[IRBuilder] Add Align argument for CreateMaskedExpandLoad and CreateMaskedCompressSto...
[llvm-project.git] / llvm / lib / Bitcode / Reader / BitcodeReader.cpp
blob56f5ff4b20e5dbf89e2a8e993aa208cd1f84ee94
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
93 using namespace llvm;
95 static cl::opt<bool> PrintSummaryGUIDs(
96 "print-summary-global-ids", cl::init(false), cl::Hidden,
97 cl::desc(
98 "Print the global id for each value when reading the module summary"));
100 static cl::opt<bool> ExpandConstantExprs(
101 "expand-constant-exprs", cl::Hidden,
102 cl::desc(
103 "Expand constant expressions to instructions for testing purposes"));
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111 cl::desc("Load bitcode directly into the new debug info format (regardless "
112 "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
118 namespace {
120 enum {
121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
124 } // end anonymous namespace
126 static Error error(const Twine &Message) {
127 return make_error<StringError>(
128 Message, make_error_code(BitcodeError::CorruptedBitcode));
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132 if (!Stream.canSkipToPos(4))
133 return createStringError(std::errc::illegal_byte_sequence,
134 "file too small to contain bitcode header");
135 for (unsigned C : {'B', 'C'})
136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137 if (Res.get() != C)
138 return createStringError(std::errc::illegal_byte_sequence,
139 "file doesn't start with bitcode header");
140 } else
141 return Res.takeError();
142 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144 if (Res.get() != C)
145 return createStringError(std::errc::illegal_byte_sequence,
146 "file doesn't start with bitcode header");
147 } else
148 return Res.takeError();
149 return Error::success();
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
156 if (Buffer.getBufferSize() & 3)
157 return error("Invalid bitcode signature");
159 // If we have a wrapper header, parse it and ignore the non-bc file contents.
160 // The magic number is 0x0B17C0DE stored in little endian.
161 if (isBitcodeWrapper(BufPtr, BufEnd))
162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163 return error("Invalid bitcode wrapper header");
165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166 if (Error Err = hasInvalidBitcodeHeader(Stream))
167 return std::move(Err);
169 return std::move(Stream);
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175 StrTy &Result) {
176 if (Idx > Record.size())
177 return true;
179 Result.append(Record.begin() + Idx, Record.end());
180 return false;
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185 for (auto &F : *M) {
186 if (F.isMaterializable())
187 continue;
188 for (auto &I : instructions(F))
189 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197 return std::move(Err);
199 // Read all the records.
200 SmallVector<uint64_t, 64> Record;
202 std::string ProducerIdentification;
204 while (true) {
205 BitstreamEntry Entry;
206 if (Error E = Stream.advance().moveInto(Entry))
207 return std::move(E);
209 switch (Entry.Kind) {
210 default:
211 case BitstreamEntry::Error:
212 return error("Malformed block");
213 case BitstreamEntry::EndBlock:
214 return ProducerIdentification;
215 case BitstreamEntry::Record:
216 // The interesting case.
217 break;
220 // Read a record.
221 Record.clear();
222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223 if (!MaybeBitCode)
224 return MaybeBitCode.takeError();
225 switch (MaybeBitCode.get()) {
226 default: // Default behavior: reject
227 return error("Invalid value");
228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229 convertToString(Record, 0, ProducerIdentification);
230 break;
231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232 unsigned epoch = (unsigned)Record[0];
233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234 return error(
235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244 // We expect a number of well-defined blocks, though we don't necessarily
245 // need to understand them all.
246 while (true) {
247 if (Stream.AtEndOfStream())
248 return "";
250 BitstreamEntry Entry;
251 if (Error E = Stream.advance().moveInto(Entry))
252 return std::move(E);
254 switch (Entry.Kind) {
255 case BitstreamEntry::EndBlock:
256 case BitstreamEntry::Error:
257 return error("Malformed block");
259 case BitstreamEntry::SubBlock:
260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261 return readIdentificationBlock(Stream);
263 // Ignore other sub-blocks.
264 if (Error Err = Stream.SkipBlock())
265 return std::move(Err);
266 continue;
267 case BitstreamEntry::Record:
268 if (Error E = Stream.skipRecord(Entry.ID).takeError())
269 return std::move(E);
270 continue;
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277 return std::move(Err);
279 SmallVector<uint64_t, 64> Record;
280 // Read all the records for this module.
282 while (true) {
283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284 if (!MaybeEntry)
285 return MaybeEntry.takeError();
286 BitstreamEntry Entry = MaybeEntry.get();
288 switch (Entry.Kind) {
289 case BitstreamEntry::SubBlock: // Handled for us already.
290 case BitstreamEntry::Error:
291 return error("Malformed block");
292 case BitstreamEntry::EndBlock:
293 return false;
294 case BitstreamEntry::Record:
295 // The interesting case.
296 break;
299 // Read a record.
300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301 if (!MaybeRecord)
302 return MaybeRecord.takeError();
303 switch (MaybeRecord.get()) {
304 default:
305 break; // Default behavior, ignore unknown content.
306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307 std::string S;
308 if (convertToString(Record, 0, S))
309 return error("Invalid section name record");
310 // Check for the i386 and other (x86_64, ARM) conventions
311 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312 S.find("__OBJC,__category") != std::string::npos ||
313 S.find("__TEXT,__swift") != std::string::npos)
314 return true;
315 break;
318 Record.clear();
320 llvm_unreachable("Exit infinite loop");
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324 // We expect a number of well-defined blocks, though we don't necessarily
325 // need to understand them all.
326 while (true) {
327 BitstreamEntry Entry;
328 if (Error E = Stream.advance().moveInto(Entry))
329 return std::move(E);
331 switch (Entry.Kind) {
332 case BitstreamEntry::Error:
333 return error("Malformed block");
334 case BitstreamEntry::EndBlock:
335 return false;
337 case BitstreamEntry::SubBlock:
338 if (Entry.ID == bitc::MODULE_BLOCK_ID)
339 return hasObjCCategoryInModule(Stream);
341 // Ignore other sub-blocks.
342 if (Error Err = Stream.SkipBlock())
343 return std::move(Err);
344 continue;
346 case BitstreamEntry::Record:
347 if (Error E = Stream.skipRecord(Entry.ID).takeError())
348 return std::move(E);
349 continue;
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356 return std::move(Err);
358 SmallVector<uint64_t, 64> Record;
360 std::string Triple;
362 // Read all the records for this module.
363 while (true) {
364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365 if (!MaybeEntry)
366 return MaybeEntry.takeError();
367 BitstreamEntry Entry = MaybeEntry.get();
369 switch (Entry.Kind) {
370 case BitstreamEntry::SubBlock: // Handled for us already.
371 case BitstreamEntry::Error:
372 return error("Malformed block");
373 case BitstreamEntry::EndBlock:
374 return Triple;
375 case BitstreamEntry::Record:
376 // The interesting case.
377 break;
380 // Read a record.
381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382 if (!MaybeRecord)
383 return MaybeRecord.takeError();
384 switch (MaybeRecord.get()) {
385 default: break; // Default behavior, ignore unknown content.
386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
387 std::string S;
388 if (convertToString(Record, 0, S))
389 return error("Invalid triple record");
390 Triple = S;
391 break;
394 Record.clear();
396 llvm_unreachable("Exit infinite loop");
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400 // We expect a number of well-defined blocks, though we don't necessarily
401 // need to understand them all.
402 while (true) {
403 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404 if (!MaybeEntry)
405 return MaybeEntry.takeError();
406 BitstreamEntry Entry = MaybeEntry.get();
408 switch (Entry.Kind) {
409 case BitstreamEntry::Error:
410 return error("Malformed block");
411 case BitstreamEntry::EndBlock:
412 return "";
414 case BitstreamEntry::SubBlock:
415 if (Entry.ID == bitc::MODULE_BLOCK_ID)
416 return readModuleTriple(Stream);
418 // Ignore other sub-blocks.
419 if (Error Err = Stream.SkipBlock())
420 return std::move(Err);
421 continue;
423 case BitstreamEntry::Record:
424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425 continue;
426 else
427 return Skipped.takeError();
432 namespace {
434 class BitcodeReaderBase {
435 protected:
436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437 : Stream(std::move(Stream)), Strtab(Strtab) {
438 this->Stream.setBlockInfo(&BlockInfo);
441 BitstreamBlockInfo BlockInfo;
442 BitstreamCursor Stream;
443 StringRef Strtab;
445 /// In version 2 of the bitcode we store names of global values and comdats in
446 /// a string table rather than in the VST.
447 bool UseStrtab = false;
449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
451 /// If this module uses a string table, pop the reference to the string table
452 /// and return the referenced string and the rest of the record. Otherwise
453 /// just return the record itself.
454 std::pair<StringRef, ArrayRef<uint64_t>>
455 readNameFromStrtab(ArrayRef<uint64_t> Record);
457 Error readBlockInfo();
459 // Contains an arbitrary and optional string identifying the bitcode producer
460 std::string ProducerIdentification;
462 Error error(const Twine &Message);
465 } // end anonymous namespace
467 Error BitcodeReaderBase::error(const Twine &Message) {
468 std::string FullMsg = Message.str();
469 if (!ProducerIdentification.empty())
470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471 LLVM_VERSION_STRING "')";
472 return ::error(FullMsg);
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477 if (Record.empty())
478 return error("Invalid version record");
479 unsigned ModuleVersion = Record[0];
480 if (ModuleVersion > 2)
481 return error("Invalid value");
482 UseStrtab = ModuleVersion >= 2;
483 return ModuleVersion;
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488 if (!UseStrtab)
489 return {"", Record};
490 // Invalid reference. Let the caller complain about the record being empty.
491 if (Record[0] + Record[1] > Strtab.size())
492 return {"", {}};
493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
496 namespace {
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505 TrailingObjects<BitcodeConstant, unsigned> {
506 friend TrailingObjects;
508 // Value subclass ID: Pick largest possible value to avoid any clashes.
509 static constexpr uint8_t SubclassID = 255;
511 public:
512 // Opcodes used for non-expressions. This includes constant aggregates
513 // (struct, array, vector) that might need expansion, as well as non-leaf
514 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515 // but still go through BitcodeConstant to avoid different uselist orders
516 // between the two cases.
517 static constexpr uint8_t ConstantStructOpcode = 255;
518 static constexpr uint8_t ConstantArrayOpcode = 254;
519 static constexpr uint8_t ConstantVectorOpcode = 253;
520 static constexpr uint8_t NoCFIOpcode = 252;
521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522 static constexpr uint8_t BlockAddressOpcode = 250;
523 static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
526 // Separate struct to make passing different number of parameters to
527 // BitcodeConstant::create() more convenient.
528 struct ExtraInfo {
529 uint8_t Opcode;
530 uint8_t Flags;
531 unsigned BlockAddressBB = 0;
532 Type *SrcElemTy = nullptr;
533 std::optional<ConstantRange> InRange;
535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536 std::optional<ConstantRange> InRange = std::nullopt)
537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538 InRange(std::move(InRange)) {}
540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
544 uint8_t Opcode;
545 uint8_t Flags;
546 unsigned NumOperands;
547 unsigned BlockAddressBB;
548 Type *SrcElemTy; // GEP source element type.
549 std::optional<ConstantRange> InRange; // GEP inrange attribute.
551 private:
552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557 getTrailingObjects<unsigned>());
560 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
562 public:
563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564 const ExtraInfo &Info,
565 ArrayRef<unsigned> OpIDs) {
566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567 alignof(BitcodeConstant));
568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
573 ArrayRef<unsigned> getOperandIDs() const {
574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
577 std::optional<ConstantRange> getInRange() const {
578 assert(Opcode == Instruction::GetElementPtr);
579 return InRange;
582 const char *getOpcodeName() const {
583 return Instruction::getOpcodeName(Opcode);
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588 LLVMContext &Context;
589 Module *TheModule = nullptr;
590 // Next offset to start scanning for lazy parsing of function bodies.
591 uint64_t NextUnreadBit = 0;
592 // Last function offset found in the VST.
593 uint64_t LastFunctionBlockBit = 0;
594 bool SeenValueSymbolTable = false;
595 uint64_t VSTOffset = 0;
597 std::vector<std::string> SectionTable;
598 std::vector<std::string> GCTable;
600 std::vector<Type *> TypeList;
601 /// Track type IDs of contained types. Order is the same as the contained
602 /// types of a Type*. This is used during upgrades of typed pointer IR in
603 /// opaque pointer mode.
604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605 /// In some cases, we need to create a type ID for a type that was not
606 /// explicitly encoded in the bitcode, or we don't know about at the current
607 /// point. For example, a global may explicitly encode the value type ID, but
608 /// not have a type ID for the pointer to value type, for which we create a
609 /// virtual type ID instead. This map stores the new type ID that was created
610 /// for the given pair of Type and contained type ID.
611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612 DenseMap<Function *, unsigned> FunctionTypeIDs;
613 /// Allocator for BitcodeConstants. This should come before ValueList,
614 /// because the ValueList might hold ValueHandles to these constants, so
615 /// ValueList must be destroyed before Alloc.
616 BumpPtrAllocator Alloc;
617 BitcodeReaderValueList ValueList;
618 std::optional<MetadataLoader> MDLoader;
619 std::vector<Comdat *> ComdatList;
620 DenseSet<GlobalObject *> ImplicitComdatObjects;
621 SmallVector<Instruction *, 64> InstructionList;
623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
626 struct FunctionOperandInfo {
627 Function *F;
628 unsigned PersonalityFn;
629 unsigned Prefix;
630 unsigned Prologue;
632 std::vector<FunctionOperandInfo> FunctionOperands;
634 /// The set of attributes by index. Index zero in the file is for null, and
635 /// is thus not represented here. As such all indices are off by one.
636 std::vector<AttributeList> MAttributes;
638 /// The set of attribute groups.
639 std::map<unsigned, AttributeList> MAttributeGroups;
641 /// While parsing a function body, this is a list of the basic blocks for the
642 /// function.
643 std::vector<BasicBlock*> FunctionBBs;
645 // When reading the module header, this list is populated with functions that
646 // have bodies later in the file.
647 std::vector<Function*> FunctionsWithBodies;
649 // When intrinsic functions are encountered which require upgrading they are
650 // stored here with their replacement function.
651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652 UpdatedIntrinsicMap UpgradedIntrinsics;
654 // Several operations happen after the module header has been read, but
655 // before function bodies are processed. This keeps track of whether
656 // we've done this yet.
657 bool SeenFirstFunctionBody = false;
659 /// When function bodies are initially scanned, this map contains info about
660 /// where to find deferred function body in the stream.
661 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
663 /// When Metadata block is initially scanned when parsing the module, we may
664 /// choose to defer parsing of the metadata. This vector contains info about
665 /// which Metadata blocks are deferred.
666 std::vector<uint64_t> DeferredMetadataInfo;
668 /// These are basic blocks forward-referenced by block addresses. They are
669 /// inserted lazily into functions when they're loaded. The basic block ID is
670 /// its index into the vector.
671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672 std::deque<Function *> BasicBlockFwdRefQueue;
674 /// These are Functions that contain BlockAddresses which refer a different
675 /// Function. When parsing the different Function, queue Functions that refer
676 /// to the different Function. Those Functions must be materialized in order
677 /// to resolve their BlockAddress constants before the different Function
678 /// gets moved into another Module.
679 std::vector<Function *> BackwardRefFunctions;
681 /// Indicates that we are using a new encoding for instruction operands where
682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683 /// instruction number, for a more compact encoding. Some instruction
684 /// operands are not relative to the instruction ID: basic block numbers, and
685 /// types. Once the old style function blocks have been phased out, we would
686 /// not need this flag.
687 bool UseRelativeIDs = false;
689 /// True if all functions will be materialized, negating the need to process
690 /// (e.g.) blockaddress forward references.
691 bool WillMaterializeAllForwardRefs = false;
693 /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694 /// seeing both in a single module is currently a fatal error.
695 bool SeenDebugIntrinsic = false;
696 bool SeenDebugRecord = false;
698 bool StripDebugInfo = false;
699 TBAAVerifier TBAAVerifyHelper;
701 std::vector<std::string> BundleTags;
702 SmallVector<SyncScope::ID, 8> SSIDs;
704 std::optional<ValueTypeCallbackTy> ValueTypeCallback;
706 public:
707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708 StringRef ProducerIdentification, LLVMContext &Context);
710 Error materializeForwardReferencedFunctions();
712 Error materialize(GlobalValue *GV) override;
713 Error materializeModule() override;
714 std::vector<StructType *> getIdentifiedStructTypes() const override;
716 /// Main interface to parsing a bitcode buffer.
717 /// \returns true if an error occurred.
718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719 bool IsImporting, ParserCallbacks Callbacks = {});
721 static uint64_t decodeSignRotatedValue(uint64_t V);
723 /// Materialize any deferred Metadata block.
724 Error materializeMetadata() override;
726 void setStripDebugInfo() override;
728 private:
729 std::vector<StructType *> IdentifiedStructTypes;
730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731 StructType *createIdentifiedStructType(LLVMContext &Context);
733 static constexpr unsigned InvalidTypeID = ~0u;
735 Type *getTypeByID(unsigned ID);
736 Type *getPtrElementTypeByID(unsigned ID);
737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
740 void callValueTypeCallback(Value *F, unsigned TypeID);
741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742 Expected<Constant *> getValueForInitializer(unsigned ID);
744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745 BasicBlock *ConstExprInsertBB) {
746 if (Ty && Ty->isMetadataTy())
747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
751 Metadata *getFnMetadataByID(unsigned ID) {
752 return MDLoader->getMetadataFwdRefOrLoad(ID);
755 BasicBlock *getBasicBlock(unsigned ID) const {
756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757 return FunctionBBs[ID];
760 AttributeList getAttributes(unsigned i) const {
761 if (i-1 < MAttributes.size())
762 return MAttributes[i-1];
763 return AttributeList();
766 /// Read a value/type pair out of the specified record from slot 'Slot'.
767 /// Increment Slot past the number of slots used in the record. Return true on
768 /// failure.
769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771 BasicBlock *ConstExprInsertBB) {
772 if (Slot == Record.size()) return true;
773 unsigned ValNo = (unsigned)Record[Slot++];
774 // Adjust the ValNo, if it was encoded relative to the InstNum.
775 if (UseRelativeIDs)
776 ValNo = InstNum - ValNo;
777 if (ValNo < InstNum) {
778 // If this is not a forward reference, just return the value we already
779 // have.
780 TypeID = ValueList.getTypeID(ValNo);
781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783 "Incorrect type ID stored for value");
784 return ResVal == nullptr;
786 if (Slot == Record.size())
787 return true;
789 TypeID = (unsigned)Record[Slot++];
790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791 ConstExprInsertBB);
792 return ResVal == nullptr;
795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record,
796 unsigned &Slot, unsigned InstNum, Value *&ResVal,
797 BasicBlock *ConstExprInsertBB) {
798 if (Slot == Record.size())
799 return true;
800 unsigned ValID = Record[Slot++];
801 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) {
802 unsigned TypeId;
803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId,
804 ConstExprInsertBB);
806 if (Slot == Record.size())
807 return true;
808 unsigned ValNo = InstNum - (unsigned)Record[Slot++];
809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo));
810 return false;
813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
814 /// past the number of slots used by the value in the record. Return true if
815 /// there is an error.
816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
818 BasicBlock *ConstExprInsertBB) {
819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
820 return true;
821 // All values currently take a single record slot.
822 ++Slot;
823 return false;
826 /// Like popValue, but does not increment the Slot number.
827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
829 BasicBlock *ConstExprInsertBB) {
830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
831 return ResVal == nullptr;
834 /// Version of getValue that returns ResVal directly, or 0 if there is an
835 /// error.
836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
837 unsigned InstNum, Type *Ty, unsigned TyID,
838 BasicBlock *ConstExprInsertBB) {
839 if (Slot == Record.size()) return nullptr;
840 unsigned ValNo = (unsigned)Record[Slot];
841 // Adjust the ValNo, if it was encoded relative to the InstNum.
842 if (UseRelativeIDs)
843 ValNo = InstNum - ValNo;
844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
847 /// Like getValue, but decodes signed VBRs.
848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
849 unsigned InstNum, Type *Ty, unsigned TyID,
850 BasicBlock *ConstExprInsertBB) {
851 if (Slot == Record.size()) return nullptr;
852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
853 // Adjust the ValNo, if it was encoded relative to the InstNum.
854 if (UseRelativeIDs)
855 ValNo = InstNum - ValNo;
856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
860 unsigned &OpNum,
861 unsigned BitWidth) {
862 if (Record.size() - OpNum < 2)
863 return error("Too few records for range");
864 if (BitWidth > 64) {
865 unsigned LowerActiveWords = Record[OpNum];
866 unsigned UpperActiveWords = Record[OpNum++] >> 32;
867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
868 return error("Too few records for range");
869 APInt Lower =
870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
871 OpNum += LowerActiveWords;
872 APInt Upper =
873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
874 OpNum += UpperActiveWords;
875 return ConstantRange(Lower, Upper);
876 } else {
877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
879 return ConstantRange(APInt(BitWidth, Start, true),
880 APInt(BitWidth, End, true));
884 Expected<ConstantRange>
885 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
886 if (Record.size() - OpNum < 1)
887 return error("Too few records for range");
888 unsigned BitWidth = Record[OpNum++];
889 return readConstantRange(Record, OpNum, BitWidth);
892 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
893 /// corresponding argument's pointee type. Also upgrades intrinsics that now
894 /// require an elementtype attribute.
895 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
897 /// Converts alignment exponent (i.e. power of two (or zero)) to the
898 /// corresponding alignment to use. If alignment is too large, returns
899 /// a corresponding error code.
900 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
901 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
902 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
903 ParserCallbacks Callbacks = {});
905 Error parseComdatRecord(ArrayRef<uint64_t> Record);
906 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
907 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
908 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
909 ArrayRef<uint64_t> Record);
911 Error parseAttributeBlock();
912 Error parseAttributeGroupBlock();
913 Error parseTypeTable();
914 Error parseTypeTableBody();
915 Error parseOperandBundleTags();
916 Error parseSyncScopeNames();
918 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
919 unsigned NameIndex, Triple &TT);
920 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
921 ArrayRef<uint64_t> Record);
922 Error parseValueSymbolTable(uint64_t Offset = 0);
923 Error parseGlobalValueSymbolTable();
924 Error parseConstants();
925 Error rememberAndSkipFunctionBodies();
926 Error rememberAndSkipFunctionBody();
927 /// Save the positions of the Metadata blocks and skip parsing the blocks.
928 Error rememberAndSkipMetadata();
929 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
930 Error parseFunctionBody(Function *F);
931 Error globalCleanup();
932 Error resolveGlobalAndIndirectSymbolInits();
933 Error parseUseLists();
934 Error findFunctionInStream(
935 Function *F,
936 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
938 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
941 /// Class to manage reading and parsing function summary index bitcode
942 /// files/sections.
943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
944 /// The module index built during parsing.
945 ModuleSummaryIndex &TheIndex;
947 /// Indicates whether we have encountered a global value summary section
948 /// yet during parsing.
949 bool SeenGlobalValSummary = false;
951 /// Indicates whether we have already parsed the VST, used for error checking.
952 bool SeenValueSymbolTable = false;
954 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
955 /// Used to enable on-demand parsing of the VST.
956 uint64_t VSTOffset = 0;
958 // Map to save ValueId to ValueInfo association that was recorded in the
959 // ValueSymbolTable. It is used after the VST is parsed to convert
960 // call graph edges read from the function summary from referencing
961 // callees by their ValueId to using the ValueInfo instead, which is how
962 // they are recorded in the summary index being built.
963 // We save a GUID which refers to the same global as the ValueInfo, but
964 // ignoring the linkage, i.e. for values other than local linkage they are
965 // identical (this is the second member). ValueInfo has the real GUID.
966 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
967 ValueIdToValueInfoMap;
969 /// Map populated during module path string table parsing, from the
970 /// module ID to a string reference owned by the index's module
971 /// path string table, used to correlate with combined index
972 /// summary records.
973 DenseMap<uint64_t, StringRef> ModuleIdMap;
975 /// Original source file name recorded in a bitcode record.
976 std::string SourceFileName;
978 /// The string identifier given to this module by the client, normally the
979 /// path to the bitcode file.
980 StringRef ModulePath;
982 /// Callback to ask whether a symbol is the prevailing copy when invoked
983 /// during combined index building.
984 std::function<bool(GlobalValue::GUID)> IsPrevailing;
986 /// Saves the stack ids from the STACK_IDS record to consult when adding stack
987 /// ids from the lists in the callsite and alloc entries to the index.
988 std::vector<uint64_t> StackIds;
990 /// Linearized radix tree of allocation contexts. See the description above
991 /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format.
992 std::vector<uint64_t> RadixArray;
994 public:
995 ModuleSummaryIndexBitcodeReader(
996 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
997 StringRef ModulePath,
998 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
1000 Error parseModule();
1002 private:
1003 void setValueGUID(uint64_t ValueID, StringRef ValueName,
1004 GlobalValue::LinkageTypes Linkage,
1005 StringRef SourceFileName);
1006 Error parseValueSymbolTable(
1007 uint64_t Offset,
1008 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
1009 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
1010 SmallVector<FunctionSummary::EdgeTy, 0>
1011 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
1012 bool HasProfile, bool HasRelBF);
1013 Error parseEntireSummary(unsigned ID);
1014 Error parseModuleStringTable();
1015 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
1016 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
1017 TypeIdCompatibleVtableInfo &TypeId);
1018 std::vector<FunctionSummary::ParamAccess>
1019 parseParamAccesses(ArrayRef<uint64_t> Record);
1020 SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record,
1021 unsigned &I);
1023 template <bool AllowNullValueInfo = false>
1024 std::pair<ValueInfo, GlobalValue::GUID>
1025 getValueInfoFromValueId(unsigned ValueId);
1027 void addThisModule();
1028 ModuleSummaryIndex::ModuleInfo *getThisModule();
1031 } // end anonymous namespace
1033 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1034 Error Err) {
1035 if (Err) {
1036 std::error_code EC;
1037 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1038 EC = EIB.convertToErrorCode();
1039 Ctx.emitError(EIB.message());
1041 return EC;
1043 return std::error_code();
1046 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1047 StringRef ProducerIdentification,
1048 LLVMContext &Context)
1049 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1050 ValueList(this->Stream.SizeInBytes(),
1051 [this](unsigned ValID, BasicBlock *InsertBB) {
1052 return materializeValue(ValID, InsertBB);
1053 }) {
1054 this->ProducerIdentification = std::string(ProducerIdentification);
1057 Error BitcodeReader::materializeForwardReferencedFunctions() {
1058 if (WillMaterializeAllForwardRefs)
1059 return Error::success();
1061 // Prevent recursion.
1062 WillMaterializeAllForwardRefs = true;
1064 while (!BasicBlockFwdRefQueue.empty()) {
1065 Function *F = BasicBlockFwdRefQueue.front();
1066 BasicBlockFwdRefQueue.pop_front();
1067 assert(F && "Expected valid function");
1068 if (!BasicBlockFwdRefs.count(F))
1069 // Already materialized.
1070 continue;
1072 // Check for a function that isn't materializable to prevent an infinite
1073 // loop. When parsing a blockaddress stored in a global variable, there
1074 // isn't a trivial way to check if a function will have a body without a
1075 // linear search through FunctionsWithBodies, so just check it here.
1076 if (!F->isMaterializable())
1077 return error("Never resolved function from blockaddress");
1079 // Try to materialize F.
1080 if (Error Err = materialize(F))
1081 return Err;
1083 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1085 for (Function *F : BackwardRefFunctions)
1086 if (Error Err = materialize(F))
1087 return Err;
1088 BackwardRefFunctions.clear();
1090 // Reset state.
1091 WillMaterializeAllForwardRefs = false;
1092 return Error::success();
1095 //===----------------------------------------------------------------------===//
1096 // Helper functions to implement forward reference resolution, etc.
1097 //===----------------------------------------------------------------------===//
1099 static bool hasImplicitComdat(size_t Val) {
1100 switch (Val) {
1101 default:
1102 return false;
1103 case 1: // Old WeakAnyLinkage
1104 case 4: // Old LinkOnceAnyLinkage
1105 case 10: // Old WeakODRLinkage
1106 case 11: // Old LinkOnceODRLinkage
1107 return true;
1111 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1112 switch (Val) {
1113 default: // Map unknown/new linkages to external
1114 case 0:
1115 return GlobalValue::ExternalLinkage;
1116 case 2:
1117 return GlobalValue::AppendingLinkage;
1118 case 3:
1119 return GlobalValue::InternalLinkage;
1120 case 5:
1121 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1122 case 6:
1123 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1124 case 7:
1125 return GlobalValue::ExternalWeakLinkage;
1126 case 8:
1127 return GlobalValue::CommonLinkage;
1128 case 9:
1129 return GlobalValue::PrivateLinkage;
1130 case 12:
1131 return GlobalValue::AvailableExternallyLinkage;
1132 case 13:
1133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1134 case 14:
1135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1136 case 15:
1137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1138 case 1: // Old value with implicit comdat.
1139 case 16:
1140 return GlobalValue::WeakAnyLinkage;
1141 case 10: // Old value with implicit comdat.
1142 case 17:
1143 return GlobalValue::WeakODRLinkage;
1144 case 4: // Old value with implicit comdat.
1145 case 18:
1146 return GlobalValue::LinkOnceAnyLinkage;
1147 case 11: // Old value with implicit comdat.
1148 case 19:
1149 return GlobalValue::LinkOnceODRLinkage;
1153 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1154 FunctionSummary::FFlags Flags;
1155 Flags.ReadNone = RawFlags & 0x1;
1156 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1157 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1158 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1159 Flags.NoInline = (RawFlags >> 4) & 0x1;
1160 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1161 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1162 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1163 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1164 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1165 return Flags;
1168 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1170 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1171 // visibility: [8, 10).
1172 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1173 uint64_t Version) {
1174 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1175 // like getDecodedLinkage() above. Any future change to the linkage enum and
1176 // to getDecodedLinkage() will need to be taken into account here as above.
1177 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1178 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1179 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit
1180 RawFlags = RawFlags >> 4;
1181 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1182 // The Live flag wasn't introduced until version 3. For dead stripping
1183 // to work correctly on earlier versions, we must conservatively treat all
1184 // values as live.
1185 bool Live = (RawFlags & 0x2) || Version < 3;
1186 bool Local = (RawFlags & 0x4);
1187 bool AutoHide = (RawFlags & 0x8);
1189 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1190 Live, Local, AutoHide, IK);
1193 // Decode the flags for GlobalVariable in the summary
1194 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1195 return GlobalVarSummary::GVarFlags(
1196 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1197 (RawFlags & 0x4) ? true : false,
1198 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1201 static std::pair<CalleeInfo::HotnessType, bool>
1202 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1203 CalleeInfo::HotnessType Hotness =
1204 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1205 bool HasTailCall = (RawFlags & 0x8); // 1 bit
1206 return {Hotness, HasTailCall};
1209 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1210 bool &HasTailCall) {
1211 static constexpr uint64_t RelBlockFreqMask =
1212 (1 << CalleeInfo::RelBlockFreqBits) - 1;
1213 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1214 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1217 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1218 switch (Val) {
1219 default: // Map unknown visibilities to default.
1220 case 0: return GlobalValue::DefaultVisibility;
1221 case 1: return GlobalValue::HiddenVisibility;
1222 case 2: return GlobalValue::ProtectedVisibility;
1226 static GlobalValue::DLLStorageClassTypes
1227 getDecodedDLLStorageClass(unsigned Val) {
1228 switch (Val) {
1229 default: // Map unknown values to default.
1230 case 0: return GlobalValue::DefaultStorageClass;
1231 case 1: return GlobalValue::DLLImportStorageClass;
1232 case 2: return GlobalValue::DLLExportStorageClass;
1236 static bool getDecodedDSOLocal(unsigned Val) {
1237 switch(Val) {
1238 default: // Map unknown values to preemptable.
1239 case 0: return false;
1240 case 1: return true;
1244 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1245 switch (Val) {
1246 case 1:
1247 return CodeModel::Tiny;
1248 case 2:
1249 return CodeModel::Small;
1250 case 3:
1251 return CodeModel::Kernel;
1252 case 4:
1253 return CodeModel::Medium;
1254 case 5:
1255 return CodeModel::Large;
1258 return {};
1261 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1262 switch (Val) {
1263 case 0: return GlobalVariable::NotThreadLocal;
1264 default: // Map unknown non-zero value to general dynamic.
1265 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1266 case 2: return GlobalVariable::LocalDynamicTLSModel;
1267 case 3: return GlobalVariable::InitialExecTLSModel;
1268 case 4: return GlobalVariable::LocalExecTLSModel;
1272 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1273 switch (Val) {
1274 default: // Map unknown to UnnamedAddr::None.
