[MLIR] Prevent invalid IR from being passed outside of RemoveDeadValues (#121079)
[llvm-project.git] / llvm / lib / Bitcode / Writer / BitcodeWriter.cpp
blob31c96400dd0fe51ca1c97783f9f181d5bbdce9ef
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRangeList.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/MC/TargetRegistry.h"
62 #include "llvm/Object/IRSymtab.h"
63 #include "llvm/ProfileData/MemProf.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/SHA1.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/TargetParser/Triple.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <memory>
81 #include <optional>
82 #include <string>
83 #include <utility>
84 #include <vector>
86 using namespace llvm;
87 using namespace llvm::memprof;
89 static cl::opt<unsigned>
90 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
91 cl::desc("Number of metadatas above which we emit an index "
92 "to enable lazy-loading"));
93 static cl::opt<uint32_t> FlushThreshold(
94 "bitcode-flush-threshold", cl::Hidden, cl::init(512),
95 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
97 static cl::opt<bool> WriteRelBFToSummary(
98 "write-relbf-to-summary", cl::Hidden, cl::init(false),
99 cl::desc("Write relative block frequency to function summary "));
101 namespace llvm {
102 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
105 extern bool WriteNewDbgInfoFormatToBitcode;
106 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
108 namespace {
110 /// These are manifest constants used by the bitcode writer. They do not need to
111 /// be kept in sync with the reader, but need to be consistent within this file.
112 enum {
113 // VALUE_SYMTAB_BLOCK abbrev id's.
114 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115 VST_ENTRY_7_ABBREV,
116 VST_ENTRY_6_ABBREV,
117 VST_BBENTRY_6_ABBREV,
119 // CONSTANTS_BLOCK abbrev id's.
120 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
121 CONSTANTS_INTEGER_ABBREV,
122 CONSTANTS_CE_CAST_Abbrev,
123 CONSTANTS_NULL_Abbrev,
125 // FUNCTION_BLOCK abbrev id's.
126 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
127 FUNCTION_INST_UNOP_ABBREV,
128 FUNCTION_INST_UNOP_FLAGS_ABBREV,
129 FUNCTION_INST_BINOP_ABBREV,
130 FUNCTION_INST_BINOP_FLAGS_ABBREV,
131 FUNCTION_INST_CAST_ABBREV,
132 FUNCTION_INST_CAST_FLAGS_ABBREV,
133 FUNCTION_INST_RET_VOID_ABBREV,
134 FUNCTION_INST_RET_VAL_ABBREV,
135 FUNCTION_INST_UNREACHABLE_ABBREV,
136 FUNCTION_INST_GEP_ABBREV,
137 FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
140 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
141 /// file type.
142 class BitcodeWriterBase {
143 protected:
144 /// The stream created and owned by the client.
145 BitstreamWriter &Stream;
147 StringTableBuilder &StrtabBuilder;
149 public:
150 /// Constructs a BitcodeWriterBase object that writes to the provided
151 /// \p Stream.
152 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
153 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
155 protected:
156 void writeModuleVersion();
159 void BitcodeWriterBase::writeModuleVersion() {
160 // VERSION: [version#]
161 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
164 /// Base class to manage the module bitcode writing, currently subclassed for
165 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
166 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
167 protected:
168 /// The Module to write to bitcode.
169 const Module &M;
171 /// Enumerates ids for all values in the module.
172 ValueEnumerator VE;
174 /// Optional per-module index to write for ThinLTO.
175 const ModuleSummaryIndex *Index;
177 /// Map that holds the correspondence between GUIDs in the summary index,
178 /// that came from indirect call profiles, and a value id generated by this
179 /// class to use in the VST and summary block records.
180 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
182 /// Tracks the last value id recorded in the GUIDToValueMap.
183 unsigned GlobalValueId;
185 /// Saves the offset of the VSTOffset record that must eventually be
186 /// backpatched with the offset of the actual VST.
187 uint64_t VSTOffsetPlaceholder = 0;
189 public:
190 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
191 /// writing to the provided \p Buffer.
192 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
193 BitstreamWriter &Stream,
194 bool ShouldPreserveUseListOrder,
195 const ModuleSummaryIndex *Index)
196 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
197 VE(M, ShouldPreserveUseListOrder), Index(Index) {
198 // Assign ValueIds to any callee values in the index that came from
199 // indirect call profiles and were recorded as a GUID not a Value*
200 // (which would have been assigned an ID by the ValueEnumerator).
201 // The starting ValueId is just after the number of values in the
202 // ValueEnumerator, so that they can be emitted in the VST.
203 GlobalValueId = VE.getValues().size();
204 if (!Index)
205 return;
206 for (const auto &GUIDSummaryLists : *Index)
207 // Examine all summaries for this GUID.
208 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
209 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) {
210 // For each call in the function summary, see if the call
211 // is to a GUID (which means it is for an indirect call,
212 // otherwise we would have a Value for it). If so, synthesize
213 // a value id.
214 for (auto &CallEdge : FS->calls())
215 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
216 assignValueId(CallEdge.first.getGUID());
218 // For each referenced variables in the function summary, see if the
219 // variable is represented by a GUID (as opposed to a symbol to
220 // declarations or definitions in the module). If so, synthesize a
221 // value id.
222 for (auto &RefEdge : FS->refs())
223 if (!RefEdge.haveGVs() || !RefEdge.getValue())
224 assignValueId(RefEdge.getGUID());
228 protected:
229 void writePerModuleGlobalValueSummary();
231 private:
232 void writePerModuleFunctionSummaryRecord(
233 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
234 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
235 unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId,
236 const Function &F, DenseMap<CallStackId, LinearCallStackId> &CallStackPos,
237 CallStackId &CallStackCount);
238 void writeModuleLevelReferences(const GlobalVariable &V,
239 SmallVector<uint64_t, 64> &NameVals,
240 unsigned FSModRefsAbbrev,
241 unsigned FSModVTableRefsAbbrev);
243 void assignValueId(GlobalValue::GUID ValGUID) {
244 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
247 unsigned getValueId(GlobalValue::GUID ValGUID) {
248 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
249 // Expect that any GUID value had a value Id assigned by an
250 // earlier call to assignValueId.
251 assert(VMI != GUIDToValueIdMap.end() &&
252 "GUID does not have assigned value Id");
253 return VMI->second;
256 // Helper to get the valueId for the type of value recorded in VI.
257 unsigned getValueId(ValueInfo VI) {
258 if (!VI.haveGVs() || !VI.getValue())
259 return getValueId(VI.getGUID());
260 return VE.getValueID(VI.getValue());
263 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
266 /// Class to manage the bitcode writing for a module.
267 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
268 /// True if a module hash record should be written.
269 bool GenerateHash;
271 /// If non-null, when GenerateHash is true, the resulting hash is written
272 /// into ModHash.
273 ModuleHash *ModHash;
275 SHA1 Hasher;
277 /// The start bit of the identification block.
278 uint64_t BitcodeStartBit;
280 public:
281 /// Constructs a ModuleBitcodeWriter object for the given Module,
282 /// writing to the provided \p Buffer.
283 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
284 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
285 const ModuleSummaryIndex *Index, bool GenerateHash,
286 ModuleHash *ModHash = nullptr)
287 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
288 ShouldPreserveUseListOrder, Index),
289 GenerateHash(GenerateHash), ModHash(ModHash),
290 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
292 /// Emit the current module to the bitstream.
293 void write();
295 private:
296 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
298 size_t addToStrtab(StringRef Str);
300 void writeAttributeGroupTable();
301 void writeAttributeTable();
302 void writeTypeTable();
303 void writeComdats();
304 void writeValueSymbolTableForwardDecl();
305 void writeModuleInfo();
306 void writeValueAsMetadata(const ValueAsMetadata *MD,
307 SmallVectorImpl<uint64_t> &Record);
308 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 unsigned createDILocationAbbrev();
311 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
312 unsigned &Abbrev);
313 unsigned createGenericDINodeAbbrev();
314 void writeGenericDINode(const GenericDINode *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
316 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
317 unsigned Abbrev);
318 void writeDIGenericSubrange(const DIGenericSubrange *N,
319 SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDIEnumerator(const DIEnumerator *N,
322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
324 unsigned Abbrev);
325 void writeDIStringType(const DIStringType *N,
326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327 void writeDIDerivedType(const DIDerivedType *N,
328 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
329 void writeDICompositeType(const DICompositeType *N,
330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
331 void writeDISubroutineType(const DISubroutineType *N,
332 SmallVectorImpl<uint64_t> &Record,
333 unsigned Abbrev);
334 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
335 unsigned Abbrev);
336 void writeDICompileUnit(const DICompileUnit *N,
337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338 void writeDISubprogram(const DISubprogram *N,
339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
340 void writeDILexicalBlock(const DILexicalBlock *N,
341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
343 SmallVectorImpl<uint64_t> &Record,
344 unsigned Abbrev);
345 void writeDICommonBlock(const DICommonBlock *N,
346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
348 unsigned Abbrev);
349 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
350 unsigned Abbrev);
351 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
352 unsigned Abbrev);
353 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
354 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
355 unsigned Abbrev);
356 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
357 unsigned Abbrev);
358 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
359 SmallVectorImpl<uint64_t> &Record,
360 unsigned Abbrev);
361 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
362 SmallVectorImpl<uint64_t> &Record,
363 unsigned Abbrev);
364 void writeDIGlobalVariable(const DIGlobalVariable *N,
365 SmallVectorImpl<uint64_t> &Record,
366 unsigned Abbrev);
367 void writeDILocalVariable(const DILocalVariable *N,
368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
369 void writeDILabel(const DILabel *N,
370 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
371 void writeDIExpression(const DIExpression *N,
372 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
373 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
374 SmallVectorImpl<uint64_t> &Record,
375 unsigned Abbrev);
376 void writeDIObjCProperty(const DIObjCProperty *N,
377 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
378 void writeDIImportedEntity(const DIImportedEntity *N,
379 SmallVectorImpl<uint64_t> &Record,
380 unsigned Abbrev);
381 unsigned createNamedMetadataAbbrev();
382 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
383 unsigned createMetadataStringsAbbrev();
384 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
385 SmallVectorImpl<uint64_t> &Record);
386 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
387 SmallVectorImpl<uint64_t> &Record,
388 std::vector<unsigned> *MDAbbrevs = nullptr,
389 std::vector<uint64_t> *IndexPos = nullptr);
390 void writeModuleMetadata();
391 void writeFunctionMetadata(const Function &F);
392 void writeFunctionMetadataAttachment(const Function &F);
393 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
394 const GlobalObject &GO);
395 void writeModuleMetadataKinds();
396 void writeOperandBundleTags();
397 void writeSyncScopeNames();
398 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
399 void writeModuleConstants();
400 bool pushValueAndType(const Value *V, unsigned InstID,
401 SmallVectorImpl<unsigned> &Vals);
402 bool pushValueOrMetadata(const Value *V, unsigned InstID,
403 SmallVectorImpl<unsigned> &Vals);
404 void writeOperandBundles(const CallBase &CB, unsigned InstID);
405 void pushValue(const Value *V, unsigned InstID,
406 SmallVectorImpl<unsigned> &Vals);
407 void pushValueSigned(const Value *V, unsigned InstID,
408 SmallVectorImpl<uint64_t> &Vals);
409 void writeInstruction(const Instruction &I, unsigned InstID,
410 SmallVectorImpl<unsigned> &Vals);
411 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
412 void writeGlobalValueSymbolTable(
413 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
414 void writeUseList(UseListOrder &&Order);
415 void writeUseListBlock(const Function *F);
416 void
417 writeFunction(const Function &F,
418 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
419 void writeBlockInfo();
420 void writeModuleHash(StringRef View);
422 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
423 return unsigned(SSID);
426 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
429 /// Class to manage the bitcode writing for a combined index.
430 class IndexBitcodeWriter : public BitcodeWriterBase {
431 /// The combined index to write to bitcode.
432 const ModuleSummaryIndex &Index;
434 /// When writing combined summaries, provides the set of global value
435 /// summaries for which the value (function, function alias, etc) should be
436 /// imported as a declaration.
437 const GVSummaryPtrSet *DecSummaries = nullptr;
439 /// When writing a subset of the index for distributed backends, client
440 /// provides a map of modules to the corresponding GUIDs/summaries to write.
441 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex;
443 /// Map that holds the correspondence between the GUID used in the combined
444 /// index and a value id generated by this class to use in references.
445 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
447 // The stack ids used by this index, which will be a subset of those in
448 // the full index in the case of distributed indexes.
449 std::vector<uint64_t> StackIds;
451 // Keep a map of the stack id indices used by records being written for this
452 // index to the index of the corresponding stack id in the above StackIds
453 // vector. Ensures we write each referenced stack id once.
454 DenseMap<unsigned, unsigned> StackIdIndicesToIndex;
456 /// Tracks the last value id recorded in the GUIDToValueMap.
457 unsigned GlobalValueId = 0;
459 /// Tracks the assignment of module paths in the module path string table to
460 /// an id assigned for use in summary references to the module path.
461 DenseMap<StringRef, uint64_t> ModuleIdMap;
463 public:
464 /// Constructs a IndexBitcodeWriter object for the given combined index,
465 /// writing to the provided \p Buffer. When writing a subset of the index
466 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
467 /// If provided, \p DecSummaries specifies the set of summaries for which
468 /// the corresponding functions or aliased functions should be imported as a
469 /// declaration (but not definition) for each module.
470 IndexBitcodeWriter(
471 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
472 const ModuleSummaryIndex &Index,
473 const GVSummaryPtrSet *DecSummaries = nullptr,
474 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr)
475 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
476 DecSummaries(DecSummaries),
477 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
479 // See if the StackIdIndex was already added to the StackId map and
480 // vector. If not, record it.
481 auto RecordStackIdReference = [&](unsigned StackIdIndex) {
482 // If the StackIdIndex is not yet in the map, the below insert ensures
483 // that it will point to the new StackIds vector entry we push to just
484 // below.
485 auto Inserted =
486 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()});
487 if (Inserted.second)
488 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex));
491 // Assign unique value ids to all summaries to be written, for use
492 // in writing out the call graph edges. Save the mapping from GUID
493 // to the new global value id to use when writing those edges, which
494 // are currently saved in the index in terms of GUID.
495 forEachSummary([&](GVInfo I, bool IsAliasee) {
496 GUIDToValueIdMap[I.first] = ++GlobalValueId;
497 // If this is invoked for an aliasee, we want to record the above mapping,
498 // but not the information needed for its summary entry (if the aliasee is
499 // to be imported, we will invoke this separately with IsAliasee=false).
500 if (IsAliasee)
501 return;
502 auto *FS = dyn_cast<FunctionSummary>(I.second);
503 if (!FS)
504 return;
505 // Record all stack id indices actually used in the summary entries being
506 // written, so that we can compact them in the case of distributed ThinLTO
507 // indexes.
508 for (auto &CI : FS->callsites()) {
509 // If the stack id list is empty, this callsite info was synthesized for
510 // a missing tail call frame. Ensure that the callee's GUID gets a value
511 // id. Normally we only generate these for defined summaries, which in
512 // the case of distributed ThinLTO is only the functions already defined
513 // in the module or that we want to import. We don't bother to include
514 // all the callee symbols as they aren't normally needed in the backend.
515 // However, for the synthesized callsite infos we do need the callee
516 // GUID in the backend so that we can correlate the identified callee
517 // with this callsite info (which for non-tail calls is done by the
518 // ordering of the callsite infos and verified via stack ids).
519 if (CI.StackIdIndices.empty()) {
520 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
521 continue;
523 for (auto Idx : CI.StackIdIndices)
524 RecordStackIdReference(Idx);
526 for (auto &AI : FS->allocs())
527 for (auto &MIB : AI.MIBs)
528 for (auto Idx : MIB.StackIdIndices)
529 RecordStackIdReference(Idx);
533 /// The below iterator returns the GUID and associated summary.
534 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
536 /// Calls the callback for each value GUID and summary to be written to
537 /// bitcode. This hides the details of whether they are being pulled from the
538 /// entire index or just those in a provided ModuleToSummariesForIndex map.
539 template<typename Functor>
540 void forEachSummary(Functor Callback) {
541 if (ModuleToSummariesForIndex) {
542 for (auto &M : *ModuleToSummariesForIndex)
543 for (auto &Summary : M.second) {
544 Callback(Summary, false);
545 // Ensure aliasee is handled, e.g. for assigning a valueId,
546 // even if we are not importing the aliasee directly (the
547 // imported alias will contain a copy of aliasee).
548 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
549 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
551 } else {
552 for (auto &Summaries : Index)
553 for (auto &Summary : Summaries.second.SummaryList)
554 Callback({Summaries.first, Summary.get()}, false);
558 /// Calls the callback for each entry in the modulePaths StringMap that
559 /// should be written to the module path string table. This hides the details
560 /// of whether they are being pulled from the entire index or just those in a
561 /// provided ModuleToSummariesForIndex map.
562 template <typename Functor> void forEachModule(Functor Callback) {
563 if (ModuleToSummariesForIndex) {
564 for (const auto &M : *ModuleToSummariesForIndex) {
565 const auto &MPI = Index.modulePaths().find(M.first);
566 if (MPI == Index.modulePaths().end()) {
567 // This should only happen if the bitcode file was empty, in which
568 // case we shouldn't be importing (the ModuleToSummariesForIndex
569 // would only include the module we are writing and index for).
570 assert(ModuleToSummariesForIndex->size() == 1);
571 continue;
573 Callback(*MPI);
575 } else {
576 // Since StringMap iteration order isn't guaranteed, order by path string
577 // first.
578 // FIXME: Make this a vector of StringMapEntry instead to avoid the later
579 // map lookup.
580 std::vector<StringRef> ModulePaths;
581 for (auto &[ModPath, _] : Index.modulePaths())
582 ModulePaths.push_back(ModPath);
583 llvm::sort(ModulePaths.begin(), ModulePaths.end());
584 for (auto &ModPath : ModulePaths)
585 Callback(*Index.modulePaths().find(ModPath));
589 /// Main entry point for writing a combined index to bitcode.
590 void write();
592 private:
593 void writeModStrings();
594 void writeCombinedGlobalValueSummary();
596 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
597 auto VMI = GUIDToValueIdMap.find(ValGUID);
598 if (VMI == GUIDToValueIdMap.end())
599 return std::nullopt;
600 return VMI->second;
603 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
606 } // end anonymous namespace
608 static unsigned getEncodedCastOpcode(unsigned Opcode) {
609 switch (Opcode) {
610 default: llvm_unreachable("Unknown cast instruction!");
611 case Instruction::Trunc : return bitc::CAST_TRUNC;
612 case Instruction::ZExt : return bitc::CAST_ZEXT;
613 case Instruction::SExt : return bitc::CAST_SEXT;
614 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
615 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
616 case Instruction::UIToFP : return bitc::CAST_UITOFP;
617 case Instruction::SIToFP : return bitc::CAST_SITOFP;
618 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
619 case Instruction::FPExt : return bitc::CAST_FPEXT;
620 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
621 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
622 case Instruction::BitCast : return bitc::CAST_BITCAST;
623 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
627 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
628 switch (Opcode) {
629 default: llvm_unreachable("Unknown binary instruction!");
630 case Instruction::FNeg: return bitc::UNOP_FNEG;
634 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
635 switch (Opcode) {
636 default: llvm_unreachable("Unknown binary instruction!");
637 case Instruction::Add:
638 case Instruction::FAdd: return bitc::BINOP_ADD;
639 case Instruction::Sub:
640 case Instruction::FSub: return bitc::BINOP_SUB;
641 case Instruction::Mul:
642 case Instruction::FMul: return bitc::BINOP_MUL;
643 case Instruction::UDiv: return bitc::BINOP_UDIV;
644 case Instruction::FDiv:
645 case Instruction::SDiv: return bitc::BINOP_SDIV;
646 case Instruction::URem: return bitc::BINOP_UREM;
647 case Instruction::FRem:
648 case Instruction::SRem: return bitc::BINOP_SREM;
649 case Instruction::Shl: return bitc::BINOP_SHL;
650 case Instruction::LShr: return bitc::BINOP_LSHR;
651 case Instruction::AShr: return bitc::BINOP_ASHR;
652 case Instruction::And: return bitc::BINOP_AND;
653 case Instruction::Or: return bitc::BINOP_OR;
654 case Instruction::Xor: return bitc::BINOP_XOR;
658 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
659 switch (Op) {
660 default: llvm_unreachable("Unknown RMW operation!");
661 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
662 case AtomicRMWInst::Add: return bitc::RMW_ADD;
663 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
664 case AtomicRMWInst::And: return bitc::RMW_AND;
665 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
666 case AtomicRMWInst::Or: return bitc::RMW_OR;
667 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
668 case AtomicRMWInst::Max: return bitc::RMW_MAX;
669 case AtomicRMWInst::Min: return bitc::RMW_MIN;
670 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
671 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
672 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
673 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
674 case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
675 case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
676 case AtomicRMWInst::UIncWrap:
677 return bitc::RMW_UINC_WRAP;
678 case AtomicRMWInst::UDecWrap:
679 return bitc::RMW_UDEC_WRAP;
680 case AtomicRMWInst::USubCond:
681 return bitc::RMW_USUB_COND;
682 case AtomicRMWInst::USubSat:
683 return bitc::RMW_USUB_SAT;
687 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
688 switch (Ordering) {
689 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
690 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
691 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
692 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
693 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
694 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
695 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
697 llvm_unreachable("Invalid ordering");
700 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
701 StringRef Str, unsigned AbbrevToUse) {
702 SmallVector<unsigned, 64> Vals;
704 // Code: [strchar x N]
705 for (char C : Str) {
706 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
707 AbbrevToUse = 0;
708 Vals.push_back(C);
711 // Emit the finished record.
