1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 // !0 = !{ !"an example type tree" }
26 // !1 = !{ !"int", !0 }
27 // !2 = !{ !"float", !0 }
28 // !3 = !{ !"const float", !2, i64 1 }
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
50 // The path tag node has 4 fields with the last field being optional.
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1} // Scalar type node
79 // !3 = !{!"A", !2, i64 0} // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 // // Struct type node
82 // !5 = !{!4, !2, i64 4} // Path tag node
84 // The struct type nodes and the scalar type nodes form a type DAG.
86 // char (!1) -- edge to Root
87 // short (!2) -- edge to char
88 // A (!3) -- edge with offset 0 to short
89 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
106 //===----------------------------------------------------------------------===//
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DataLayout.h"
114 #include "llvm/IR/DerivedTypes.h"
115 #include "llvm/IR/InstrTypes.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/InitializePasses.h"
119 #include "llvm/Pass.h"
120 #include "llvm/Support/Casting.h"
121 #include "llvm/Support/CommandLine.h"
122 #include "llvm/Support/ErrorHandling.h"
126 using namespace llvm
;
128 // A handy option for disabling TBAA functionality. The same effect can also be
129 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
131 static cl::opt
<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden
);
135 /// isNewFormatTypeNode - Return true iff the given type node is in the new
136 /// size-aware format.
137 static bool isNewFormatTypeNode(const MDNode
*N
) {
138 if (N
->getNumOperands() < 3)
140 // In the old format the first operand is a string.
141 if (!isa
<MDNode
>(N
->getOperand(0)))
146 /// This is a simple wrapper around an MDNode which provides a higher-level
147 /// interface by hiding the details of how alias analysis information is encoded
149 template<typename MDNodeTy
>
151 MDNodeTy
*Node
= nullptr;
154 TBAANodeImpl() = default;
155 explicit TBAANodeImpl(MDNodeTy
*N
) : Node(N
) {}
157 /// getNode - Get the MDNode for this TBAANode.
158 MDNodeTy
*getNode() const { return Node
; }
160 /// isNewFormat - Return true iff the wrapped type node is in the new
161 /// size-aware format.
162 bool isNewFormat() const { return isNewFormatTypeNode(Node
); }
164 /// getParent - Get this TBAANode's Alias tree parent.
165 TBAANodeImpl
<MDNodeTy
> getParent() const {
167 return TBAANodeImpl(cast
<MDNodeTy
>(Node
->getOperand(0)));
169 if (Node
->getNumOperands() < 2)
170 return TBAANodeImpl
<MDNodeTy
>();
171 MDNodeTy
*P
= dyn_cast_or_null
<MDNodeTy
>(Node
->getOperand(1));
173 return TBAANodeImpl
<MDNodeTy
>();
174 // Ok, this node has a valid parent. Return it.
175 return TBAANodeImpl
<MDNodeTy
>(P
);
178 /// Test if this TBAANode represents a type for objects which are
179 /// not modified (by any means) in the context where this
180 /// AliasAnalysis is relevant.
181 bool isTypeImmutable() const {
182 if (Node
->getNumOperands() < 3)
184 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(Node
->getOperand(2));
187 return CI
->getValue()[0];
191 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
194 using TBAANode
= TBAANodeImpl
<const MDNode
>;
195 using MutableTBAANode
= TBAANodeImpl
<MDNode
>;
198 /// This is a simple wrapper around an MDNode which provides a
199 /// higher-level interface by hiding the details of how alias analysis
200 /// information is encoded in its operands.
201 template<typename MDNodeTy
>
202 class TBAAStructTagNodeImpl
{
203 /// This node should be created with createTBAAAccessTag().
207 explicit TBAAStructTagNodeImpl(MDNodeTy
*N
) : Node(N
) {}
209 /// Get the MDNode for this TBAAStructTagNode.
