1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Bitcode/BitcodeCommon.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRangeList.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/MC/TargetRegistry.h"
62 #include "llvm/Object/IRSymtab.h"
63 #include "llvm/ProfileData/MemProf.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/SHA1.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/TargetParser/Triple.h"
87 using namespace llvm::memprof
;
89 static cl::opt
<unsigned>
90 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden
, cl::init(25),
91 cl::desc("Number of metadatas above which we emit an index "
92 "to enable lazy-loading"));
93 static cl::opt
<uint32_t> FlushThreshold(
94 "bitcode-flush-threshold", cl::Hidden
, cl::init(512),
95 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
97 static cl::opt
<bool> WriteRelBFToSummary(
98 "write-relbf-to-summary", cl::Hidden
, cl::init(false),
99 cl::desc("Write relative block frequency to function summary "));
102 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
;
105 extern bool WriteNewDbgInfoFormatToBitcode
;
106 extern llvm::cl::opt
<bool> UseNewDbgInfoFormat
;
110 /// These are manifest constants used by the bitcode writer. They do not need to
111 /// be kept in sync with the reader, but need to be consistent within this file.
113 // VALUE_SYMTAB_BLOCK abbrev id's.
114 VST_ENTRY_8_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
117 VST_BBENTRY_6_ABBREV
,
119 // CONSTANTS_BLOCK abbrev id's.
120 CONSTANTS_SETTYPE_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
121 CONSTANTS_INTEGER_ABBREV
,
122 CONSTANTS_CE_CAST_Abbrev
,
123 CONSTANTS_NULL_Abbrev
,
125 // FUNCTION_BLOCK abbrev id's.
126 FUNCTION_INST_LOAD_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
127 FUNCTION_INST_UNOP_ABBREV
,
128 FUNCTION_INST_UNOP_FLAGS_ABBREV
,
129 FUNCTION_INST_BINOP_ABBREV
,
130 FUNCTION_INST_BINOP_FLAGS_ABBREV
,
131 FUNCTION_INST_CAST_ABBREV
,
132 FUNCTION_INST_CAST_FLAGS_ABBREV
,
133 FUNCTION_INST_RET_VOID_ABBREV
,
134 FUNCTION_INST_RET_VAL_ABBREV
,
135 FUNCTION_INST_UNREACHABLE_ABBREV
,
136 FUNCTION_INST_GEP_ABBREV
,
137 FUNCTION_DEBUG_RECORD_VALUE_ABBREV
,
140 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
142 class BitcodeWriterBase
{
144 /// The stream created and owned by the client.
145 BitstreamWriter
&Stream
;
147 StringTableBuilder
&StrtabBuilder
;
150 /// Constructs a BitcodeWriterBase object that writes to the provided
152 BitcodeWriterBase(BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
)
153 : Stream(Stream
), StrtabBuilder(StrtabBuilder
) {}
156 void writeModuleVersion();
159 void BitcodeWriterBase::writeModuleVersion() {
160 // VERSION: [version#]
161 Stream
.EmitRecord(bitc::MODULE_CODE_VERSION
, ArrayRef
<uint64_t>{2});
164 /// Base class to manage the module bitcode writing, currently subclassed for
165 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
166 class ModuleBitcodeWriterBase
: public BitcodeWriterBase
{
168 /// The Module to write to bitcode.
171 /// Enumerates ids for all values in the module.
174 /// Optional per-module index to write for ThinLTO.
175 const ModuleSummaryIndex
*Index
;
177 /// Map that holds the correspondence between GUIDs in the summary index,
178 /// that came from indirect call profiles, and a value id generated by this
179 /// class to use in the VST and summary block records.
180 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
182 /// Tracks the last value id recorded in the GUIDToValueMap.
183 unsigned GlobalValueId
;
185 /// Saves the offset of the VSTOffset record that must eventually be
186 /// backpatched with the offset of the actual VST.
187 uint64_t VSTOffsetPlaceholder
= 0;
190 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
191 /// writing to the provided \p Buffer.
192 ModuleBitcodeWriterBase(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
193 BitstreamWriter
&Stream
,
194 bool ShouldPreserveUseListOrder
,
195 const ModuleSummaryIndex
*Index
)
196 : BitcodeWriterBase(Stream
, StrtabBuilder
), M(M
),
197 VE(M
, ShouldPreserveUseListOrder
), Index(Index
) {
198 // Assign ValueIds to any callee values in the index that came from
199 // indirect call profiles and were recorded as a GUID not a Value*
200 // (which would have been assigned an ID by the ValueEnumerator).
201 // The starting ValueId is just after the number of values in the
202 // ValueEnumerator, so that they can be emitted in the VST.
203 GlobalValueId
= VE
.getValues().size();
206 for (const auto &GUIDSummaryLists
: *Index
)
207 // Examine all summaries for this GUID.
208 for (auto &Summary
: GUIDSummaryLists
.second
.SummaryList
)
209 if (auto FS
= dyn_cast
<FunctionSummary
>(Summary
.get())) {
210 // For each call in the function summary, see if the call
211 // is to a GUID (which means it is for an indirect call,
212 // otherwise we would have a Value for it). If so, synthesize
214 for (auto &CallEdge
: FS
->calls())
215 if (!CallEdge
.first
.haveGVs() || !CallEdge
.first
.getValue())
216 assignValueId(CallEdge
.first
.getGUID());
218 // For each referenced variables in the function summary, see if the
219 // variable is represented by a GUID (as opposed to a symbol to
220 // declarations or definitions in the module). If so, synthesize a
222 for (auto &RefEdge
: FS
->refs())
223 if (!RefEdge
.haveGVs() || !RefEdge
.getValue())
224 assignValueId(RefEdge
.getGUID());
229 void writePerModuleGlobalValueSummary();
232 void writePerModuleFunctionSummaryRecord(
233 SmallVector
<uint64_t, 64> &NameVals
, GlobalValueSummary
*Summary
,
234 unsigned ValueID
, unsigned FSCallsAbbrev
, unsigned FSCallsProfileAbbrev
,
235 unsigned CallsiteAbbrev
, unsigned AllocAbbrev
, unsigned ContextIdAbbvId
,
236 const Function
&F
, DenseMap
<CallStackId
, LinearCallStackId
> &CallStackPos
,
237 CallStackId
&CallStackCount
);
238 void writeModuleLevelReferences(const GlobalVariable
&V
,
239 SmallVector
<uint64_t, 64> &NameVals
,
240 unsigned FSModRefsAbbrev
,
241 unsigned FSModVTableRefsAbbrev
);
243 void assignValueId(GlobalValue::GUID ValGUID
) {
244 GUIDToValueIdMap
[ValGUID
] = ++GlobalValueId
;
247 unsigned getValueId(GlobalValue::GUID ValGUID
) {
248 const auto &VMI
= GUIDToValueIdMap
.find(ValGUID
);
249 // Expect that any GUID value had a value Id assigned by an
250 // earlier call to assignValueId.
251 assert(VMI
!= GUIDToValueIdMap
.end() &&
252 "GUID does not have assigned value Id");
256 // Helper to get the valueId for the type of value recorded in VI.
257 unsigned getValueId(ValueInfo VI
) {
258 if (!VI
.haveGVs() || !VI
.getValue())
259 return getValueId(VI
.getGUID());
260 return VE
.getValueID(VI
.getValue());
263 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
266 /// Class to manage the bitcode writing for a module.
267 class ModuleBitcodeWriter
: public ModuleBitcodeWriterBase
{
268 /// True if a module hash record should be written.
271 /// If non-null, when GenerateHash is true, the resulting hash is written
277 /// The start bit of the identification block.
278 uint64_t BitcodeStartBit
;
281 /// Constructs a ModuleBitcodeWriter object for the given Module,
282 /// writing to the provided \p Buffer.
283 ModuleBitcodeWriter(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
284 BitstreamWriter
&Stream
, bool ShouldPreserveUseListOrder
,
285 const ModuleSummaryIndex
*Index
, bool GenerateHash
,
286 ModuleHash
*ModHash
= nullptr)
287 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
288 ShouldPreserveUseListOrder
, Index
),
289 GenerateHash(GenerateHash
), ModHash(ModHash
),
290 BitcodeStartBit(Stream
.GetCurrentBitNo()) {}
292 /// Emit the current module to the bitstream.
296 uint64_t bitcodeStartBit() { return BitcodeStartBit
; }
298 size_t addToStrtab(StringRef Str
);
300 void writeAttributeGroupTable();
301 void writeAttributeTable();
302 void writeTypeTable();
304 void writeValueSymbolTableForwardDecl();
305 void writeModuleInfo();
306 void writeValueAsMetadata(const ValueAsMetadata
*MD
,
307 SmallVectorImpl
<uint64_t> &Record
);
308 void writeMDTuple(const MDTuple
*N
, SmallVectorImpl
<uint64_t> &Record
,
310 unsigned createDILocationAbbrev();
311 void writeDILocation(const DILocation
*N
, SmallVectorImpl
<uint64_t> &Record
,
313 unsigned createGenericDINodeAbbrev();
314 void writeGenericDINode(const GenericDINode
*N
,
315 SmallVectorImpl
<uint64_t> &Record
, unsigned &Abbrev
);
316 void writeDISubrange(const DISubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
318 void writeDIGenericSubrange(const DIGenericSubrange
*N
,
319 SmallVectorImpl
<uint64_t> &Record
,
321 void writeDIEnumerator(const DIEnumerator
*N
,
322 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
323 void writeDIBasicType(const DIBasicType
*N
, SmallVectorImpl
<uint64_t> &Record
,
325 void writeDIStringType(const DIStringType
*N
,
326 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
327 void writeDIDerivedType(const DIDerivedType
*N
,
328 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
329 void writeDICompositeType(const DICompositeType
*N
,
330 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
331 void writeDISubroutineType(const DISubroutineType
*N
,
332 SmallVectorImpl
<uint64_t> &Record
,
334 void writeDIFile(const DIFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
336 void writeDICompileUnit(const DICompileUnit
*N
,
337 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
338 void writeDISubprogram(const DISubprogram
*N
,
339 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
340 void writeDILexicalBlock(const DILexicalBlock
*N
,
341 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
342 void writeDILexicalBlockFile(const DILexicalBlockFile
*N
,
343 SmallVectorImpl
<uint64_t> &Record
,
345 void writeDICommonBlock(const DICommonBlock
*N
,
346 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
347 void writeDINamespace(const DINamespace
*N
, SmallVectorImpl
<uint64_t> &Record
,
349 void writeDIMacro(const DIMacro
*N
, SmallVectorImpl
<uint64_t> &Record
,
351 void writeDIMacroFile(const DIMacroFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
353 void writeDIArgList(const DIArgList
*N
, SmallVectorImpl
<uint64_t> &Record
);
354 void writeDIModule(const DIModule
*N
, SmallVectorImpl
<uint64_t> &Record
,
356 void writeDIAssignID(const DIAssignID
*N
, SmallVectorImpl
<uint64_t> &Record
,
358 void writeDITemplateTypeParameter(const DITemplateTypeParameter
*N
,
359 SmallVectorImpl
<uint64_t> &Record
,
361 void writeDITemplateValueParameter(const DITemplateValueParameter
*N
,
362 SmallVectorImpl
<uint64_t> &Record
,
364 void writeDIGlobalVariable(const DIGlobalVariable
*N
,
365 SmallVectorImpl
<uint64_t> &Record
,
367 void writeDILocalVariable(const DILocalVariable
*N
,
368 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
369 void writeDILabel(const DILabel
*N
,
370 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
371 void writeDIExpression(const DIExpression
*N
,
372 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
373 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression
*N
,
374 SmallVectorImpl
<uint64_t> &Record
,
376 void writeDIObjCProperty(const DIObjCProperty
*N
,
377 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
378 void writeDIImportedEntity(const DIImportedEntity
*N
,
379 SmallVectorImpl
<uint64_t> &Record
,
381 unsigned createNamedMetadataAbbrev();
382 void writeNamedMetadata(SmallVectorImpl
<uint64_t> &Record
);
383 unsigned createMetadataStringsAbbrev();
384 void writeMetadataStrings(ArrayRef
<const Metadata
*> Strings
,
385 SmallVectorImpl
<uint64_t> &Record
);
386 void writeMetadataRecords(ArrayRef
<const Metadata
*> MDs
,
387 SmallVectorImpl
<uint64_t> &Record
,
388 std::vector
<unsigned> *MDAbbrevs
= nullptr,
389 std::vector
<uint64_t> *IndexPos
= nullptr);
390 void writeModuleMetadata();
391 void writeFunctionMetadata(const Function
&F
);
392 void writeFunctionMetadataAttachment(const Function
&F
);
393 void pushGlobalMetadataAttachment(SmallVectorImpl
<uint64_t> &Record
,
394 const GlobalObject
&GO
);
395 void writeModuleMetadataKinds();
396 void writeOperandBundleTags();
397 void writeSyncScopeNames();
398 void writeConstants(unsigned FirstVal
, unsigned LastVal
, bool isGlobal
);
399 void writeModuleConstants();
400 bool pushValueAndType(const Value
*V
, unsigned InstID
,
401 SmallVectorImpl
<unsigned> &Vals
);
402 bool pushValueOrMetadata(const Value
*V
, unsigned InstID
,
403 SmallVectorImpl
<unsigned> &Vals
);
404 void writeOperandBundles(const CallBase
&CB
, unsigned InstID
);
405 void pushValue(const Value
*V
, unsigned InstID
,
406 SmallVectorImpl
<unsigned> &Vals
);
407 void pushValueSigned(const Value
*V
, unsigned InstID
,
408 SmallVectorImpl
<uint64_t> &Vals
);
409 void writeInstruction(const Instruction
&I
, unsigned InstID
,
410 SmallVectorImpl
<unsigned> &Vals
);
411 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable
&VST
);
412 void writeGlobalValueSymbolTable(
413 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
414 void writeUseList(UseListOrder
&&Order
);
415 void writeUseListBlock(const Function
*F
);
417 writeFunction(const Function
&F
,
418 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
419 void writeBlockInfo();
420 void writeModuleHash(StringRef View
);
422 unsigned getEncodedSyncScopeID(SyncScope::ID SSID
) {
423 return unsigned(SSID
);
426 unsigned getEncodedAlign(MaybeAlign Alignment
) { return encode(Alignment
); }
429 /// Class to manage the bitcode writing for a combined index.
430 class IndexBitcodeWriter
: public BitcodeWriterBase
{
431 /// The combined index to write to bitcode.
432 const ModuleSummaryIndex
&Index
;
434 /// When writing combined summaries, provides the set of global value
435 /// summaries for which the value (function, function alias, etc) should be
436 /// imported as a declaration.
437 const GVSummaryPtrSet
*DecSummaries
= nullptr;
439 /// When writing a subset of the index for distributed backends, client
440 /// provides a map of modules to the corresponding GUIDs/summaries to write.
441 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
;
443 /// Map that holds the correspondence between the GUID used in the combined
444 /// index and a value id generated by this class to use in references.
445 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
447 // The stack ids used by this index, which will be a subset of those in
448 // the full index in the case of distributed indexes.
449 std::vector
<uint64_t> StackIds
;
451 // Keep a map of the stack id indices used by records being written for this
452 // index to the index of the corresponding stack id in the above StackIds
453 // vector. Ensures we write each referenced stack id once.