712 Stream.EmitRecord(Code, Vals, AbbrevToUse);
715 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
716 switch (Kind) {
717 case Attribute::Alignment:
718 return bitc::ATTR_KIND_ALIGNMENT;
719 case Attribute::AllocAlign:
720 return bitc::ATTR_KIND_ALLOC_ALIGN;
721 case Attribute::AllocSize:
722 return bitc::ATTR_KIND_ALLOC_SIZE;
723 case Attribute::AlwaysInline:
724 return bitc::ATTR_KIND_ALWAYS_INLINE;
725 case Attribute::Builtin:
726 return bitc::ATTR_KIND_BUILTIN;
727 case Attribute::ByVal:
728 return bitc::ATTR_KIND_BY_VAL;
729 case Attribute::Convergent:
730 return bitc::ATTR_KIND_CONVERGENT;
731 case Attribute::InAlloca:
732 return bitc::ATTR_KIND_IN_ALLOCA;
733 case Attribute::Cold:
734 return bitc::ATTR_KIND_COLD;
735 case Attribute::DisableSanitizerInstrumentation:
736 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
737 case Attribute::FnRetThunkExtern:
738 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
739 case Attribute::Hot:
740 return bitc::ATTR_KIND_HOT;
741 case Attribute::ElementType:
742 return bitc::ATTR_KIND_ELEMENTTYPE;
743 case Attribute::HybridPatchable:
744 return bitc::ATTR_KIND_HYBRID_PATCHABLE;
745 case Attribute::InlineHint:
746 return bitc::ATTR_KIND_INLINE_HINT;
747 case Attribute::InReg:
748 return bitc::ATTR_KIND_IN_REG;
749 case Attribute::JumpTable:
750 return bitc::ATTR_KIND_JUMP_TABLE;
751 case Attribute::MinSize:
752 return bitc::ATTR_KIND_MIN_SIZE;
753 case Attribute::AllocatedPointer:
754 return bitc::ATTR_KIND_ALLOCATED_POINTER;
755 case Attribute::AllocKind:
756 return bitc::ATTR_KIND_ALLOC_KIND;
757 case Attribute::Memory:
758 return bitc::ATTR_KIND_MEMORY;
759 case Attribute::NoFPClass:
760 return bitc::ATTR_KIND_NOFPCLASS;
761 case Attribute::Naked:
762 return bitc::ATTR_KIND_NAKED;
763 case Attribute::Nest:
764 return bitc::ATTR_KIND_NEST;
765 case Attribute::NoAlias:
766 return bitc::ATTR_KIND_NO_ALIAS;
767 case Attribute::NoBuiltin:
768 return bitc::ATTR_KIND_NO_BUILTIN;
769 case Attribute::NoCallback:
770 return bitc::ATTR_KIND_NO_CALLBACK;
771 case Attribute::NoCapture:
772 return bitc::ATTR_KIND_NO_CAPTURE;
773 case Attribute::NoDivergenceSource:
774 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE;
775 case Attribute::NoDuplicate:
776 return bitc::ATTR_KIND_NO_DUPLICATE;
777 case Attribute::NoFree:
778 return bitc::ATTR_KIND_NOFREE;
779 case Attribute::NoImplicitFloat:
780 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
781 case Attribute::NoInline:
782 return bitc::ATTR_KIND_NO_INLINE;
783 case Attribute::NoRecurse:
784 return bitc::ATTR_KIND_NO_RECURSE;
785 case Attribute::NoMerge:
786 return bitc::ATTR_KIND_NO_MERGE;
787 case Attribute::NonLazyBind:
788 return bitc::ATTR_KIND_NON_LAZY_BIND;
789 case Attribute::NonNull:
790 return bitc::ATTR_KIND_NON_NULL;
791 case Attribute::Dereferenceable:
792 return bitc::ATTR_KIND_DEREFERENCEABLE;
793 case Attribute::DereferenceableOrNull:
794 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
795 case Attribute::NoRedZone:
796 return bitc::ATTR_KIND_NO_RED_ZONE;
797 case Attribute::NoReturn:
798 return bitc::ATTR_KIND_NO_RETURN;
799 case Attribute::NoSync:
800 return bitc::ATTR_KIND_NOSYNC;
801 case Attribute::NoCfCheck:
802 return bitc::ATTR_KIND_NOCF_CHECK;
803 case Attribute::NoProfile:
804 return bitc::ATTR_KIND_NO_PROFILE;
805 case Attribute::SkipProfile:
806 return bitc::ATTR_KIND_SKIP_PROFILE;
807 case Attribute::NoUnwind:
808 return bitc::ATTR_KIND_NO_UNWIND;
809 case Attribute::NoSanitizeBounds:
810 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
811 case Attribute::NoSanitizeCoverage:
812 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
813 case Attribute::NullPointerIsValid:
814 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
815 case Attribute::OptimizeForDebugging:
816 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
817 case Attribute::OptForFuzzing:
818 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
819 case Attribute::OptimizeForSize:
820 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
821 case Attribute::OptimizeNone:
822 return bitc::ATTR_KIND_OPTIMIZE_NONE;
823 case Attribute::ReadNone:
824 return bitc::ATTR_KIND_READ_NONE;
825 case Attribute::ReadOnly:
826 return bitc::ATTR_KIND_READ_ONLY;
827 case Attribute::Returned:
828 return bitc::ATTR_KIND_RETURNED;
829 case Attribute::ReturnsTwice:
830 return bitc::ATTR_KIND_RETURNS_TWICE;
831 case Attribute::SExt:
832 return bitc::ATTR_KIND_S_EXT;
833 case Attribute::Speculatable:
834 return bitc::ATTR_KIND_SPECULATABLE;
835 case Attribute::StackAlignment:
836 return bitc::ATTR_KIND_STACK_ALIGNMENT;
837 case Attribute::StackProtect:
838 return bitc::ATTR_KIND_STACK_PROTECT;
839 case Attribute::StackProtectReq:
840 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
841 case Attribute::StackProtectStrong:
842 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
843 case Attribute::SafeStack:
844 return bitc::ATTR_KIND_SAFESTACK;
845 case Attribute::ShadowCallStack:
846 return bitc::ATTR_KIND_SHADOWCALLSTACK;
847 case Attribute::StrictFP:
848 return bitc::ATTR_KIND_STRICT_FP;
849 case Attribute::StructRet:
850 return bitc::ATTR_KIND_STRUCT_RET;
851 case Attribute::SanitizeAddress:
852 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
853 case Attribute::SanitizeHWAddress:
854 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
855 case Attribute::SanitizeThread:
856 return bitc::ATTR_KIND_SANITIZE_THREAD;
857 case Attribute::SanitizeType:
858 return bitc::ATTR_KIND_SANITIZE_TYPE;
859 case Attribute::SanitizeMemory:
860 return bitc::ATTR_KIND_SANITIZE_MEMORY;
861 case Attribute::SanitizeNumericalStability:
862 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY;
863 case Attribute::SanitizeRealtime:
864 return bitc::ATTR_KIND_SANITIZE_REALTIME;
865 case Attribute::SanitizeRealtimeBlocking:
866 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING;
867 case Attribute::SpeculativeLoadHardening:
868 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
869 case Attribute::SwiftError:
870 return bitc::ATTR_KIND_SWIFT_ERROR;
871 case Attribute::SwiftSelf:
872 return bitc::ATTR_KIND_SWIFT_SELF;
873 case Attribute::SwiftAsync:
874 return bitc::ATTR_KIND_SWIFT_ASYNC;
875 case Attribute::UWTable:
876 return bitc::ATTR_KIND_UW_TABLE;
877 case Attribute::VScaleRange:
878 return bitc::ATTR_KIND_VSCALE_RANGE;
879 case Attribute::WillReturn:
880 return bitc::ATTR_KIND_WILLRETURN;
881 case Attribute::WriteOnly:
882 return bitc::ATTR_KIND_WRITEONLY;
883 case Attribute::ZExt:
884 return bitc::ATTR_KIND_Z_EXT;
885 case Attribute::ImmArg:
886 return bitc::ATTR_KIND_IMMARG;
887 case Attribute::SanitizeMemTag:
888 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
889 case Attribute::Preallocated:
890 return bitc::ATTR_KIND_PREALLOCATED;
891 case Attribute::NoUndef:
892 return bitc::ATTR_KIND_NOUNDEF;
893 case Attribute::ByRef:
894 return bitc::ATTR_KIND_BYREF;
895 case Attribute::MustProgress:
896 return bitc::ATTR_KIND_MUSTPROGRESS;
897 case Attribute::PresplitCoroutine:
898 return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
899 case Attribute::Writable:
900 return bitc::ATTR_KIND_WRITABLE;
901 case Attribute::CoroDestroyOnlyWhenComplete:
902 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
903 case Attribute::CoroElideSafe:
904 return bitc::ATTR_KIND_CORO_ELIDE_SAFE;
905 case Attribute::DeadOnUnwind:
906 return bitc::ATTR_KIND_DEAD_ON_UNWIND;
907 case Attribute::Range:
908 return bitc::ATTR_KIND_RANGE;
909 case Attribute::Initializes:
910 return bitc::ATTR_KIND_INITIALIZES;
911 case Attribute::NoExt:
912 return bitc::ATTR_KIND_NO_EXT;
913 case Attribute::Captures:
914 return bitc::ATTR_KIND_CAPTURES;
915 case Attribute::EndAttrKinds:
916 llvm_unreachable("Can not encode end-attribute kinds marker.");
917 case Attribute::None:
918 llvm_unreachable("Can not encode none-attribute.");
919 case Attribute::EmptyKey:
920 case Attribute::TombstoneKey:
921 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
924 llvm_unreachable("Trying to encode unknown attribute");
927 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
928 if ((int64_t)V >= 0)
929 Vals.push_back(V << 1);
930 else
931 Vals.push_back((-V << 1) | 1);
934 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
935 // We have an arbitrary precision integer value to write whose
936 // bit width is > 64. However, in canonical unsigned integer
937 // format it is likely that the high bits are going to be zero.
938 // So, we only write the number of active words.
939 unsigned NumWords = A.getActiveWords();
940 const uint64_t *RawData = A.getRawData();
941 for (unsigned i = 0; i < NumWords; i++)
942 emitSignedInt64(Vals, RawData[i]);
945 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
946 const ConstantRange &CR, bool EmitBitWidth) {
947 unsigned BitWidth = CR.getBitWidth();
948 if (EmitBitWidth)
949 Record.push_back(BitWidth);
950 if (BitWidth > 64) {
951 Record.push_back(CR.getLower().getActiveWords() |
952 (uint64_t(CR.getUpper().getActiveWords()) << 32));
953 emitWideAPInt(Record, CR.getLower());
954 emitWideAPInt(Record, CR.getUpper());
955 } else {
956 emitSignedInt64(Record, CR.getLower().getSExtValue());
957 emitSignedInt64(Record, CR.getUpper().getSExtValue());
961 void ModuleBitcodeWriter::writeAttributeGroupTable() {
962 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
963 VE.getAttributeGroups();
964 if (AttrGrps.empty()) return;
966 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
968 SmallVector<uint64_t, 64> Record;
969 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
970 unsigned AttrListIndex = Pair.first;
971 AttributeSet AS = Pair.second;
972 Record.push_back(VE.getAttributeGroupID(Pair));
973 Record.push_back(AttrListIndex);
975 for (Attribute Attr : AS) {
976 if (Attr.isEnumAttribute()) {
977 Record.push_back(0);
978 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
979 } else if (Attr.isIntAttribute()) {
980 Record.push_back(1);
981 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
982 Record.push_back(Attr.getValueAsInt());
983 } else if (Attr.isStringAttribute()) {
984 StringRef Kind = Attr.getKindAsString();
985 StringRef Val = Attr.getValueAsString();
987 Record.push_back(Val.empty() ? 3 : 4);
988 Record.append(Kind.begin(), Kind.end());
989 Record.push_back(0);
990 if (!Val.empty()) {
991 Record.append(Val.begin(), Val.end());
992 Record.push_back(0);
994 } else if (Attr.isTypeAttribute()) {
995 Type *Ty = Attr.getValueAsType();
996 Record.push_back(Ty ? 6 : 5);
997 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
998 if (Ty)
999 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
1000 } else if (Attr.isConstantRangeAttribute()) {
1001 Record.push_back(7);
1002 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
1003 emitConstantRange(Record, Attr.getValueAsConstantRange(),
1004 /*EmitBitWidth=*/true);
1005 } else {
1006 assert(Attr.isConstantRangeListAttribute());
1007 Record.push_back(8);
1008 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
1009 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList();
1010 Record.push_back(Val.size());
1011 Record.push_back(Val[0].getBitWidth());
1012 for (auto &CR : Val)
1013 emitConstantRange(Record, CR, /*EmitBitWidth=*/false);
1017 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
1018 Record.clear();
1021 Stream.ExitBlock();
1024 void ModuleBitcodeWriter::writeAttributeTable() {
1025 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
1026 if (Attrs.empty()) return;
1028 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
1030 SmallVector<uint64_t, 64> Record;
1031 for (const AttributeList &AL : Attrs) {
1032 for (unsigned i : AL.indexes()) {
1033 AttributeSet AS = AL.getAttributes(i);
1034 if (AS.hasAttributes())
1035 Record.push_back(VE.getAttributeGroupID({i, AS}));
1038 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
1039 Record.clear();
1042 Stream.ExitBlock();
1045 /// WriteTypeTable - Write out the type table for a module.
1046 void ModuleBitcodeWriter::writeTypeTable() {
1047 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
1049 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
1050 SmallVector<uint64_t, 64> TypeVals;
1052 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
1054 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1055 auto Abbv = std::make_shared<BitCodeAbbrev>();
1056 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
1057 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1058 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1060 // Abbrev for TYPE_CODE_FUNCTION.
1061 Abbv = std::make_shared<BitCodeAbbrev>();
1062 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1066 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1068 // Abbrev for TYPE_CODE_STRUCT_ANON.
1069 Abbv = std::make_shared<BitCodeAbbrev>();
1070 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1074 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1076 // Abbrev for TYPE_CODE_STRUCT_NAME.
1077 Abbv = std::make_shared<BitCodeAbbrev>();
1078 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1081 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1083 // Abbrev for TYPE_CODE_STRUCT_NAMED.
1084 Abbv = std::make_shared<BitCodeAbbrev>();
1085 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1089 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1091 // Abbrev for TYPE_CODE_ARRAY.
1092 Abbv = std::make_shared<BitCodeAbbrev>();
1093 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1096 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1098 // Emit an entry count so the reader can reserve space.
1099 TypeVals.push_back(TypeList.size());
1100 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1101 TypeVals.clear();
1103 // Loop over all of the types, emitting each in turn.
1104 for (Type *T : TypeList) {
1105 int AbbrevToUse = 0;
1106 unsigned Code = 0;
1108 switch (T->getTypeID()) {
1109 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
1110 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
1111 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
1112 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
1113 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
1114 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
1115 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
1116 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1117 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
1118 case Type::MetadataTyID:
1119 Code = bitc::TYPE_CODE_METADATA;
1120 break;
1121 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
1122 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
1123 case Type::IntegerTyID:
1124 // INTEGER: [width]
1125 Code = bitc::TYPE_CODE_INTEGER;
1126 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1127 break;
1128 case Type::PointerTyID: {
1129 PointerType *PTy = cast<PointerType>(T);
1130 unsigned AddressSpace = PTy->getAddressSpace();
1131 // OPAQUE_POINTER: [address space]
1132 Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1133 TypeVals.push_back(AddressSpace);
1134 if (AddressSpace == 0)
1135 AbbrevToUse = OpaquePtrAbbrev;
1136 break;
1138 case Type::FunctionTyID: {
1139 FunctionType *FT = cast<FunctionType>(T);
1140 // FUNCTION: [isvararg, retty, paramty x N]
1141 Code = bitc::TYPE_CODE_FUNCTION;
1142 TypeVals.push_back(FT->isVarArg());
1143 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1144 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1145 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1146 AbbrevToUse = FunctionAbbrev;
1147 break;
1149 case Type::StructTyID: {
1150 StructType *ST = cast<StructType>(T);
1151 // STRUCT: [ispacked, eltty x N]
1152 TypeVals.push_back(ST->isPacked());
1153 // Output all of the element types.
1154 for (Type *ET : ST->elements())
1155 TypeVals.push_back(VE.getTypeID(ET));
1157 if (ST->isLiteral()) {
1158 Code = bitc::TYPE_CODE_STRUCT_ANON;
1159 AbbrevToUse = StructAnonAbbrev;
1160 } else {
1161 if (ST->isOpaque()) {
1162 Code = bitc::TYPE_CODE_OPAQUE;
1163 } else {
1164 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1165 AbbrevToUse = StructNamedAbbrev;
1168 // Emit the name if it is present.
1169 if (!ST->getName().empty())
1170 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1171 StructNameAbbrev);
1173 break;
1175 case Type::ArrayTyID: {
1176 ArrayType *AT = cast<ArrayType>(T);
1177 // ARRAY: [numelts, eltty]
1178 Code = bitc::TYPE_CODE_ARRAY;
1179 TypeVals.push_back(AT->getNumElements());
1180 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1181 AbbrevToUse = ArrayAbbrev;
1182 break;
1184 case Type::FixedVectorTyID:
1185 case Type::ScalableVectorTyID: {
1186 VectorType *VT = cast<VectorType>(T);
1187 // VECTOR [numelts, eltty] or
1188 // [numelts, eltty, scalable]
1189 Code = bitc::TYPE_CODE_VECTOR;
1190 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1191 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1192 if (isa<ScalableVectorType>(VT))
1193 TypeVals.push_back(true);
1194 break;
1196 case Type::TargetExtTyID: {
1197 TargetExtType *TET = cast<TargetExtType>(T);
1198 Code = bitc::TYPE_CODE_TARGET_TYPE;
1199 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1200 StructNameAbbrev);
1201 TypeVals.push_back(TET->getNumTypeParameters());
1202 for (Type *InnerTy : TET->type_params())
1203 TypeVals.push_back(VE.getTypeID(InnerTy));
1204 for (unsigned IntParam : TET->int_params())
1205 TypeVals.push_back(IntParam);
1206 break;
1208 case Type::TypedPointerTyID:
1209 llvm_unreachable("Typed pointers cannot be added to IR modules");
1212 // Emit the finished record.
1213 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1214 TypeVals.clear();
1217 Stream.ExitBlock();
1220 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1221 switch (Linkage) {
1222 case GlobalValue::ExternalLinkage:
1223 return 0;
1224 case GlobalValue::WeakAnyLinkage:
1225 return 16;
1226 case GlobalValue::AppendingLinkage:
1227 return 2;
1228 case GlobalValue::InternalLinkage:
1229 return 3;
1230 case GlobalValue::LinkOnceAnyLinkage:
1231 return 18;
1232 case GlobalValue::ExternalWeakLinkage:
1233 return 7;
1234 case GlobalValue::CommonLinkage:
1235 return 8;
1236 case GlobalValue::PrivateLinkage:
1237 return 9;
1238 case GlobalValue::WeakODRLinkage:
1239 return 17;
1240 case GlobalValue::LinkOnceODRLinkage:
1241 return 19;
1242 case GlobalValue::AvailableExternallyLinkage:
1243 return 12;
1245 llvm_unreachable("Invalid linkage");
1248 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1249 return getEncodedLinkage(GV.getLinkage());
1252 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1253 uint64_t RawFlags = 0;
1254 RawFlags |= Flags.ReadNone;
1255 RawFlags |= (Flags.ReadOnly << 1);
1256 RawFlags |= (Flags.NoRecurse << 2);
1257 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1258 RawFlags |= (Flags.NoInline << 4);
1259 RawFlags |= (Flags.AlwaysInline << 5);
1260 RawFlags |= (Flags.NoUnwind << 6);
1261 RawFlags |= (Flags.MayThrow << 7);
1262 RawFlags |= (Flags.HasUnknownCall << 8);
1263 RawFlags |= (Flags.MustBeUnreachable << 9);
1264 return RawFlags;
1267 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1268 // in BitcodeReader.cpp.
1269 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,
1270 bool ImportAsDecl = false) {
1271 uint64_t RawFlags = 0;
1273 RawFlags |= Flags.NotEligibleToImport; // bool
1274 RawFlags |= (Flags.Live << 1);
1275 RawFlags |= (Flags.DSOLocal << 2);
1276 RawFlags |= (Flags.CanAutoHide << 3);
1278 // Linkage don't need to be remapped at that time for the summary. Any future
1279 // change to the getEncodedLinkage() function will need to be taken into
1280 // account here as well.