210 MDNodeTy
*getNode() const { return Node
; }
212 /// isNewFormat - Return true iff the wrapped access tag is in the new
213 /// size-aware format.
214 bool isNewFormat() const {
215 if (Node
->getNumOperands() < 4)
217 if (MDNodeTy
*AccessType
= getAccessType())
218 if (!TBAANodeImpl
<MDNodeTy
>(AccessType
).isNewFormat())
223 MDNodeTy
*getBaseType() const {
224 return dyn_cast_or_null
<MDNode
>(Node
->getOperand(0));
227 MDNodeTy
*getAccessType() const {
228 return dyn_cast_or_null
<MDNode
>(Node
->getOperand(1));
231 uint64_t getOffset() const {
232 return mdconst::extract
<ConstantInt
>(Node
->getOperand(2))->getZExtValue();
235 uint64_t getSize() const {
238 return mdconst::extract
<ConstantInt
>(Node
->getOperand(3))->getZExtValue();
241 /// Test if this TBAAStructTagNode represents a type for objects
242 /// which are not modified (by any means) in the context where this
243 /// AliasAnalysis is relevant.
244 bool isTypeImmutable() const {
245 unsigned OpNo
= isNewFormat() ? 4 : 3;
246 if (Node
->getNumOperands() < OpNo
+ 1)
248 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(Node
->getOperand(OpNo
));
251 return CI
->getValue()[0];
255 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
256 /// qualified \c MDNods.
258 using TBAAStructTagNode
= TBAAStructTagNodeImpl
<const MDNode
>;
259 using MutableTBAAStructTagNode
= TBAAStructTagNodeImpl
<MDNode
>;
262 /// This is a simple wrapper around an MDNode which provides a
263 /// higher-level interface by hiding the details of how alias analysis
264 /// information is encoded in its operands.
265 class TBAAStructTypeNode
{
266 /// This node should be created with createTBAATypeNode().
267 const MDNode
*Node
= nullptr;
270 TBAAStructTypeNode() = default;
271 explicit TBAAStructTypeNode(const MDNode
*N
) : Node(N
) {}
273 /// Get the MDNode for this TBAAStructTypeNode.
274 const MDNode
*getNode() const { return Node
; }
276 /// isNewFormat - Return true iff the wrapped type node is in the new
277 /// size-aware format.
278 bool isNewFormat() const { return isNewFormatTypeNode(Node
); }
280 bool operator==(const TBAAStructTypeNode
&Other
) const {
281 return getNode() == Other
.getNode();
284 /// getId - Return type identifier.
285 Metadata
*getId() const {
286 return Node
->getOperand(isNewFormat() ? 2 : 0);
289 unsigned getNumFields() const {
290 unsigned FirstFieldOpNo
= isNewFormat() ? 3 : 1;
291 unsigned NumOpsPerField
= isNewFormat() ? 3 : 2;
292 return (getNode()->getNumOperands() - FirstFieldOpNo
) / NumOpsPerField
;
295 TBAAStructTypeNode
getFieldType(unsigned FieldIndex
) const {
296 unsigned FirstFieldOpNo
= isNewFormat() ? 3 : 1;
297 unsigned NumOpsPerField
= isNewFormat() ? 3 : 2;
298 unsigned OpIndex
= FirstFieldOpNo
+ FieldIndex
* NumOpsPerField
;
299 auto *TypeNode
= cast
<MDNode
>(getNode()->getOperand(OpIndex
));
300 return TBAAStructTypeNode(TypeNode
);
303 /// Get this TBAAStructTypeNode's field in the type DAG with
304 /// given offset. Update the offset to be relative to the field type.
305 TBAAStructTypeNode
getField(uint64_t &Offset
) const {
306 bool NewFormat
= isNewFormat();
307 const ArrayRef
<MDOperand
> Operands
= Node
->operands();
308 const unsigned NumOperands
= Operands
.size();
311 // New-format root and scalar type nodes have no fields.