454 DenseMap
<unsigned, unsigned> StackIdIndicesToIndex
;
456 /// Tracks the last value id recorded in the GUIDToValueMap.
457 unsigned GlobalValueId
= 0;
459 /// Tracks the assignment of module paths in the module path string table to
460 /// an id assigned for use in summary references to the module path.
461 DenseMap
<StringRef
, uint64_t> ModuleIdMap
;
464 /// Constructs a IndexBitcodeWriter object for the given combined index,
465 /// writing to the provided \p Buffer. When writing a subset of the index
466 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
467 /// If provided, \p DecSummaries specifies the set of summaries for which
468 /// the corresponding functions or aliased functions should be imported as a
469 /// declaration (but not definition) for each module.
471 BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
,
472 const ModuleSummaryIndex
&Index
,
473 const GVSummaryPtrSet
*DecSummaries
= nullptr,
474 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
= nullptr)
475 : BitcodeWriterBase(Stream
, StrtabBuilder
), Index(Index
),
476 DecSummaries(DecSummaries
),
477 ModuleToSummariesForIndex(ModuleToSummariesForIndex
) {
479 // See if the StackIdIndex was already added to the StackId map and
480 // vector. If not, record it.
481 auto RecordStackIdReference
= [&](unsigned StackIdIndex
) {
482 // If the StackIdIndex is not yet in the map, the below insert ensures
483 // that it will point to the new StackIds vector entry we push to just
486 StackIdIndicesToIndex
.insert({StackIdIndex
, StackIds
.size()});
488 StackIds
.push_back(Index
.getStackIdAtIndex(StackIdIndex
));
491 // Assign unique value ids to all summaries to be written, for use
492 // in writing out the call graph edges. Save the mapping from GUID
493 // to the new global value id to use when writing those edges, which
494 // are currently saved in the index in terms of GUID.
495 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
496 GUIDToValueIdMap
[I
.first
] = ++GlobalValueId
;
497 // If this is invoked for an aliasee, we want to record the above mapping,
498 // but not the information needed for its summary entry (if the aliasee is
499 // to be imported, we will invoke this separately with IsAliasee=false).
502 auto *FS
= dyn_cast
<FunctionSummary
>(I
.second
);
505 // Record all stack id indices actually used in the summary entries being
506 // written, so that we can compact them in the case of distributed ThinLTO
508 for (auto &CI
: FS
->callsites()) {
509 // If the stack id list is empty, this callsite info was synthesized for
510 // a missing tail call frame. Ensure that the callee's GUID gets a value
511 // id. Normally we only generate these for defined summaries, which in
512 // the case of distributed ThinLTO is only the functions already defined
513 // in the module or that we want to import. We don't bother to include
514 // all the callee symbols as they aren't normally needed in the backend.
515 // However, for the synthesized callsite infos we do need the callee
516 // GUID in the backend so that we can correlate the identified callee
517 // with this callsite info (which for non-tail calls is done by the
518 // ordering of the callsite infos and verified via stack ids).
519 if (CI
.StackIdIndices
.empty()) {
520 GUIDToValueIdMap
[CI
.Callee
.getGUID()] = ++GlobalValueId
;
523 for (auto Idx
: CI
.StackIdIndices
)
524 RecordStackIdReference(Idx
);
526 for (auto &AI
: FS
->allocs())
527 for (auto &MIB
: AI
.MIBs
)
528 for (auto Idx
: MIB
.StackIdIndices
)
529 RecordStackIdReference(Idx
);
533 /// The below iterator returns the GUID and associated summary.
534 using GVInfo
= std::pair
<GlobalValue::GUID
, GlobalValueSummary
*>;
536 /// Calls the callback for each value GUID and summary to be written to
537 /// bitcode. This hides the details of whether they are being pulled from the
538 /// entire index or just those in a provided ModuleToSummariesForIndex map.
539 template<typename Functor
>
540 void forEachSummary(Functor Callback
) {
541 if (ModuleToSummariesForIndex
) {
542 for (auto &M
: *ModuleToSummariesForIndex
)
543 for (auto &Summary
: M
.second
) {
544 Callback(Summary
, false);
545 // Ensure aliasee is handled, e.g. for assigning a valueId,
546 // even if we are not importing the aliasee directly (the
547 // imported alias will contain a copy of aliasee).
548 if (auto *AS
= dyn_cast
<AliasSummary
>(Summary
.getSecond()))
549 Callback({AS
->getAliaseeGUID(), &AS
->getAliasee()}, true);
552 for (auto &Summaries
: Index
)
553 for (auto &Summary
: Summaries
.second
.SummaryList
)
554 Callback({Summaries
.first
, Summary
.get()}, false);
558 /// Calls the callback for each entry in the modulePaths StringMap that
559 /// should be written to the module path string table. This hides the details
560 /// of whether they are being pulled from the entire index or just those in a
561 /// provided ModuleToSummariesForIndex map.
562 template <typename Functor
> void forEachModule(Functor Callback
) {
563 if (ModuleToSummariesForIndex
) {
564 for (const auto &M
: *ModuleToSummariesForIndex
) {
565 const auto &MPI
= Index
.modulePaths().find(M
.first
);
566 if (MPI
== Index
.modulePaths().end()) {
567 // This should only happen if the bitcode file was empty, in which
568 // case we shouldn't be importing (the ModuleToSummariesForIndex
569 // would only include the module we are writing and index for).
570 assert(ModuleToSummariesForIndex
->size() == 1);
576 // Since StringMap iteration order isn't guaranteed, order by path string
578 // FIXME: Make this a vector of StringMapEntry instead to avoid the later
580 std::vector
<StringRef
> ModulePaths
;
581 for (auto &[ModPath
, _
] : Index
.modulePaths())
582 ModulePaths
.push_back(ModPath
);
583 llvm::sort(ModulePaths
.begin(), ModulePaths
.end());
584 for (auto &ModPath
: ModulePaths
)
585 Callback(*Index
.modulePaths().find(ModPath
));
589 /// Main entry point for writing a combined index to bitcode.
593 void writeModStrings();
594 void writeCombinedGlobalValueSummary();
596 std::optional
<unsigned> getValueId(GlobalValue::GUID ValGUID
) {
597 auto VMI
= GUIDToValueIdMap
.find(ValGUID
);
598 if (VMI
== GUIDToValueIdMap
.end())
603 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
606 } // end anonymous namespace
608 static unsigned getEncodedCastOpcode(unsigned Opcode
) {
610 default: llvm_unreachable("Unknown cast instruction!");
611 case Instruction::Trunc
: return bitc::CAST_TRUNC
;
612 case Instruction::ZExt
: return bitc::CAST_ZEXT
;
613 case Instruction::SExt
: return bitc::CAST_SEXT
;
614 case Instruction::FPToUI
: return bitc::CAST_FPTOUI
;
615 case Instruction::FPToSI
: return bitc::CAST_FPTOSI
;
616 case Instruction::UIToFP
: return bitc::CAST_UITOFP
;
617 case Instruction::SIToFP
: return bitc::CAST_SITOFP
;
618 case Instruction::FPTrunc
: return bitc::CAST_FPTRUNC
;
619 case Instruction::FPExt
: return bitc::CAST_FPEXT
;
620 case Instruction::PtrToInt
: return bitc::CAST_PTRTOINT
;
621 case Instruction::IntToPtr
: return bitc::CAST_INTTOPTR
;
622 case Instruction::BitCast
: return bitc::CAST_BITCAST
;
623 case Instruction::AddrSpaceCast
: return bitc::CAST_ADDRSPACECAST
;
627 static unsigned getEncodedUnaryOpcode(unsigned Opcode
) {
629 default: llvm_unreachable("Unknown binary instruction!");
630 case Instruction::FNeg
: return bitc::UNOP_FNEG
;
634 static unsigned getEncodedBinaryOpcode(unsigned Opcode
) {
636 default: llvm_unreachable("Unknown binary instruction!");
637 case Instruction::Add
:
638 case Instruction::FAdd
: return bitc::BINOP_ADD
;
639 case Instruction::Sub
:
640 case Instruction::FSub
: return bitc::BINOP_SUB
;
641 case Instruction::Mul
:
642 case Instruction::FMul
: return bitc::BINOP_MUL
;
643 case Instruction::UDiv
: return bitc::BINOP_UDIV
;
644 case Instruction::FDiv
:
645 case Instruction::SDiv
: return bitc::BINOP_SDIV
;
646 case Instruction::URem
: return bitc::BINOP_UREM
;
647 case Instruction::FRem
:
648 case Instruction::SRem
: return bitc::BINOP_SREM
;
649 case Instruction::Shl
: return bitc::BINOP_SHL
;
650 case Instruction::LShr
: return bitc::BINOP_LSHR
;
651 case Instruction::AShr
: return bitc::BINOP_ASHR
;
652 case Instruction::And
: return bitc::BINOP_AND
;
653 case Instruction::Or
: return bitc::BINOP_OR
;
654 case Instruction::Xor
: return bitc::BINOP_XOR
;
658 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op
) {
660 default: llvm_unreachable("Unknown RMW operation!");
661 case AtomicRMWInst::Xchg
: return bitc::RMW_XCHG
;
662 case AtomicRMWInst::Add
: return bitc::RMW_ADD
;
663 case AtomicRMWInst::Sub
: return bitc::RMW_SUB
;
664 case AtomicRMWInst::And
: return bitc::RMW_AND
;
665 case AtomicRMWInst::Nand
: return bitc::RMW_NAND
;
666 case AtomicRMWInst::Or
: return bitc::RMW_OR
;
667 case AtomicRMWInst::Xor
: return bitc::RMW_XOR
;
668 case AtomicRMWInst::Max
: return bitc::RMW_MAX
;
669 case AtomicRMWInst::Min
: return bitc::RMW_MIN
;
670 case AtomicRMWInst::UMax
: return bitc::RMW_UMAX
;
671 case AtomicRMWInst::UMin
: return bitc::RMW_UMIN
;
672 case AtomicRMWInst::FAdd
: return bitc::RMW_FADD
;
673 case AtomicRMWInst::FSub
: return bitc::RMW_FSUB
;
674 case AtomicRMWInst::FMax
: return bitc::RMW_FMAX
;
675 case AtomicRMWInst::FMin
: return bitc::RMW_FMIN
;
676 case AtomicRMWInst::UIncWrap
:
677 return bitc::RMW_UINC_WRAP
;
678 case AtomicRMWInst::UDecWrap
:
679 return bitc::RMW_UDEC_WRAP
;
680 case AtomicRMWInst::USubCond
:
681 return bitc::RMW_USUB_COND
;
682 case AtomicRMWInst::USubSat
:
683 return bitc::RMW_USUB_SAT
;
687 static unsigned getEncodedOrdering(AtomicOrdering Ordering
) {
689 case AtomicOrdering::NotAtomic
: return bitc::ORDERING_NOTATOMIC
;
690 case AtomicOrdering::Unordered
: return bitc::ORDERING_UNORDERED
;
691 case AtomicOrdering::Monotonic
: return bitc::ORDERING_MONOTONIC
;
692 case AtomicOrdering::Acquire
: return bitc::ORDERING_ACQUIRE
;
693 case AtomicOrdering::Release
: return bitc::ORDERING_RELEASE
;
694 case AtomicOrdering::AcquireRelease
: return bitc::ORDERING_ACQREL
;
695 case AtomicOrdering::SequentiallyConsistent
: return bitc::ORDERING_SEQCST
;
697 llvm_unreachable("Invalid ordering");
700 static void writeStringRecord(BitstreamWriter
&Stream
, unsigned Code
,
701 StringRef Str
, unsigned AbbrevToUse
) {
702 SmallVector
<unsigned, 64> Vals
;
704 // Code: [strchar x N]
706 if (AbbrevToUse
&& !BitCodeAbbrevOp::isChar6(C
))
711 // Emit the finished record.