1275 case 0: return GlobalVariable::UnnamedAddr::None;
1276 case 1: return GlobalVariable::UnnamedAddr::Global;
1277 case 2: return GlobalVariable::UnnamedAddr::Local;
1281 static int getDecodedCastOpcode(unsigned Val) {
1282 switch (Val) {
1283 default: return -1;
1284 case bitc::CAST_TRUNC : return Instruction::Trunc;
1285 case bitc::CAST_ZEXT : return Instruction::ZExt;
1286 case bitc::CAST_SEXT : return Instruction::SExt;
1287 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1288 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1289 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1290 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1291 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1292 case bitc::CAST_FPEXT : return Instruction::FPExt;
1293 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1294 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1295 case bitc::CAST_BITCAST : return Instruction::BitCast;
1296 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1300 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1301 bool IsFP = Ty->isFPOrFPVectorTy();
1302 // UnOps are only valid for int/fp or vector of int/fp types
1303 if (!IsFP && !Ty->isIntOrIntVectorTy())
1304 return -1;
1306 switch (Val) {
1307 default:
1308 return -1;
1309 case bitc::UNOP_FNEG:
1310 return IsFP ? Instruction::FNeg : -1;
1314 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1315 bool IsFP = Ty->isFPOrFPVectorTy();
1316 // BinOps are only valid for int/fp or vector of int/fp types
1317 if (!IsFP && !Ty->isIntOrIntVectorTy())
1318 return -1;
1320 switch (Val) {
1321 default:
1322 return -1;
1323 case bitc::BINOP_ADD:
1324 return IsFP ? Instruction::FAdd : Instruction::Add;
1325 case bitc::BINOP_SUB:
1326 return IsFP ? Instruction::FSub : Instruction::Sub;
1327 case bitc::BINOP_MUL:
1328 return IsFP ? Instruction::FMul : Instruction::Mul;
1329 case bitc::BINOP_UDIV:
1330 return IsFP ? -1 : Instruction::UDiv;
1331 case bitc::BINOP_SDIV:
1332 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1333 case bitc::BINOP_UREM:
1334 return IsFP ? -1 : Instruction::URem;
1335 case bitc::BINOP_SREM:
1336 return IsFP ? Instruction::FRem : Instruction::SRem;
1337 case bitc::BINOP_SHL:
1338 return IsFP ? -1 : Instruction::Shl;
1339 case bitc::BINOP_LSHR:
1340 return IsFP ? -1 : Instruction::LShr;
1341 case bitc::BINOP_ASHR:
1342 return IsFP ? -1 : Instruction::AShr;
1343 case bitc::BINOP_AND:
1344 return IsFP ? -1 : Instruction::And;
1345 case bitc::BINOP_OR:
1346 return IsFP ? -1 : Instruction::Or;
1347 case bitc::BINOP_XOR:
1348 return IsFP ? -1 : Instruction::Xor;
1352 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1353 switch (Val) {
1354 default: return AtomicRMWInst::BAD_BINOP;
1355 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1356 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1357 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1358 case bitc::RMW_AND: return AtomicRMWInst::And;
1359 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1360 case bitc::RMW_OR: return AtomicRMWInst::Or;
1361 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1362 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1363 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1364 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1365 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1366 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1367 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1368 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1369 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1370 case bitc::RMW_UINC_WRAP:
1371 return AtomicRMWInst::UIncWrap;
1372 case bitc::RMW_UDEC_WRAP:
1373 return AtomicRMWInst::UDecWrap;
1374 case bitc::RMW_USUB_COND:
1375 return AtomicRMWInst::USubCond;
1376 case bitc::RMW_USUB_SAT:
1377 return AtomicRMWInst::USubSat;
1381 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1382 switch (Val) {
1383 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1384 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1385 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1386 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1387 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1388 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1389 default: // Map unknown orderings to sequentially-consistent.
1390 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1394 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1395 switch (Val) {
1396 default: // Map unknown selection kinds to any.
1397 case bitc::COMDAT_SELECTION_KIND_ANY:
1398 return Comdat::Any;
1399 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1400 return Comdat::ExactMatch;
1401 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1402 return Comdat::Largest;
1403 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1404 return Comdat::NoDeduplicate;
1405 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1406 return Comdat::SameSize;
1410 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1411 FastMathFlags FMF;
1412 if (0 != (Val & bitc::UnsafeAlgebra))
1413 FMF.setFast();
1414 if (0 != (Val & bitc::AllowReassoc))
1415 FMF.setAllowReassoc();
1416 if (0 != (Val & bitc::NoNaNs))
1417 FMF.setNoNaNs();
1418 if (0 != (Val & bitc::NoInfs))
1419 FMF.setNoInfs();
1420 if (0 != (Val & bitc::NoSignedZeros))
1421 FMF.setNoSignedZeros();
1422 if (0 != (Val & bitc::AllowReciprocal))
1423 FMF.setAllowReciprocal();
1424 if (0 != (Val & bitc::AllowContract))
1425 FMF.setAllowContract(true);
1426 if (0 != (Val & bitc::ApproxFunc))
1427 FMF.setApproxFunc();
1428 return FMF;
1431 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1432 // A GlobalValue with local linkage cannot have a DLL storage class.
1433 if (GV->hasLocalLinkage())
1434 return;
1435 switch (Val) {
1436 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1437 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1441 Type *BitcodeReader::getTypeByID(unsigned ID) {
1442 // The type table size is always specified correctly.
1443 if (ID >= TypeList.size())
1444 return nullptr;
1446 if (Type *Ty = TypeList[ID])
1447 return Ty;
1449 // If we have a forward reference, the only possible case is when it is to a
1450 // named struct. Just create a placeholder for now.
1451 return TypeList[ID] = createIdentifiedStructType(Context);
1454 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1455 auto It = ContainedTypeIDs.find(ID);
1456 if (It == ContainedTypeIDs.end())
1457 return InvalidTypeID;
1459 if (Idx >= It->second.size())
1460 return InvalidTypeID;
1462 return It->second[Idx];
1465 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1466 if (ID >= TypeList.size())
1467 return nullptr;
1469 Type *Ty = TypeList[ID];
1470 if (!Ty->isPointerTy())
1471 return nullptr;
1473 return getTypeByID(getContainedTypeID(ID, 0));
1476 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1477 ArrayRef<unsigned> ChildTypeIDs) {
1478 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1479 auto CacheKey = std::make_pair(Ty, ChildTypeID);
1480 auto It = VirtualTypeIDs.find(CacheKey);
1481 if (It != VirtualTypeIDs.end()) {
1482 // The cmpxchg return value is the only place we need more than one
1483 // contained type ID, however the second one will always be the same (i1),
1484 // so we don't need to include it in the cache key. This asserts that the
1485 // contained types are indeed as expected and there are no collisions.
1486 assert((ChildTypeIDs.empty() ||
1487 ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1488 "Incorrect cached contained type IDs");
1489 return It->second;
1492 unsigned TypeID = TypeList.size();
1493 TypeList.push_back(Ty);
1494 if (!ChildTypeIDs.empty())
1495 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1496 VirtualTypeIDs.insert({CacheKey, TypeID});
1497 return TypeID;
1500 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1501 GEPNoWrapFlags NW;
1502 if (Flags & (1 << bitc::GEP_INBOUNDS))
1503 NW |= GEPNoWrapFlags::inBounds();
1504 if (Flags & (1 << bitc::GEP_NUSW))
1505 NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1506 if (Flags & (1 << bitc::GEP_NUW))
1507 NW |= GEPNoWrapFlags::noUnsignedWrap();
1508 return NW;
1511 static bool isConstExprSupported(const BitcodeConstant *BC) {
1512 uint8_t Opcode = BC->Opcode;
1514 // These are not real constant expressions, always consider them supported.
1515 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1516 return true;
1518 // If -expand-constant-exprs is set, we want to consider all expressions
1519 // as unsupported.
1520 if (ExpandConstantExprs)
1521 return false;
1523 if (Instruction::isBinaryOp(Opcode))
1524 return ConstantExpr::isSupportedBinOp(Opcode);
1526 if (Instruction::isCast(Opcode))
1527 return ConstantExpr::isSupportedCastOp(Opcode);
1529 if (Opcode == Instruction::GetElementPtr)
1530 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1532 switch (Opcode) {
1533 case Instruction::FNeg:
1534 case Instruction::Select:
1535 case Instruction::ICmp:
1536 case Instruction::FCmp:
1537 return false;
1538 default:
1539 return true;
1543 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1544 BasicBlock *InsertBB) {
1545 // Quickly handle the case where there is no BitcodeConstant to resolve.
1546 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1547 !isa<BitcodeConstant>(ValueList[StartValID]))
1548 return ValueList[StartValID];
1550 SmallDenseMap<unsigned, Value *> MaterializedValues;
1551 SmallVector<unsigned> Worklist;
1552 Worklist.push_back(StartValID);
1553 while (!Worklist.empty()) {
1554 unsigned ValID = Worklist.back();
1555 if (MaterializedValues.count(ValID)) {
1556 // Duplicate expression that was already handled.
1557 Worklist.pop_back();
1558 continue;
1561 if (ValID >= ValueList.size() || !ValueList[ValID])
1562 return error("Invalid value ID");
1564 Value *V = ValueList[ValID];
1565 auto *BC = dyn_cast<BitcodeConstant>(V);
1566 if (!BC) {
1567 MaterializedValues.insert({ValID, V});
1568 Worklist.pop_back();
1569 continue;
1572 // Iterate in reverse, so values will get popped from the worklist in
1573 // expected order.
1574 SmallVector<Value *> Ops;
1575 for (unsigned OpID : reverse(BC->getOperandIDs())) {
1576 auto It = MaterializedValues.find(OpID);
1577 if (It != MaterializedValues.end())
1578 Ops.push_back(It->second);
1579 else
1580 Worklist.push_back(OpID);
1583 // Some expressions have not been resolved yet, handle them first and then
1584 // revisit this one.
1585 if (Ops.size() != BC->getOperandIDs().size())
1586 continue;
1587 std::reverse(Ops.begin(), Ops.end());
1589 SmallVector<Constant *> ConstOps;
1590 for (Value *Op : Ops)
1591 if (auto *C = dyn_cast<Constant>(Op))
1592 ConstOps.push_back(C);
1594 // Materialize as constant expression if possible.
1595 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1596 Constant *C;
1597 if (Instruction::isCast(BC->Opcode)) {
1598 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1599 if (!C)
1600 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1601 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1602 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1603 } else {
1604 switch (BC->Opcode) {
1605 case BitcodeConstant::ConstantPtrAuthOpcode: {
1606 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1607 if (!Key)
1608 return error("ptrauth key operand must be ConstantInt");
1610 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1611 if (!Disc)
1612 return error("ptrauth disc operand must be ConstantInt");
1614 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1615 break;
1617 case BitcodeConstant::NoCFIOpcode: {
1618 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1619 if (!GV)
1620 return error("no_cfi operand must be GlobalValue");
1621 C = NoCFIValue::get(GV);
1622 break;
1624 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1625 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1626 if (!GV)
1627 return error("dso_local operand must be GlobalValue");
1628 C = DSOLocalEquivalent::get(GV);
1629 break;
1631 case BitcodeConstant::BlockAddressOpcode: {
1632 Function *Fn = dyn_cast<Function>(ConstOps[0]);
1633 if (!Fn)
1634 return error("blockaddress operand must be a function");
1636 // If the function is already parsed we can insert the block address
1637 // right away.
1638 BasicBlock *BB;
1639 unsigned BBID = BC->BlockAddressBB;
1640 if (!BBID)
1641 // Invalid reference to entry block.
1642 return error("Invalid ID");
1643 if (!Fn->empty()) {
1644 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1645 for (size_t I = 0, E = BBID; I != E; ++I) {
1646 if (BBI == BBE)
1647 return error("Invalid ID");
1648 ++BBI;
1650 BB = &*BBI;
1651 } else {
1652 // Otherwise insert a placeholder and remember it so it can be
1653 // inserted when the function is parsed.
1654 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1655 if (FwdBBs.empty())
1656 BasicBlockFwdRefQueue.push_back(Fn);
1657 if (FwdBBs.size() < BBID + 1)
1658 FwdBBs.resize(BBID + 1);
1659 if (!FwdBBs[BBID])
1660 FwdBBs[BBID] = BasicBlock::Create(Context);
1661 BB = FwdBBs[BBID];
1663 C = BlockAddress::get(Fn, BB);
1664 break;
1666 case BitcodeConstant::ConstantStructOpcode: {
1667 auto *ST = cast<StructType>(BC->getType());
1668 if (ST->getNumElements() != ConstOps.size())
1669 return error("Invalid number of elements in struct initializer");
1671 for (const auto [Ty, Op] : zip(ST->elements(), ConstOps))
1672 if (Op->getType() != Ty)
1673 return error("Incorrect type in struct initializer");
1675 C = ConstantStruct::get(ST, ConstOps);
1676 break;
1678 case BitcodeConstant::ConstantArrayOpcode: {
1679 auto *AT = cast<ArrayType>(BC->getType());
1680 if (AT->getNumElements() != ConstOps.size())
1681 return error("Invalid number of elements in array initializer");
1683 for (Constant *Op : ConstOps)
1684 if (Op->getType() != AT->getElementType())
1685 return error("Incorrect type in array initializer");
1687 C = ConstantArray::get(AT, ConstOps);
1688 break;
1690 case BitcodeConstant::ConstantVectorOpcode: {
1691 auto *VT = cast<FixedVectorType>(BC->getType());
1692 if (VT->getNumElements() != ConstOps.size())
1693 return error("Invalid number of elements in vector initializer");
1695 for (Constant *Op : ConstOps)
1696 if (Op->getType() != VT->getElementType())
1697 return error("Incorrect type in vector initializer");
1699 C = ConstantVector::get(ConstOps);
1700 break;
1702 case Instruction::GetElementPtr:
1703 C = ConstantExpr::getGetElementPtr(
1704 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1705 toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1706 break;
1707 case Instruction::ExtractElement:
1708 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1709 break;
1710 case Instruction::InsertElement:
1711 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1712 ConstOps[2]);
1713 break;
1714 case Instruction::ShuffleVector: {
1715 SmallVector<int, 16> Mask;
1716 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1717 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1718 break;
1720 default:
1721 llvm_unreachable("Unhandled bitcode constant");
1725 // Cache resolved constant.
1726 ValueList.replaceValueWithoutRAUW(ValID, C);
1727 MaterializedValues.insert({ValID, C});
1728 Worklist.pop_back();
1729 continue;
1732 if (!InsertBB)
1733 return error(Twine("Value referenced by initializer is an unsupported "
1734 "constant expression of type ") +
1735 BC->getOpcodeName());
1737 // Materialize as instructions if necessary.
1738 Instruction *I;
1739 if (Instruction::isCast(BC->Opcode)) {
1740 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1741 BC->getType(), "constexpr", InsertBB);
1742 } else if (Instruction::isUnaryOp(BC->Opcode)) {
1743 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1744 "constexpr", InsertBB);
1745 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1746 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1747 Ops[1], "constexpr", InsertBB);
1748 if (isa<OverflowingBinaryOperator>(I)) {
1749 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1750 I->setHasNoSignedWrap();
1751 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1752 I->setHasNoUnsignedWrap();
1754 if (isa<PossiblyExactOperator>(I) &&
1755 (BC->Flags & PossiblyExactOperator::IsExact))
1756 I->setIsExact();
1757 } else {
1758 switch (BC->Opcode) {
1759 case BitcodeConstant::ConstantVectorOpcode: {
1760 Type *IdxTy = Type::getInt32Ty(BC->getContext());
1761 Value *V = PoisonValue::get(BC->getType());
1762 for (auto Pair : enumerate(Ops)) {
1763 Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1764 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1765 InsertBB);
1767 I = cast<Instruction>(V);
1768 break;
1770 case BitcodeConstant::ConstantStructOpcode:
1771 case BitcodeConstant::ConstantArrayOpcode: {
1772 Value *V = PoisonValue::get(BC->getType());
1773 for (auto Pair : enumerate(Ops))
1774 V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1775 "constexpr.ins", InsertBB);
1776 I = cast<Instruction>(V);
1777 break;
1779 case Instruction::ICmp:
1780 case Instruction::FCmp:
1781 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1782 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1783 "constexpr", InsertBB);
1784 break;
1785 case Instruction::GetElementPtr:
1786 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1787 ArrayRef(Ops).drop_front(), "constexpr",
1788 InsertBB);
1789 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1790 break;
1791 case Instruction::Select:
1792 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1793 break;
1794 case Instruction::ExtractElement:
1795 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1796 break;
1797 case Instruction::InsertElement:
1798 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1799 InsertBB);
1800 break;
1801 case Instruction::ShuffleVector:
1802 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1803 InsertBB);
1804 break;
1805 default:
1806 llvm_unreachable("Unhandled bitcode constant");
1810 MaterializedValues.insert({ValID, I});
1811 Worklist.pop_back();
1814 return MaterializedValues[StartValID];
1817 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1818 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1819 if (!MaybeV)
1820 return MaybeV.takeError();
1822 // Result must be Constant if InsertBB is nullptr.
1823 return cast<Constant>(MaybeV.get());
1826 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1827 StringRef Name) {
1828 auto *Ret = StructType::create(Context, Name);
1829 IdentifiedStructTypes.push_back(Ret);
1830 return Ret;
1833 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1834 auto *Ret = StructType::create(Context);
1835 IdentifiedStructTypes.push_back(Ret);
1836 return Ret;
1839 //===----------------------------------------------------------------------===//
1840 // Functions for parsing blocks from the bitcode file
1841 //===----------------------------------------------------------------------===//
1843 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1844 switch (Val) {
1845 case Attribute::EndAttrKinds:
1846 case Attribute::EmptyKey:
1847 case Attribute::TombstoneKey:
1848 llvm_unreachable("Synthetic enumerators which should never get here");
1850 case Attribute::None: return 0;
1851 case Attribute::ZExt: return 1 << 0;
1852 case Attribute::SExt: return 1 << 1;
1853 case Attribute::NoReturn: return 1 << 2;
1854 case Attribute::InReg: return 1 << 3;
1855 case Attribute::StructRet: return 1 << 4;
1856 case Attribute::NoUnwind: return 1 << 5;
1857 case Attribute::NoAlias: return 1 << 6;
1858 case Attribute::ByVal: return 1 << 7;
1859 case Attribute::Nest: return 1 << 8;
1860 case Attribute::ReadNone: return 1 << 9;
1861 case Attribute::ReadOnly: return 1 << 10;
1862 case Attribute::NoInline: return 1 << 11;
1863 case Attribute::AlwaysInline: return 1 << 12;
1864 case Attribute::OptimizeForSize: return 1 << 13;
1865 case Attribute::StackProtect: return 1 << 14;
1866 case Attribute::StackProtectReq: return 1 << 15;
1867 case Attribute::Alignment: return 31 << 16;
1868 case Attribute::NoCapture: return 1 << 21;
1869 case Attribute::NoRedZone: return 1 << 22;
1870 case Attribute::NoImplicitFloat: return 1 << 23;
1871 case Attribute::Naked: return 1 << 24;
1872 case Attribute::InlineHint: return 1 << 25;
1873 case Attribute::StackAlignment: return 7 << 26;
1874 case Attribute::ReturnsTwice: return 1 << 29;
1875 case Attribute::UWTable: return 1 << 30;
1876 case Attribute::NonLazyBind: return 1U << 31;
1877 case Attribute::SanitizeAddress: return 1ULL << 32;
1878 case Attribute::MinSize: return 1ULL << 33;
1879 case Attribute::NoDuplicate: return 1ULL << 34;
1880 case Attribute::StackProtectStrong: return 1ULL << 35;
1881 case Attribute::SanitizeThread: return 1ULL << 36;
1882 case Attribute::SanitizeMemory: return 1ULL << 37;
1883 case Attribute::NoBuiltin: return 1ULL << 38;
1884 case Attribute::Returned: return 1ULL << 39;
1885 case Attribute::Cold: return 1ULL << 40;
1886 case Attribute::Builtin: return 1ULL << 41;
1887 case Attribute::OptimizeNone: return 1ULL << 42;
1888 case Attribute::InAlloca: return 1ULL << 43;
1889 case Attribute::NonNull: return 1ULL << 44;
1890 case Attribute::JumpTable: return 1ULL << 45;
1891 case Attribute::Convergent: return 1ULL << 46;
1892 case Attribute::SafeStack: return 1ULL << 47;
1893 case Attribute::NoRecurse: return 1ULL << 48;
1894 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1895 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1896 case Attribute::SwiftSelf: return 1ULL << 51;
1897 case Attribute::SwiftError: return 1ULL << 52;
1898 case Attribute::WriteOnly: return 1ULL << 53;
1899 case Attribute::Speculatable: return 1ULL << 54;
1900 case Attribute::StrictFP: return 1ULL << 55;
1901 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1902 case Attribute::NoCfCheck: return 1ULL << 57;
1903 case Attribute::OptForFuzzing: return 1ULL << 58;
1904 case Attribute::ShadowCallStack: return 1ULL << 59;
1905 case Attribute::SpeculativeLoadHardening:
1906 return 1ULL << 60;
1907 case Attribute::ImmArg:
1908 return 1ULL << 61;
1909 case Attribute::WillReturn:
1910 return 1ULL << 62;
1911 case Attribute::NoFree:
1912 return 1ULL << 63;
1913 default:
1914 // Other attributes are not supported in the raw format,
1915 // as we ran out of space.
1916 return 0;
1918 llvm_unreachable("Unsupported attribute type");
1921 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1922 if (!Val) return;
1924 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1925 I = Attribute::AttrKind(I + 1)) {
1926 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1927 if (I == Attribute::Alignment)
1928 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1929 else if (I == Attribute::StackAlignment)
1930 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1931 else if (Attribute::isTypeAttrKind(I))
1932 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1933 else
1934 B.addAttribute(I);
1939 /// This fills an AttrBuilder object with the LLVM attributes that have
1940 /// been decoded from the given integer. This function must stay in sync with
1941 /// 'encodeLLVMAttributesForBitcode'.
1942 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1943 uint64_t EncodedAttrs,
1944 uint64_t AttrIdx) {
1945 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1946 // the bits above 31 down by 11 bits.
1947 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1948 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1949 "Alignment must be a power of two.");
1951 if (Alignment)
1952 B.addAlignmentAttr(Alignment);
1954 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1955 (EncodedAttrs & 0xffff);
1957 if (AttrIdx == AttributeList::FunctionIndex) {
1958 // Upgrade old memory attributes.
1959 MemoryEffects ME = MemoryEffects::unknown();
1960 if (Attrs & (1ULL << 9)) {
1961 // ReadNone
1962 Attrs &= ~(1ULL << 9);
1963 ME &= MemoryEffects::none();
1965 if (Attrs & (1ULL << 10)) {
1966 // ReadOnly
1967 Attrs &= ~(1ULL << 10);
1968 ME &= MemoryEffects::readOnly();
1970 if (Attrs & (1ULL << 49)) {
1971 // InaccessibleMemOnly
1972 Attrs &= ~(1ULL << 49);
1973 ME &= MemoryEffects::inaccessibleMemOnly();
1975 if (Attrs & (1ULL << 50)) {
1976 // InaccessibleMemOrArgMemOnly
1977 Attrs &= ~(1ULL << 50);
1978 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1980 if (Attrs & (1ULL << 53)) {
1981 // WriteOnly
1982 Attrs &= ~(1ULL << 53);
1983 ME &= MemoryEffects::writeOnly();
1985 if (ME != MemoryEffects::unknown())
1986 B.addMemoryAttr(ME);
1989 addRawAttributeValue(B, Attrs);
1992 Error BitcodeReader::parseAttributeBlock() {
1993 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1994 return Err;
1996 if (!MAttributes.empty())
1997 return error("Invalid multiple blocks");
1999 SmallVector<uint64_t, 64> Record;
2001 SmallVector<AttributeList, 8> Attrs;
2003 // Read all the records.
2004 while (true) {
2005 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2006 if (!MaybeEntry)
2007 return MaybeEntry.takeError();
2008 BitstreamEntry Entry = MaybeEntry.get();
2010 switch (Entry.Kind) {
2011 case BitstreamEntry::SubBlock: // Handled for us already.
2012 case BitstreamEntry::Error:
2013 return error("Malformed block");
2014 case BitstreamEntry::EndBlock:
2015 return Error::success();
2016 case BitstreamEntry::Record:
2017 // The interesting case.
2018 break;
2021 // Read a record.
2022 Record.clear();
2023 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2024 if (!MaybeRecord)
2025 return MaybeRecord.takeError();
2026 switch (MaybeRecord.get()) {
2027 default: // Default behavior: ignore.
2028 break;
2029 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
2030 // Deprecated, but still needed to read old bitcode files.
2031 if (Record.size() & 1)
2032 return error("Invalid parameter attribute record");
2034 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2035 AttrBuilder B(Context);
2036 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
2037 Attrs.push_back(AttributeList::get(Context, Record[i], B));
2040 MAttributes.push_back(AttributeList::get(Context, Attrs));
2041 Attrs.clear();
2042 break;
2043 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
2044 for (uint64_t Val : Record)
2045 Attrs.push_back(MAttributeGroups[Val]);
2047 MAttributes.push_back(AttributeList::get(Context, Attrs));
2048 Attrs.clear();
2049 break;
2054 // Returns Attribute::None on unrecognized codes.
2055 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2056 switch (Code) {
2057 default:
2058 return Attribute::None;
2059 case bitc::ATTR_KIND_ALIGNMENT:
2060 return Attribute::Alignment;
2061 case bitc::ATTR_KIND_ALWAYS_INLINE:
2062 return Attribute::AlwaysInline;
2063 case bitc::ATTR_KIND_BUILTIN:
2064 return Attribute::Builtin;
2065 case bitc::ATTR_KIND_BY_VAL:
2066 return Attribute::ByVal;
2067 case bitc::ATTR_KIND_IN_ALLOCA:
2068 return Attribute::InAlloca;
2069 case bitc::ATTR_KIND_COLD:
2070 return Attribute::Cold;
2071 case bitc::ATTR_KIND_CONVERGENT:
2072 return Attribute::Convergent;
2073 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2074 return Attribute::DisableSanitizerInstrumentation;
2075 case bitc::ATTR_KIND_ELEMENTTYPE:
2076 return Attribute::ElementType;
2077 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2078 return Attribute::FnRetThunkExtern;
2079 case bitc::ATTR_KIND_INLINE_HINT:
2080 return Attribute::InlineHint;
2081 case bitc::ATTR_KIND_IN_REG:
2082 return Attribute::InReg;
2083 case bitc::ATTR_KIND_JUMP_TABLE:
2084 return Attribute::JumpTable;
2085 case bitc::ATTR_KIND_MEMORY:
2086 return Attribute::Memory;
2087 case bitc::ATTR_KIND_NOFPCLASS:
2088 return Attribute::NoFPClass;
2089 case bitc::ATTR_KIND_MIN_SIZE:
2090 return Attribute::MinSize;
2091 case bitc::ATTR_KIND_NAKED:
2092 return Attribute::Naked;
2093 case bitc::ATTR_KIND_NEST:
2094 return Attribute::Nest;
2095 case bitc::ATTR_KIND_NO_ALIAS:
2096 return Attribute::NoAlias;
2097 case bitc::ATTR_KIND_NO_BUILTIN:
2098 return Attribute::NoBuiltin;
2099 case bitc::ATTR_KIND_NO_CALLBACK:
2100 return Attribute::NoCallback;
2101 case bitc::ATTR_KIND_NO_CAPTURE:
2102 return Attribute::NoCapture;
2103 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE:
2104 return Attribute::NoDivergenceSource;
2105 case bitc::ATTR_KIND_NO_DUPLICATE:
2106 return Attribute::NoDuplicate;
2107 case bitc::ATTR_KIND_NOFREE:
2108 return Attribute::NoFree;
2109 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2110 return Attribute::NoImplicitFloat;
2111 case bitc::ATTR_KIND_NO_INLINE:
2112 return Attribute::NoInline;
2113 case bitc::ATTR_KIND_NO_RECURSE:
2114 return Attribute::NoRecurse;
2115 case bitc::ATTR_KIND_NO_MERGE:
2116 return Attribute::NoMerge;
2117 case bitc::ATTR_KIND_NON_LAZY_BIND:
2118 return Attribute::NonLazyBind;
2119 case bitc::ATTR_KIND_NON_NULL:
2120 return Attribute::NonNull;
2121 case bitc::ATTR_KIND_DEREFERENCEABLE:
2122 return Attribute::Dereferenceable;
2123 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2124 return Attribute::DereferenceableOrNull;
2125 case bitc::ATTR_KIND_ALLOC_ALIGN:
2126 return Attribute::AllocAlign;
2127 case bitc::ATTR_KIND_ALLOC_KIND:
2128 return Attribute::AllocKind;
2129 case bitc::ATTR_KIND_ALLOC_SIZE:
2130 return Attribute::AllocSize;
2131 case bitc::ATTR_KIND_ALLOCATED_POINTER:
2132 return Attribute::AllocatedPointer;
2133 case bitc::ATTR_KIND_NO_RED_ZONE:
2134 return Attribute::NoRedZone;
2135 case bitc::ATTR_KIND_NO_RETURN:
2136 return Attribute::NoReturn;
2137 case bitc::ATTR_KIND_NOSYNC:
2138 return Attribute::NoSync;
2139 case bitc::ATTR_KIND_NOCF_CHECK:
2140 return Attribute::NoCfCheck;
2141 case bitc::ATTR_KIND_NO_PROFILE:
2142 return Attribute::NoProfile;
2143 case bitc::ATTR_KIND_SKIP_PROFILE:
2144 return Attribute::SkipProfile;
2145 case bitc::ATTR_KIND_NO_UNWIND:
2146 return Attribute::NoUnwind;
2147 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2148 return Attribute::NoSanitizeBounds;
2149 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2150 return Attribute::NoSanitizeCoverage;
2151 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2152 return Attribute::NullPointerIsValid;
2153 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2154 return Attribute::OptimizeForDebugging;
2155 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2156 return Attribute::OptForFuzzing;
2157 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2158 return Attribute::OptimizeForSize;
2159 case bitc::ATTR_KIND_OPTIMIZE_NONE:
2160 return Attribute::OptimizeNone;
2161 case bitc::ATTR_KIND_READ_NONE:
2162 return Attribute::ReadNone;
2163 case bitc::ATTR_KIND_READ_ONLY:
2164 return Attribute::ReadOnly;
2165 case bitc::ATTR_KIND_RETURNED:
2166 return Attribute::Returned;
2167 case bitc::ATTR_KIND_RETURNS_TWICE:
2168 return Attribute::ReturnsTwice;
2169 case bitc::ATTR_KIND_S_EXT:
2170 return Attribute::SExt;
2171 case bitc::ATTR_KIND_SPECULATABLE:
2172 return Attribute::Speculatable;
2173 case bitc::ATTR_KIND_STACK_ALIGNMENT:
2174 return Attribute::StackAlignment;
2175 case bitc::ATTR_KIND_STACK_PROTECT:
2176 return Attribute::StackProtect;
2177 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2178 return Attribute::StackProtectReq;
2179 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2180 return Attribute::StackProtectStrong;
2181 case bitc::ATTR_KIND_SAFESTACK:
2182 return Attribute::SafeStack;
2183 case bitc::ATTR_KIND_SHADOWCALLSTACK:
2184 return Attribute::ShadowCallStack;
2185 case bitc::ATTR_KIND_STRICT_FP:
2186 return Attribute::StrictFP;
2187 case bitc::ATTR_KIND_STRUCT_RET:
2188 return Attribute::StructRet;
2189 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2190 return Attribute::SanitizeAddress;
2191 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2192 return Attribute::SanitizeHWAddress;
2193 case bitc::ATTR_KIND_SANITIZE_THREAD:
2194 return Attribute::SanitizeThread;
2195 case bitc::ATTR_KIND_SANITIZE_TYPE:
2196 return Attribute::SanitizeType;
2197 case bitc::ATTR_KIND_SANITIZE_MEMORY:
2198 return Attribute::SanitizeMemory;
2199 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2200 return Attribute::SanitizeNumericalStability;
2201 case bitc::ATTR_KIND_SANITIZE_REALTIME:
2202 return Attribute::SanitizeRealtime;
2203 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING:
2204 return Attribute::SanitizeRealtimeBlocking;
2205 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2206 return Attribute::SpeculativeLoadHardening;
2207 case bitc::ATTR_KIND_SWIFT_ERROR:
2208 return Attribute::SwiftError;
2209 case bitc::ATTR_KIND_SWIFT_SELF:
2210 return Attribute::SwiftSelf;
2211 case bitc::ATTR_KIND_SWIFT_ASYNC:
2212 return Attribute::SwiftAsync;
2213 case bitc::ATTR_KIND_UW_TABLE:
2214 return Attribute::UWTable;
2215 case bitc::ATTR_KIND_VSCALE_RANGE:
2216 return Attribute::VScaleRange;
2217 case bitc::ATTR_KIND_WILLRETURN:
2218 return Attribute::WillReturn;
2219 case bitc::ATTR_KIND_WRITEONLY:
2220 return Attribute::WriteOnly;
2221 case bitc::ATTR_KIND_Z_EXT:
2222 return Attribute::ZExt;
2223 case bitc::ATTR_KIND_IMMARG:
2224 return Attribute::ImmArg;
2225 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2226 return Attribute::SanitizeMemTag;
2227 case bitc::ATTR_KIND_PREALLOCATED:
2228 return Attribute::Preallocated;
2229 case bitc::ATTR_KIND_NOUNDEF:
2230 return Attribute::NoUndef;
2231 case bitc::ATTR_KIND_BYREF:
2232 return Attribute::ByRef;
2233 case bitc::ATTR_KIND_MUSTPROGRESS:
2234 return Attribute::MustProgress;
2235 case bitc::ATTR_KIND_HOT:
2236 return Attribute::Hot;
2237 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2238 return Attribute::PresplitCoroutine;
2239 case bitc::ATTR_KIND_WRITABLE:
2240 return Attribute::Writable;
2241 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2242 return Attribute::CoroDestroyOnlyWhenComplete;
2243 case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2244 return Attribute::DeadOnUnwind;
2245 case bitc::ATTR_KIND_RANGE:
2246 return Attribute::Range;
2247 case bitc::ATTR_KIND_INITIALIZES:
2248 return Attribute::Initializes;
2249 case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
2250 return Attribute::CoroElideSafe;
2251 case bitc::ATTR_KIND_NO_EXT:
2252 return Attribute::NoExt;
2253 case bitc::ATTR_KIND_CAPTURES:
2254 return Attribute::Captures;
2258 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2259 MaybeAlign &Alignment) {
2260 // Note: Alignment in bitcode files is incremented by 1, so that zero
2261 // can be used for default alignment.