313 return TBAAStructTypeNode();
315 // Parent can be omitted for the root node.
317 return TBAAStructTypeNode();
319 // Fast path for a scalar type node and a struct type node with a single
321 if (NumOperands
<= 3) {
325 : mdconst::extract
<ConstantInt
>(Operands
[2])->getZExtValue();
327 MDNode
*P
= dyn_cast_or_null
<MDNode
>(Operands
[1]);
329 return TBAAStructTypeNode();
330 return TBAAStructTypeNode(P
);
334 // Assume the offsets are in order. We return the previous field if
335 // the current offset is bigger than the given offset.
336 unsigned FirstFieldOpNo
= NewFormat
? 3 : 1;
337 unsigned NumOpsPerField
= NewFormat
? 3 : 2;
340 for (unsigned Idx
= FirstFieldOpNo
; Idx
< NumOperands
;
341 Idx
+= NumOpsPerField
) {
343 mdconst::extract
<ConstantInt
>(Operands
[Idx
+ 1])->getZExtValue();
345 assert(Idx
>= FirstFieldOpNo
+ NumOpsPerField
&&
346 "TBAAStructTypeNode::getField should have an offset match!");
347 TheIdx
= Idx
- NumOpsPerField
;
351 // Move along the last field.
353 TheIdx
= NumOperands
- NumOpsPerField
;
355 mdconst::extract
<ConstantInt
>(Operands
[TheIdx
+ 1])->getZExtValue();
357 MDNode
*P
= dyn_cast_or_null
<MDNode
>(Operands
[TheIdx
]);
359 return TBAAStructTypeNode();
360 return TBAAStructTypeNode(P
);
364 } // end anonymous namespace
366 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
367 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
369 static bool isStructPathTBAA(const MDNode
*MD
) {
370 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
372 return isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
375 AliasResult
TypeBasedAAResult::alias(const MemoryLocation
&LocA
,
376 const MemoryLocation
&LocB
,
377 AAQueryInfo
&AAQI
, const Instruction
*) {
378 if (!shouldUseTBAA())
379 return AliasResult::MayAlias
;
381 if (Aliases(LocA
.AATags
.TBAA
, LocB
.AATags
.TBAA
))
382 return AliasResult::MayAlias
;
384 // Otherwise return a definitive result.
385 return AliasResult::NoAlias
;
388 ModRefInfo
TypeBasedAAResult::getModRefInfoMask(const MemoryLocation
&Loc
,
391 if (!shouldUseTBAA())
392 return ModRefInfo::ModRef
;
394 const MDNode
*M
= Loc
.AATags
.TBAA
;
396 return ModRefInfo::ModRef
;
398 // If this is an "immutable" type, we can assume the pointer is pointing
399 // to constant memory.
400 if ((!isStructPathTBAA(M
) && TBAANode(M
).isTypeImmutable()) ||
401 (isStructPathTBAA(M
) && TBAAStructTagNode(M
).isTypeImmutable()))
402 return ModRefInfo::NoModRef
;
404 return ModRefInfo::ModRef
;
407 MemoryEffects
TypeBasedAAResult::getMemoryEffects(const CallBase
*Call
,
409 if (!shouldUseTBAA())
410 return MemoryEffects::unknown();
412 // If this is an "immutable" type, the access is not observable.
413 if (const MDNode
*M
= Call
->getMetadata(LLVMContext::MD_tbaa
))
414 if ((!isStructPathTBAA(M
) && TBAANode(M
).isTypeImmutable()) ||
415 (isStructPathTBAA(M
) && TBAAStructTagNode(M
).isTypeImmutable()))
416 return MemoryEffects::none();
418 return MemoryEffects::unknown();
421 MemoryEffects
TypeBasedAAResult::getMemoryEffects(const Function
*F
) {
422 // Functions don't have metadata.