1281 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1283 RawFlags |= (Flags.Visibility << 8); // 2 bits
1285 unsigned ImportType = Flags.ImportType | ImportAsDecl;
1286 RawFlags |= (ImportType << 10); // 1 bit
1288 return RawFlags;
1291 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1292 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1293 (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1294 return RawFlags;
1297 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1298 uint64_t RawFlags = 0;
1300 RawFlags |= CI.Hotness; // 3 bits
1301 RawFlags |= (CI.HasTailCall << 3); // 1 bit
1303 return RawFlags;
1306 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1307 uint64_t RawFlags = 0;
1309 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1310 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1312 return RawFlags;
1315 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1316 switch (GV.getVisibility()) {
1317 case GlobalValue::DefaultVisibility: return 0;
1318 case GlobalValue::HiddenVisibility: return 1;
1319 case GlobalValue::ProtectedVisibility: return 2;
1321 llvm_unreachable("Invalid visibility");
1324 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1325 switch (GV.getDLLStorageClass()) {
1326 case GlobalValue::DefaultStorageClass: return 0;
1327 case GlobalValue::DLLImportStorageClass: return 1;
1328 case GlobalValue::DLLExportStorageClass: return 2;
1330 llvm_unreachable("Invalid DLL storage class");
1333 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1334 switch (GV.getThreadLocalMode()) {
1335 case GlobalVariable::NotThreadLocal: return 0;
1336 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1337 case GlobalVariable::LocalDynamicTLSModel: return 2;
1338 case GlobalVariable::InitialExecTLSModel: return 3;
1339 case GlobalVariable::LocalExecTLSModel: return 4;
1341 llvm_unreachable("Invalid TLS model");
1344 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1345 switch (C.getSelectionKind()) {
1346 case Comdat::Any:
1347 return bitc::COMDAT_SELECTION_KIND_ANY;
1348 case Comdat::ExactMatch:
1349 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1350 case Comdat::Largest:
1351 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1352 case Comdat::NoDeduplicate:
1353 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1354 case Comdat::SameSize:
1355 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1357 llvm_unreachable("Invalid selection kind");
1360 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1361 switch (GV.getUnnamedAddr()) {
1362 case GlobalValue::UnnamedAddr::None: return 0;
1363 case GlobalValue::UnnamedAddr::Local: return 2;
1364 case GlobalValue::UnnamedAddr::Global: return 1;
1366 llvm_unreachable("Invalid unnamed_addr");
1369 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1370 if (GenerateHash)
1371 Hasher.update(Str);
1372 return StrtabBuilder.add(Str);
1375 void ModuleBitcodeWriter::writeComdats() {
1376 SmallVector<unsigned, 64> Vals;
1377 for (const Comdat *C : VE.getComdats()) {
1378 // COMDAT: [strtab offset, strtab size, selection_kind]
1379 Vals.push_back(addToStrtab(C->getName()));
1380 Vals.push_back(C->getName().size());
1381 Vals.push_back(getEncodedComdatSelectionKind(*C));
1382 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1383 Vals.clear();
1387 /// Write a record that will eventually hold the word offset of the
1388 /// module-level VST. For now the offset is 0, which will be backpatched
1389 /// after the real VST is written. Saves the bit offset to backpatch.
1390 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1391 // Write a placeholder value in for the offset of the real VST,
1392 // which is written after the function blocks so that it can include
1393 // the offset of each function. The placeholder offset will be
1394 // updated when the real VST is written.
1395 auto Abbv = std::make_shared<BitCodeAbbrev>();
1396 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1397 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1398 // hold the real VST offset. Must use fixed instead of VBR as we don't
1399 // know how many VBR chunks to reserve ahead of time.
1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1401 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1403 // Emit the placeholder
1404 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1405 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1407 // Compute and save the bit offset to the placeholder, which will be
1408 // patched when the real VST is written. We can simply subtract the 32-bit
1409 // fixed size from the current bit number to get the location to backpatch.
1410 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1413 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1415 /// Determine the encoding to use for the given string name and length.
1416 static StringEncoding getStringEncoding(StringRef Str) {
1417 bool isChar6 = true;
1418 for (char C : Str) {
1419 if (isChar6)
1420 isChar6 = BitCodeAbbrevOp::isChar6(C);
1421 if ((unsigned char)C & 128)
1422 // don't bother scanning the rest.
1423 return SE_Fixed8;
1425 if (isChar6)
1426 return SE_Char6;
1427 return SE_Fixed7;
1430 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1431 "Sanitizer Metadata is too large for naive serialization.");
1432 static unsigned
1433 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1434 return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1435 (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1438 /// Emit top-level description of module, including target triple, inline asm,
1439 /// descriptors for global variables, and function prototype info.
1440 /// Returns the bit offset to backpatch with the location of the real VST.
1441 void ModuleBitcodeWriter::writeModuleInfo() {
1442 // Emit various pieces of data attached to a module.
1443 if (!M.getTargetTriple().empty())
1444 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1445 0 /*TODO*/);
1446 const std::string &DL = M.getDataLayoutStr();
1447 if (!DL.empty())
1448 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1449 if (!M.getModuleInlineAsm().empty())
1450 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1451 0 /*TODO*/);
1453 // Emit information about sections and GC, computing how many there are. Also
1454 // compute the maximum alignment value.
1455 std::map<std::string, unsigned> SectionMap;
1456 std::map<std::string, unsigned> GCMap;
1457 MaybeAlign MaxAlignment;
1458 unsigned MaxGlobalType = 0;
1459 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1460 if (A)
1461 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1463 for (const GlobalVariable &GV : M.globals()) {
1464 UpdateMaxAlignment(GV.getAlign());
1465 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1466 if (GV.hasSection()) {
1467 // Give section names unique ID's.
1468 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1469 if (!Entry) {
1470 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1471 0 /*TODO*/);
1472 Entry = SectionMap.size();
1476 for (const Function &F : M) {
1477 UpdateMaxAlignment(F.getAlign());
1478 if (F.hasSection()) {
1479 // Give section names unique ID's.
1480 unsigned &Entry = SectionMap[std::string(F.getSection())];
1481 if (!Entry) {
1482 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1483 0 /*TODO*/);
1484 Entry = SectionMap.size();
1487 if (F.hasGC()) {
1488 // Same for GC names.
1489 unsigned &Entry = GCMap[F.getGC()];
1490 if (!Entry) {
1491 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1492 0 /*TODO*/);
1493 Entry = GCMap.size();
1498 // Emit abbrev for globals, now that we know # sections and max alignment.
1499 unsigned SimpleGVarAbbrev = 0;
1500 if (!M.global_empty()) {
1501 // Add an abbrev for common globals with no visibility or thread localness.
1502 auto Abbv = std::make_shared<BitCodeAbbrev>();
1503 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1507 Log2_32_Ceil(MaxGlobalType+1)));
1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1509 //| explicitType << 1
1510 //| constant
1511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1513 if (!MaxAlignment) // Alignment.
1514 Abbv->Add(BitCodeAbbrevOp(0));
1515 else {
1516 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1518 Log2_32_Ceil(MaxEncAlignment+1)));
1520 if (SectionMap.empty()) // Section.
1521 Abbv->Add(BitCodeAbbrevOp(0));
1522 else
1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1524 Log2_32_Ceil(SectionMap.size()+1)));
1525 // Don't bother emitting vis + thread local.
1526 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1529 SmallVector<unsigned, 64> Vals;
1530 // Emit the module's source file name.
1532 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1533 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1534 if (Bits == SE_Char6)
1535 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1536 else if (Bits == SE_Fixed7)
1537 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1539 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1540 auto Abbv = std::make_shared<BitCodeAbbrev>();
1541 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1543 Abbv->Add(AbbrevOpToUse);
1544 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1546 for (const auto P : M.getSourceFileName())
1547 Vals.push_back((unsigned char)P);
1549 // Emit the finished record.
1550 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1551 Vals.clear();
1554 // Emit the global variable information.
1555 for (const GlobalVariable &GV : M.globals()) {
1556 unsigned AbbrevToUse = 0;
1558 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1559 // linkage, alignment, section, visibility, threadlocal,
1560 // unnamed_addr, externally_initialized, dllstorageclass,
1561 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1562 Vals.push_back(addToStrtab(GV.getName()));
1563 Vals.push_back(GV.getName().size());
1564 Vals.push_back(VE.getTypeID(GV.getValueType()));
1565 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1566 Vals.push_back(GV.isDeclaration() ? 0 :
1567 (VE.getValueID(GV.getInitializer()) + 1));
1568 Vals.push_back(getEncodedLinkage(GV));
1569 Vals.push_back(getEncodedAlign(GV.getAlign()));
1570 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1571 : 0);
1572 if (GV.isThreadLocal() ||
1573 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1574 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1575 GV.isExternallyInitialized() ||
1576 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1577 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1578 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1579 Vals.push_back(getEncodedVisibility(GV));
1580 Vals.push_back(getEncodedThreadLocalMode(GV));
1581 Vals.push_back(getEncodedUnnamedAddr(GV));
1582 Vals.push_back(GV.isExternallyInitialized());
1583 Vals.push_back(getEncodedDLLStorageClass(GV));
1584 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1586 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1587 Vals.push_back(VE.getAttributeListID(AL));
1589 Vals.push_back(GV.isDSOLocal());
1590 Vals.push_back(addToStrtab(GV.getPartition()));
1591 Vals.push_back(GV.getPartition().size());
1593 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1594 GV.getSanitizerMetadata())
1595 : 0));
1596 Vals.push_back(GV.getCodeModelRaw());
1597 } else {
1598 AbbrevToUse = SimpleGVarAbbrev;
1601 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1602 Vals.clear();
1605 // Emit the function proto information.
1606 for (const Function &F : M) {
1607 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1608 // linkage, paramattrs, alignment, section, visibility, gc,
1609 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1610 // prefixdata, personalityfn, DSO_Local, addrspace]
1611 Vals.push_back(addToStrtab(F.getName()));
1612 Vals.push_back(F.getName().size());
1613 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1614 Vals.push_back(F.getCallingConv());
1615 Vals.push_back(F.isDeclaration());
1616 Vals.push_back(getEncodedLinkage(F));
1617 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1618 Vals.push_back(getEncodedAlign(F.getAlign()));
1619 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1620 : 0);
1621 Vals.push_back(getEncodedVisibility(F));
1622 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1623 Vals.push_back(getEncodedUnnamedAddr(F));
1624 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1625 : 0);
1626 Vals.push_back(getEncodedDLLStorageClass(F));
1627 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1628 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1629 : 0);
1630 Vals.push_back(
1631 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1633 Vals.push_back(F.isDSOLocal());
1634 Vals.push_back(F.getAddressSpace());
1635 Vals.push_back(addToStrtab(F.getPartition()));
1636 Vals.push_back(F.getPartition().size());
1638 unsigned AbbrevToUse = 0;
1639 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1640 Vals.clear();
1643 // Emit the alias information.
1644 for (const GlobalAlias &A : M.aliases()) {
1645 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1646 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1647 // DSO_Local]
1648 Vals.push_back(addToStrtab(A.getName()));
1649 Vals.push_back(A.getName().size());
1650 Vals.push_back(VE.getTypeID(A.getValueType()));
1651 Vals.push_back(A.getType()->getAddressSpace());
1652 Vals.push_back(VE.getValueID(A.getAliasee()));
1653 Vals.push_back(getEncodedLinkage(A));
1654 Vals.push_back(getEncodedVisibility(A));
1655 Vals.push_back(getEncodedDLLStorageClass(A));
1656 Vals.push_back(getEncodedThreadLocalMode(A));
1657 Vals.push_back(getEncodedUnnamedAddr(A));
1658 Vals.push_back(A.isDSOLocal());
1659 Vals.push_back(addToStrtab(A.getPartition()));
1660 Vals.push_back(A.getPartition().size());
1662 unsigned AbbrevToUse = 0;
1663 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1664 Vals.clear();
1667 // Emit the ifunc information.
1668 for (const GlobalIFunc &I : M.ifuncs()) {
1669 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1670 // val#, linkage, visibility, DSO_Local]
1671 Vals.push_back(addToStrtab(I.getName()));
1672 Vals.push_back(I.getName().size());
1673 Vals.push_back(VE.getTypeID(I.getValueType()));
1674 Vals.push_back(I.getType()->getAddressSpace());
1675 Vals.push_back(VE.getValueID(I.getResolver()));
1676 Vals.push_back(getEncodedLinkage(I));
1677 Vals.push_back(getEncodedVisibility(I));
1678 Vals.push_back(I.isDSOLocal());
1679 Vals.push_back(addToStrtab(I.getPartition()));
1680 Vals.push_back(I.getPartition().size());
1681 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1682 Vals.clear();
1685 writeValueSymbolTableForwardDecl();
1688 static uint64_t getOptimizationFlags(const Value *V) {
1689 uint64_t Flags = 0;
1691 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1692 if (OBO->hasNoSignedWrap())
1693 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1694 if (OBO->hasNoUnsignedWrap())
1695 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1696 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1697 if (PEO->isExact())
1698 Flags |= 1 << bitc::PEO_EXACT;
1699 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1700 if (PDI->isDisjoint())
1701 Flags |= 1 << bitc::PDI_DISJOINT;
1702 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1703 if (FPMO->hasAllowReassoc())
1704 Flags |= bitc::AllowReassoc;
1705 if (FPMO->hasNoNaNs())
1706 Flags |= bitc::NoNaNs;
1707 if (FPMO->hasNoInfs())
1708 Flags |= bitc::NoInfs;
1709 if (FPMO->hasNoSignedZeros())
1710 Flags |= bitc::NoSignedZeros;
1711 if (FPMO->hasAllowReciprocal())
1712 Flags |= bitc::AllowReciprocal;
1713 if (FPMO->hasAllowContract())
1714 Flags |= bitc::AllowContract;
1715 if (FPMO->hasApproxFunc())
1716 Flags |= bitc::ApproxFunc;
1717 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1718 if (NNI->hasNonNeg())
1719 Flags |= 1 << bitc::PNNI_NON_NEG;
1720 } else if (const auto *TI = dyn_cast<TruncInst>(V)) {
1721 if (TI->hasNoSignedWrap())
1722 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1723 if (TI->hasNoUnsignedWrap())
1724 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1725 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) {
1726 if (GEP->isInBounds())
1727 Flags |= 1 << bitc::GEP_INBOUNDS;
1728 if (GEP->hasNoUnsignedSignedWrap())
1729 Flags |= 1 << bitc::GEP_NUSW;
1730 if (GEP->hasNoUnsignedWrap())
1731 Flags |= 1 << bitc::GEP_NUW;
1732 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) {
1733 if (ICmp->hasSameSign())
1734 Flags |= 1 << bitc::ICMP_SAME_SIGN;
1737 return Flags;
1740 void ModuleBitcodeWriter::writeValueAsMetadata(
1741 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1742 // Mimic an MDNode with a value as one operand.
1743 Value *V = MD->getValue();
1744 Record.push_back(VE.getTypeID(V->getType()));
1745 Record.push_back(VE.getValueID(V));
1746 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1747 Record.clear();
1750 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1751 SmallVectorImpl<uint64_t> &Record,
1752 unsigned Abbrev) {
1753 for (const MDOperand &MDO : N->operands()) {
1754 Metadata *MD = MDO;
1755 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1756 "Unexpected function-local metadata");
1757 Record.push_back(VE.getMetadataOrNullID(MD));
1759 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1760 : bitc::METADATA_NODE,
1761 Record, Abbrev);
1762 Record.clear();
1765 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1766 // Assume the column is usually under 128, and always output the inlined-at
1767 // location (it's never more expensive than building an array size 1).
1768 auto Abbv = std::make_shared<BitCodeAbbrev>();
1769 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1776 return Stream.EmitAbbrev(std::move(Abbv));
1779 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1780 SmallVectorImpl<uint64_t> &Record,
1781 unsigned &Abbrev) {
1782 if (!Abbrev)
1783 Abbrev = createDILocationAbbrev();
1785 Record.push_back(N->isDistinct());
1786 Record.push_back(N->getLine());
1787 Record.push_back(N->getColumn());
1788 Record.push_back(VE.getMetadataID(N->getScope()));
1789 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1790 Record.push_back(N->isImplicitCode());
1792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1793 Record.clear();
1796 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1797 // Assume the column is usually under 128, and always output the inlined-at
1798 // location (it's never more expensive than building an array size 1).
1799 auto Abbv = std::make_shared<BitCodeAbbrev>();
1800 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1807 return Stream.EmitAbbrev(std::move(Abbv));
1810 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1811 SmallVectorImpl<uint64_t> &Record,
1812 unsigned &Abbrev) {
1813 if (!Abbrev)
1814 Abbrev = createGenericDINodeAbbrev();
1816 Record.push_back(N->isDistinct());
1817 Record.push_back(N->getTag());
1818 Record.push_back(0); // Per-tag version field; unused for now.
1820 for (auto &I : N->operands())
1821 Record.push_back(VE.getMetadataOrNullID(I));
1823 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1824 Record.clear();
1827 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1828 SmallVectorImpl<uint64_t> &Record,
1829 unsigned Abbrev) {
1830 const uint64_t Version = 2 << 1;
1831 Record.push_back((uint64_t)N->isDistinct() | Version);
1832 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1833 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1834 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1835 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1837 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1838 Record.clear();
1841 void ModuleBitcodeWriter::writeDIGenericSubrange(
1842 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1843 unsigned Abbrev) {
1844 Record.push_back((uint64_t)N->isDistinct());
1845 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1846 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1847 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1848 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1850 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1851 Record.clear();
1854 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1855 SmallVectorImpl<uint64_t> &Record,
1856 unsigned Abbrev) {
1857 const uint64_t IsBigInt = 1 << 2;
1858 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1859 Record.push_back(N->getValue().getBitWidth());
1860 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1861 emitWideAPInt(Record, N->getValue());
1863 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1864 Record.clear();
1867 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1868 SmallVectorImpl<uint64_t> &Record,
1869 unsigned Abbrev) {
1870 Record.push_back(N->isDistinct());
1871 Record.push_back(N->getTag());
1872 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1873 Record.push_back(N->getSizeInBits());
1874 Record.push_back(N->getAlignInBits());
1875 Record.push_back(N->getEncoding());
1876 Record.push_back(N->getFlags());
1877 Record.push_back(N->getNumExtraInhabitants());
1879 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1880 Record.clear();
1883 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1884 SmallVectorImpl<uint64_t> &Record,
1885 unsigned Abbrev) {
1886 Record.push_back(N->isDistinct());
1887 Record.push_back(N->getTag());
1888 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1889 Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1890 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1891 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1892 Record.push_back(N->getSizeInBits());
1893 Record.push_back(N->getAlignInBits());
1894 Record.push_back(N->getEncoding());
1896 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1897 Record.clear();
1900 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1901 SmallVectorImpl<uint64_t> &Record,
1902 unsigned Abbrev) {
1903 Record.push_back(N->isDistinct());
1904 Record.push_back(N->getTag());
1905 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1906 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1907 Record.push_back(N->getLine());
1908 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1909 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1910 Record.push_back(N->getSizeInBits());
1911 Record.push_back(N->getAlignInBits());
1912 Record.push_back(N->getOffsetInBits());
1913 Record.push_back(N->getFlags());
1914 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1916 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1917 // that there is no DWARF address space associated with DIDerivedType.
1918 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1919 Record.push_back(*DWARFAddressSpace + 1);
1920 else
1921 Record.push_back(0);
1923 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1925 if (auto PtrAuthData = N->getPtrAuthData())
1926 Record.push_back(PtrAuthData->RawData);
1927 else
1928 Record.push_back(0);
1930 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1931 Record.clear();
1934 void ModuleBitcodeWriter::writeDICompositeType(
1935 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1936 unsigned Abbrev) {
1937 const unsigned IsNotUsedInOldTypeRef = 0x2;
1938 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1939 Record.push_back(N->getTag());
1940 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1941 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1942 Record.push_back(N->getLine());
1943 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1944 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1945 Record.push_back(N->getSizeInBits());
1946 Record.push_back(N->getAlignInBits());
1947 Record.push_back(N->getOffsetInBits());
1948 Record.push_back(N->getFlags());
1949 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1950 Record.push_back(N->getRuntimeLang());
1951 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1952 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1953 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1954 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1955 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1956 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1957 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1958 Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1959 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1960 Record.push_back(N->getNumExtraInhabitants());
1961 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification()));
1963 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1964 Record.clear();
1967 void ModuleBitcodeWriter::writeDISubroutineType(
1968 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1969 unsigned Abbrev) {
1970 const unsigned HasNoOldTypeRefs = 0x2;
1971 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1972 Record.push_back(N->getFlags());
1973 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1974 Record.push_back(N->getCC());
1976 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1977 Record.clear();
1980 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1981 SmallVectorImpl<uint64_t> &Record,
1982 unsigned Abbrev) {
1983 Record.push_back(N->isDistinct());
1984 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1985 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1986 if (N->getRawChecksum()) {
1987 Record.push_back(N->getRawChecksum()->Kind);
1988 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1989 } else {
1990 // Maintain backwards compatibility with the old internal representation of
1991 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1992 Record.push_back(0);
1993 Record.push_back(VE.getMetadataOrNullID(nullptr));
1995 auto Source = N->getRawSource();
1996 if (Source)
1997 Record.push_back(VE.getMetadataOrNullID(Source));
1999 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
2000 Record.clear();
2003 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
2004 SmallVectorImpl<uint64_t> &Record,
2005 unsigned Abbrev) {
2006 assert(N->isDistinct() && "Expected distinct compile units");
2007 Record.push_back(/* IsDistinct */ true);
2008 Record.push_back(N->getSourceLanguage());
2009 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2010 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
2011 Record.push_back(N->isOptimized());
2012 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
2013 Record.push_back(N->getRuntimeVersion());
2014 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
2015 Record.push_back(N->getEmissionKind());
2016 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
2017 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
2018 Record.push_back(/* subprograms */ 0);
2019 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
2020 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
2021 Record.push_back(N->getDWOId());
2022 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
2023 Record.push_back(N->getSplitDebugInlining());
2024 Record.push_back(N->getDebugInfoForProfiling());
2025 Record.push_back((unsigned)N->getNameTableKind());
2026 Record.push_back(N->getRangesBaseAddress());
2027 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
2028 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
2030 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
2031 Record.clear();
2034 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
2035 SmallVectorImpl<uint64_t> &Record,
2036 unsigned Abbrev) {
2037 const uint64_t HasUnitFlag = 1 << 1;
2038 const uint64_t HasSPFlagsFlag = 1 << 2;
2039 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
2040 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2041 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2042 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2043 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2044 Record.push_back(N->getLine());
2045 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2046 Record.push_back(N->getScopeLine());
2047 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
2048 Record.push_back(N->getSPFlags());
2049 Record.push_back(N->getVirtualIndex());
2050 Record.push_back(N->getFlags());
2051 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
2052 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
2053 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
2054 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
2055 Record.push_back(N->getThisAdjustment());
2056 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
2057 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2058 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
2060 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
2061 Record.clear();
2064 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
2065 SmallVectorImpl<uint64_t> &Record,
2066 unsigned Abbrev) {
2067 Record.push_back(N->isDistinct());
2068 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2069 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2070 Record.push_back(N->getLine());
2071 Record.push_back(N->getColumn());
2073 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
2074 Record.clear();
2077 void ModuleBitcodeWriter::writeDILexicalBlockFile(
2078 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2079 unsigned Abbrev) {
2080 Record.push_back(N->isDistinct());
2081 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2082 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2083 Record.push_back(N->getDiscriminator());
2085 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
2086 Record.clear();
2089 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2090 SmallVectorImpl<uint64_t> &Record,
2091 unsigned Abbrev) {
2092 Record.push_back(N->isDistinct());
2093 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2094 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
2095 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2096 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2097 Record.push_back(N->getLineNo());
2099 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2100 Record.clear();
2103 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2104 SmallVectorImpl<uint64_t> &Record,
2105 unsigned Abbrev) {
2106 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2107 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2108 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2110 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2111 Record.clear();
2114 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2115 SmallVectorImpl<uint64_t> &Record,
2116 unsigned Abbrev) {
2117 Record.push_back(N->isDistinct());
2118 Record.push_back(N->getMacinfoType());
2119 Record.push_back(N->getLine());
2120 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2121 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2123 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2124 Record.clear();
2127 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2128 SmallVectorImpl<uint64_t> &Record,
2129 unsigned Abbrev) {
2130 Record.push_back(N->isDistinct());
2131 Record.push_back(N->getMacinfoType());
2132 Record.push_back(N->getLine());
2133 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2134 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2136 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2137 Record.clear();
2140 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2141 SmallVectorImpl<uint64_t> &Record) {
2142 Record.reserve(N->getArgs().size());
2143 for (ValueAsMetadata *MD : N->getArgs())
2144 Record.push_back(VE.getMetadataID(MD));
2146 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2147 Record.clear();
2150 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2151 SmallVectorImpl<uint64_t> &Record,
2152 unsigned Abbrev) {
2153 Record.push_back(N->isDistinct());
2154 for (auto &I : N->operands())
2155 Record.push_back(VE.getMetadataOrNullID(I));
2156 Record.push_back(N->getLineNo());
2157 Record.push_back(N->getIsDecl());
2159 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2160 Record.clear();
2163 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2164 SmallVectorImpl<uint64_t> &Record,
2165 unsigned Abbrev) {
2166 // There are no arguments for this metadata type.