2262 if (Exponent > Value::MaxAlignmentExponent + 1)
2263 return error("Invalid alignment value");
2264 Alignment = decodeMaybeAlign(Exponent);
2265 return Error::success();
2268 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2269 *Kind = getAttrFromCode(Code);
2270 if (*Kind == Attribute::None)
2271 return error("Unknown attribute kind (" + Twine(Code) + ")");
2272 return Error::success();
2275 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2276 switch (EncodedKind) {
2277 case bitc::ATTR_KIND_READ_NONE:
2278 ME &= MemoryEffects::none();
2279 return true;
2280 case bitc::ATTR_KIND_READ_ONLY:
2281 ME &= MemoryEffects::readOnly();
2282 return true;
2283 case bitc::ATTR_KIND_WRITEONLY:
2284 ME &= MemoryEffects::writeOnly();
2285 return true;
2286 case bitc::ATTR_KIND_ARGMEMONLY:
2287 ME &= MemoryEffects::argMemOnly();
2288 return true;
2289 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2290 ME &= MemoryEffects::inaccessibleMemOnly();
2291 return true;
2292 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2293 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2294 return true;
2295 default:
2296 return false;
2300 Error BitcodeReader::parseAttributeGroupBlock() {
2301 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2302 return Err;
2304 if (!MAttributeGroups.empty())
2305 return error("Invalid multiple blocks");
2307 SmallVector<uint64_t, 64> Record;
2309 // Read all the records.
2310 while (true) {
2311 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2312 if (!MaybeEntry)
2313 return MaybeEntry.takeError();
2314 BitstreamEntry Entry = MaybeEntry.get();
2316 switch (Entry.Kind) {
2317 case BitstreamEntry::SubBlock: // Handled for us already.
2318 case BitstreamEntry::Error:
2319 return error("Malformed block");
2320 case BitstreamEntry::EndBlock:
2321 return Error::success();
2322 case BitstreamEntry::Record:
2323 // The interesting case.
2324 break;
2327 // Read a record.
2328 Record.clear();
2329 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2330 if (!MaybeRecord)
2331 return MaybeRecord.takeError();
2332 switch (MaybeRecord.get()) {
2333 default: // Default behavior: ignore.
2334 break;
2335 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2336 if (Record.size() < 3)
2337 return error("Invalid grp record");
2339 uint64_t GrpID = Record[0];
2340 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2342 AttrBuilder B(Context);
2343 MemoryEffects ME = MemoryEffects::unknown();
2344 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2345 if (Record[i] == 0) { // Enum attribute
2346 Attribute::AttrKind Kind;
2347 uint64_t EncodedKind = Record[++i];
2348 if (Idx == AttributeList::FunctionIndex &&
2349 upgradeOldMemoryAttribute(ME, EncodedKind))
2350 continue;
2352 if (Error Err = parseAttrKind(EncodedKind, &Kind))
2353 return Err;
2355 // Upgrade old-style byval attribute to one with a type, even if it's
2356 // nullptr. We will have to insert the real type when we associate
2357 // this AttributeList with a function.
2358 if (Kind == Attribute::ByVal)
2359 B.addByValAttr(nullptr);
2360 else if (Kind == Attribute::StructRet)
2361 B.addStructRetAttr(nullptr);
2362 else if (Kind == Attribute::InAlloca)
2363 B.addInAllocaAttr(nullptr);
2364 else if (Kind == Attribute::UWTable)
2365 B.addUWTableAttr(UWTableKind::Default);
2366 else if (Attribute::isEnumAttrKind(Kind))
2367 B.addAttribute(Kind);
2368 else
2369 return error("Not an enum attribute");
2370 } else if (Record[i] == 1) { // Integer attribute
2371 Attribute::AttrKind Kind;
2372 if (Error Err = parseAttrKind(Record[++i], &Kind))
2373 return Err;
2374 if (!Attribute::isIntAttrKind(Kind))
2375 return error("Not an int attribute");
2376 if (Kind == Attribute::Alignment)
2377 B.addAlignmentAttr(Record[++i]);
2378 else if (Kind == Attribute::StackAlignment)
2379 B.addStackAlignmentAttr(Record[++i]);
2380 else if (Kind == Attribute::Dereferenceable)
2381 B.addDereferenceableAttr(Record[++i]);
2382 else if (Kind == Attribute::DereferenceableOrNull)
2383 B.addDereferenceableOrNullAttr(Record[++i]);
2384 else if (Kind == Attribute::AllocSize)
2385 B.addAllocSizeAttrFromRawRepr(Record[++i]);
2386 else if (Kind == Attribute::VScaleRange)
2387 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2388 else if (Kind == Attribute::UWTable)
2389 B.addUWTableAttr(UWTableKind(Record[++i]));
2390 else if (Kind == Attribute::AllocKind)
2391 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2392 else if (Kind == Attribute::Memory)
2393 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2394 else if (Kind == Attribute::Captures)
2395 B.addCapturesAttr(CaptureInfo::createFromIntValue(Record[++i]));
2396 else if (Kind == Attribute::NoFPClass)
2397 B.addNoFPClassAttr(
2398 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2399 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2400 bool HasValue = (Record[i++] == 4);
2401 SmallString<64> KindStr;
2402 SmallString<64> ValStr;
2404 while (Record[i] != 0 && i != e)
2405 KindStr += Record[i++];
2406 assert(Record[i] == 0 && "Kind string not null terminated");
2408 if (HasValue) {
2409 // Has a value associated with it.
2410 ++i; // Skip the '0' that terminates the "kind" string.
2411 while (Record[i] != 0 && i != e)
2412 ValStr += Record[i++];
2413 assert(Record[i] == 0 && "Value string not null terminated");
2416 B.addAttribute(KindStr.str(), ValStr.str());
2417 } else if (Record[i] == 5 || Record[i] == 6) {
2418 bool HasType = Record[i] == 6;
2419 Attribute::AttrKind Kind;
2420 if (Error Err = parseAttrKind(Record[++i], &Kind))
2421 return Err;
2422 if (!Attribute::isTypeAttrKind(Kind))
2423 return error("Not a type attribute");
2425 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2426 } else if (Record[i] == 7) {
2427 Attribute::AttrKind Kind;
2429 i++;
2430 if (Error Err = parseAttrKind(Record[i++], &Kind))
2431 return Err;
2432 if (!Attribute::isConstantRangeAttrKind(Kind))
2433 return error("Not a ConstantRange attribute");
2435 Expected<ConstantRange> MaybeCR =
2436 readBitWidthAndConstantRange(Record, i);
2437 if (!MaybeCR)
2438 return MaybeCR.takeError();
2439 i--;
2441 B.addConstantRangeAttr(Kind, MaybeCR.get());
2442 } else if (Record[i] == 8) {
2443 Attribute::AttrKind Kind;
2445 i++;
2446 if (Error Err = parseAttrKind(Record[i++], &Kind))
2447 return Err;
2448 if (!Attribute::isConstantRangeListAttrKind(Kind))
2449 return error("Not a constant range list attribute");
2451 SmallVector<ConstantRange, 2> Val;
2452 if (i + 2 > e)
2453 return error("Too few records for constant range list");
2454 unsigned RangeSize = Record[i++];
2455 unsigned BitWidth = Record[i++];
2456 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2457 Expected<ConstantRange> MaybeCR =
2458 readConstantRange(Record, i, BitWidth);
2459 if (!MaybeCR)
2460 return MaybeCR.takeError();
2461 Val.push_back(MaybeCR.get());
2463 i--;
2465 if (!ConstantRangeList::isOrderedRanges(Val))
2466 return error("Invalid (unordered or overlapping) range list");
2467 B.addConstantRangeListAttr(Kind, Val);
2468 } else {
2469 return error("Invalid attribute group entry");
2473 if (ME != MemoryEffects::unknown())
2474 B.addMemoryAttr(ME);
2476 UpgradeAttributes(B);
2477 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2478 break;
2484 Error BitcodeReader::parseTypeTable() {
2485 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2486 return Err;
2488 return parseTypeTableBody();
2491 Error BitcodeReader::parseTypeTableBody() {
2492 if (!TypeList.empty())
2493 return error("Invalid multiple blocks");
2495 SmallVector<uint64_t, 64> Record;
2496 unsigned NumRecords = 0;
2498 SmallString<64> TypeName;
2500 // Read all the records for this type table.
2501 while (true) {
2502 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2503 if (!MaybeEntry)
2504 return MaybeEntry.takeError();
2505 BitstreamEntry Entry = MaybeEntry.get();
2507 switch (Entry.Kind) {
2508 case BitstreamEntry::SubBlock: // Handled for us already.
2509 case BitstreamEntry::Error:
2510 return error("Malformed block");
2511 case BitstreamEntry::EndBlock:
2512 if (NumRecords != TypeList.size())
2513 return error("Malformed block");
2514 return Error::success();
2515 case BitstreamEntry::Record:
2516 // The interesting case.
2517 break;
2520 // Read a record.
2521 Record.clear();
2522 Type *ResultTy = nullptr;
2523 SmallVector<unsigned> ContainedIDs;
2524 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2525 if (!MaybeRecord)
2526 return MaybeRecord.takeError();
2527 switch (MaybeRecord.get()) {
2528 default:
2529 return error("Invalid value");
2530 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2531 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2532 // type list. This allows us to reserve space.
2533 if (Record.empty())
2534 return error("Invalid numentry record");
2535 TypeList.resize(Record[0]);
2536 continue;
2537 case bitc::TYPE_CODE_VOID: // VOID
2538 ResultTy = Type::getVoidTy(Context);
2539 break;
2540 case bitc::TYPE_CODE_HALF: // HALF
2541 ResultTy = Type::getHalfTy(Context);
2542 break;
2543 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2544 ResultTy = Type::getBFloatTy(Context);
2545 break;
2546 case bitc::TYPE_CODE_FLOAT: // FLOAT
2547 ResultTy = Type::getFloatTy(Context);
2548 break;
2549 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2550 ResultTy = Type::getDoubleTy(Context);
2551 break;
2552 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2553 ResultTy = Type::getX86_FP80Ty(Context);
2554 break;
2555 case bitc::TYPE_CODE_FP128: // FP128
2556 ResultTy = Type::getFP128Ty(Context);
2557 break;
2558 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2559 ResultTy = Type::getPPC_FP128Ty(Context);
2560 break;
2561 case bitc::TYPE_CODE_LABEL: // LABEL
2562 ResultTy = Type::getLabelTy(Context);
2563 break;
2564 case bitc::TYPE_CODE_METADATA: // METADATA
2565 ResultTy = Type::getMetadataTy(Context);
2566 break;
2567 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2568 // Deprecated: decodes as <1 x i64>
2569 ResultTy =
2570 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2571 break;
2572 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2573 ResultTy = Type::getX86_AMXTy(Context);
2574 break;
2575 case bitc::TYPE_CODE_TOKEN: // TOKEN
2576 ResultTy = Type::getTokenTy(Context);
2577 break;
2578 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2579 if (Record.empty())
2580 return error("Invalid integer record");
2582 uint64_t NumBits = Record[0];
2583 if (NumBits < IntegerType::MIN_INT_BITS ||
2584 NumBits > IntegerType::MAX_INT_BITS)
2585 return error("Bitwidth for integer type out of range");
2586 ResultTy = IntegerType::get(Context, NumBits);
2587 break;
2589 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2590 // [pointee type, address space]
2591 if (Record.empty())
2592 return error("Invalid pointer record");
2593 unsigned AddressSpace = 0;
2594 if (Record.size() == 2)
2595 AddressSpace = Record[1];
2596 ResultTy = getTypeByID(Record[0]);
2597 if (!ResultTy ||
2598 !PointerType::isValidElementType(ResultTy))
2599 return error("Invalid type");
2600 ContainedIDs.push_back(Record[0]);
2601 ResultTy = PointerType::get(ResultTy, AddressSpace);
2602 break;
2604 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2605 if (Record.size() != 1)
2606 return error("Invalid opaque pointer record");
2607 unsigned AddressSpace = Record[0];
2608 ResultTy = PointerType::get(Context, AddressSpace);
2609 break;
2611 case bitc::TYPE_CODE_FUNCTION_OLD: {
2612 // Deprecated, but still needed to read old bitcode files.
2613 // FUNCTION: [vararg, attrid, retty, paramty x N]
2614 if (Record.size() < 3)
2615 return error("Invalid function record");
2616 SmallVector<Type*, 8> ArgTys;
2617 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2618 if (Type *T = getTypeByID(Record[i]))
2619 ArgTys.push_back(T);
2620 else
2621 break;
2624 ResultTy = getTypeByID(Record[2]);
2625 if (!ResultTy || ArgTys.size() < Record.size()-3)
2626 return error("Invalid type");
2628 ContainedIDs.append(Record.begin() + 2, Record.end());
2629 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2630 break;
2632 case bitc::TYPE_CODE_FUNCTION: {
2633 // FUNCTION: [vararg, retty, paramty x N]
2634 if (Record.size() < 2)
2635 return error("Invalid function record");
2636 SmallVector<Type*, 8> ArgTys;
2637 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2638 if (Type *T = getTypeByID(Record[i])) {
2639 if (!FunctionType::isValidArgumentType(T))
2640 return error("Invalid function argument type");
2641 ArgTys.push_back(T);
2643 else
2644 break;
2647 ResultTy = getTypeByID(Record[1]);
2648 if (!ResultTy || ArgTys.size() < Record.size()-2)
2649 return error("Invalid type");
2651 ContainedIDs.append(Record.begin() + 1, Record.end());
2652 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2653 break;
2655 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2656 if (Record.empty())
2657 return error("Invalid anon struct record");
2658 SmallVector<Type*, 8> EltTys;
2659 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2660 if (Type *T = getTypeByID(Record[i]))
2661 EltTys.push_back(T);
2662 else
2663 break;
2665 if (EltTys.size() != Record.size()-1)
2666 return error("Invalid type");
2667 ContainedIDs.append(Record.begin() + 1, Record.end());
2668 ResultTy = StructType::get(Context, EltTys, Record[0]);
2669 break;
2671 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2672 if (convertToString(Record, 0, TypeName))
2673 return error("Invalid struct name record");
2674 continue;
2676 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2677 if (Record.empty())
2678 return error("Invalid named struct record");
2680 if (NumRecords >= TypeList.size())
2681 return error("Invalid TYPE table");
2683 // Check to see if this was forward referenced, if so fill in the temp.
2684 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2685 if (Res) {
2686 Res->setName(TypeName);
2687 TypeList[NumRecords] = nullptr;
2688 } else // Otherwise, create a new struct.
2689 Res = createIdentifiedStructType(Context, TypeName);
2690 TypeName.clear();
2692 SmallVector<Type*, 8> EltTys;
2693 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2694 if (Type *T = getTypeByID(Record[i]))
2695 EltTys.push_back(T);
2696 else
2697 break;
2699 if (EltTys.size() != Record.size()-1)
2700 return error("Invalid named struct record");
2701 if (auto E = Res->setBodyOrError(EltTys, Record[0]))
2702 return E;
2703 ContainedIDs.append(Record.begin() + 1, Record.end());
2704 ResultTy = Res;
2705 break;
2707 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2708 if (Record.size() != 1)
2709 return error("Invalid opaque type record");
2711 if (NumRecords >= TypeList.size())
2712 return error("Invalid TYPE table");
2714 // Check to see if this was forward referenced, if so fill in the temp.
2715 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2716 if (Res) {
2717 Res->setName(TypeName);
2718 TypeList[NumRecords] = nullptr;
2719 } else // Otherwise, create a new struct with no body.
2720 Res = createIdentifiedStructType(Context, TypeName);
2721 TypeName.clear();
2722 ResultTy = Res;
2723 break;
2725 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2726 if (Record.size() < 1)
2727 return error("Invalid target extension type record");
2729 if (NumRecords >= TypeList.size())
2730 return error("Invalid TYPE table");
2732 if (Record[0] >= Record.size())
2733 return error("Too many type parameters");
2735 unsigned NumTys = Record[0];
2736 SmallVector<Type *, 4> TypeParams;
2737 SmallVector<unsigned, 8> IntParams;
2738 for (unsigned i = 0; i < NumTys; i++) {
2739 if (Type *T = getTypeByID(Record[i + 1]))
2740 TypeParams.push_back(T);
2741 else
2742 return error("Invalid type");
2745 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2746 if (Record[i] > UINT_MAX)
2747 return error("Integer parameter too large");
2748 IntParams.push_back(Record[i]);
2750 auto TTy =
2751 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams);
2752 if (auto E = TTy.takeError())
2753 return E;
2754 ResultTy = *TTy;
2755 TypeName.clear();
2756 break;
2758 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2759 if (Record.size() < 2)
2760 return error("Invalid array type record");
2761 ResultTy = getTypeByID(Record[1]);
2762 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2763 return error("Invalid type");
2764 ContainedIDs.push_back(Record[1]);
2765 ResultTy = ArrayType::get(ResultTy, Record[0]);
2766 break;
2767 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2768 // [numelts, eltty, scalable]
2769 if (Record.size() < 2)
2770 return error("Invalid vector type record");
2771 if (Record[0] == 0)
2772 return error("Invalid vector length");
2773 ResultTy = getTypeByID(Record[1]);
2774 if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2775 return error("Invalid type");
2776 bool Scalable = Record.size() > 2 ? Record[2] : false;
2777 ContainedIDs.push_back(Record[1]);
2778 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2779 break;
2782 if (NumRecords >= TypeList.size())
2783 return error("Invalid TYPE table");
2784 if (TypeList[NumRecords])
2785 return error(
2786 "Invalid TYPE table: Only named structs can be forward referenced");
2787 assert(ResultTy && "Didn't read a type?");
2788 TypeList[NumRecords] = ResultTy;
2789 if (!ContainedIDs.empty())
2790 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2791 ++NumRecords;
2795 Error BitcodeReader::parseOperandBundleTags() {
2796 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2797 return Err;
2799 if (!BundleTags.empty())
2800 return error("Invalid multiple blocks");
2802 SmallVector<uint64_t, 64> Record;
2804 while (true) {
2805 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2806 if (!MaybeEntry)
2807 return MaybeEntry.takeError();
2808 BitstreamEntry Entry = MaybeEntry.get();
2810 switch (Entry.Kind) {
2811 case BitstreamEntry::SubBlock: // Handled for us already.
2812 case BitstreamEntry::Error:
2813 return error("Malformed block");
2814 case BitstreamEntry::EndBlock:
2815 return Error::success();
2816 case BitstreamEntry::Record:
2817 // The interesting case.
2818 break;
2821 // Tags are implicitly mapped to integers by their order.
2823 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2824 if (!MaybeRecord)
2825 return MaybeRecord.takeError();
2826 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2827 return error("Invalid operand bundle record");
2829 // OPERAND_BUNDLE_TAG: [strchr x N]
2830 BundleTags.emplace_back();
2831 if (convertToString(Record, 0, BundleTags.back()))
2832 return error("Invalid operand bundle record");
2833 Record.clear();
2837 Error BitcodeReader::parseSyncScopeNames() {
2838 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2839 return Err;
2841 if (!SSIDs.empty())
2842 return error("Invalid multiple synchronization scope names blocks");
2844 SmallVector<uint64_t, 64> Record;
2845 while (true) {
2846 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2847 if (!MaybeEntry)
2848 return MaybeEntry.takeError();
2849 BitstreamEntry Entry = MaybeEntry.get();
2851 switch (Entry.Kind) {
2852 case BitstreamEntry::SubBlock: // Handled for us already.
2853 case BitstreamEntry::Error:
2854 return error("Malformed block");
2855 case BitstreamEntry::EndBlock:
2856 if (SSIDs.empty())
2857 return error("Invalid empty synchronization scope names block");
2858 return Error::success();
2859 case BitstreamEntry::Record:
2860 // The interesting case.
2861 break;
2864 // Synchronization scope names are implicitly mapped to synchronization
2865 // scope IDs by their order.
2867 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2868 if (!MaybeRecord)
2869 return MaybeRecord.takeError();
2870 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2871 return error("Invalid sync scope record");
2873 SmallString<16> SSN;
2874 if (convertToString(Record, 0, SSN))
2875 return error("Invalid sync scope record");
2877 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2878 Record.clear();
2882 /// Associate a value with its name from the given index in the provided record.
2883 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2884 unsigned NameIndex, Triple &TT) {
2885 SmallString<128> ValueName;
2886 if (convertToString(Record, NameIndex, ValueName))
2887 return error("Invalid record");
2888 unsigned ValueID = Record[0];
2889 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2890 return error("Invalid record");
2891 Value *V = ValueList[ValueID];
2893 StringRef NameStr(ValueName.data(), ValueName.size());
2894 if (NameStr.contains(0))
2895 return error("Invalid value name");
2896 V->setName(NameStr);
2897 auto *GO = dyn_cast<GlobalObject>(V);
2898 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2899 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2900 return V;
2903 /// Helper to note and return the current location, and jump to the given
2904 /// offset.
2905 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2906 BitstreamCursor &Stream) {
2907 // Save the current parsing location so we can jump back at the end
2908 // of the VST read.
2909 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2910 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2911 return std::move(JumpFailed);
2912 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2913 if (!MaybeEntry)
2914 return MaybeEntry.takeError();
2915 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2916 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2917 return error("Expected value symbol table subblock");
2918 return CurrentBit;
2921 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2922 Function *F,
2923 ArrayRef<uint64_t> Record) {
2924 // Note that we subtract 1 here because the offset is relative to one word
2925 // before the start of the identification or module block, which was
2926 // historically always the start of the regular bitcode header.
2927 uint64_t FuncWordOffset = Record[1] - 1;
2928 uint64_t FuncBitOffset = FuncWordOffset * 32;
2929 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2930 // Set the LastFunctionBlockBit to point to the last function block.
2931 // Later when parsing is resumed after function materialization,
2932 // we can simply skip that last function block.
2933 if (FuncBitOffset > LastFunctionBlockBit)
2934 LastFunctionBlockBit = FuncBitOffset;
2937 /// Read a new-style GlobalValue symbol table.
2938 Error BitcodeReader::parseGlobalValueSymbolTable() {
2939 unsigned FuncBitcodeOffsetDelta =
2940 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2942 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2943 return Err;
2945 SmallVector<uint64_t, 64> Record;
2946 while (true) {
2947 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2948 if (!MaybeEntry)
2949 return MaybeEntry.takeError();
2950 BitstreamEntry Entry = MaybeEntry.get();
2952 switch (Entry.Kind) {
2953 case BitstreamEntry::SubBlock:
2954 case BitstreamEntry::Error:
2955 return error("Malformed block");
2956 case BitstreamEntry::EndBlock:
2957 return Error::success();
2958 case BitstreamEntry::Record:
2959 break;
2962 Record.clear();
2963 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2964 if (!MaybeRecord)
2965 return MaybeRecord.takeError();
2966 switch (MaybeRecord.get()) {
2967 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2968 unsigned ValueID = Record[0];
2969 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2970 return error("Invalid value reference in symbol table");
2971 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2972 cast<Function>(ValueList[ValueID]), Record);
2973 break;
2979 /// Parse the value symbol table at either the current parsing location or
2980 /// at the given bit offset if provided.
2981 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2982 uint64_t CurrentBit;
2983 // Pass in the Offset to distinguish between calling for the module-level
2984 // VST (where we want to jump to the VST offset) and the function-level
2985 // VST (where we don't).
2986 if (Offset > 0) {
2987 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2988 if (!MaybeCurrentBit)
2989 return MaybeCurrentBit.takeError();
2990 CurrentBit = MaybeCurrentBit.get();
2991 // If this module uses a string table, read this as a module-level VST.
2992 if (UseStrtab) {
2993 if (Error Err = parseGlobalValueSymbolTable())
2994 return Err;
2995 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2996 return JumpFailed;
2997 return Error::success();
2999 // Otherwise, the VST will be in a similar format to a function-level VST,
3000 // and will contain symbol names.
3003 // Compute the delta between the bitcode indices in the VST (the word offset
3004 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
3005 // expected by the lazy reader. The reader's EnterSubBlock expects to have
3006 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
3007 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
3008 // just before entering the VST subblock because: 1) the EnterSubBlock
3009 // changes the AbbrevID width; 2) the VST block is nested within the same
3010 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
3011 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
3012 // jump to the FUNCTION_BLOCK using this offset later, we don't want
3013 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
3014 unsigned FuncBitcodeOffsetDelta =
3015 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
3017 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
3018 return Err;
3020 SmallVector<uint64_t, 64> Record;
3022 Triple TT(TheModule->getTargetTriple());
3024 // Read all the records for this value table.
3025 SmallString<128> ValueName;
3027 while (true) {
3028 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3029 if (!MaybeEntry)
3030 return MaybeEntry.takeError();
3031 BitstreamEntry Entry = MaybeEntry.get();
3033 switch (Entry.Kind) {
3034 case BitstreamEntry::SubBlock: // Handled for us already.
3035 case BitstreamEntry::Error:
3036 return error("Malformed block");
3037 case BitstreamEntry::EndBlock:
3038 if (Offset > 0)
3039 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
3040 return JumpFailed;
3041 return Error::success();
3042 case BitstreamEntry::Record:
3043 // The interesting case.
3044 break;
3047 // Read a record.
3048 Record.clear();
3049 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3050 if (!MaybeRecord)
3051 return MaybeRecord.takeError();
3052 switch (MaybeRecord.get()) {
3053 default: // Default behavior: unknown type.
3054 break;
3055 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
3056 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
3057 if (Error Err = ValOrErr.takeError())
3058 return Err;
3059 ValOrErr.get();
3060 break;
3062 case bitc::VST_CODE_FNENTRY: {
3063 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
3064 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
3065 if (Error Err = ValOrErr.takeError())
3066 return Err;
3067 Value *V = ValOrErr.get();
3069 // Ignore function offsets emitted for aliases of functions in older
3070 // versions of LLVM.
3071 if (auto *F = dyn_cast<Function>(V))
3072 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3073 break;
3075 case bitc::VST_CODE_BBENTRY: {
3076 if (convertToString(Record, 1, ValueName))
3077 return error("Invalid bbentry record");
3078 BasicBlock *BB = getBasicBlock(Record[0]);
3079 if (!BB)
3080 return error("Invalid bbentry record");
3082 BB->setName(ValueName.str());
3083 ValueName.clear();
3084 break;
3090 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3091 /// encoding.
3092 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3093 if ((V & 1) == 0)
3094 return V >> 1;
3095 if (V != 1)
3096 return -(V >> 1);
3097 // There is no such thing as -0 with integers. "-0" really means MININT.
3098 return 1ULL << 63;
3101 /// Resolve all of the initializers for global values and aliases that we can.
3102 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3103 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3104 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3105 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3107 GlobalInitWorklist.swap(GlobalInits);
3108 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3109 FunctionOperandWorklist.swap(FunctionOperands);
3111 while (!GlobalInitWorklist.empty()) {
3112 unsigned ValID = GlobalInitWorklist.back().second;
3113 if (ValID >= ValueList.size()) {
3114 // Not ready to resolve this yet, it requires something later in the file.
3115 GlobalInits.push_back(GlobalInitWorklist.back());
3116 } else {
3117 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3118 if (!MaybeC)
3119 return MaybeC.takeError();
3120 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3122 GlobalInitWorklist.pop_back();
3125 while (!IndirectSymbolInitWorklist.empty()) {
3126 unsigned ValID = IndirectSymbolInitWorklist.back().second;
3127 if (ValID >= ValueList.size()) {
3128 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3129 } else {
3130 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3131 if (!MaybeC)
3132 return MaybeC.takeError();
3133 Constant *C = MaybeC.get();
3134 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3135 if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3136 if (C->getType() != GV->getType())
3137 return error("Alias and aliasee types don't match");
3138 GA->setAliasee(C);
3139 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3140 GI->setResolver(C);
3141 } else {
3142 return error("Expected an alias or an ifunc");
3145 IndirectSymbolInitWorklist.pop_back();
3148 while (!FunctionOperandWorklist.empty()) {
3149 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3150 if (Info.PersonalityFn) {
3151 unsigned ValID = Info.PersonalityFn - 1;
3152 if (ValID < ValueList.size()) {
3153 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3154 if (!MaybeC)
3155 return MaybeC.takeError();
3156 Info.F->setPersonalityFn(MaybeC.get());
3157 Info.PersonalityFn = 0;
3160 if (Info.Prefix) {
3161 unsigned ValID = Info.Prefix - 1;
3162 if (ValID < ValueList.size()) {
3163 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3164 if (!MaybeC)
3165 return MaybeC.takeError();
3166 Info.F->setPrefixData(MaybeC.get());
3167 Info.Prefix = 0;
3170 if (Info.Prologue) {
3171 unsigned ValID = Info.Prologue - 1;
3172 if (ValID < ValueList.size()) {
3173 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3174 if (!MaybeC)
3175 return MaybeC.takeError();
3176 Info.F->setPrologueData(MaybeC.get());
3177 Info.Prologue = 0;
3180 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3181 FunctionOperands.push_back(Info);
3182 FunctionOperandWorklist.pop_back();
3185 return Error::success();
3188 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3189 SmallVector<uint64_t, 8> Words(Vals.size());
3190 transform(Vals, Words.begin(),
3191 BitcodeReader::decodeSignRotatedValue);
3193 return APInt(TypeBits, Words);
3196 Error BitcodeReader::parseConstants() {
3197 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3198 return Err;
3200 SmallVector<uint64_t, 64> Record;
3202 // Read all the records for this value table.
3203 Type *CurTy = Type::getInt32Ty(Context);
3204 unsigned Int32TyID = getVirtualTypeID(CurTy);
3205 unsigned CurTyID = Int32TyID;
3206 Type *CurElemTy = nullptr;
3207 unsigned NextCstNo = ValueList.size();
3209 while (true) {
3210 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3211 if (!MaybeEntry)
3212 return MaybeEntry.takeError();
3213 BitstreamEntry Entry = MaybeEntry.get();
3215 switch (Entry.Kind) {
3216 case BitstreamEntry::SubBlock: // Handled for us already.
3217 case BitstreamEntry::Error:
3218 return error("Malformed block");
3219 case BitstreamEntry::EndBlock:
3220 if (NextCstNo != ValueList.size())
3221 return error("Invalid constant reference");
3222 return Error::success();
3223 case BitstreamEntry::Record:
3224 // The interesting case.
3225 break;
3228 // Read a record.
3229 Record.clear();
3230 Type *VoidType = Type::getVoidTy(Context);
3231 Value *V = nullptr;
3232 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3233 if (!MaybeBitCode)
3234 return MaybeBitCode.takeError();
3235 switch (unsigned BitCode = MaybeBitCode.get()) {
3236 default: // Default behavior: unknown constant
3237 case bitc::CST_CODE_UNDEF: // UNDEF
3238 V = UndefValue::get(CurTy);
3239 break;
3240 case bitc::CST_CODE_POISON: // POISON
3241 V = PoisonValue::get(CurTy);
3242 break;
3243 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
3244 if (Record.empty())
3245 return error("Invalid settype record");
3246 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3247 return error("Invalid settype record");
3248 if (TypeList[Record[0]] == VoidType)
3249 return error("Invalid constant type");
3250 CurTyID = Record[0];
3251 CurTy = TypeList[CurTyID];
3252 CurElemTy = getPtrElementTypeByID(CurTyID);
3253 continue; // Skip the ValueList manipulation.
3254 case bitc::CST_CODE_NULL: // NULL
3255 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3256 return error("Invalid type for a constant null value");
3257 if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3258 if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3259 return error("Invalid type for a constant null value");
3260 V = Constant::getNullValue(CurTy);
3261 break;
3262 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
3263 if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3264 return error("Invalid integer const record");
3265 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3266 break;
3267 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3268 if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3269 return error("Invalid wide integer const record");
3271 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3272 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3273 V = ConstantInt::get(CurTy, VInt);
3274 break;
3276 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
3277 if (Record.empty())
3278 return error("Invalid float const record");
3280 auto *ScalarTy = CurTy->getScalarType();
3281 if (ScalarTy->isHalfTy())
3282 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3283 APInt(16, (uint16_t)Record[0])));
3284 else if (ScalarTy->isBFloatTy())
3285 V = ConstantFP::get(
3286 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3287 else if (ScalarTy->isFloatTy())
3288 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3289 APInt(32, (uint32_t)Record[0])));
3290 else if (ScalarTy->isDoubleTy())
3291 V = ConstantFP::get(
3292 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3293 else if (ScalarTy->isX86_FP80Ty()) {
3294 // Bits are not stored the same way as a normal i80 APInt, compensate.
