
514 CallsThatMayHaveMemprofSummary.insert(CB);
515 #endif
517 // Compute the list of stack ids first (so we can trim them from the stack
518 // ids on any MIBs).
519 CallStack<MDNode, MDNode::op_iterator> InstCallsite(
520 I.getMetadata(LLVMContext::MD_callsite));
521 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
522 if (MemProfMD) {
523 std::vector<MIBInfo> MIBs;
524 std::vector<uint64_t> TotalSizes;
525 std::vector<std::vector<ContextTotalSize>> ContextSizeInfos;
526 for (auto &MDOp : MemProfMD->operands()) {
527 auto *MIBMD = cast<const MDNode>(MDOp);
528 MDNode *StackNode = getMIBStackNode(MIBMD);
529 assert(StackNode);
530 SmallVector<unsigned> StackIdIndices;
531 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
532 // Collapse out any on the allocation call (inlining).
533 for (auto ContextIter =
534 StackContext.beginAfterSharedPrefix(InstCallsite);
535 ContextIter != StackContext.end(); ++ContextIter) {
536 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
537 // If this is a direct recursion, simply skip the duplicate
538 // entries. If this is mutual recursion, handling is left to
539 // the LTO link analysis client.
540 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
541 StackIdIndices.push_back(StackIdIdx);
543 // If we have context size information, collect it for inclusion in
544 // the summary.
545 assert(MIBMD->getNumOperands() > 2 || !MemProfReportHintedSizes);
546 if (MIBMD->getNumOperands() > 2) {
547 std::vector<ContextTotalSize> ContextSizes;
548 for (unsigned I = 2; I < MIBMD->getNumOperands(); I++) {
549 MDNode *ContextSizePair = dyn_cast<MDNode>(MIBMD->getOperand(I));
550 assert(ContextSizePair->getNumOperands() == 2);
551 uint64_t FullStackId = mdconst::dyn_extract<ConstantInt>(
552 ContextSizePair->getOperand(0))
553 ->getZExtValue();
554 uint64_t TS = mdconst::dyn_extract<ConstantInt>(
555 ContextSizePair->getOperand(1))
556 ->getZExtValue();
557 ContextSizes.push_back({FullStackId, TS});
559 ContextSizeInfos.push_back(std::move(ContextSizes));
561 MIBs.push_back(
562 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
564 Allocs.push_back(AllocInfo(std::move(MIBs)));
565 assert(!ContextSizeInfos.empty() || !MemProfReportHintedSizes);
566 if (!ContextSizeInfos.empty()) {
567 assert(Allocs.back().MIBs.size() == ContextSizeInfos.size());
568 Allocs.back().ContextSizeInfos = std::move(ContextSizeInfos);
570 } else if (!InstCallsite.empty()) {
571 SmallVector<unsigned> StackIdIndices;
572 for (auto StackId : InstCallsite)
573 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
574 if (CalledFunction) {
575 // Use the original CalledValue, in case it was an alias. We want
576 // to record the call edge to the alias in that case. Eventually
577 // an alias summary will be created to associate the alias and
578 // aliasee.
579 auto CalleeValueInfo =
580 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
581 Callsites.push_back({CalleeValueInfo, StackIdIndices});
582 } else {
583 assert(EnableMemProfIndirectCallSupport);
584 // For indirect callsites, create multiple Callsites, one per target.
585 // This enables having a different set of clone versions per target,
586 // and we will apply the cloning decisions while speculatively
587 // devirtualizing in the ThinLTO backends.