2167 Record.push_back(N->isDistinct());
2168 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2169 Record.clear();
2172 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2173 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2174 unsigned Abbrev) {
2175 Record.push_back(N->isDistinct());
2176 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2177 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2178 Record.push_back(N->isDefault());
2180 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2181 Record.clear();
2184 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2185 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2186 unsigned Abbrev) {
2187 Record.push_back(N->isDistinct());
2188 Record.push_back(N->getTag());
2189 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2190 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2191 Record.push_back(N->isDefault());
2192 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2194 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2195 Record.clear();
2198 void ModuleBitcodeWriter::writeDIGlobalVariable(
2199 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2200 unsigned Abbrev) {
2201 const uint64_t Version = 2 << 1;
2202 Record.push_back((uint64_t)N->isDistinct() | Version);
2203 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2204 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2205 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2206 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2207 Record.push_back(N->getLine());
2208 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2209 Record.push_back(N->isLocalToUnit());
2210 Record.push_back(N->isDefinition());
2211 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2212 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2213 Record.push_back(N->getAlignInBits());
2214 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2216 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2217 Record.clear();
2220 void ModuleBitcodeWriter::writeDILocalVariable(
2221 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2222 unsigned Abbrev) {
2223 // In order to support all possible bitcode formats in BitcodeReader we need
2224 // to distinguish the following cases:
2225 // 1) Record has no artificial tag (Record[1]),
2226 // has no obsolete inlinedAt field (Record[9]).
2227 // In this case Record size will be 8, HasAlignment flag is false.
2228 // 2) Record has artificial tag (Record[1]),
2229 // has no obsolete inlignedAt field (Record[9]).
2230 // In this case Record size will be 9, HasAlignment flag is false.
2231 // 3) Record has both artificial tag (Record[1]) and
2232 // obsolete inlignedAt field (Record[9]).
2233 // In this case Record size will be 10, HasAlignment flag is false.
2234 // 4) Record has neither artificial tag, nor inlignedAt field, but
2235 // HasAlignment flag is true and Record[8] contains alignment value.
2236 const uint64_t HasAlignmentFlag = 1 << 1;
2237 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2238 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2239 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2240 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2241 Record.push_back(N->getLine());
2242 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2243 Record.push_back(N->getArg());
2244 Record.push_back(N->getFlags());
2245 Record.push_back(N->getAlignInBits());
2246 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2248 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2249 Record.clear();
2252 void ModuleBitcodeWriter::writeDILabel(
2253 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2254 unsigned Abbrev) {
2255 Record.push_back((uint64_t)N->isDistinct());
2256 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2257 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2258 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2259 Record.push_back(N->getLine());
2261 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2262 Record.clear();
2265 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2266 SmallVectorImpl<uint64_t> &Record,
2267 unsigned Abbrev) {
2268 Record.reserve(N->getElements().size() + 1);
2269 const uint64_t Version = 3 << 1;
2270 Record.push_back((uint64_t)N->isDistinct() | Version);
2271 Record.append(N->elements_begin(), N->elements_end());
2273 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2274 Record.clear();
2277 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2278 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2279 unsigned Abbrev) {
2280 Record.push_back(N->isDistinct());
2281 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2282 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2284 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2285 Record.clear();
2288 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2289 SmallVectorImpl<uint64_t> &Record,
2290 unsigned Abbrev) {
2291 Record.push_back(N->isDistinct());
2292 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2293 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2294 Record.push_back(N->getLine());
2295 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2296 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2297 Record.push_back(N->getAttributes());
2298 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2300 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2301 Record.clear();
2304 void ModuleBitcodeWriter::writeDIImportedEntity(
2305 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2306 unsigned Abbrev) {
2307 Record.push_back(N->isDistinct());
2308 Record.push_back(N->getTag());
2309 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2310 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2311 Record.push_back(N->getLine());
2312 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2313 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2314 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2316 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2317 Record.clear();
2320 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2321 auto Abbv = std::make_shared<BitCodeAbbrev>();
2322 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2325 return Stream.EmitAbbrev(std::move(Abbv));
2328 void ModuleBitcodeWriter::writeNamedMetadata(
2329 SmallVectorImpl<uint64_t> &Record) {
2330 if (M.named_metadata_empty())
2331 return;
2333 unsigned Abbrev = createNamedMetadataAbbrev();
2334 for (const NamedMDNode &NMD : M.named_metadata()) {
2335 // Write name.
2336 StringRef Str = NMD.getName();
2337 Record.append(Str.bytes_begin(), Str.bytes_end());
2338 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2339 Record.clear();
2341 // Write named metadata operands.
2342 for (const MDNode *N : NMD.operands())
2343 Record.push_back(VE.getMetadataID(N));
2344 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2345 Record.clear();
2349 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2350 auto Abbv = std::make_shared<BitCodeAbbrev>();
2351 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2355 return Stream.EmitAbbrev(std::move(Abbv));
2358 /// Write out a record for MDString.
2360 /// All the metadata strings in a metadata block are emitted in a single
2361 /// record. The sizes and strings themselves are shoved into a blob.
2362 void ModuleBitcodeWriter::writeMetadataStrings(
2363 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2364 if (Strings.empty())
2365 return;
2367 // Start the record with the number of strings.
2368 Record.push_back(bitc::METADATA_STRINGS);
2369 Record.push_back(Strings.size());
2371 // Emit the sizes of the strings in the blob.
2372 SmallString<256> Blob;
2374 BitstreamWriter W(Blob);
2375 for (const Metadata *MD : Strings)
2376 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2377 W.FlushToWord();
2380 // Add the offset to the strings to the record.
2381 Record.push_back(Blob.size());
2383 // Add the strings to the blob.
2384 for (const Metadata *MD : Strings)
2385 Blob.append(cast<MDString>(MD)->getString());
2387 // Emit the final record.
2388 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2389 Record.clear();
2392 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2393 enum MetadataAbbrev : unsigned {
2394 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2395 #include "llvm/IR/Metadata.def"
2396 LastPlusOne
2399 void ModuleBitcodeWriter::writeMetadataRecords(
2400 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2401 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2402 if (MDs.empty())
2403 return;
2405 // Initialize MDNode abbreviations.
2406 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2407 #include "llvm/IR/Metadata.def"
2409 for (const Metadata *MD : MDs) {
2410 if (IndexPos)
2411 IndexPos->push_back(Stream.GetCurrentBitNo());
2412 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2413 assert(N->isResolved() && "Expected forward references to be resolved");
2415 switch (N->getMetadataID()) {
2416 default:
2417 llvm_unreachable("Invalid MDNode subclass");
2418 #define HANDLE_MDNODE_LEAF(CLASS) \
2419 case Metadata::CLASS##Kind: \
2420 if (MDAbbrevs) \
2421 write##CLASS(cast<CLASS>(N), Record, \
2422 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2423 else \
2424 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2425 continue;
2426 #include "llvm/IR/Metadata.def"
2429 if (auto *AL = dyn_cast<DIArgList>(MD)) {
2430 writeDIArgList(AL, Record);
2431 continue;
2433 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2437 void ModuleBitcodeWriter::writeModuleMetadata() {
2438 if (!VE.hasMDs() && M.named_metadata_empty())
2439 return;
2441 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2442 SmallVector<uint64_t, 64> Record;
2444 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2445 // block and load any metadata.
2446 std::vector<unsigned> MDAbbrevs;
2448 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2449 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2450 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2451 createGenericDINodeAbbrev();
2453 auto Abbv = std::make_shared<BitCodeAbbrev>();
2454 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2457 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2459 Abbv = std::make_shared<BitCodeAbbrev>();
2460 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2463 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2465 // Emit MDStrings together upfront.
2466 writeMetadataStrings(VE.getMDStrings(), Record);
2468 // We only emit an index for the metadata record if we have more than a given
2469 // (naive) threshold of metadatas, otherwise it is not worth it.
2470 if (VE.getNonMDStrings().size() > IndexThreshold) {
2471 // Write a placeholder value in for the offset of the metadata index,
2472 // which is written after the records, so that it can include
2473 // the offset of each entry. The placeholder offset will be
2474 // updated after all records are emitted.
2475 uint64_t Vals[] = {0, 0};
2476 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2479 // Compute and save the bit offset to the current position, which will be
2480 // patched when we emit the index later. We can simply subtract the 64-bit
2481 // fixed size from the current bit number to get the location to backpatch.
2482 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2484 // This index will contain the bitpos for each individual record.
2485 std::vector<uint64_t> IndexPos;
2486 IndexPos.reserve(VE.getNonMDStrings().size());
2488 // Write all the records
2489 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2491 if (VE.getNonMDStrings().size() > IndexThreshold) {
2492 // Now that we have emitted all the records we will emit the index. But
2493 // first
2494 // backpatch the forward reference so that the reader can skip the records
2495 // efficiently.
2496 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2497 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2499 // Delta encode the index.
2500 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2501 for (auto &Elt : IndexPos) {
2502 auto EltDelta = Elt - PreviousValue;
2503 PreviousValue = Elt;
2504 Elt = EltDelta;
2506 // Emit the index record.
2507 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2508 IndexPos.clear();
2511 // Write the named metadata now.
2512 writeNamedMetadata(Record);
2514 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2515 SmallVector<uint64_t, 4> Record;
2516 Record.push_back(VE.getValueID(&GO));
2517 pushGlobalMetadataAttachment(Record, GO);
2518 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2520 for (const Function &F : M)
2521 if (F.isDeclaration() && F.hasMetadata())
2522 AddDeclAttachedMetadata(F);
2523 // FIXME: Only store metadata for declarations here, and move data for global
2524 // variable definitions to a separate block (PR28134).
2525 for (const GlobalVariable &GV : M.globals())
2526 if (GV.hasMetadata())
2527 AddDeclAttachedMetadata(GV);
2529 Stream.ExitBlock();
2532 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2533 if (!VE.hasMDs())
2534 return;
2536 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2537 SmallVector<uint64_t, 64> Record;
2538 writeMetadataStrings(VE.getMDStrings(), Record);
2539 writeMetadataRecords(VE.getNonMDStrings(), Record);
2540 Stream.ExitBlock();
2543 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2544 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2545 // [n x [id, mdnode]]
2546 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2547 GO.getAllMetadata(MDs);
2548 for (const auto &I : MDs) {
2549 Record.push_back(I.first);
2550 Record.push_back(VE.getMetadataID(I.second));
2554 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2555 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2557 SmallVector<uint64_t, 64> Record;
2559 if (F.hasMetadata()) {
2560 pushGlobalMetadataAttachment(Record, F);
2561 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2562 Record.clear();
2565 // Write metadata attachments
2566 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2567 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2568 for (const BasicBlock &BB : F)
2569 for (const Instruction &I : BB) {
2570 MDs.clear();
2571 I.getAllMetadataOtherThanDebugLoc(MDs);
2573 // If no metadata, ignore instruction.
2574 if (MDs.empty()) continue;
2576 Record.push_back(VE.getInstructionID(&I));
2578 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2579 Record.push_back(MDs[i].first);
2580 Record.push_back(VE.getMetadataID(MDs[i].second));
2582 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2583 Record.clear();
2586 Stream.ExitBlock();
2589 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2590 SmallVector<uint64_t, 64> Record;
2592 // Write metadata kinds
2593 // METADATA_KIND - [n x [id, name]]
2594 SmallVector<StringRef, 8> Names;
2595 M.getMDKindNames(Names);
2597 if (Names.empty()) return;
2599 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2601 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2602 Record.push_back(MDKindID);
2603 StringRef KName = Names[MDKindID];
2604 Record.append(KName.begin(), KName.end());
2606 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2607 Record.clear();
2610 Stream.ExitBlock();
2613 void ModuleBitcodeWriter::writeOperandBundleTags() {
2614 // Write metadata kinds
2616 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2618 // OPERAND_BUNDLE_TAG - [strchr x N]
2620 SmallVector<StringRef, 8> Tags;
2621 M.getOperandBundleTags(Tags);
2623 if (Tags.empty())
2624 return;
2626 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2628 SmallVector<uint64_t, 64> Record;
2630 for (auto Tag : Tags) {
2631 Record.append(Tag.begin(), Tag.end());
2633 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2634 Record.clear();
2637 Stream.ExitBlock();
2640 void ModuleBitcodeWriter::writeSyncScopeNames() {
2641 SmallVector<StringRef, 8> SSNs;
2642 M.getContext().getSyncScopeNames(SSNs);
2643 if (SSNs.empty())
2644 return;
2646 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2648 SmallVector<uint64_t, 64> Record;
2649 for (auto SSN : SSNs) {
2650 Record.append(SSN.begin(), SSN.end());
2651 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2652 Record.clear();
2655 Stream.ExitBlock();
2658 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2659 bool isGlobal) {
2660 if (FirstVal == LastVal) return;
2662 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2664 unsigned AggregateAbbrev = 0;
2665 unsigned String8Abbrev = 0;
2666 unsigned CString7Abbrev = 0;
2667 unsigned CString6Abbrev = 0;
2668 // If this is a constant pool for the module, emit module-specific abbrevs.
2669 if (isGlobal) {
2670 // Abbrev for CST_CODE_AGGREGATE.
2671 auto Abbv = std::make_shared<BitCodeAbbrev>();
2672 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2675 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2677 // Abbrev for CST_CODE_STRING.
2678 Abbv = std::make_shared<BitCodeAbbrev>();
2679 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2682 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2683 // Abbrev for CST_CODE_CSTRING.
2684 Abbv = std::make_shared<BitCodeAbbrev>();
2685 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2688 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2689 // Abbrev for CST_CODE_CSTRING.
2690 Abbv = std::make_shared<BitCodeAbbrev>();
2691 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2694 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2697 SmallVector<uint64_t, 64> Record;
2699 const ValueEnumerator::ValueList &Vals = VE.getValues();
2700 Type *LastTy = nullptr;
2701 for (unsigned i = FirstVal; i != LastVal; ++i) {
2702 const Value *V = Vals[i].first;
2703 // If we need to switch types, do so now.
2704 if (V->getType() != LastTy) {
2705 LastTy = V->getType();
2706 Record.push_back(VE.getTypeID(LastTy));
2707 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2708 CONSTANTS_SETTYPE_ABBREV);
2709 Record.clear();
2712 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2713 Record.push_back(VE.getTypeID(IA->getFunctionType()));
2714 Record.push_back(
2715 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2716 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2718 // Add the asm string.
2719 const std::string &AsmStr = IA->getAsmString();
2720 Record.push_back(AsmStr.size());
2721 Record.append(AsmStr.begin(), AsmStr.end());
2723 // Add the constraint string.
2724 const std::string &ConstraintStr = IA->getConstraintString();
2725 Record.push_back(ConstraintStr.size());
2726 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2727 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2728 Record.clear();
2729 continue;
2731 const Constant *C = cast<Constant>(V);
2732 unsigned Code = -1U;
2733 unsigned AbbrevToUse = 0;
2734 if (C->isNullValue()) {
2735 Code = bitc::CST_CODE_NULL;
2736 } else if (isa<PoisonValue>(C)) {
2737 Code = bitc::CST_CODE_POISON;
2738 } else if (isa<UndefValue>(C)) {
2739 Code = bitc::CST_CODE_UNDEF;
2740 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2741 if (IV->getBitWidth() <= 64) {
2742 uint64_t V = IV->getSExtValue();
2743 emitSignedInt64(Record, V);
2744 Code = bitc::CST_CODE_INTEGER;
2745 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2746 } else { // Wide integers, > 64 bits in size.
2747 emitWideAPInt(Record, IV->getValue());
2748 Code = bitc::CST_CODE_WIDE_INTEGER;
2750 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2751 Code = bitc::CST_CODE_FLOAT;
2752 Type *Ty = CFP->getType()->getScalarType();
2753 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2754 Ty->isDoubleTy()) {
2755 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2756 } else if (Ty->isX86_FP80Ty()) {
2757 // api needed to prevent premature destruction
2758 // bits are not in the same order as a normal i80 APInt, compensate.
2759 APInt api = CFP->getValueAPF().bitcastToAPInt();
2760 const uint64_t *p = api.getRawData();
2761 Record.push_back((p[1] << 48) | (p[0] >> 16));
2762 Record.push_back(p[0] & 0xffffLL);
2763 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2764 APInt api = CFP->getValueAPF().bitcastToAPInt();
2765 const uint64_t *p = api.getRawData();
2766 Record.push_back(p[0]);
2767 Record.push_back(p[1]);
2768 } else {
2769 assert(0 && "Unknown FP type!");
2771 } else if (isa<ConstantDataSequential>(C) &&
2772 cast<ConstantDataSequential>(C)->isString()) {
2773 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2774 // Emit constant strings specially.
2775 unsigned NumElts = Str->getNumElements();
2776 // If this is a null-terminated string, use the denser CSTRING encoding.
2777 if (Str->isCString()) {
2778 Code = bitc::CST_CODE_CSTRING;
2779 --NumElts; // Don't encode the null, which isn't allowed by char6.
2780 } else {
2781 Code = bitc::CST_CODE_STRING;
2782 AbbrevToUse = String8Abbrev;
2784 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2785 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2786 for (unsigned i = 0; i != NumElts; ++i) {
2787 unsigned char V = Str->getElementAsInteger(i);
2788 Record.push_back(V);
2789 isCStr7 &= (V & 128) == 0;
2790 if (isCStrChar6)
2791 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2794 if (isCStrChar6)
2795 AbbrevToUse = CString6Abbrev;
2796 else if (isCStr7)
2797 AbbrevToUse = CString7Abbrev;
2798 } else if (const ConstantDataSequential *CDS =
2799 dyn_cast<ConstantDataSequential>(C)) {
2800 Code = bitc::CST_CODE_DATA;
2801 Type *EltTy = CDS->getElementType();
2802 if (isa<IntegerType>(EltTy)) {
2803 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2804 Record.push_back(CDS->getElementAsInteger(i));
2805 } else {
2806 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2807 Record.push_back(
2808 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2810 } else if (isa<ConstantAggregate>(C)) {
2811 Code = bitc::CST_CODE_AGGREGATE;
2812 for (const Value *Op : C->operands())
2813 Record.push_back(VE.getValueID(Op));
2814 AbbrevToUse = AggregateAbbrev;
2815 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2816 switch (CE->getOpcode()) {
2817 default:
2818 if (Instruction::isCast(CE->getOpcode())) {
2819 Code = bitc::CST_CODE_CE_CAST;
2820 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2821 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2822 Record.push_back(VE.getValueID(C->getOperand(0)));
2823 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2824 } else {
2825 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2826 Code = bitc::CST_CODE_CE_BINOP;
2827 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2828 Record.push_back(VE.getValueID(C->getOperand(0)));
2829 Record.push_back(VE.getValueID(C->getOperand(1)));
2830 uint64_t Flags = getOptimizationFlags(CE);
2831 if (Flags != 0)
2832 Record.push_back(Flags);
2834 break;
2835 case Instruction::FNeg: {
2836 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2837 Code = bitc::CST_CODE_CE_UNOP;
2838 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2839 Record.push_back(VE.getValueID(C->getOperand(0)));
2840 uint64_t Flags = getOptimizationFlags(CE);
2841 if (Flags != 0)
2842 Record.push_back(Flags);
2843 break;
2845 case Instruction::GetElementPtr: {
2846 Code = bitc::CST_CODE_CE_GEP;
2847 const auto *GO = cast<GEPOperator>(C);
2848 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2849 Record.push_back(getOptimizationFlags(GO));
2850 if (std::optional<ConstantRange> Range = GO->getInRange()) {
2851 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2852 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true);
2854 for (const Value *Op : CE->operands()) {
2855 Record.push_back(VE.getTypeID(Op->getType()));
2856 Record.push_back(VE.getValueID(Op));
2858 break;
2860 case Instruction::ExtractElement:
2861 Code = bitc::CST_CODE_CE_EXTRACTELT;
2862 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2863 Record.push_back(VE.getValueID(C->getOperand(0)));
2864 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2865 Record.push_back(VE.getValueID(C->getOperand(1)));
2866 break;
2867 case Instruction::InsertElement:
2868 Code = bitc::CST_CODE_CE_INSERTELT;
2869 Record.push_back(VE.getValueID(C->getOperand(0)));
2870 Record.push_back(VE.getValueID(C->getOperand(1)));
2871 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2872 Record.push_back(VE.getValueID(C->getOperand(2)));
2873 break;
2874 case Instruction::ShuffleVector:
2875 // If the return type and argument types are the same, this is a
2876 // standard shufflevector instruction. If the types are different,
2877 // then the shuffle is widening or truncating the input vectors, and
2878 // the argument type must also be encoded.