3295 uint64_t Rearrange[2];
3296 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3297 Rearrange[1] = Record[0] >> 48;
3298 V = ConstantFP::get(
3299 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3300 } else if (ScalarTy->isFP128Ty())
3301 V = ConstantFP::get(CurTy,
3302 APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3303 else if (ScalarTy->isPPC_FP128Ty())
3304 V = ConstantFP::get(
3305 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3306 else
3307 V = PoisonValue::get(CurTy);
3308 break;
3311 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3312 if (Record.empty())
3313 return error("Invalid aggregate record");
3315 unsigned Size = Record.size();
3316 SmallVector<unsigned, 16> Elts;
3317 for (unsigned i = 0; i != Size; ++i)
3318 Elts.push_back(Record[i]);
3320 if (isa<StructType>(CurTy)) {
3321 V = BitcodeConstant::create(
3322 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3323 } else if (isa<ArrayType>(CurTy)) {
3324 V = BitcodeConstant::create(Alloc, CurTy,
3325 BitcodeConstant::ConstantArrayOpcode, Elts);
3326 } else if (isa<VectorType>(CurTy)) {
3327 V = BitcodeConstant::create(
3328 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3329 } else {
3330 V = PoisonValue::get(CurTy);
3332 break;
3334 case bitc::CST_CODE_STRING: // STRING: [values]
3335 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3336 if (Record.empty())
3337 return error("Invalid string record");
3339 SmallString<16> Elts(Record.begin(), Record.end());
3340 V = ConstantDataArray::getString(Context, Elts,
3341 BitCode == bitc::CST_CODE_CSTRING);
3342 break;
3344 case bitc::CST_CODE_DATA: {// DATA: [n x value]
3345 if (Record.empty())
3346 return error("Invalid data record");
3348 Type *EltTy;
3349 if (auto *Array = dyn_cast<ArrayType>(CurTy))
3350 EltTy = Array->getElementType();
3351 else
3352 EltTy = cast<VectorType>(CurTy)->getElementType();
3353 if (EltTy->isIntegerTy(8)) {
3354 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3355 if (isa<VectorType>(CurTy))
3356 V = ConstantDataVector::get(Context, Elts);
3357 else
3358 V = ConstantDataArray::get(Context, Elts);
3359 } else if (EltTy->isIntegerTy(16)) {
3360 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3361 if (isa<VectorType>(CurTy))
3362 V = ConstantDataVector::get(Context, Elts);
3363 else
3364 V = ConstantDataArray::get(Context, Elts);
3365 } else if (EltTy->isIntegerTy(32)) {
3366 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3367 if (isa<VectorType>(CurTy))
3368 V = ConstantDataVector::get(Context, Elts);
3369 else
3370 V = ConstantDataArray::get(Context, Elts);
3371 } else if (EltTy->isIntegerTy(64)) {
3372 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3373 if (isa<VectorType>(CurTy))
3374 V = ConstantDataVector::get(Context, Elts);
3375 else
3376 V = ConstantDataArray::get(Context, Elts);
3377 } else if (EltTy->isHalfTy()) {
3378 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3379 if (isa<VectorType>(CurTy))
3380 V = ConstantDataVector::getFP(EltTy, Elts);
3381 else
3382 V = ConstantDataArray::getFP(EltTy, Elts);
3383 } else if (EltTy->isBFloatTy()) {
3384 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3385 if (isa<VectorType>(CurTy))
3386 V = ConstantDataVector::getFP(EltTy, Elts);
3387 else
3388 V = ConstantDataArray::getFP(EltTy, Elts);
3389 } else if (EltTy->isFloatTy()) {
3390 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3391 if (isa<VectorType>(CurTy))
3392 V = ConstantDataVector::getFP(EltTy, Elts);
3393 else
3394 V = ConstantDataArray::getFP(EltTy, Elts);
3395 } else if (EltTy->isDoubleTy()) {
3396 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3397 if (isa<VectorType>(CurTy))
3398 V = ConstantDataVector::getFP(EltTy, Elts);
3399 else
3400 V = ConstantDataArray::getFP(EltTy, Elts);
3401 } else {
3402 return error("Invalid type for value");
3404 break;
3406 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3407 if (Record.size() < 2)
3408 return error("Invalid unary op constexpr record");
3409 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3410 if (Opc < 0) {
3411 V = PoisonValue::get(CurTy); // Unknown unop.
3412 } else {
3413 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3415 break;
3417 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3418 if (Record.size() < 3)
3419 return error("Invalid binary op constexpr record");
3420 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3421 if (Opc < 0) {
3422 V = PoisonValue::get(CurTy); // Unknown binop.
3423 } else {
3424 uint8_t Flags = 0;
3425 if (Record.size() >= 4) {
3426 if (Opc == Instruction::Add ||
3427 Opc == Instruction::Sub ||
3428 Opc == Instruction::Mul ||
3429 Opc == Instruction::Shl) {
3430 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3431 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3432 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3433 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3434 } else if (Opc == Instruction::SDiv ||
3435 Opc == Instruction::UDiv ||
3436 Opc == Instruction::LShr ||
3437 Opc == Instruction::AShr) {
3438 if (Record[3] & (1 << bitc::PEO_EXACT))
3439 Flags |= PossiblyExactOperator::IsExact;
3442 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3443 {(unsigned)Record[1], (unsigned)Record[2]});
3445 break;
3447 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3448 if (Record.size() < 3)
3449 return error("Invalid cast constexpr record");
3450 int Opc = getDecodedCastOpcode(Record[0]);
3451 if (Opc < 0) {
3452 V = PoisonValue::get(CurTy); // Unknown cast.
3453 } else {
3454 unsigned OpTyID = Record[1];
3455 Type *OpTy = getTypeByID(OpTyID);
3456 if (!OpTy)
3457 return error("Invalid cast constexpr record");
3458 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3460 break;
3462 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3463 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands]
3464 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3465 // operands]
3466 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands]
3467 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3468 // operands]
3469 if (Record.size() < 2)
3470 return error("Constant GEP record must have at least two elements");
3471 unsigned OpNum = 0;
3472 Type *PointeeType = nullptr;
3473 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3474 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3475 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3476 PointeeType = getTypeByID(Record[OpNum++]);
3478 uint64_t Flags = 0;
3479 std::optional<ConstantRange> InRange;
3480 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3481 uint64_t Op = Record[OpNum++];
3482 Flags = Op & 1; // inbounds
3483 unsigned InRangeIndex = Op >> 1;
3484 // "Upgrade" inrange by dropping it. The feature is too niche to
3485 // bother.
3486 (void)InRangeIndex;
3487 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3488 Flags = Record[OpNum++];
3489 Expected<ConstantRange> MaybeInRange =
3490 readBitWidthAndConstantRange(Record, OpNum);
3491 if (!MaybeInRange)
3492 return MaybeInRange.takeError();
3493 InRange = MaybeInRange.get();
3494 } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3495 Flags = Record[OpNum++];
3496 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3497 Flags = (1 << bitc::GEP_INBOUNDS);
3499 SmallVector<unsigned, 16> Elts;
3500 unsigned BaseTypeID = Record[OpNum];
3501 while (OpNum != Record.size()) {
3502 unsigned ElTyID = Record[OpNum++];
3503 Type *ElTy = getTypeByID(ElTyID);
3504 if (!ElTy)
3505 return error("Invalid getelementptr constexpr record");
3506 Elts.push_back(Record[OpNum++]);
3509 if (Elts.size() < 1)
3510 return error("Invalid gep with no operands");
3512 Type *BaseType = getTypeByID(BaseTypeID);
3513 if (isa<VectorType>(BaseType)) {
3514 BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3515 BaseType = getTypeByID(BaseTypeID);
3518 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3519 if (!OrigPtrTy)
3520 return error("GEP base operand must be pointer or vector of pointer");
3522 if (!PointeeType) {
3523 PointeeType = getPtrElementTypeByID(BaseTypeID);
3524 if (!PointeeType)
3525 return error("Missing element type for old-style constant GEP");
3528 V = BitcodeConstant::create(
3529 Alloc, CurTy,
3530 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3531 Elts);
3532 break;
3534 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3535 if (Record.size() < 3)
3536 return error("Invalid select constexpr record");
3538 V = BitcodeConstant::create(
3539 Alloc, CurTy, Instruction::Select,
3540 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3541 break;
3543 case bitc::CST_CODE_CE_EXTRACTELT
3544 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3545 if (Record.size() < 3)
3546 return error("Invalid extractelement constexpr record");
3547 unsigned OpTyID = Record[0];
3548 VectorType *OpTy =
3549 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3550 if (!OpTy)
3551 return error("Invalid extractelement constexpr record");
3552 unsigned IdxRecord;
3553 if (Record.size() == 4) {
3554 unsigned IdxTyID = Record[2];
3555 Type *IdxTy = getTypeByID(IdxTyID);
3556 if (!IdxTy)
3557 return error("Invalid extractelement constexpr record");
3558 IdxRecord = Record[3];
3559 } else {
3560 // Deprecated, but still needed to read old bitcode files.
3561 IdxRecord = Record[2];
3563 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3564 {(unsigned)Record[1], IdxRecord});
3565 break;
3567 case bitc::CST_CODE_CE_INSERTELT
3568 : { // CE_INSERTELT: [opval, opval, opty, opval]
3569 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3570 if (Record.size() < 3 || !OpTy)
3571 return error("Invalid insertelement constexpr record");
3572 unsigned IdxRecord;
3573 if (Record.size() == 4) {
3574 unsigned IdxTyID = Record[2];
3575 Type *IdxTy = getTypeByID(IdxTyID);
3576 if (!IdxTy)
3577 return error("Invalid insertelement constexpr record");
3578 IdxRecord = Record[3];
3579 } else {
3580 // Deprecated, but still needed to read old bitcode files.
3581 IdxRecord = Record[2];
3583 V = BitcodeConstant::create(
3584 Alloc, CurTy, Instruction::InsertElement,
3585 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3586 break;
3588 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3589 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3590 if (Record.size() < 3 || !OpTy)
3591 return error("Invalid shufflevector constexpr record");
3592 V = BitcodeConstant::create(
3593 Alloc, CurTy, Instruction::ShuffleVector,
3594 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3595 break;
3597 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3598 VectorType *RTy = dyn_cast<VectorType>(CurTy);
3599 VectorType *OpTy =
3600 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3601 if (Record.size() < 4 || !RTy || !OpTy)
3602 return error("Invalid shufflevector constexpr record");
3603 V = BitcodeConstant::create(
3604 Alloc, CurTy, Instruction::ShuffleVector,
3605 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3606 break;
3608 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3609 if (Record.size() < 4)
3610 return error("Invalid cmp constexpt record");
3611 unsigned OpTyID = Record[0];
3612 Type *OpTy = getTypeByID(OpTyID);
3613 if (!OpTy)
3614 return error("Invalid cmp constexpr record");
3615 V = BitcodeConstant::create(
3616 Alloc, CurTy,
3617 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3618 : Instruction::ICmp),
3619 (uint8_t)Record[3]},
3620 {(unsigned)Record[1], (unsigned)Record[2]});
3621 break;
3623 // This maintains backward compatibility, pre-asm dialect keywords.
3624 // Deprecated, but still needed to read old bitcode files.
3625 case bitc::CST_CODE_INLINEASM_OLD: {
3626 if (Record.size() < 2)
3627 return error("Invalid inlineasm record");
3628 std::string AsmStr, ConstrStr;
3629 bool HasSideEffects = Record[0] & 1;
3630 bool IsAlignStack = Record[0] >> 1;
3631 unsigned AsmStrSize = Record[1];
3632 if (2+AsmStrSize >= Record.size())
3633 return error("Invalid inlineasm record");
3634 unsigned ConstStrSize = Record[2+AsmStrSize];
3635 if (3+AsmStrSize+ConstStrSize > Record.size())
3636 return error("Invalid inlineasm record");
3638 for (unsigned i = 0; i != AsmStrSize; ++i)
3639 AsmStr += (char)Record[2+i];
3640 for (unsigned i = 0; i != ConstStrSize; ++i)
3641 ConstrStr += (char)Record[3+AsmStrSize+i];
3642 UpgradeInlineAsmString(&AsmStr);
3643 if (!CurElemTy)
3644 return error("Missing element type for old-style inlineasm");
3645 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3646 HasSideEffects, IsAlignStack);
3647 break;
3649 // This version adds support for the asm dialect keywords (e.g.,
3650 // inteldialect).
3651 case bitc::CST_CODE_INLINEASM_OLD2: {
3652 if (Record.size() < 2)
3653 return error("Invalid inlineasm record");
3654 std::string AsmStr, ConstrStr;
3655 bool HasSideEffects = Record[0] & 1;
3656 bool IsAlignStack = (Record[0] >> 1) & 1;
3657 unsigned AsmDialect = Record[0] >> 2;
3658 unsigned AsmStrSize = Record[1];
3659 if (2+AsmStrSize >= Record.size())
3660 return error("Invalid inlineasm record");
3661 unsigned ConstStrSize = Record[2+AsmStrSize];
3662 if (3+AsmStrSize+ConstStrSize > Record.size())
3663 return error("Invalid inlineasm record");
3665 for (unsigned i = 0; i != AsmStrSize; ++i)
3666 AsmStr += (char)Record[2+i];
3667 for (unsigned i = 0; i != ConstStrSize; ++i)
3668 ConstrStr += (char)Record[3+AsmStrSize+i];
3669 UpgradeInlineAsmString(&AsmStr);
3670 if (!CurElemTy)
3671 return error("Missing element type for old-style inlineasm");
3672 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3673 HasSideEffects, IsAlignStack,
3674 InlineAsm::AsmDialect(AsmDialect));
3675 break;
3677 // This version adds support for the unwind keyword.
3678 case bitc::CST_CODE_INLINEASM_OLD3: {
3679 if (Record.size() < 2)
3680 return error("Invalid inlineasm record");
3681 unsigned OpNum = 0;
3682 std::string AsmStr, ConstrStr;
3683 bool HasSideEffects = Record[OpNum] & 1;
3684 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3685 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3686 bool CanThrow = (Record[OpNum] >> 3) & 1;
3687 ++OpNum;
3688 unsigned AsmStrSize = Record[OpNum];
3689 ++OpNum;
3690 if (OpNum + AsmStrSize >= Record.size())
3691 return error("Invalid inlineasm record");
3692 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3693 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3694 return error("Invalid inlineasm record");
3696 for (unsigned i = 0; i != AsmStrSize; ++i)
3697 AsmStr += (char)Record[OpNum + i];
3698 ++OpNum;
3699 for (unsigned i = 0; i != ConstStrSize; ++i)
3700 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3701 UpgradeInlineAsmString(&AsmStr);
3702 if (!CurElemTy)
3703 return error("Missing element type for old-style inlineasm");
3704 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3705 HasSideEffects, IsAlignStack,
3706 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3707 break;
3709 // This version adds explicit function type.
3710 case bitc::CST_CODE_INLINEASM: {
3711 if (Record.size() < 3)
3712 return error("Invalid inlineasm record");
3713 unsigned OpNum = 0;
3714 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3715 ++OpNum;
3716 if (!FnTy)
3717 return error("Invalid inlineasm record");
3718 std::string AsmStr, ConstrStr;
3719 bool HasSideEffects = Record[OpNum] & 1;
3720 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3721 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3722 bool CanThrow = (Record[OpNum] >> 3) & 1;
3723 ++OpNum;
3724 unsigned AsmStrSize = Record[OpNum];
3725 ++OpNum;
3726 if (OpNum + AsmStrSize >= Record.size())
3727 return error("Invalid inlineasm record");
3728 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3729 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3730 return error("Invalid inlineasm record");
3732 for (unsigned i = 0; i != AsmStrSize; ++i)
3733 AsmStr += (char)Record[OpNum + i];
3734 ++OpNum;
3735 for (unsigned i = 0; i != ConstStrSize; ++i)
3736 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3737 UpgradeInlineAsmString(&AsmStr);
3738 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3739 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3740 break;
3742 case bitc::CST_CODE_BLOCKADDRESS:{
3743 if (Record.size() < 3)
3744 return error("Invalid blockaddress record");
3745 unsigned FnTyID = Record[0];
3746 Type *FnTy = getTypeByID(FnTyID);
3747 if (!FnTy)
3748 return error("Invalid blockaddress record");
3749 V = BitcodeConstant::create(
3750 Alloc, CurTy,
3751 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3752 Record[1]);
3753 break;
3755 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3756 if (Record.size() < 2)
3757 return error("Invalid dso_local record");
3758 unsigned GVTyID = Record[0];
3759 Type *GVTy = getTypeByID(GVTyID);
3760 if (!GVTy)
3761 return error("Invalid dso_local record");
3762 V = BitcodeConstant::create(
3763 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3764 break;
3766 case bitc::CST_CODE_NO_CFI_VALUE: {
3767 if (Record.size() < 2)
3768 return error("Invalid no_cfi record");
3769 unsigned GVTyID = Record[0];
3770 Type *GVTy = getTypeByID(GVTyID);
3771 if (!GVTy)
3772 return error("Invalid no_cfi record");
3773 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3774 Record[1]);
3775 break;
3777 case bitc::CST_CODE_PTRAUTH: {
3778 if (Record.size() < 4)
3779 return error("Invalid ptrauth record");
3780 // Ptr, Key, Disc, AddrDisc
3781 V = BitcodeConstant::create(Alloc, CurTy,
3782 BitcodeConstant::ConstantPtrAuthOpcode,
3783 {(unsigned)Record[0], (unsigned)Record[1],
3784 (unsigned)Record[2], (unsigned)Record[3]});
3785 break;
3789 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3790 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3791 return Err;
3792 ++NextCstNo;
3796 Error BitcodeReader::parseUseLists() {
3797 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3798 return Err;
3800 // Read all the records.
3801 SmallVector<uint64_t, 64> Record;
3803 while (true) {
3804 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3805 if (!MaybeEntry)
3806 return MaybeEntry.takeError();
3807 BitstreamEntry Entry = MaybeEntry.get();
3809 switch (Entry.Kind) {
3810 case BitstreamEntry::SubBlock: // Handled for us already.
3811 case BitstreamEntry::Error:
3812 return error("Malformed block");
3813 case BitstreamEntry::EndBlock:
3814 return Error::success();
3815 case BitstreamEntry::Record:
3816 // The interesting case.
3817 break;
3820 // Read a use list record.
3821 Record.clear();
3822 bool IsBB = false;
3823 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3824 if (!MaybeRecord)
3825 return MaybeRecord.takeError();
3826 switch (MaybeRecord.get()) {
3827 default: // Default behavior: unknown type.
3828 break;
3829 case bitc::USELIST_CODE_BB:
3830 IsBB = true;
3831 [[fallthrough]];
3832 case bitc::USELIST_CODE_DEFAULT: {
3833 unsigned RecordLength = Record.size();
3834 if (RecordLength < 3)
3835 // Records should have at least an ID and two indexes.
3836 return error("Invalid record");
3837 unsigned ID = Record.pop_back_val();
3839 Value *V;
3840 if (IsBB) {
3841 assert(ID < FunctionBBs.size() && "Basic block not found");
3842 V = FunctionBBs[ID];
3843 } else
3844 V = ValueList[ID];
3845 unsigned NumUses = 0;
3846 SmallDenseMap<const Use *, unsigned, 16> Order;
3847 for (const Use &U : V->materialized_uses()) {
3848 if (++NumUses > Record.size())
3849 break;
3850 Order[&U] = Record[NumUses - 1];
3852 if (Order.size() != Record.size() || NumUses > Record.size())
3853 // Mismatches can happen if the functions are being materialized lazily
3854 // (out-of-order), or a value has been upgraded.
3855 break;
3857 V->sortUseList([&](const Use &L, const Use &R) {
3858 return Order.lookup(&L) < Order.lookup(&R);
3860 break;
3866 /// When we see the block for metadata, remember where it is and then skip it.
3867 /// This lets us lazily deserialize the metadata.
3868 Error BitcodeReader::rememberAndSkipMetadata() {
3869 // Save the current stream state.
3870 uint64_t CurBit = Stream.GetCurrentBitNo();
3871 DeferredMetadataInfo.push_back(CurBit);
3873 // Skip over the block for now.
3874 if (Error Err = Stream.SkipBlock())
3875 return Err;
3876 return Error::success();
3879 Error BitcodeReader::materializeMetadata() {
3880 for (uint64_t BitPos : DeferredMetadataInfo) {
3881 // Move the bit stream to the saved position.
3882 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3883 return JumpFailed;
3884 if (Error Err = MDLoader->parseModuleMetadata())
3885 return Err;
3888 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3889 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3890 // multiple times.
3891 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3892 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3893 NamedMDNode *LinkerOpts =
3894 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3895 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3896 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3900 DeferredMetadataInfo.clear();
3901 return Error::success();
3904 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3906 /// When we see the block for a function body, remember where it is and then
3907 /// skip it. This lets us lazily deserialize the functions.
3908 Error BitcodeReader::rememberAndSkipFunctionBody() {
3909 // Get the function we are talking about.
3910 if (FunctionsWithBodies.empty())
3911 return error("Insufficient function protos");
3913 Function *Fn = FunctionsWithBodies.back();
3914 FunctionsWithBodies.pop_back();
3916 // Save the current stream state.
3917 uint64_t CurBit = Stream.GetCurrentBitNo();
3918 assert(
3919 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3920 "Mismatch between VST and scanned function offsets");
3921 DeferredFunctionInfo[Fn] = CurBit;
3923 // Skip over the function block for now.
3924 if (Error Err = Stream.SkipBlock())
3925 return Err;
3926 return Error::success();
3929 Error BitcodeReader::globalCleanup() {
3930 // Patch the initializers for globals and aliases up.
3931 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3932 return Err;
3933 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3934 return error("Malformed global initializer set");
3936 // Look for intrinsic functions which need to be upgraded at some point
3937 // and functions that need to have their function attributes upgraded.
3938 for (Function &F : *TheModule) {
3939 MDLoader->upgradeDebugIntrinsics(F);
3940 Function *NewFn;
3941 // If PreserveInputDbgFormat=true, then we don't know whether we want
3942 // intrinsics or records, and we won't perform any conversions in either
3943 // case, so don't upgrade intrinsics to records.
3944 if (UpgradeIntrinsicFunction(
3945 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3946 UpgradedIntrinsics[&F] = NewFn;
3947 // Look for functions that rely on old function attribute behavior.
3948 UpgradeFunctionAttributes(F);
3951 // Look for global variables which need to be renamed.
3952 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3953 for (GlobalVariable &GV : TheModule->globals())
3954 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3955 UpgradedVariables.emplace_back(&GV, Upgraded);
3956 for (auto &Pair : UpgradedVariables) {
3957 Pair.first->eraseFromParent();
3958 TheModule->insertGlobalVariable(Pair.second);
3961 // Force deallocation of memory for these vectors to favor the client that
3962 // want lazy deserialization.
3963 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3964 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3965 return Error::success();
3968 /// Support for lazy parsing of function bodies. This is required if we
3969 /// either have an old bitcode file without a VST forward declaration record,
3970 /// or if we have an anonymous function being materialized, since anonymous
3971 /// functions do not have a name and are therefore not in the VST.
3972 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3973 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3974 return JumpFailed;
3976 if (Stream.AtEndOfStream())
3977 return error("Could not find function in stream");
3979 if (!SeenFirstFunctionBody)
3980 return error("Trying to materialize functions before seeing function blocks");
3982 // An old bitcode file with the symbol table at the end would have
3983 // finished the parse greedily.
3984 assert(SeenValueSymbolTable);
3986 SmallVector<uint64_t, 64> Record;
3988 while (true) {
3989 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3990 if (!MaybeEntry)
3991 return MaybeEntry.takeError();
3992 llvm::BitstreamEntry Entry = MaybeEntry.get();
3994 switch (Entry.Kind) {
3995 default:
3996 return error("Expect SubBlock");
3997 case BitstreamEntry::SubBlock:
3998 switch (Entry.ID) {
3999 default:
4000 return error("Expect function block");
4001 case bitc::FUNCTION_BLOCK_ID:
4002 if (Error Err = rememberAndSkipFunctionBody())
4003 return Err;
4004 NextUnreadBit = Stream.GetCurrentBitNo();
4005 return Error::success();
4011 Error BitcodeReaderBase::readBlockInfo() {
4012 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
4013 Stream.ReadBlockInfoBlock();
4014 if (!MaybeNewBlockInfo)
4015 return MaybeNewBlockInfo.takeError();
4016 std::optional<BitstreamBlockInfo> NewBlockInfo =
4017 std::move(MaybeNewBlockInfo.get());
4018 if (!NewBlockInfo)
4019 return error("Malformed block");
4020 BlockInfo = std::move(*NewBlockInfo);
4021 return Error::success();
4024 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
4025 // v1: [selection_kind, name]
4026 // v2: [strtab_offset, strtab_size, selection_kind]
4027 StringRef Name;
4028 std::tie(Name, Record) = readNameFromStrtab(Record);
4030 if (Record.empty())
4031 return error("Invalid record");
4032 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
4033 std::string OldFormatName;
4034 if (!UseStrtab) {
4035 if (Record.size() < 2)
4036 return error("Invalid record");
4037 unsigned ComdatNameSize = Record[1];
4038 if (ComdatNameSize > Record.size() - 2)
4039 return error("Comdat name size too large");
4040 OldFormatName.reserve(ComdatNameSize);
4041 for (unsigned i = 0; i != ComdatNameSize; ++i)
4042 OldFormatName += (char)Record[2 + i];
4043 Name = OldFormatName;
4045 Comdat *C = TheModule->getOrInsertComdat(Name);
4046 C->setSelectionKind(SK);
4047 ComdatList.push_back(C);
4048 return Error::success();
4051 static void inferDSOLocal(GlobalValue *GV) {
4052 // infer dso_local from linkage and visibility if it is not encoded.
4053 if (GV->hasLocalLinkage() ||
4054 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
4055 GV->setDSOLocal(true);
4058 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
4059 GlobalValue::SanitizerMetadata Meta;
4060 if (V & (1 << 0))
4061 Meta.NoAddress = true;
4062 if (V & (1 << 1))
4063 Meta.NoHWAddress = true;
4064 if (V & (1 << 2))
4065 Meta.Memtag = true;
4066 if (V & (1 << 3))
4067 Meta.IsDynInit = true;
4068 return Meta;
4071 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4072 // v1: [pointer type, isconst, initid, linkage, alignment, section,
4073 // visibility, threadlocal, unnamed_addr, externally_initialized,
4074 // dllstorageclass, comdat, attributes, preemption specifier,
4075 // partition strtab offset, partition strtab size] (name in VST)
4076 // v2: [strtab_offset, strtab_size, v1]
4077 // v3: [v2, code_model]
4078 StringRef Name;
4079 std::tie(Name, Record) = readNameFromStrtab(Record);
4081 if (Record.size() < 6)
4082 return error("Invalid record");
4083 unsigned TyID = Record[0];
4084 Type *Ty = getTypeByID(TyID);
4085 if (!Ty)
4086 return error("Invalid record");
4087 bool isConstant = Record[1] & 1;
4088 bool explicitType = Record[1] & 2;
4089 unsigned AddressSpace;
4090 if (explicitType) {
4091 AddressSpace = Record[1] >> 2;
4092 } else {
4093 if (!Ty->isPointerTy())
4094 return error("Invalid type for value");
4095 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4096 TyID = getContainedTypeID(TyID);
4097 Ty = getTypeByID(TyID);
4098 if (!Ty)
4099 return error("Missing element type for old-style global");
4102 uint64_t RawLinkage = Record[3];
4103 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4104 MaybeAlign Alignment;
4105 if (Error Err = parseAlignmentValue(Record[4], Alignment))
4106 return Err;
4107 std::string Section;
4108 if (Record[5]) {
4109 if (Record[5] - 1 >= SectionTable.size())
4110 return error("Invalid ID");
4111 Section = SectionTable[Record[5] - 1];
4113 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4114 // Local linkage must have default visibility.
4115 // auto-upgrade `hidden` and `protected` for old bitcode.
4116 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4117 Visibility = getDecodedVisibility(Record[6]);
4119 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4120 if (Record.size() > 7)
4121 TLM = getDecodedThreadLocalMode(Record[7]);
4123 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4124 if (Record.size() > 8)
4125 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4127 bool ExternallyInitialized = false;
4128 if (Record.size() > 9)
4129 ExternallyInitialized = Record[9];
4131 GlobalVariable *NewGV =
4132 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4133 nullptr, TLM, AddressSpace, ExternallyInitialized);
4134 if (Alignment)
4135 NewGV->setAlignment(*Alignment);
4136 if (!Section.empty())
4137 NewGV->setSection(Section);
4138 NewGV->setVisibility(Visibility);
4139 NewGV->setUnnamedAddr(UnnamedAddr);
4141 if (Record.size() > 10) {
4142 // A GlobalValue with local linkage cannot have a DLL storage class.
4143 if (!NewGV->hasLocalLinkage()) {
4144 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4146 } else {
4147 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4150 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4152 // Remember which value to use for the global initializer.
4153 if (unsigned InitID = Record[2])
4154 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4156 if (Record.size() > 11) {
4157 if (unsigned ComdatID = Record[11]) {
4158 if (ComdatID > ComdatList.size())
4159 return error("Invalid global variable comdat ID");
4160 NewGV->setComdat(ComdatList[ComdatID - 1]);
4162 } else if (hasImplicitComdat(RawLinkage)) {
4163 ImplicitComdatObjects.insert(NewGV);
4166 if (Record.size() > 12) {
4167 auto AS = getAttributes(Record[12]).getFnAttrs();
4168 NewGV->setAttributes(AS);
4171 if (Record.size() > 13) {
4172 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4174 inferDSOLocal(NewGV);
4176 // Check whether we have enough values to read a partition name.
4177 if (Record.size() > 15)
4178 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4180 if (Record.size() > 16 && Record[16]) {
4181 llvm::GlobalValue::SanitizerMetadata Meta =
4182 deserializeSanitizerMetadata(Record[16]);
4183 NewGV->setSanitizerMetadata(Meta);
4186 if (Record.size() > 17 && Record[17]) {
4187 if (auto CM = getDecodedCodeModel(Record[17]))
4188 NewGV->setCodeModel(*CM);
4189 else
4190 return error("Invalid global variable code model");
4193 return Error::success();
4196 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4197 if (ValueTypeCallback) {
4198 (*ValueTypeCallback)(
4199 F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4200 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4204 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4205 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4206 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4207 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
4208 // v2: [strtab_offset, strtab_size, v1]
4209 StringRef Name;
4210 std::tie(Name, Record) = readNameFromStrtab(Record);
4212 if (Record.size() < 8)
4213 return error("Invalid record");
4214 unsigned FTyID = Record[0];
4215 Type *FTy = getTypeByID(FTyID);
4216 if (!FTy)
4217 return error("Invalid record");
4218 if (isa<PointerType>(FTy)) {
4219 FTyID = getContainedTypeID(FTyID, 0);
4220 FTy = getTypeByID(FTyID);
4221 if (!FTy)
4222 return error("Missing element type for old-style function");
4225 if (!isa<FunctionType>(FTy))
4226 return error("Invalid type for value");
4227 auto CC = static_cast<CallingConv::ID>(Record[1]);
4228 if (CC & ~CallingConv::MaxID)
4229 return error("Invalid calling convention ID");
4231 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4232 if (Record.size() > 16)
4233 AddrSpace = Record[16];
4235 Function *Func =
4236 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4237 AddrSpace, Name, TheModule);
4239 assert(Func->getFunctionType() == FTy &&
4240 "Incorrect fully specified type provided for function");
4241 FunctionTypeIDs[Func] = FTyID;
4243 Func->setCallingConv(CC);
4244 bool isProto = Record[2];
4245 uint64_t RawLinkage = Record[3];
4246 Func->setLinkage(getDecodedLinkage(RawLinkage));
4247 Func->setAttributes(getAttributes(Record[4]));
4248 callValueTypeCallback(Func, FTyID);
4250 // Upgrade any old-style byval or sret without a type by propagating the
4251 // argument's pointee type. There should be no opaque pointers where the byval
4252 // type is implicit.
4253 for (unsigned i = 0; i != Func->arg_size(); ++i) {
4254 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4255 Attribute::InAlloca}) {
4256 if (!Func->hasParamAttribute(i, Kind))
4257 continue;
4259 if (Func->getParamAttribute(i, Kind).getValueAsType())
4260 continue;
4262 Func->removeParamAttr(i, Kind);
4264 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4265 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4266 if (!PtrEltTy)
4267 return error("Missing param element type for attribute upgrade");
4269 Attribute NewAttr;
4270 switch (Kind) {
4271 case Attribute::ByVal:
4272 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4273 break;
4274 case Attribute::StructRet:
4275 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4276 break;
4277 case Attribute::InAlloca:
4278 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4279 break;
4280 default:
4281 llvm_unreachable("not an upgraded type attribute");
4284 Func->addParamAttr(i, NewAttr);
4288 if (Func->getCallingConv() == CallingConv::X86_INTR &&
4289 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4290 unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4291 Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4292 if (!ByValTy)
4293 return error("Missing param element type for x86_intrcc upgrade");
4294 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4295 Func->addParamAttr(0, NewAttr);
4298 MaybeAlign Alignment;
4299 if (Error Err = parseAlignmentValue(Record[5], Alignment))
4300 return Err;
4301 if (Alignment)
4302 Func->setAlignment(*Alignment);
4303 if (Record[6]) {
4304 if (Record[6] - 1 >= SectionTable.size())
4305 return error("Invalid ID");
4306 Func->setSection(SectionTable[Record[6] - 1]);
4308 // Local linkage must have default visibility.
4309 // auto-upgrade `hidden` and `protected` for old bitcode.
4310 if (!Func->hasLocalLinkage())
4311 Func->setVisibility(getDecodedVisibility(Record[7]));
4312 if (Record.size() > 8 && Record[8]) {
4313 if (Record[8] - 1 >= GCTable.size())
4314 return error("Invalid ID");
4315 Func->setGC(GCTable[Record[8] - 1]);
4317 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4318 if (Record.size() > 9)
4319 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4320 Func->setUnnamedAddr(UnnamedAddr);
4322 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4323 if (Record.size() > 10)
4324 OperandInfo.Prologue = Record[10];
4326 if (Record.size() > 11) {
4327 // A GlobalValue with local linkage cannot have a DLL storage class.
4328 if (!Func->hasLocalLinkage()) {
4329 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4331 } else {
4332 upgradeDLLImportExportLinkage(Func, RawLinkage);
4335 if (Record.size() > 12) {
4336 if (unsigned ComdatID = Record[12]) {
4337 if (ComdatID > ComdatList.size())
4338 return error("Invalid function comdat ID");
4339 Func->setComdat(ComdatList[ComdatID - 1]);
4341 } else if (hasImplicitComdat(RawLinkage)) {
4342 ImplicitComdatObjects.insert(Func);
4345 if (Record.size() > 13)
4346 OperandInfo.Prefix = Record[13];
4348 if (Record.size() > 14)
4349 OperandInfo.PersonalityFn = Record[14];
4351 if (Record.size() > 15) {
4352 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4354 inferDSOLocal(Func);
4356 // Record[16] is the address space number.