588 for (const auto &Candidate : CandidateProfileData) {
589 auto CalleeValueInfo = Index.getOrInsertValueInfo(Candidate.Value);
590 Callsites.push_back({CalleeValueInfo, StackIdIndices});
597 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
598 Index.addBlockCount(F.size());
600 SmallVector<ValueInfo, 0> Refs;
601 if (IsThinLTO) {
602 auto AddRefEdges =
603 [&](const std::vector<const Instruction *> &Instrs,
604 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &Edges,
605 SmallPtrSet<const User *, 8> &Cache) {
606 for (const auto *I : Instrs) {
607 Cache.erase(I);
608 findRefEdges(Index, I, Edges, Cache, HasLocalIFuncCallOrRef);
612 // By now we processed all instructions in a function, except
613 // non-volatile loads and non-volatile value stores. Let's find
614 // ref edges for both of instruction sets
615 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
616 // We can add some values to the Visited set when processing load
617 // instructions which are also used by stores in NonVolatileStores.
618 // For example this can happen if we have following code:
620 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
621 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
623 // After processing loads we'll add bitcast to the Visited set, and if
624 // we use the same set while processing stores, we'll never see store
625 // to @bar and @bar will be mistakenly treated as readonly.
626 SmallPtrSet<const llvm::User *, 8> StoreCache;
627 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
629 // If both load and store instruction reference the same variable
630 // we won't be able to optimize it. Add all such reference edges
631 // to RefEdges set.
632 for (const auto &VI : StoreRefEdges)
633 if (LoadRefEdges.remove(VI))
634 RefEdges.insert(VI);
636 unsigned RefCnt = RefEdges.size();
637 // All new reference edges inserted in two loops below are either
638 // read or write only. They will be grouped in the end of RefEdges
639 // vector, so we can use a single integer value to identify them.
640 for (const auto &VI : LoadRefEdges)
641 RefEdges.insert(VI);
643 unsigned FirstWORef = RefEdges.size();
644 for (const auto &VI : StoreRefEdges)
645 RefEdges.insert(VI);
647 Refs = RefEdges.takeVector();
648 for (; RefCnt < FirstWORef; ++RefCnt)
649 Refs[RefCnt].setReadOnly();
651 for (; RefCnt < Refs.size(); ++RefCnt)
652 Refs[RefCnt].setWriteOnly();
653 } else {
654 Refs = RefEdges.takeVector();
656 // Explicit add hot edges to enforce importing for designated GUIDs for
657 // sample PGO, to enable the same inlines as the profiled optimized binary.
658 for (auto &I : F.getImportGUIDs())
659 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
660 ForceSummaryEdgesCold == FunctionSummary::FSHT_All
661 ? CalleeInfo::HotnessType::Cold
662 : CalleeInfo::HotnessType::Critical);
664 #ifndef NDEBUG
665 // Make sure that all calls we decided could not have memprof summaries get a
666 // false value for mayHaveMemprofSummary, to ensure that this handling remains
667 // in sync with the ThinLTO backend handling.
668 if (IsThinLTO) {
669 for (const BasicBlock &BB : F) {
670 for (const Instruction &I : BB) {
671 const auto *CB = dyn_cast<CallBase>(&I);
672 if (!CB)
673 continue;
674 // We already checked these above.
675 if (CallsThatMayHaveMemprofSummary.count(CB))
676 continue;
677 assert(!mayHaveMemprofSummary(CB));
681 #endif
683 bool NonRenamableLocal = isNonRenamableLocal(F);
684 bool NotEligibleForImport =
685 NonRenamableLocal || HasInlineAsmMaybeReferencingInternal ||
686 HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef;
687 GlobalValueSummary::GVFlags Flags(
688 F.getLinkage(), F.getVisibility(), NotEligibleForImport,
689 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(),
690 GlobalValueSummary::ImportKind::Definition);
691 FunctionSummary::FFlags FunFlags{
692 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
693 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
694 // FIXME: refactor this to use the same code that inliner is using.
695 // Don't try to import functions with noinline attribute.
