1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TypeMetadataUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSummaryIndex.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Object/ModuleSymbolTable.h"
50 #include "llvm/Object/SymbolicFile.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/FileSystem.h"
60 using namespace llvm::memprof
;
62 #define DEBUG_TYPE "module-summary-analysis"
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
=
68 FunctionSummary::FSHT_None
;
71 static cl::opt
<FunctionSummary::ForceSummaryHotnessType
, true> FSEC(
72 "force-summary-edges-cold", cl::Hidden
, cl::location(ForceSummaryEdgesCold
),
73 cl::desc("Force all edges in the function summary to cold"),
74 cl::values(clEnumValN(FunctionSummary::FSHT_None
, "none", "None."),
75 clEnumValN(FunctionSummary::FSHT_AllNonCritical
,
76 "all-non-critical", "All non-critical edges."),
77 clEnumValN(FunctionSummary::FSHT_All
, "all", "All edges.")));
79 static cl::opt
<std::string
> ModuleSummaryDotFile(
80 "module-summary-dot-file", cl::Hidden
, cl::value_desc("filename"),
81 cl::desc("File to emit dot graph of new summary into"));
83 static cl::opt
<bool> EnableMemProfIndirectCallSupport(
84 "enable-memprof-indirect-call-support", cl::init(false), cl::Hidden
,
86 "Enable MemProf support for summarizing and cloning indirect calls"));
88 extern cl::opt
<bool> ScalePartialSampleProfileWorkingSetSize
;
90 extern cl::opt
<unsigned> MaxNumVTableAnnotations
;
92 extern cl::opt
<bool> MemProfReportHintedSizes
;
94 // Walk through the operands of a given User via worklist iteration and populate
95 // the set of GlobalValue references encountered. Invoked either on an
96 // Instruction or a GlobalVariable (which walks its initializer).
97 // Return true if any of the operands contains blockaddress. This is important
98 // to know when computing summary for global var, because if global variable
99 // references basic block address we can't import it separately from function
100 // containing that basic block. For simplicity we currently don't import such
101 // global vars at all. When importing function we aren't interested if any
102 // instruction in it takes an address of any basic block, because instruction
103 // can only take an address of basic block located in the same function.
104 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a
105 // local-linkage ifunc.
107 findRefEdges(ModuleSummaryIndex
&Index
, const User
*CurUser
,
108 SetVector
<ValueInfo
, SmallVector
<ValueInfo
, 0>> &RefEdges
,
109 SmallPtrSet
<const User
*, 8> &Visited
,
110 bool &RefLocalLinkageIFunc
) {
111 bool HasBlockAddress
= false;
112 SmallVector
<const User
*, 32> Worklist
;
113 if (Visited
.insert(CurUser
).second
)
114 Worklist
.push_back(CurUser
);
116 while (!Worklist
.empty()) {
117 const User
*U
= Worklist
.pop_back_val();
118 const auto *CB
= dyn_cast
<CallBase
>(U
);
120 for (const auto &OI
: U
->operands()) {
121 const User
*Operand
= dyn_cast
<User
>(OI
);
124 if (isa
<BlockAddress
>(Operand
)) {
125 HasBlockAddress
= true;
128 if (auto *GV
= dyn_cast
<GlobalValue
>(Operand
)) {
129 // We have a reference to a global value. This should be added to
130 // the reference set unless it is a callee. Callees are handled
131 // specially by WriteFunction and are added to a separate list.
132 if (!(CB
&& CB
->isCallee(&OI
))) {
133 // If an ifunc has local linkage, do not add it into ref edges, and
134 // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible
135 // for import. An ifunc doesn't have summary and ThinLTO cannot
136 // promote it; importing the referencer may cause linkage errors.
137 if (auto *GI
= dyn_cast_if_present
<GlobalIFunc
>(GV
);
138 GI
&& GI
->hasLocalLinkage()) {
139 RefLocalLinkageIFunc
= true;
142 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
146 if (Visited
.insert(Operand
).second
)
147 Worklist
.push_back(Operand
);
151 const Instruction
*I
= dyn_cast
<Instruction
>(CurUser
);
153 uint64_t TotalCount
= 0;
154 // MaxNumVTableAnnotations is the maximum number of vtables annotated on
156 auto ValueDataArray
= getValueProfDataFromInst(
157 *I
, IPVK_VTableTarget
, MaxNumVTableAnnotations
, TotalCount
);
159 for (const auto &V
: ValueDataArray
)
160 RefEdges
.insert(Index
.getOrInsertValueInfo(/* VTableGUID = */
163 return HasBlockAddress
;
166 static CalleeInfo::HotnessType
getHotness(uint64_t ProfileCount
,
167 ProfileSummaryInfo
*PSI
) {
169 return CalleeInfo::HotnessType::Unknown
;
170 if (PSI
->isHotCount(ProfileCount
))
171 return CalleeInfo::HotnessType::Hot
;
172 if (PSI
->isColdCount(ProfileCount
))
173 return CalleeInfo::HotnessType::Cold
;
174 return CalleeInfo::HotnessType::None
;
177 static bool isNonRenamableLocal(const GlobalValue
&GV
) {
178 return GV
.hasSection() && GV
.hasLocalLinkage();
181 /// Determine whether this call has all constant integer arguments (excluding
182 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
183 static void addVCallToSet(
184 DevirtCallSite Call
, GlobalValue::GUID Guid
,
185 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
187 SetVector
<FunctionSummary::ConstVCall
,
188 std::vector
<FunctionSummary::ConstVCall
>> &ConstVCalls
) {
189 std::vector
<uint64_t> Args
;
190 // Start from the second argument to skip the "this" pointer.
191 for (auto &Arg
: drop_begin(Call
.CB
.args())) {
192 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
193 if (!CI
|| CI
->getBitWidth() > 64) {
194 VCalls
.insert({Guid
, Call
.Offset
});
197 Args
.push_back(CI
->getZExtValue());
199 ConstVCalls
.insert({{Guid
, Call
.Offset
}, std::move(Args
)});
202 /// If this intrinsic call requires that we add information to the function
203 /// summary, do so via the non-constant reference arguments.
