[clang] Add test for CWG190 "Layout-compatible POD-struct types" (#121668)
[llvm-project.git] / llvm / lib / Analysis / TFLiteUtils.cpp
blob2762e22f28cef325af7a3ffdd12efd59955eaad9
1 //===- TFUtils.cpp - TFLite-based evaluation utilities --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities for interfacing with TFLite.
11 //===----------------------------------------------------------------------===//
12 #include "llvm/Config/config.h"
13 #if defined(LLVM_HAVE_TFLITE)
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/Analysis/Utils/TFUtils.h"
17 #include "llvm/Support/Base64.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/JSON.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Path.h"
23 #include "llvm/Support/raw_ostream.h"
25 #include "tensorflow/lite/interpreter.h"
26 #include "tensorflow/lite/kernels/register.h"
27 #include "tensorflow/lite/model.h"
28 #include "tensorflow/lite/model_builder.h"
29 #include "tensorflow/lite/op_resolver.h"
30 #include "tensorflow/lite/logger.h"
32 #include <cassert>
33 #include <numeric>
34 #include <optional>
36 using namespace llvm;
38 namespace llvm {
39 class EvaluationResultImpl {
40 public:
41 EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs)
42 : Outputs(Outputs){};
44 const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; }
46 EvaluationResultImpl(const EvaluationResultImpl &) = delete;
47 EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
49 private:
50 const std::vector<const TfLiteTensor *> Outputs;
53 class TFModelEvaluatorImpl {
54 public:
55 TFModelEvaluatorImpl(StringRef SavedModelPath,
56 const std::vector<TensorSpec> &InputSpecs,
57 const std::vector<TensorSpec> &OutputSpecs,
58 const char *Tags);
60 bool isValid() const { return IsValid; }
61 size_t outputSize() const { return Output.size(); }
63 std::unique_ptr<EvaluationResultImpl> evaluate() {
64 Interpreter->Invoke();
65 return std::make_unique<EvaluationResultImpl>(Output);
68 const std::vector<TfLiteTensor *> &getInput() const { return Input; }
70 ~TFModelEvaluatorImpl();
72 private:
73 std::unique_ptr<tflite::FlatBufferModel> Model;
75 /// The objects necessary for carrying out an evaluation of the SavedModel.
76 /// They are expensive to set up, and we maintain them accross all the
77 /// evaluations of the model.
78 std::unique_ptr<tflite::Interpreter> Interpreter;
80 /// The input tensors. We set up the tensors once and just mutate theirs
81 /// scalars before each evaluation. The input tensors keep their value after
82 /// an evaluation.
83 std::vector<TfLiteTensor *> Input;
85 /// The output nodes.
86 std::vector<const TfLiteTensor *> Output;
88 void invalidate() { IsValid = false; }
90 bool IsValid = true;
92 /// Reusable utility for ensuring we can bind the requested Name to a node in
93 /// the SavedModel Graph.
94 bool checkReportAndInvalidate(const TfLiteTensor *Tensor,
95 const TensorSpec &Spec);
98 } // namespace llvm
100 TFModelEvaluatorImpl::TFModelEvaluatorImpl(
101 StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
102 const std::vector<TensorSpec> &OutputSpecs, const char *Tags = "serve")
103 : Input(InputSpecs.size()), Output(OutputSpecs.size()) {
104 // INFO and DEBUG messages could be numerous and not particularly interesting
105 tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING);
106 // FIXME: make ErrorReporter a member (may also need subclassing
107 // StatefulErrorReporter) to easily get the latest error status, for
108 // debugging.
109 tflite::StderrReporter ErrorReporter;
110 SmallVector<char, 128> TFLitePathBuff;
111 llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite");
112 StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size());
113 Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(),
114 &ErrorReporter);
115 if (!Model) {
116 invalidate();
117 return;
120 tflite::ops::builtin::BuiltinOpResolver Resolver;
121 tflite::InterpreterBuilder Builder(*Model, Resolver);
122 Builder(&Interpreter);
124 if (!Interpreter) {
125 invalidate();
126 return;
129 // We assume the input buffers are valid for the lifetime of the interpreter.