696 F.getAttributes().hasFnAttr(Attribute::NoInline),
697 F.hasFnAttribute(Attribute::AlwaysInline),
698 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
699 mustBeUnreachableFunction(F)};
700 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
701 if (auto *SSI = GetSSICallback(F))
702 ParamAccesses = SSI->getParamAccesses(Index);
703 auto FuncSummary = std::make_unique<FunctionSummary>(
704 Flags, NumInsts, FunFlags, std::move(Refs), CallGraphEdges.takeVector(),
705 TypeTests.takeVector(), TypeTestAssumeVCalls.takeVector(),
706 TypeCheckedLoadVCalls.takeVector(),
707 TypeTestAssumeConstVCalls.takeVector(),
708 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
709 std::move(Callsites), std::move(Allocs));
710 if (NonRenamableLocal)
711 CantBePromoted.insert(F.getGUID());
712 Index.addGlobalValueSummary(F, std::move(FuncSummary));
715 /// Find function pointers referenced within the given vtable initializer
716 /// (or subset of an initializer) \p I. The starting offset of \p I within
717 /// the vtable initializer is \p StartingOffset. Any discovered function
718 /// pointers are added to \p VTableFuncs along with their cumulative offset
719 /// within the initializer.
720 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
721 const Module &M, ModuleSummaryIndex &Index,
722 VTableFuncList &VTableFuncs,
723 const GlobalVariable &OrigGV) {
724 // First check if this is a function pointer.
725 if (I->getType()->isPointerTy()) {
726 auto C = I->stripPointerCasts();
727 auto A = dyn_cast<GlobalAlias>(C);
728 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
729 auto GV = dyn_cast<GlobalValue>(C);
730 assert(GV);
731 // We can disregard __cxa_pure_virtual as a possible call target, as
732 // calls to pure virtuals are UB.
733 if (GV && GV->getName() != "__cxa_pure_virtual")
734 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
735 return;
739 // Walk through the elements in the constant struct or array and recursively
740 // look for virtual function pointers.
741 const DataLayout &DL = M.getDataLayout();
742 if (auto *C = dyn_cast<ConstantStruct>(I)) {
743 StructType *STy = dyn_cast<StructType>(C->getType());
744 assert(STy);
745 const StructLayout *SL = DL.getStructLayout(C->getType());
747 for (auto EI : llvm::enumerate(STy->elements())) {
748 auto Offset = SL->getElementOffset(EI.index());
749 unsigned Op = SL->getElementContainingOffset(Offset);
750 findFuncPointers(cast<Constant>(I->getOperand(Op)),
751 StartingOffset + Offset, M, Index, VTableFuncs, OrigGV);
753 } else if (auto *C = dyn_cast<ConstantArray>(I)) {
754 ArrayType *ATy = C->getType();
755 Type *EltTy = ATy->getElementType();
756 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
757 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
758 findFuncPointers(cast<Constant>(I->getOperand(i)),
759 StartingOffset + i * EltSize, M, Index, VTableFuncs,
760 OrigGV);
762 } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) {
763 // For relative vtables, the next sub-component should be a trunc.
764 if (CE->getOpcode() != Instruction::Trunc ||
765 !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0))))
766 return;
768 // If this constant can be reduced to the offset between a function and a
769 // global, then we know this is a valid virtual function if the RHS is the
770 // original vtable we're scanning through.
771 if (CE->getOpcode() == Instruction::Sub) {
772 GlobalValue *LHS, *RHS;
773 APSInt LHSOffset, RHSOffset;
774 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) &&
775 IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) &&
776 RHS == &OrigGV &&
778 // For relative vtables, this component should point to the callable
779 // function without any offsets.
780 LHSOffset == 0 &&
782 // Also, the RHS should always point to somewhere within the vtable.
783 RHSOffset <=
784 static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) {
785 findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV);
791 // Identify the function pointers referenced by vtable definition \p V.
792 static void computeVTableFuncs(ModuleSummaryIndex &Index,
793 const GlobalVariable &V, const Module &M,
794 VTableFuncList &VTableFuncs) {
795 if (!V.isConstant())
796 return;
798 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
799 VTableFuncs, V);
801 #ifndef NDEBUG
802 // Validate that the VTableFuncs list is ordered by offset.
803 uint64_t PrevOffset = 0;
804 for (auto &P : VTableFuncs) {
805 // The findVFuncPointers traversal should have encountered the
806 // functions in offset order. We need to use ">=" since PrevOffset
807 // starts at 0.