2879 if (C->getType() == C->getOperand(0)->getType()) {
2880 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2881 } else {
2882 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2883 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2885 Record.push_back(VE.getValueID(C->getOperand(0)));
2886 Record.push_back(VE.getValueID(C->getOperand(1)));
2887 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2888 break;
2890 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2891 Code = bitc::CST_CODE_BLOCKADDRESS;
2892 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2893 Record.push_back(VE.getValueID(BA->getFunction()));
2894 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2895 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2896 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2897 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2898 Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2899 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2900 Code = bitc::CST_CODE_NO_CFI_VALUE;
2901 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2902 Record.push_back(VE.getValueID(NC->getGlobalValue()));
2903 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) {
2904 Code = bitc::CST_CODE_PTRAUTH;
2905 Record.push_back(VE.getValueID(CPA->getPointer()));
2906 Record.push_back(VE.getValueID(CPA->getKey()));
2907 Record.push_back(VE.getValueID(CPA->getDiscriminator()));
2908 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator()));
2909 } else {
2910 #ifndef NDEBUG
2911 C->dump();
2912 #endif
2913 llvm_unreachable("Unknown constant!");
2915 Stream.EmitRecord(Code, Record, AbbrevToUse);
2916 Record.clear();
2919 Stream.ExitBlock();
2922 void ModuleBitcodeWriter::writeModuleConstants() {
2923 const ValueEnumerator::ValueList &Vals = VE.getValues();
2925 // Find the first constant to emit, which is the first non-globalvalue value.
2926 // We know globalvalues have been emitted by WriteModuleInfo.
2927 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2928 if (!isa<GlobalValue>(Vals[i].first)) {
2929 writeConstants(i, Vals.size(), true);
2930 return;
2935 /// pushValueAndType - The file has to encode both the value and type id for
2936 /// many values, because we need to know what type to create for forward
2937 /// references. However, most operands are not forward references, so this type
2938 /// field is not needed.
2940 /// This function adds V's value ID to Vals. If the value ID is higher than the
2941 /// instruction ID, then it is a forward reference, and it also includes the
2942 /// type ID. The value ID that is written is encoded relative to the InstID.
2943 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2944 SmallVectorImpl<unsigned> &Vals) {
2945 unsigned ValID = VE.getValueID(V);
2946 // Make encoding relative to the InstID.
2947 Vals.push_back(InstID - ValID);
2948 if (ValID >= InstID) {
2949 Vals.push_back(VE.getTypeID(V->getType()));
2950 return true;
2952 return false;
2955 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID,
2956 SmallVectorImpl<unsigned> &Vals) {
2957 bool IsMetadata = V->getType()->isMetadataTy();
2958 if (IsMetadata) {
2959 Vals.push_back(bitc::OB_METADATA);
2960 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata();
2961 unsigned ValID = VE.getMetadataID(MD);
2962 Vals.push_back(InstID - ValID);
2963 return false;
2965 return pushValueAndType(V, InstID, Vals);
2968 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2969 unsigned InstID) {
2970 SmallVector<unsigned, 64> Record;
2971 LLVMContext &C = CS.getContext();
2973 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2974 const auto &Bundle = CS.getOperandBundleAt(i);
2975 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2977 for (auto &Input : Bundle.Inputs)
2978 pushValueOrMetadata(Input, InstID, Record);
2980 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2981 Record.clear();
2985 /// pushValue - Like pushValueAndType, but where the type of the value is
2986 /// omitted (perhaps it was already encoded in an earlier operand).
2987 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2988 SmallVectorImpl<unsigned> &Vals) {
2989 unsigned ValID = VE.getValueID(V);
2990 Vals.push_back(InstID - ValID);
2993 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2994 SmallVectorImpl<uint64_t> &Vals) {
2995 unsigned ValID = VE.getValueID(V);
2996 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2997 emitSignedInt64(Vals, diff);
3000 /// WriteInstruction - Emit an instruction to the specified stream.
3001 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
3002 unsigned InstID,
3003 SmallVectorImpl<unsigned> &Vals) {
3004 unsigned Code = 0;
3005 unsigned AbbrevToUse = 0;
3006 VE.setInstructionID(&I);
3007 switch (I.getOpcode()) {
3008 default:
3009 if (Instruction::isCast(I.getOpcode())) {
3010 Code = bitc::FUNC_CODE_INST_CAST;
3011 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3012 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
3013 Vals.push_back(VE.getTypeID(I.getType()));
3014 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
3015 uint64_t Flags = getOptimizationFlags(&I);
3016 if (Flags != 0) {
3017 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
3018 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
3019 Vals.push_back(Flags);
3021 } else {
3022 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
3023 Code = bitc::FUNC_CODE_INST_BINOP;
3024 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3025 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
3026 pushValue(I.getOperand(1), InstID, Vals);
3027 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
3028 uint64_t Flags = getOptimizationFlags(&I);
3029 if (Flags != 0) {
3030 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
3031 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
3032 Vals.push_back(Flags);
3035 break;
3036 case Instruction::FNeg: {
3037 Code = bitc::FUNC_CODE_INST_UNOP;
3038 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3039 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
3040 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
3041 uint64_t Flags = getOptimizationFlags(&I);
3042 if (Flags != 0) {
3043 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
3044 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
3045 Vals.push_back(Flags);
3047 break;
3049 case Instruction::GetElementPtr: {
3050 Code = bitc::FUNC_CODE_INST_GEP;
3051 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
3052 auto &GEPInst = cast<GetElementPtrInst>(I);
3053 Vals.push_back(getOptimizationFlags(&I));
3054 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
3055 for (const Value *Op : I.operands())
3056 pushValueAndType(Op, InstID, Vals);
3057 break;
3059 case Instruction::ExtractValue: {
3060 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
3061 pushValueAndType(I.getOperand(0), InstID, Vals);
3062 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3063 Vals.append(EVI->idx_begin(), EVI->idx_end());
3064 break;
3066 case Instruction::InsertValue: {
3067 Code = bitc::FUNC_CODE_INST_INSERTVAL;
3068 pushValueAndType(I.getOperand(0), InstID, Vals);
3069 pushValueAndType(I.getOperand(1), InstID, Vals);
3070 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
3071 Vals.append(IVI->idx_begin(), IVI->idx_end());
3072 break;
3074 case Instruction::Select: {
3075 Code = bitc::FUNC_CODE_INST_VSELECT;
3076 pushValueAndType(I.getOperand(1), InstID, Vals);
3077 pushValue(I.getOperand(2), InstID, Vals);
3078 pushValueAndType(I.getOperand(0), InstID, Vals);
3079 uint64_t Flags = getOptimizationFlags(&I);
3080 if (Flags != 0)
3081 Vals.push_back(Flags);
3082 break;
3084 case Instruction::ExtractElement:
3085 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
3086 pushValueAndType(I.getOperand(0), InstID, Vals);
3087 pushValueAndType(I.getOperand(1), InstID, Vals);
3088 break;
3089 case Instruction::InsertElement:
3090 Code = bitc::FUNC_CODE_INST_INSERTELT;
3091 pushValueAndType(I.getOperand(0), InstID, Vals);
3092 pushValue(I.getOperand(1), InstID, Vals);
3093 pushValueAndType(I.getOperand(2), InstID, Vals);
3094 break;
3095 case Instruction::ShuffleVector:
3096 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3097 pushValueAndType(I.getOperand(0), InstID, Vals);
3098 pushValue(I.getOperand(1), InstID, Vals);
3099 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
3100 Vals);
3101 break;
3102 case Instruction::ICmp:
3103 case Instruction::FCmp: {
3104 // compare returning Int1Ty or vector of Int1Ty
3105 Code = bitc::FUNC_CODE_INST_CMP2;
3106 pushValueAndType(I.getOperand(0), InstID, Vals);
3107 pushValue(I.getOperand(1), InstID, Vals);
3108 Vals.push_back(cast<CmpInst>(I).getPredicate());
3109 uint64_t Flags = getOptimizationFlags(&I);
3110 if (Flags != 0)
3111 Vals.push_back(Flags);
3112 break;
3115 case Instruction::Ret:
3117 Code = bitc::FUNC_CODE_INST_RET;
3118 unsigned NumOperands = I.getNumOperands();
3119 if (NumOperands == 0)
3120 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3121 else if (NumOperands == 1) {
3122 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3123 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3124 } else {
3125 for (const Value *Op : I.operands())
3126 pushValueAndType(Op, InstID, Vals);
3129 break;
3130 case Instruction::Br:
3132 Code = bitc::FUNC_CODE_INST_BR;
3133 const BranchInst &II = cast<BranchInst>(I);
3134 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3135 if (II.isConditional()) {
3136 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3137 pushValue(II.getCondition(), InstID, Vals);
3140 break;
3141 case Instruction::Switch:
3143 Code = bitc::FUNC_CODE_INST_SWITCH;
3144 const SwitchInst &SI = cast<SwitchInst>(I);
3145 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3146 pushValue(SI.getCondition(), InstID, Vals);
3147 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3148 for (auto Case : SI.cases()) {
3149 Vals.push_back(VE.getValueID(Case.getCaseValue()));
3150 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3153 break;
3154 case Instruction::IndirectBr:
3155 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3156 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3157 // Encode the address operand as relative, but not the basic blocks.
3158 pushValue(I.getOperand(0), InstID, Vals);
3159 for (const Value *Op : drop_begin(I.operands()))
3160 Vals.push_back(VE.getValueID(Op));
3161 break;
3163 case Instruction::Invoke: {
3164 const InvokeInst *II = cast<InvokeInst>(&I);
3165 const Value *Callee = II->getCalledOperand();
3166 FunctionType *FTy = II->getFunctionType();
3168 if (II->hasOperandBundles())
3169 writeOperandBundles(*II, InstID);
3171 Code = bitc::FUNC_CODE_INST_INVOKE;
3173 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3174 Vals.push_back(II->getCallingConv() | 1 << 13);
3175 Vals.push_back(VE.getValueID(II->getNormalDest()));
3176 Vals.push_back(VE.getValueID(II->getUnwindDest()));
3177 Vals.push_back(VE.getTypeID(FTy));
3178 pushValueAndType(Callee, InstID, Vals);
3180 // Emit value #'s for the fixed parameters.
3181 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3182 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3184 // Emit type/value pairs for varargs params.
3185 if (FTy->isVarArg()) {
3186 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3187 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3189 break;
3191 case Instruction::Resume:
3192 Code = bitc::FUNC_CODE_INST_RESUME;
3193 pushValueAndType(I.getOperand(0), InstID, Vals);
3194 break;
3195 case Instruction::CleanupRet: {
3196 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3197 const auto &CRI = cast<CleanupReturnInst>(I);
3198 pushValue(CRI.getCleanupPad(), InstID, Vals);
3199 if (CRI.hasUnwindDest())
3200 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3201 break;
3203 case Instruction::CatchRet: {
3204 Code = bitc::FUNC_CODE_INST_CATCHRET;
3205 const auto &CRI = cast<CatchReturnInst>(I);
3206 pushValue(CRI.getCatchPad(), InstID, Vals);
3207 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3208 break;
3210 case Instruction::CleanupPad:
3211 case Instruction::CatchPad: {
3212 const auto &FuncletPad = cast<FuncletPadInst>(I);
3213 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3214 : bitc::FUNC_CODE_INST_CLEANUPPAD;
3215 pushValue(FuncletPad.getParentPad(), InstID, Vals);
3217 unsigned NumArgOperands = FuncletPad.arg_size();
3218 Vals.push_back(NumArgOperands);
3219 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3220 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3221 break;
3223 case Instruction::CatchSwitch: {
3224 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3225 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3227 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3229 unsigned NumHandlers = CatchSwitch.getNumHandlers();
3230 Vals.push_back(NumHandlers);
3231 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3232 Vals.push_back(VE.getValueID(CatchPadBB));
3234 if (CatchSwitch.hasUnwindDest())
3235 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3236 break;
3238 case Instruction::CallBr: {
3239 const CallBrInst *CBI = cast<CallBrInst>(&I);
3240 const Value *Callee = CBI->getCalledOperand();
3241 FunctionType *FTy = CBI->getFunctionType();
3243 if (CBI->hasOperandBundles())
3244 writeOperandBundles(*CBI, InstID);
3246 Code = bitc::FUNC_CODE_INST_CALLBR;
3248 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3250 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3251 1 << bitc::CALL_EXPLICIT_TYPE);
3253 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3254 Vals.push_back(CBI->getNumIndirectDests());
3255 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3256 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3258 Vals.push_back(VE.getTypeID(FTy));
3259 pushValueAndType(Callee, InstID, Vals);
3261 // Emit value #'s for the fixed parameters.
3262 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3263 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3265 // Emit type/value pairs for varargs params.
3266 if (FTy->isVarArg()) {
3267 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3268 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3270 break;
3272 case Instruction::Unreachable:
3273 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3274 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3275 break;
3277 case Instruction::PHI: {
3278 const PHINode &PN = cast<PHINode>(I);
3279 Code = bitc::FUNC_CODE_INST_PHI;
3280 // With the newer instruction encoding, forward references could give
3281 // negative valued IDs. This is most common for PHIs, so we use
3282 // signed VBRs.
3283 SmallVector<uint64_t, 128> Vals64;
3284 Vals64.push_back(VE.getTypeID(PN.getType()));
3285 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3286 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3287 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3290 uint64_t Flags = getOptimizationFlags(&I);
3291 if (Flags != 0)
3292 Vals64.push_back(Flags);
3294 // Emit a Vals64 vector and exit.
3295 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3296 Vals64.clear();
3297 return;
3300 case Instruction::LandingPad: {
3301 const LandingPadInst &LP = cast<LandingPadInst>(I);
3302 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3303 Vals.push_back(VE.getTypeID(LP.getType()));
3304 Vals.push_back(LP.isCleanup());
3305 Vals.push_back(LP.getNumClauses());
3306 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3307 if (LP.isCatch(I))
3308 Vals.push_back(LandingPadInst::Catch);
3309 else
3310 Vals.push_back(LandingPadInst::Filter);
3311 pushValueAndType(LP.getClause(I), InstID, Vals);
3313 break;
3316 case Instruction::Alloca: {
3317 Code = bitc::FUNC_CODE_INST_ALLOCA;
3318 const AllocaInst &AI = cast<AllocaInst>(I);
3319 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3320 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3321 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3322 using APV = AllocaPackedValues;
3323 unsigned Record = 0;
3324 unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3325 Bitfield::set<APV::AlignLower>(
3326 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3327 Bitfield::set<APV::AlignUpper>(Record,
3328 EncodedAlign >> APV::AlignLower::Bits);
3329 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3330 Bitfield::set<APV::ExplicitType>(Record, true);
3331 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3332 Vals.push_back(Record);
3334 unsigned AS = AI.getAddressSpace();
3335 if (AS != M.getDataLayout().getAllocaAddrSpace())
3336 Vals.push_back(AS);
3337 break;
3340 case Instruction::Load:
3341 if (cast<LoadInst>(I).isAtomic()) {
3342 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3343 pushValueAndType(I.getOperand(0), InstID, Vals);
3344 } else {
3345 Code = bitc::FUNC_CODE_INST_LOAD;
3346 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3347 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3349 Vals.push_back(VE.getTypeID(I.getType()));
3350 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3351 Vals.push_back(cast<LoadInst>(I).isVolatile());
3352 if (cast<LoadInst>(I).isAtomic()) {
3353 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3354 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3356 break;
3357 case Instruction::Store:
3358 if (cast<StoreInst>(I).isAtomic())
3359 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3360 else
3361 Code = bitc::FUNC_CODE_INST_STORE;
3362 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3363 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3364 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3365 Vals.push_back(cast<StoreInst>(I).isVolatile());
3366 if (cast<StoreInst>(I).isAtomic()) {
3367 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3368 Vals.push_back(
3369 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3371 break;
3372 case Instruction::AtomicCmpXchg:
3373 Code = bitc::FUNC_CODE_INST_CMPXCHG;
3374 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3375 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3376 pushValue(I.getOperand(2), InstID, Vals); // newval.
3377 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3378 Vals.push_back(
3379 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3380 Vals.push_back(
3381 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3382 Vals.push_back(
3383 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3384 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3385 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3386 break;
3387 case Instruction::AtomicRMW:
3388 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3389 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3390 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3391 Vals.push_back(
3392 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3393 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3394 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3395 Vals.push_back(
3396 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3397 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3398 break;
3399 case Instruction::Fence:
3400 Code = bitc::FUNC_CODE_INST_FENCE;
3401 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3402 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3403 break;
3404 case Instruction::Call: {
3405 const CallInst &CI = cast<CallInst>(I);
3406 FunctionType *FTy = CI.getFunctionType();
3408 if (CI.hasOperandBundles())
3409 writeOperandBundles(CI, InstID);
3411 Code = bitc::FUNC_CODE_INST_CALL;
3413 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3415 unsigned Flags = getOptimizationFlags(&I);
3416 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3417 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3418 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3419 1 << bitc::CALL_EXPLICIT_TYPE |
3420 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3421 unsigned(Flags != 0) << bitc::CALL_FMF);
3422 if (Flags != 0)
3423 Vals.push_back(Flags);
3425 Vals.push_back(VE.getTypeID(FTy));
3426 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3428 // Emit value #'s for the fixed parameters.
3429 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3430 // Check for labels (can happen with asm labels).
3431 if (FTy->getParamType(i)->isLabelTy())
3432 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3433 else
3434 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3437 // Emit type/value pairs for varargs params.
3438 if (FTy->isVarArg()) {
3439 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3440 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3442 break;
3444 case Instruction::VAArg:
3445 Code = bitc::FUNC_CODE_INST_VAARG;
3446 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3447 pushValue(I.getOperand(0), InstID, Vals); // valist.
3448 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3449 break;
3450 case Instruction::Freeze:
3451 Code = bitc::FUNC_CODE_INST_FREEZE;
3452 pushValueAndType(I.getOperand(0), InstID, Vals);
3453 break;
3456 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3457 Vals.clear();
3460 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3461 /// to allow clients to efficiently find the function body.
3462 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3463 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3464 // Get the offset of the VST we are writing, and backpatch it into
3465 // the VST forward declaration record.
3466 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3467 // The BitcodeStartBit was the stream offset of the identification block.
3468 VSTOffset -= bitcodeStartBit();
3469 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3470 // Note that we add 1 here because the offset is relative to one word
3471 // before the start of the identification block, which was historically
3472 // always the start of the regular bitcode header.
3473 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3475 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3477 auto Abbv = std::make_shared<BitCodeAbbrev>();
3478 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3481 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3483 for (const Function &F : M) {
3484 uint64_t Record[2];
3486 if (F.isDeclaration())
3487 continue;
3489 Record[0] = VE.getValueID(&F);
3491 // Save the word offset of the function (from the start of the
3492 // actual bitcode written to the stream).
3493 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3494 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3495 // Note that we add 1 here because the offset is relative to one word
3496 // before the start of the identification block, which was historically
3497 // always the start of the regular bitcode header.
3498 Record[1] = BitcodeIndex / 32 + 1;
3500 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3503 Stream.ExitBlock();
3506 /// Emit names for arguments, instructions and basic blocks in a function.
3507 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3508 const ValueSymbolTable &VST) {
3509 if (VST.empty())
3510 return;
3512 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3514 // FIXME: Set up the abbrev, we know how many values there are!
3515 // FIXME: We know if the type names can use 7-bit ascii.
3516 SmallVector<uint64_t, 64> NameVals;
3518 for (const ValueName &Name : VST) {
3519 // Figure out the encoding to use for the name.
3520 StringEncoding Bits = getStringEncoding(Name.getKey());
3522 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3523 NameVals.push_back(VE.getValueID(Name.getValue()));
3525 // VST_CODE_ENTRY: [valueid, namechar x N]
3526 // VST_CODE_BBENTRY: [bbid, namechar x N]
3527 unsigned Code;
3528 if (isa<BasicBlock>(Name.getValue())) {
3529 Code = bitc::VST_CODE_BBENTRY;
3530 if (Bits == SE_Char6)
3531 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3532 } else {
3533 Code = bitc::VST_CODE_ENTRY;
3534 if (Bits == SE_Char6)
3535 AbbrevToUse = VST_ENTRY_6_ABBREV;
3536 else if (Bits == SE_Fixed7)
3537 AbbrevToUse = VST_ENTRY_7_ABBREV;
3540 for (const auto P : Name.getKey())
3541 NameVals.push_back((unsigned char)P);
3543 // Emit the finished record.