130 // By default, tflite allocates memory in an arena and will periodically take
131 // away memory and reallocate it in a different location after evaluations in
132 // order to improve utilization of the buffers owned in the arena. So, we
133 // explicitly mark our input buffers as persistent to avoid this behavior.
134 for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
135 Interpreter->tensor(I)->allocation_type =
136 TfLiteAllocationType::kTfLiteArenaRwPersistent;
138 if (Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) {
139 invalidate();
140 return;
142 // Known inputs and outputs
143 StringMap<int> InputsMap;
144 StringMap<int> OutputsMap;
145 for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
146 InputsMap[Interpreter->GetInputName(I)] = I;
147 for (size_t I = 0; I < Interpreter->outputs().size(); ++I)
148 OutputsMap[Interpreter->GetOutputName(I)] = I;
150 size_t NumberFeaturesPassed = 0;
151 for (size_t I = 0; I < InputSpecs.size(); ++I) {
152 auto &InputSpec = InputSpecs[I];
153 auto MapI = InputsMap.find(InputSpec.name() + ":" +
154 std::to_string(InputSpec.port()));
155 if (MapI == InputsMap.end()) {
156 Input[I] = nullptr;
157 continue;
159 Input[I] = Interpreter->tensor(MapI->second);
160 if (!checkReportAndInvalidate(Input[I], InputSpec))
161 return;
162 std::memset(Input[I]->data.data, 0,
163 InputSpecs[I].getTotalTensorBufferSize());
164 ++NumberFeaturesPassed;
167 if (NumberFeaturesPassed < Interpreter->inputs().size()) {
168 // we haven't passed all the required features to the model, throw an error.
169 errs() << "Required feature(s) have not been passed to the ML model";
170 invalidate();
171 return;
174 for (size_t I = 0; I < OutputSpecs.size(); ++I) {
175 const auto &OutputSpec = OutputSpecs[I];
176 Output[I] = Interpreter->output_tensor(
177 OutputsMap[OutputSpec.name() + ":" +
178 std::to_string(OutputSpec.port())]);
179 if (!checkReportAndInvalidate(Output[I], OutputSpec))
180 return;
184 TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
185 const std::vector<TensorSpec> &InputSpecs,
186 const std::vector<TensorSpec> &OutputSpecs,
187 const char *Tags)
188 : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, OutputSpecs,
189 Tags)) {
190 if (!Impl->isValid())
191 Impl.reset();
194 TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {}
196 bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor,
197 const TensorSpec &Spec) {
198 if (!Tensor) {
199 errs() << "Could not find TF_Output named: " + Spec.name();
200 IsValid = false;
202 if (Spec.getTotalTensorBufferSize() != Tensor->bytes)
203 IsValid = false;
205 // If the total sizes match, there could still be a mismatch in the shape.
206 // We ignore that for now.
208 return IsValid;
211 std::optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
212 if (!isValid())
213 return std::nullopt;
214 return EvaluationResult(Impl->evaluate());
217 void *TFModelEvaluator::getUntypedInput(size_t Index) {
218 TfLiteTensor *T = Impl->getInput()[Index];
219 if (!T)
220 return nullptr;
221 return T->data.data;
224 TFModelEvaluator::EvaluationResult::EvaluationResult(
225 std::unique_ptr<EvaluationResultImpl> Impl)
226 : Impl(std::move(Impl)) {}
228 TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
229 : Impl(std::move(Other.Impl)) {}
231 TFModelEvaluator::EvaluationResult &
232 TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
233 Impl = std::move(Other.Impl);
234 return *this;
237 void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
238 return Impl->getOutput(Index)->data.data;
241 const void *
242 TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
243 return Impl->getOutput(Index)->data.data;
246 TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
247 TFModelEvaluator::~TFModelEvaluator() {}
249 #endif // defined(LLVM_HAVE_TFLITE)