204 static void addIntrinsicToSummary(
206 SetVector
<GlobalValue::GUID
, std::vector
<GlobalValue::GUID
>> &TypeTests
,
207 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
208 &TypeTestAssumeVCalls
,
209 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
210 &TypeCheckedLoadVCalls
,
211 SetVector
<FunctionSummary::ConstVCall
,
212 std::vector
<FunctionSummary::ConstVCall
>>
213 &TypeTestAssumeConstVCalls
,
214 SetVector
<FunctionSummary::ConstVCall
,
215 std::vector
<FunctionSummary::ConstVCall
>>
216 &TypeCheckedLoadConstVCalls
,
218 switch (CI
->getCalledFunction()->getIntrinsicID()) {
219 case Intrinsic::type_test
:
220 case Intrinsic::public_type_test
: {
221 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(1));
222 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
225 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
227 // Produce a summary from type.test intrinsics. We only summarize type.test
228 // intrinsics that are used other than by an llvm.assume intrinsic.
229 // Intrinsics that are assumed are relevant only to the devirtualization
230 // pass, not the type test lowering pass.
231 bool HasNonAssumeUses
= llvm::any_of(CI
->uses(), [](const Use
&CIU
) {
232 return !isa
<AssumeInst
>(CIU
.getUser());
234 if (HasNonAssumeUses
)
235 TypeTests
.insert(Guid
);
237 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
238 SmallVector
<CallInst
*, 4> Assumes
;
239 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
240 for (auto &Call
: DevirtCalls
)
241 addVCallToSet(Call
, Guid
, TypeTestAssumeVCalls
,
242 TypeTestAssumeConstVCalls
);
247 case Intrinsic::type_checked_load_relative
:
248 case Intrinsic::type_checked_load
: {
249 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(2));
250 auto *TypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
253 GlobalValue::GUID Guid
= GlobalValue::getGUID(TypeId
->getString());
255 SmallVector
<DevirtCallSite
, 4> DevirtCalls
;
256 SmallVector
<Instruction
*, 4> LoadedPtrs
;
257 SmallVector
<Instruction
*, 4> Preds
;
258 bool HasNonCallUses
= false;
259 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
260 HasNonCallUses
, CI
, DT
);
261 // Any non-call uses of the result of llvm.type.checked.load will
262 // prevent us from optimizing away the llvm.type.test.
264 TypeTests
.insert(Guid
);
265 for (auto &Call
: DevirtCalls
)
266 addVCallToSet(Call
, Guid
, TypeCheckedLoadVCalls
,
267 TypeCheckedLoadConstVCalls
);
276 static bool isNonVolatileLoad(const Instruction
*I
) {
277 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
278 return !LI
->isVolatile();
283 static bool isNonVolatileStore(const Instruction
*I
) {
284 if (const auto *SI
= dyn_cast
<StoreInst
>(I
))
285 return !SI
->isVolatile();
290 // Returns true if the function definition must be unreachable.
292 // Note if this helper function returns true, `F` is guaranteed
293 // to be unreachable; if it returns false, `F` might still
294 // be unreachable but not covered by this helper function.
295 static bool mustBeUnreachableFunction(const Function
&F
) {
296 // A function must be unreachable if its entry block ends with an
298 assert(!F
.isDeclaration());
299 return isa
<UnreachableInst
>(F
.getEntryBlock().getTerminator());
302 static void computeFunctionSummary(
303 ModuleSummaryIndex
&Index
, const Module
&M
, const Function
&F
,
304 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
, DominatorTree
&DT
,
305 bool HasLocalsInUsedOrAsm
, DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
307 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
308 // Summary not currently supported for anonymous functions, they should
312 unsigned NumInsts
= 0;
313 // Map from callee ValueId to profile count. Used to accumulate profile
314 // counts for all static calls to a given callee.
315 MapVector
<ValueInfo
, CalleeInfo
, DenseMap
<ValueInfo
, unsigned>,
316 SmallVector
<FunctionSummary::EdgeTy
, 0>>
318 SetVector
<ValueInfo
, SmallVector
<ValueInfo
, 0>> RefEdges
, LoadRefEdges
,
320 SetVector
<GlobalValue::GUID
, std::vector
<GlobalValue::GUID
>> TypeTests
;
321 SetVector
<FunctionSummary::VFuncId
, std::vector
<FunctionSummary::VFuncId
>>
322 TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
;
323 SetVector
<FunctionSummary::ConstVCall
,
324 std::vector
<FunctionSummary::ConstVCall
>>
325 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
;
326 ICallPromotionAnalysis ICallAnalysis
;
327 SmallPtrSet
<const User
*, 8> Visited
;
329 // Add personality function, prefix data and prologue data to function's ref
331 bool HasLocalIFuncCallOrRef
= false;
332 findRefEdges(Index
, &F
, RefEdges
, Visited
, HasLocalIFuncCallOrRef
);
333 std::vector
<const Instruction
*> NonVolatileLoads
;
334 std::vector
<const Instruction
*> NonVolatileStores
;
336 std::vector
<CallsiteInfo
> Callsites
;
337 std::vector
<AllocInfo
> Allocs
;
340 DenseSet
<const CallBase
*> CallsThatMayHaveMemprofSummary
;
343 bool HasInlineAsmMaybeReferencingInternal
= false;
344 bool HasIndirBranchToBlockAddress
= false;
345 bool HasUnknownCall
= false;
346 bool MayThrow
= false;
347 for (const BasicBlock
&BB
: F
) {
348 // We don't allow inlining of function with indirect branch to blockaddress.
349 // If the blockaddress escapes the function, e.g., via a global variable,
350 // inlining may lead to an invalid cross-function reference. So we shouldn't
351 // import such function either.
352 if (BB
.hasAddressTaken()) {
353 for (User
*U
: BlockAddress::get(const_cast<BasicBlock
*>(&BB
))->users())
354 if (!isa
<CallBrInst
>(*U
)) {
355 HasIndirBranchToBlockAddress
= true;
360 for (const Instruction
&I
: BB
) {
361 if (I
.isDebugOrPseudoInst())
365 // Regular LTO module doesn't participate in ThinLTO import,
366 // so no reference from it can be read/writeonly, since this
367 // would require importing variable as local copy
369 if (isNonVolatileLoad(&I
)) {
370 // Postpone processing of non-volatile load instructions
371 // See comments below
373 NonVolatileLoads
.push_back(&I
);
375 } else if (isNonVolatileStore(&I
)) {
377 NonVolatileStores
.push_back(&I
);
378 // All references from second operand of store (destination address)
379 // can be considered write-only if they're not referenced by any
380 // non-store instruction. References from first operand of store
381 // (stored value) can't be treated either as read- or as write-only
382 // so we add them to RefEdges as we do with all other instructions
383 // except non-volatile load.
384 Value
*Stored
= I
.getOperand(0);
385 if (auto *GV
= dyn_cast
<GlobalValue
>(Stored
))
386 // findRefEdges will try to examine GV operands, so instead
387 // of calling it we should add GV to RefEdges directly.