712 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
715 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind
) {
717 case Attribute::Alignment
:
718 return bitc::ATTR_KIND_ALIGNMENT
;
719 case Attribute::AllocAlign
:
720 return bitc::ATTR_KIND_ALLOC_ALIGN
;
721 case Attribute::AllocSize
:
722 return bitc::ATTR_KIND_ALLOC_SIZE
;
723 case Attribute::AlwaysInline
:
724 return bitc::ATTR_KIND_ALWAYS_INLINE
;
725 case Attribute::Builtin
:
726 return bitc::ATTR_KIND_BUILTIN
;
727 case Attribute::ByVal
:
728 return bitc::ATTR_KIND_BY_VAL
;
729 case Attribute::Convergent
:
730 return bitc::ATTR_KIND_CONVERGENT
;
731 case Attribute::InAlloca
:
732 return bitc::ATTR_KIND_IN_ALLOCA
;
733 case Attribute::Cold
:
734 return bitc::ATTR_KIND_COLD
;
735 case Attribute::DisableSanitizerInstrumentation
:
736 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION
;
737 case Attribute::FnRetThunkExtern
:
738 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN
;
740 return bitc::ATTR_KIND_HOT
;
741 case Attribute::ElementType
:
742 return bitc::ATTR_KIND_ELEMENTTYPE
;
743 case Attribute::HybridPatchable
:
744 return bitc::ATTR_KIND_HYBRID_PATCHABLE
;
745 case Attribute::InlineHint
:
746 return bitc::ATTR_KIND_INLINE_HINT
;
747 case Attribute::InReg
:
748 return bitc::ATTR_KIND_IN_REG
;
749 case Attribute::JumpTable
:
750 return bitc::ATTR_KIND_JUMP_TABLE
;
751 case Attribute::MinSize
:
752 return bitc::ATTR_KIND_MIN_SIZE
;
753 case Attribute::AllocatedPointer
:
754 return bitc::ATTR_KIND_ALLOCATED_POINTER
;
755 case Attribute::AllocKind
:
756 return bitc::ATTR_KIND_ALLOC_KIND
;
757 case Attribute::Memory
:
758 return bitc::ATTR_KIND_MEMORY
;
759 case Attribute::NoFPClass
:
760 return bitc::ATTR_KIND_NOFPCLASS
;
761 case Attribute::Naked
:
762 return bitc::ATTR_KIND_NAKED
;
763 case Attribute::Nest
:
764 return bitc::ATTR_KIND_NEST
;
765 case Attribute::NoAlias
:
766 return bitc::ATTR_KIND_NO_ALIAS
;
767 case Attribute::NoBuiltin
:
768 return bitc::ATTR_KIND_NO_BUILTIN
;
769 case Attribute::NoCallback
:
770 return bitc::ATTR_KIND_NO_CALLBACK
;
771 case Attribute::NoCapture
:
772 return bitc::ATTR_KIND_NO_CAPTURE
;
773 case Attribute::NoDivergenceSource
:
774 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE
;
775 case Attribute::NoDuplicate
:
776 return bitc::ATTR_KIND_NO_DUPLICATE
;
777 case Attribute::NoFree
:
778 return bitc::ATTR_KIND_NOFREE
;
779 case Attribute::NoImplicitFloat
:
780 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT
;
781 case Attribute::NoInline
:
782 return bitc::ATTR_KIND_NO_INLINE
;
783 case Attribute::NoRecurse
:
784 return bitc::ATTR_KIND_NO_RECURSE
;
785 case Attribute::NoMerge
:
786 return bitc::ATTR_KIND_NO_MERGE
;
787 case Attribute::NonLazyBind
:
788 return bitc::ATTR_KIND_NON_LAZY_BIND
;
789 case Attribute::NonNull
:
790 return bitc::ATTR_KIND_NON_NULL
;
791 case Attribute::Dereferenceable
:
792 return bitc::ATTR_KIND_DEREFERENCEABLE
;
793 case Attribute::DereferenceableOrNull
:
794 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL
;
795 case Attribute::NoRedZone
:
796 return bitc::ATTR_KIND_NO_RED_ZONE
;
797 case Attribute::NoReturn
:
798 return bitc::ATTR_KIND_NO_RETURN
;
799 case Attribute::NoSync
:
800 return bitc::ATTR_KIND_NOSYNC
;
801 case Attribute::NoCfCheck
:
802 return bitc::ATTR_KIND_NOCF_CHECK
;
803 case Attribute::NoProfile
:
804 return bitc::ATTR_KIND_NO_PROFILE
;
805 case Attribute::SkipProfile
:
806 return bitc::ATTR_KIND_SKIP_PROFILE
;
807 case Attribute::NoUnwind
:
808 return bitc::ATTR_KIND_NO_UNWIND
;
809 case Attribute::NoSanitizeBounds
:
810 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS
;
811 case Attribute::NoSanitizeCoverage
:
812 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE
;
813 case Attribute::NullPointerIsValid
:
814 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID
;
815 case Attribute::OptimizeForDebugging
:
816 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING
;
817 case Attribute::OptForFuzzing
:
818 return bitc::ATTR_KIND_OPT_FOR_FUZZING
;
819 case Attribute::OptimizeForSize
:
820 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE
;
821 case Attribute::OptimizeNone
:
822 return bitc::ATTR_KIND_OPTIMIZE_NONE
;
823 case Attribute::ReadNone
:
824 return bitc::ATTR_KIND_READ_NONE
;
825 case Attribute::ReadOnly
:
826 return bitc::ATTR_KIND_READ_ONLY
;
827 case Attribute::Returned
:
828 return bitc::ATTR_KIND_RETURNED
;
829 case Attribute::ReturnsTwice
:
830 return bitc::ATTR_KIND_RETURNS_TWICE
;
831 case Attribute::SExt
:
832 return bitc::ATTR_KIND_S_EXT
;
833 case Attribute::Speculatable
:
834 return bitc::ATTR_KIND_SPECULATABLE
;
835 case Attribute::StackAlignment
:
836 return bitc::ATTR_KIND_STACK_ALIGNMENT
;
837 case Attribute::StackProtect
:
838 return bitc::ATTR_KIND_STACK_PROTECT
;
839 case Attribute::StackProtectReq
:
840 return bitc::ATTR_KIND_STACK_PROTECT_REQ
;
841 case Attribute::StackProtectStrong
:
842 return bitc::ATTR_KIND_STACK_PROTECT_STRONG
;
843 case Attribute::SafeStack
:
844 return bitc::ATTR_KIND_SAFESTACK
;
845 case Attribute::ShadowCallStack
:
846 return bitc::ATTR_KIND_SHADOWCALLSTACK
;
847 case Attribute::StrictFP
:
848 return bitc::ATTR_KIND_STRICT_FP
;
849 case Attribute::StructRet
:
850 return bitc::ATTR_KIND_STRUCT_RET
;
851 case Attribute::SanitizeAddress
:
852 return bitc::ATTR_KIND_SANITIZE_ADDRESS
;
853 case Attribute::SanitizeHWAddress
:
854 return bitc::ATTR_KIND_SANITIZE_HWADDRESS
;
855 case Attribute::SanitizeThread
:
856 return bitc::ATTR_KIND_SANITIZE_THREAD
;
857 case Attribute::SanitizeType
:
858 return bitc::ATTR_KIND_SANITIZE_TYPE
;
859 case Attribute::SanitizeMemory
:
860 return bitc::ATTR_KIND_SANITIZE_MEMORY
;
861 case Attribute::SanitizeNumericalStability
:
862 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY
;
863 case Attribute::SanitizeRealtime
:
864 return bitc::ATTR_KIND_SANITIZE_REALTIME
;
865 case Attribute::SanitizeRealtimeBlocking
:
866 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING
;
867 case Attribute::SpeculativeLoadHardening
:
868 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING
;
869 case Attribute::SwiftError
:
870 return bitc::ATTR_KIND_SWIFT_ERROR
;
871 case Attribute::SwiftSelf
:
872 return bitc::ATTR_KIND_SWIFT_SELF
;
873 case Attribute::SwiftAsync
:
874 return bitc::ATTR_KIND_SWIFT_ASYNC
;
875 case Attribute::UWTable
:
876 return bitc::ATTR_KIND_UW_TABLE
;
877 case Attribute::VScaleRange
:
878 return bitc::ATTR_KIND_VSCALE_RANGE
;
879 case Attribute::WillReturn
:
880 return bitc::ATTR_KIND_WILLRETURN
;
881 case Attribute::WriteOnly
:
882 return bitc::ATTR_KIND_WRITEONLY
;
883 case Attribute::ZExt
:
884 return bitc::ATTR_KIND_Z_EXT
;
885 case Attribute::ImmArg
:
886 return bitc::ATTR_KIND_IMMARG
;
887 case Attribute::SanitizeMemTag
:
888 return bitc::ATTR_KIND_SANITIZE_MEMTAG
;
889 case Attribute::Preallocated
:
890 return bitc::ATTR_KIND_PREALLOCATED
;
891 case Attribute::NoUndef
:
892 return bitc::ATTR_KIND_NOUNDEF
;
893 case Attribute::ByRef
:
894 return bitc::ATTR_KIND_BYREF
;
895 case Attribute::MustProgress
:
896 return bitc::ATTR_KIND_MUSTPROGRESS
;
897 case Attribute::PresplitCoroutine
:
898 return bitc::ATTR_KIND_PRESPLIT_COROUTINE
;
899 case Attribute::Writable
:
900 return bitc::ATTR_KIND_WRITABLE
;
901 case Attribute::CoroDestroyOnlyWhenComplete
:
902 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE
;
903 case Attribute::CoroElideSafe
:
904 return bitc::ATTR_KIND_CORO_ELIDE_SAFE
;
905 case Attribute::DeadOnUnwind
:
906 return bitc::ATTR_KIND_DEAD_ON_UNWIND
;
907 case Attribute::Range
:
908 return bitc::ATTR_KIND_RANGE
;
909 case Attribute::Initializes
:
910 return bitc::ATTR_KIND_INITIALIZES
;
911 case Attribute::NoExt
:
912 return bitc::ATTR_KIND_NO_EXT
;
913 case Attribute::Captures
:
914 return bitc::ATTR_KIND_CAPTURES
;
915 case Attribute::EndAttrKinds
:
916 llvm_unreachable("Can not encode end-attribute kinds marker.");
917 case Attribute::None
:
918 llvm_unreachable("Can not encode none-attribute.");
919 case Attribute::EmptyKey
:
920 case Attribute::TombstoneKey
:
921 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
924 llvm_unreachable("Trying to encode unknown attribute");
927 static void emitSignedInt64(SmallVectorImpl
<uint64_t> &Vals
, uint64_t V
) {
929 Vals
.push_back(V
<< 1);
931 Vals
.push_back((-V
<< 1) | 1);
934 static void emitWideAPInt(SmallVectorImpl
<uint64_t> &Vals
, const APInt
&A
) {
935 // We have an arbitrary precision integer value to write whose
936 // bit width is > 64. However, in canonical unsigned integer
937 // format it is likely that the high bits are going to be zero.
938 // So, we only write the number of active words.
939 unsigned NumWords
= A
.getActiveWords();
940 const uint64_t *RawData
= A
.getRawData();
941 for (unsigned i
= 0; i
< NumWords
; i
++)
942 emitSignedInt64(Vals
, RawData
[i
]);
945 static void emitConstantRange(SmallVectorImpl
<uint64_t> &Record
,
946 const ConstantRange
&CR
, bool EmitBitWidth
) {
947 unsigned BitWidth
= CR
.getBitWidth();
949 Record
.push_back(BitWidth
);
951 Record
.push_back(CR
.getLower().getActiveWords() |
952 (uint64_t(CR
.getUpper().getActiveWords()) << 32));
953 emitWideAPInt(Record
, CR
.getLower());
954 emitWideAPInt(Record
, CR
.getUpper());
956 emitSignedInt64(Record
, CR
.getLower().getSExtValue());
957 emitSignedInt64(Record
, CR
.getUpper().getSExtValue());
961 void ModuleBitcodeWriter::writeAttributeGroupTable() {
962 const std::vector
<ValueEnumerator::IndexAndAttrSet
> &AttrGrps
=
963 VE
.getAttributeGroups();
964 if (AttrGrps
.empty()) return;
966 Stream
.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID
, 3);
968 SmallVector
<uint64_t, 64> Record
;
969 for (ValueEnumerator::IndexAndAttrSet Pair
: AttrGrps
) {
970 unsigned AttrListIndex
= Pair
.first
;
971 AttributeSet AS
= Pair
.second
;
972 Record
.push_back(VE
.getAttributeGroupID(Pair
));
973 Record
.push_back(AttrListIndex
);
975 for (Attribute Attr
: AS
) {
976 if (Attr
.isEnumAttribute()) {
978 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
979 } else if (Attr
.isIntAttribute()) {
981 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
982 Record
.push_back(Attr
.getValueAsInt());
983 } else if (Attr
.isStringAttribute()) {
984 StringRef Kind
= Attr
.getKindAsString();
985 StringRef Val
= Attr
.getValueAsString();
987 Record
.push_back(Val
.empty() ? 3 : 4);
988 Record
.append(Kind
.begin(), Kind
.end());
991 Record
.append(Val
.begin(), Val
.end());
994 } else if (Attr
.isTypeAttribute()) {
995 Type
*Ty
= Attr
.getValueAsType();
996 Record
.push_back(Ty
? 6 : 5);
997 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
999 Record
.push_back(VE
.getTypeID(Attr
.getValueAsType()));
1000 } else if (Attr
.isConstantRangeAttribute()) {
1001 Record
.push_back(7);
1002 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
1003 emitConstantRange(Record
, Attr
.getValueAsConstantRange(),
1004 /*EmitBitWidth=*/true);
1006 assert(Attr
.isConstantRangeListAttribute());
1007 Record
.push_back(8);
1008 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
1009 ArrayRef
<ConstantRange
> Val
= Attr
.getValueAsConstantRangeList();
1010 Record
.push_back(Val
.size());
1011 Record
.push_back(Val
[0].getBitWidth());
1012 for (auto &CR
: Val
)
1013 emitConstantRange(Record
, CR
, /*EmitBitWidth=*/false);
1017 Stream
.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY
, Record
);
1024 void ModuleBitcodeWriter::writeAttributeTable() {
1025 const std::vector
<AttributeList
> &Attrs
= VE
.getAttributeLists();
1026 if (Attrs
.empty()) return;
1028 Stream
.EnterSubblock(bitc::PARAMATTR_BLOCK_ID
, 3);
1030 SmallVector
<uint64_t, 64> Record
;
1031 for (const AttributeList
&AL
: Attrs
) {
1032 for (unsigned i
: AL
.indexes()) {
1033 AttributeSet AS
= AL
.getAttributes(i
);
1034 if (AS
.hasAttributes())
1035 Record
.push_back(VE
.getAttributeGroupID({i
, AS
}));
1038 Stream
.EmitRecord(bitc::PARAMATTR_CODE_ENTRY
, Record
);
1045 /// WriteTypeTable - Write out the type table for a module.
1046 void ModuleBitcodeWriter::writeTypeTable() {
1047 const ValueEnumerator::TypeList
&TypeList
= VE
.getTypes();
1049 Stream
.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW
, 4 /*count from # abbrevs */);
1050 SmallVector
<uint64_t, 64> TypeVals
;
1052 uint64_t NumBits
= VE
.computeBitsRequiredForTypeIndices();
1054 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
1055 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1056 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER
));
1057 Abbv
->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1058 unsigned OpaquePtrAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1060 // Abbrev for TYPE_CODE_FUNCTION.
1061 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1062 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION
));
1063 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // isvararg
1064 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1065 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1066 unsigned FunctionAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1068 // Abbrev for TYPE_CODE_STRUCT_ANON.
1069 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1070 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON
));
1071 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
1072 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1073 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1074 unsigned StructAnonAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1076 // Abbrev for TYPE_CODE_STRUCT_NAME.
1077 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1078 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME
));
1079 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1080 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
1081 unsigned StructNameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1083 // Abbrev for TYPE_CODE_STRUCT_NAMED.
1084 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1085 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED
));
1086 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
1087 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1088 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1089 unsigned StructNamedAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1091 // Abbrev for TYPE_CODE_ARRAY.
1092 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1093 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY
));
1094 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // size
1095 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
1096 unsigned ArrayAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1098 // Emit an entry count so the reader can reserve space.
1099 TypeVals
.push_back(TypeList
.size());
1100 Stream
.EmitRecord(bitc::TYPE_CODE_NUMENTRY
, TypeVals
);
1103 // Loop over all of the types, emitting each in turn.
1104 for (Type
*T
: TypeList
) {
1105 int AbbrevToUse
= 0;
1108 switch (T
->getTypeID()) {
1109 case Type::VoidTyID
: Code
= bitc::TYPE_CODE_VOID
; break;
1110 case Type::HalfTyID
: Code
= bitc::TYPE_CODE_HALF
; break;
1111 case Type::BFloatTyID
: Code
= bitc::TYPE_CODE_BFLOAT
; break;
1112 case Type::FloatTyID
: Code
= bitc::TYPE_CODE_FLOAT
; break;
1113 case Type::DoubleTyID
: Code
= bitc::TYPE_CODE_DOUBLE
; break;
1114 case Type::X86_FP80TyID
: Code
= bitc::TYPE_CODE_X86_FP80
; break;
1115 case Type::FP128TyID
: Code
= bitc::TYPE_CODE_FP128
; break;
1116 case Type::PPC_FP128TyID
: Code
= bitc::TYPE_CODE_PPC_FP128
; break;
1117 case Type::LabelTyID
: Code
= bitc::TYPE_CODE_LABEL
; break;
1118 case Type::MetadataTyID
:
1119 Code
= bitc::TYPE_CODE_METADATA
;
1121 case Type::X86_AMXTyID
: Code
= bitc::TYPE_CODE_X86_AMX
; break;
1122 case Type::TokenTyID
: Code
= bitc::TYPE_CODE_TOKEN
; break;
1123 case Type::IntegerTyID
:
1125 Code
= bitc::TYPE_CODE_INTEGER
;
1126 TypeVals
.push_back(cast
<IntegerType
>(T
)->getBitWidth());
1128 case Type::PointerTyID
: {
1129 PointerType
*PTy
= cast
<PointerType
>(T
);
1130 unsigned AddressSpace
= PTy
->getAddressSpace();
1131 // OPAQUE_POINTER: [address space]
1132 Code
= bitc::TYPE_CODE_OPAQUE_POINTER
;
1133 TypeVals
.push_back(AddressSpace
);
1134 if (AddressSpace
== 0)
1135 AbbrevToUse
= OpaquePtrAbbrev
;
1138 case Type::FunctionTyID
: {
1139 FunctionType
*FT
= cast
<FunctionType
>(T
);
1140 // FUNCTION: [isvararg, retty, paramty x N]
1141 Code
= bitc::TYPE_CODE_FUNCTION
;
1142 TypeVals
.push_back(FT
->isVarArg());
1143 TypeVals
.push_back(VE
.getTypeID(FT
->getReturnType()));
1144 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
)
1145 TypeVals
.push_back(VE
.getTypeID(FT
->getParamType(i
)));
1146 AbbrevToUse
= FunctionAbbrev
;
1149 case Type::StructTyID
: {
1150 StructType
*ST
= cast
<StructType
>(T
);
1151 // STRUCT: [ispacked, eltty x N]
1152 TypeVals
.push_back(ST
->isPacked());
1153 // Output all of the element types.