3544 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3545 NameVals.clear();
3548 Stream.ExitBlock();
3551 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3552 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3553 unsigned Code;
3554 if (isa<BasicBlock>(Order.V))
3555 Code = bitc::USELIST_CODE_BB;
3556 else
3557 Code = bitc::USELIST_CODE_DEFAULT;
3559 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3560 Record.push_back(VE.getValueID(Order.V));
3561 Stream.EmitRecord(Code, Record);
3564 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3565 assert(VE.shouldPreserveUseListOrder() &&
3566 "Expected to be preserving use-list order");
3568 auto hasMore = [&]() {
3569 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3571 if (!hasMore())
3572 // Nothing to do.
3573 return;
3575 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3576 while (hasMore()) {
3577 writeUseList(std::move(VE.UseListOrders.back()));
3578 VE.UseListOrders.pop_back();
3580 Stream.ExitBlock();
3583 /// Emit a function body to the module stream.
3584 void ModuleBitcodeWriter::writeFunction(
3585 const Function &F,
3586 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3587 // Save the bitcode index of the start of this function block for recording
3588 // in the VST.
3589 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3591 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3592 VE.incorporateFunction(F);
3594 SmallVector<unsigned, 64> Vals;
3596 // Emit the number of basic blocks, so the reader can create them ahead of
3597 // time.
3598 Vals.push_back(VE.getBasicBlocks().size());
3599 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3600 Vals.clear();
3602 // If there are function-local constants, emit them now.
3603 unsigned CstStart, CstEnd;
3604 VE.getFunctionConstantRange(CstStart, CstEnd);
3605 writeConstants(CstStart, CstEnd, false);
3607 // If there is function-local metadata, emit it now.
3608 writeFunctionMetadata(F);
3610 // Keep a running idea of what the instruction ID is.
3611 unsigned InstID = CstEnd;
3613 bool NeedsMetadataAttachment = F.hasMetadata();
3615 DILocation *LastDL = nullptr;
3616 SmallSetVector<Function *, 4> BlockAddressUsers;
3618 // Finally, emit all the instructions, in order.
3619 for (const BasicBlock &BB : F) {
3620 for (const Instruction &I : BB) {
3621 writeInstruction(I, InstID, Vals);
3623 if (!I.getType()->isVoidTy())
3624 ++InstID;
3626 // If the instruction has metadata, write a metadata attachment later.
3627 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3629 // If the instruction has a debug location, emit it.
3630 if (DILocation *DL = I.getDebugLoc()) {
3631 if (DL == LastDL) {
3632 // Just repeat the same debug loc as last time.
3633 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3634 } else {
3635 Vals.push_back(DL->getLine());
3636 Vals.push_back(DL->getColumn());
3637 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3638 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3639 Vals.push_back(DL->isImplicitCode());
3640 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3641 Vals.clear();
3642 LastDL = DL;
3646 // If the instruction has DbgRecords attached to it, emit them. Note that
3647 // they come after the instruction so that it's easy to attach them again
3648 // when reading the bitcode, even though conceptually the debug locations
3649 // start "before" the instruction.
3650 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3651 /// Try to push the value only (unwrapped), otherwise push the
3652 /// metadata wrapped value. Returns true if the value was pushed
3653 /// without the ValueAsMetadata wrapper.
3654 auto PushValueOrMetadata = [&Vals, InstID,
3655 this](Metadata *RawLocation) {
3656 assert(RawLocation &&
3657 "RawLocation unexpectedly null in DbgVariableRecord");
3658 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3659 SmallVector<unsigned, 2> ValAndType;
3660 // If the value is a fwd-ref the type is also pushed. We don't
3661 // want the type, so fwd-refs are kept wrapped (pushValueAndType
3662 // returns false if the value is pushed without type).
3663 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3664 Vals.push_back(ValAndType[0]);
3665 return true;
3668 // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3669 // fwd-ref. Push the metadata ID.
3670 Vals.push_back(VE.getMetadataID(RawLocation));
3671 return false;
3674 // Write out non-instruction debug information attached to this
3675 // instruction. Write it after the instruction so that it's easy to
3676 // re-attach to the instruction reading the records in.
3677 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3678 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3679 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc()));
3680 Vals.push_back(VE.getMetadataID(DLR->getLabel()));
3681 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3682 Vals.clear();
3683 continue;
3686 // First 3 fields are common to all kinds:
3687 // DILocation, DILocalVariable, DIExpression
3688 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3689 // ..., LocationMetadata
3690 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3691 // ..., Value
3692 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3693 // ..., LocationMetadata
3694 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3695 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3696 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3697 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc()));
3698 Vals.push_back(VE.getMetadataID(DVR.getVariable()));
3699 Vals.push_back(VE.getMetadataID(DVR.getExpression()));
3700 if (DVR.isDbgValue()) {
3701 if (PushValueOrMetadata(DVR.getRawLocation()))
3702 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3703 FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3704 else
3705 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3706 } else if (DVR.isDbgDeclare()) {
3707 Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3708 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3709 } else {
3710 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3711 Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3712 Vals.push_back(VE.getMetadataID(DVR.getAssignID()));
3713 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression()));
3714 Vals.push_back(VE.getMetadataID(DVR.getRawAddress()));
3715 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3717 Vals.clear();
3722 if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3723 SmallVector<Value *> Worklist{BA};
3724 SmallPtrSet<Value *, 8> Visited{BA};
3725 while (!Worklist.empty()) {
3726 Value *V = Worklist.pop_back_val();
3727 for (User *U : V->users()) {
3728 if (auto *I = dyn_cast<Instruction>(U)) {
3729 Function *P = I->getFunction();
3730 if (P != &F)
3731 BlockAddressUsers.insert(P);
3732 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3733 Visited.insert(U).second)
3734 Worklist.push_back(U);
3740 if (!BlockAddressUsers.empty()) {
3741 Vals.resize(BlockAddressUsers.size());
3742 for (auto I : llvm::enumerate(BlockAddressUsers))
3743 Vals[I.index()] = VE.getValueID(I.value());
3744 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3745 Vals.clear();
3748 // Emit names for all the instructions etc.
3749 if (auto *Symtab = F.getValueSymbolTable())
3750 writeFunctionLevelValueSymbolTable(*Symtab);
3752 if (NeedsMetadataAttachment)
3753 writeFunctionMetadataAttachment(F);
3754 if (VE.shouldPreserveUseListOrder())
3755 writeUseListBlock(&F);
3756 VE.purgeFunction();
3757 Stream.ExitBlock();
3760 // Emit blockinfo, which defines the standard abbreviations etc.
3761 void ModuleBitcodeWriter::writeBlockInfo() {
3762 // We only want to emit block info records for blocks that have multiple
3763 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3764 // Other blocks can define their abbrevs inline.
3765 Stream.EnterBlockInfoBlock();
3767 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3768 auto Abbv = std::make_shared<BitCodeAbbrev>();
3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3773 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3774 VST_ENTRY_8_ABBREV)
3775 llvm_unreachable("Unexpected abbrev ordering!");
3778 { // 7-bit fixed width VST_CODE_ENTRY strings.
3779 auto Abbv = std::make_shared<BitCodeAbbrev>();
3780 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3784 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3785 VST_ENTRY_7_ABBREV)
3786 llvm_unreachable("Unexpected abbrev ordering!");
3788 { // 6-bit char6 VST_CODE_ENTRY strings.
3789 auto Abbv = std::make_shared<BitCodeAbbrev>();
3790 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3794 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3795 VST_ENTRY_6_ABBREV)
3796 llvm_unreachable("Unexpected abbrev ordering!");
3798 { // 6-bit char6 VST_CODE_BBENTRY strings.
3799 auto Abbv = std::make_shared<BitCodeAbbrev>();
3800 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3804 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3805 VST_BBENTRY_6_ABBREV)
3806 llvm_unreachable("Unexpected abbrev ordering!");
3809 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3810 auto Abbv = std::make_shared<BitCodeAbbrev>();
3811 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3813 VE.computeBitsRequiredForTypeIndices()));
3814 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3815 CONSTANTS_SETTYPE_ABBREV)
3816 llvm_unreachable("Unexpected abbrev ordering!");
3819 { // INTEGER abbrev for CONSTANTS_BLOCK.
3820 auto Abbv = std::make_shared<BitCodeAbbrev>();
3821 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3823 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3824 CONSTANTS_INTEGER_ABBREV)
3825 llvm_unreachable("Unexpected abbrev ordering!");
3828 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3829 auto Abbv = std::make_shared<BitCodeAbbrev>();
3830 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3833 VE.computeBitsRequiredForTypeIndices()));
3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3836 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3837 CONSTANTS_CE_CAST_Abbrev)
3838 llvm_unreachable("Unexpected abbrev ordering!");
3840 { // NULL abbrev for CONSTANTS_BLOCK.
3841 auto Abbv = std::make_shared<BitCodeAbbrev>();
3842 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3843 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3844 CONSTANTS_NULL_Abbrev)
3845 llvm_unreachable("Unexpected abbrev ordering!");
3848 // FIXME: This should only use space for first class types!
3850 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3851 auto Abbv = std::make_shared<BitCodeAbbrev>();
3852 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3855 VE.computeBitsRequiredForTypeIndices()));
3856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3858 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3859 FUNCTION_INST_LOAD_ABBREV)
3860 llvm_unreachable("Unexpected abbrev ordering!");
3862 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3863 auto Abbv = std::make_shared<BitCodeAbbrev>();
3864 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3868 FUNCTION_INST_UNOP_ABBREV)
3869 llvm_unreachable("Unexpected abbrev ordering!");
3871 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3872 auto Abbv = std::make_shared<BitCodeAbbrev>();
3873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3877 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3878 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3879 llvm_unreachable("Unexpected abbrev ordering!");
3881 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3882 auto Abbv = std::make_shared<BitCodeAbbrev>();
3883 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3887 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3888 FUNCTION_INST_BINOP_ABBREV)
3889 llvm_unreachable("Unexpected abbrev ordering!");
3891 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3892 auto Abbv = std::make_shared<BitCodeAbbrev>();
3893 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3898 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3899 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3900 llvm_unreachable("Unexpected abbrev ordering!");
3902 { // INST_CAST abbrev for FUNCTION_BLOCK.
3903 auto Abbv = std::make_shared<BitCodeAbbrev>();
3904 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3907 VE.computeBitsRequiredForTypeIndices()));
3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3909 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3910 FUNCTION_INST_CAST_ABBREV)
3911 llvm_unreachable("Unexpected abbrev ordering!");
3913 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3914 auto Abbv = std::make_shared<BitCodeAbbrev>();
3915 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3918 VE.computeBitsRequiredForTypeIndices()));
3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3921 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3922 FUNCTION_INST_CAST_FLAGS_ABBREV)
3923 llvm_unreachable("Unexpected abbrev ordering!");
3926 { // INST_RET abbrev for FUNCTION_BLOCK.
3927 auto Abbv = std::make_shared<BitCodeAbbrev>();
3928 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3929 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3930 FUNCTION_INST_RET_VOID_ABBREV)
3931 llvm_unreachable("Unexpected abbrev ordering!");
3933 { // INST_RET abbrev for FUNCTION_BLOCK.
3934 auto Abbv = std::make_shared<BitCodeAbbrev>();
3935 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3937 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3938 FUNCTION_INST_RET_VAL_ABBREV)
3939 llvm_unreachable("Unexpected abbrev ordering!");
3941 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3942 auto Abbv = std::make_shared<BitCodeAbbrev>();
3943 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3944 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3945 FUNCTION_INST_UNREACHABLE_ABBREV)
3946 llvm_unreachable("Unexpected abbrev ordering!");
3949 auto Abbv = std::make_shared<BitCodeAbbrev>();
3950 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3953 Log2_32_Ceil(VE.getTypes().size() + 1)));
3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3956 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3957 FUNCTION_INST_GEP_ABBREV)
3958 llvm_unreachable("Unexpected abbrev ordering!");
3961 auto Abbv = std::make_shared<BitCodeAbbrev>();
3962 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3967 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3968 FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3969 llvm_unreachable("Unexpected abbrev ordering! 1");
3971 Stream.ExitBlock();
3974 /// Write the module path strings, currently only used when generating
3975 /// a combined index file.
3976 void IndexBitcodeWriter::writeModStrings() {
3977 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3979 // TODO: See which abbrev sizes we actually need to emit
3981 // 8-bit fixed-width MST_ENTRY strings.
3982 auto Abbv = std::make_shared<BitCodeAbbrev>();
3983 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3987 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3989 // 7-bit fixed width MST_ENTRY strings.
3990 Abbv = std::make_shared<BitCodeAbbrev>();
3991 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3995 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3997 // 6-bit char6 MST_ENTRY strings.
3998 Abbv = std::make_shared<BitCodeAbbrev>();
3999 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4003 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
4005 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
4006 Abbv = std::make_shared<BitCodeAbbrev>();
4007 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4013 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
4015 SmallVector<unsigned, 64> Vals;
4016 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
4017 StringRef Key = MPSE.getKey();
4018 const auto &Hash = MPSE.getValue();
4019 StringEncoding Bits = getStringEncoding(Key);
4020 unsigned AbbrevToUse = Abbrev8Bit;
4021 if (Bits == SE_Char6)
4022 AbbrevToUse = Abbrev6Bit;
4023 else if (Bits == SE_Fixed7)
4024 AbbrevToUse = Abbrev7Bit;
4026 auto ModuleId = ModuleIdMap.size();
4027 ModuleIdMap[Key] = ModuleId;
4028 Vals.push_back(ModuleId);
4029 Vals.append(Key.begin(), Key.end());
4031 // Emit the finished record.
4032 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
4034 // Emit an optional hash for the module now
4035 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
4036 Vals.assign(Hash.begin(), Hash.end());
4037 // Emit the hash record.
4038 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
4041 Vals.clear();
4043 Stream.ExitBlock();
4046 /// Write the function type metadata related records that need to appear before
4047 /// a function summary entry (whether per-module or combined).
4048 template <typename Fn>
4049 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
4050 FunctionSummary *FS,
4051 Fn GetValueID) {
4052 if (!FS->type_tests().empty())
4053 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
4055 SmallVector<uint64_t, 64> Record;
4057 auto WriteVFuncIdVec = [&](uint64_t Ty,
4058 ArrayRef<FunctionSummary::VFuncId> VFs) {
4059 if (VFs.empty())
4060 return;
4061 Record.clear();
4062 for (auto &VF : VFs) {
4063 Record.push_back(VF.GUID);
4064 Record.push_back(VF.Offset);
4066 Stream.EmitRecord(Ty, Record);
4069 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
4070 FS->type_test_assume_vcalls());
4071 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
4072 FS->type_checked_load_vcalls());
4074 auto WriteConstVCallVec = [&](uint64_t Ty,
4075 ArrayRef<FunctionSummary::ConstVCall> VCs) {
4076 for (auto &VC : VCs) {
4077 Record.clear();
4078 Record.push_back(VC.VFunc.GUID);
4079 Record.push_back(VC.VFunc.Offset);
4080 llvm::append_range(Record, VC.Args);
4081 Stream.EmitRecord(Ty, Record);
4085 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
4086 FS->type_test_assume_const_vcalls());
4087 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
4088 FS->type_checked_load_const_vcalls());
4090 auto WriteRange = [&](ConstantRange Range) {
4091 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
4092 assert(Range.getLower().getNumWords() == 1);
4093 assert(Range.getUpper().getNumWords() == 1);
4094 emitSignedInt64(Record, *Range.getLower().getRawData());
4095 emitSignedInt64(Record, *Range.getUpper().getRawData());
4098 if (!FS->paramAccesses().empty()) {
4099 Record.clear();
4100 for (auto &Arg : FS->paramAccesses()) {
4101 size_t UndoSize = Record.size();
4102 Record.push_back(Arg.ParamNo);
4103 WriteRange(Arg.Use);
4104 Record.push_back(Arg.Calls.size());
4105 for (auto &Call : Arg.Calls) {
4106 Record.push_back(Call.ParamNo);
4107 std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4108 if (!ValueID) {
4109 // If ValueID is unknown we can't drop just this call, we must drop
4110 // entire parameter.
4111 Record.resize(UndoSize);
4112 break;
4114 Record.push_back(*ValueID);
4115 WriteRange(Call.Offsets);
4118 if (!Record.empty())
4119 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4123 /// Collect type IDs from type tests used by function.
4124 static void
4125 getReferencedTypeIds(FunctionSummary *FS,
4126 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4127 if (!FS->type_tests().empty())
4128 for (auto &TT : FS->type_tests())
4129 ReferencedTypeIds.insert(TT);
4131 auto GetReferencedTypesFromVFuncIdVec =
4132 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4133 for (auto &VF : VFs)
4134 ReferencedTypeIds.insert(VF.GUID);
4137 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4138 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4140 auto GetReferencedTypesFromConstVCallVec =
4141 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4142 for (auto &VC : VCs)
4143 ReferencedTypeIds.insert(VC.VFunc.GUID);
4146 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4147 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4150 static void writeWholeProgramDevirtResolutionByArg(
4151 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4152 const WholeProgramDevirtResolution::ByArg &ByArg) {
4153 NameVals.push_back(args.size());
4154 llvm::append_range(NameVals, args);
4156 NameVals.push_back(ByArg.TheKind);
4157 NameVals.push_back(ByArg.Info);
4158 NameVals.push_back(ByArg.Byte);
4159 NameVals.push_back(ByArg.Bit);
4162 static void writeWholeProgramDevirtResolution(
4163 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4164 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4165 NameVals.push_back(Id);
4167 NameVals.push_back(Wpd.TheKind);
4168 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4169 NameVals.push_back(Wpd.SingleImplName.size());
4171 NameVals.push_back(Wpd.ResByArg.size());
4172 for (auto &A : Wpd.ResByArg)
4173 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4176 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4177 StringTableBuilder &StrtabBuilder,
4178 StringRef Id,
4179 const TypeIdSummary &Summary) {
4180 NameVals.push_back(StrtabBuilder.add(Id));
4181 NameVals.push_back(Id.size());
4183 NameVals.push_back(Summary.TTRes.TheKind);
4184 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4185 NameVals.push_back(Summary.TTRes.AlignLog2);
4186 NameVals.push_back(Summary.TTRes.SizeM1);
4187 NameVals.push_back(Summary.TTRes.BitMask);
4188 NameVals.push_back(Summary.TTRes.InlineBits);
4190 for (auto &W : Summary.WPDRes)
4191 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4192 W.second);
4195 static void writeTypeIdCompatibleVtableSummaryRecord(
4196 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4197 StringRef Id, const TypeIdCompatibleVtableInfo &Summary,
4198 ValueEnumerator &VE) {
4199 NameVals.push_back(StrtabBuilder.add(Id));
4200 NameVals.push_back(Id.size());
4202 for (auto &P : Summary) {
4203 NameVals.push_back(P.AddressPointOffset);
4204 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4208 // Adds the allocation contexts to the CallStacks map. We simply use the
4209 // size at the time the context was added as the CallStackId. This works because
4210 // when we look up the call stacks later on we process the function summaries
4211 // and their allocation records in the same exact order.
4212 static void collectMemProfCallStacks(
4213 FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex,
4214 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) {
4215 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame
4216 // id offset into the index of the full stack frames. The ModuleSummaryIndex
4217 // currently uses unsigned. Make sure these stay in sync.
4218 static_assert(std::is_same_v<LinearFrameId, unsigned>);
4219 for (auto &AI : FS->allocs()) {
4220 for (auto &MIB : AI.MIBs) {
4221 SmallVector<unsigned> StackIdIndices;
4222 StackIdIndices.reserve(MIB.StackIdIndices.size());
4223 for (auto Id : MIB.StackIdIndices)
4224 StackIdIndices.push_back(GetStackIndex(Id));
4225 // The CallStackId is the size at the time this context was inserted.
4226 CallStacks.insert({CallStacks.size(), StackIdIndices});
4231 // Build the radix tree from the accumulated CallStacks, write out the resulting
4232 // linearized radix tree array, and return the map of call stack positions into
4233 // this array for use when writing the allocation records. The returned map is
4234 // indexed by a CallStackId which in this case is implicitly determined by the
4235 // order of function summaries and their allocation infos being written.
4236 static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree(
4237 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks,
4238 BitstreamWriter &Stream, unsigned RadixAbbrev) {
4239 assert(!CallStacks.empty());
4240 DenseMap<unsigned, FrameStat> FrameHistogram =
4241 computeFrameHistogram<LinearFrameId>(CallStacks);
4242 CallStackRadixTreeBuilder<LinearFrameId> Builder;
4243 // We don't need a MemProfFrameIndexes map as we have already converted the
4244 // full stack id hash to a linear offset into the StackIds array.
4245 Builder.build(std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr,
4246 FrameHistogram);
4247 Stream.EmitRecord(bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Builder.getRadixArray(),
4248 RadixAbbrev);
4249 return Builder.takeCallStackPos();
4252 static void writeFunctionHeapProfileRecords(
4253 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4254 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule,
4255 std::function<unsigned(const ValueInfo &VI)> GetValueID,
4256 std::function<unsigned(unsigned)> GetStackIndex,
4257 bool WriteContextSizeInfoIndex,
4258 DenseMap<CallStackId, LinearCallStackId> &CallStackPos,
4259 CallStackId &CallStackCount) {
4260 SmallVector<uint64_t> Record;
4262 for (auto &CI : FS->callsites()) {
4263 Record.clear();
4264 // Per module callsite clones should always have a single entry of
4265 // value 0.
4266 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4267 Record.push_back(GetValueID(CI.Callee));
4268 if (!PerModule) {
4269 Record.push_back(CI.StackIdIndices.size());
4270 Record.push_back(CI.Clones.size());
4272 for (auto Id : CI.StackIdIndices)
4273 Record.push_back(GetStackIndex(Id));
4274 if (!PerModule) {
4275 for (auto V : CI.Clones)
4276 Record.push_back(V);
4278 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4279 : bitc::FS_COMBINED_CALLSITE_INFO,
4280 Record, CallsiteAbbrev);
4283 for (auto &AI : FS->allocs()) {
4284 Record.clear();
4285 // Per module alloc versions should always have a single entry of
4286 // value 0.