4358 // Check whether we have enough values to read a partition name. Also make
4359 // sure Strtab has enough values.
4360 if (Record.size() > 18 && Strtab.data() &&
4361 Record[17] + Record[18] <= Strtab.size()) {
4362 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4365 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4367 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4368 FunctionOperands.push_back(OperandInfo);
4370 // If this is a function with a body, remember the prototype we are
4371 // creating now, so that we can match up the body with them later.
4372 if (!isProto) {
4373 Func->setIsMaterializable(true);
4374 FunctionsWithBodies.push_back(Func);
4375 DeferredFunctionInfo[Func] = 0;
4377 return Error::success();
4380 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4381 unsigned BitCode, ArrayRef<uint64_t> Record) {
4382 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4383 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4384 // dllstorageclass, threadlocal, unnamed_addr,
4385 // preemption specifier] (name in VST)
4386 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4387 // visibility, dllstorageclass, threadlocal, unnamed_addr,
4388 // preemption specifier] (name in VST)
4389 // v2: [strtab_offset, strtab_size, v1]
4390 StringRef Name;
4391 std::tie(Name, Record) = readNameFromStrtab(Record);
4393 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4394 if (Record.size() < (3 + (unsigned)NewRecord))
4395 return error("Invalid record");
4396 unsigned OpNum = 0;
4397 unsigned TypeID = Record[OpNum++];
4398 Type *Ty = getTypeByID(TypeID);
4399 if (!Ty)
4400 return error("Invalid record");
4402 unsigned AddrSpace;
4403 if (!NewRecord) {
4404 auto *PTy = dyn_cast<PointerType>(Ty);
4405 if (!PTy)
4406 return error("Invalid type for value");
4407 AddrSpace = PTy->getAddressSpace();
4408 TypeID = getContainedTypeID(TypeID);
4409 Ty = getTypeByID(TypeID);
4410 if (!Ty)
4411 return error("Missing element type for old-style indirect symbol");
4412 } else {
4413 AddrSpace = Record[OpNum++];
4416 auto Val = Record[OpNum++];
4417 auto Linkage = Record[OpNum++];
4418 GlobalValue *NewGA;
4419 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4420 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4421 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4422 TheModule);
4423 else
4424 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4425 nullptr, TheModule);
4427 // Local linkage must have default visibility.
4428 // auto-upgrade `hidden` and `protected` for old bitcode.
4429 if (OpNum != Record.size()) {
4430 auto VisInd = OpNum++;
4431 if (!NewGA->hasLocalLinkage())
4432 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4434 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4435 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4436 if (OpNum != Record.size()) {
4437 auto S = Record[OpNum++];
4438 // A GlobalValue with local linkage cannot have a DLL storage class.
4439 if (!NewGA->hasLocalLinkage())
4440 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4442 else
4443 upgradeDLLImportExportLinkage(NewGA, Linkage);
4444 if (OpNum != Record.size())
4445 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4446 if (OpNum != Record.size())
4447 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4449 if (OpNum != Record.size())
4450 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4451 inferDSOLocal(NewGA);
4453 // Check whether we have enough values to read a partition name.
4454 if (OpNum + 1 < Record.size()) {
4455 // Check Strtab has enough values for the partition.
4456 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4457 return error("Malformed partition, too large.");
4458 NewGA->setPartition(
4459 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4462 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4463 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4464 return Error::success();
4467 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4468 bool ShouldLazyLoadMetadata,
4469 ParserCallbacks Callbacks) {
4470 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4471 // has been set to true and we aren't attempting to preserve the existing
4472 // format in the bitcode (default action: load into the old debug format).
4473 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4474 TheModule->IsNewDbgInfoFormat =
4475 UseNewDbgInfoFormat &&
4476 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4479 this->ValueTypeCallback = std::move(Callbacks.ValueType);
4480 if (ResumeBit) {
4481 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4482 return JumpFailed;
4483 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4484 return Err;
4486 SmallVector<uint64_t, 64> Record;
4488 // Parts of bitcode parsing depend on the datalayout. Make sure we
4489 // finalize the datalayout before we run any of that code.
4490 bool ResolvedDataLayout = false;
4491 // In order to support importing modules with illegal data layout strings,
4492 // delay parsing the data layout string until after upgrades and overrides
4493 // have been applied, allowing to fix illegal data layout strings.
4494 // Initialize to the current module's layout string in case none is specified.
4495 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4497 auto ResolveDataLayout = [&]() -> Error {
4498 if (ResolvedDataLayout)
4499 return Error::success();
4501 // Datalayout and triple can't be parsed after this point.
4502 ResolvedDataLayout = true;
4504 // Auto-upgrade the layout string
4505 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4506 TentativeDataLayoutStr, TheModule->getTargetTriple());
4508 // Apply override
4509 if (Callbacks.DataLayout) {
4510 if (auto LayoutOverride = (*Callbacks.DataLayout)(
4511 TheModule->getTargetTriple(), TentativeDataLayoutStr))
4512 TentativeDataLayoutStr = *LayoutOverride;
4515 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4516 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4517 if (!MaybeDL)
4518 return MaybeDL.takeError();
4520 TheModule->setDataLayout(MaybeDL.get());
4521 return Error::success();
4524 // Read all the records for this module.
4525 while (true) {
4526 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4527 if (!MaybeEntry)
4528 return MaybeEntry.takeError();
4529 llvm::BitstreamEntry Entry = MaybeEntry.get();
4531 switch (Entry.Kind) {
4532 case BitstreamEntry::Error:
4533 return error("Malformed block");
4534 case BitstreamEntry::EndBlock:
4535 if (Error Err = ResolveDataLayout())
4536 return Err;
4537 return globalCleanup();
4539 case BitstreamEntry::SubBlock:
4540 switch (Entry.ID) {
4541 default: // Skip unknown content.
4542 if (Error Err = Stream.SkipBlock())
4543 return Err;
4544 break;
4545 case bitc::BLOCKINFO_BLOCK_ID:
4546 if (Error Err = readBlockInfo())
4547 return Err;
4548 break;
4549 case bitc::PARAMATTR_BLOCK_ID:
4550 if (Error Err = parseAttributeBlock())
4551 return Err;
4552 break;
4553 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4554 if (Error Err = parseAttributeGroupBlock())
4555 return Err;
4556 break;
4557 case bitc::TYPE_BLOCK_ID_NEW:
4558 if (Error Err = parseTypeTable())
4559 return Err;
4560 break;
4561 case bitc::VALUE_SYMTAB_BLOCK_ID:
4562 if (!SeenValueSymbolTable) {
4563 // Either this is an old form VST without function index and an
4564 // associated VST forward declaration record (which would have caused
4565 // the VST to be jumped to and parsed before it was encountered
4566 // normally in the stream), or there were no function blocks to
4567 // trigger an earlier parsing of the VST.
4568 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4569 if (Error Err = parseValueSymbolTable())
4570 return Err;
4571 SeenValueSymbolTable = true;
4572 } else {
4573 // We must have had a VST forward declaration record, which caused
4574 // the parser to jump to and parse the VST earlier.
4575 assert(VSTOffset > 0);
4576 if (Error Err = Stream.SkipBlock())
4577 return Err;
4579 break;
4580 case bitc::CONSTANTS_BLOCK_ID:
4581 if (Error Err = parseConstants())
4582 return Err;
4583 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4584 return Err;
4585 break;
4586 case bitc::METADATA_BLOCK_ID:
4587 if (ShouldLazyLoadMetadata) {
4588 if (Error Err = rememberAndSkipMetadata())
4589 return Err;
4590 break;
4592 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4593 if (Error Err = MDLoader->parseModuleMetadata())
4594 return Err;
4595 break;
4596 case bitc::METADATA_KIND_BLOCK_ID:
4597 if (Error Err = MDLoader->parseMetadataKinds())
4598 return Err;
4599 break;
4600 case bitc::FUNCTION_BLOCK_ID:
4601 if (Error Err = ResolveDataLayout())
4602 return Err;
4604 // If this is the first function body we've seen, reverse the
4605 // FunctionsWithBodies list.
4606 if (!SeenFirstFunctionBody) {
4607 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4608 if (Error Err = globalCleanup())
4609 return Err;
4610 SeenFirstFunctionBody = true;
4613 if (VSTOffset > 0) {
4614 // If we have a VST forward declaration record, make sure we
4615 // parse the VST now if we haven't already. It is needed to
4616 // set up the DeferredFunctionInfo vector for lazy reading.
4617 if (!SeenValueSymbolTable) {
4618 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4619 return Err;
4620 SeenValueSymbolTable = true;
4621 // Fall through so that we record the NextUnreadBit below.
4622 // This is necessary in case we have an anonymous function that
4623 // is later materialized. Since it will not have a VST entry we
4624 // need to fall back to the lazy parse to find its offset.
4625 } else {
4626 // If we have a VST forward declaration record, but have already
4627 // parsed the VST (just above, when the first function body was
4628 // encountered here), then we are resuming the parse after
4629 // materializing functions. The ResumeBit points to the
4630 // start of the last function block recorded in the
4631 // DeferredFunctionInfo map. Skip it.
4632 if (Error Err = Stream.SkipBlock())
4633 return Err;
4634 continue;
4638 // Support older bitcode files that did not have the function
4639 // index in the VST, nor a VST forward declaration record, as
4640 // well as anonymous functions that do not have VST entries.
4641 // Build the DeferredFunctionInfo vector on the fly.
4642 if (Error Err = rememberAndSkipFunctionBody())
4643 return Err;
4645 // Suspend parsing when we reach the function bodies. Subsequent
4646 // materialization calls will resume it when necessary. If the bitcode
4647 // file is old, the symbol table will be at the end instead and will not
4648 // have been seen yet. In this case, just finish the parse now.
4649 if (SeenValueSymbolTable) {
4650 NextUnreadBit = Stream.GetCurrentBitNo();
4651 // After the VST has been parsed, we need to make sure intrinsic name
4652 // are auto-upgraded.
4653 return globalCleanup();
4655 break;
4656 case bitc::USELIST_BLOCK_ID:
4657 if (Error Err = parseUseLists())
4658 return Err;
4659 break;
4660 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4661 if (Error Err = parseOperandBundleTags())
4662 return Err;
4663 break;
4664 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4665 if (Error Err = parseSyncScopeNames())
4666 return Err;
4667 break;
4669 continue;
4671 case BitstreamEntry::Record:
4672 // The interesting case.
4673 break;
4676 // Read a record.
4677 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4678 if (!MaybeBitCode)
4679 return MaybeBitCode.takeError();
4680 switch (unsigned BitCode = MaybeBitCode.get()) {
4681 default: break; // Default behavior, ignore unknown content.
4682 case bitc::MODULE_CODE_VERSION: {
4683 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4684 if (!VersionOrErr)
4685 return VersionOrErr.takeError();
4686 UseRelativeIDs = *VersionOrErr >= 1;
4687 break;
4689 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4690 if (ResolvedDataLayout)
4691 return error("target triple too late in module");
4692 std::string S;
4693 if (convertToString(Record, 0, S))
4694 return error("Invalid record");
4695 TheModule->setTargetTriple(S);
4696 break;
4698 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4699 if (ResolvedDataLayout)
4700 return error("datalayout too late in module");
4701 if (convertToString(Record, 0, TentativeDataLayoutStr))
4702 return error("Invalid record");
4703 break;
4705 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4706 std::string S;
4707 if (convertToString(Record, 0, S))
4708 return error("Invalid record");
4709 TheModule->setModuleInlineAsm(S);
4710 break;
4712 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4713 // Deprecated, but still needed to read old bitcode files.
4714 std::string S;
4715 if (convertToString(Record, 0, S))
4716 return error("Invalid record");
4717 // Ignore value.
4718 break;
4720 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4721 std::string S;
4722 if (convertToString(Record, 0, S))
4723 return error("Invalid record");
4724 SectionTable.push_back(S);
4725 break;
4727 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4728 std::string S;
4729 if (convertToString(Record, 0, S))
4730 return error("Invalid record");
4731 GCTable.push_back(S);
4732 break;
4734 case bitc::MODULE_CODE_COMDAT:
4735 if (Error Err = parseComdatRecord(Record))
4736 return Err;
4737 break;
4738 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4739 // written by ThinLinkBitcodeWriter. See
4740 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4741 // record
4742 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4743 case bitc::MODULE_CODE_GLOBALVAR:
4744 if (Error Err = parseGlobalVarRecord(Record))
4745 return Err;
4746 break;
4747 case bitc::MODULE_CODE_FUNCTION:
4748 if (Error Err = ResolveDataLayout())
4749 return Err;
4750 if (Error Err = parseFunctionRecord(Record))
4751 return Err;
4752 break;
4753 case bitc::MODULE_CODE_IFUNC:
4754 case bitc::MODULE_CODE_ALIAS:
4755 case bitc::MODULE_CODE_ALIAS_OLD:
4756 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4757 return Err;
4758 break;
4759 /// MODULE_CODE_VSTOFFSET: [offset]
4760 case bitc::MODULE_CODE_VSTOFFSET:
4761 if (Record.empty())
4762 return error("Invalid record");
4763 // Note that we subtract 1 here because the offset is relative to one word
4764 // before the start of the identification or module block, which was
4765 // historically always the start of the regular bitcode header.
4766 VSTOffset = Record[0] - 1;
4767 break;
4768 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4769 case bitc::MODULE_CODE_SOURCE_FILENAME:
4770 SmallString<128> ValueName;
4771 if (convertToString(Record, 0, ValueName))
4772 return error("Invalid record");
4773 TheModule->setSourceFileName(ValueName);
4774 break;
4776 Record.clear();
4778 this->ValueTypeCallback = std::nullopt;
4779 return Error::success();
4782 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4783 bool IsImporting,
4784 ParserCallbacks Callbacks) {
4785 TheModule = M;
4786 MetadataLoaderCallbacks MDCallbacks;
4787 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4788 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4789 return getContainedTypeID(I, J);
4791 MDCallbacks.MDType = Callbacks.MDType;
4792 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4793 return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4796 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4797 if (!isa<PointerType>(PtrType))
4798 return error("Load/Store operand is not a pointer type");
4799 if (!PointerType::isLoadableOrStorableType(ValType))
4800 return error("Cannot load/store from pointer");
4801 return Error::success();
4804 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4805 ArrayRef<unsigned> ArgTyIDs) {
4806 AttributeList Attrs = CB->getAttributes();
4807 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4808 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4809 Attribute::InAlloca}) {
4810 if (!Attrs.hasParamAttr(i, Kind) ||
4811 Attrs.getParamAttr(i, Kind).getValueAsType())
4812 continue;
4814 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4815 if (!PtrEltTy)
4816 return error("Missing element type for typed attribute upgrade");
4818 Attribute NewAttr;
4819 switch (Kind) {
4820 case Attribute::ByVal:
4821 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4822 break;
4823 case Attribute::StructRet:
4824 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4825 break;
4826 case Attribute::InAlloca:
4827 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4828 break;
4829 default:
4830 llvm_unreachable("not an upgraded type attribute");
4833 Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4837 if (CB->isInlineAsm()) {
4838 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4839 unsigned ArgNo = 0;
4840 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4841 if (!CI.hasArg())
4842 continue;
4844 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4845 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4846 if (!ElemTy)
4847 return error("Missing element type for inline asm upgrade");
4848 Attrs = Attrs.addParamAttribute(
4849 Context, ArgNo,
4850 Attribute::get(Context, Attribute::ElementType, ElemTy));
4853 ArgNo++;
4857 switch (CB->getIntrinsicID()) {
4858 case Intrinsic::preserve_array_access_index:
4859 case Intrinsic::preserve_struct_access_index:
4860 case Intrinsic::aarch64_ldaxr:
4861 case Intrinsic::aarch64_ldxr:
4862 case Intrinsic::aarch64_stlxr:
4863 case Intrinsic::aarch64_stxr:
4864 case Intrinsic::arm_ldaex:
4865 case Intrinsic::arm_ldrex:
4866 case Intrinsic::arm_stlex:
4867 case Intrinsic::arm_strex: {
4868 unsigned ArgNo;
4869 switch (CB->getIntrinsicID()) {
4870 case Intrinsic::aarch64_stlxr:
4871 case Intrinsic::aarch64_stxr:
4872 case Intrinsic::arm_stlex:
4873 case Intrinsic::arm_strex:
4874 ArgNo = 1;
4875 break;
4876 default:
4877 ArgNo = 0;
4878 break;
4880 if (!Attrs.getParamElementType(ArgNo)) {
4881 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4882 if (!ElTy)
4883 return error("Missing element type for elementtype upgrade");
4884 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4885 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4887 break;
4889 default:
4890 break;
4893 CB->setAttributes(Attrs);
4894 return Error::success();
4897 /// Lazily parse the specified function body block.
4898 Error BitcodeReader::parseFunctionBody(Function *F) {
4899 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4900 return Err;
4902 // Unexpected unresolved metadata when parsing function.
4903 if (MDLoader->hasFwdRefs())
4904 return error("Invalid function metadata: incoming forward references");
4906 InstructionList.clear();
4907 unsigned ModuleValueListSize = ValueList.size();
4908 unsigned ModuleMDLoaderSize = MDLoader->size();
4910 // Add all the function arguments to the value table.
4911 unsigned ArgNo = 0;
4912 unsigned FTyID = FunctionTypeIDs[F];
4913 for (Argument &I : F->args()) {
4914 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4915 assert(I.getType() == getTypeByID(ArgTyID) &&
4916 "Incorrect fully specified type for Function Argument");
4917 ValueList.push_back(&I, ArgTyID);
4918 ++ArgNo;
4920 unsigned NextValueNo = ValueList.size();
4921 BasicBlock *CurBB = nullptr;
4922 unsigned CurBBNo = 0;
4923 // Block into which constant expressions from phi nodes are materialized.
4924 BasicBlock *PhiConstExprBB = nullptr;
4925 // Edge blocks for phi nodes into which constant expressions have been
4926 // expanded.
4927 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4928 ConstExprEdgeBBs;
4930 DebugLoc LastLoc;
4931 auto getLastInstruction = [&]() -> Instruction * {
4932 if (CurBB && !CurBB->empty())
4933 return &CurBB->back();
4934 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4935 !FunctionBBs[CurBBNo - 1]->empty())
4936 return &FunctionBBs[CurBBNo - 1]->back();
4937 return nullptr;
4940 std::vector<OperandBundleDef> OperandBundles;
4942 // Read all the records.
4943 SmallVector<uint64_t, 64> Record;
4945 while (true) {
4946 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4947 if (!MaybeEntry)
4948 return MaybeEntry.takeError();
4949 llvm::BitstreamEntry Entry = MaybeEntry.get();
4951 switch (Entry.Kind) {
4952 case BitstreamEntry::Error:
4953 return error("Malformed block");
4954 case BitstreamEntry::EndBlock:
4955 goto OutOfRecordLoop;
4957 case BitstreamEntry::SubBlock:
4958 switch (Entry.ID) {
4959 default: // Skip unknown content.
4960 if (Error Err = Stream.SkipBlock())
4961 return Err;
4962 break;
4963 case bitc::CONSTANTS_BLOCK_ID:
4964 if (Error Err = parseConstants())
4965 return Err;
4966 NextValueNo = ValueList.size();
4967 break;
4968 case bitc::VALUE_SYMTAB_BLOCK_ID:
4969 if (Error Err = parseValueSymbolTable())
4970 return Err;
4971 break;
4972 case bitc::METADATA_ATTACHMENT_ID:
4973 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4974 return Err;
4975 break;
4976 case bitc::METADATA_BLOCK_ID:
4977 assert(DeferredMetadataInfo.empty() &&
4978 "Must read all module-level metadata before function-level");
4979 if (Error Err = MDLoader->parseFunctionMetadata())
4980 return Err;
4981 break;
4982 case bitc::USELIST_BLOCK_ID:
4983 if (Error Err = parseUseLists())
4984 return Err;
4985 break;
4987 continue;
4989 case BitstreamEntry::Record:
4990 // The interesting case.
4991 break;
4994 // Read a record.
4995 Record.clear();
4996 Instruction *I = nullptr;
4997 unsigned ResTypeID = InvalidTypeID;
4998 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4999 if (!MaybeBitCode)
5000 return MaybeBitCode.takeError();
5001 switch (unsigned BitCode = MaybeBitCode.get()) {
5002 default: // Default behavior: reject
5003 return error("Invalid value");
5004 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
5005 if (Record.empty() || Record[0] == 0)
5006 return error("Invalid record");
5007 // Create all the basic blocks for the function.
5008 FunctionBBs.resize(Record[0]);
5010 // See if anything took the address of blocks in this function.
5011 auto BBFRI = BasicBlockFwdRefs.find(F);
5012 if (BBFRI == BasicBlockFwdRefs.end()) {
5013 for (BasicBlock *&BB : FunctionBBs)
5014 BB = BasicBlock::Create(Context, "", F);
5015 } else {
5016 auto &BBRefs = BBFRI->second;
5017 // Check for invalid basic block references.
5018 if (BBRefs.size() > FunctionBBs.size())
5019 return error("Invalid ID");
5020 assert(!BBRefs.empty() && "Unexpected empty array");
5021 assert(!BBRefs.front() && "Invalid reference to entry block");
5022 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
5023 ++I)
5024 if (I < RE && BBRefs[I]) {
5025 BBRefs[I]->insertInto(F);
5026 FunctionBBs[I] = BBRefs[I];
5027 } else {
5028 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
5031 // Erase from the table.
5032 BasicBlockFwdRefs.erase(BBFRI);
5035 CurBB = FunctionBBs[0];
5036 continue;
5039 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
5040 // The record should not be emitted if it's an empty list.
5041 if (Record.empty())
5042 return error("Invalid record");
5043 // When we have the RARE case of a BlockAddress Constant that is not
5044 // scoped to the Function it refers to, we need to conservatively
5045 // materialize the referred to Function, regardless of whether or not
5046 // that Function will ultimately be linked, otherwise users of
5047 // BitcodeReader might start splicing out Function bodies such that we
5048 // might no longer be able to materialize the BlockAddress since the
5049 // BasicBlock (and entire body of the Function) the BlockAddress refers
5050 // to may have been moved. In the case that the user of BitcodeReader
5051 // decides ultimately not to link the Function body, materializing here
5052 // could be considered wasteful, but it's better than a deserialization
5053 // failure as described. This keeps BitcodeReader unaware of complex
5054 // linkage policy decisions such as those use by LTO, leaving those
5055 // decisions "one layer up."
5056 for (uint64_t ValID : Record)
5057 if (auto *F = dyn_cast<Function>(ValueList[ValID]))
5058 BackwardRefFunctions.push_back(F);
5059 else
5060 return error("Invalid record");
5062 continue;
5064 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
5065 // This record indicates that the last instruction is at the same
5066 // location as the previous instruction with a location.
5067 I = getLastInstruction();
5069 if (!I)
5070 return error("Invalid record");
5071 I->setDebugLoc(LastLoc);
5072 I = nullptr;
5073 continue;
5075 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
5076 I = getLastInstruction();
5077 if (!I || Record.size() < 4)
5078 return error("Invalid record");
5080 unsigned Line = Record[0], Col = Record[1];
5081 unsigned ScopeID = Record[2], IAID = Record[3];
5082 bool isImplicitCode = Record.size() == 5 && Record[4];
5084 MDNode *Scope = nullptr, *IA = nullptr;
5085 if (ScopeID) {
5086 Scope = dyn_cast_or_null<MDNode>(
5087 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5088 if (!Scope)
5089 return error("Invalid record");
5091 if (IAID) {
5092 IA = dyn_cast_or_null<MDNode>(
5093 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5094 if (!IA)
5095 return error("Invalid record");
5097 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5098 isImplicitCode);
5099 I->setDebugLoc(LastLoc);
5100 I = nullptr;
5101 continue;
5103 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
5104 unsigned OpNum = 0;
5105 Value *LHS;
5106 unsigned TypeID;
5107 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5108 OpNum+1 > Record.size())
5109 return error("Invalid record");
5111 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5112 if (Opc == -1)
5113 return error("Invalid record");
5114 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5115 ResTypeID = TypeID;
5116 InstructionList.push_back(I);
5117 if (OpNum < Record.size()) {
5118 if (isa<FPMathOperator>(I)) {
5119 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5120 if (FMF.any())
5121 I->setFastMathFlags(FMF);
5124 break;
5126 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
5127 unsigned OpNum = 0;
5128 Value *LHS, *RHS;
5129 unsigned TypeID;
5130 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5131 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5132 CurBB) ||
5133 OpNum+1 > Record.size())
5134 return error("Invalid record");
5136 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5137 if (Opc == -1)
5138 return error("Invalid record");
5139 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5140 ResTypeID = TypeID;
5141 InstructionList.push_back(I);
5142 if (OpNum < Record.size()) {
5143 if (Opc == Instruction::Add ||
5144 Opc == Instruction::Sub ||
5145 Opc == Instruction::Mul ||
5146 Opc == Instruction::Shl) {
5147 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5148 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5149 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5150 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5151 } else if (Opc == Instruction::SDiv ||
5152 Opc == Instruction::UDiv ||
5153 Opc == Instruction::LShr ||
5154 Opc == Instruction::AShr) {
5155 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5156 cast<BinaryOperator>(I)->setIsExact(true);
5157 } else if (Opc == Instruction::Or) {
5158 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5159 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5160 } else if (isa<FPMathOperator>(I)) {
5161 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5162 if (FMF.any())
5163 I->setFastMathFlags(FMF);
5166 break;
5168 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
5169 unsigned OpNum = 0;
5170 Value *Op;
5171 unsigned OpTypeID;
5172 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5173 OpNum + 1 > Record.size())
5174 return error("Invalid record");
5176 ResTypeID = Record[OpNum++];
5177 Type *ResTy = getTypeByID(ResTypeID);
5178 int Opc = getDecodedCastOpcode(Record[OpNum++]);
5180 if (Opc == -1 || !ResTy)
5181 return error("Invalid record");
5182 Instruction *Temp = nullptr;
5183 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5184 if (Temp) {
5185 InstructionList.push_back(Temp);
5186 assert(CurBB && "No current BB?");
5187 Temp->insertInto(CurBB, CurBB->end());
5189 } else {
5190 auto CastOp = (Instruction::CastOps)Opc;
5191 if (!CastInst::castIsValid(CastOp, Op, ResTy))
5192 return error("Invalid cast");
5193 I = CastInst::Create(CastOp, Op, ResTy);
5196 if (OpNum < Record.size()) {
5197 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5198 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5199 cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5200 } else if (Opc == Instruction::Trunc) {
5201 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5202 cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5203 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5204 cast<TruncInst>(I)->setHasNoSignedWrap(true);
5206 if (isa<FPMathOperator>(I)) {
5207 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5208 if (FMF.any())
5209 I->setFastMathFlags(FMF);
5213 InstructionList.push_back(I);
5214 break;
5216 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5217 case bitc::FUNC_CODE_INST_GEP_OLD:
5218 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5219 unsigned OpNum = 0;
5221 unsigned TyID;
5222 Type *Ty;
5223 GEPNoWrapFlags NW;
5225 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5226 NW = toGEPNoWrapFlags(Record[OpNum++]);
5227 TyID = Record[OpNum++];
5228 Ty = getTypeByID(TyID);
5229 } else {
5230 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5231 NW = GEPNoWrapFlags::inBounds();
5232 TyID = InvalidTypeID;
5233 Ty = nullptr;
5236 Value *BasePtr;
5237 unsigned BasePtrTypeID;
5238 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5239 CurBB))
5240 return error("Invalid record");
5242 if (!Ty) {
5243 TyID = getContainedTypeID(BasePtrTypeID);
5244 if (BasePtr->getType()->isVectorTy())
5245 TyID = getContainedTypeID(TyID);
5246 Ty = getTypeByID(TyID);
5249 SmallVector<Value*, 16> GEPIdx;
5250 while (OpNum != Record.size()) {
5251 Value *Op;
5252 unsigned OpTypeID;
5253 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5254 return error("Invalid record");
5255 GEPIdx.push_back(Op);
5258 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5259 I = GEP;
5261 ResTypeID = TyID;
5262 if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5263 auto GTI = std::next(gep_type_begin(I));
5264 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5265 unsigned SubType = 0;
5266 if (GTI.isStruct()) {
5267 ConstantInt *IdxC =
5268 Idx->getType()->isVectorTy()
5269 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5270 : cast<ConstantInt>(Idx);
5271 SubType = IdxC->getZExtValue();
5273 ResTypeID = getContainedTypeID(ResTypeID, SubType);
5274 ++GTI;
5278 // At this point ResTypeID is the result element type. We need a pointer
5279 // or vector of pointer to it.
5280 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5281 if (I->getType()->isVectorTy())
5282 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5284 InstructionList.push_back(I);
5285 GEP->setNoWrapFlags(NW);
5286 break;
5289 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5290 // EXTRACTVAL: [opty, opval, n x indices]
5291 unsigned OpNum = 0;
5292 Value *Agg;
5293 unsigned AggTypeID;
5294 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5295 return error("Invalid record");
5296 Type *Ty = Agg->getType();
5298 unsigned RecSize = Record.size();
5299 if (OpNum == RecSize)
5300 return error("EXTRACTVAL: Invalid instruction with 0 indices");
5302 SmallVector<unsigned, 4> EXTRACTVALIdx;
5303 ResTypeID = AggTypeID;
5304 for (; OpNum != RecSize; ++OpNum) {
5305 bool IsArray = Ty->isArrayTy();
5306 bool IsStruct = Ty->isStructTy();
5307 uint64_t Index = Record[OpNum];
5309 if (!IsStruct && !IsArray)
5310 return error("EXTRACTVAL: Invalid type");
5311 if ((unsigned)Index != Index)
5312 return error("Invalid value");
5313 if (IsStruct && Index >= Ty->getStructNumElements())
5314 return error("EXTRACTVAL: Invalid struct index");
5315 if (IsArray && Index >= Ty->getArrayNumElements())
5316 return error("EXTRACTVAL: Invalid array index");
5317 EXTRACTVALIdx.push_back((unsigned)Index);
5319 if (IsStruct) {
5320 Ty = Ty->getStructElementType(Index);
5321 ResTypeID = getContainedTypeID(ResTypeID, Index);
5322 } else {
5323 Ty = Ty->getArrayElementType();
5324 ResTypeID = getContainedTypeID(ResTypeID);
5328 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5329 InstructionList.push_back(I);
5330 break;
5333 case bitc::FUNC_CODE_INST_INSERTVAL: {
5334 // INSERTVAL: [opty, opval, opty, opval, n x indices]
5335 unsigned OpNum = 0;
5336 Value *Agg;
5337 unsigned AggTypeID;
5338 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5339 return error("Invalid record");
5340 Value *Val;
5341 unsigned ValTypeID;
5342 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5343 return error("Invalid record");
5345 unsigned RecSize = Record.size();
5346 if (OpNum == RecSize)
5347 return error("INSERTVAL: Invalid instruction with 0 indices");
5349 SmallVector<unsigned, 4> INSERTVALIdx;
5350 Type *CurTy = Agg->getType();
5351 for (; OpNum != RecSize; ++OpNum) {
5352 bool IsArray = CurTy->isArrayTy();
5353 bool IsStruct = CurTy->isStructTy();
5354 uint64_t Index = Record[OpNum];
5356 if (!IsStruct && !IsArray)
5357 return error("INSERTVAL: Invalid type");
5358 if ((unsigned)Index != Index)
5359 return error("Invalid value");
5360 if (IsStruct && Index >= CurTy->getStructNumElements())
5361 return error("INSERTVAL: Invalid struct index");
5362 if (IsArray && Index >= CurTy->getArrayNumElements())
5363 return error("INSERTVAL: Invalid array index");
5365 INSERTVALIdx.push_back((unsigned)Index);
5366 if (IsStruct)
5367 CurTy = CurTy->getStructElementType(Index);
5368 else
5369 CurTy = CurTy->getArrayElementType();
5372 if (CurTy != Val->getType())
5373 return error("Inserted value type doesn't match aggregate type");
5375 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5376 ResTypeID = AggTypeID;
5377 InstructionList.push_back(I);
5378 break;
5381 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5382 // obsolete form of select
5383 // handles select i1 ... in old bitcode
5384 unsigned OpNum = 0;
5385 Value *TrueVal, *FalseVal, *Cond;
5386 unsigned TypeID;
5387 Type *CondType = Type::getInt1Ty(Context);
5388 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5389 CurBB) ||
5390 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5391 FalseVal, CurBB) ||
5392 popValue(Record, OpNum, NextValueNo, CondType,
5393 getVirtualTypeID(CondType), Cond, CurBB))
5394 return error("Invalid record");
5396 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5397 ResTypeID = TypeID;
5398 InstructionList.push_back(I);
5399 break;
5402 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5403 // new form of select
5404 // handles select i1 or select [N x i1]
5405 unsigned OpNum = 0;
5406 Value *TrueVal, *FalseVal, *Cond;
5407 unsigned ValTypeID, CondTypeID;
5408 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5409 CurBB) ||
5410 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5411 FalseVal, CurBB) ||
5412 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5413 return error("Invalid record");
5415 // select condition can be either i1 or [N x i1]
5416 if (VectorType* vector_type =
5417 dyn_cast<VectorType>(Cond->getType())) {
5418 // expect <n x i1>
5419 if (vector_type->getElementType() != Type::getInt1Ty(Context))
5420 return error("Invalid type for value");
5421 } else {
5422 // expect i1
5423 if (Cond->getType() != Type::getInt1Ty(Context))
5424 return error("Invalid type for value");
5427 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5428 ResTypeID = ValTypeID;
5429 InstructionList.push_back(I);
5430 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5431 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5432 if (FMF.any())
5433 I->setFastMathFlags(FMF);
5435 break;
5438 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5439 unsigned OpNum = 0;
5440 Value *Vec, *Idx;
5441 unsigned VecTypeID, IdxTypeID;
5442 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5443 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5444 return error("Invalid record");
5445 if (!Vec->getType()->isVectorTy())
5446 return error("Invalid type for value");
5447 I = ExtractElementInst::Create(Vec, Idx);
5448 ResTypeID = getContainedTypeID(VecTypeID);
5449 InstructionList.push_back(I);
5450 break;
5453 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5454 unsigned OpNum = 0;
5455 Value *Vec, *Elt, *Idx;
5456 unsigned VecTypeID, IdxTypeID;
5457 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5458 return error("Invalid record");
5459 if (!Vec->getType()->isVectorTy())
5460 return error("Invalid type for value");
5461 if (popValue(Record, OpNum, NextValueNo,
5462 cast<VectorType>(Vec->getType())->getElementType(),
5463 getContainedTypeID(VecTypeID), Elt, CurBB) ||
5464 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5465 return error("Invalid record");
5466 I = InsertElementInst::Create(Vec, Elt, Idx);
5467 ResTypeID = VecTypeID;
5468 InstructionList.push_back(I);
5469 break;
5472 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5473 unsigned OpNum = 0;
5474 Value *Vec1, *Vec2, *Mask;
5475 unsigned Vec1TypeID;
5476 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5477 CurBB) ||
5478 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5479 Vec2, CurBB))
5480 return error("Invalid record");
5482 unsigned MaskTypeID;
5483 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5484 return error("Invalid record");
5485 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5486 return error("Invalid type for value");
5488 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5489 ResTypeID =
5490 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5491 InstructionList.push_back(I);
5492 break;
5495 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5496 // Old form of ICmp/FCmp returning bool
5497 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5498 // both legal on vectors but had different behaviour.