1154 for (Type
*ET
: ST
->elements())
1155 TypeVals
.push_back(VE
.getTypeID(ET
));
1157 if (ST
->isLiteral()) {
1158 Code
= bitc::TYPE_CODE_STRUCT_ANON
;
1159 AbbrevToUse
= StructAnonAbbrev
;
1161 if (ST
->isOpaque()) {
1162 Code
= bitc::TYPE_CODE_OPAQUE
;
1164 Code
= bitc::TYPE_CODE_STRUCT_NAMED
;
1165 AbbrevToUse
= StructNamedAbbrev
;
1168 // Emit the name if it is present.
1169 if (!ST
->getName().empty())
1170 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, ST
->getName(),
1175 case Type::ArrayTyID
: {
1176 ArrayType
*AT
= cast
<ArrayType
>(T
);
1177 // ARRAY: [numelts, eltty]
1178 Code
= bitc::TYPE_CODE_ARRAY
;
1179 TypeVals
.push_back(AT
->getNumElements());
1180 TypeVals
.push_back(VE
.getTypeID(AT
->getElementType()));
1181 AbbrevToUse
= ArrayAbbrev
;
1184 case Type::FixedVectorTyID
:
1185 case Type::ScalableVectorTyID
: {
1186 VectorType
*VT
= cast
<VectorType
>(T
);
1187 // VECTOR [numelts, eltty] or
1188 // [numelts, eltty, scalable]
1189 Code
= bitc::TYPE_CODE_VECTOR
;
1190 TypeVals
.push_back(VT
->getElementCount().getKnownMinValue());
1191 TypeVals
.push_back(VE
.getTypeID(VT
->getElementType()));
1192 if (isa
<ScalableVectorType
>(VT
))
1193 TypeVals
.push_back(true);
1196 case Type::TargetExtTyID
: {
1197 TargetExtType
*TET
= cast
<TargetExtType
>(T
);
1198 Code
= bitc::TYPE_CODE_TARGET_TYPE
;
1199 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, TET
->getName(),
1201 TypeVals
.push_back(TET
->getNumTypeParameters());
1202 for (Type
*InnerTy
: TET
->type_params())
1203 TypeVals
.push_back(VE
.getTypeID(InnerTy
));
1204 for (unsigned IntParam
: TET
->int_params())
1205 TypeVals
.push_back(IntParam
);
1208 case Type::TypedPointerTyID
:
1209 llvm_unreachable("Typed pointers cannot be added to IR modules");
1212 // Emit the finished record.
1213 Stream
.EmitRecord(Code
, TypeVals
, AbbrevToUse
);
1220 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage
) {
1222 case GlobalValue::ExternalLinkage
:
1224 case GlobalValue::WeakAnyLinkage
:
1226 case GlobalValue::AppendingLinkage
:
1228 case GlobalValue::InternalLinkage
:
1230 case GlobalValue::LinkOnceAnyLinkage
:
1232 case GlobalValue::ExternalWeakLinkage
:
1234 case GlobalValue::CommonLinkage
:
1236 case GlobalValue::PrivateLinkage
:
1238 case GlobalValue::WeakODRLinkage
:
1240 case GlobalValue::LinkOnceODRLinkage
:
1242 case GlobalValue::AvailableExternallyLinkage
:
1245 llvm_unreachable("Invalid linkage");
1248 static unsigned getEncodedLinkage(const GlobalValue
&GV
) {
1249 return getEncodedLinkage(GV
.getLinkage());
1252 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags
) {
1253 uint64_t RawFlags
= 0;
1254 RawFlags
|= Flags
.ReadNone
;
1255 RawFlags
|= (Flags
.ReadOnly
<< 1);
1256 RawFlags
|= (Flags
.NoRecurse
<< 2);
1257 RawFlags
|= (Flags
.ReturnDoesNotAlias
<< 3);
1258 RawFlags
|= (Flags
.NoInline
<< 4);
1259 RawFlags
|= (Flags
.AlwaysInline
<< 5);
1260 RawFlags
|= (Flags
.NoUnwind
<< 6);
1261 RawFlags
|= (Flags
.MayThrow
<< 7);
1262 RawFlags
|= (Flags
.HasUnknownCall
<< 8);
1263 RawFlags
|= (Flags
.MustBeUnreachable
<< 9);
1267 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1268 // in BitcodeReader.cpp.
1269 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags
,
1270 bool ImportAsDecl
= false) {
1271 uint64_t RawFlags
= 0;
1273 RawFlags
|= Flags
.NotEligibleToImport
; // bool
1274 RawFlags
|= (Flags
.Live
<< 1);
1275 RawFlags
|= (Flags
.DSOLocal
<< 2);
1276 RawFlags
|= (Flags
.CanAutoHide
<< 3);
1278 // Linkage don't need to be remapped at that time for the summary. Any future
1279 // change to the getEncodedLinkage() function will need to be taken into
1280 // account here as well.
1281 RawFlags
= (RawFlags
<< 4) | Flags
.Linkage
; // 4 bits
1283 RawFlags
|= (Flags
.Visibility
<< 8); // 2 bits
1285 unsigned ImportType
= Flags
.ImportType
| ImportAsDecl
;
1286 RawFlags
|= (ImportType
<< 10); // 1 bit
1291 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags
) {
1292 uint64_t RawFlags
= Flags
.MaybeReadOnly
| (Flags
.MaybeWriteOnly
<< 1) |
1293 (Flags
.Constant
<< 2) | Flags
.VCallVisibility
<< 3;
1297 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo
&CI
) {
1298 uint64_t RawFlags
= 0;
1300 RawFlags
|= CI
.Hotness
; // 3 bits
1301 RawFlags
|= (CI
.HasTailCall
<< 3); // 1 bit
1306 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo
&CI
) {
1307 uint64_t RawFlags
= 0;
1309 RawFlags
|= CI
.RelBlockFreq
; // CalleeInfo::RelBlockFreqBits bits
1310 RawFlags
|= (CI
.HasTailCall
<< CalleeInfo::RelBlockFreqBits
); // 1 bit
1315 static unsigned getEncodedVisibility(const GlobalValue
&GV
) {
1316 switch (GV
.getVisibility()) {
1317 case GlobalValue::DefaultVisibility
: return 0;
1318 case GlobalValue::HiddenVisibility
: return 1;
1319 case GlobalValue::ProtectedVisibility
: return 2;
1321 llvm_unreachable("Invalid visibility");
1324 static unsigned getEncodedDLLStorageClass(const GlobalValue
&GV
) {
1325 switch (GV
.getDLLStorageClass()) {
1326 case GlobalValue::DefaultStorageClass
: return 0;
1327 case GlobalValue::DLLImportStorageClass
: return 1;
1328 case GlobalValue::DLLExportStorageClass
: return 2;
1330 llvm_unreachable("Invalid DLL storage class");
1333 static unsigned getEncodedThreadLocalMode(const GlobalValue
&GV
) {
1334 switch (GV
.getThreadLocalMode()) {
1335 case GlobalVariable::NotThreadLocal
: return 0;
1336 case GlobalVariable::GeneralDynamicTLSModel
: return 1;
1337 case GlobalVariable::LocalDynamicTLSModel
: return 2;
1338 case GlobalVariable::InitialExecTLSModel
: return 3;
1339 case GlobalVariable::LocalExecTLSModel
: return 4;
1341 llvm_unreachable("Invalid TLS model");
1344 static unsigned getEncodedComdatSelectionKind(const Comdat
&C
) {
1345 switch (C
.getSelectionKind()) {
1347 return bitc::COMDAT_SELECTION_KIND_ANY
;
1348 case Comdat::ExactMatch
:
1349 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH
;
1350 case Comdat::Largest
:
1351 return bitc::COMDAT_SELECTION_KIND_LARGEST
;
1352 case Comdat::NoDeduplicate
:
1353 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES
;
1354 case Comdat::SameSize
:
1355 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE
;
1357 llvm_unreachable("Invalid selection kind");
1360 static unsigned getEncodedUnnamedAddr(const GlobalValue
&GV
) {
1361 switch (GV
.getUnnamedAddr()) {
1362 case GlobalValue::UnnamedAddr::None
: return 0;
1363 case GlobalValue::UnnamedAddr::Local
: return 2;
1364 case GlobalValue::UnnamedAddr::Global
: return 1;
1366 llvm_unreachable("Invalid unnamed_addr");
1369 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str
) {
1372 return StrtabBuilder
.add(Str
);
1375 void ModuleBitcodeWriter::writeComdats() {
1376 SmallVector
<unsigned, 64> Vals
;
1377 for (const Comdat
*C
: VE
.getComdats()) {
1378 // COMDAT: [strtab offset, strtab size, selection_kind]
1379 Vals
.push_back(addToStrtab(C
->getName()));
1380 Vals
.push_back(C
->getName().size());
1381 Vals
.push_back(getEncodedComdatSelectionKind(*C
));
1382 Stream
.EmitRecord(bitc::MODULE_CODE_COMDAT
, Vals
, /*AbbrevToUse=*/0);
1387 /// Write a record that will eventually hold the word offset of the
1388 /// module-level VST. For now the offset is 0, which will be backpatched
1389 /// after the real VST is written. Saves the bit offset to backpatch.
1390 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1391 // Write a placeholder value in for the offset of the real VST,
1392 // which is written after the function blocks so that it can include
1393 // the offset of each function. The placeholder offset will be
1394 // updated when the real VST is written.
1395 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1396 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET
));
1397 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1398 // hold the real VST offset. Must use fixed instead of VBR as we don't
1399 // know how many VBR chunks to reserve ahead of time.
1400 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
1401 unsigned VSTOffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1403 // Emit the placeholder
1404 uint64_t Vals
[] = {bitc::MODULE_CODE_VSTOFFSET
, 0};
1405 Stream
.EmitRecordWithAbbrev(VSTOffsetAbbrev
, Vals
);
1407 // Compute and save the bit offset to the placeholder, which will be
1408 // patched when the real VST is written. We can simply subtract the 32-bit
1409 // fixed size from the current bit number to get the location to backpatch.
1410 VSTOffsetPlaceholder
= Stream
.GetCurrentBitNo() - 32;
1413 enum StringEncoding
{ SE_Char6
, SE_Fixed7
, SE_Fixed8
};
1415 /// Determine the encoding to use for the given string name and length.
1416 static StringEncoding
getStringEncoding(StringRef Str
) {
1417 bool isChar6
= true;
1418 for (char C
: Str
) {
1420 isChar6
= BitCodeAbbrevOp::isChar6(C
);
1421 if ((unsigned char)C
& 128)
1422 // don't bother scanning the rest.
1430 static_assert(sizeof(GlobalValue::SanitizerMetadata
) <= sizeof(unsigned),
1431 "Sanitizer Metadata is too large for naive serialization.");
1433 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata
&Meta
) {
1434 return Meta
.NoAddress
| (Meta
.NoHWAddress
<< 1) |
1435 (Meta
.Memtag
<< 2) | (Meta
.IsDynInit
<< 3);
1438 /// Emit top-level description of module, including target triple, inline asm,
1439 /// descriptors for global variables, and function prototype info.
1440 /// Returns the bit offset to backpatch with the location of the real VST.
1441 void ModuleBitcodeWriter::writeModuleInfo() {
1442 // Emit various pieces of data attached to a module.
1443 if (!M
.getTargetTriple().empty())
1444 writeStringRecord(Stream
, bitc::MODULE_CODE_TRIPLE
, M
.getTargetTriple(),
1446 const std::string
&DL
= M
.getDataLayoutStr();
1448 writeStringRecord(Stream
, bitc::MODULE_CODE_DATALAYOUT
, DL
, 0 /*TODO*/);
1449 if (!M
.getModuleInlineAsm().empty())
1450 writeStringRecord(Stream
, bitc::MODULE_CODE_ASM
, M
.getModuleInlineAsm(),
1453 // Emit information about sections and GC, computing how many there are. Also
1454 // compute the maximum alignment value.
1455 std::map
<std::string
, unsigned> SectionMap
;
1456 std::map
<std::string
, unsigned> GCMap
;
1457 MaybeAlign MaxAlignment
;
1458 unsigned MaxGlobalType
= 0;
1459 const auto UpdateMaxAlignment
= [&MaxAlignment
](const MaybeAlign A
) {
1461 MaxAlignment
= !MaxAlignment
? *A
: std::max(*MaxAlignment
, *A
);
1463 for (const GlobalVariable
&GV
: M
.globals()) {
1464 UpdateMaxAlignment(GV
.getAlign());
1465 MaxGlobalType
= std::max(MaxGlobalType
, VE
.getTypeID(GV
.getValueType()));
1466 if (GV
.hasSection()) {
1467 // Give section names unique ID's.
1468 unsigned &Entry
= SectionMap
[std::string(GV
.getSection())];
1470 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, GV
.getSection(),
1472 Entry
= SectionMap
.size();
1476 for (const Function
&F
: M
) {
1477 UpdateMaxAlignment(F
.getAlign());
1478 if (F
.hasSection()) {
1479 // Give section names unique ID's.
1480 unsigned &Entry
= SectionMap
[std::string(F
.getSection())];
1482 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, F
.getSection(),
1484 Entry
= SectionMap
.size();
1488 // Same for GC names.
1489 unsigned &Entry
= GCMap
[F
.getGC()];
1491 writeStringRecord(Stream
, bitc::MODULE_CODE_GCNAME
, F
.getGC(),
1493 Entry
= GCMap
.size();
1498 // Emit abbrev for globals, now that we know # sections and max alignment.
1499 unsigned SimpleGVarAbbrev
= 0;
1500 if (!M
.global_empty()) {
1501 // Add an abbrev for common globals with no visibility or thread localness.
1502 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1503 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR
));
1504 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1505 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1506 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1507 Log2_32_Ceil(MaxGlobalType
+1)));
1508 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // AddrSpace << 2
1509 //| explicitType << 1
1511 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Initializer.
1512 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 5)); // Linkage.
1513 if (!MaxAlignment
) // Alignment.
1514 Abbv
->Add(BitCodeAbbrevOp(0));
1516 unsigned MaxEncAlignment
= getEncodedAlign(MaxAlignment
);
1517 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1518 Log2_32_Ceil(MaxEncAlignment
+1)));
1520 if (SectionMap
.empty()) // Section.
1521 Abbv
->Add(BitCodeAbbrevOp(0));
1523 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1524 Log2_32_Ceil(SectionMap
.size()+1)));
1525 // Don't bother emitting vis + thread local.
1526 SimpleGVarAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1529 SmallVector
<unsigned, 64> Vals
;
1530 // Emit the module's source file name.