808 assert(P.VTableOffset >= PrevOffset);
809 PrevOffset = P.VTableOffset;
811 #endif
814 /// Record vtable definition \p V for each type metadata it references.
815 static void
816 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
817 const GlobalVariable &V,
818 SmallVectorImpl<MDNode *> &Types) {
819 for (MDNode *Type : Types) {
820 auto TypeID = Type->getOperand(1).get();
822 uint64_t Offset =
823 cast<ConstantInt>(
824 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
825 ->getZExtValue();
827 if (auto *TypeId = dyn_cast<MDString>(TypeID))
828 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
829 .push_back({Offset, Index.getOrInsertValueInfo(&V)});
833 static void computeVariableSummary(ModuleSummaryIndex &Index,
834 const GlobalVariable &V,
835 DenseSet<GlobalValue::GUID> &CantBePromoted,
836 const Module &M,
837 SmallVectorImpl<MDNode *> &Types) {
838 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges;
839 SmallPtrSet<const User *, 8> Visited;
840 bool RefLocalIFunc = false;
841 bool HasBlockAddress =
842 findRefEdges(Index, &V, RefEdges, Visited, RefLocalIFunc);
843 const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc);
844 bool NonRenamableLocal = isNonRenamableLocal(V);
845 GlobalValueSummary::GVFlags Flags(
846 V.getLinkage(), V.getVisibility(), NonRenamableLocal,
847 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(),
848 GlobalValueSummary::Definition);
850 VTableFuncList VTableFuncs;
851 // If splitting is not enabled, then we compute the summary information
852 // necessary for index-based whole program devirtualization.
853 if (!Index.enableSplitLTOUnit()) {
854 Types.clear();
855 V.getMetadata(LLVMContext::MD_type, Types);
856 if (!Types.empty()) {
857 // Identify the function pointers referenced by this vtable definition.
858 computeVTableFuncs(Index, V, M, VTableFuncs);
860 // Record this vtable definition for each type metadata it references.
861 recordTypeIdCompatibleVtableReferences(Index, V, Types);
865 // Don't mark variables we won't be able to internalize as read/write-only.
866 bool CanBeInternalized =
867 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
868 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
869 bool Constant = V.isConstant();
870 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
871 Constant ? false : CanBeInternalized,
872 Constant, V.getVCallVisibility());
873 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
874 RefEdges.takeVector());
875 if (NonRenamableLocal)
876 CantBePromoted.insert(V.getGUID());
877 if (NotEligibleForImport)
878 GVarSummary->setNotEligibleToImport();
879 if (!VTableFuncs.empty())
880 GVarSummary->setVTableFuncs(VTableFuncs);
881 Index.addGlobalValueSummary(V, std::move(GVarSummary));
884 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
885 DenseSet<GlobalValue::GUID> &CantBePromoted) {
886 // Skip summary for indirect function aliases as summary for aliasee will not
887 // be emitted.
888 const GlobalObject *Aliasee = A.getAliaseeObject();
889 if (isa<GlobalIFunc>(Aliasee))
890 return;
891 bool NonRenamableLocal = isNonRenamableLocal(A);
892 GlobalValueSummary::GVFlags Flags(
893 A.getLinkage(), A.getVisibility(), NonRenamableLocal,
894 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(),
895 GlobalValueSummary::Definition);
896 auto AS = std::make_unique<AliasSummary>(Flags);
897 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
898 assert(AliaseeVI && "Alias expects aliasee summary to be available");
899 assert(AliaseeVI.getSummaryList().size() == 1 &&
900 "Expected a single entry per aliasee in per-module index");
901 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
902 if (NonRenamableLocal)
903 CantBePromoted.insert(A.getGUID());
904 Index.addGlobalValueSummary(A, std::move(AS));
907 // Set LiveRoot flag on entries matching the given value name.