423 return MemoryEffects::unknown();
426 ModRefInfo
TypeBasedAAResult::getModRefInfo(const CallBase
*Call
,
427 const MemoryLocation
&Loc
,
429 if (!shouldUseTBAA())
430 return ModRefInfo::ModRef
;
432 if (const MDNode
*L
= Loc
.AATags
.TBAA
)
433 if (const MDNode
*M
= Call
->getMetadata(LLVMContext::MD_tbaa
))
435 return ModRefInfo::NoModRef
;
437 return ModRefInfo::ModRef
;
440 ModRefInfo
TypeBasedAAResult::getModRefInfo(const CallBase
*Call1
,
441 const CallBase
*Call2
,
443 if (!shouldUseTBAA())
444 return ModRefInfo::ModRef
;
446 if (const MDNode
*M1
= Call1
->getMetadata(LLVMContext::MD_tbaa
))
447 if (const MDNode
*M2
= Call2
->getMetadata(LLVMContext::MD_tbaa
))
448 if (!Aliases(M1
, M2
))
449 return ModRefInfo::NoModRef
;
451 return ModRefInfo::ModRef
;
454 bool MDNode::isTBAAVtableAccess() const {
455 if (!isStructPathTBAA(this)) {
456 if (getNumOperands() < 1)
458 if (MDString
*Tag1
= dyn_cast
<MDString
>(getOperand(0))) {
459 if (Tag1
->getString() == "vtable pointer")
465 // For struct-path aware TBAA, we use the access type of the tag.
466 TBAAStructTagNode
Tag(this);
467 TBAAStructTypeNode
AccessType(Tag
.getAccessType());
468 if(auto *Id
= dyn_cast
<MDString
>(AccessType
.getId()))
469 if (Id
->getString() == "vtable pointer")
474 static bool matchAccessTags(const MDNode
*A
, const MDNode
*B
,
475 const MDNode
**GenericTag
= nullptr);
477 MDNode
*MDNode::getMostGenericTBAA(MDNode
*A
, MDNode
*B
) {
478 const MDNode
*GenericTag
;
479 matchAccessTags(A
, B
, &GenericTag
);
480 return const_cast<MDNode
*>(GenericTag
);
483 static const MDNode
*getLeastCommonType(const MDNode
*A
, const MDNode
*B
) {
490 SmallSetVector
<const MDNode
*, 4> PathA
;
492 while (TA
.getNode()) {
493 if (!PathA
.insert(TA
.getNode()))
494 report_fatal_error("Cycle found in TBAA metadata.");
498 SmallSetVector
<const MDNode
*, 4> PathB
;
500 while (TB
.getNode()) {
501 if (!PathB
.insert(TB
.getNode()))
502 report_fatal_error("Cycle found in TBAA metadata.");
506 int IA
= PathA
.size() - 1;
507 int IB
= PathB
.size() - 1;
509 const MDNode
*Ret
= nullptr;
510 while (IA
>= 0 && IB
>= 0) {
511 if (PathA
[IA
] == PathB
[IB
])
522 AAMDNodes
AAMDNodes::merge(const AAMDNodes
&Other
) const {
524 Result
.TBAA
= MDNode::getMostGenericTBAA(TBAA
, Other
.TBAA
);
525 Result
.TBAAStruct
= nullptr;
526 Result
.Scope
= MDNode::getMostGenericAliasScope(Scope
, Other
.Scope
);
527 Result
.NoAlias
= MDNode::intersect(NoAlias
, Other
.NoAlias
);
531 AAMDNodes
AAMDNodes::concat(const AAMDNodes
&Other
) const {
533 Result
.TBAA
= Result
.TBAAStruct
= nullptr;
534 Result
.Scope
= MDNode::getMostGenericAliasScope(Scope
, Other
.Scope
);
535 Result
.NoAlias
= MDNode::intersect(NoAlias
, Other
.NoAlias
);
539 static const MDNode
*createAccessTag(const MDNode
*AccessType
) {
540 // If there is no access type or the access type is the root node, then
541 // we don't have any useful access tag to return.