1532 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
1533 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
1534 if (Bits
== SE_Char6
)
1535 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
1536 else if (Bits
== SE_Fixed7
)
1537 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
1539 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1540 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1541 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
1542 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1543 Abbv
->Add(AbbrevOpToUse
);
1544 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1546 for (const auto P
: M
.getSourceFileName())
1547 Vals
.push_back((unsigned char)P
);
1549 // Emit the finished record.
1550 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
1554 // Emit the global variable information.
1555 for (const GlobalVariable
&GV
: M
.globals()) {
1556 unsigned AbbrevToUse
= 0;
1558 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1559 // linkage, alignment, section, visibility, threadlocal,
1560 // unnamed_addr, externally_initialized, dllstorageclass,
1561 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1562 Vals
.push_back(addToStrtab(GV
.getName()));
1563 Vals
.push_back(GV
.getName().size());
1564 Vals
.push_back(VE
.getTypeID(GV
.getValueType()));
1565 Vals
.push_back(GV
.getType()->getAddressSpace() << 2 | 2 | GV
.isConstant());
1566 Vals
.push_back(GV
.isDeclaration() ? 0 :
1567 (VE
.getValueID(GV
.getInitializer()) + 1));
1568 Vals
.push_back(getEncodedLinkage(GV
));
1569 Vals
.push_back(getEncodedAlign(GV
.getAlign()));
1570 Vals
.push_back(GV
.hasSection() ? SectionMap
[std::string(GV
.getSection())]
1572 if (GV
.isThreadLocal() ||
1573 GV
.getVisibility() != GlobalValue::DefaultVisibility
||
1574 GV
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
||
1575 GV
.isExternallyInitialized() ||
1576 GV
.getDLLStorageClass() != GlobalValue::DefaultStorageClass
||
1577 GV
.hasComdat() || GV
.hasAttributes() || GV
.isDSOLocal() ||
1578 GV
.hasPartition() || GV
.hasSanitizerMetadata() || GV
.getCodeModel()) {
1579 Vals
.push_back(getEncodedVisibility(GV
));
1580 Vals
.push_back(getEncodedThreadLocalMode(GV
));
1581 Vals
.push_back(getEncodedUnnamedAddr(GV
));
1582 Vals
.push_back(GV
.isExternallyInitialized());
1583 Vals
.push_back(getEncodedDLLStorageClass(GV
));
1584 Vals
.push_back(GV
.hasComdat() ? VE
.getComdatID(GV
.getComdat()) : 0);
1586 auto AL
= GV
.getAttributesAsList(AttributeList::FunctionIndex
);
1587 Vals
.push_back(VE
.getAttributeListID(AL
));
1589 Vals
.push_back(GV
.isDSOLocal());
1590 Vals
.push_back(addToStrtab(GV
.getPartition()));
1591 Vals
.push_back(GV
.getPartition().size());
1593 Vals
.push_back((GV
.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1594 GV
.getSanitizerMetadata())
1596 Vals
.push_back(GV
.getCodeModelRaw());
1598 AbbrevToUse
= SimpleGVarAbbrev
;
1601 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
, AbbrevToUse
);
1605 // Emit the function proto information.
1606 for (const Function
&F
: M
) {
1607 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1608 // linkage, paramattrs, alignment, section, visibility, gc,
1609 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1610 // prefixdata, personalityfn, DSO_Local, addrspace]
1611 Vals
.push_back(addToStrtab(F
.getName()));
1612 Vals
.push_back(F
.getName().size());
1613 Vals
.push_back(VE
.getTypeID(F
.getFunctionType()));
1614 Vals
.push_back(F
.getCallingConv());
1615 Vals
.push_back(F
.isDeclaration());
1616 Vals
.push_back(getEncodedLinkage(F
));
1617 Vals
.push_back(VE
.getAttributeListID(F
.getAttributes()));
1618 Vals
.push_back(getEncodedAlign(F
.getAlign()));
1619 Vals
.push_back(F
.hasSection() ? SectionMap
[std::string(F
.getSection())]
1621 Vals
.push_back(getEncodedVisibility(F
));
1622 Vals
.push_back(F
.hasGC() ? GCMap
[F
.getGC()] : 0);
1623 Vals
.push_back(getEncodedUnnamedAddr(F
));
1624 Vals
.push_back(F
.hasPrologueData() ? (VE
.getValueID(F
.getPrologueData()) + 1)
1626 Vals
.push_back(getEncodedDLLStorageClass(F
));
1627 Vals
.push_back(F
.hasComdat() ? VE
.getComdatID(F
.getComdat()) : 0);
1628 Vals
.push_back(F
.hasPrefixData() ? (VE
.getValueID(F
.getPrefixData()) + 1)
1631 F
.hasPersonalityFn() ? (VE
.getValueID(F
.getPersonalityFn()) + 1) : 0);
1633 Vals
.push_back(F
.isDSOLocal());
1634 Vals
.push_back(F
.getAddressSpace());
1635 Vals
.push_back(addToStrtab(F
.getPartition()));
1636 Vals
.push_back(F
.getPartition().size());
1638 unsigned AbbrevToUse
= 0;
1639 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
, AbbrevToUse
);
1643 // Emit the alias information.
1644 for (const GlobalAlias
&A
: M
.aliases()) {
1645 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1646 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1648 Vals
.push_back(addToStrtab(A
.getName()));
1649 Vals
.push_back(A
.getName().size());
1650 Vals
.push_back(VE
.getTypeID(A
.getValueType()));
1651 Vals
.push_back(A
.getType()->getAddressSpace());
1652 Vals
.push_back(VE
.getValueID(A
.getAliasee()));
1653 Vals
.push_back(getEncodedLinkage(A
));
1654 Vals
.push_back(getEncodedVisibility(A
));
1655 Vals
.push_back(getEncodedDLLStorageClass(A
));
1656 Vals
.push_back(getEncodedThreadLocalMode(A
));
1657 Vals
.push_back(getEncodedUnnamedAddr(A
));
1658 Vals
.push_back(A
.isDSOLocal());
1659 Vals
.push_back(addToStrtab(A
.getPartition()));
1660 Vals
.push_back(A
.getPartition().size());
1662 unsigned AbbrevToUse
= 0;
1663 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
, AbbrevToUse
);
1667 // Emit the ifunc information.
1668 for (const GlobalIFunc
&I
: M
.ifuncs()) {
1669 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1670 // val#, linkage, visibility, DSO_Local]
1671 Vals
.push_back(addToStrtab(I
.getName()));
1672 Vals
.push_back(I
.getName().size());
1673 Vals
.push_back(VE
.getTypeID(I
.getValueType()));
1674 Vals
.push_back(I
.getType()->getAddressSpace());
1675 Vals
.push_back(VE
.getValueID(I
.getResolver()));
1676 Vals
.push_back(getEncodedLinkage(I
));
1677 Vals
.push_back(getEncodedVisibility(I
));
1678 Vals
.push_back(I
.isDSOLocal());
1679 Vals
.push_back(addToStrtab(I
.getPartition()));
1680 Vals
.push_back(I
.getPartition().size());
1681 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
1685 writeValueSymbolTableForwardDecl();
1688 static uint64_t getOptimizationFlags(const Value
*V
) {
1691 if (const auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
1692 if (OBO
->hasNoSignedWrap())
1693 Flags
|= 1 << bitc::OBO_NO_SIGNED_WRAP
;
1694 if (OBO
->hasNoUnsignedWrap())
1695 Flags
|= 1 << bitc::OBO_NO_UNSIGNED_WRAP
;
1696 } else if (const auto *PEO
= dyn_cast
<PossiblyExactOperator
>(V
)) {
1698 Flags
|= 1 << bitc::PEO_EXACT
;
1699 } else if (const auto *PDI
= dyn_cast
<PossiblyDisjointInst
>(V
)) {
1700 if (PDI
->isDisjoint())
1701 Flags
|= 1 << bitc::PDI_DISJOINT
;
1702 } else if (const auto *FPMO
= dyn_cast
<FPMathOperator
>(V
)) {
1703 if (FPMO
->hasAllowReassoc())
1704 Flags
|= bitc::AllowReassoc
;
1705 if (FPMO
->hasNoNaNs())
1706 Flags
|= bitc::NoNaNs
;
1707 if (FPMO
->hasNoInfs())
1708 Flags
|= bitc::NoInfs
;
1709 if (FPMO
->hasNoSignedZeros())
1710 Flags
|= bitc::NoSignedZeros
;
1711 if (FPMO
->hasAllowReciprocal())
1712 Flags
|= bitc::AllowReciprocal
;
1713 if (FPMO
->hasAllowContract())
1714 Flags
|= bitc::AllowContract
;
1715 if (FPMO
->hasApproxFunc())
1716 Flags
|= bitc::ApproxFunc
;
1717 } else if (const auto *NNI
= dyn_cast
<PossiblyNonNegInst
>(V
)) {
1718 if (NNI
->hasNonNeg())
1719 Flags
|= 1 << bitc::PNNI_NON_NEG
;
1720 } else if (const auto *TI
= dyn_cast
<TruncInst
>(V
)) {
1721 if (TI
->hasNoSignedWrap())
1722 Flags
|= 1 << bitc::TIO_NO_SIGNED_WRAP
;
1723 if (TI
->hasNoUnsignedWrap())
1724 Flags
|= 1 << bitc::TIO_NO_UNSIGNED_WRAP
;
1725 } else if (const auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
1726 if (GEP
->isInBounds())
1727 Flags
|= 1 << bitc::GEP_INBOUNDS
;
1728 if (GEP
->hasNoUnsignedSignedWrap())
1729 Flags
|= 1 << bitc::GEP_NUSW
;
1730 if (GEP
->hasNoUnsignedWrap())
1731 Flags
|= 1 << bitc::GEP_NUW
;
1732 } else if (const auto *ICmp
= dyn_cast
<ICmpInst
>(V
)) {
1733 if (ICmp
->hasSameSign())
1734 Flags
|= 1 << bitc::ICMP_SAME_SIGN
;
1740 void ModuleBitcodeWriter::writeValueAsMetadata(
1741 const ValueAsMetadata
*MD
, SmallVectorImpl
<uint64_t> &Record
) {
1742 // Mimic an MDNode with a value as one operand.
1743 Value
*V
= MD
->getValue();
1744 Record
.push_back(VE
.getTypeID(V
->getType()));
1745 Record
.push_back(VE
.getValueID(V
));
1746 Stream
.EmitRecord(bitc::METADATA_VALUE
, Record
, 0);
1750 void ModuleBitcodeWriter::writeMDTuple(const MDTuple
*N
,
1751 SmallVectorImpl
<uint64_t> &Record
,
1753 for (const MDOperand
&MDO
: N
->operands()) {
1755 assert(!(MD
&& isa
<LocalAsMetadata
>(MD
)) &&
1756 "Unexpected function-local metadata");
1757 Record
.push_back(VE
.getMetadataOrNullID(MD
));
1759 Stream
.EmitRecord(N
->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1760 : bitc::METADATA_NODE
,
1765 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1766 // Assume the column is usually under 128, and always output the inlined-at
1767 // location (it's never more expensive than building an array size 1).
1768 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1769 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION
));
1770 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1771 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1772 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1773 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1774 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1775 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1776 return Stream
.EmitAbbrev(std::move(Abbv
));
1779 void ModuleBitcodeWriter::writeDILocation(const DILocation
*N
,
1780 SmallVectorImpl
<uint64_t> &Record
,
1783 Abbrev
= createDILocationAbbrev();
1785 Record
.push_back(N
->isDistinct());
1786 Record
.push_back(N
->getLine());
1787 Record
.push_back(N
->getColumn());
1788 Record
.push_back(VE
.getMetadataID(N
->getScope()));
1789 Record
.push_back(VE
.getMetadataOrNullID(N
->getInlinedAt()));
1790 Record
.push_back(N
->isImplicitCode());
1792 Stream
.EmitRecord(bitc::METADATA_LOCATION
, Record
, Abbrev
);
1796 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1797 // Assume the column is usually under 128, and always output the inlined-at
1798 // location (it's never more expensive than building an array size 1).
1799 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1800 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG
));
1801 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1802 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1803 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1804 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1805 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1806 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1807 return Stream
.EmitAbbrev(std::move(Abbv
));
1810 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode
*N
,
1811 SmallVectorImpl
<uint64_t> &Record
,
1814 Abbrev
= createGenericDINodeAbbrev();
1816 Record
.push_back(N
->isDistinct());
1817 Record
.push_back(N
->getTag());
1818 Record
.push_back(0); // Per-tag version field; unused for now.
1820 for (auto &I
: N
->operands())
1821 Record
.push_back(VE
.getMetadataOrNullID(I
));
1823 Stream
.EmitRecord(bitc::METADATA_GENERIC_DEBUG
, Record
, Abbrev
);
1827 void ModuleBitcodeWriter::writeDISubrange(const DISubrange
*N
,
1828 SmallVectorImpl
<uint64_t> &Record
,
1830 const uint64_t Version
= 2 << 1;
1831 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1832 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawCountNode()));
1833 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLowerBound()));
1834 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUpperBound()));
1835 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawStride()));
1837 Stream
.EmitRecord(bitc::METADATA_SUBRANGE
, Record
, Abbrev
);
1841 void ModuleBitcodeWriter::writeDIGenericSubrange(
1842 const DIGenericSubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
1844 Record
.push_back((uint64_t)N
->isDistinct());
1845 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawCountNode()));
1846 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLowerBound()));
1847 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUpperBound()));
1848 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawStride()));
1850 Stream
.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE
, Record
, Abbrev
);
1854 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator
*N
,
1855 SmallVectorImpl
<uint64_t> &Record
,
1857 const uint64_t IsBigInt
= 1 << 2;
1858 Record
.push_back(IsBigInt
| (N
->isUnsigned() << 1) | N
->isDistinct());
1859 Record
.push_back(N
->getValue().getBitWidth());
1860 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1861 emitWideAPInt(Record
, N
->getValue());
1863 Stream
.EmitRecord(bitc::METADATA_ENUMERATOR
, Record
, Abbrev
);
1867 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType
*N
,
1868 SmallVectorImpl
<uint64_t> &Record
,
1870 Record
.push_back(N
->isDistinct());
1871 Record
.push_back(N
->getTag());
1872 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1873 Record
.push_back(N
->getSizeInBits());
1874 Record
.push_back(N
->getAlignInBits());
1875 Record
.push_back(N
->getEncoding());
1876 Record
.push_back(N
->getFlags());
1877 Record
.push_back(N
->getNumExtraInhabitants());
1879 Stream
.EmitRecord(bitc::METADATA_BASIC_TYPE
, Record
, Abbrev
);
1883 void ModuleBitcodeWriter::writeDIStringType(const DIStringType
*N
,
1884 SmallVectorImpl
<uint64_t> &Record
,
1886 Record
.push_back(N
->isDistinct());
1887 Record
.push_back(N
->getTag());
1888 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1889 Record
.push_back(VE
.getMetadataOrNullID(N
->getStringLength()));
1890 Record
.push_back(VE
.getMetadataOrNullID(N
->getStringLengthExp()));
1891 Record
.push_back(VE
.getMetadataOrNullID(N
->getStringLocationExp()));
1892 Record
.push_back(N
->getSizeInBits());
1893 Record
.push_back(N
->getAlignInBits());
1894 Record
.push_back(N
->getEncoding());
1896 Stream
.EmitRecord(bitc::METADATA_STRING_TYPE
, Record
, Abbrev
);
1900 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType
*N
,
1901 SmallVectorImpl
<uint64_t> &Record
,
1903 Record
.push_back(N
->isDistinct());
1904 Record
.push_back(N
->getTag());
1905 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1906 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1907 Record
.push_back(N
->getLine());
1908 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1909 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1910 Record
.push_back(N
->getSizeInBits());
1911 Record
.push_back(N
->getAlignInBits());
1912 Record
.push_back(N
->getOffsetInBits());
1913 Record
.push_back(N
->getFlags());
1914 Record
.push_back(VE
.getMetadataOrNullID(N
->getExtraData()));
1916 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1917 // that there is no DWARF address space associated with DIDerivedType.