5499 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5500 // FCmp/ICmp returning bool or vector of bool
5502 unsigned OpNum = 0;
5503 Value *LHS, *RHS;
5504 unsigned LHSTypeID;
5505 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5506 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5507 CurBB))
5508 return error("Invalid record");
5510 if (OpNum >= Record.size())
5511 return error(
5512 "Invalid record: operand number exceeded available operands");
5514 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5515 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5516 FastMathFlags FMF;
5517 if (IsFP && Record.size() > OpNum+1)
5518 FMF = getDecodedFastMathFlags(Record[++OpNum]);
5520 if (IsFP) {
5521 if (!CmpInst::isFPPredicate(PredVal))
5522 return error("Invalid fcmp predicate");
5523 I = new FCmpInst(PredVal, LHS, RHS);
5524 } else {
5525 if (!CmpInst::isIntPredicate(PredVal))
5526 return error("Invalid icmp predicate");
5527 I = new ICmpInst(PredVal, LHS, RHS);
5528 if (Record.size() > OpNum + 1 &&
5529 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN)))
5530 cast<ICmpInst>(I)->setSameSign();
5533 if (OpNum + 1 != Record.size())
5534 return error("Invalid record");
5536 ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5537 if (LHS->getType()->isVectorTy())
5538 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5540 if (FMF.any())
5541 I->setFastMathFlags(FMF);
5542 InstructionList.push_back(I);
5543 break;
5546 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5548 unsigned Size = Record.size();
5549 if (Size == 0) {
5550 I = ReturnInst::Create(Context);
5551 InstructionList.push_back(I);
5552 break;
5555 unsigned OpNum = 0;
5556 Value *Op = nullptr;
5557 unsigned OpTypeID;
5558 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5559 return error("Invalid record");
5560 if (OpNum != Record.size())
5561 return error("Invalid record");
5563 I = ReturnInst::Create(Context, Op);
5564 InstructionList.push_back(I);
5565 break;
5567 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5568 if (Record.size() != 1 && Record.size() != 3)
5569 return error("Invalid record");
5570 BasicBlock *TrueDest = getBasicBlock(Record[0]);
5571 if (!TrueDest)
5572 return error("Invalid record");
5574 if (Record.size() == 1) {
5575 I = BranchInst::Create(TrueDest);
5576 InstructionList.push_back(I);
5578 else {
5579 BasicBlock *FalseDest = getBasicBlock(Record[1]);
5580 Type *CondType = Type::getInt1Ty(Context);
5581 Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5582 getVirtualTypeID(CondType), CurBB);
5583 if (!FalseDest || !Cond)
5584 return error("Invalid record");
5585 I = BranchInst::Create(TrueDest, FalseDest, Cond);
5586 InstructionList.push_back(I);
5588 break;
5590 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5591 if (Record.size() != 1 && Record.size() != 2)
5592 return error("Invalid record");
5593 unsigned Idx = 0;
5594 Type *TokenTy = Type::getTokenTy(Context);
5595 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5596 getVirtualTypeID(TokenTy), CurBB);
5597 if (!CleanupPad)
5598 return error("Invalid record");
5599 BasicBlock *UnwindDest = nullptr;
5600 if (Record.size() == 2) {
5601 UnwindDest = getBasicBlock(Record[Idx++]);
5602 if (!UnwindDest)
5603 return error("Invalid record");
5606 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5607 InstructionList.push_back(I);
5608 break;
5610 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5611 if (Record.size() != 2)
5612 return error("Invalid record");
5613 unsigned Idx = 0;
5614 Type *TokenTy = Type::getTokenTy(Context);
5615 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5616 getVirtualTypeID(TokenTy), CurBB);
5617 if (!CatchPad)
5618 return error("Invalid record");
5619 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5620 if (!BB)
5621 return error("Invalid record");
5623 I = CatchReturnInst::Create(CatchPad, BB);
5624 InstructionList.push_back(I);
5625 break;
5627 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5628 // We must have, at minimum, the outer scope and the number of arguments.
5629 if (Record.size() < 2)
5630 return error("Invalid record");
5632 unsigned Idx = 0;
5634 Type *TokenTy = Type::getTokenTy(Context);
5635 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5636 getVirtualTypeID(TokenTy), CurBB);
5637 if (!ParentPad)
5638 return error("Invalid record");
5640 unsigned NumHandlers = Record[Idx++];
5642 SmallVector<BasicBlock *, 2> Handlers;
5643 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5644 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5645 if (!BB)
5646 return error("Invalid record");
5647 Handlers.push_back(BB);
5650 BasicBlock *UnwindDest = nullptr;
5651 if (Idx + 1 == Record.size()) {
5652 UnwindDest = getBasicBlock(Record[Idx++]);
5653 if (!UnwindDest)
5654 return error("Invalid record");
5657 if (Record.size() != Idx)
5658 return error("Invalid record");
5660 auto *CatchSwitch =
5661 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5662 for (BasicBlock *Handler : Handlers)
5663 CatchSwitch->addHandler(Handler);
5664 I = CatchSwitch;
5665 ResTypeID = getVirtualTypeID(I->getType());
5666 InstructionList.push_back(I);
5667 break;
5669 case bitc::FUNC_CODE_INST_CATCHPAD:
5670 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5671 // We must have, at minimum, the outer scope and the number of arguments.
5672 if (Record.size() < 2)
5673 return error("Invalid record");
5675 unsigned Idx = 0;
5677 Type *TokenTy = Type::getTokenTy(Context);
5678 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5679 getVirtualTypeID(TokenTy), CurBB);
5680 if (!ParentPad)
5681 return error("Invald record");
5683 unsigned NumArgOperands = Record[Idx++];
5685 SmallVector<Value *, 2> Args;
5686 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5687 Value *Val;
5688 unsigned ValTypeID;
5689 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5690 return error("Invalid record");
5691 Args.push_back(Val);
5694 if (Record.size() != Idx)
5695 return error("Invalid record");
5697 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5698 I = CleanupPadInst::Create(ParentPad, Args);
5699 else
5700 I = CatchPadInst::Create(ParentPad, Args);
5701 ResTypeID = getVirtualTypeID(I->getType());
5702 InstructionList.push_back(I);
5703 break;
5705 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5706 // Check magic
5707 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5708 // "New" SwitchInst format with case ranges. The changes to write this
5709 // format were reverted but we still recognize bitcode that uses it.
5710 // Hopefully someday we will have support for case ranges and can use
5711 // this format again.
5713 unsigned OpTyID = Record[1];
5714 Type *OpTy = getTypeByID(OpTyID);
5715 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5717 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5718 BasicBlock *Default = getBasicBlock(Record[3]);
5719 if (!OpTy || !Cond || !Default)
5720 return error("Invalid record");
5722 unsigned NumCases = Record[4];
5724 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5725 InstructionList.push_back(SI);
5727 unsigned CurIdx = 5;
5728 for (unsigned i = 0; i != NumCases; ++i) {
5729 SmallVector<ConstantInt*, 1> CaseVals;
5730 unsigned NumItems = Record[CurIdx++];
5731 for (unsigned ci = 0; ci != NumItems; ++ci) {
5732 bool isSingleNumber = Record[CurIdx++];
5734 APInt Low;
5735 unsigned ActiveWords = 1;
5736 if (ValueBitWidth > 64)
5737 ActiveWords = Record[CurIdx++];
5738 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5739 ValueBitWidth);
5740 CurIdx += ActiveWords;
5742 if (!isSingleNumber) {
5743 ActiveWords = 1;
5744 if (ValueBitWidth > 64)
5745 ActiveWords = Record[CurIdx++];
5746 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5747 ValueBitWidth);
5748 CurIdx += ActiveWords;
5750 // FIXME: It is not clear whether values in the range should be
5751 // compared as signed or unsigned values. The partially
5752 // implemented changes that used this format in the past used
5753 // unsigned comparisons.
5754 for ( ; Low.ule(High); ++Low)
5755 CaseVals.push_back(ConstantInt::get(Context, Low));
5756 } else
5757 CaseVals.push_back(ConstantInt::get(Context, Low));
5759 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5760 for (ConstantInt *Cst : CaseVals)
5761 SI->addCase(Cst, DestBB);
5763 I = SI;
5764 break;
5767 // Old SwitchInst format without case ranges.
5769 if (Record.size() < 3 || (Record.size() & 1) == 0)
5770 return error("Invalid record");
5771 unsigned OpTyID = Record[0];
5772 Type *OpTy = getTypeByID(OpTyID);
5773 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5774 BasicBlock *Default = getBasicBlock(Record[2]);
5775 if (!OpTy || !Cond || !Default)
5776 return error("Invalid record");
5777 unsigned NumCases = (Record.size()-3)/2;
5778 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5779 InstructionList.push_back(SI);
5780 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5781 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5782 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5783 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5784 if (!CaseVal || !DestBB) {
5785 delete SI;
5786 return error("Invalid record");
5788 SI->addCase(CaseVal, DestBB);
5790 I = SI;
5791 break;
5793 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5794 if (Record.size() < 2)
5795 return error("Invalid record");
5796 unsigned OpTyID = Record[0];
5797 Type *OpTy = getTypeByID(OpTyID);
5798 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5799 if (!OpTy || !Address)
5800 return error("Invalid record");
5801 unsigned NumDests = Record.size()-2;
5802 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5803 InstructionList.push_back(IBI);
5804 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5805 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5806 IBI->addDestination(DestBB);
5807 } else {
5808 delete IBI;
5809 return error("Invalid record");
5812 I = IBI;
5813 break;
5816 case bitc::FUNC_CODE_INST_INVOKE: {
5817 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5818 if (Record.size() < 4)
5819 return error("Invalid record");
5820 unsigned OpNum = 0;
5821 AttributeList PAL = getAttributes(Record[OpNum++]);
5822 unsigned CCInfo = Record[OpNum++];
5823 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5824 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5826 unsigned FTyID = InvalidTypeID;
5827 FunctionType *FTy = nullptr;
5828 if ((CCInfo >> 13) & 1) {
5829 FTyID = Record[OpNum++];
5830 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5831 if (!FTy)
5832 return error("Explicit invoke type is not a function type");
5835 Value *Callee;
5836 unsigned CalleeTypeID;
5837 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5838 CurBB))
5839 return error("Invalid record");
5841 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5842 if (!CalleeTy)
5843 return error("Callee is not a pointer");
5844 if (!FTy) {
5845 FTyID = getContainedTypeID(CalleeTypeID);
5846 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5847 if (!FTy)
5848 return error("Callee is not of pointer to function type");
5850 if (Record.size() < FTy->getNumParams() + OpNum)
5851 return error("Insufficient operands to call");
5853 SmallVector<Value*, 16> Ops;
5854 SmallVector<unsigned, 16> ArgTyIDs;
5855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5856 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5857 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5858 ArgTyID, CurBB));
5859 ArgTyIDs.push_back(ArgTyID);
5860 if (!Ops.back())
5861 return error("Invalid record");
5864 if (!FTy->isVarArg()) {
5865 if (Record.size() != OpNum)
5866 return error("Invalid record");
5867 } else {
5868 // Read type/value pairs for varargs params.
5869 while (OpNum != Record.size()) {
5870 Value *Op;
5871 unsigned OpTypeID;
5872 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5873 return error("Invalid record");
5874 Ops.push_back(Op);
5875 ArgTyIDs.push_back(OpTypeID);
5879 // Upgrade the bundles if needed.
5880 if (!OperandBundles.empty())
5881 UpgradeOperandBundles(OperandBundles);
5883 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5884 OperandBundles);
5885 ResTypeID = getContainedTypeID(FTyID);
5886 OperandBundles.clear();
5887 InstructionList.push_back(I);
5888 cast<InvokeInst>(I)->setCallingConv(
5889 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5890 cast<InvokeInst>(I)->setAttributes(PAL);
5891 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5892 I->deleteValue();
5893 return Err;
5896 break;
5898 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5899 unsigned Idx = 0;
5900 Value *Val = nullptr;
5901 unsigned ValTypeID;
5902 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5903 return error("Invalid record");
5904 I = ResumeInst::Create(Val);
5905 InstructionList.push_back(I);
5906 break;
5908 case bitc::FUNC_CODE_INST_CALLBR: {
5909 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5910 unsigned OpNum = 0;
5911 AttributeList PAL = getAttributes(Record[OpNum++]);
5912 unsigned CCInfo = Record[OpNum++];
5914 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5915 unsigned NumIndirectDests = Record[OpNum++];
5916 SmallVector<BasicBlock *, 16> IndirectDests;
5917 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5918 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5920 unsigned FTyID = InvalidTypeID;
5921 FunctionType *FTy = nullptr;
5922 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5923 FTyID = Record[OpNum++];
5924 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5925 if (!FTy)
5926 return error("Explicit call type is not a function type");
5929 Value *Callee;
5930 unsigned CalleeTypeID;
5931 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5932 CurBB))
5933 return error("Invalid record");
5935 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5936 if (!OpTy)
5937 return error("Callee is not a pointer type");
5938 if (!FTy) {
5939 FTyID = getContainedTypeID(CalleeTypeID);
5940 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5941 if (!FTy)
5942 return error("Callee is not of pointer to function type");
5944 if (Record.size() < FTy->getNumParams() + OpNum)
5945 return error("Insufficient operands to call");
5947 SmallVector<Value*, 16> Args;
5948 SmallVector<unsigned, 16> ArgTyIDs;
5949 // Read the fixed params.
5950 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5951 Value *Arg;
5952 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5953 if (FTy->getParamType(i)->isLabelTy())
5954 Arg = getBasicBlock(Record[OpNum]);
5955 else
5956 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5957 ArgTyID, CurBB);
5958 if (!Arg)
5959 return error("Invalid record");
5960 Args.push_back(Arg);
5961 ArgTyIDs.push_back(ArgTyID);
5964 // Read type/value pairs for varargs params.
5965 if (!FTy->isVarArg()) {
5966 if (OpNum != Record.size())
5967 return error("Invalid record");
5968 } else {
5969 while (OpNum != Record.size()) {
5970 Value *Op;
5971 unsigned OpTypeID;
5972 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5973 return error("Invalid record");
5974 Args.push_back(Op);
5975 ArgTyIDs.push_back(OpTypeID);
5979 // Upgrade the bundles if needed.
5980 if (!OperandBundles.empty())
5981 UpgradeOperandBundles(OperandBundles);
5983 if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5984 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5985 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5986 return CI.Type == InlineAsm::isLabel;
5988 if (none_of(ConstraintInfo, IsLabelConstraint)) {
5989 // Upgrade explicit blockaddress arguments to label constraints.
5990 // Verify that the last arguments are blockaddress arguments that
5991 // match the indirect destinations. Clang always generates callbr
5992 // in this form. We could support reordering with more effort.
5993 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5994 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5995 unsigned LabelNo = ArgNo - FirstBlockArg;
5996 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5997 if (!BA || BA->getFunction() != F ||
5998 LabelNo > IndirectDests.size() ||
5999 BA->getBasicBlock() != IndirectDests[LabelNo])
6000 return error("callbr argument does not match indirect dest");
6003 // Remove blockaddress arguments.
6004 Args.erase(Args.begin() + FirstBlockArg, Args.end());
6005 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
6007 // Recreate the function type with less arguments.
6008 SmallVector<Type *> ArgTys;
6009 for (Value *Arg : Args)
6010 ArgTys.push_back(Arg->getType());
6011 FTy =
6012 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
6014 // Update constraint string to use label constraints.
6015 std::string Constraints = IA->getConstraintString();
6016 unsigned ArgNo = 0;
6017 size_t Pos = 0;
6018 for (const auto &CI : ConstraintInfo) {
6019 if (CI.hasArg()) {
6020 if (ArgNo >= FirstBlockArg)
6021 Constraints.insert(Pos, "!");
6022 ++ArgNo;
6025 // Go to next constraint in string.
6026 Pos = Constraints.find(',', Pos);
6027 if (Pos == std::string::npos)
6028 break;
6029 ++Pos;
6032 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
6033 IA->hasSideEffects(), IA->isAlignStack(),
6034 IA->getDialect(), IA->canThrow());
6038 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
6039 OperandBundles);
6040 ResTypeID = getContainedTypeID(FTyID);
6041 OperandBundles.clear();
6042 InstructionList.push_back(I);
6043 cast<CallBrInst>(I)->setCallingConv(
6044 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6045 cast<CallBrInst>(I)->setAttributes(PAL);
6046 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6047 I->deleteValue();
6048 return Err;
6050 break;
6052 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
6053 I = new UnreachableInst(Context);
6054 InstructionList.push_back(I);
6055 break;
6056 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
6057 if (Record.empty())
6058 return error("Invalid phi record");
6059 // The first record specifies the type.
6060 unsigned TyID = Record[0];
6061 Type *Ty = getTypeByID(TyID);
6062 if (!Ty)
6063 return error("Invalid phi record");
6065 // Phi arguments are pairs of records of [value, basic block].
6066 // There is an optional final record for fast-math-flags if this phi has a
6067 // floating-point type.
6068 size_t NumArgs = (Record.size() - 1) / 2;
6069 PHINode *PN = PHINode::Create(Ty, NumArgs);
6070 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
6071 PN->deleteValue();
6072 return error("Invalid phi record");
6074 InstructionList.push_back(PN);
6076 SmallDenseMap<BasicBlock *, Value *> Args;
6077 for (unsigned i = 0; i != NumArgs; i++) {
6078 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
6079 if (!BB) {
6080 PN->deleteValue();
6081 return error("Invalid phi BB");
6084 // Phi nodes may contain the same predecessor multiple times, in which
6085 // case the incoming value must be identical. Directly reuse the already
6086 // seen value here, to avoid expanding a constant expression multiple
6087 // times.
6088 auto It = Args.find(BB);
6089 if (It != Args.end()) {
6090 PN->addIncoming(It->second, BB);
6091 continue;
6094 // If there already is a block for this edge (from a different phi),
6095 // use it.
6096 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6097 if (!EdgeBB) {
6098 // Otherwise, use a temporary block (that we will discard if it
6099 // turns out to be unnecessary).
6100 if (!PhiConstExprBB)
6101 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6102 EdgeBB = PhiConstExprBB;
6105 // With the new function encoding, it is possible that operands have
6106 // negative IDs (for forward references). Use a signed VBR
6107 // representation to keep the encoding small.
6108 Value *V;
6109 if (UseRelativeIDs)
6110 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6111 else
6112 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6113 if (!V) {
6114 PN->deleteValue();
6115 PhiConstExprBB->eraseFromParent();
6116 return error("Invalid phi record");
6119 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6120 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6121 PhiConstExprBB = nullptr;
6123 PN->addIncoming(V, BB);
6124 Args.insert({BB, V});
6126 I = PN;
6127 ResTypeID = TyID;
6129 // If there are an even number of records, the final record must be FMF.
6130 if (Record.size() % 2 == 0) {
6131 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6132 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6133 if (FMF.any())
6134 I->setFastMathFlags(FMF);
6137 break;
6140 case bitc::FUNC_CODE_INST_LANDINGPAD:
6141 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6142 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6143 unsigned Idx = 0;
6144 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6145 if (Record.size() < 3)
6146 return error("Invalid record");
6147 } else {
6148 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6149 if (Record.size() < 4)
6150 return error("Invalid record");
6152 ResTypeID = Record[Idx++];
6153 Type *Ty = getTypeByID(ResTypeID);
6154 if (!Ty)
6155 return error("Invalid record");
6156 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6157 Value *PersFn = nullptr;
6158 unsigned PersFnTypeID;
6159 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6160 nullptr))
6161 return error("Invalid record");
6163 if (!F->hasPersonalityFn())
6164 F->setPersonalityFn(cast<Constant>(PersFn));
6165 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6166 return error("Personality function mismatch");
6169 bool IsCleanup = !!Record[Idx++];
6170 unsigned NumClauses = Record[Idx++];
6171 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6172 LP->setCleanup(IsCleanup);
6173 for (unsigned J = 0; J != NumClauses; ++J) {
6174 LandingPadInst::ClauseType CT =
6175 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6176 Value *Val;
6177 unsigned ValTypeID;
6179 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6180 nullptr)) {
6181 delete LP;
6182 return error("Invalid record");
6185 assert((CT != LandingPadInst::Catch ||
6186 !isa<ArrayType>(Val->getType())) &&
6187 "Catch clause has a invalid type!");
6188 assert((CT != LandingPadInst::Filter ||
6189 isa<ArrayType>(Val->getType())) &&
6190 "Filter clause has invalid type!");
6191 LP->addClause(cast<Constant>(Val));
6194 I = LP;
6195 InstructionList.push_back(I);
6196 break;
6199 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6200 if (Record.size() != 4 && Record.size() != 5)
6201 return error("Invalid record");
6202 using APV = AllocaPackedValues;
6203 const uint64_t Rec = Record[3];
6204 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6205 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6206 unsigned TyID = Record[0];
6207 Type *Ty = getTypeByID(TyID);
6208 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6209 TyID = getContainedTypeID(TyID);
6210 Ty = getTypeByID(TyID);
6211 if (!Ty)
6212 return error("Missing element type for old-style alloca");
6214 unsigned OpTyID = Record[1];
6215 Type *OpTy = getTypeByID(OpTyID);
6216 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6217 MaybeAlign Align;
6218 uint64_t AlignExp =
6219 Bitfield::get<APV::AlignLower>(Rec) |
6220 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6221 if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6222 return Err;
6224 if (!Ty || !Size)
6225 return error("Invalid record");
6227 const DataLayout &DL = TheModule->getDataLayout();
6228 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6230 SmallPtrSet<Type *, 4> Visited;
6231 if (!Align && !Ty->isSized(&Visited))
6232 return error("alloca of unsized type");
6233 if (!Align)
6234 Align = DL.getPrefTypeAlign(Ty);
6236 if (!Size->getType()->isIntegerTy())
6237 return error("alloca element count must have integer type");
6239 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6240 AI->setUsedWithInAlloca(InAlloca);
6241 AI->setSwiftError(SwiftError);
6242 I = AI;
6243 ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6244 InstructionList.push_back(I);
6245 break;
6247 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6248 unsigned OpNum = 0;
6249 Value *Op;
6250 unsigned OpTypeID;
6251 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6252 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6253 return error("Invalid record");
6255 if (!isa<PointerType>(Op->getType()))
6256 return error("Load operand is not a pointer type");
6258 Type *Ty = nullptr;
6259 if (OpNum + 3 == Record.size()) {
6260 ResTypeID = Record[OpNum++];
6261 Ty = getTypeByID(ResTypeID);
6262 } else {
6263 ResTypeID = getContainedTypeID(OpTypeID);
6264 Ty = getTypeByID(ResTypeID);
6267 if (!Ty)
6268 return error("Missing load type");
6270 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6271 return Err;
6273 MaybeAlign Align;
6274 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6275 return Err;
6276 SmallPtrSet<Type *, 4> Visited;
6277 if (!Align && !Ty->isSized(&Visited))
6278 return error("load of unsized type");
6279 if (!Align)
6280 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6281 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6282 InstructionList.push_back(I);
6283 break;
6285 case bitc::FUNC_CODE_INST_LOADATOMIC: {
6286 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6287 unsigned OpNum = 0;
6288 Value *Op;
6289 unsigned OpTypeID;
6290 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6291 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6292 return error("Invalid record");
6294 if (!isa<PointerType>(Op->getType()))
6295 return error("Load operand is not a pointer type");
6297 Type *Ty = nullptr;
6298 if (OpNum + 5 == Record.size()) {
6299 ResTypeID = Record[OpNum++];
6300 Ty = getTypeByID(ResTypeID);
6301 } else {
6302 ResTypeID = getContainedTypeID(OpTypeID);
6303 Ty = getTypeByID(ResTypeID);
6306 if (!Ty)
6307 return error("Missing atomic load type");
6309 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6310 return Err;
6312 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6313 if (Ordering == AtomicOrdering::NotAtomic ||
6314 Ordering == AtomicOrdering::Release ||
6315 Ordering == AtomicOrdering::AcquireRelease)
6316 return error("Invalid record");
6317 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6318 return error("Invalid record");
6319 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6321 MaybeAlign Align;
6322 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6323 return Err;
6324 if (!Align)
6325 return error("Alignment missing from atomic load");
6326 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6327 InstructionList.push_back(I);
6328 break;
6330 case bitc::FUNC_CODE_INST_STORE:
6331 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6332 unsigned OpNum = 0;
6333 Value *Val, *Ptr;
6334 unsigned PtrTypeID, ValTypeID;
6335 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6336 return error("Invalid record");
6338 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6339 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6340 return error("Invalid record");
6341 } else {
6342 ValTypeID = getContainedTypeID(PtrTypeID);
6343 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6344 ValTypeID, Val, CurBB))
6345 return error("Invalid record");
6348 if (OpNum + 2 != Record.size())
6349 return error("Invalid record");
6351 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6352 return Err;
6353 MaybeAlign Align;
6354 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6355 return Err;
6356 SmallPtrSet<Type *, 4> Visited;
6357 if (!Align && !Val->getType()->isSized(&Visited))
6358 return error("store of unsized type");
6359 if (!Align)
6360 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6361 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6362 InstructionList.push_back(I);
6363 break;
6365 case bitc::FUNC_CODE_INST_STOREATOMIC:
6366 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6367 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6368 unsigned OpNum = 0;
6369 Value *Val, *Ptr;
6370 unsigned PtrTypeID, ValTypeID;
6371 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6372 !isa<PointerType>(Ptr->getType()))
6373 return error("Invalid record");
6374 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6375 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6376 return error("Invalid record");
6377 } else {
6378 ValTypeID = getContainedTypeID(PtrTypeID);
6379 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6380 ValTypeID, Val, CurBB))
6381 return error("Invalid record");
6384 if (OpNum + 4 != Record.size())
6385 return error("Invalid record");
6387 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6388 return Err;
6389 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6390 if (Ordering == AtomicOrdering::NotAtomic ||
6391 Ordering == AtomicOrdering::Acquire ||
6392 Ordering == AtomicOrdering::AcquireRelease)
6393 return error("Invalid record");
6394 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6395 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6396 return error("Invalid record");
6398 MaybeAlign Align;
6399 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6400 return Err;
6401 if (!Align)
6402 return error("Alignment missing from atomic store");
6403 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6404 InstructionList.push_back(I);
6405 break;
6407 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6408 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6409 // failure_ordering?, weak?]
6410 const size_t NumRecords = Record.size();
6411 unsigned OpNum = 0;
6412 Value *Ptr = nullptr;
6413 unsigned PtrTypeID;
6414 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6415 return error("Invalid record");
6417 if (!isa<PointerType>(Ptr->getType()))
6418 return error("Cmpxchg operand is not a pointer type");
6420 Value *Cmp = nullptr;
6421 unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6422 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6423 CmpTypeID, Cmp, CurBB))
6424 return error("Invalid record");
6426 Value *New = nullptr;
6427 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6428 New, CurBB) ||
6429 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6430 return error("Invalid record");
6432 const AtomicOrdering SuccessOrdering =
6433 getDecodedOrdering(Record[OpNum + 1]);
6434 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6435 SuccessOrdering == AtomicOrdering::Unordered)
6436 return error("Invalid record");
6438 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6440 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6441 return Err;
6443 const AtomicOrdering FailureOrdering =
6444 NumRecords < 7
6445 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6446 : getDecodedOrdering(Record[OpNum + 3]);
6448 if (FailureOrdering == AtomicOrdering::NotAtomic ||
6449 FailureOrdering == AtomicOrdering::Unordered)
6450 return error("Invalid record");
6452 const Align Alignment(
6453 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6455 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6456 FailureOrdering, SSID);
6457 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6459 if (NumRecords < 8) {
6460 // Before weak cmpxchgs existed, the instruction simply returned the
6461 // value loaded from memory, so bitcode files from that era will be
6462 // expecting the first component of a modern cmpxchg.
6463 I->insertInto(CurBB, CurBB->end());
6464 I = ExtractValueInst::Create(I, 0);
6465 ResTypeID = CmpTypeID;
6466 } else {
6467 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6468 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6469 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6472 InstructionList.push_back(I);
6473 break;
6475 case bitc::FUNC_CODE_INST_CMPXCHG: {
6476 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6477 // failure_ordering, weak, align?]
6478 const size_t NumRecords = Record.size();
6479 unsigned OpNum = 0;
6480 Value *Ptr = nullptr;
6481 unsigned PtrTypeID;
6482 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6483 return error("Invalid record");
6485 if (!isa<PointerType>(Ptr->getType()))
6486 return error("Cmpxchg operand is not a pointer type");
6488 Value *Cmp = nullptr;
6489 unsigned CmpTypeID;
6490 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6491 return error("Invalid record");
6493 Value *Val = nullptr;
6494 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6495 CurBB))
6496 return error("Invalid record");
6498 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6499 return error("Invalid record");
6501 const bool IsVol = Record[OpNum];
6503 const AtomicOrdering SuccessOrdering =
6504 getDecodedOrdering(Record[OpNum + 1]);
6505 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6506 return error("Invalid cmpxchg success ordering");
6508 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6510 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6511 return Err;
6513 const AtomicOrdering FailureOrdering =
6514 getDecodedOrdering(Record[OpNum + 3]);
6515 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6516 return error("Invalid cmpxchg failure ordering");
6518 const bool IsWeak = Record[OpNum + 4];
6520 MaybeAlign Alignment;
6522 if (NumRecords == (OpNum + 6)) {
6523 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6524 return Err;
6526 if (!Alignment)
6527 Alignment =
6528 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6530 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6531 FailureOrdering, SSID);
6532 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6533 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6535 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6536 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6538 InstructionList.push_back(I);
6539 break;
6541 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6542 case bitc::FUNC_CODE_INST_ATOMICRMW: {
6543 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6544 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6545 const size_t NumRecords = Record.size();
6546 unsigned OpNum = 0;
6548 Value *Ptr = nullptr;
6549 unsigned PtrTypeID;
6550 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6551 return error("Invalid record");
6553 if (!isa<PointerType>(Ptr->getType()))
6554 return error("Invalid record");
6556 Value *Val = nullptr;
6557 unsigned ValTypeID = InvalidTypeID;
6558 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6559 ValTypeID = getContainedTypeID(PtrTypeID);
6560 if (popValue(Record, OpNum, NextValueNo,
6561 getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6562 return error("Invalid record");
6563 } else {
6564 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6565 return error("Invalid record");
6568 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6569 return error("Invalid record");
6571 const AtomicRMWInst::BinOp Operation =
6572 getDecodedRMWOperation(Record[OpNum]);
6573 if (Operation < AtomicRMWInst::FIRST_BINOP ||
6574 Operation > AtomicRMWInst::LAST_BINOP)
6575 return error("Invalid record");
6577 const bool IsVol = Record[OpNum + 1];
6579 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6580 if (Ordering == AtomicOrdering::NotAtomic ||
6581 Ordering == AtomicOrdering::Unordered)
6582 return error("Invalid record");
6584 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6586 MaybeAlign Alignment;
6588 if (NumRecords == (OpNum + 5)) {
6589 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6590 return Err;
6593 if (!Alignment)
6594 Alignment =
6595 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6597 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6598 ResTypeID = ValTypeID;
6599 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6601 InstructionList.push_back(I);
6602 break;
6604 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6605 if (2 != Record.size())
6606 return error("Invalid record");
6607 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6608 if (Ordering == AtomicOrdering::NotAtomic ||
6609 Ordering == AtomicOrdering::Unordered ||
6610 Ordering == AtomicOrdering::Monotonic)
6611 return error("Invalid record");
6612 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6613 I = new FenceInst(Context, Ordering, SSID);
6614 InstructionList.push_back(I);
6615 break;
6617 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6618 // DbgLabelRecords are placed after the Instructions that they are
6619 // attached to.
6620 SeenDebugRecord = true;
6621 Instruction *Inst = getLastInstruction();
6622 if (!Inst)
6623 return error("Invalid dbg record: missing instruction");
6624 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6625 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6626 Inst->getParent()->insertDbgRecordBefore(
6627 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6628 continue; // This isn't an instruction.
6630 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6631 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6632 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6633 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6634 // DbgVariableRecords are placed after the Instructions that they are
6635 // attached to.