388 RefEdges
.insert(Index
.getOrInsertValueInfo(GV
));
389 else if (auto *U
= dyn_cast
<User
>(Stored
))
390 findRefEdges(Index
, U
, RefEdges
, Visited
, HasLocalIFuncCallOrRef
);
394 findRefEdges(Index
, &I
, RefEdges
, Visited
, HasLocalIFuncCallOrRef
);
395 const auto *CB
= dyn_cast
<CallBase
>(&I
);
402 const auto *CI
= dyn_cast
<CallInst
>(&I
);
403 // Since we don't know exactly which local values are referenced in inline
404 // assembly, conservatively mark the function as possibly referencing
405 // a local value from inline assembly to ensure we don't export a
406 // reference (which would require renaming and promotion of the
407 // referenced value).
408 if (HasLocalsInUsedOrAsm
&& CI
&& CI
->isInlineAsm())
409 HasInlineAsmMaybeReferencingInternal
= true;
411 // Compute this once per indirect call.
412 uint32_t NumCandidates
= 0;
413 uint64_t TotalCount
= 0;
414 MutableArrayRef
<InstrProfValueData
> CandidateProfileData
;
416 auto *CalledValue
= CB
->getCalledOperand();
417 auto *CalledFunction
= CB
->getCalledFunction();
418 if (CalledValue
&& !CalledFunction
) {
419 CalledValue
= CalledValue
->stripPointerCasts();
420 // Stripping pointer casts can reveal a called function.
421 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
423 // Check if this is an alias to a function. If so, get the
424 // called aliasee for the checks below.
425 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
426 assert(!CalledFunction
&& "Expected null called function in callsite for alias");
427 CalledFunction
= dyn_cast
<Function
>(GA
->getAliaseeObject());
429 // Check if this is a direct call to a known function or a known
430 // intrinsic, or an indirect call with profile data.
431 if (CalledFunction
) {
432 if (CI
&& CalledFunction
->isIntrinsic()) {
433 addIntrinsicToSummary(
434 CI
, TypeTests
, TypeTestAssumeVCalls
, TypeCheckedLoadVCalls
,
435 TypeTestAssumeConstVCalls
, TypeCheckedLoadConstVCalls
, DT
);
438 // We should have named any anonymous globals
439 assert(CalledFunction
->hasName());
440 auto ScaledCount
= PSI
->getProfileCount(*CB
, BFI
);
441 auto Hotness
= ScaledCount
? getHotness(*ScaledCount
, PSI
)
442 : CalleeInfo::HotnessType::Unknown
;
443 if (ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
)
444 Hotness
= CalleeInfo::HotnessType::Cold
;
446 // Use the original CalledValue, in case it was an alias. We want
447 // to record the call edge to the alias in that case. Eventually
448 // an alias summary will be created to associate the alias and
450 auto &ValueInfo
= CallGraphEdges
[Index
.getOrInsertValueInfo(
451 cast
<GlobalValue
>(CalledValue
))];
452 ValueInfo
.updateHotness(Hotness
);
453 if (CB
->isTailCall())
454 ValueInfo
.setHasTailCall(true);
455 // Add the relative block frequency to CalleeInfo if there is no profile
457 if (BFI
!= nullptr && Hotness
== CalleeInfo::HotnessType::Unknown
) {
458 uint64_t BBFreq
= BFI
->getBlockFreq(&BB
).getFrequency();
459 uint64_t EntryFreq
= BFI
->getEntryFreq().getFrequency();
460 ValueInfo
.updateRelBlockFreq(BBFreq
, EntryFreq
);
463 HasUnknownCall
= true;
464 // If F is imported, a local linkage ifunc (e.g. target_clones on a
465 // static function) called by F will be cloned. Since summaries don't
466 // track ifunc, we do not know implementation functions referenced by
467 // the ifunc resolver need to be promoted in the exporter, and we will
468 // get linker errors due to cloned declarations for implementation
469 // functions. As a simple fix, just mark F as not eligible for import.
470 // Non-local ifunc is not cloned and does not have the issue.
471 if (auto *GI
= dyn_cast_if_present
<GlobalIFunc
>(CalledValue
))
472 if (GI
->hasLocalLinkage())
473 HasLocalIFuncCallOrRef
= true;
474 // Skip inline assembly calls.
475 if (CI
&& CI
->isInlineAsm())
477 // Skip direct calls.
478 if (!CalledValue
|| isa
<Constant
>(CalledValue
))
481 // Check if the instruction has a callees metadata. If so, add callees
482 // to CallGraphEdges to reflect the references from the metadata, and
483 // to enable importing for subsequent indirect call promotion and
485 if (auto *MD
= I
.getMetadata(LLVMContext::MD_callees
)) {
486 for (const auto &Op
: MD
->operands()) {
487 Function
*Callee
= mdconst::extract_or_null
<Function
>(Op
);
489 CallGraphEdges
[Index
.getOrInsertValueInfo(Callee
)];
493 CandidateProfileData
=
494 ICallAnalysis
.getPromotionCandidatesForInstruction(&I
, TotalCount
,
496 for (const auto &Candidate
: CandidateProfileData
)
497 CallGraphEdges
[Index
.getOrInsertValueInfo(Candidate
.Value
)]
498 .updateHotness(getHotness(Candidate
.Count
, PSI
));
501 // Summarize memprof related metadata. This is only needed for ThinLTO.
505 // Skip indirect calls if we haven't enabled memprof ICP.
506 if (!CalledFunction
&& !EnableMemProfIndirectCallSupport
)
509 // Ensure we keep this analysis in sync with the handling in the ThinLTO
510 // backend (see MemProfContextDisambiguation::applyImport). Save this call
511 // so that we can skip it in checking the reverse case later.
512 assert(mayHaveMemprofSummary(CB
));
514 CallsThatMayHaveMemprofSummary
.insert(CB
);
517 // Compute the list of stack ids first (so we can trim them from the stack
519 CallStack
<MDNode
, MDNode::op_iterator
> InstCallsite(
520 I
.getMetadata(LLVMContext::MD_callsite
));
521 auto *MemProfMD
= I
.getMetadata(LLVMContext::MD_memprof
);
523 std::vector
<MIBInfo
> MIBs
;
524 std::vector
<uint64_t> TotalSizes
;
525 std::vector
<std::vector
<ContextTotalSize
>> ContextSizeInfos
;
526 for (auto &MDOp
: MemProfMD
->operands()) {
527 auto *MIBMD
= cast
<const MDNode
>(MDOp
);
528 MDNode
*StackNode
= getMIBStackNode(MIBMD
);
530 SmallVector
<unsigned> StackIdIndices
;
531 CallStack
<MDNode
, MDNode::op_iterator
> StackContext(StackNode
);
532 // Collapse out any on the allocation call (inlining).