1918 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
1919 Record
.push_back(*DWARFAddressSpace
+ 1);
1921 Record
.push_back(0);
1923 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
1925 if (auto PtrAuthData
= N
->getPtrAuthData())
1926 Record
.push_back(PtrAuthData
->RawData
);
1928 Record
.push_back(0);
1930 Stream
.EmitRecord(bitc::METADATA_DERIVED_TYPE
, Record
, Abbrev
);
1934 void ModuleBitcodeWriter::writeDICompositeType(
1935 const DICompositeType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1937 const unsigned IsNotUsedInOldTypeRef
= 0x2;
1938 Record
.push_back(IsNotUsedInOldTypeRef
| (unsigned)N
->isDistinct());
1939 Record
.push_back(N
->getTag());
1940 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1941 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1942 Record
.push_back(N
->getLine());
1943 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1944 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1945 Record
.push_back(N
->getSizeInBits());
1946 Record
.push_back(N
->getAlignInBits());
1947 Record
.push_back(N
->getOffsetInBits());
1948 Record
.push_back(N
->getFlags());
1949 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1950 Record
.push_back(N
->getRuntimeLang());
1951 Record
.push_back(VE
.getMetadataOrNullID(N
->getVTableHolder()));
1952 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1953 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawIdentifier()));
1954 Record
.push_back(VE
.getMetadataOrNullID(N
->getDiscriminator()));
1955 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDataLocation()));
1956 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawAssociated()));
1957 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawAllocated()));
1958 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawRank()));
1959 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
1960 Record
.push_back(N
->getNumExtraInhabitants());
1961 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSpecification()));
1963 Stream
.EmitRecord(bitc::METADATA_COMPOSITE_TYPE
, Record
, Abbrev
);
1967 void ModuleBitcodeWriter::writeDISubroutineType(
1968 const DISubroutineType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1970 const unsigned HasNoOldTypeRefs
= 0x2;
1971 Record
.push_back(HasNoOldTypeRefs
| (unsigned)N
->isDistinct());
1972 Record
.push_back(N
->getFlags());
1973 Record
.push_back(VE
.getMetadataOrNullID(N
->getTypeArray().get()));
1974 Record
.push_back(N
->getCC());
1976 Stream
.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE
, Record
, Abbrev
);
1980 void ModuleBitcodeWriter::writeDIFile(const DIFile
*N
,
1981 SmallVectorImpl
<uint64_t> &Record
,
1983 Record
.push_back(N
->isDistinct());
1984 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFilename()));
1985 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDirectory()));
1986 if (N
->getRawChecksum()) {
1987 Record
.push_back(N
->getRawChecksum()->Kind
);
1988 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawChecksum()->Value
));
1990 // Maintain backwards compatibility with the old internal representation of
1991 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1992 Record
.push_back(0);
1993 Record
.push_back(VE
.getMetadataOrNullID(nullptr));
1995 auto Source
= N
->getRawSource();
1997 Record
.push_back(VE
.getMetadataOrNullID(Source
));
1999 Stream
.EmitRecord(bitc::METADATA_FILE
, Record
, Abbrev
);
2003 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit
*N
,
2004 SmallVectorImpl
<uint64_t> &Record
,
2006 assert(N
->isDistinct() && "Expected distinct compile units");
2007 Record
.push_back(/* IsDistinct */ true);
2008 Record
.push_back(N
->getSourceLanguage());
2009 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2010 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawProducer()));
2011 Record
.push_back(N
->isOptimized());
2012 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFlags()));
2013 Record
.push_back(N
->getRuntimeVersion());
2014 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSplitDebugFilename()));
2015 Record
.push_back(N
->getEmissionKind());
2016 Record
.push_back(VE
.getMetadataOrNullID(N
->getEnumTypes().get()));
2017 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedTypes().get()));
2018 Record
.push_back(/* subprograms */ 0);
2019 Record
.push_back(VE
.getMetadataOrNullID(N
->getGlobalVariables().get()));
2020 Record
.push_back(VE
.getMetadataOrNullID(N
->getImportedEntities().get()));
2021 Record
.push_back(N
->getDWOId());
2022 Record
.push_back(VE
.getMetadataOrNullID(N
->getMacros().get()));
2023 Record
.push_back(N
->getSplitDebugInlining());
2024 Record
.push_back(N
->getDebugInfoForProfiling());
2025 Record
.push_back((unsigned)N
->getNameTableKind());
2026 Record
.push_back(N
->getRangesBaseAddress());
2027 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSysRoot()));
2028 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSDK()));
2030 Stream
.EmitRecord(bitc::METADATA_COMPILE_UNIT
, Record
, Abbrev
);
2034 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram
*N
,
2035 SmallVectorImpl
<uint64_t> &Record
,
2037 const uint64_t HasUnitFlag
= 1 << 1;
2038 const uint64_t HasSPFlagsFlag
= 1 << 2;
2039 Record
.push_back(uint64_t(N
->isDistinct()) | HasUnitFlag
| HasSPFlagsFlag
);
2040 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2041 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2042 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
2043 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2044 Record
.push_back(N
->getLine());
2045 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2046 Record
.push_back(N
->getScopeLine());
2047 Record
.push_back(VE
.getMetadataOrNullID(N
->getContainingType()));
2048 Record
.push_back(N
->getSPFlags());
2049 Record
.push_back(N
->getVirtualIndex());
2050 Record
.push_back(N
->getFlags());
2051 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUnit()));
2052 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
2053 Record
.push_back(VE
.getMetadataOrNullID(N
->getDeclaration()));
2054 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedNodes().get()));
2055 Record
.push_back(N
->getThisAdjustment());
2056 Record
.push_back(VE
.getMetadataOrNullID(N
->getThrownTypes().get()));
2057 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
2058 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawTargetFuncName()));
2060 Stream
.EmitRecord(bitc::METADATA_SUBPROGRAM
, Record
, Abbrev
);
2064 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock
*N
,
2065 SmallVectorImpl
<uint64_t> &Record
,
2067 Record
.push_back(N
->isDistinct());
2068 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2069 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2070 Record
.push_back(N
->getLine());
2071 Record
.push_back(N
->getColumn());
2073 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK
, Record
, Abbrev
);
2077 void ModuleBitcodeWriter::writeDILexicalBlockFile(
2078 const DILexicalBlockFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
2080 Record
.push_back(N
->isDistinct());
2081 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2082 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2083 Record
.push_back(N
->getDiscriminator());
2085 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE
, Record
, Abbrev
);
2089 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock
*N
,
2090 SmallVectorImpl
<uint64_t> &Record
,
2092 Record
.push_back(N
->isDistinct());
2093 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2094 Record
.push_back(VE
.getMetadataOrNullID(N
->getDecl()));
2095 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2096 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2097 Record
.push_back(N
->getLineNo());
2099 Stream
.EmitRecord(bitc::METADATA_COMMON_BLOCK
, Record
, Abbrev
);
2103 void ModuleBitcodeWriter::writeDINamespace(const DINamespace
*N
,
2104 SmallVectorImpl
<uint64_t> &Record
,
2106 Record
.push_back(N
->isDistinct() | N
->getExportSymbols() << 1);
2107 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2108 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2110 Stream
.EmitRecord(bitc::METADATA_NAMESPACE
, Record
, Abbrev
);
2114 void ModuleBitcodeWriter::writeDIMacro(const DIMacro
*N
,
2115 SmallVectorImpl
<uint64_t> &Record
,
2117 Record
.push_back(N
->isDistinct());
2118 Record
.push_back(N
->getMacinfoType());
2119 Record
.push_back(N
->getLine());
2120 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2121 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawValue()));
2123 Stream
.EmitRecord(bitc::METADATA_MACRO
, Record
, Abbrev
);
2127 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile
*N
,
2128 SmallVectorImpl
<uint64_t> &Record
,
2130 Record
.push_back(N
->isDistinct());
2131 Record
.push_back(N
->getMacinfoType());
2132 Record
.push_back(N
->getLine());
2133 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2134 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
2136 Stream
.EmitRecord(bitc::METADATA_MACRO_FILE
, Record
, Abbrev
);
2140 void ModuleBitcodeWriter::writeDIArgList(const DIArgList
*N
,
2141 SmallVectorImpl
<uint64_t> &Record
) {
2142 Record
.reserve(N
->getArgs().size());
2143 for (ValueAsMetadata
*MD
: N
->getArgs())
2144 Record
.push_back(VE
.getMetadataID(MD
));
2146 Stream
.EmitRecord(bitc::METADATA_ARG_LIST
, Record
);
2150 void ModuleBitcodeWriter::writeDIModule(const DIModule
*N
,
2151 SmallVectorImpl
<uint64_t> &Record
,
2153 Record
.push_back(N
->isDistinct());
2154 for (auto &I
: N
->operands())
2155 Record
.push_back(VE
.getMetadataOrNullID(I
));
2156 Record
.push_back(N
->getLineNo());
2157 Record
.push_back(N
->getIsDecl());
2159 Stream
.EmitRecord(bitc::METADATA_MODULE
, Record
, Abbrev
);
2163 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID
*N
,
2164 SmallVectorImpl
<uint64_t> &Record
,
2166 // There are no arguments for this metadata type.
2167 Record
.push_back(N
->isDistinct());
2168 Stream
.EmitRecord(bitc::METADATA_ASSIGN_ID
, Record
, Abbrev
);
2172 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2173 const DITemplateTypeParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
2175 Record
.push_back(N
->isDistinct());
2176 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2177 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2178 Record
.push_back(N
->isDefault());
2180 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_TYPE
, Record
, Abbrev
);
2184 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2185 const DITemplateValueParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
2187 Record
.push_back(N
->isDistinct());
2188 Record
.push_back(N
->getTag());
2189 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2190 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2191 Record
.push_back(N
->isDefault());
2192 Record
.push_back(VE
.getMetadataOrNullID(N
->getValue()));
2194 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_VALUE
, Record
, Abbrev
);
2198 void ModuleBitcodeWriter::writeDIGlobalVariable(
2199 const DIGlobalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
2201 const uint64_t Version
= 2 << 1;
2202 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
2203 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2204 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2205 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
2206 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2207 Record
.push_back(N
->getLine());
2208 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2209 Record
.push_back(N
->isLocalToUnit());
2210 Record
.push_back(N
->isDefinition());
2211 Record
.push_back(VE
.getMetadataOrNullID(N
->getStaticDataMemberDeclaration()));
2212 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams()));
2213 Record
.push_back(N
->getAlignInBits());
2214 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
2216 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR
, Record
, Abbrev
);
2220 void ModuleBitcodeWriter::writeDILocalVariable(
2221 const DILocalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
2223 // In order to support all possible bitcode formats in BitcodeReader we need
2224 // to distinguish the following cases:
2225 // 1) Record has no artificial tag (Record[1]),
2226 // has no obsolete inlinedAt field (Record[9]).
2227 // In this case Record size will be 8, HasAlignment flag is false.
2228 // 2) Record has artificial tag (Record[1]),
2229 // has no obsolete inlignedAt field (Record[9]).
2230 // In this case Record size will be 9, HasAlignment flag is false.
2231 // 3) Record has both artificial tag (Record[1]) and
2232 // obsolete inlignedAt field (Record[9]).
2233 // In this case Record size will be 10, HasAlignment flag is false.
2234 // 4) Record has neither artificial tag, nor inlignedAt field, but
2235 // HasAlignment flag is true and Record[8] contains alignment value.
2236 const uint64_t HasAlignmentFlag
= 1 << 1;
2237 Record
.push_back((uint64_t)N
->isDistinct() | HasAlignmentFlag
);
2238 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2239 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2240 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2241 Record
.push_back(N
->getLine());
2242 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2243 Record
.push_back(N
->getArg());
2244 Record
.push_back(N
->getFlags());
2245 Record
.push_back(N
->getAlignInBits());
2246 Record
.push_back(VE
.getMetadataOrNullID(N
->getAnnotations().get()));
2248 Stream
.EmitRecord(bitc::METADATA_LOCAL_VAR
, Record
, Abbrev
);
2252 void ModuleBitcodeWriter::writeDILabel(
2253 const DILabel
*N
, SmallVectorImpl
<uint64_t> &Record
,
2255 Record
.push_back((uint64_t)N
->isDistinct());
2256 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2257 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2258 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2259 Record
.push_back(N
->getLine());
2261 Stream
.EmitRecord(bitc::METADATA_LABEL
, Record
, Abbrev
);
2265 void ModuleBitcodeWriter::writeDIExpression(const DIExpression
*N
,
2266 SmallVectorImpl
<uint64_t> &Record
,
2268 Record
.reserve(N
->getElements().size() + 1);
2269 const uint64_t Version
= 3 << 1;
2270 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
2271 Record
.append(N
->elements_begin(), N
->elements_end());
2273 Stream
.EmitRecord(bitc::METADATA_EXPRESSION
, Record
, Abbrev
);
2277 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2278 const DIGlobalVariableExpression
*N
, SmallVectorImpl
<uint64_t> &Record
,
2280 Record
.push_back(N
->isDistinct());
2281 Record
.push_back(VE
.getMetadataOrNullID(N
->getVariable()));
2282 Record
.push_back(VE
.getMetadataOrNullID(N
->getExpression()));
2284 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR
, Record
, Abbrev
);
2288 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty
*N
,
2289 SmallVectorImpl
<uint64_t> &Record
,
2291 Record
.push_back(N
->isDistinct());
2292 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2293 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
2294 Record
.push_back(N
->getLine());
2295 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSetterName()));
2296 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawGetterName()));
2297 Record
.push_back(N
->getAttributes());
2298 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
2300 Stream
.EmitRecord(bitc::METADATA_OBJC_PROPERTY
, Record
, Abbrev
);
2304 void ModuleBitcodeWriter::writeDIImportedEntity(
2305 const DIImportedEntity
*N
, SmallVectorImpl
<uint64_t> &Record
,
2307 Record
.push_back(N
->isDistinct());
2308 Record
.push_back(N
->getTag());
2309 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
2310 Record
.push_back(VE
.getMetadataOrNullID(N
->getEntity()));
2311 Record
.push_back(N
->getLine());
2312 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
2313 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFile()));
2314 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
2316 Stream
.EmitRecord(bitc::METADATA_IMPORTED_ENTITY
, Record
, Abbrev
);
2320 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2321 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2322 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_NAME
));
2323 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2324 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2325 return Stream
.EmitAbbrev(std::move(Abbv
));
2328 void ModuleBitcodeWriter::writeNamedMetadata(
2329 SmallVectorImpl
<uint64_t> &Record
) {
2330 if (M
.named_metadata_empty())
2333 unsigned Abbrev
= createNamedMetadataAbbrev();
2334 for (const NamedMDNode
&NMD
: M
.named_metadata()) {
2336 StringRef Str
= NMD
.getName();
2337 Record
.append(Str
.bytes_begin(), Str
.bytes_end());
2338 Stream
.EmitRecord(bitc::METADATA_NAME
, Record
, Abbrev
);
2341 // Write named metadata operands.