4287 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4288 Record.push_back(AI.MIBs.size());
4289 if (!PerModule)
4290 Record.push_back(AI.Versions.size());
4291 for (auto &MIB : AI.MIBs) {
4292 Record.push_back((uint8_t)MIB.AllocType);
4293 // Record the index into the radix tree array for this context.
4294 assert(CallStackCount <= CallStackPos.size());
4295 Record.push_back(CallStackPos[CallStackCount++]);
4297 if (!PerModule) {
4298 for (auto V : AI.Versions)
4299 Record.push_back(V);
4301 assert(AI.ContextSizeInfos.empty() ||
4302 AI.ContextSizeInfos.size() == AI.MIBs.size());
4303 // Optionally emit the context size information if it exists.
4304 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) {
4305 // The abbreviation id for the context ids record should have been created
4306 // if we are emitting the per-module index, which is where we write this
4307 // info.
4308 assert(ContextIdAbbvId);
4309 SmallVector<uint32_t> ContextIds;
4310 // At least one context id per ContextSizeInfos entry (MIB), broken into 2
4311 // halves.
4312 ContextIds.reserve(AI.ContextSizeInfos.size() * 2);
4313 for (auto &Infos : AI.ContextSizeInfos) {
4314 Record.push_back(Infos.size());
4315 for (auto [FullStackId, TotalSize] : Infos) {
4316 // The context ids are emitted separately as a fixed width array,
4317 // which is more efficient than a VBR given that these hashes are
4318 // typically close to 64-bits. The max fixed width entry is 32 bits so
4319 // it is split into 2.
4320 ContextIds.push_back(static_cast<uint32_t>(FullStackId >> 32));
4321 ContextIds.push_back(static_cast<uint32_t>(FullStackId));
4322 Record.push_back(TotalSize);
4325 // The context ids are expected by the reader to immediately precede the
4326 // associated alloc info record.
4327 Stream.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS, ContextIds,
4328 ContextIdAbbvId);
4330 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4331 : bitc::FS_COMBINED_ALLOC_INFO,
4332 Record, AllocAbbrev);
4336 // Helper to emit a single function summary record.
4337 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4338 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4339 unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4340 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4341 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F,
4342 DenseMap<CallStackId, LinearCallStackId> &CallStackPos,
4343 CallStackId &CallStackCount) {
4344 NameVals.push_back(ValueID);
4346 FunctionSummary *FS = cast<FunctionSummary>(Summary);
4348 writeFunctionTypeMetadataRecords(
4349 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4350 return {VE.getValueID(VI.getValue())};
4353 writeFunctionHeapProfileRecords(
4354 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId,
4355 /*PerModule*/ true,
4356 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4357 /*GetStackIndex*/ [&](unsigned I) { return I; },
4358 /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount);
4360 auto SpecialRefCnts = FS->specialRefCounts();
4361 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4362 NameVals.push_back(FS->instCount());
4363 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4364 NameVals.push_back(FS->refs().size());
4365 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
4366 NameVals.push_back(SpecialRefCnts.second); // worefcnt
4368 for (auto &RI : FS->refs())
4369 NameVals.push_back(getValueId(RI));
4371 const bool UseRelBFRecord =
4372 WriteRelBFToSummary && !F.hasProfileData() &&
4373 ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4374 for (auto &ECI : FS->calls()) {
4375 NameVals.push_back(getValueId(ECI.first));
4376 if (UseRelBFRecord)
4377 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4378 else
4379 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4382 unsigned FSAbbrev =
4383 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4384 unsigned Code =
4385 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4387 // Emit the finished record.
4388 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4389 NameVals.clear();
4392 // Collect the global value references in the given variable's initializer,
4393 // and emit them in a summary record.
4394 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4395 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4396 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4397 auto VI = Index->getValueInfo(V.getGUID());
4398 if (!VI || VI.getSummaryList().empty()) {
4399 // Only declarations should not have a summary (a declaration might however
4400 // have a summary if the def was in module level asm).
4401 assert(V.isDeclaration());
4402 return;
4404 auto *Summary = VI.getSummaryList()[0].get();
4405 NameVals.push_back(VE.getValueID(&V));
4406 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4407 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4408 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4410 auto VTableFuncs = VS->vTableFuncs();
4411 if (!VTableFuncs.empty())
4412 NameVals.push_back(VS->refs().size());
4414 unsigned SizeBeforeRefs = NameVals.size();
4415 for (auto &RI : VS->refs())
4416 NameVals.push_back(VE.getValueID(RI.getValue()));
4417 // Sort the refs for determinism output, the vector returned by FS->refs() has
4418 // been initialized from a DenseSet.
4419 llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4421 if (VTableFuncs.empty())
4422 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4423 FSModRefsAbbrev);
4424 else {
4425 // VTableFuncs pairs should already be sorted by offset.
4426 for (auto &P : VTableFuncs) {
4427 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4428 NameVals.push_back(P.VTableOffset);
4431 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4432 FSModVTableRefsAbbrev);
4434 NameVals.clear();
4437 /// Emit the per-module summary section alongside the rest of
4438 /// the module's bitcode.
4439 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4440 // By default we compile with ThinLTO if the module has a summary, but the
4441 // client can request full LTO with a module flag.
4442 bool IsThinLTO = true;
4443 if (auto *MD =
4444 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4445 IsThinLTO = MD->getZExtValue();
4446 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4447 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4450 Stream.EmitRecord(
4451 bitc::FS_VERSION,
4452 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4454 // Write the index flags.
4455 uint64_t Flags = 0;
4456 // Bits 1-3 are set only in the combined index, skip them.
4457 if (Index->enableSplitLTOUnit())
4458 Flags |= 0x8;
4459 if (Index->hasUnifiedLTO())
4460 Flags |= 0x200;
4462 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4464 if (Index->begin() == Index->end()) {
4465 Stream.ExitBlock();
4466 return;
4469 auto Abbv = std::make_shared<BitCodeAbbrev>();
4470 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID));
4471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4472 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4475 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4477 for (const auto &GVI : valueIds()) {
4478 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4479 ArrayRef<uint32_t>{GVI.second,
4480 static_cast<uint32_t>(GVI.first >> 32),
4481 static_cast<uint32_t>(GVI.first)},
4482 ValueGuidAbbrev);
4485 if (!Index->stackIds().empty()) {
4486 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4487 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4488 // numids x stackid
4489 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4490 // The stack ids are hashes that are close to 64 bits in size, so emitting
4491 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4492 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4493 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4494 SmallVector<uint32_t> Vals;
4495 Vals.reserve(Index->stackIds().size() * 2);
4496 for (auto Id : Index->stackIds()) {
4497 Vals.push_back(static_cast<uint32_t>(Id >> 32));
4498 Vals.push_back(static_cast<uint32_t>(Id));
4500 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId);
4503 // n x context id
4504 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>();
4505 ContextIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS));
4506 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4507 // The context ids are hashes that are close to 64 bits in size, so emitting
4508 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4509 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4510 unsigned ContextIdAbbvId = Stream.EmitAbbrev(std::move(ContextIdAbbv));
4512 // Abbrev for FS_PERMODULE_PROFILE.
4513 Abbv = std::make_shared<BitCodeAbbrev>();
4514 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags
4517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4522 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4525 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4527 // Abbrev for FS_PERMODULE_RELBF.
4528 Abbv = std::make_shared<BitCodeAbbrev>();
4529 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4537 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4540 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4542 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4543 Abbv = std::make_shared<BitCodeAbbrev>();
4544 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4549 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4551 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4552 Abbv = std::make_shared<BitCodeAbbrev>();
4553 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4557 // numrefs x valueid, n x (valueid , offset)
4558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4560 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4562 // Abbrev for FS_ALIAS.
4563 Abbv = std::make_shared<BitCodeAbbrev>();
4564 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4568 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4570 // Abbrev for FS_TYPE_ID_METADATA
4571 Abbv = std::make_shared<BitCodeAbbrev>();
4572 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4575 // n x (valueid , offset)
4576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4578 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4580 Abbv = std::make_shared<BitCodeAbbrev>();
4581 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4583 // n x stackidindex
4584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4586 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4588 Abbv = std::make_shared<BitCodeAbbrev>();
4589 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4591 // n x (alloc type, context radix tree index)
4592 // optional: nummib x (numcontext x total size)
4593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4595 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4597 Abbv = std::make_shared<BitCodeAbbrev>();
4598 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY));
4599 // n x entry
4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4602 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4604 // First walk through all the functions and collect the allocation contexts in
4605 // their associated summaries, for use in constructing a radix tree of
4606 // contexts. Note that we need to do this in the same order as the functions
4607 // are processed further below since the call stack positions in the resulting
4608 // radix tree array are identified based on this order.
4609 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks;
4610 for (const Function &F : M) {
4611 // Summary emission does not support anonymous functions, they have to be
4612 // renamed using the anonymous function renaming pass.
4613 if (!F.hasName())
4614 report_fatal_error("Unexpected anonymous function when writing summary");
4616 ValueInfo VI = Index->getValueInfo(F.getGUID());
4617 if (!VI || VI.getSummaryList().empty()) {
4618 // Only declarations should not have a summary (a declaration might
4619 // however have a summary if the def was in module level asm).
4620 assert(F.isDeclaration());
4621 continue;
4623 auto *Summary = VI.getSummaryList()[0].get();
4624 FunctionSummary *FS = cast<FunctionSummary>(Summary);
4625 collectMemProfCallStacks(
4626 FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks);
4628 // Finalize the radix tree, write it out, and get the map of positions in the
4629 // linearized tree array.
4630 DenseMap<CallStackId, LinearCallStackId> CallStackPos;
4631 if (!CallStacks.empty()) {
4632 CallStackPos =
4633 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev);
4636 // Keep track of the current index into the CallStackPos map.
4637 CallStackId CallStackCount = 0;
4639 SmallVector<uint64_t, 64> NameVals;
4640 // Iterate over the list of functions instead of the Index to
4641 // ensure the ordering is stable.
4642 for (const Function &F : M) {
4643 // Summary emission does not support anonymous functions, they have to
4644 // renamed using the anonymous function renaming pass.
4645 if (!F.hasName())
4646 report_fatal_error("Unexpected anonymous function when writing summary");
4648 ValueInfo VI = Index->getValueInfo(F.getGUID());
4649 if (!VI || VI.getSummaryList().empty()) {
4650 // Only declarations should not have a summary (a declaration might
4651 // however have a summary if the def was in module level asm).
4652 assert(F.isDeclaration());
4653 continue;
4655 auto *Summary = VI.getSummaryList()[0].get();
4656 writePerModuleFunctionSummaryRecord(
4657 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4658 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F,
4659 CallStackPos, CallStackCount);
4662 // Capture references from GlobalVariable initializers, which are outside
4663 // of a function scope.
4664 for (const GlobalVariable &G : M.globals())
4665 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4666 FSModVTableRefsAbbrev);
4668 for (const GlobalAlias &A : M.aliases()) {
4669 auto *Aliasee = A.getAliaseeObject();
4670 // Skip ifunc and nameless functions which don't have an entry in the
4671 // summary.
4672 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4673 continue;
4674 auto AliasId = VE.getValueID(&A);
4675 auto AliaseeId = VE.getValueID(Aliasee);
4676 NameVals.push_back(AliasId);
4677 auto *Summary = Index->getGlobalValueSummary(A);
4678 AliasSummary *AS = cast<AliasSummary>(Summary);
4679 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4680 NameVals.push_back(AliaseeId);
4681 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4682 NameVals.clear();
4685 for (auto &S : Index->typeIdCompatibleVtableMap()) {
4686 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4687 S.second, VE);
4688 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4689 TypeIdCompatibleVtableAbbrev);
4690 NameVals.clear();
4693 if (Index->getBlockCount())
4694 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4695 ArrayRef<uint64_t>{Index->getBlockCount()});
4697 Stream.ExitBlock();
4700 /// Emit the combined summary section into the combined index file.
4701 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4702 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4703 Stream.EmitRecord(
4704 bitc::FS_VERSION,
4705 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4707 // Write the index flags.
4708 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4710 auto Abbv = std::make_shared<BitCodeAbbrev>();
4711 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID));
4712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4713 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4716 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4718 for (const auto &GVI : valueIds()) {
4719 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4720 ArrayRef<uint32_t>{GVI.second,
4721 static_cast<uint32_t>(GVI.first >> 32),
4722 static_cast<uint32_t>(GVI.first)},
4723 ValueGuidAbbrev);
4726 // Write the stack ids used by this index, which will be a subset of those in
4727 // the full index in the case of distributed indexes.
4728 if (!StackIds.empty()) {
4729 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4730 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4731 // numids x stackid
4732 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4733 // The stack ids are hashes that are close to 64 bits in size, so emitting
4734 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4735 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
4736 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4737 SmallVector<uint32_t> Vals;
4738 Vals.reserve(StackIds.size() * 2);
4739 for (auto Id : StackIds) {
4740 Vals.push_back(static_cast<uint32_t>(Id >> 32));
4741 Vals.push_back(static_cast<uint32_t>(Id));
4743 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId);
4746 // Abbrev for FS_COMBINED_PROFILE.
4747 Abbv = std::make_shared<BitCodeAbbrev>();
4748 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4758 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4761 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4763 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4764 Abbv = std::make_shared<BitCodeAbbrev>();
4765 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4771 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4773 // Abbrev for FS_COMBINED_ALIAS.
4774 Abbv = std::make_shared<BitCodeAbbrev>();
4775 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4780 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4782 Abbv = std::make_shared<BitCodeAbbrev>();
4783 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4787 // numstackindices x stackidindex, numver x version
4788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4790 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4792 Abbv = std::make_shared<BitCodeAbbrev>();
4793 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4796 // nummib x (alloc type, context radix tree index),
4797 // numver x version
4798 // optional: nummib x total size
4799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4801 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4803 Abbv = std::make_shared<BitCodeAbbrev>();
4804 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY));
4805 // n x entry
4806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4808 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4810 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool {
4811 if (DecSummaries == nullptr)
4812 return false;
4813 return DecSummaries->count(GVS);
4816 // The aliases are emitted as a post-pass, and will point to the value
4817 // id of the aliasee. Save them in a vector for post-processing.
4818 SmallVector<AliasSummary *, 64> Aliases;
4820 // Save the value id for each summary for alias emission.
4821 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4823 SmallVector<uint64_t, 64> NameVals;
4825 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4826 // with the type ids referenced by this index file.
4827 std::set<GlobalValue::GUID> ReferencedTypeIds;
4829 // For local linkage, we also emit the original name separately
4830 // immediately after the record.
4831 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4832 // We don't need to emit the original name if we are writing the index for
4833 // distributed backends (in which case ModuleToSummariesForIndex is
4834 // non-null). The original name is only needed during the thin link, since
4835 // for SamplePGO the indirect call targets for local functions have
4836 // have the original name annotated in profile.
4837 // Continue to emit it when writing out the entire combined index, which is
4838 // used in testing the thin link via llvm-lto.
4839 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4840 return;
4841 NameVals.push_back(S.getOriginalName());
4842 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4843 NameVals.clear();
4846 // First walk through all the functions and collect the allocation contexts in
4847 // their associated summaries, for use in constructing a radix tree of
4848 // contexts. Note that we need to do this in the same order as the functions
4849 // are processed further below since the call stack positions in the resulting
4850 // radix tree array are identified based on this order.
4851 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks;
4852 forEachSummary([&](GVInfo I, bool IsAliasee) {
4853 // Don't collect this when invoked for an aliasee, as it is not needed for
4854 // the alias summary. If the aliasee is to be imported, we will invoke this
4855 // separately with IsAliasee=false.
4856 if (IsAliasee)
4857 return;
4858 GlobalValueSummary *S = I.second;
4859 assert(S);
4860 auto *FS = dyn_cast<FunctionSummary>(S);
4861 if (!FS)
4862 return;
4863 collectMemProfCallStacks(
4865 /*GetStackIndex*/
4866 [&](unsigned I) {
4867 // Get the corresponding index into the list of StackIds actually
4868 // being written for this combined index (which may be a subset in
4869 // the case of distributed indexes).
4870 assert(StackIdIndicesToIndex.contains(I));
4871 return StackIdIndicesToIndex[I];
4873 CallStacks);
4875 // Finalize the radix tree, write it out, and get the map of positions in the
4876 // linearized tree array.
4877 DenseMap<CallStackId, LinearCallStackId> CallStackPos;
4878 if (!CallStacks.empty()) {
4879 CallStackPos =
4880 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev);
4883 // Keep track of the current index into the CallStackPos map.
4884 CallStackId CallStackCount = 0;
4886 DenseSet<GlobalValue::GUID> DefOrUseGUIDs;
4887 forEachSummary([&](GVInfo I, bool IsAliasee) {
4888 GlobalValueSummary *S = I.second;
4889 assert(S);
4890 DefOrUseGUIDs.insert(I.first);
4891 for (const ValueInfo &VI : S->refs())
4892 DefOrUseGUIDs.insert(VI.getGUID());
4894 auto ValueId = getValueId(I.first);
4895 assert(ValueId);
4896 SummaryToValueIdMap[S] = *ValueId;
4898 // If this is invoked for an aliasee, we want to record the above
4899 // mapping, but then not emit a summary entry (if the aliasee is
4900 // to be imported, we will invoke this separately with IsAliasee=false).
4901 if (IsAliasee)
4902 return;
4904 if (auto *AS = dyn_cast<AliasSummary>(S)) {
4905 // Will process aliases as a post-pass because the reader wants all
4906 // global to be loaded first.
4907 Aliases.push_back(AS);
4908 return;
4911 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4912 NameVals.push_back(*ValueId);
4913 assert(ModuleIdMap.count(VS->modulePath()));
4914 NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4915 NameVals.push_back(
4916 getEncodedGVSummaryFlags(VS->flags(), shouldImportValueAsDecl(VS)));
4917 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4918 for (auto &RI : VS->refs()) {
4919 auto RefValueId = getValueId(RI.getGUID());
4920 if (!RefValueId)
4921 continue;
4922 NameVals.push_back(*RefValueId);
4925 // Emit the finished record.
4926 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4927 FSModRefsAbbrev);
4928 NameVals.clear();
4929 MaybeEmitOriginalName(*S);
4930 return;
4933 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4934 if (!VI)
4935 return std::nullopt;
4936 return getValueId(VI.getGUID());
4939 auto *FS = cast<FunctionSummary>(S);
4940 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4941 getReferencedTypeIds(FS, ReferencedTypeIds);
4943 writeFunctionHeapProfileRecords(
4944 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0,
4945 /*PerModule*/ false,
4946 /*GetValueId*/
4947 [&](const ValueInfo &VI) -> unsigned {
4948 std::optional<unsigned> ValueID = GetValueId(VI);
4949 // This can happen in shared index files for distributed ThinLTO if
4950 // the callee function summary is not included. Record 0 which we
4951 // will have to deal with conservatively when doing any kind of
4952 // validation in the ThinLTO backends.
4953 if (!ValueID)
4954 return 0;
4955 return *ValueID;
4957 /*GetStackIndex*/
4958 [&](unsigned I) {
4959 // Get the corresponding index into the list of StackIds actually
4960 // being written for this combined index (which may be a subset in
4961 // the case of distributed indexes).
4962 assert(StackIdIndicesToIndex.contains(I));
4963 return StackIdIndicesToIndex[I];
4965 /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount);
4967 NameVals.push_back(*ValueId);
4968 assert(ModuleIdMap.count(FS->modulePath()));
4969 NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4970 NameVals.push_back(
4971 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS)));
4972 NameVals.push_back(FS->instCount());
4973 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4974 // TODO: Stop writing entry count and bump bitcode version.
4975 NameVals.push_back(0 /* EntryCount */);
4977 // Fill in below
4978 NameVals.push_back(0); // numrefs
4979 NameVals.push_back(0); // rorefcnt
4980 NameVals.push_back(0); // worefcnt
4982 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4983 for (auto &RI : FS->refs()) {
4984 auto RefValueId = getValueId(RI.getGUID());
4985 if (!RefValueId)
4986 continue;
4987 NameVals.push_back(*RefValueId);
4988 if (RI.isReadOnly())
4989 RORefCnt++;
4990 else if (RI.isWriteOnly())
4991 WORefCnt++;
4992 Count++;
4994 NameVals[6] = Count;
4995 NameVals[7] = RORefCnt;
4996 NameVals[8] = WORefCnt;
4998 for (auto &EI : FS->calls()) {
4999 // If this GUID doesn't have a value id, it doesn't have a function
5000 // summary and we don't need to record any calls to it.
5001 std::optional<unsigned> CallValueId = GetValueId(EI.first);
5002 if (!CallValueId)
5003 continue;
5004 NameVals.push_back(*CallValueId);
5005 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
5008 // Emit the finished record.
5009 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
5010 FSCallsProfileAbbrev);
5011 NameVals.clear();
5012 MaybeEmitOriginalName(*S);
5015 for (auto *AS : Aliases) {
5016 auto AliasValueId = SummaryToValueIdMap[AS];
5017 assert(AliasValueId);
5018 NameVals.push_back(AliasValueId);
5019 assert(ModuleIdMap.count(AS->modulePath()));
5020 NameVals.push_back(ModuleIdMap[AS->modulePath()]);
5021 NameVals.push_back(
5022 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS)));
5023 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
5024 assert(AliaseeValueId);
5025 NameVals.push_back(AliaseeValueId);
5027 // Emit the finished record.