6636 SeenDebugRecord = true;
6637 Instruction *Inst = getLastInstruction();
6638 if (!Inst)
6639 return error("Invalid dbg record: missing instruction");
6641 // First 3 fields are common to all kinds:
6642 // DILocation, DILocalVariable, DIExpression
6643 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6644 // ..., LocationMetadata
6645 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6646 // ..., Value
6647 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6648 // ..., LocationMetadata
6649 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6650 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6651 unsigned Slot = 0;
6652 // Common fields (0-2).
6653 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6654 DILocalVariable *Var =
6655 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6656 DIExpression *Expr =
6657 cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6659 // Union field (3: LocationMetadata | Value).
6660 Metadata *RawLocation = nullptr;
6661 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6662 Value *V = nullptr;
6663 unsigned TyID = 0;
6664 // We never expect to see a fwd reference value here because
6665 // use-before-defs are encoded with the standard non-abbrev record
6666 // type (they'd require encoding the type too, and they're rare). As a
6667 // result, getValueTypePair only ever increments Slot by one here (once
6668 // for the value, never twice for value and type).
6669 unsigned SlotBefore = Slot;
6670 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6671 return error("Invalid dbg record: invalid value");
6672 (void)SlotBefore;
6673 assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6674 RawLocation = ValueAsMetadata::get(V);
6675 } else {
6676 RawLocation = getFnMetadataByID(Record[Slot++]);
6679 DbgVariableRecord *DVR = nullptr;
6680 switch (BitCode) {
6681 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6682 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6683 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6684 DbgVariableRecord::LocationType::Value);
6685 break;
6686 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6687 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6688 DbgVariableRecord::LocationType::Declare);
6689 break;
6690 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6691 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6692 DIExpression *AddrExpr =
6693 cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6694 Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6695 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6696 DIL);
6697 break;
6699 default:
6700 llvm_unreachable("Unknown DbgVariableRecord bitcode");
6702 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6703 continue; // This isn't an instruction.
6705 case bitc::FUNC_CODE_INST_CALL: {
6706 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6707 if (Record.size() < 3)
6708 return error("Invalid record");
6710 unsigned OpNum = 0;
6711 AttributeList PAL = getAttributes(Record[OpNum++]);
6712 unsigned CCInfo = Record[OpNum++];
6714 FastMathFlags FMF;
6715 if ((CCInfo >> bitc::CALL_FMF) & 1) {
6716 FMF = getDecodedFastMathFlags(Record[OpNum++]);
6717 if (!FMF.any())
6718 return error("Fast math flags indicator set for call with no FMF");
6721 unsigned FTyID = InvalidTypeID;
6722 FunctionType *FTy = nullptr;
6723 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6724 FTyID = Record[OpNum++];
6725 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6726 if (!FTy)
6727 return error("Explicit call type is not a function type");
6730 Value *Callee;
6731 unsigned CalleeTypeID;
6732 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6733 CurBB))
6734 return error("Invalid record");
6736 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6737 if (!OpTy)
6738 return error("Callee is not a pointer type");
6739 if (!FTy) {
6740 FTyID = getContainedTypeID(CalleeTypeID);
6741 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6742 if (!FTy)
6743 return error("Callee is not of pointer to function type");
6745 if (Record.size() < FTy->getNumParams() + OpNum)
6746 return error("Insufficient operands to call");
6748 SmallVector<Value*, 16> Args;
6749 SmallVector<unsigned, 16> ArgTyIDs;
6750 // Read the fixed params.
6751 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6752 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6753 if (FTy->getParamType(i)->isLabelTy())
6754 Args.push_back(getBasicBlock(Record[OpNum]));
6755 else
6756 Args.push_back(getValue(Record, OpNum, NextValueNo,
6757 FTy->getParamType(i), ArgTyID, CurBB));
6758 ArgTyIDs.push_back(ArgTyID);
6759 if (!Args.back())
6760 return error("Invalid record");
6763 // Read type/value pairs for varargs params.
6764 if (!FTy->isVarArg()) {
6765 if (OpNum != Record.size())
6766 return error("Invalid record");
6767 } else {
6768 while (OpNum != Record.size()) {
6769 Value *Op;
6770 unsigned OpTypeID;
6771 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6772 return error("Invalid record");
6773 Args.push_back(Op);
6774 ArgTyIDs.push_back(OpTypeID);
6778 // Upgrade the bundles if needed.
6779 if (!OperandBundles.empty())
6780 UpgradeOperandBundles(OperandBundles);
6782 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6783 ResTypeID = getContainedTypeID(FTyID);
6784 OperandBundles.clear();
6785 InstructionList.push_back(I);
6786 cast<CallInst>(I)->setCallingConv(
6787 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6788 CallInst::TailCallKind TCK = CallInst::TCK_None;
6789 if (CCInfo & (1 << bitc::CALL_TAIL))
6790 TCK = CallInst::TCK_Tail;
6791 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6792 TCK = CallInst::TCK_MustTail;
6793 if (CCInfo & (1 << bitc::CALL_NOTAIL))
6794 TCK = CallInst::TCK_NoTail;
6795 cast<CallInst>(I)->setTailCallKind(TCK);
6796 cast<CallInst>(I)->setAttributes(PAL);
6797 if (isa<DbgInfoIntrinsic>(I))
6798 SeenDebugIntrinsic = true;
6799 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6800 I->deleteValue();
6801 return Err;
6803 if (FMF.any()) {
6804 if (!isa<FPMathOperator>(I))
6805 return error("Fast-math-flags specified for call without "
6806 "floating-point scalar or vector return type");
6807 I->setFastMathFlags(FMF);
6809 break;
6811 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6812 if (Record.size() < 3)
6813 return error("Invalid record");
6814 unsigned OpTyID = Record[0];
6815 Type *OpTy = getTypeByID(OpTyID);
6816 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6817 ResTypeID = Record[2];
6818 Type *ResTy = getTypeByID(ResTypeID);
6819 if (!OpTy || !Op || !ResTy)
6820 return error("Invalid record");
6821 I = new VAArgInst(Op, ResTy);
6822 InstructionList.push_back(I);
6823 break;
6826 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6827 // A call or an invoke can be optionally prefixed with some variable
6828 // number of operand bundle blocks. These blocks are read into
6829 // OperandBundles and consumed at the next call or invoke instruction.
6831 if (Record.empty() || Record[0] >= BundleTags.size())
6832 return error("Invalid record");
6834 std::vector<Value *> Inputs;
6836 unsigned OpNum = 1;
6837 while (OpNum != Record.size()) {
6838 Value *Op;
6839 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB))
6840 return error("Invalid record");
6841 Inputs.push_back(Op);
6844 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6845 continue;
6848 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6849 unsigned OpNum = 0;
6850 Value *Op = nullptr;
6851 unsigned OpTypeID;
6852 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6853 return error("Invalid record");
6854 if (OpNum != Record.size())
6855 return error("Invalid record");
6857 I = new FreezeInst(Op);
6858 ResTypeID = OpTypeID;
6859 InstructionList.push_back(I);
6860 break;
6864 // Add instruction to end of current BB. If there is no current BB, reject
6865 // this file.
6866 if (!CurBB) {
6867 I->deleteValue();
6868 return error("Invalid instruction with no BB");
6870 if (!OperandBundles.empty()) {
6871 I->deleteValue();
6872 return error("Operand bundles found with no consumer");
6874 I->insertInto(CurBB, CurBB->end());
6876 // If this was a terminator instruction, move to the next block.
6877 if (I->isTerminator()) {
6878 ++CurBBNo;
6879 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6882 // Non-void values get registered in the value table for future use.
6883 if (!I->getType()->isVoidTy()) {
6884 assert(I->getType() == getTypeByID(ResTypeID) &&
6885 "Incorrect result type ID");
6886 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6887 return Err;
6891 OutOfRecordLoop:
6893 if (!OperandBundles.empty())
6894 return error("Operand bundles found with no consumer");
6896 // Check the function list for unresolved values.
6897 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6898 if (!A->getParent()) {
6899 // We found at least one unresolved value. Nuke them all to avoid leaks.
6900 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6901 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6902 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6903 delete A;
6906 return error("Never resolved value found in function");
6910 // Unexpected unresolved metadata about to be dropped.
6911 if (MDLoader->hasFwdRefs())
6912 return error("Invalid function metadata: outgoing forward refs");
6914 if (PhiConstExprBB)
6915 PhiConstExprBB->eraseFromParent();
6917 for (const auto &Pair : ConstExprEdgeBBs) {
6918 BasicBlock *From = Pair.first.first;
6919 BasicBlock *To = Pair.first.second;
6920 BasicBlock *EdgeBB = Pair.second;
6921 BranchInst::Create(To, EdgeBB);
6922 From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6923 To->replacePhiUsesWith(From, EdgeBB);
6924 EdgeBB->moveBefore(To);
6927 // Trim the value list down to the size it was before we parsed this function.
6928 ValueList.shrinkTo(ModuleValueListSize);
6929 MDLoader->shrinkTo(ModuleMDLoaderSize);
6930 std::vector<BasicBlock*>().swap(FunctionBBs);
6931 return Error::success();
6934 /// Find the function body in the bitcode stream
6935 Error BitcodeReader::findFunctionInStream(
6936 Function *F,
6937 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6938 while (DeferredFunctionInfoIterator->second == 0) {
6939 // This is the fallback handling for the old format bitcode that
6940 // didn't contain the function index in the VST, or when we have
6941 // an anonymous function which would not have a VST entry.
6942 // Assert that we have one of those two cases.
6943 assert(VSTOffset == 0 || !F->hasName());
6944 // Parse the next body in the stream and set its position in the
6945 // DeferredFunctionInfo map.
6946 if (Error Err = rememberAndSkipFunctionBodies())
6947 return Err;
6949 return Error::success();
6952 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6953 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6954 return SyncScope::ID(Val);
6955 if (Val >= SSIDs.size())
6956 return SyncScope::System; // Map unknown synchronization scopes to system.
6957 return SSIDs[Val];
6960 //===----------------------------------------------------------------------===//
6961 // GVMaterializer implementation
6962 //===----------------------------------------------------------------------===//
6964 Error BitcodeReader::materialize(GlobalValue *GV) {
6965 Function *F = dyn_cast<Function>(GV);
6966 // If it's not a function or is already material, ignore the request.
6967 if (!F || !F->isMaterializable())
6968 return Error::success();
6970 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6971 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6972 // If its position is recorded as 0, its body is somewhere in the stream
6973 // but we haven't seen it yet.
6974 if (DFII->second == 0)
6975 if (Error Err = findFunctionInStream(F, DFII))
6976 return Err;
6978 // Materialize metadata before parsing any function bodies.
6979 if (Error Err = materializeMetadata())
6980 return Err;
6982 // Move the bit stream to the saved position of the deferred function body.
6983 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6984 return JumpFailed;
6986 // Regardless of the debug info format we want to end up in, we need
6987 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6988 F->IsNewDbgInfoFormat = true;
6990 if (Error Err = parseFunctionBody(F))
6991 return Err;
6992 F->setIsMaterializable(false);
6994 // All parsed Functions should load into the debug info format dictated by the
6995 // Module, unless we're attempting to preserve the input debug info format.
6996 if (SeenDebugIntrinsic && SeenDebugRecord)
6997 return error("Mixed debug intrinsics and debug records in bitcode module!");
6998 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6999 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
7000 bool NewDbgInfoFormatDesired =
7001 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
7002 if (SeenAnyDebugInfo) {
7003 UseNewDbgInfoFormat = SeenDebugRecord;
7004 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
7005 WriteNewDbgInfoFormat = SeenDebugRecord;
7007 // If the module's debug info format doesn't match the observed input
7008 // format, then set its format now; we don't need to call the conversion
7009 // function because there must be no existing intrinsics to convert.
7010 // Otherwise, just set the format on this function now.
7011 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
7012 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
7013 else
7014 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
7015 } else {
7016 // If we aren't preserving formats, we use the Module flag to get our
7017 // desired format instead of reading flags, in case we are lazy-loading and
7018 // the format of the module has been changed since it was set by the flags.
7019 // We only need to convert debug info here if we have debug records but
7020 // desire the intrinsic format; everything else is a no-op or handled by the
7021 // autoupgrader.
7022 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
7023 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
7024 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
7025 else
7026 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
7029 if (StripDebugInfo)
7030 stripDebugInfo(*F);
7032 // Upgrade any old intrinsic calls in the function.
7033 for (auto &I : UpgradedIntrinsics) {
7034 for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
7035 if (CallInst *CI = dyn_cast<CallInst>(U))
7036 UpgradeIntrinsicCall(CI, I.second);
7039 // Finish fn->subprogram upgrade for materialized functions.
7040 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
7041 F->setSubprogram(SP);
7043 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
7044 if (!MDLoader->isStrippingTBAA()) {
7045 for (auto &I : instructions(F)) {
7046 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
7047 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
7048 continue;
7049 MDLoader->setStripTBAA(true);
7050 stripTBAA(F->getParent());
7054 for (auto &I : instructions(F)) {
7055 // "Upgrade" older incorrect branch weights by dropping them.
7056 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
7057 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
7058 MDString *MDS = cast<MDString>(MD->getOperand(0));
7059 StringRef ProfName = MDS->getString();
7060 // Check consistency of !prof branch_weights metadata.
7061 if (ProfName != "branch_weights")
7062 continue;
7063 unsigned ExpectedNumOperands = 0;
7064 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
7065 ExpectedNumOperands = BI->getNumSuccessors();
7066 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
7067 ExpectedNumOperands = SI->getNumSuccessors();
7068 else if (isa<CallInst>(&I))
7069 ExpectedNumOperands = 1;
7070 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
7071 ExpectedNumOperands = IBI->getNumDestinations();
7072 else if (isa<SelectInst>(&I))
7073 ExpectedNumOperands = 2;
7074 else
7075 continue; // ignore and continue.
7077 unsigned Offset = getBranchWeightOffset(MD);
7079 // If branch weight doesn't match, just strip branch weight.
7080 if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7081 I.setMetadata(LLVMContext::MD_prof, nullptr);
7085 // Remove incompatible attributes on function calls.
7086 if (auto *CI = dyn_cast<CallBase>(&I)) {
7087 CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7088 CI->getFunctionType()->getReturnType(), CI->getRetAttributes()));
7090 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7091 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7092 CI->getArgOperand(ArgNo)->getType(),
7093 CI->getParamAttributes(ArgNo)));
7097 // Look for functions that rely on old function attribute behavior.
7098 UpgradeFunctionAttributes(*F);
7100 // Bring in any functions that this function forward-referenced via
7101 // blockaddresses.
7102 return materializeForwardReferencedFunctions();
7105 Error BitcodeReader::materializeModule() {
7106 if (Error Err = materializeMetadata())
7107 return Err;
7109 // Promise to materialize all forward references.
7110 WillMaterializeAllForwardRefs = true;
7112 // Iterate over the module, deserializing any functions that are still on
7113 // disk.
7114 for (Function &F : *TheModule) {
7115 if (Error Err = materialize(&F))
7116 return Err;
7118 // At this point, if there are any function bodies, parse the rest of
7119 // the bits in the module past the last function block we have recorded
7120 // through either lazy scanning or the VST.
7121 if (LastFunctionBlockBit || NextUnreadBit)
7122 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7123 ? LastFunctionBlockBit
7124 : NextUnreadBit))
7125 return Err;
7127 // Check that all block address forward references got resolved (as we
7128 // promised above).
7129 if (!BasicBlockFwdRefs.empty())
7130 return error("Never resolved function from blockaddress");
7132 // Upgrade any intrinsic calls that slipped through (should not happen!) and
7133 // delete the old functions to clean up. We can't do this unless the entire
7134 // module is materialized because there could always be another function body
7135 // with calls to the old function.
7136 for (auto &I : UpgradedIntrinsics) {
7137 for (auto *U : I.first->users()) {
7138 if (CallInst *CI = dyn_cast<CallInst>(U))
7139 UpgradeIntrinsicCall(CI, I.second);
7141 if (!I.first->use_empty())
7142 I.first->replaceAllUsesWith(I.second);
7143 I.first->eraseFromParent();
7145 UpgradedIntrinsics.clear();
7147 UpgradeDebugInfo(*TheModule);
7149 UpgradeModuleFlags(*TheModule);
7151 UpgradeARCRuntime(*TheModule);
7153 return Error::success();
7156 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7157 return IdentifiedStructTypes;
7160 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7161 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7162 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7163 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7164 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7166 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7167 TheIndex.addModule(ModulePath);
7170 ModuleSummaryIndex::ModuleInfo *
7171 ModuleSummaryIndexBitcodeReader::getThisModule() {
7172 return TheIndex.getModule(ModulePath);
7175 template <bool AllowNullValueInfo>
7176 std::pair<ValueInfo, GlobalValue::GUID>
7177 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7178 auto VGI = ValueIdToValueInfoMap[ValueId];
7179 // We can have a null value info for memprof callsite info records in
7180 // distributed ThinLTO index files when the callee function summary is not
7181 // included in the index. The bitcode writer records 0 in that case,
7182 // and the caller of this helper will set AllowNullValueInfo to true.
7183 assert(AllowNullValueInfo || std::get<0>(VGI));
7184 return VGI;
7187 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7188 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7189 StringRef SourceFileName) {
7190 std::string GlobalId =
7191 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7192 auto ValueGUID = GlobalValue::getGUID(GlobalId);
7193 auto OriginalNameID = ValueGUID;
7194 if (GlobalValue::isLocalLinkage(Linkage))
7195 OriginalNameID = GlobalValue::getGUID(ValueName);
7196 if (PrintSummaryGUIDs)
7197 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7198 << ValueName << "\n";
7200 // UseStrtab is false for legacy summary formats and value names are
7201 // created on stack. In that case we save the name in a string saver in
7202 // the index so that the value name can be recorded.
7203 ValueIdToValueInfoMap[ValueID] = std::make_pair(
7204 TheIndex.getOrInsertValueInfo(
7205 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7206 OriginalNameID);
7209 // Specialized value symbol table parser used when reading module index
7210 // blocks where we don't actually create global values. The parsed information
7211 // is saved in the bitcode reader for use when later parsing summaries.
7212 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7213 uint64_t Offset,
7214 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7215 // With a strtab the VST is not required to parse the summary.
7216 if (UseStrtab)
7217 return Error::success();
7219 assert(Offset > 0 && "Expected non-zero VST offset");
7220 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7221 if (!MaybeCurrentBit)
7222 return MaybeCurrentBit.takeError();
7223 uint64_t CurrentBit = MaybeCurrentBit.get();
7225 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7226 return Err;
7228 SmallVector<uint64_t, 64> Record;
7230 // Read all the records for this value table.
7231 SmallString<128> ValueName;
7233 while (true) {
7234 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7235 if (!MaybeEntry)
7236 return MaybeEntry.takeError();
7237 BitstreamEntry Entry = MaybeEntry.get();
7239 switch (Entry.Kind) {
7240 case BitstreamEntry::SubBlock: // Handled for us already.
7241 case BitstreamEntry::Error:
7242 return error("Malformed block");
7243 case BitstreamEntry::EndBlock:
7244 // Done parsing VST, jump back to wherever we came from.
7245 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7246 return JumpFailed;
7247 return Error::success();
7248 case BitstreamEntry::Record:
7249 // The interesting case.
7250 break;
7253 // Read a record.
7254 Record.clear();
7255 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7256 if (!MaybeRecord)
7257 return MaybeRecord.takeError();
7258 switch (MaybeRecord.get()) {
7259 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7260 break;
7261 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7262 if (convertToString(Record, 1, ValueName))
7263 return error("Invalid record");
7264 unsigned ValueID = Record[0];
7265 assert(!SourceFileName.empty());
7266 auto VLI = ValueIdToLinkageMap.find(ValueID);
7267 assert(VLI != ValueIdToLinkageMap.end() &&
7268 "No linkage found for VST entry?");
7269 auto Linkage = VLI->second;
7270 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7271 ValueName.clear();
7272 break;
7274 case bitc::VST_CODE_FNENTRY: {
7275 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7276 if (convertToString(Record, 2, ValueName))
7277 return error("Invalid record");
7278 unsigned ValueID = Record[0];
7279 assert(!SourceFileName.empty());
7280 auto VLI = ValueIdToLinkageMap.find(ValueID);
7281 assert(VLI != ValueIdToLinkageMap.end() &&
7282 "No linkage found for VST entry?");
7283 auto Linkage = VLI->second;
7284 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7285 ValueName.clear();
7286 break;
7288 case bitc::VST_CODE_COMBINED_ENTRY: {
7289 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7290 unsigned ValueID = Record[0];
7291 GlobalValue::GUID RefGUID = Record[1];
7292 // The "original name", which is the second value of the pair will be
7293 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7294 ValueIdToValueInfoMap[ValueID] =
7295 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7296 break;
7302 // Parse just the blocks needed for building the index out of the module.
7303 // At the end of this routine the module Index is populated with a map
7304 // from global value id to GlobalValueSummary objects.
7305 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7306 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7307 return Err;
7309 SmallVector<uint64_t, 64> Record;
7310 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7311 unsigned ValueId = 0;
7313 // Read the index for this module.
7314 while (true) {
7315 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7316 if (!MaybeEntry)
7317 return MaybeEntry.takeError();
7318 llvm::BitstreamEntry Entry = MaybeEntry.get();
7320 switch (Entry.Kind) {
7321 case BitstreamEntry::Error:
7322 return error("Malformed block");
7323 case BitstreamEntry::EndBlock:
7324 return Error::success();
7326 case BitstreamEntry::SubBlock:
7327 switch (Entry.ID) {
7328 default: // Skip unknown content.
7329 if (Error Err = Stream.SkipBlock())
7330 return Err;
7331 break;
7332 case bitc::BLOCKINFO_BLOCK_ID:
7333 // Need to parse these to get abbrev ids (e.g. for VST)
7334 if (Error Err = readBlockInfo())
7335 return Err;
7336 break;
7337 case bitc::VALUE_SYMTAB_BLOCK_ID:
7338 // Should have been parsed earlier via VSTOffset, unless there
7339 // is no summary section.
7340 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7341 !SeenGlobalValSummary) &&
7342 "Expected early VST parse via VSTOffset record");
7343 if (Error Err = Stream.SkipBlock())
7344 return Err;
7345 break;
7346 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7347 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7348 // Add the module if it is a per-module index (has a source file name).
7349 if (!SourceFileName.empty())
7350 addThisModule();
7351 assert(!SeenValueSymbolTable &&
7352 "Already read VST when parsing summary block?");
7353 // We might not have a VST if there were no values in the
7354 // summary. An empty summary block generated when we are
7355 // performing ThinLTO compiles so we don't later invoke
7356 // the regular LTO process on them.
7357 if (VSTOffset > 0) {
7358 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7359 return Err;
7360 SeenValueSymbolTable = true;
7362 SeenGlobalValSummary = true;
7363 if (Error Err = parseEntireSummary(Entry.ID))
7364 return Err;
7365 break;
7366 case bitc::MODULE_STRTAB_BLOCK_ID:
7367 if (Error Err = parseModuleStringTable())
7368 return Err;
7369 break;
7371 continue;
7373 case BitstreamEntry::Record: {
7374 Record.clear();
7375 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7376 if (!MaybeBitCode)
7377 return MaybeBitCode.takeError();
7378 switch (MaybeBitCode.get()) {
7379 default:
7380 break; // Default behavior, ignore unknown content.
7381 case bitc::MODULE_CODE_VERSION: {
7382 if (Error Err = parseVersionRecord(Record).takeError())
7383 return Err;
7384 break;
7386 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7387 case bitc::MODULE_CODE_SOURCE_FILENAME: {
7388 SmallString<128> ValueName;
7389 if (convertToString(Record, 0, ValueName))
7390 return error("Invalid record");
7391 SourceFileName = ValueName.c_str();
7392 break;
7394 /// MODULE_CODE_HASH: [5*i32]
7395 case bitc::MODULE_CODE_HASH: {
7396 if (Record.size() != 5)
7397 return error("Invalid hash length " + Twine(Record.size()).str());
7398 auto &Hash = getThisModule()->second;
7399 int Pos = 0;
7400 for (auto &Val : Record) {
7401 assert(!(Val >> 32) && "Unexpected high bits set");
7402 Hash[Pos++] = Val;
7404 break;
7406 /// MODULE_CODE_VSTOFFSET: [offset]
7407 case bitc::MODULE_CODE_VSTOFFSET:
7408 if (Record.empty())
7409 return error("Invalid record");
7410 // Note that we subtract 1 here because the offset is relative to one
7411 // word before the start of the identification or module block, which
7412 // was historically always the start of the regular bitcode header.
7413 VSTOffset = Record[0] - 1;
7414 break;
7415 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
7416 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
7417 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
7418 // v2: [strtab offset, strtab size, v1]
7419 case bitc::MODULE_CODE_GLOBALVAR:
7420 case bitc::MODULE_CODE_FUNCTION:
7421 case bitc::MODULE_CODE_ALIAS: {
7422 StringRef Name;
7423 ArrayRef<uint64_t> GVRecord;
7424 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7425 if (GVRecord.size() <= 3)
7426 return error("Invalid record");
7427 uint64_t RawLinkage = GVRecord[3];
7428 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7429 if (!UseStrtab) {
7430 ValueIdToLinkageMap[ValueId++] = Linkage;
7431 break;
7434 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7435 break;
7439 continue;
7444 SmallVector<ValueInfo, 0>
7445 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7446 SmallVector<ValueInfo, 0> Ret;
7447 Ret.reserve(Record.size());
7448 for (uint64_t RefValueId : Record)
7449 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7450 return Ret;
7453 SmallVector<FunctionSummary::EdgeTy, 0>
7454 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7455 bool IsOldProfileFormat,
7456 bool HasProfile, bool HasRelBF) {
7457 SmallVector<FunctionSummary::EdgeTy, 0> Ret;
7458 // In the case of new profile formats, there are two Record entries per
7459 // Edge. Otherwise, conservatively reserve up to Record.size.
7460 if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7461 Ret.reserve(Record.size() / 2);
7462 else
7463 Ret.reserve(Record.size());
7465 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7466 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7467 bool HasTailCall = false;
7468 uint64_t RelBF = 0;
7469 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7470 if (IsOldProfileFormat) {
7471 I += 1; // Skip old callsitecount field
7472 if (HasProfile)
7473 I += 1; // Skip old profilecount field
7474 } else if (HasProfile)
7475 std::tie(Hotness, HasTailCall) =
7476 getDecodedHotnessCallEdgeInfo(Record[++I]);
7477 else if (HasRelBF)
7478 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7479 Ret.push_back(FunctionSummary::EdgeTy{
7480 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7482 return Ret;
7485 static void
7486 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7487 WholeProgramDevirtResolution &Wpd) {
7488 uint64_t ArgNum = Record[Slot++];
7489 WholeProgramDevirtResolution::ByArg &B =
7490 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7491 Slot += ArgNum;
7493 B.TheKind =
7494 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7495 B.Info = Record[Slot++];
7496 B.Byte = Record[Slot++];
7497 B.Bit = Record[Slot++];
7500 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7501 StringRef Strtab, size_t &Slot,
7502 TypeIdSummary &TypeId) {
7503 uint64_t Id = Record[Slot++];
7504 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7506 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7507 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7508 static_cast<size_t>(Record[Slot + 1])};
7509 Slot += 2;
7511 uint64_t ResByArgNum = Record[Slot++];
7512 for (uint64_t I = 0; I != ResByArgNum; ++I)
7513 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7516 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7517 StringRef Strtab,
7518 ModuleSummaryIndex &TheIndex) {
7519 size_t Slot = 0;
7520 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7521 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7522 Slot += 2;
7524 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7525 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7526 TypeId.TTRes.AlignLog2 = Record[Slot++];
7527 TypeId.TTRes.SizeM1 = Record[Slot++];
7528 TypeId.TTRes.BitMask = Record[Slot++];
7529 TypeId.TTRes.InlineBits = Record[Slot++];
7531 while (Slot < Record.size())
7532 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7535 std::vector<FunctionSummary::ParamAccess>
7536 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7537 auto ReadRange = [&]() {
7538 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7539 BitcodeReader::decodeSignRotatedValue(Record.front()));
7540 Record = Record.drop_front();
7541 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7542 BitcodeReader::decodeSignRotatedValue(Record.front()));
7543 Record = Record.drop_front();
7544 ConstantRange Range{Lower, Upper};
7545 assert(!Range.isFullSet());
7546 assert(!Range.isUpperSignWrapped());
7547 return Range;
7550 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7551 while (!Record.empty()) {
7552 PendingParamAccesses.emplace_back();
7553 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7554 ParamAccess.ParamNo = Record.front();
7555 Record = Record.drop_front();
7556 ParamAccess.Use = ReadRange();
7557 ParamAccess.Calls.resize(Record.front());
7558 Record = Record.drop_front();
7559 for (auto &Call : ParamAccess.Calls) {
7560 Call.ParamNo = Record.front();
7561 Record = Record.drop_front();
7562 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7563 Record = Record.drop_front();
7564 Call.Offsets = ReadRange();
7567 return PendingParamAccesses;
7570 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7571 ArrayRef<uint64_t> Record, size_t &Slot,
7572 TypeIdCompatibleVtableInfo &TypeId) {
7573 uint64_t Offset = Record[Slot++];
7574 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7575 TypeId.push_back({Offset, Callee});
7578 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7579 ArrayRef<uint64_t> Record) {
7580 size_t Slot = 0;
7581 TypeIdCompatibleVtableInfo &TypeId =
7582 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7583 {Strtab.data() + Record[Slot],
7584 static_cast<size_t>(Record[Slot + 1])});
7585 Slot += 2;
7587 while (Slot < Record.size())
7588 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7591 SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext(
7592 ArrayRef<uint64_t> Record, unsigned &I) {
7593 SmallVector<unsigned> StackIdList;
7594 // For backwards compatibility with old format before radix tree was
7595 // used, simply see if we found a radix tree array record (and thus if
7596 // the RadixArray is non-empty).
7597 if (RadixArray.empty()) {
7598 unsigned NumStackEntries = Record[I++];
7599 assert(Record.size() - I >= NumStackEntries);
7600 StackIdList.reserve(NumStackEntries);
7601 for (unsigned J = 0; J < NumStackEntries; J++) {
7602 assert(Record[I] < StackIds.size());
7603 StackIdList.push_back(
7604 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7606 } else {
7607 unsigned RadixIndex = Record[I++];
7608 // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h
7609 // for a detailed description of the radix tree array format. Briefly, the
7610 // first entry will be the number of frames, any negative values are the
7611 // negative of the offset of the next frame, and otherwise the frames are in
7612 // increasing linear order.
7613 assert(RadixIndex < RadixArray.size());
7614 unsigned NumStackIds = RadixArray[RadixIndex++];
7615 StackIdList.reserve(NumStackIds);
7616 while (NumStackIds--) {
7617 assert(RadixIndex < RadixArray.size());
7618 unsigned Elem = RadixArray[RadixIndex];
7619 if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) {
7620 RadixIndex = RadixIndex - Elem;
7621 assert(RadixIndex < RadixArray.size());
7622 Elem = RadixArray[RadixIndex];
7623 // We shouldn't encounter a second offset in a row.
7624 assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0);
7626 RadixIndex++;
7627 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[Elem]));
7630 return StackIdList;
7633 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
7634 unsigned WOCnt) {
7635 // Readonly and writeonly refs are in the end of the refs list.
7636 assert(ROCnt + WOCnt <= Refs.size());
7637 unsigned FirstWORef = Refs.size() - WOCnt;
7638 unsigned RefNo = FirstWORef - ROCnt;
7639 for (; RefNo < FirstWORef; ++RefNo)
7640 Refs[RefNo].setReadOnly();
7641 for (; RefNo < Refs.size(); ++RefNo)
7642 Refs[RefNo].setWriteOnly();
7645 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7646 // objects in the index.
7647 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7648 if (Error Err = Stream.EnterSubBlock(ID))
7649 return Err;
7650 SmallVector<uint64_t, 64> Record;
7652 // Parse version
7654 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7655 if (!MaybeEntry)
7656 return MaybeEntry.takeError();
7657 BitstreamEntry Entry = MaybeEntry.get();
7659 if (Entry.Kind != BitstreamEntry::Record)
7660 return error("Invalid Summary Block: record for version expected");
7661 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7662 if (!MaybeRecord)
7663 return MaybeRecord.takeError();
7664 if (MaybeRecord.get() != bitc::FS_VERSION)
7665 return error("Invalid Summary Block: version expected");
7667 const uint64_t Version = Record[0];
7668 const bool IsOldProfileFormat = Version == 1;
7669 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7670 return error("Invalid summary version " + Twine(Version) +
7671 ". Version should be in the range [1-" +
7672 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7673 "].");
7674 Record.clear();
7676 // Keep around the last seen summary to be used when we see an optional
7677 // "OriginalName" attachement.
7678 GlobalValueSummary *LastSeenSummary = nullptr;
7679 GlobalValue::GUID LastSeenGUID = 0;
7681 // We can expect to see any number of type ID information records before
7682 // each function summary records; these variables store the information
7683 // collected so far so that it can be used to create the summary object.
7684 std::vector<GlobalValue::GUID> PendingTypeTests;
7685 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7686 PendingTypeCheckedLoadVCalls;
7687 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7688 PendingTypeCheckedLoadConstVCalls;
7689 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7691 std::vector<CallsiteInfo> PendingCallsites;
7692 std::vector<AllocInfo> PendingAllocs;
7693 std::vector<uint64_t> PendingContextIds;
7695 while (true) {
7696 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7697 if (!MaybeEntry)
7698 return MaybeEntry.takeError();
7699 BitstreamEntry Entry = MaybeEntry.get();
7701 switch (Entry.Kind) {
7702 case BitstreamEntry::SubBlock: // Handled for us already.