2342 for (const MDNode
*N
: NMD
.operands())
2343 Record
.push_back(VE
.getMetadataID(N
));
2344 Stream
.EmitRecord(bitc::METADATA_NAMED_NODE
, Record
, 0);
2349 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2350 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2351 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS
));
2352 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // # of strings
2353 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // offset to chars
2354 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
2355 return Stream
.EmitAbbrev(std::move(Abbv
));
2358 /// Write out a record for MDString.
2360 /// All the metadata strings in a metadata block are emitted in a single
2361 /// record. The sizes and strings themselves are shoved into a blob.
2362 void ModuleBitcodeWriter::writeMetadataStrings(
2363 ArrayRef
<const Metadata
*> Strings
, SmallVectorImpl
<uint64_t> &Record
) {
2364 if (Strings
.empty())
2367 // Start the record with the number of strings.
2368 Record
.push_back(bitc::METADATA_STRINGS
);
2369 Record
.push_back(Strings
.size());
2371 // Emit the sizes of the strings in the blob.
2372 SmallString
<256> Blob
;
2374 BitstreamWriter
W(Blob
);
2375 for (const Metadata
*MD
: Strings
)
2376 W
.EmitVBR(cast
<MDString
>(MD
)->getLength(), 6);
2380 // Add the offset to the strings to the record.
2381 Record
.push_back(Blob
.size());
2383 // Add the strings to the blob.
2384 for (const Metadata
*MD
: Strings
)
2385 Blob
.append(cast
<MDString
>(MD
)->getString());
2387 // Emit the final record.
2388 Stream
.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record
, Blob
);
2392 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2393 enum MetadataAbbrev
: unsigned {
2394 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2395 #include "llvm/IR/Metadata.def"
2399 void ModuleBitcodeWriter::writeMetadataRecords(
2400 ArrayRef
<const Metadata
*> MDs
, SmallVectorImpl
<uint64_t> &Record
,
2401 std::vector
<unsigned> *MDAbbrevs
, std::vector
<uint64_t> *IndexPos
) {
2405 // Initialize MDNode abbreviations.
2406 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2407 #include "llvm/IR/Metadata.def"
2409 for (const Metadata
*MD
: MDs
) {
2411 IndexPos
->push_back(Stream
.GetCurrentBitNo());
2412 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
2413 assert(N
->isResolved() && "Expected forward references to be resolved");
2415 switch (N
->getMetadataID()) {
2417 llvm_unreachable("Invalid MDNode subclass");
2418 #define HANDLE_MDNODE_LEAF(CLASS) \
2419 case Metadata::CLASS##Kind: \
2421 write##CLASS(cast<CLASS>(N), Record, \
2422 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2424 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2426 #include "llvm/IR/Metadata.def"
2429 if (auto *AL
= dyn_cast
<DIArgList
>(MD
)) {
2430 writeDIArgList(AL
, Record
);
2433 writeValueAsMetadata(cast
<ValueAsMetadata
>(MD
), Record
);
2437 void ModuleBitcodeWriter::writeModuleMetadata() {
2438 if (!VE
.hasMDs() && M
.named_metadata_empty())
2441 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 4);
2442 SmallVector
<uint64_t, 64> Record
;
2444 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2445 // block and load any metadata.
2446 std::vector
<unsigned> MDAbbrevs
;
2448 MDAbbrevs
.resize(MetadataAbbrev::LastPlusOne
);
2449 MDAbbrevs
[MetadataAbbrev::DILocationAbbrevID
] = createDILocationAbbrev();
2450 MDAbbrevs
[MetadataAbbrev::GenericDINodeAbbrevID
] =
2451 createGenericDINodeAbbrev();
2453 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2454 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET
));
2455 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2456 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2457 unsigned OffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2459 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2460 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX
));
2461 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2462 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
2463 unsigned IndexAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2465 // Emit MDStrings together upfront.
2466 writeMetadataStrings(VE
.getMDStrings(), Record
);
2468 // We only emit an index for the metadata record if we have more than a given
2469 // (naive) threshold of metadatas, otherwise it is not worth it.
2470 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2471 // Write a placeholder value in for the offset of the metadata index,
2472 // which is written after the records, so that it can include
2473 // the offset of each entry. The placeholder offset will be
2474 // updated after all records are emitted.
2475 uint64_t Vals
[] = {0, 0};
2476 Stream
.EmitRecord(bitc::METADATA_INDEX_OFFSET
, Vals
, OffsetAbbrev
);
2479 // Compute and save the bit offset to the current position, which will be
2480 // patched when we emit the index later. We can simply subtract the 64-bit
2481 // fixed size from the current bit number to get the location to backpatch.
2482 uint64_t IndexOffsetRecordBitPos
= Stream
.GetCurrentBitNo();
2484 // This index will contain the bitpos for each individual record.
2485 std::vector
<uint64_t> IndexPos
;
2486 IndexPos
.reserve(VE
.getNonMDStrings().size());
2488 // Write all the records
2489 writeMetadataRecords(VE
.getNonMDStrings(), Record
, &MDAbbrevs
, &IndexPos
);
2491 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2492 // Now that we have emitted all the records we will emit the index. But
2494 // backpatch the forward reference so that the reader can skip the records
2496 Stream
.BackpatchWord64(IndexOffsetRecordBitPos
- 64,
2497 Stream
.GetCurrentBitNo() - IndexOffsetRecordBitPos
);
2499 // Delta encode the index.
2500 uint64_t PreviousValue
= IndexOffsetRecordBitPos
;
2501 for (auto &Elt
: IndexPos
) {
2502 auto EltDelta
= Elt
- PreviousValue
;
2503 PreviousValue
= Elt
;
2506 // Emit the index record.
2507 Stream
.EmitRecord(bitc::METADATA_INDEX
, IndexPos
, IndexAbbrev
);
2511 // Write the named metadata now.
2512 writeNamedMetadata(Record
);
2514 auto AddDeclAttachedMetadata
= [&](const GlobalObject
&GO
) {
2515 SmallVector
<uint64_t, 4> Record
;
2516 Record
.push_back(VE
.getValueID(&GO
));
2517 pushGlobalMetadataAttachment(Record
, GO
);
2518 Stream
.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT
, Record
);
2520 for (const Function
&F
: M
)
2521 if (F
.isDeclaration() && F
.hasMetadata())
2522 AddDeclAttachedMetadata(F
);
2523 // FIXME: Only store metadata for declarations here, and move data for global
2524 // variable definitions to a separate block (PR28134).
2525 for (const GlobalVariable
&GV
: M
.globals())
2526 if (GV
.hasMetadata())
2527 AddDeclAttachedMetadata(GV
);
2532 void ModuleBitcodeWriter::writeFunctionMetadata(const Function
&F
) {
2536 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
2537 SmallVector
<uint64_t, 64> Record
;
2538 writeMetadataStrings(VE
.getMDStrings(), Record
);
2539 writeMetadataRecords(VE
.getNonMDStrings(), Record
);
2543 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2544 SmallVectorImpl
<uint64_t> &Record
, const GlobalObject
&GO
) {
2545 // [n x [id, mdnode]]
2546 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2547 GO
.getAllMetadata(MDs
);
2548 for (const auto &I
: MDs
) {
2549 Record
.push_back(I
.first
);
2550 Record
.push_back(VE
.getMetadataID(I
.second
));
2554 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function
&F
) {
2555 Stream
.EnterSubblock(bitc::METADATA_ATTACHMENT_ID
, 3);
2557 SmallVector
<uint64_t, 64> Record
;
2559 if (F
.hasMetadata()) {
2560 pushGlobalMetadataAttachment(Record
, F
);
2561 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2565 // Write metadata attachments
2566 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2567 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2568 for (const BasicBlock
&BB
: F
)
2569 for (const Instruction
&I
: BB
) {
2571 I
.getAllMetadataOtherThanDebugLoc(MDs
);
2573 // If no metadata, ignore instruction.
2574 if (MDs
.empty()) continue;
2576 Record
.push_back(VE
.getInstructionID(&I
));
2578 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
) {
2579 Record
.push_back(MDs
[i
].first
);
2580 Record
.push_back(VE
.getMetadataID(MDs
[i
].second
));
2582 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2589 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2590 SmallVector
<uint64_t, 64> Record
;
2592 // Write metadata kinds
2593 // METADATA_KIND - [n x [id, name]]
2594 SmallVector
<StringRef
, 8> Names
;
2595 M
.getMDKindNames(Names
);
2597 if (Names
.empty()) return;
2599 Stream
.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID
, 3);
2601 for (unsigned MDKindID
= 0, e
= Names
.size(); MDKindID
!= e
; ++MDKindID
) {
2602 Record
.push_back(MDKindID
);
2603 StringRef KName
= Names
[MDKindID
];
2604 Record
.append(KName
.begin(), KName
.end());
2606 Stream
.EmitRecord(bitc::METADATA_KIND
, Record
, 0);
2613 void ModuleBitcodeWriter::writeOperandBundleTags() {
2614 // Write metadata kinds
2616 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2618 // OPERAND_BUNDLE_TAG - [strchr x N]
2620 SmallVector
<StringRef
, 8> Tags
;
2621 M
.getOperandBundleTags(Tags
);
2626 Stream
.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID
, 3);
2628 SmallVector
<uint64_t, 64> Record
;
2630 for (auto Tag
: Tags
) {
2631 Record
.append(Tag
.begin(), Tag
.end());
2633 Stream
.EmitRecord(bitc::OPERAND_BUNDLE_TAG
, Record
, 0);
2640 void ModuleBitcodeWriter::writeSyncScopeNames() {
2641 SmallVector
<StringRef
, 8> SSNs
;
2642 M
.getContext().getSyncScopeNames(SSNs
);
2646 Stream
.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID
, 2);
2648 SmallVector
<uint64_t, 64> Record
;
2649 for (auto SSN
: SSNs
) {
2650 Record
.append(SSN
.begin(), SSN
.end());
2651 Stream
.EmitRecord(bitc::SYNC_SCOPE_NAME
, Record
, 0);
2658 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal
, unsigned LastVal
,
2660 if (FirstVal
== LastVal
) return;
2662 Stream
.EnterSubblock(bitc::CONSTANTS_BLOCK_ID
, 4);
2664 unsigned AggregateAbbrev
= 0;
2665 unsigned String8Abbrev
= 0;
2666 unsigned CString7Abbrev
= 0;
2667 unsigned CString6Abbrev
= 0;
2668 // If this is a constant pool for the module, emit module-specific abbrevs.
2670 // Abbrev for CST_CODE_AGGREGATE.
2671 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2672 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE
));
2673 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2674 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, Log2_32_Ceil(LastVal
+1)));
2675 AggregateAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2677 // Abbrev for CST_CODE_STRING.
2678 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2679 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING
));
2680 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2681 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2682 String8Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2683 // Abbrev for CST_CODE_CSTRING.
2684 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2685 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2686 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2687 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
2688 CString7Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2689 // Abbrev for CST_CODE_CSTRING.
2690 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2691 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2692 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2693 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
2694 CString6Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2697 SmallVector
<uint64_t, 64> Record
;
2699 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2700 Type
*LastTy
= nullptr;
2701 for (unsigned i
= FirstVal
; i
!= LastVal
; ++i
) {
2702 const Value
*V
= Vals
[i
].first
;
2703 // If we need to switch types, do so now.
2704 if (V
->getType() != LastTy
) {
2705 LastTy
= V
->getType();
2706 Record
.push_back(VE
.getTypeID(LastTy
));
2707 Stream
.EmitRecord(bitc::CST_CODE_SETTYPE
, Record
,
2708 CONSTANTS_SETTYPE_ABBREV
);
2712 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2713 Record
.push_back(VE
.getTypeID(IA
->getFunctionType()));
2715 unsigned(IA
->hasSideEffects()) | unsigned(IA
->isAlignStack()) << 1 |
2716 unsigned(IA
->getDialect() & 1) << 2 | unsigned(IA
->canThrow()) << 3);
2718 // Add the asm string.
2719 const std::string
&AsmStr
= IA
->getAsmString();
2720 Record
.push_back(AsmStr
.size());
2721 Record
.append(AsmStr
.begin(), AsmStr
.end());
2723 // Add the constraint string.
2724 const std::string
&ConstraintStr
= IA
->getConstraintString();
2725 Record
.push_back(ConstraintStr
.size());
2726 Record
.append(ConstraintStr
.begin(), ConstraintStr
.end());
2727 Stream
.EmitRecord(bitc::CST_CODE_INLINEASM
, Record
);
2731 const Constant
*C
= cast
<Constant
>(V
);
2732 unsigned Code
= -1U;
2733 unsigned AbbrevToUse
= 0;
2734 if (C
->isNullValue()) {
2735 Code
= bitc::CST_CODE_NULL
;
2736 } else if (isa
<PoisonValue
>(C
)) {
2737 Code
= bitc::CST_CODE_POISON
;
2738 } else if (isa
<UndefValue
>(C
)) {
2739 Code
= bitc::CST_CODE_UNDEF
;
2740 } else if (const ConstantInt
*IV
= dyn_cast
<ConstantInt
>(C
)) {
2741 if (IV
->getBitWidth() <= 64) {
2742 uint64_t V
= IV
->getSExtValue();
2743 emitSignedInt64(Record
, V
);
2744 Code
= bitc::CST_CODE_INTEGER
;
2745 AbbrevToUse
= CONSTANTS_INTEGER_ABBREV
;
2746 } else { // Wide integers, > 64 bits in size.
2747 emitWideAPInt(Record
, IV
->getValue());
2748 Code
= bitc::CST_CODE_WIDE_INTEGER
;
2750 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
2751 Code
= bitc::CST_CODE_FLOAT
;
2752 Type
*Ty
= CFP
->getType()->getScalarType();
2753 if (Ty
->isHalfTy() || Ty
->isBFloatTy() || Ty
->isFloatTy() ||
2755 Record
.push_back(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
2756 } else if (Ty
->isX86_FP80Ty()) {
2757 // api needed to prevent premature destruction
2758 // bits are not in the same order as a normal i80 APInt, compensate.
2759 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2760 const uint64_t *p
= api
.getRawData();
2761 Record
.push_back((p
[1] << 48) | (p
[0] >> 16));
2762 Record
.push_back(p
[0] & 0xffffLL
);
2763 } else if (Ty
->isFP128Ty() || Ty
->isPPC_FP128Ty()) {
2764 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2765 const uint64_t *p
= api
.getRawData();
2766 Record
.push_back(p
[0]);
2767 Record
.push_back(p
[1]);
2769 assert(0 && "Unknown FP type!");
2771 } else if (isa
<ConstantDataSequential
>(C
) &&
2772 cast
<ConstantDataSequential
>(C
)->isString()) {
2773 const ConstantDataSequential
*Str
= cast
<ConstantDataSequential
>(C
);
2774 // Emit constant strings specially.
2775 unsigned NumElts
= Str
->getNumElements();
2776 // If this is a null-terminated string, use the denser CSTRING encoding.