542 if (!AccessType
|| AccessType
->getNumOperands() < 2)
545 Type
*Int64
= IntegerType::get(AccessType
->getContext(), 64);
546 auto *OffsetNode
= ConstantAsMetadata::get(ConstantInt::get(Int64
, 0));
548 if (TBAAStructTypeNode(AccessType
).isNewFormat()) {
549 // TODO: Take access ranges into account when matching access tags and
550 // fix this code to generate actual access sizes for generic tags.
551 uint64_t AccessSize
= UINT64_MAX
;
553 ConstantAsMetadata::get(ConstantInt::get(Int64
, AccessSize
));
554 Metadata
*Ops
[] = {const_cast<MDNode
*>(AccessType
),
555 const_cast<MDNode
*>(AccessType
),
556 OffsetNode
, SizeNode
};
557 return MDNode::get(AccessType
->getContext(), Ops
);
560 Metadata
*Ops
[] = {const_cast<MDNode
*>(AccessType
),
561 const_cast<MDNode
*>(AccessType
),
563 return MDNode::get(AccessType
->getContext(), Ops
);
566 static bool hasField(TBAAStructTypeNode BaseType
,
567 TBAAStructTypeNode FieldType
) {
568 for (unsigned I
= 0, E
= BaseType
.getNumFields(); I
!= E
; ++I
) {
569 TBAAStructTypeNode T
= BaseType
.getFieldType(I
);
570 if (T
== FieldType
|| hasField(T
, FieldType
))
576 /// Return true if for two given accesses, one of the accessed objects may be a
577 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
578 /// describe the accesses to the base object and the subobject respectively.
579 /// \p CommonType must be the metadata node describing the common type of the
580 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
581 /// may alias and \p Generic, if not null, points to the most generic access
582 /// tag for the given two.
583 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag
,
584 TBAAStructTagNode SubobjectTag
,
585 const MDNode
*CommonType
,
586 const MDNode
**GenericTag
,
588 // If the base object is of the least common type, then this may be an access
590 if (BaseTag
.getAccessType() == BaseTag
.getBaseType() &&
591 BaseTag
.getAccessType() == CommonType
) {
593 *GenericTag
= createAccessTag(CommonType
);
598 // If the access to the base object is through a field of the subobject's
599 // type, then this may be an access to that field. To check for that we start
600 // from the base type, follow the edge with the correct offset in the type DAG
601 // and adjust the offset until we reach the field type or until we reach the
603 bool NewFormat
= BaseTag
.isNewFormat();
604 TBAAStructTypeNode
BaseType(BaseTag
.getBaseType());
605 uint64_t OffsetInBase
= BaseTag
.getOffset();
608 // In the old format there is no distinction between fields and parent
609 // types, so in this case we consider all nodes up to the root.
610 if (!BaseType
.getNode()) {
611 assert(!NewFormat
&& "Did not see access type in access path!");
615 if (BaseType
.getNode() == SubobjectTag
.getBaseType()) {
616 MayAlias
= OffsetInBase
== SubobjectTag
.getOffset() ||
617 BaseType
.getNode() == BaseTag
.getAccessType() ||
618 SubobjectTag
.getBaseType() == SubobjectTag
.getAccessType();
621 MayAlias
? SubobjectTag
.getNode() : createAccessTag(CommonType
);
626 // With new-format nodes we stop at the access type.
627 if (NewFormat
&& BaseType
.getNode() == BaseTag
.getAccessType())
630 // Follow the edge with the correct offset. Offset will be adjusted to
631 // be relative to the field type.
632 BaseType
= BaseType
.getField(OffsetInBase
);
635 // If the base object has a direct or indirect field of the subobject's type,
636 // then this may be an access to that field. We need this to check now that
637 // we support aggregates as access types.