533 for (auto ContextIter
=
534 StackContext
.beginAfterSharedPrefix(InstCallsite
);
535 ContextIter
!= StackContext
.end(); ++ContextIter
) {
536 unsigned StackIdIdx
= Index
.addOrGetStackIdIndex(*ContextIter
);
537 // If this is a direct recursion, simply skip the duplicate
538 // entries. If this is mutual recursion, handling is left to
539 // the LTO link analysis client.
540 if (StackIdIndices
.empty() || StackIdIndices
.back() != StackIdIdx
)
541 StackIdIndices
.push_back(StackIdIdx
);
543 // If we have context size information, collect it for inclusion in
545 assert(MIBMD
->getNumOperands() > 2 || !MemProfReportHintedSizes
);
546 if (MIBMD
->getNumOperands() > 2) {
547 std::vector
<ContextTotalSize
> ContextSizes
;
548 for (unsigned I
= 2; I
< MIBMD
->getNumOperands(); I
++) {
549 MDNode
*ContextSizePair
= dyn_cast
<MDNode
>(MIBMD
->getOperand(I
));
550 assert(ContextSizePair
->getNumOperands() == 2);
551 uint64_t FullStackId
= mdconst::dyn_extract
<ConstantInt
>(
552 ContextSizePair
->getOperand(0))
554 uint64_t TS
= mdconst::dyn_extract
<ConstantInt
>(
555 ContextSizePair
->getOperand(1))
557 ContextSizes
.push_back({FullStackId
, TS
});
559 ContextSizeInfos
.push_back(std::move(ContextSizes
));
562 MIBInfo(getMIBAllocType(MIBMD
), std::move(StackIdIndices
)));
564 Allocs
.push_back(AllocInfo(std::move(MIBs
)));
565 assert(!ContextSizeInfos
.empty() || !MemProfReportHintedSizes
);
566 if (!ContextSizeInfos
.empty()) {
567 assert(Allocs
.back().MIBs
.size() == ContextSizeInfos
.size());
568 Allocs
.back().ContextSizeInfos
= std::move(ContextSizeInfos
);
570 } else if (!InstCallsite
.empty()) {
571 SmallVector
<unsigned> StackIdIndices
;
572 for (auto StackId
: InstCallsite
)
573 StackIdIndices
.push_back(Index
.addOrGetStackIdIndex(StackId
));
574 if (CalledFunction
) {
575 // Use the original CalledValue, in case it was an alias. We want
576 // to record the call edge to the alias in that case. Eventually
577 // an alias summary will be created to associate the alias and
579 auto CalleeValueInfo
=
580 Index
.getOrInsertValueInfo(cast
<GlobalValue
>(CalledValue
));
581 Callsites
.push_back({CalleeValueInfo
, StackIdIndices
});
583 assert(EnableMemProfIndirectCallSupport
);
584 // For indirect callsites, create multiple Callsites, one per target.
585 // This enables having a different set of clone versions per target,
586 // and we will apply the cloning decisions while speculatively
587 // devirtualizing in the ThinLTO backends.
588 for (const auto &Candidate
: CandidateProfileData
) {
589 auto CalleeValueInfo
= Index
.getOrInsertValueInfo(Candidate
.Value
);
590 Callsites
.push_back({CalleeValueInfo
, StackIdIndices
});
597 if (PSI
->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize
)
598 Index
.addBlockCount(F
.size());
600 SmallVector
<ValueInfo
, 0> Refs
;
603 [&](const std::vector
<const Instruction
*> &Instrs
,
604 SetVector
<ValueInfo
, SmallVector
<ValueInfo
, 0>> &Edges
,
605 SmallPtrSet
<const User
*, 8> &Cache
) {
606 for (const auto *I
: Instrs
) {
608 findRefEdges(Index
, I
, Edges
, Cache
, HasLocalIFuncCallOrRef
);
612 // By now we processed all instructions in a function, except
613 // non-volatile loads and non-volatile value stores. Let's find
614 // ref edges for both of instruction sets
615 AddRefEdges(NonVolatileLoads
, LoadRefEdges
, Visited
);
616 // We can add some values to the Visited set when processing load
617 // instructions which are also used by stores in NonVolatileStores.
618 // For example this can happen if we have following code:
620 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
621 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
623 // After processing loads we'll add bitcast to the Visited set, and if
624 // we use the same set while processing stores, we'll never see store
625 // to @bar and @bar will be mistakenly treated as readonly.
626 SmallPtrSet
<const llvm::User
*, 8> StoreCache
;
627 AddRefEdges(NonVolatileStores
, StoreRefEdges
, StoreCache
);
629 // If both load and store instruction reference the same variable
630 // we won't be able to optimize it. Add all such reference edges
632 for (const auto &VI
: StoreRefEdges
)
633 if (LoadRefEdges
.remove(VI
))
636 unsigned RefCnt
= RefEdges
.size();
637 // All new reference edges inserted in two loops below are either
638 // read or write only. They will be grouped in the end of RefEdges
639 // vector, so we can use a single integer value to identify them.
640 for (const auto &VI
: LoadRefEdges
)
643 unsigned FirstWORef
= RefEdges
.size();
644 for (const auto &VI
: StoreRefEdges
)
647 Refs
= RefEdges
.takeVector();
648 for (; RefCnt
< FirstWORef
; ++RefCnt
)
649 Refs
[RefCnt
].setReadOnly();
651 for (; RefCnt
< Refs
.size(); ++RefCnt
)
652 Refs
[RefCnt
].setWriteOnly();
654 Refs
= RefEdges
.takeVector();
656 // Explicit add hot edges to enforce importing for designated GUIDs for
657 // sample PGO, to enable the same inlines as the profiled optimized binary.
658 for (auto &I
: F
.getImportGUIDs())
659 CallGraphEdges
[Index
.getOrInsertValueInfo(I
)].updateHotness(
660 ForceSummaryEdgesCold
== FunctionSummary::FSHT_All
661 ? CalleeInfo::HotnessType::Cold
662 : CalleeInfo::HotnessType::Critical
);
665 // Make sure that all calls we decided could not have memprof summaries get a
666 // false value for mayHaveMemprofSummary, to ensure that this handling remains
667 // in sync with the ThinLTO backend handling.