908 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
909 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
910 for (const auto &Summary : VI.getSummaryList())
911 Summary->setLive(true);
914 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
915 const Module &M,
916 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
917 ProfileSummaryInfo *PSI,
918 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
919 assert(PSI);
920 bool EnableSplitLTOUnit = false;
921 bool UnifiedLTO = false;
922 if (auto *MD = mdconst::extract_or_null<ConstantInt>(
923 M.getModuleFlag("EnableSplitLTOUnit")))
924 EnableSplitLTOUnit = MD->getZExtValue();
925 if (auto *MD =
926 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
927 UnifiedLTO = MD->getZExtValue();
928 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
930 // Identify the local values in the llvm.used and llvm.compiler.used sets,
931 // which should not be exported as they would then require renaming and
932 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
933 // here because we use this information to mark functions containing inline
934 // assembly calls as not importable.
935 SmallPtrSet<GlobalValue *, 4> LocalsUsed;
936 SmallVector<GlobalValue *, 4> Used;
937 // First collect those in the llvm.used set.
938 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
939 // Next collect those in the llvm.compiler.used set.
940 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
941 DenseSet<GlobalValue::GUID> CantBePromoted;
942 for (auto *V : Used) {
943 if (V->hasLocalLinkage()) {
944 LocalsUsed.insert(V);
945 CantBePromoted.insert(V->getGUID());
949 bool HasLocalInlineAsmSymbol = false;
950 if (!M.getModuleInlineAsm().empty()) {
951 // Collect the local values defined by module level asm, and set up
952 // summaries for these symbols so that they can be marked as NoRename,
953 // to prevent export of any use of them in regular IR that would require
954 // renaming within the module level asm. Note we don't need to create a
955 // summary for weak or global defs, as they don't need to be flagged as
956 // NoRename, and defs in module level asm can't be imported anyway.
957 // Also, any values used but not defined within module level asm should
958 // be listed on the llvm.used or llvm.compiler.used global and marked as
959 // referenced from there.
960 ModuleSymbolTable::CollectAsmSymbols(
961 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
962 // Symbols not marked as Weak or Global are local definitions.
963 if (Flags & (object::BasicSymbolRef::SF_Weak |
964 object::BasicSymbolRef::SF_Global))
965 return;
966 HasLocalInlineAsmSymbol = true;
967 GlobalValue *GV = M.getNamedValue(Name);
968 if (!GV)
969 return;
970 assert(GV->isDeclaration() && "Def in module asm already has definition");
971 GlobalValueSummary::GVFlags GVFlags(
972 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
973 /* NotEligibleToImport = */ true,
974 /* Live = */ true,
975 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(),
976 GlobalValueSummary::Definition);
977 CantBePromoted.insert(GV->getGUID());
978 // Create the appropriate summary type.
979 if (Function *F = dyn_cast<Function>(GV)) {
980 std::unique_ptr<FunctionSummary> Summary =
981 std::make_unique<FunctionSummary>(
982 GVFlags, /*InstCount=*/0,
983 FunctionSummary::FFlags{
984 F->hasFnAttribute(Attribute::ReadNone),
985 F->hasFnAttribute(Attribute::ReadOnly),
986 F->hasFnAttribute(Attribute::NoRecurse),
987 F->returnDoesNotAlias(),
988 /* NoInline = */ false,
989 F->hasFnAttribute(Attribute::AlwaysInline),
990 F->hasFnAttribute(Attribute::NoUnwind),
991 /* MayThrow */ true,
992 /* HasUnknownCall */ true,
993 /* MustBeUnreachable */ false},
994 SmallVector<ValueInfo, 0>{},
995 SmallVector<FunctionSummary::EdgeTy, 0>{},
996 ArrayRef<GlobalValue::GUID>{},
997 ArrayRef<FunctionSummary::VFuncId>{},
998 ArrayRef<FunctionSummary::VFuncId>{},
999 ArrayRef<FunctionSummary::ConstVCall>{},
1000 ArrayRef<FunctionSummary::ConstVCall>{},
1001 ArrayRef<FunctionSummary::ParamAccess>{},
1002 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
1003 Index.addGlobalValueSummary(*GV, std::move(Summary));
1004 } else {
1005 std::unique_ptr<GlobalVarSummary> Summary =
1006 std::make_unique<GlobalVarSummary>(
1007 GVFlags,
1008 GlobalVarSummary::GVarFlags(
1009 false, false, cast<GlobalVariable>(GV)->isConstant(),
1010 GlobalObject::VCallVisibilityPublic),
1011 SmallVector<ValueInfo, 0>{});
1012 Index.addGlobalValueSummary(*GV, std::move(Summary));
1017 bool IsThinLTO = true;
1018 if (auto *MD =
1019 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
1020 IsThinLTO = MD->getZExtValue();
1022 // Compute summaries for all functions defined in module, and save in the
1023 // index.