639 // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
640 TBAAStructTypeNode
FieldType(SubobjectTag
.getBaseType());
641 if (hasField(BaseType
, FieldType
)) {
643 *GenericTag
= createAccessTag(CommonType
);
652 /// matchTags - Return true if the given couple of accesses are allowed to
653 /// overlap. If \arg GenericTag is not null, then on return it points to the
654 /// most generic access descriptor for the given two.
655 static bool matchAccessTags(const MDNode
*A
, const MDNode
*B
,
656 const MDNode
**GenericTag
) {
663 // Accesses with no TBAA information may alias with any other accesses.
666 *GenericTag
= nullptr;
670 // Verify that both input nodes are struct-path aware. Auto-upgrade should
671 // have taken care of this.
672 assert(isStructPathTBAA(A
) && "Access A is not struct-path aware!");
673 assert(isStructPathTBAA(B
) && "Access B is not struct-path aware!");
675 TBAAStructTagNode
TagA(A
), TagB(B
);
676 const MDNode
*CommonType
= getLeastCommonType(TagA
.getAccessType(),
677 TagB
.getAccessType());
679 // If the final access types have different roots, they're part of different
680 // potentially unrelated type systems, so we must be conservative.
683 *GenericTag
= nullptr;
687 // If one of the accessed objects may be a subobject of the other, then such
688 // accesses may alias.
690 if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA
, /* SubobjectTag= */ TagB
,
691 CommonType
, GenericTag
, MayAlias
) ||
692 mayBeAccessToSubobjectOf(/* BaseTag= */ TagB
, /* SubobjectTag= */ TagA
,
693 CommonType
, GenericTag
, MayAlias
))
696 // Otherwise, we've proved there's no alias.
698 *GenericTag
= createAccessTag(CommonType
);
702 /// Aliases - Test whether the access represented by tag A may alias the
703 /// access represented by tag B.
704 bool TypeBasedAAResult::Aliases(const MDNode
*A
, const MDNode
*B
) const {
705 return matchAccessTags(A
, B
);
708 bool TypeBasedAAResult::shouldUseTBAA() const {
709 return EnableTBAA
&& !UsingTypeSanitizer
;
712 AnalysisKey
TypeBasedAA::Key
;
714 TypeBasedAAResult
TypeBasedAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
715 return TypeBasedAAResult(F
.hasFnAttribute(Attribute::SanitizeType
));
718 char TypeBasedAAWrapperPass::ID
= 0;
719 INITIALIZE_PASS(TypeBasedAAWrapperPass
, "tbaa", "Type-Based Alias Analysis",
722 ImmutablePass
*llvm::createTypeBasedAAWrapperPass() {
723 return new TypeBasedAAWrapperPass();
726 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID
) {
727 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
730 bool TypeBasedAAWrapperPass::doInitialization(Module
&M
) {
731 Result
.reset(new TypeBasedAAResult(/*UsingTypeSanitizer=*/false));
735 bool TypeBasedAAWrapperPass::doFinalization(Module
&M
) {
740 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
741 AU
.setPreservesAll();
744 MDNode
*AAMDNodes::shiftTBAA(MDNode
*MD
, size_t Offset
) {
745 // Fast path if there's no offset
748 // Fast path if there's no path tbaa node (and thus scalar)
749 if (!isStructPathTBAA(MD
))
752 // The correct behavior here is to add the offset into the TBAA
753 // struct node offset. The base type, however may not have defined
754 // a type at this additional offset, resulting in errors. Since
755 // this method is only used within a given load/store access
756 // the offset provided is only used to subdivide the previous load
757 // maintaining the validity of the previous TBAA.
759 // This, however, should be revisited in the future.