669 for (const BasicBlock
&BB
: F
) {
670 for (const Instruction
&I
: BB
) {
671 const auto *CB
= dyn_cast
<CallBase
>(&I
);
674 // We already checked these above.
675 if (CallsThatMayHaveMemprofSummary
.count(CB
))
677 assert(!mayHaveMemprofSummary(CB
));
683 bool NonRenamableLocal
= isNonRenamableLocal(F
);
684 bool NotEligibleForImport
=
685 NonRenamableLocal
|| HasInlineAsmMaybeReferencingInternal
||
686 HasIndirBranchToBlockAddress
|| HasLocalIFuncCallOrRef
;
687 GlobalValueSummary::GVFlags
Flags(
688 F
.getLinkage(), F
.getVisibility(), NotEligibleForImport
,
689 /* Live = */ false, F
.isDSOLocal(), F
.canBeOmittedFromSymbolTable(),
690 GlobalValueSummary::ImportKind::Definition
);
691 FunctionSummary::FFlags FunFlags
{
692 F
.doesNotAccessMemory(), F
.onlyReadsMemory() && !F
.doesNotAccessMemory(),
693 F
.hasFnAttribute(Attribute::NoRecurse
), F
.returnDoesNotAlias(),
694 // FIXME: refactor this to use the same code that inliner is using.
695 // Don't try to import functions with noinline attribute.
696 F
.getAttributes().hasFnAttr(Attribute::NoInline
),
697 F
.hasFnAttribute(Attribute::AlwaysInline
),
698 F
.hasFnAttribute(Attribute::NoUnwind
), MayThrow
, HasUnknownCall
,
699 mustBeUnreachableFunction(F
)};
700 std::vector
<FunctionSummary::ParamAccess
> ParamAccesses
;
701 if (auto *SSI
= GetSSICallback(F
))
702 ParamAccesses
= SSI
->getParamAccesses(Index
);
703 auto FuncSummary
= std::make_unique
<FunctionSummary
>(
704 Flags
, NumInsts
, FunFlags
, std::move(Refs
), CallGraphEdges
.takeVector(),
705 TypeTests
.takeVector(), TypeTestAssumeVCalls
.takeVector(),
706 TypeCheckedLoadVCalls
.takeVector(),
707 TypeTestAssumeConstVCalls
.takeVector(),
708 TypeCheckedLoadConstVCalls
.takeVector(), std::move(ParamAccesses
),
709 std::move(Callsites
), std::move(Allocs
));
710 if (NonRenamableLocal
)
711 CantBePromoted
.insert(F
.getGUID());
712 Index
.addGlobalValueSummary(F
, std::move(FuncSummary
));
715 /// Find function pointers referenced within the given vtable initializer
716 /// (or subset of an initializer) \p I. The starting offset of \p I within
717 /// the vtable initializer is \p StartingOffset. Any discovered function
718 /// pointers are added to \p VTableFuncs along with their cumulative offset
719 /// within the initializer.
720 static void findFuncPointers(const Constant
*I
, uint64_t StartingOffset
,
721 const Module
&M
, ModuleSummaryIndex
&Index
,
722 VTableFuncList
&VTableFuncs
,
723 const GlobalVariable
&OrigGV
) {
724 // First check if this is a function pointer.
725 if (I
->getType()->isPointerTy()) {
726 auto C
= I
->stripPointerCasts();
727 auto A
= dyn_cast
<GlobalAlias
>(C
);
728 if (isa
<Function
>(C
) || (A
&& isa
<Function
>(A
->getAliasee()))) {
729 auto GV
= dyn_cast
<GlobalValue
>(C
);
731 // We can disregard __cxa_pure_virtual as a possible call target, as
732 // calls to pure virtuals are UB.
733 if (GV
&& GV
->getName() != "__cxa_pure_virtual")
734 VTableFuncs
.push_back({Index
.getOrInsertValueInfo(GV
), StartingOffset
});
739 // Walk through the elements in the constant struct or array and recursively
740 // look for virtual function pointers.
741 const DataLayout
&DL
= M
.getDataLayout();
742 if (auto *C
= dyn_cast
<ConstantStruct
>(I
)) {
743 StructType
*STy
= dyn_cast
<StructType
>(C
->getType());
745 const StructLayout
*SL
= DL
.getStructLayout(C
->getType());
747 for (auto EI
: llvm::enumerate(STy
->elements())) {
748 auto Offset
= SL
->getElementOffset(EI
.index());
749 unsigned Op
= SL
->getElementContainingOffset(Offset
);
750 findFuncPointers(cast
<Constant
>(I
->getOperand(Op
)),
751 StartingOffset
+ Offset
, M
, Index
, VTableFuncs
, OrigGV
);
753 } else if (auto *C
= dyn_cast
<ConstantArray
>(I
)) {
754 ArrayType
*ATy
= C
->getType();
755 Type
*EltTy
= ATy
->getElementType();
756 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
757 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
758 findFuncPointers(cast
<Constant
>(I
->getOperand(i
)),
759 StartingOffset
+ i
* EltSize
, M
, Index
, VTableFuncs
,
762 } else if (const auto *CE
= dyn_cast
<ConstantExpr
>(I
)) {
763 // For relative vtables, the next sub-component should be a trunc.
764 if (CE
->getOpcode() != Instruction::Trunc
||
765 !(CE
= dyn_cast
<ConstantExpr
>(CE
->getOperand(0))))
768 // If this constant can be reduced to the offset between a function and a
769 // global, then we know this is a valid virtual function if the RHS is the
770 // original vtable we're scanning through.
771 if (CE
->getOpcode() == Instruction::Sub
) {
772 GlobalValue
*LHS
, *RHS
;
773 APSInt LHSOffset
, RHSOffset
;
774 if (IsConstantOffsetFromGlobal(CE
->getOperand(0), LHS
, LHSOffset
, DL
) &&
775 IsConstantOffsetFromGlobal(CE
->getOperand(1), RHS
, RHSOffset
, DL
) &&
778 // For relative vtables, this component should point to the callable
779 // function without any offsets.
782 // Also, the RHS should always point to somewhere within the vtable.
784 static_cast<uint64_t>(DL
.getTypeAllocSize(OrigGV
.getInitializer()->getType()))) {
785 findFuncPointers(LHS
, StartingOffset
, M
, Index
, VTableFuncs
, OrigGV
);
791 // Identify the function pointers referenced by vtable definition \p V.