7703 case BitstreamEntry::Error:
7704 return error("Malformed block");
7705 case BitstreamEntry::EndBlock:
7706 return Error::success();
7707 case BitstreamEntry::Record:
7708 // The interesting case.
7709 break;
7712 // Read a record. The record format depends on whether this
7713 // is a per-module index or a combined index file. In the per-module
7714 // case the records contain the associated value's ID for correlation
7715 // with VST entries. In the combined index the correlation is done
7716 // via the bitcode offset of the summary records (which were saved
7717 // in the combined index VST entries). The records also contain
7718 // information used for ThinLTO renaming and importing.
7719 Record.clear();
7720 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7721 if (!MaybeBitCode)
7722 return MaybeBitCode.takeError();
7723 switch (unsigned BitCode = MaybeBitCode.get()) {
7724 default: // Default behavior: ignore.
7725 break;
7726 case bitc::FS_FLAGS: { // [flags]
7727 TheIndex.setFlags(Record[0]);
7728 break;
7730 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7731 uint64_t ValueID = Record[0];
7732 GlobalValue::GUID RefGUID;
7733 if (Version >= 11) {
7734 RefGUID = Record[1] << 32 | Record[2];
7735 } else {
7736 RefGUID = Record[1];
7738 ValueIdToValueInfoMap[ValueID] =
7739 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7740 break;
7742 // FS_PERMODULE is legacy and does not have support for the tail call flag.
7743 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7744 // numrefs x valueid, n x (valueid)]
7745 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7746 // numrefs x valueid,
7747 // n x (valueid, hotness+tailcall flags)]
7748 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7749 // numrefs x valueid,
7750 // n x (valueid, relblockfreq+tailcall)]
7751 case bitc::FS_PERMODULE:
7752 case bitc::FS_PERMODULE_RELBF:
7753 case bitc::FS_PERMODULE_PROFILE: {
7754 unsigned ValueID = Record[0];
7755 uint64_t RawFlags = Record[1];
7756 unsigned InstCount = Record[2];
7757 uint64_t RawFunFlags = 0;
7758 unsigned NumRefs = Record[3];
7759 unsigned NumRORefs = 0, NumWORefs = 0;
7760 int RefListStartIndex = 4;
7761 if (Version >= 4) {
7762 RawFunFlags = Record[3];
7763 NumRefs = Record[4];
7764 RefListStartIndex = 5;
7765 if (Version >= 5) {
7766 NumRORefs = Record[5];
7767 RefListStartIndex = 6;
7768 if (Version >= 7) {
7769 NumWORefs = Record[6];
7770 RefListStartIndex = 7;
7775 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7776 // The module path string ref set in the summary must be owned by the
7777 // index's module string table. Since we don't have a module path
7778 // string table section in the per-module index, we create a single
7779 // module path string table entry with an empty (0) ID to take
7780 // ownership.
7781 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7782 assert(Record.size() >= RefListStartIndex + NumRefs &&
7783 "Record size inconsistent with number of references");
7784 SmallVector<ValueInfo, 0> Refs = makeRefList(
7785 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7786 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7787 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7788 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
7789 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7790 IsOldProfileFormat, HasProfile, HasRelBF);
7791 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7792 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7793 // In order to save memory, only record the memprof summaries if this is
7794 // the prevailing copy of a symbol. The linker doesn't resolve local
7795 // linkage values so don't check whether those are prevailing.
7796 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7797 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) &&
7798 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
7799 PendingCallsites.clear();
7800 PendingAllocs.clear();
7802 auto FS = std::make_unique<FunctionSummary>(
7803 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7804 std::move(Calls), std::move(PendingTypeTests),
7805 std::move(PendingTypeTestAssumeVCalls),
7806 std::move(PendingTypeCheckedLoadVCalls),
7807 std::move(PendingTypeTestAssumeConstVCalls),
7808 std::move(PendingTypeCheckedLoadConstVCalls),
7809 std::move(PendingParamAccesses), std::move(PendingCallsites),
7810 std::move(PendingAllocs));
7811 FS->setModulePath(getThisModule()->first());
7812 FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7813 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7814 std::move(FS));
7815 break;
7817 // FS_ALIAS: [valueid, flags, valueid]
7818 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7819 // they expect all aliasee summaries to be available.
7820 case bitc::FS_ALIAS: {
7821 unsigned ValueID = Record[0];
7822 uint64_t RawFlags = Record[1];
7823 unsigned AliaseeID = Record[2];
7824 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7825 auto AS = std::make_unique<AliasSummary>(Flags);
7826 // The module path string ref set in the summary must be owned by the
7827 // index's module string table. Since we don't have a module path
7828 // string table section in the per-module index, we create a single
7829 // module path string table entry with an empty (0) ID to take
7830 // ownership.
7831 AS->setModulePath(getThisModule()->first());
7833 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7834 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7835 if (!AliaseeInModule)
7836 return error("Alias expects aliasee summary to be parsed");
7837 AS->setAliasee(AliaseeVI, AliaseeInModule);
7839 auto GUID = getValueInfoFromValueId(ValueID);
7840 AS->setOriginalName(std::get<1>(GUID));
7841 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7842 break;
7844 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7845 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7846 unsigned ValueID = Record[0];
7847 uint64_t RawFlags = Record[1];
7848 unsigned RefArrayStart = 2;
7849 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7850 /* WriteOnly */ false,
7851 /* Constant */ false,
7852 GlobalObject::VCallVisibilityPublic);
7853 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7854 if (Version >= 5) {
7855 GVF = getDecodedGVarFlags(Record[2]);
7856 RefArrayStart = 3;
7858 SmallVector<ValueInfo, 0> Refs =
7859 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7860 auto FS =
7861 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7862 FS->setModulePath(getThisModule()->first());
7863 auto GUID = getValueInfoFromValueId(ValueID);
7864 FS->setOriginalName(std::get<1>(GUID));
7865 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7866 break;
7868 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7869 // numrefs, numrefs x valueid,
7870 // n x (valueid, offset)]
7871 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7872 unsigned ValueID = Record[0];
7873 uint64_t RawFlags = Record[1];
7874 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7875 unsigned NumRefs = Record[3];
7876 unsigned RefListStartIndex = 4;
7877 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7878 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7879 SmallVector<ValueInfo, 0> Refs = makeRefList(
7880 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7881 VTableFuncList VTableFuncs;
7882 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7883 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7884 uint64_t Offset = Record[++I];
7885 VTableFuncs.push_back({Callee, Offset});
7887 auto VS =
7888 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7889 VS->setModulePath(getThisModule()->first());
7890 VS->setVTableFuncs(VTableFuncs);
7891 auto GUID = getValueInfoFromValueId(ValueID);
7892 VS->setOriginalName(std::get<1>(GUID));
7893 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7894 break;
7896 // FS_COMBINED is legacy and does not have support for the tail call flag.
7897 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7898 // numrefs x valueid, n x (valueid)]
7899 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7900 // numrefs x valueid,
7901 // n x (valueid, hotness+tailcall flags)]
7902 case bitc::FS_COMBINED:
7903 case bitc::FS_COMBINED_PROFILE: {
7904 unsigned ValueID = Record[0];
7905 uint64_t ModuleId = Record[1];
7906 uint64_t RawFlags = Record[2];
7907 unsigned InstCount = Record[3];
7908 uint64_t RawFunFlags = 0;
7909 unsigned NumRefs = Record[4];
7910 unsigned NumRORefs = 0, NumWORefs = 0;
7911 int RefListStartIndex = 5;
7913 if (Version >= 4) {
7914 RawFunFlags = Record[4];
7915 RefListStartIndex = 6;
7916 size_t NumRefsIndex = 5;
7917 if (Version >= 5) {
7918 unsigned NumRORefsOffset = 1;
7919 RefListStartIndex = 7;
7920 if (Version >= 6) {
7921 NumRefsIndex = 6;
7922 RefListStartIndex = 8;
7923 if (Version >= 7) {
7924 RefListStartIndex = 9;
7925 NumWORefs = Record[8];
7926 NumRORefsOffset = 2;
7929 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7931 NumRefs = Record[NumRefsIndex];
7934 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7935 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7936 assert(Record.size() >= RefListStartIndex + NumRefs &&
7937 "Record size inconsistent with number of references");
7938 SmallVector<ValueInfo, 0> Refs = makeRefList(
7939 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7940 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7941 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
7942 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7943 IsOldProfileFormat, HasProfile, false);
7944 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7945 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7946 auto FS = std::make_unique<FunctionSummary>(
7947 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7948 std::move(Edges), std::move(PendingTypeTests),
7949 std::move(PendingTypeTestAssumeVCalls),
7950 std::move(PendingTypeCheckedLoadVCalls),
7951 std::move(PendingTypeTestAssumeConstVCalls),
7952 std::move(PendingTypeCheckedLoadConstVCalls),
7953 std::move(PendingParamAccesses), std::move(PendingCallsites),
7954 std::move(PendingAllocs));
7955 LastSeenSummary = FS.get();
7956 LastSeenGUID = VI.getGUID();
7957 FS->setModulePath(ModuleIdMap[ModuleId]);
7958 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7959 break;
7961 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7962 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7963 // they expect all aliasee summaries to be available.
7964 case bitc::FS_COMBINED_ALIAS: {
7965 unsigned ValueID = Record[0];
7966 uint64_t ModuleId = Record[1];
7967 uint64_t RawFlags = Record[2];
7968 unsigned AliaseeValueId = Record[3];
7969 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7970 auto AS = std::make_unique<AliasSummary>(Flags);
7971 LastSeenSummary = AS.get();
7972 AS->setModulePath(ModuleIdMap[ModuleId]);
7974 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7975 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7976 AS->setAliasee(AliaseeVI, AliaseeInModule);
7978 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7979 LastSeenGUID = VI.getGUID();
7980 TheIndex.addGlobalValueSummary(VI, std::move(AS));
7981 break;
7983 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7984 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7985 unsigned ValueID = Record[0];
7986 uint64_t ModuleId = Record[1];
7987 uint64_t RawFlags = Record[2];
7988 unsigned RefArrayStart = 3;
7989 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7990 /* WriteOnly */ false,
7991 /* Constant */ false,
7992 GlobalObject::VCallVisibilityPublic);
7993 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7994 if (Version >= 5) {
7995 GVF = getDecodedGVarFlags(Record[3]);
7996 RefArrayStart = 4;
7998 SmallVector<ValueInfo, 0> Refs =
7999 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
8000 auto FS =
8001 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
8002 LastSeenSummary = FS.get();
8003 FS->setModulePath(ModuleIdMap[ModuleId]);
8004 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
8005 LastSeenGUID = VI.getGUID();
8006 TheIndex.addGlobalValueSummary(VI, std::move(FS));
8007 break;
8009 // FS_COMBINED_ORIGINAL_NAME: [original_name]
8010 case bitc::FS_COMBINED_ORIGINAL_NAME: {
8011 uint64_t OriginalName = Record[0];
8012 if (!LastSeenSummary)
8013 return error("Name attachment that does not follow a combined record");
8014 LastSeenSummary->setOriginalName(OriginalName);
8015 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
8016 // Reset the LastSeenSummary
8017 LastSeenSummary = nullptr;
8018 LastSeenGUID = 0;
8019 break;
8021 case bitc::FS_TYPE_TESTS:
8022 assert(PendingTypeTests.empty());
8023 llvm::append_range(PendingTypeTests, Record);
8024 break;
8026 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
8027 assert(PendingTypeTestAssumeVCalls.empty());
8028 for (unsigned I = 0; I != Record.size(); I += 2)
8029 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
8030 break;
8032 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
8033 assert(PendingTypeCheckedLoadVCalls.empty());
8034 for (unsigned I = 0; I != Record.size(); I += 2)
8035 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
8036 break;
8038 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
8039 PendingTypeTestAssumeConstVCalls.push_back(
8040 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
8041 break;
8043 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
8044 PendingTypeCheckedLoadConstVCalls.push_back(
8045 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
8046 break;
8048 case bitc::FS_CFI_FUNCTION_DEFS: {
8049 std::set<std::string, std::less<>> &CfiFunctionDefs =
8050 TheIndex.cfiFunctionDefs();
8051 for (unsigned I = 0; I != Record.size(); I += 2)
8052 CfiFunctionDefs.insert(
8053 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
8054 break;
8057 case bitc::FS_CFI_FUNCTION_DECLS: {
8058 std::set<std::string, std::less<>> &CfiFunctionDecls =
8059 TheIndex.cfiFunctionDecls();
8060 for (unsigned I = 0; I != Record.size(); I += 2)
8061 CfiFunctionDecls.insert(
8062 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
8063 break;
8066 case bitc::FS_TYPE_ID:
8067 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
8068 break;
8070 case bitc::FS_TYPE_ID_METADATA:
8071 parseTypeIdCompatibleVtableSummaryRecord(Record);
8072 break;
8074 case bitc::FS_BLOCK_COUNT:
8075 TheIndex.addBlockCount(Record[0]);
8076 break;
8078 case bitc::FS_PARAM_ACCESS: {
8079 PendingParamAccesses = parseParamAccesses(Record);
8080 break;
8083 case bitc::FS_STACK_IDS: { // [n x stackid]
8084 // Save stack ids in the reader to consult when adding stack ids from the
8085 // lists in the stack node and alloc node entries.
8086 if (Version <= 11) {
8087 StackIds = ArrayRef<uint64_t>(Record);
8088 break;
8090 // This is an array of 32-bit fixed-width values, holding each 64-bit
8091 // context id as a pair of adjacent (most significant first) 32-bit words.
8092 assert(Record.size() % 2 == 0);
8093 StackIds.reserve(Record.size() / 2);
8094 for (auto R = Record.begin(); R != Record.end(); R += 2)
8095 StackIds.push_back(*R << 32 | *(R + 1));
8096 break;
8099 case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry]
8100 RadixArray = ArrayRef<uint64_t>(Record);
8101 break;
8104 case bitc::FS_PERMODULE_CALLSITE_INFO: {
8105 unsigned ValueID = Record[0];
8106 SmallVector<unsigned> StackIdList;
8107 for (auto R = Record.begin() + 1; R != Record.end(); R++) {
8108 assert(*R < StackIds.size());
8109 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
8111 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
8112 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
8113 break;
8116 case bitc::FS_COMBINED_CALLSITE_INFO: {
8117 auto RecordIter = Record.begin();
8118 unsigned ValueID = *RecordIter++;
8119 unsigned NumStackIds = *RecordIter++;
8120 unsigned NumVersions = *RecordIter++;
8121 assert(Record.size() == 3 + NumStackIds + NumVersions);
8122 SmallVector<unsigned> StackIdList;
8123 for (unsigned J = 0; J < NumStackIds; J++) {
8124 assert(*RecordIter < StackIds.size());
8125 StackIdList.push_back(
8126 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
8128 SmallVector<unsigned> Versions;
8129 for (unsigned J = 0; J < NumVersions; J++)
8130 Versions.push_back(*RecordIter++);
8131 ValueInfo VI = std::get<0>(
8132 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
8133 PendingCallsites.push_back(
8134 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8135 break;
8138 case bitc::FS_ALLOC_CONTEXT_IDS: {
8139 // This is an array of 32-bit fixed-width values, holding each 64-bit
8140 // context id as a pair of adjacent (most significant first) 32-bit words.
8141 assert(Record.size() % 2 == 0);
8142 PendingContextIds.reserve(Record.size() / 2);
8143 for (auto R = Record.begin(); R != Record.end(); R += 2)
8144 PendingContextIds.push_back(*R << 32 | *(R + 1));
8145 break;
8148 case bitc::FS_PERMODULE_ALLOC_INFO: {
8149 unsigned I = 0;
8150 std::vector<MIBInfo> MIBs;
8151 unsigned NumMIBs = 0;
8152 if (Version >= 10)
8153 NumMIBs = Record[I++];
8154 unsigned MIBsRead = 0;
8155 while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8156 (Version < 10 && I < Record.size())) {
8157 assert(Record.size() - I >= 2);
8158 AllocationType AllocType = (AllocationType)Record[I++];
8159 auto StackIdList = parseAllocInfoContext(Record, I);
8160 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8162 // We either have nothing left or at least NumMIBs context size info
8163 // indices left (for the total sizes included when reporting of hinted
8164 // bytes is enabled).
8165 assert(I == Record.size() || Record.size() - I >= NumMIBs);
8166 std::vector<std::vector<ContextTotalSize>> AllContextSizes;
8167 if (I < Record.size()) {
8168 assert(!PendingContextIds.empty() &&
8169 "Missing context ids for alloc sizes");
8170 unsigned ContextIdIndex = 0;
8171 MIBsRead = 0;
8172 // The sizes are a linearized array of sizes, where for each MIB there
8173 // is 1 or more sizes (due to context trimming, each MIB in the metadata
8174 // and summarized here can correspond to more than one original context
8175 // from the profile).
8176 while (MIBsRead++ < NumMIBs) {
8177 // First read the number of contexts recorded for this MIB.
8178 unsigned NumContextSizeInfoEntries = Record[I++];
8179 assert(Record.size() - I >= NumContextSizeInfoEntries);
8180 std::vector<ContextTotalSize> ContextSizes;
8181 ContextSizes.reserve(NumContextSizeInfoEntries);
8182 for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) {
8183 assert(ContextIdIndex < PendingContextIds.size());
8184 // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS
8185 // should be in the same order as the total sizes.
8186 ContextSizes.push_back(
8187 {PendingContextIds[ContextIdIndex++], Record[I++]});
8189 AllContextSizes.push_back(std::move(ContextSizes));
8191 PendingContextIds.clear();
8193 PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8194 if (!AllContextSizes.empty()) {
8195 assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size());
8196 PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes);
8198 break;
8201 case bitc::FS_COMBINED_ALLOC_INFO: {
8202 unsigned I = 0;
8203 std::vector<MIBInfo> MIBs;
8204 unsigned NumMIBs = Record[I++];
8205 unsigned NumVersions = Record[I++];
8206 unsigned MIBsRead = 0;
8207 while (MIBsRead++ < NumMIBs) {
8208 assert(Record.size() - I >= 2);
8209 AllocationType AllocType = (AllocationType)Record[I++];
8210 auto StackIdList = parseAllocInfoContext(Record, I);
8211 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8213 assert(Record.size() - I >= NumVersions);
8214 SmallVector<uint8_t> Versions;
8215 for (unsigned J = 0; J < NumVersions; J++)
8216 Versions.push_back(Record[I++]);
8217 assert(I == Record.size());
8218 PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs)));
8219 break;
8223 llvm_unreachable("Exit infinite loop");
8226 // Parse the module string table block into the Index.
8227 // This populates the ModulePathStringTable map in the index.
8228 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8229 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8230 return Err;
8232 SmallVector<uint64_t, 64> Record;
8234 SmallString<128> ModulePath;
8235 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8237 while (true) {
8238 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8239 if (!MaybeEntry)
8240 return MaybeEntry.takeError();
8241 BitstreamEntry Entry = MaybeEntry.get();
8243 switch (Entry.Kind) {
8244 case BitstreamEntry::SubBlock: // Handled for us already.
8245 case BitstreamEntry::Error:
8246 return error("Malformed block");
8247 case BitstreamEntry::EndBlock:
8248 return Error::success();
8249 case BitstreamEntry::Record:
8250 // The interesting case.
8251 break;
8254 Record.clear();
8255 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8256 if (!MaybeRecord)
8257 return MaybeRecord.takeError();
8258 switch (MaybeRecord.get()) {
8259 default: // Default behavior: ignore.
8260 break;
8261 case bitc::MST_CODE_ENTRY: {
8262 // MST_ENTRY: [modid, namechar x N]
8263 uint64_t ModuleId = Record[0];
8265 if (convertToString(Record, 1, ModulePath))
8266 return error("Invalid record");
8268 LastSeenModule = TheIndex.addModule(ModulePath);
8269 ModuleIdMap[ModuleId] = LastSeenModule->first();
8271 ModulePath.clear();
8272 break;
8274 /// MST_CODE_HASH: [5*i32]
8275 case bitc::MST_CODE_HASH: {
8276 if (Record.size() != 5)
8277 return error("Invalid hash length " + Twine(Record.size()).str());
8278 if (!LastSeenModule)
8279 return error("Invalid hash that does not follow a module path");
8280 int Pos = 0;
8281 for (auto &Val : Record) {
8282 assert(!(Val >> 32) && "Unexpected high bits set");
8283 LastSeenModule->second[Pos++] = Val;
8285 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8286 LastSeenModule = nullptr;
8287 break;
8291 llvm_unreachable("Exit infinite loop");
8294 namespace {
8296 // FIXME: This class is only here to support the transition to llvm::Error. It
8297 // will be removed once this transition is complete. Clients should prefer to
8298 // deal with the Error value directly, rather than converting to error_code.
8299 class BitcodeErrorCategoryType : public std::error_category {
8300 const char *name() const noexcept override {
8301 return "llvm.bitcode";
8304 std::string message(int IE) const override {
8305 BitcodeError E = static_cast<BitcodeError>(IE);
8306 switch (E) {
8307 case BitcodeError::CorruptedBitcode:
8308 return "Corrupted bitcode";
8310 llvm_unreachable("Unknown error type!");
8314 } // end anonymous namespace
8316 const std::error_category &llvm::BitcodeErrorCategory() {
8317 static BitcodeErrorCategoryType ErrorCategory;
8318 return ErrorCategory;
8321 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8322 unsigned Block, unsigned RecordID) {
8323 if (Error Err = Stream.EnterSubBlock(Block))
8324 return std::move(Err);
8326 StringRef Strtab;
8327 while (true) {
8328 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8329 if (!MaybeEntry)
8330 return MaybeEntry.takeError();
8331 llvm::BitstreamEntry Entry = MaybeEntry.get();
8333 switch (Entry.Kind) {
8334 case BitstreamEntry::EndBlock:
8335 return Strtab;
8337 case BitstreamEntry::Error:
8338 return error("Malformed block");
8340 case BitstreamEntry::SubBlock:
8341 if (Error Err = Stream.SkipBlock())
8342 return std::move(Err);
8343 break;
8345 case BitstreamEntry::Record:
8346 StringRef Blob;
8347 SmallVector<uint64_t, 1> Record;
8348 Expected<unsigned> MaybeRecord =
8349 Stream.readRecord(Entry.ID, Record, &Blob);
8350 if (!MaybeRecord)
8351 return MaybeRecord.takeError();
8352 if (MaybeRecord.get() == RecordID)
8353 Strtab = Blob;
8354 break;
8359 //===----------------------------------------------------------------------===//
8360 // External interface
8361 //===----------------------------------------------------------------------===//
8363 Expected<std::vector<BitcodeModule>>
8364 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8365 auto FOrErr = getBitcodeFileContents(Buffer);
8366 if (!FOrErr)
8367 return FOrErr.takeError();
8368 return std::move(FOrErr->Mods);
8371 Expected<BitcodeFileContents>
8372 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8373 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8374 if (!StreamOrErr)
8375 return StreamOrErr.takeError();
8376 BitstreamCursor &Stream = *StreamOrErr;
8378 BitcodeFileContents F;
8379 while (true) {
8380 uint64_t BCBegin = Stream.getCurrentByteNo();
8382 // We may be consuming bitcode from a client that leaves garbage at the end
8383 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8384 // the end that there cannot possibly be another module, stop looking.
8385 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8386 return F;
8388 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8389 if (!MaybeEntry)
8390 return MaybeEntry.takeError();
8391 llvm::BitstreamEntry Entry = MaybeEntry.get();
8393 switch (Entry.Kind) {
8394 case BitstreamEntry::EndBlock:
8395 case BitstreamEntry::Error:
8396 return error("Malformed block");
8398 case BitstreamEntry::SubBlock: {
8399 uint64_t IdentificationBit = -1ull;
8400 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8401 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8402 if (Error Err = Stream.SkipBlock())
8403 return std::move(Err);
8406 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8407 if (!MaybeEntry)
8408 return MaybeEntry.takeError();
8409 Entry = MaybeEntry.get();
8412 if (Entry.Kind != BitstreamEntry::SubBlock ||
8413 Entry.ID != bitc::MODULE_BLOCK_ID)
8414 return error("Malformed block");
8417 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8418 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8419 if (Error Err = Stream.SkipBlock())
8420 return std::move(Err);
8422 F.Mods.push_back({Stream.getBitcodeBytes().slice(
8423 BCBegin, Stream.getCurrentByteNo() - BCBegin),
8424 Buffer.getBufferIdentifier(), IdentificationBit,
8425 ModuleBit});
8426 continue;
8429 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8430 Expected<StringRef> Strtab =
8431 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8432 if (!Strtab)
8433 return Strtab.takeError();
8434 // This string table is used by every preceding bitcode module that does
8435 // not have its own string table. A bitcode file may have multiple
8436 // string tables if it was created by binary concatenation, for example
8437 // with "llvm-cat -b".
8438 for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8439 if (!I.Strtab.empty())
8440 break;
8441 I.Strtab = *Strtab;
8443 // Similarly, the string table is used by every preceding symbol table;
8444 // normally there will be just one unless the bitcode file was created
8445 // by binary concatenation.
8446 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8447 F.StrtabForSymtab = *Strtab;
8448 continue;
8451 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8452 Expected<StringRef> SymtabOrErr =
8453 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8454 if (!SymtabOrErr)
8455 return SymtabOrErr.takeError();
8457 // We can expect the bitcode file to have multiple symbol tables if it
8458 // was created by binary concatenation. In that case we silently
8459 // ignore any subsequent symbol tables, which is fine because this is a
8460 // low level function. The client is expected to notice that the number
8461 // of modules in the symbol table does not match the number of modules
8462 // in the input file and regenerate the symbol table.
8463 if (F.Symtab.empty())
8464 F.Symtab = *SymtabOrErr;
8465 continue;
8468 if (Error Err = Stream.SkipBlock())
8469 return std::move(Err);
8470 continue;
8472 case BitstreamEntry::Record:
8473 if (Error E = Stream.skipRecord(Entry.ID).takeError())
8474 return std::move(E);
8475 continue;
8480 /// Get a lazy one-at-time loading module from bitcode.
8482 /// This isn't always used in a lazy context. In particular, it's also used by
8483 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
8484 /// in forward-referenced functions from block address references.
8486 /// \param[in] MaterializeAll Set to \c true if we should materialize
8487 /// everything.
8488 Expected<std::unique_ptr<Module>>
8489 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8490 bool ShouldLazyLoadMetadata, bool IsImporting,
8491 ParserCallbacks Callbacks) {
8492 BitstreamCursor Stream(Buffer);
8494 std::string ProducerIdentification;
8495 if (IdentificationBit != -1ull) {
8496 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8497 return std::move(JumpFailed);
8498 if (Error E =
8499 readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8500 return std::move(E);
8503 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8504 return std::move(JumpFailed);
8505 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8506 Context);
8508 std::unique_ptr<Module> M =
8509 std::make_unique<Module>(ModuleIdentifier, Context);
8510 M->setMaterializer(R);
8512 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8513 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8514 IsImporting, Callbacks))
8515 return std::move(Err);
8517 if (MaterializeAll) {
8518 // Read in the entire module, and destroy the BitcodeReader.
8519 if (Error Err = M->materializeAll())
8520 return std::move(Err);
8521 } else {
8522 // Resolve forward references from blockaddresses.
8523 if (Error Err = R->materializeForwardReferencedFunctions())
8524 return std::move(Err);
8527 return std::move(M);
8530 Expected<std::unique_ptr<Module>>
8531 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8532 bool IsImporting, ParserCallbacks Callbacks) {
8533 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8534 Callbacks);
8537 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8538 // We don't use ModuleIdentifier here because the client may need to control the
8539 // module path used in the combined summary (e.g. when reading summaries for
8540 // regular LTO modules).
8541 Error BitcodeModule::readSummary(
8542 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8543 std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8544 BitstreamCursor Stream(Buffer);
8545 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8546 return JumpFailed;
8548 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8549 ModulePath, IsPrevailing);
8550 return R.parseModule();
8553 // Parse the specified bitcode buffer, returning the function info index.
8554 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8555 BitstreamCursor Stream(Buffer);
8556 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8557 return std::move(JumpFailed);
8559 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8560 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8561 ModuleIdentifier, 0);
8563 if (Error Err = R.parseModule())
8564 return std::move(Err);
8566 return std::move(Index);
8569 static Expected<std::pair<bool, bool>>
8570 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8571 unsigned ID,
8572 BitcodeLTOInfo &LTOInfo) {
8573 if (Error Err = Stream.EnterSubBlock(ID))
8574 return std::move(Err);
8575 SmallVector<uint64_t, 64> Record;
8577 while (true) {
8578 BitstreamEntry Entry;
8579 std::pair<bool, bool> Result = {false,false};
8580 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8581 return std::move(E);
8583 switch (Entry.Kind) {
8584 case BitstreamEntry::SubBlock: // Handled for us already.
8585 case BitstreamEntry::Error:
8586 return error("Malformed block");
8587 case BitstreamEntry::EndBlock: {
8588 // If no flags record found, set both flags to false.
8589 return Result;
8591 case BitstreamEntry::Record:
8592 // The interesting case.
8593 break;
8596 // Look for the FS_FLAGS record.
8597 Record.clear();
8598 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8599 if (!MaybeBitCode)
8600 return MaybeBitCode.takeError();
8601 switch (MaybeBitCode.get()) {
8602 default: // Default behavior: ignore.
8603 break;
8604 case bitc::FS_FLAGS: { // [flags]
8605 uint64_t Flags = Record[0];
8606 // Scan flags.
8607 assert(Flags <= 0x2ff && "Unexpected bits in flag");
8609 bool EnableSplitLTOUnit = Flags & 0x8;
8610 bool UnifiedLTO = Flags & 0x200;
8611 Result = {EnableSplitLTOUnit, UnifiedLTO};
8613 return Result;
8617 llvm_unreachable("Exit infinite loop");
8620 // Check if the given bitcode buffer contains a global value summary block.
8621 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8622 BitstreamCursor Stream(Buffer);
8623 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8624 return std::move(JumpFailed);
8626 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8627 return std::move(Err);
8629 while (true) {
8630 llvm::BitstreamEntry Entry;
8631 if (Error E = Stream.advance().moveInto(Entry))
8632 return std::move(E);
8634 switch (Entry.Kind) {
8635 case BitstreamEntry::Error:
8636 return error("Malformed block");
8637 case BitstreamEntry::EndBlock:
8638 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8639 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8641 case BitstreamEntry::SubBlock:
8642 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8643 BitcodeLTOInfo LTOInfo;
8644 Expected<std::pair<bool, bool>> Flags =
8645 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8646 if (!Flags)
8647 return Flags.takeError();
8648 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8649 LTOInfo.IsThinLTO = true;
8650 LTOInfo.HasSummary = true;
8651 return LTOInfo;
8654 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8655 BitcodeLTOInfo LTOInfo;
8656 Expected<std::pair<bool, bool>> Flags =
8657 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8658 if (!Flags)
8659 return Flags.takeError();
8660 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8661 LTOInfo.IsThinLTO = false;
8662 LTOInfo.HasSummary = true;
8663 return LTOInfo;
8666 // Ignore other sub-blocks.
8667 if (Error Err = Stream.SkipBlock())
8668 return std::move(Err);
8669 continue;
8671 case BitstreamEntry::Record:
8672 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8673 continue;
8674 else
8675 return StreamFailed.takeError();
8680 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8681 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8682 if (!MsOrErr)
8683 return MsOrErr.takeError();
8685 if (MsOrErr->size() != 1)
8686 return error("Expected a single module");
8688 return (*MsOrErr)[0];
8691 Expected<std::unique_ptr<Module>>
8692 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8693 bool ShouldLazyLoadMetadata, bool IsImporting,
8694 ParserCallbacks Callbacks) {
8695 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8696 if (!BM)
8697 return BM.takeError();
8699 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8700 Callbacks);
8703 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8704 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8705 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8706 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8707 IsImporting, Callbacks);
8708 if (MOrErr)
8709 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8710 return MOrErr;
8713 Expected<std::unique_ptr<Module>>
8714 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8715 return getModuleImpl(Context, true, false, false, Callbacks);
8716 // TODO: Restore the use-lists to the in-memory state when the bitcode was
8717 // written. We must defer until the Module has been fully materialized.
8720 Expected<std::unique_ptr<Module>>
8721 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8722 ParserCallbacks Callbacks) {
8723 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8724 if (!BM)
8725 return BM.takeError();
8727 return BM->parseModule(Context, Callbacks);
8730 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8731 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8732 if (!StreamOrErr)
8733 return StreamOrErr.takeError();
8735 return readTriple(*StreamOrErr);
8738 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8739 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8740 if (!StreamOrErr)
8741 return StreamOrErr.takeError();
8743 return hasObjCCategory(*StreamOrErr);
8746 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8747 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8748 if (!StreamOrErr)
8749 return StreamOrErr.takeError();
8751 return readIdentificationCode(*StreamOrErr);
8754 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8755 ModuleSummaryIndex &CombinedIndex) {
8756 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8757 if (!BM)
8758 return BM.takeError();
8760 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8763 Expected<std::unique_ptr<ModuleSummaryIndex>>
8764 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8765 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8766 if (!BM)
8767 return BM.takeError();
8769 return BM->getSummary();
8772 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8773 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8774 if (!BM)
8775 return BM.takeError();
8777 return BM->getLTOInfo();
8780 Expected<std::unique_ptr<ModuleSummaryIndex>>
8781 llvm::getModuleSummaryIndexForFile(StringRef Path,
8782 bool IgnoreEmptyThinLTOIndexFile) {
8783 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8784 MemoryBuffer::getFileOrSTDIN(Path);
8785 if (!FileOrErr)
8786 return errorCodeToError(FileOrErr.getError());
8787 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8788 return nullptr;
8789 return getModuleSummaryIndex(**FileOrErr);