763 MDNode
*AAMDNodes::shiftTBAAStruct(MDNode
*MD
, size_t Offset
) {
764 // Fast path if there's no offset
767 SmallVector
<Metadata
*, 3> Sub
;
768 for (size_t i
= 0, size
= MD
->getNumOperands(); i
< size
; i
+= 3) {
769 ConstantInt
*InnerOffset
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
770 ConstantInt
*InnerSize
=
771 mdconst::extract
<ConstantInt
>(MD
->getOperand(i
+ 1));
772 // Don't include any triples that aren't in bounds
773 if (InnerOffset
->getZExtValue() + InnerSize
->getZExtValue() <= Offset
)
776 uint64_t NewSize
= InnerSize
->getZExtValue();
777 uint64_t NewOffset
= InnerOffset
->getZExtValue() - Offset
;
778 if (InnerOffset
->getZExtValue() < Offset
) {
780 NewSize
-= Offset
- InnerOffset
->getZExtValue();
783 // Shift the offset of the triple
784 Sub
.push_back(ConstantAsMetadata::get(
785 ConstantInt::get(InnerOffset
->getType(), NewOffset
)));
786 Sub
.push_back(ConstantAsMetadata::get(
787 ConstantInt::get(InnerSize
->getType(), NewSize
)));
788 Sub
.push_back(MD
->getOperand(i
+ 2));
790 return MDNode::get(MD
->getContext(), Sub
);
793 MDNode
*AAMDNodes::extendToTBAA(MDNode
*MD
, ssize_t Len
) {
794 // Fast path if 0-length
798 // Regular TBAA is invariant of length, so we only need to consider
800 if (!isStructPathTBAA(MD
))
803 TBAAStructTagNode
Tag(MD
);
805 // Only new format TBAA has a size
806 if (!Tag
.isNewFormat())
809 // If unknown size, drop the TBAA.
813 // Otherwise, create TBAA with the new Len
814 ArrayRef
<MDOperand
> MDOperands
= MD
->operands();
815 SmallVector
<Metadata
*, 4> NextNodes(MDOperands
);
816 ConstantInt
*PreviousSize
= mdconst::extract
<ConstantInt
>(NextNodes
[3]);
818 // Don't create a new MDNode if it is the same length.
819 if (PreviousSize
->equalsInt(Len
))
823 ConstantAsMetadata::get(ConstantInt::get(PreviousSize
->getType(), Len
));
824 return MDNode::get(MD
->getContext(), NextNodes
);
827 AAMDNodes
AAMDNodes::adjustForAccess(unsigned AccessSize
) {
828 AAMDNodes New
= *this;
829 MDNode
*M
= New
.TBAAStruct
;
830 if (!New
.TBAA
&& M
&& M
->getNumOperands() >= 3 && M
->getOperand(0) &&
831 mdconst::hasa
<ConstantInt
>(M
->getOperand(0)) &&
832 mdconst::extract
<ConstantInt
>(M
->getOperand(0))->isZero() &&
833 M
->getOperand(1) && mdconst::hasa
<ConstantInt
>(M
->getOperand(1)) &&
834 mdconst::extract
<ConstantInt
>(M
->getOperand(1))->getValue() ==
836 M
->getOperand(2) && isa
<MDNode
>(M
->getOperand(2)))
837 New
.TBAA
= cast
<MDNode
>(M
->getOperand(2));
839 New
.TBAAStruct
= nullptr;
843 AAMDNodes
AAMDNodes::adjustForAccess(size_t Offset
, Type
*AccessTy
,
844 const DataLayout
&DL
) {
845 AAMDNodes New
= shift(Offset
);
846 if (!DL
.typeSizeEqualsStoreSize(AccessTy
))
848 TypeSize Size
= DL
.getTypeStoreSize(AccessTy
);
849 if (Size
.isScalable())
852 return New
.adjustForAccess(Size
.getKnownMinValue());
855 AAMDNodes
AAMDNodes::adjustForAccess(size_t Offset
, unsigned AccessSize
) {
856 AAMDNodes New
= shift(Offset
);
857 return New
.adjustForAccess(AccessSize
);