792 static void computeVTableFuncs(ModuleSummaryIndex
&Index
,
793 const GlobalVariable
&V
, const Module
&M
,
794 VTableFuncList
&VTableFuncs
) {
798 findFuncPointers(V
.getInitializer(), /*StartingOffset=*/0, M
, Index
,
802 // Validate that the VTableFuncs list is ordered by offset.
803 uint64_t PrevOffset
= 0;
804 for (auto &P
: VTableFuncs
) {
805 // The findVFuncPointers traversal should have encountered the
806 // functions in offset order. We need to use ">=" since PrevOffset
808 assert(P
.VTableOffset
>= PrevOffset
);
809 PrevOffset
= P
.VTableOffset
;
814 /// Record vtable definition \p V for each type metadata it references.
816 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex
&Index
,
817 const GlobalVariable
&V
,
818 SmallVectorImpl
<MDNode
*> &Types
) {
819 for (MDNode
*Type
: Types
) {
820 auto TypeID
= Type
->getOperand(1).get();
824 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
827 if (auto *TypeId
= dyn_cast
<MDString
>(TypeID
))
828 Index
.getOrInsertTypeIdCompatibleVtableSummary(TypeId
->getString())
829 .push_back({Offset
, Index
.getOrInsertValueInfo(&V
)});
833 static void computeVariableSummary(ModuleSummaryIndex
&Index
,
834 const GlobalVariable
&V
,
835 DenseSet
<GlobalValue::GUID
> &CantBePromoted
,
837 SmallVectorImpl
<MDNode
*> &Types
) {
838 SetVector
<ValueInfo
, SmallVector
<ValueInfo
, 0>> RefEdges
;
839 SmallPtrSet
<const User
*, 8> Visited
;
840 bool RefLocalIFunc
= false;
841 bool HasBlockAddress
=
842 findRefEdges(Index
, &V
, RefEdges
, Visited
, RefLocalIFunc
);
843 const bool NotEligibleForImport
= (HasBlockAddress
|| RefLocalIFunc
);
844 bool NonRenamableLocal
= isNonRenamableLocal(V
);
845 GlobalValueSummary::GVFlags
Flags(
846 V
.getLinkage(), V
.getVisibility(), NonRenamableLocal
,
847 /* Live = */ false, V
.isDSOLocal(), V
.canBeOmittedFromSymbolTable(),
848 GlobalValueSummary::Definition
);
850 VTableFuncList VTableFuncs
;
851 // If splitting is not enabled, then we compute the summary information
852 // necessary for index-based whole program devirtualization.
853 if (!Index
.enableSplitLTOUnit()) {
855 V
.getMetadata(LLVMContext::MD_type
, Types
);
856 if (!Types
.empty()) {
857 // Identify the function pointers referenced by this vtable definition.
858 computeVTableFuncs(Index
, V
, M
, VTableFuncs
);
860 // Record this vtable definition for each type metadata it references.
861 recordTypeIdCompatibleVtableReferences(Index
, V
, Types
);
865 // Don't mark variables we won't be able to internalize as read/write-only.
866 bool CanBeInternalized
=
867 !V
.hasComdat() && !V
.hasAppendingLinkage() && !V
.isInterposable() &&
868 !V
.hasAvailableExternallyLinkage() && !V
.hasDLLExportStorageClass();
869 bool Constant
= V
.isConstant();
870 GlobalVarSummary::GVarFlags
VarFlags(CanBeInternalized
,
871 Constant
? false : CanBeInternalized
,
872 Constant
, V
.getVCallVisibility());
873 auto GVarSummary
= std::make_unique
<GlobalVarSummary
>(Flags
, VarFlags
,
874 RefEdges
.takeVector());
875 if (NonRenamableLocal
)
876 CantBePromoted
.insert(V
.getGUID());
877 if (NotEligibleForImport
)
878 GVarSummary
->setNotEligibleToImport();
879 if (!VTableFuncs
.empty())
880 GVarSummary
->setVTableFuncs(VTableFuncs
);
881 Index
.addGlobalValueSummary(V
, std::move(GVarSummary
));
884 static void computeAliasSummary(ModuleSummaryIndex
&Index
, const GlobalAlias
&A
,
885 DenseSet
<GlobalValue::GUID
> &CantBePromoted
) {
886 // Skip summary for indirect function aliases as summary for aliasee will not
888 const GlobalObject
*Aliasee
= A
.getAliaseeObject();
889 if (isa
<GlobalIFunc
>(Aliasee
))
891 bool NonRenamableLocal
= isNonRenamableLocal(A
);
892 GlobalValueSummary::GVFlags
Flags(
893 A
.getLinkage(), A
.getVisibility(), NonRenamableLocal
,
894 /* Live = */ false, A
.isDSOLocal(), A
.canBeOmittedFromSymbolTable(),
895 GlobalValueSummary::Definition
);
896 auto AS
= std::make_unique
<AliasSummary
>(Flags
);
897 auto AliaseeVI
= Index
.getValueInfo(Aliasee
->getGUID());
898 assert(AliaseeVI
&& "Alias expects aliasee summary to be available");
899 assert(AliaseeVI
.getSummaryList().size() == 1 &&
900 "Expected a single entry per aliasee in per-module index");
901 AS
->setAliasee(AliaseeVI
, AliaseeVI
.getSummaryList()[0].get());
902 if (NonRenamableLocal
)
903 CantBePromoted
.insert(A
.getGUID());
904 Index
.addGlobalValueSummary(A
, std::move(AS
));
907 // Set LiveRoot flag on entries matching the given value name.
908 static void setLiveRoot(ModuleSummaryIndex
&Index
, StringRef Name
) {
909 if (ValueInfo VI
= Index
.getValueInfo(GlobalValue::getGUID(Name
)))
910 for (const auto &Summary
: VI
.getSummaryList())
911 Summary
->setLive(true);
914 ModuleSummaryIndex
llvm::buildModuleSummaryIndex(
916 std::function
<BlockFrequencyInfo
*(const Function
&F
)> GetBFICallback
,
917 ProfileSummaryInfo
*PSI
,
918 std::function
<const StackSafetyInfo
*(const Function
&F
)> GetSSICallback
) {
920 bool EnableSplitLTOUnit
= false;
921 bool UnifiedLTO
= false;
922 if (auto *MD
= mdconst::extract_or_null
<ConstantInt
>(
923 M
.getModuleFlag("EnableSplitLTOUnit")))
924 EnableSplitLTOUnit
= MD
->getZExtValue();
926 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("UnifiedLTO")))
927 UnifiedLTO
= MD
->getZExtValue();
928 ModuleSummaryIndex
Index(/*HaveGVs=*/true, EnableSplitLTOUnit
, UnifiedLTO
);
930 // Identify the local values in the llvm.used and llvm.compiler.used sets,
931 // which should not be exported as they would then require renaming and
932 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
933 // here because we use this information to mark functions containing inline
934 // assembly calls as not importable.