5028 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
5029 NameVals.clear();
5030 MaybeEmitOriginalName(*AS);
5032 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
5033 getReferencedTypeIds(FS, ReferencedTypeIds);
5036 if (!Index.cfiFunctionDefs().empty()) {
5037 for (auto &S : Index.cfiFunctionDefs()) {
5038 if (DefOrUseGUIDs.contains(
5039 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
5040 NameVals.push_back(StrtabBuilder.add(S));
5041 NameVals.push_back(S.size());
5044 if (!NameVals.empty()) {
5045 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
5046 NameVals.clear();
5050 if (!Index.cfiFunctionDecls().empty()) {
5051 for (auto &S : Index.cfiFunctionDecls()) {
5052 if (DefOrUseGUIDs.contains(
5053 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
5054 NameVals.push_back(StrtabBuilder.add(S));
5055 NameVals.push_back(S.size());
5058 if (!NameVals.empty()) {
5059 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
5060 NameVals.clear();
5064 // Walk the GUIDs that were referenced, and write the
5065 // corresponding type id records.
5066 for (auto &T : ReferencedTypeIds) {
5067 auto TidIter = Index.typeIds().equal_range(T);
5068 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
5069 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first,
5070 TypeIdPair.second);
5071 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
5072 NameVals.clear();
5076 if (Index.getBlockCount())
5077 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
5078 ArrayRef<uint64_t>{Index.getBlockCount()});
5080 Stream.ExitBlock();
5083 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
5084 /// current llvm version, and a record for the epoch number.
5085 static void writeIdentificationBlock(BitstreamWriter &Stream) {
5086 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
5088 // Write the "user readable" string identifying the bitcode producer
5089 auto Abbv = std::make_shared<BitCodeAbbrev>();
5090 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
5091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
5093 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5094 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
5095 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
5097 // Write the epoch version
5098 Abbv = std::make_shared<BitCodeAbbrev>();
5099 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
5100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
5101 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5102 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
5103 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
5104 Stream.ExitBlock();
5107 void ModuleBitcodeWriter::writeModuleHash(StringRef View) {
5108 // Emit the module's hash.
5109 // MODULE_CODE_HASH: [5*i32]
5110 if (GenerateHash) {
5111 uint32_t Vals[5];
5112 Hasher.update(ArrayRef<uint8_t>(
5113 reinterpret_cast<const uint8_t *>(View.data()), View.size()));
5114 std::array<uint8_t, 20> Hash = Hasher.result();
5115 for (int Pos = 0; Pos < 20; Pos += 4) {
5116 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
5119 // Emit the finished record.
5120 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
5122 if (ModHash)
5123 // Save the written hash value.
5124 llvm::copy(Vals, std::begin(*ModHash));
5128 void ModuleBitcodeWriter::write() {
5129 writeIdentificationBlock(Stream);
5131 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5132 // We will want to write the module hash at this point. Block any flushing so
5133 // we can have access to the whole underlying data later.
5134 Stream.markAndBlockFlushing();
5136 writeModuleVersion();
5138 // Emit blockinfo, which defines the standard abbreviations etc.
5139 writeBlockInfo();
5141 // Emit information describing all of the types in the module.
5142 writeTypeTable();
5144 // Emit information about attribute groups.
5145 writeAttributeGroupTable();
5147 // Emit information about parameter attributes.
5148 writeAttributeTable();
5150 writeComdats();
5152 // Emit top-level description of module, including target triple, inline asm,
5153 // descriptors for global variables, and function prototype info.
5154 writeModuleInfo();
5156 // Emit constants.
5157 writeModuleConstants();
5159 // Emit metadata kind names.
5160 writeModuleMetadataKinds();
5162 // Emit metadata.
5163 writeModuleMetadata();
5165 // Emit module-level use-lists.
5166 if (VE.shouldPreserveUseListOrder())
5167 writeUseListBlock(nullptr);
5169 writeOperandBundleTags();
5170 writeSyncScopeNames();
5172 // Emit function bodies.
5173 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
5174 for (const Function &F : M)
5175 if (!F.isDeclaration())
5176 writeFunction(F, FunctionToBitcodeIndex);
5178 // Need to write after the above call to WriteFunction which populates
5179 // the summary information in the index.
5180 if (Index)
5181 writePerModuleGlobalValueSummary();
5183 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
5185 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing());
5187 Stream.ExitBlock();
5190 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
5191 uint32_t &Position) {
5192 support::endian::write32le(&Buffer[Position], Value);
5193 Position += 4;
5196 /// If generating a bc file on darwin, we have to emit a
5197 /// header and trailer to make it compatible with the system archiver. To do
5198 /// this we emit the following header, and then emit a trailer that pads the
5199 /// file out to be a multiple of 16 bytes.
5201 /// struct bc_header {
5202 /// uint32_t Magic; // 0x0B17C0DE
5203 /// uint32_t Version; // Version, currently always 0.
5204 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
5205 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
5206 /// uint32_t CPUType; // CPU specifier.
5207 /// ... potentially more later ...
5208 /// };
5209 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
5210 const Triple &TT) {
5211 unsigned CPUType = ~0U;
5213 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
5214 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
5215 // number from /usr/include/mach/machine.h. It is ok to reproduce the
5216 // specific constants here because they are implicitly part of the Darwin ABI.
5217 enum {
5218 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
5219 DARWIN_CPU_TYPE_X86 = 7,
5220 DARWIN_CPU_TYPE_ARM = 12,
5221 DARWIN_CPU_TYPE_POWERPC = 18
5224 Triple::ArchType Arch = TT.getArch();
5225 if (Arch == Triple::x86_64)
5226 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
5227 else if (Arch == Triple::x86)
5228 CPUType = DARWIN_CPU_TYPE_X86;
5229 else if (Arch == Triple::ppc)
5230 CPUType = DARWIN_CPU_TYPE_POWERPC;
5231 else if (Arch == Triple::ppc64)
5232 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
5233 else if (Arch == Triple::arm || Arch == Triple::thumb)
5234 CPUType = DARWIN_CPU_TYPE_ARM;
5236 // Traditional Bitcode starts after header.
5237 assert(Buffer.size() >= BWH_HeaderSize &&
5238 "Expected header size to be reserved");
5239 unsigned BCOffset = BWH_HeaderSize;
5240 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
5242 // Write the magic and version.
5243 unsigned Position = 0;
5244 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
5245 writeInt32ToBuffer(0, Buffer, Position); // Version.
5246 writeInt32ToBuffer(BCOffset, Buffer, Position);
5247 writeInt32ToBuffer(BCSize, Buffer, Position);
5248 writeInt32ToBuffer(CPUType, Buffer, Position);
5250 // If the file is not a multiple of 16 bytes, insert dummy padding.
5251 while (Buffer.size() & 15)
5252 Buffer.push_back(0);
5255 /// Helper to write the header common to all bitcode files.
5256 static void writeBitcodeHeader(BitstreamWriter &Stream) {
5257 // Emit the file header.
5258 Stream.Emit((unsigned)'B', 8);
5259 Stream.Emit((unsigned)'C', 8);
5260 Stream.Emit(0x0, 4);
5261 Stream.Emit(0xC, 4);
5262 Stream.Emit(0xE, 4);
5263 Stream.Emit(0xD, 4);
5266 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
5267 : Stream(new BitstreamWriter(Buffer)) {
5268 writeBitcodeHeader(*Stream);
5271 BitcodeWriter::BitcodeWriter(raw_ostream &FS)
5272 : Stream(new BitstreamWriter(FS, FlushThreshold)) {
5273 writeBitcodeHeader(*Stream);
5276 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
5278 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
5279 Stream->EnterSubblock(Block, 3);
5281 auto Abbv = std::make_shared<BitCodeAbbrev>();
5282 Abbv->Add(BitCodeAbbrevOp(Record));
5283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
5284 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
5286 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
5288 Stream->ExitBlock();
5291 void BitcodeWriter::writeSymtab() {
5292 assert(!WroteStrtab && !WroteSymtab);
5294 // If any module has module-level inline asm, we will require a registered asm
5295 // parser for the target so that we can create an accurate symbol table for
5296 // the module.
5297 for (Module *M : Mods) {
5298 if (M->getModuleInlineAsm().empty())
5299 continue;
5301 std::string Err;
5302 const Triple TT(M->getTargetTriple());
5303 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
5304 if (!T || !T->hasMCAsmParser())
5305 return;
5308 WroteSymtab = true;
5309 SmallVector<char, 0> Symtab;
5310 // The irsymtab::build function may be unable to create a symbol table if the
5311 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5312 // table is not required for correctness, but we still want to be able to
5313 // write malformed modules to bitcode files, so swallow the error.
5314 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
5315 consumeError(std::move(E));
5316 return;
5319 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
5320 {Symtab.data(), Symtab.size()});
5323 void BitcodeWriter::writeStrtab() {
5324 assert(!WroteStrtab);
5326 std::vector<char> Strtab;
5327 StrtabBuilder.finalizeInOrder();
5328 Strtab.resize(StrtabBuilder.getSize());
5329 StrtabBuilder.write((uint8_t *)Strtab.data());
5331 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
5332 {Strtab.data(), Strtab.size()});
5334 WroteStrtab = true;
5337 void BitcodeWriter::copyStrtab(StringRef Strtab) {
5338 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
5339 WroteStrtab = true;
5342 void BitcodeWriter::writeModule(const Module &M,
5343 bool ShouldPreserveUseListOrder,
5344 const ModuleSummaryIndex *Index,
5345 bool GenerateHash, ModuleHash *ModHash) {
5346 assert(!WroteStrtab);
5348 // The Mods vector is used by irsymtab::build, which requires non-const
5349 // Modules in case it needs to materialize metadata. But the bitcode writer
5350 // requires that the module is materialized, so we can cast to non-const here,
5351 // after checking that it is in fact materialized.
5352 assert(M.isMaterialized());
5353 Mods.push_back(const_cast<Module *>(&M));
5355 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream,
5356 ShouldPreserveUseListOrder, Index,
5357 GenerateHash, ModHash);
5358 ModuleWriter.write();
5361 void BitcodeWriter::writeIndex(
5362 const ModuleSummaryIndex *Index,
5363 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex,
5364 const GVSummaryPtrSet *DecSummaries) {
5365 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries,
5366 ModuleToSummariesForIndex);
5367 IndexWriter.write();
5370 /// Write the specified module to the specified output stream.
5371 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5372 bool ShouldPreserveUseListOrder,
5373 const ModuleSummaryIndex *Index,
5374 bool GenerateHash, ModuleHash *ModHash) {
5375 auto Write = [&](BitcodeWriter &Writer) {
5376 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5377 ModHash);
5378 Writer.writeSymtab();
5379 Writer.writeStrtab();
5381 Triple TT(M.getTargetTriple());
5382 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) {
5383 // If this is darwin or another generic macho target, reserve space for the
5384 // header. Note that the header is computed *after* the output is known, so
5385 // we currently explicitly use a buffer, write to it, and then subsequently
5386 // flush to Out.
5387 SmallVector<char, 0> Buffer;
5388 Buffer.reserve(256 * 1024);
5389 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5390 BitcodeWriter Writer(Buffer);
5391 Write(Writer);
5392 emitDarwinBCHeaderAndTrailer(Buffer, TT);
5393 Out.write(Buffer.data(), Buffer.size());
5394 } else {
5395 BitcodeWriter Writer(Out);
5396 Write(Writer);
5400 void IndexBitcodeWriter::write() {
5401 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5403 writeModuleVersion();
5405 // Write the module paths in the combined index.
5406 writeModStrings();
5408 // Write the summary combined index records.
5409 writeCombinedGlobalValueSummary();
5411 Stream.ExitBlock();
5414 // Write the specified module summary index to the given raw output stream,
5415 // where it will be written in a new bitcode block. This is used when
5416 // writing the combined index file for ThinLTO. When writing a subset of the
5417 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5418 void llvm::writeIndexToFile(
5419 const ModuleSummaryIndex &Index, raw_ostream &Out,
5420 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex,
5421 const GVSummaryPtrSet *DecSummaries) {
5422 SmallVector<char, 0> Buffer;
5423 Buffer.reserve(256 * 1024);
5425 BitcodeWriter Writer(Buffer);
5426 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries);
5427 Writer.writeStrtab();
5429 Out.write((char *)&Buffer.front(), Buffer.size());
5432 namespace {
5434 /// Class to manage the bitcode writing for a thin link bitcode file.
5435 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5436 /// ModHash is for use in ThinLTO incremental build, generated while writing
5437 /// the module bitcode file.
5438 const ModuleHash *ModHash;
5440 public:
5441 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5442 BitstreamWriter &Stream,
5443 const ModuleSummaryIndex &Index,
5444 const ModuleHash &ModHash)
5445 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5446 /*ShouldPreserveUseListOrder=*/false, &Index),
5447 ModHash(&ModHash) {}
5449 void write();
5451 private:
5452 void writeSimplifiedModuleInfo();
5455 } // end anonymous namespace
5457 // This function writes a simpilified module info for thin link bitcode file.
5458 // It only contains the source file name along with the name(the offset and
5459 // size in strtab) and linkage for global values. For the global value info
5460 // entry, in order to keep linkage at offset 5, there are three zeros used
5461 // as padding.
5462 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5463 SmallVector<unsigned, 64> Vals;
5464 // Emit the module's source file name.
5466 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5467 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5468 if (Bits == SE_Char6)
5469 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5470 else if (Bits == SE_Fixed7)
5471 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5473 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5474 auto Abbv = std::make_shared<BitCodeAbbrev>();
5475 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5477 Abbv->Add(AbbrevOpToUse);
5478 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5480 for (const auto P : M.getSourceFileName())
5481 Vals.push_back((unsigned char)P);
5483 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5484 Vals.clear();
5487 // Emit the global variable information.
5488 for (const GlobalVariable &GV : M.globals()) {
5489 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5490 Vals.push_back(StrtabBuilder.add(GV.getName()));
5491 Vals.push_back(GV.getName().size());
5492 Vals.push_back(0);
5493 Vals.push_back(0);
5494 Vals.push_back(0);
5495 Vals.push_back(getEncodedLinkage(GV));
5497 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5498 Vals.clear();
5501 // Emit the function proto information.
5502 for (const Function &F : M) {
5503 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5504 Vals.push_back(StrtabBuilder.add(F.getName()));
5505 Vals.push_back(F.getName().size());
5506 Vals.push_back(0);
5507 Vals.push_back(0);
5508 Vals.push_back(0);
5509 Vals.push_back(getEncodedLinkage(F));
5511 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5512 Vals.clear();
5515 // Emit the alias information.
5516 for (const GlobalAlias &A : M.aliases()) {
5517 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5518 Vals.push_back(StrtabBuilder.add(A.getName()));
5519 Vals.push_back(A.getName().size());
5520 Vals.push_back(0);
5521 Vals.push_back(0);
5522 Vals.push_back(0);
5523 Vals.push_back(getEncodedLinkage(A));
5525 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5526 Vals.clear();
5529 // Emit the ifunc information.
5530 for (const GlobalIFunc &I : M.ifuncs()) {
5531 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5532 Vals.push_back(StrtabBuilder.add(I.getName()));
5533 Vals.push_back(I.getName().size());
5534 Vals.push_back(0);
5535 Vals.push_back(0);
5536 Vals.push_back(0);
5537 Vals.push_back(getEncodedLinkage(I));
5539 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5540 Vals.clear();
5544 void ThinLinkBitcodeWriter::write() {
5545 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5547 writeModuleVersion();
5549 writeSimplifiedModuleInfo();
5551 writePerModuleGlobalValueSummary();
5553 // Write module hash.
5554 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5556 Stream.ExitBlock();
5559 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5560 const ModuleSummaryIndex &Index,
5561 const ModuleHash &ModHash) {
5562 assert(!WroteStrtab);
5564 // The Mods vector is used by irsymtab::build, which requires non-const
5565 // Modules in case it needs to materialize metadata. But the bitcode writer
5566 // requires that the module is materialized, so we can cast to non-const here,
5567 // after checking that it is in fact materialized.
5568 assert(M.isMaterialized());
5569 Mods.push_back(const_cast<Module *>(&M));
5571 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5572 ModHash);
5573 ThinLinkWriter.write();
5576 // Write the specified thin link bitcode file to the given raw output stream,
5577 // where it will be written in a new bitcode block. This is used when
5578 // writing the per-module index file for ThinLTO.
5579 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5580 const ModuleSummaryIndex &Index,
5581 const ModuleHash &ModHash) {
5582 SmallVector<char, 0> Buffer;
5583 Buffer.reserve(256 * 1024);
5585 BitcodeWriter Writer(Buffer);
5586 Writer.writeThinLinkBitcode(M, Index, ModHash);
5587 Writer.writeSymtab();
5588 Writer.writeStrtab();
5590 Out.write((char *)&Buffer.front(), Buffer.size());
5593 static const char *getSectionNameForBitcode(const Triple &T) {
5594 switch (T.getObjectFormat()) {
5595 case Triple::MachO:
5596 return "__LLVM,__bitcode";
5597 case Triple::COFF:
5598 case Triple::ELF:
5599 case Triple::Wasm:
5600 case Triple::UnknownObjectFormat:
5601 return ".llvmbc";
5602 case Triple::GOFF:
5603 llvm_unreachable("GOFF is not yet implemented");
5604 break;
5605 case Triple::SPIRV:
5606 if (T.getVendor() == Triple::AMD)
5607 return ".llvmbc";
5608 llvm_unreachable("SPIRV is not yet implemented");
5609 break;
5610 case Triple::XCOFF:
5611 llvm_unreachable("XCOFF is not yet implemented");
5612 break;
5613 case Triple::DXContainer:
5614 llvm_unreachable("DXContainer is not yet implemented");
5615 break;
5617 llvm_unreachable("Unimplemented ObjectFormatType");
5620 static const char *getSectionNameForCommandline(const Triple &T) {
5621 switch (T.getObjectFormat()) {
5622 case Triple::MachO:
5623 return "__LLVM,__cmdline";
5624 case Triple::COFF:
5625 case Triple::ELF:
5626 case Triple::Wasm:
5627 case Triple::UnknownObjectFormat:
5628 return ".llvmcmd";
5629 case Triple::GOFF:
5630 llvm_unreachable("GOFF is not yet implemented");
5631 break;
5632 case Triple::SPIRV:
5633 if (T.getVendor() == Triple::AMD)
5634 return ".llvmcmd";
5635 llvm_unreachable("SPIRV is not yet implemented");
5636 break;
5637 case Triple::XCOFF:
5638 llvm_unreachable("XCOFF is not yet implemented");
5639 break;
5640 case Triple::DXContainer:
5641 llvm_unreachable("DXC is not yet implemented");
5642 break;
5644 llvm_unreachable("Unimplemented ObjectFormatType");
5647 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5648 bool EmbedBitcode, bool EmbedCmdline,
5649 const std::vector<uint8_t> &CmdArgs) {
5650 // Save llvm.compiler.used and remove it.
5651 SmallVector<Constant *, 2> UsedArray;
5652 SmallVector<GlobalValue *, 4> UsedGlobals;
5653 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5654 Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType()
5655 : PointerType::getUnqual(M.getContext());
5656 for (auto *GV : UsedGlobals) {
5657 if (GV->getName() != "llvm.embedded.module" &&
5658 GV->getName() != "llvm.cmdline")
5659 UsedArray.push_back(
5660 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5662 if (Used)
5663 Used->eraseFromParent();
5665 // Embed the bitcode for the llvm module.
5666 std::string Data;
5667 ArrayRef<uint8_t> ModuleData;
5668 Triple T(M.getTargetTriple());
5670 if (EmbedBitcode) {
5671 if (Buf.getBufferSize() == 0 ||
5672 !isBitcode((const unsigned char *)Buf.getBufferStart(),
5673 (const unsigned char *)Buf.getBufferEnd())) {
5674 // If the input is LLVM Assembly, bitcode is produced by serializing
5675 // the module. Use-lists order need to be preserved in this case.
5676 llvm::raw_string_ostream OS(Data);
5677 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5678 ModuleData =
5679 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5680 } else
5681 // If the input is LLVM bitcode, write the input byte stream directly.
5682 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5683 Buf.getBufferSize());
5685 llvm::Constant *ModuleConstant =
5686 llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5687 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5688 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5689 ModuleConstant);
5690 GV->setSection(getSectionNameForBitcode(T));
5691 // Set alignment to 1 to prevent padding between two contributions from input
5692 // sections after linking.
5693 GV->setAlignment(Align(1));
5694 UsedArray.push_back(
5695 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5696 if (llvm::GlobalVariable *Old =
5697 M.getGlobalVariable("llvm.embedded.module", true)) {
5698 assert(Old->hasZeroLiveUses() &&
5699 "llvm.embedded.module can only be used once in llvm.compiler.used");
5700 GV->takeName(Old);
5701 Old->eraseFromParent();
5702 } else {
5703 GV->setName("llvm.embedded.module");
5706 // Skip if only bitcode needs to be embedded.
5707 if (EmbedCmdline) {
5708 // Embed command-line options.
5709 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5710 CmdArgs.size());
5711 llvm::Constant *CmdConstant =
5712 llvm::ConstantDataArray::get(M.getContext(), CmdData);
5713 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5714 llvm::GlobalValue::PrivateLinkage,
5715 CmdConstant);
5716 GV->setSection(getSectionNameForCommandline(T));
5717 GV->setAlignment(Align(1));
5718 UsedArray.push_back(
5719 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5720 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5721 assert(Old->hasZeroLiveUses() &&
5722 "llvm.cmdline can only be used once in llvm.compiler.used");
5723 GV->takeName(Old);
5724 Old->eraseFromParent();
5725 } else {
5726 GV->setName("llvm.cmdline");
5730 if (UsedArray.empty())
5731 return;
5733 // Recreate llvm.compiler.used.
5734 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5735 auto *NewUsed = new GlobalVariable(
5736 M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5737 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5738 NewUsed->setSection("llvm.metadata");