1024 for (const auto &F : M) {
1025 if (F.isDeclaration())
1026 continue;
1028 DominatorTree DT(const_cast<Function &>(F));
1029 BlockFrequencyInfo *BFI = nullptr;
1030 std::unique_ptr<BlockFrequencyInfo> BFIPtr;
1031 if (GetBFICallback)
1032 BFI = GetBFICallback(F);
1033 else if (F.hasProfileData()) {
1034 LoopInfo LI{DT};
1035 BranchProbabilityInfo BPI{F, LI};
1036 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
1037 BFI = BFIPtr.get();
1040 computeFunctionSummary(Index, M, F, BFI, PSI, DT,
1041 !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
1042 CantBePromoted, IsThinLTO, GetSSICallback);
1045 // Compute summaries for all variables defined in module, and save in the
1046 // index.
1047 SmallVector<MDNode *, 2> Types;
1048 for (const GlobalVariable &G : M.globals()) {
1049 if (G.isDeclaration())
1050 continue;
1051 computeVariableSummary(Index, G, CantBePromoted, M, Types);
1054 // Compute summaries for all aliases defined in module, and save in the
1055 // index.
1056 for (const GlobalAlias &A : M.aliases())
1057 computeAliasSummary(Index, A, CantBePromoted);
1059 // Iterate through ifuncs, set their resolvers all alive.
1060 for (const GlobalIFunc &I : M.ifuncs()) {
1061 I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
1062 Index.getGlobalValueSummary(GV)->setLive(true);
1066 for (auto *V : LocalsUsed) {
1067 auto *Summary = Index.getGlobalValueSummary(*V);
1068 assert(Summary && "Missing summary for global value");
1069 Summary->setNotEligibleToImport();
1072 // The linker doesn't know about these LLVM produced values, so we need
1073 // to flag them as live in the index to ensure index-based dead value
1074 // analysis treats them as live roots of the analysis.
1075 setLiveRoot(Index, "llvm.used");
1076 setLiveRoot(Index, "llvm.compiler.used");
1077 setLiveRoot(Index, "llvm.global_ctors");
1078 setLiveRoot(Index, "llvm.global_dtors");
1079 setLiveRoot(Index, "llvm.global.annotations");
1081 for (auto &GlobalList : Index) {
1082 // Ignore entries for references that are undefined in the current module.