935 SmallPtrSet
<GlobalValue
*, 4> LocalsUsed
;
936 SmallVector
<GlobalValue
*, 4> Used
;
937 // First collect those in the llvm.used set.
938 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/false);
939 // Next collect those in the llvm.compiler.used set.
940 collectUsedGlobalVariables(M
, Used
, /*CompilerUsed=*/true);
941 DenseSet
<GlobalValue::GUID
> CantBePromoted
;
942 for (auto *V
: Used
) {
943 if (V
->hasLocalLinkage()) {
944 LocalsUsed
.insert(V
);
945 CantBePromoted
.insert(V
->getGUID());
949 bool HasLocalInlineAsmSymbol
= false;
950 if (!M
.getModuleInlineAsm().empty()) {
951 // Collect the local values defined by module level asm, and set up
952 // summaries for these symbols so that they can be marked as NoRename,
953 // to prevent export of any use of them in regular IR that would require
954 // renaming within the module level asm. Note we don't need to create a
955 // summary for weak or global defs, as they don't need to be flagged as
956 // NoRename, and defs in module level asm can't be imported anyway.
957 // Also, any values used but not defined within module level asm should
958 // be listed on the llvm.used or llvm.compiler.used global and marked as
959 // referenced from there.
960 ModuleSymbolTable::CollectAsmSymbols(
961 M
, [&](StringRef Name
, object::BasicSymbolRef::Flags Flags
) {
962 // Symbols not marked as Weak or Global are local definitions.
963 if (Flags
& (object::BasicSymbolRef::SF_Weak
|
964 object::BasicSymbolRef::SF_Global
))
966 HasLocalInlineAsmSymbol
= true;
967 GlobalValue
*GV
= M
.getNamedValue(Name
);
970 assert(GV
->isDeclaration() && "Def in module asm already has definition");
971 GlobalValueSummary::GVFlags
GVFlags(
972 GlobalValue::InternalLinkage
, GlobalValue::DefaultVisibility
,
973 /* NotEligibleToImport = */ true,
975 /* Local */ GV
->isDSOLocal(), GV
->canBeOmittedFromSymbolTable(),
976 GlobalValueSummary::Definition
);
977 CantBePromoted
.insert(GV
->getGUID());
978 // Create the appropriate summary type.
979 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
980 std::unique_ptr
<FunctionSummary
> Summary
=
981 std::make_unique
<FunctionSummary
>(
982 GVFlags
, /*InstCount=*/0,
983 FunctionSummary::FFlags
{
984 F
->hasFnAttribute(Attribute::ReadNone
),
985 F
->hasFnAttribute(Attribute::ReadOnly
),
986 F
->hasFnAttribute(Attribute::NoRecurse
),
987 F
->returnDoesNotAlias(),
988 /* NoInline = */ false,
989 F
->hasFnAttribute(Attribute::AlwaysInline
),
990 F
->hasFnAttribute(Attribute::NoUnwind
),
992 /* HasUnknownCall */ true,
993 /* MustBeUnreachable */ false},
994 SmallVector
<ValueInfo
, 0>{},
995 SmallVector
<FunctionSummary::EdgeTy
, 0>{},
996 ArrayRef
<GlobalValue::GUID
>{},
997 ArrayRef
<FunctionSummary::VFuncId
>{},
998 ArrayRef
<FunctionSummary::VFuncId
>{},
999 ArrayRef
<FunctionSummary::ConstVCall
>{},
1000 ArrayRef
<FunctionSummary::ConstVCall
>{},
1001 ArrayRef
<FunctionSummary::ParamAccess
>{},
1002 ArrayRef
<CallsiteInfo
>{}, ArrayRef
<AllocInfo
>{});
1003 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
1005 std::unique_ptr
<GlobalVarSummary
> Summary
=
1006 std::make_unique
<GlobalVarSummary
>(
1008 GlobalVarSummary::GVarFlags(
1009 false, false, cast
<GlobalVariable
>(GV
)->isConstant(),
1010 GlobalObject::VCallVisibilityPublic
),
1011 SmallVector
<ValueInfo
, 0>{});
1012 Index
.addGlobalValueSummary(*GV
, std::move(Summary
));
1017 bool IsThinLTO
= true;
1019 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
1020 IsThinLTO
= MD
->getZExtValue();
1022 // Compute summaries for all functions defined in module, and save in the
1024 for (const auto &F
: M
) {
1025 if (F
.isDeclaration())
1028 DominatorTree
DT(const_cast<Function
&>(F
));
1029 BlockFrequencyInfo
*BFI
= nullptr;
1030 std::unique_ptr
<BlockFrequencyInfo
> BFIPtr
;
1032 BFI
= GetBFICallback(F
);
1033 else if (F
.hasProfileData()) {
1035 BranchProbabilityInfo BPI
{F
, LI
};
1036 BFIPtr
= std::make_unique
<BlockFrequencyInfo
>(F
, BPI
, LI
);
1040 computeFunctionSummary(Index
, M
, F
, BFI
, PSI
, DT
,
1041 !LocalsUsed
.empty() || HasLocalInlineAsmSymbol
,
1042 CantBePromoted
, IsThinLTO
, GetSSICallback
);
1045 // Compute summaries for all variables defined in module, and save in the
1047 SmallVector
<MDNode
*, 2> Types
;
1048 for (const GlobalVariable
&G
: M
.globals()) {
1049 if (G
.isDeclaration())
1051 computeVariableSummary(Index
, G
, CantBePromoted
, M
, Types
);
1054 // Compute summaries for all aliases defined in module, and save in the
1056 for (const GlobalAlias
&A
: M
.aliases())
1057 computeAliasSummary(Index
, A
, CantBePromoted
);
1059 // Iterate through ifuncs, set their resolvers all alive.
1060 for (const GlobalIFunc
&I
: M
.ifuncs()) {
1061 I
.applyAlongResolverPath([&Index
](const GlobalValue
&GV
) {
1062 Index
.getGlobalValueSummary(GV
)->setLive(true);
1066 for (auto *V
: LocalsUsed
) {
1067 auto *Summary
= Index
.getGlobalValueSummary(*V
);
1068 assert(Summary
&& "Missing summary for global value");
1069 Summary
->setNotEligibleToImport();
1072 // The linker doesn't know about these LLVM produced values, so we need
1073 // to flag them as live in the index to ensure index-based dead value
1074 // analysis treats them as live roots of the analysis.
1075 setLiveRoot(Index
, "llvm.used");
1076 setLiveRoot(Index
, "llvm.compiler.used");
1077 setLiveRoot(Index
, "llvm.global_ctors");
1078 setLiveRoot(Index
, "llvm.global_dtors");
1079 setLiveRoot(Index
, "llvm.global.annotations");
1081 for (auto &GlobalList
: Index
) {
1082 // Ignore entries for references that are undefined in the current module.
1083 if (GlobalList
.second
.SummaryList
.empty())
1086 assert(GlobalList
.second
.SummaryList
.size() == 1 &&
1087 "Expected module's index to have one summary per GUID");
1088 auto &Summary
= GlobalList
.second
.SummaryList
[0];
1090 Summary
->setNotEligibleToImport();
1094 bool AllRefsCanBeExternallyReferenced
=
1095 llvm::all_of(Summary
->refs(), [&](const ValueInfo
&VI
) {
1096 return !CantBePromoted
.count(VI
.getGUID());
1098 if (!AllRefsCanBeExternallyReferenced
) {
1099 Summary
->setNotEligibleToImport();
1103 if (auto *FuncSummary
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
1104 bool AllCallsCanBeExternallyReferenced
= llvm::all_of(
1105 FuncSummary
->calls(), [&](const FunctionSummary::EdgeTy
&Edge
) {
1106 return !CantBePromoted
.count(Edge
.first
.getGUID());
1108 if (!AllCallsCanBeExternallyReferenced
)
1109 Summary
->setNotEligibleToImport();
1113 if (!ModuleSummaryDotFile
.empty()) {
1115 raw_fd_ostream
OSDot(ModuleSummaryDotFile
, EC
, sys::fs::OpenFlags::OF_Text
);
1117 report_fatal_error(Twine("Failed to open dot file ") +
1118 ModuleSummaryDotFile
+ ": " + EC
.message() + "\n");
1119 Index
.exportToDot(OSDot
, {});
1125 AnalysisKey
ModuleSummaryIndexAnalysis::Key
;
1128 ModuleSummaryIndexAnalysis::run(Module
&M
, ModuleAnalysisManager
&AM
) {
1129 ProfileSummaryInfo
&PSI
= AM
.getResult
<ProfileSummaryAnalysis
>(M
);
1130 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1131 bool NeedSSI
= needsParamAccessSummary(M
);
1132 return buildModuleSummaryIndex(
1134 [&FAM
](const Function
&F
) {
1135 return &FAM
.getResult
<BlockFrequencyAnalysis
>(
1136 *const_cast<Function
*>(&F
));
1139 [&FAM
, NeedSSI
](const Function
&F
) -> const StackSafetyInfo
* {
1140 return NeedSSI
? &FAM
.getResult
<StackSafetyAnalysis
>(
1141 const_cast<Function
&>(F
))
1146 char ModuleSummaryIndexWrapperPass::ID
= 0;
1148 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
1149 "Module Summary Analysis", false, true)
1150 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
1151 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
1152 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass
)
1153 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass
, "module-summary-analysis",
1154 "Module Summary Analysis", false, true)
1156 ModulePass
*llvm::createModuleSummaryIndexWrapperPass() {
1157 return new ModuleSummaryIndexWrapperPass();
1160 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1162 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1165 bool ModuleSummaryIndexWrapperPass::runOnModule(Module
&M
) {
1166 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
1167 bool NeedSSI
= needsParamAccessSummary(M
);
1168 Index
.emplace(buildModuleSummaryIndex(
1170 [this](const Function
&F
) {
1171 return &(this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(
1172 *const_cast<Function
*>(&F
))
1176 [&](const Function
&F
) -> const StackSafetyInfo
* {
1177 return NeedSSI
? &getAnalysis
<StackSafetyInfoWrapperPass
>(
1178 const_cast<Function
&>(F
))
1185 bool ModuleSummaryIndexWrapperPass::doFinalization(Module
&M
) {
1190 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1191 AU
.setPreservesAll();
1192 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
1193 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
1194 AU
.addRequired
<StackSafetyInfoWrapperPass
>();
1197 char ImmutableModuleSummaryIndexWrapperPass::ID
= 0;
1199 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1200 const ModuleSummaryIndex
*Index
)
1201 : ImmutablePass(ID
), Index(Index
) {
1202 initializeImmutableModuleSummaryIndexWrapperPassPass(
1203 *PassRegistry::getPassRegistry());
1206 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1207 AnalysisUsage
&AU
) const {
1208 AU
.setPreservesAll();
1211 ImmutablePass
*llvm::createImmutableModuleSummaryIndexWrapperPass(
1212 const ModuleSummaryIndex
*Index
) {
1213 return new ImmutableModuleSummaryIndexWrapperPass(Index
);
1216 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass
, "module-summary-info",
1217 "Module summary info", false, true)
1219 bool llvm::mayHaveMemprofSummary(const CallBase
*CB
) {
1222 if (CB
->isDebugOrPseudoInst())
1224 auto *CI
= dyn_cast
<CallInst
>(CB
);
1225 auto *CalledValue
= CB
->getCalledOperand();
1226 auto *CalledFunction
= CB
->getCalledFunction();
1227 if (CalledValue
&& !CalledFunction
) {
1228 CalledValue
= CalledValue
->stripPointerCasts();
1229 // Stripping pointer casts can reveal a called function.
1230 CalledFunction
= dyn_cast
<Function
>(CalledValue
);
1232 // Check if this is an alias to a function. If so, get the
1233 // called aliasee for the checks below.
1234 if (auto *GA
= dyn_cast
<GlobalAlias
>(CalledValue
)) {
1235 assert(!CalledFunction
&&
1236 "Expected null called function in callsite for alias");
1237 CalledFunction
= dyn_cast
<Function
>(GA
->getAliaseeObject());
1239 // Check if this is a direct call to a known function or a known
1240 // intrinsic, or an indirect call with profile data.
1241 if (CalledFunction
) {
1242 if (CI
&& CalledFunction
->isIntrinsic())
1245 // Skip indirect calls if we haven't enabled memprof ICP.
1246 if (!EnableMemProfIndirectCallSupport
)
1248 // Skip inline assembly calls.
1249 if (CI
&& CI
->isInlineAsm())
1251 // Skip direct calls via Constant.
1252 if (!CalledValue
|| isa
<Constant
>(CalledValue
))