1083 if (GlobalList.second.SummaryList.empty())
1084 continue;
1086 assert(GlobalList.second.SummaryList.size() == 1 &&
1087 "Expected module's index to have one summary per GUID");
1088 auto &Summary = GlobalList.second.SummaryList[0];
1089 if (!IsThinLTO) {
1090 Summary->setNotEligibleToImport();
1091 continue;
1094 bool AllRefsCanBeExternallyReferenced =
1095 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
1096 return !CantBePromoted.count(VI.getGUID());
1098 if (!AllRefsCanBeExternallyReferenced) {
1099 Summary->setNotEligibleToImport();
1100 continue;
1103 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
1104 bool AllCallsCanBeExternallyReferenced = llvm::all_of(
1105 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
1106 return !CantBePromoted.count(Edge.first.getGUID());
1108 if (!AllCallsCanBeExternallyReferenced)
1109 Summary->setNotEligibleToImport();
1113 if (!ModuleSummaryDotFile.empty()) {
1114 std::error_code EC;
1115 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text);
1116 if (EC)
1117 report_fatal_error(Twine("Failed to open dot file ") +
1118 ModuleSummaryDotFile + ": " + EC.message() + "\n");
1119 Index.exportToDot(OSDot, {});
1122 return Index;
1125 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1127 ModuleSummaryIndex
1128 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1129 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1130 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1131 bool NeedSSI = needsParamAccessSummary(M);
1132 return buildModuleSummaryIndex(
1134 [&FAM](const Function &F) {
1135 return &FAM.getResult<BlockFrequencyAnalysis>(
1136 *const_cast<Function *>(&F));
1138 &PSI,
1139 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1140 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1141 const_cast<Function &>(F))
1142 : nullptr;
1146 char ModuleSummaryIndexWrapperPass::ID = 0;
1148 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1149 "Module Summary Analysis", false, true)
1150 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1151 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1152 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1153 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1154 "Module Summary Analysis", false, true)
1156 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1157 return new ModuleSummaryIndexWrapperPass();
1160 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1161 : ModulePass(ID) {
1162 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1165 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1166 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1167 bool NeedSSI = needsParamAccessSummary(M);
1168 Index.emplace(buildModuleSummaryIndex(
1170 [this](const Function &F) {
1171 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1172 *const_cast<Function *>(&F))
1173 .getBFI());
1175 PSI,
1176 [&](const Function &F) -> const StackSafetyInfo * {
1177 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1178 const_cast<Function &>(F))
1179 .getResult()
1180 : nullptr;
1181 }));
1182 return false;
1185 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1186 Index.reset();
1187 return false;
1190 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1191 AU.setPreservesAll();
1192 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1193 AU.addRequired<ProfileSummaryInfoWrapperPass>();
1194 AU.addRequired<StackSafetyInfoWrapperPass>();
1197 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1199 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1200 const ModuleSummaryIndex *Index)
1201 : ImmutablePass(ID), Index(Index) {
1202 initializeImmutableModuleSummaryIndexWrapperPassPass(
1203 *PassRegistry::getPassRegistry());
1206 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1207 AnalysisUsage &AU) const {
1208 AU.setPreservesAll();
1211 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1212 const ModuleSummaryIndex *Index) {
1213 return new ImmutableModuleSummaryIndexWrapperPass(Index);
1216 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1217 "Module summary info", false, true)
1219 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1220 if (!CB)
1221 return false;
1222 if (CB->isDebugOrPseudoInst())
1223 return false;
1224 auto *CI = dyn_cast<CallInst>(CB);
1225 auto *CalledValue = CB->getCalledOperand();
1226 auto *CalledFunction = CB->getCalledFunction();
1227 if (CalledValue && !CalledFunction) {
1228 CalledValue = CalledValue->stripPointerCasts();
1229 // Stripping pointer casts can reveal a called function.
1230 CalledFunction = dyn_cast<Function>(CalledValue);
1232 // Check if this is an alias to a function. If so, get the
1233 // called aliasee for the checks below.
1234 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1235 assert(!CalledFunction &&
1236 "Expected null called function in callsite for alias");
1237 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1239 // Check if this is a direct call to a known function or a known
1240 // intrinsic, or an indirect call with profile data.
1241 if (CalledFunction) {
1242 if (CI && CalledFunction->isIntrinsic())
1243 return false;
1244 } else {
1245 // Skip indirect calls if we haven't enabled memprof ICP.
1246 if (!EnableMemProfIndirectCallSupport)
1247 return false;
1248 // Skip inline assembly calls.
1249 if (CI && CI->isInlineAsm())
1250 return false;
1251 // Skip direct calls via Constant.
1252 if (!CalledValue || isa<Constant>(CalledValue))
1253 return false;
1254 return true;
1256 return true;