2777 if (Str
->isCString()) {
2778 Code
= bitc::CST_CODE_CSTRING
;
2779 --NumElts
; // Don't encode the null, which isn't allowed by char6.
2781 Code
= bitc::CST_CODE_STRING
;
2782 AbbrevToUse
= String8Abbrev
;
2784 bool isCStr7
= Code
== bitc::CST_CODE_CSTRING
;
2785 bool isCStrChar6
= Code
== bitc::CST_CODE_CSTRING
;
2786 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2787 unsigned char V
= Str
->getElementAsInteger(i
);
2788 Record
.push_back(V
);
2789 isCStr7
&= (V
& 128) == 0;
2791 isCStrChar6
= BitCodeAbbrevOp::isChar6(V
);
2795 AbbrevToUse
= CString6Abbrev
;
2797 AbbrevToUse
= CString7Abbrev
;
2798 } else if (const ConstantDataSequential
*CDS
=
2799 dyn_cast
<ConstantDataSequential
>(C
)) {
2800 Code
= bitc::CST_CODE_DATA
;
2801 Type
*EltTy
= CDS
->getElementType();
2802 if (isa
<IntegerType
>(EltTy
)) {
2803 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2804 Record
.push_back(CDS
->getElementAsInteger(i
));
2806 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2808 CDS
->getElementAsAPFloat(i
).bitcastToAPInt().getLimitedValue());
2810 } else if (isa
<ConstantAggregate
>(C
)) {
2811 Code
= bitc::CST_CODE_AGGREGATE
;
2812 for (const Value
*Op
: C
->operands())
2813 Record
.push_back(VE
.getValueID(Op
));
2814 AbbrevToUse
= AggregateAbbrev
;
2815 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2816 switch (CE
->getOpcode()) {
2818 if (Instruction::isCast(CE
->getOpcode())) {
2819 Code
= bitc::CST_CODE_CE_CAST
;
2820 Record
.push_back(getEncodedCastOpcode(CE
->getOpcode()));
2821 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2822 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2823 AbbrevToUse
= CONSTANTS_CE_CAST_Abbrev
;
2825 assert(CE
->getNumOperands() == 2 && "Unknown constant expr!");
2826 Code
= bitc::CST_CODE_CE_BINOP
;
2827 Record
.push_back(getEncodedBinaryOpcode(CE
->getOpcode()));
2828 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2829 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2830 uint64_t Flags
= getOptimizationFlags(CE
);
2832 Record
.push_back(Flags
);
2835 case Instruction::FNeg
: {
2836 assert(CE
->getNumOperands() == 1 && "Unknown constant expr!");
2837 Code
= bitc::CST_CODE_CE_UNOP
;
2838 Record
.push_back(getEncodedUnaryOpcode(CE
->getOpcode()));
2839 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2840 uint64_t Flags
= getOptimizationFlags(CE
);
2842 Record
.push_back(Flags
);
2845 case Instruction::GetElementPtr
: {
2846 Code
= bitc::CST_CODE_CE_GEP
;
2847 const auto *GO
= cast
<GEPOperator
>(C
);
2848 Record
.push_back(VE
.getTypeID(GO
->getSourceElementType()));
2849 Record
.push_back(getOptimizationFlags(GO
));
2850 if (std::optional
<ConstantRange
> Range
= GO
->getInRange()) {
2851 Code
= bitc::CST_CODE_CE_GEP_WITH_INRANGE
;
2852 emitConstantRange(Record
, *Range
, /*EmitBitWidth=*/true);
2854 for (const Value
*Op
: CE
->operands()) {
2855 Record
.push_back(VE
.getTypeID(Op
->getType()));
2856 Record
.push_back(VE
.getValueID(Op
));
2860 case Instruction::ExtractElement
:
2861 Code
= bitc::CST_CODE_CE_EXTRACTELT
;
2862 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2863 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2864 Record
.push_back(VE
.getTypeID(C
->getOperand(1)->getType()));
2865 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2867 case Instruction::InsertElement
:
2868 Code
= bitc::CST_CODE_CE_INSERTELT
;
2869 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2870 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2871 Record
.push_back(VE
.getTypeID(C
->getOperand(2)->getType()));
2872 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2874 case Instruction::ShuffleVector
:
2875 // If the return type and argument types are the same, this is a
2876 // standard shufflevector instruction. If the types are different,
2877 // then the shuffle is widening or truncating the input vectors, and
2878 // the argument type must also be encoded.
2879 if (C
->getType() == C
->getOperand(0)->getType()) {
2880 Code
= bitc::CST_CODE_CE_SHUFFLEVEC
;
2882 Code
= bitc::CST_CODE_CE_SHUFVEC_EX
;
2883 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2885 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2886 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2887 Record
.push_back(VE
.getValueID(CE
->getShuffleMaskForBitcode()));
2890 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
)) {
2891 Code
= bitc::CST_CODE_BLOCKADDRESS
;
2892 Record
.push_back(VE
.getTypeID(BA
->getFunction()->getType()));
2893 Record
.push_back(VE
.getValueID(BA
->getFunction()));
2894 Record
.push_back(VE
.getGlobalBasicBlockID(BA
->getBasicBlock()));
2895 } else if (const auto *Equiv
= dyn_cast
<DSOLocalEquivalent
>(C
)) {
2896 Code
= bitc::CST_CODE_DSO_LOCAL_EQUIVALENT
;
2897 Record
.push_back(VE
.getTypeID(Equiv
->getGlobalValue()->getType()));
2898 Record
.push_back(VE
.getValueID(Equiv
->getGlobalValue()));
2899 } else if (const auto *NC
= dyn_cast
<NoCFIValue
>(C
)) {
2900 Code
= bitc::CST_CODE_NO_CFI_VALUE
;
2901 Record
.push_back(VE
.getTypeID(NC
->getGlobalValue()->getType()));
2902 Record
.push_back(VE
.getValueID(NC
->getGlobalValue()));
2903 } else if (const auto *CPA
= dyn_cast
<ConstantPtrAuth
>(C
)) {
2904 Code
= bitc::CST_CODE_PTRAUTH
;
2905 Record
.push_back(VE
.getValueID(CPA
->getPointer()));
2906 Record
.push_back(VE
.getValueID(CPA
->getKey()));
2907 Record
.push_back(VE
.getValueID(CPA
->getDiscriminator()));
2908 Record
.push_back(VE
.getValueID(CPA
->getAddrDiscriminator()));
2913 llvm_unreachable("Unknown constant!");
2915 Stream
.EmitRecord(Code
, Record
, AbbrevToUse
);
2922 void ModuleBitcodeWriter::writeModuleConstants() {
2923 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2925 // Find the first constant to emit, which is the first non-globalvalue value.
2926 // We know globalvalues have been emitted by WriteModuleInfo.
2927 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
2928 if (!isa
<GlobalValue
>(Vals
[i
].first
)) {
2929 writeConstants(i
, Vals
.size(), true);
2935 /// pushValueAndType - The file has to encode both the value and type id for
2936 /// many values, because we need to know what type to create for forward
2937 /// references. However, most operands are not forward references, so this type
2938 /// field is not needed.
2940 /// This function adds V's value ID to Vals. If the value ID is higher than the
2941 /// instruction ID, then it is a forward reference, and it also includes the
2942 /// type ID. The value ID that is written is encoded relative to the InstID.
2943 bool ModuleBitcodeWriter::pushValueAndType(const Value
*V
, unsigned InstID
,
2944 SmallVectorImpl
<unsigned> &Vals
) {
2945 unsigned ValID
= VE
.getValueID(V
);
2946 // Make encoding relative to the InstID.
2947 Vals
.push_back(InstID
- ValID
);
2948 if (ValID
>= InstID
) {
2949 Vals
.push_back(VE
.getTypeID(V
->getType()));
2955 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value
*V
, unsigned InstID
,
2956 SmallVectorImpl
<unsigned> &Vals
) {
2957 bool IsMetadata
= V
->getType()->isMetadataTy();
2959 Vals
.push_back(bitc::OB_METADATA
);
2960 Metadata
*MD
= cast
<MetadataAsValue
>(V
)->getMetadata();
2961 unsigned ValID
= VE
.getMetadataID(MD
);
2962 Vals
.push_back(InstID
- ValID
);
2965 return pushValueAndType(V
, InstID
, Vals
);
2968 void ModuleBitcodeWriter::writeOperandBundles(const CallBase
&CS
,
2970 SmallVector
<unsigned, 64> Record
;
2971 LLVMContext
&C
= CS
.getContext();
2973 for (unsigned i
= 0, e
= CS
.getNumOperandBundles(); i
!= e
; ++i
) {
2974 const auto &Bundle
= CS
.getOperandBundleAt(i
);
2975 Record
.push_back(C
.getOperandBundleTagID(Bundle
.getTagName()));
2977 for (auto &Input
: Bundle
.Inputs
)
2978 pushValueOrMetadata(Input
, InstID
, Record
);
2980 Stream
.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE
, Record
);
2985 /// pushValue - Like pushValueAndType, but where the type of the value is
2986 /// omitted (perhaps it was already encoded in an earlier operand).
2987 void ModuleBitcodeWriter::pushValue(const Value
*V
, unsigned InstID
,
2988 SmallVectorImpl
<unsigned> &Vals
) {
2989 unsigned ValID
= VE
.getValueID(V
);
2990 Vals
.push_back(InstID
- ValID
);
2993 void ModuleBitcodeWriter::pushValueSigned(const Value
*V
, unsigned InstID
,
2994 SmallVectorImpl
<uint64_t> &Vals
) {
2995 unsigned ValID
= VE
.getValueID(V
);
2996 int64_t diff
= ((int32_t)InstID
- (int32_t)ValID
);
2997 emitSignedInt64(Vals
, diff
);
3000 /// WriteInstruction - Emit an instruction to the specified stream.
3001 void ModuleBitcodeWriter::writeInstruction(const Instruction
&I
,
3003 SmallVectorImpl
<unsigned> &Vals
) {
3005 unsigned AbbrevToUse
= 0;
3006 VE
.setInstructionID(&I
);
3007 switch (I
.getOpcode()) {
3009 if (Instruction::isCast(I
.getOpcode())) {
3010 Code
= bitc::FUNC_CODE_INST_CAST
;
3011 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3012 AbbrevToUse
= FUNCTION_INST_CAST_ABBREV
;
3013 Vals
.push_back(VE
.getTypeID(I
.getType()));
3014 Vals
.push_back(getEncodedCastOpcode(I
.getOpcode()));
3015 uint64_t Flags
= getOptimizationFlags(&I
);
3017 if (AbbrevToUse
== FUNCTION_INST_CAST_ABBREV
)
3018 AbbrevToUse
= FUNCTION_INST_CAST_FLAGS_ABBREV
;
3019 Vals
.push_back(Flags
);
3022 assert(isa
<BinaryOperator
>(I
) && "Unknown instruction!");
3023 Code
= bitc::FUNC_CODE_INST_BINOP
;
3024 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3025 AbbrevToUse
= FUNCTION_INST_BINOP_ABBREV
;
3026 pushValue(I
.getOperand(1), InstID
, Vals
);
3027 Vals
.push_back(getEncodedBinaryOpcode(I
.getOpcode()));
3028 uint64_t Flags
= getOptimizationFlags(&I
);
3030 if (AbbrevToUse
== FUNCTION_INST_BINOP_ABBREV
)
3031 AbbrevToUse
= FUNCTION_INST_BINOP_FLAGS_ABBREV
;
3032 Vals
.push_back(Flags
);
3036 case Instruction::FNeg
: {
3037 Code
= bitc::FUNC_CODE_INST_UNOP
;
3038 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3039 AbbrevToUse
= FUNCTION_INST_UNOP_ABBREV
;
3040 Vals
.push_back(getEncodedUnaryOpcode(I
.getOpcode()));
3041 uint64_t Flags
= getOptimizationFlags(&I
);
3043 if (AbbrevToUse
== FUNCTION_INST_UNOP_ABBREV
)
3044 AbbrevToUse
= FUNCTION_INST_UNOP_FLAGS_ABBREV
;
3045 Vals
.push_back(Flags
);
3049 case Instruction::GetElementPtr
: {
3050 Code
= bitc::FUNC_CODE_INST_GEP
;
3051 AbbrevToUse
= FUNCTION_INST_GEP_ABBREV
;
3052 auto &GEPInst
= cast
<GetElementPtrInst
>(I
);
3053 Vals
.push_back(getOptimizationFlags(&I
));
3054 Vals
.push_back(VE
.getTypeID(GEPInst
.getSourceElementType()));
3055 for (const Value
*Op
: I
.operands())
3056 pushValueAndType(Op
, InstID
, Vals
);
3059 case Instruction::ExtractValue
: {
3060 Code
= bitc::FUNC_CODE_INST_EXTRACTVAL
;
3061 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3062 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(&I
);
3063 Vals
.append(EVI
->idx_begin(), EVI
->idx_end());
3066 case Instruction::InsertValue
: {
3067 Code
= bitc::FUNC_CODE_INST_INSERTVAL
;
3068 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3069 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
3070 const InsertValueInst
*IVI
= cast
<InsertValueInst
>(&I
);
3071 Vals
.append(IVI
->idx_begin(), IVI
->idx_end());
3074 case Instruction::Select
: {
3075 Code
= bitc::FUNC_CODE_INST_VSELECT
;
3076 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
3077 pushValue(I
.getOperand(2), InstID
, Vals
);
3078 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3079 uint64_t Flags
= getOptimizationFlags(&I
);
3081 Vals
.push_back(Flags
);
3084 case Instruction::ExtractElement
:
3085 Code
= bitc::FUNC_CODE_INST_EXTRACTELT
;
3086 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3087 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
3089 case Instruction::InsertElement
:
3090 Code
= bitc::FUNC_CODE_INST_INSERTELT
;
3091 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3092 pushValue(I
.getOperand(1), InstID
, Vals
);
3093 pushValueAndType(I
.getOperand(2), InstID
, Vals
);
3095 case Instruction::ShuffleVector
:
3096 Code
= bitc::FUNC_CODE_INST_SHUFFLEVEC
;
3097 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3098 pushValue(I
.getOperand(1), InstID
, Vals
);
3099 pushValue(cast
<ShuffleVectorInst
>(I
).getShuffleMaskForBitcode(), InstID
,
3102 case Instruction::ICmp
:
3103 case Instruction::FCmp
: {
3104 // compare returning Int1Ty or vector of Int1Ty
3105 Code
= bitc::FUNC_CODE_INST_CMP2
;
3106 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3107 pushValue(I
.getOperand(1), InstID
, Vals
);
3108 Vals
.push_back(cast
<CmpInst
>(I
).getPredicate());
3109 uint64_t Flags
= getOptimizationFlags(&I
);
3111 Vals
.push_back(Flags
);
3115 case Instruction::Ret
:
3117 Code
= bitc::FUNC_CODE_INST_RET
;
3118 unsigned NumOperands
= I
.getNumOperands();
3119 if (NumOperands
== 0)
3120 AbbrevToUse
= FUNCTION_INST_RET_VOID_ABBREV
;
3121 else if (NumOperands
== 1) {
3122 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
3123 AbbrevToUse
= FUNCTION_INST_RET_VAL_ABBREV
;
3125 for (const Value
*Op
: I
.operands())
3126 pushValueAndType(Op
, InstID
, Vals
);
3130 case Instruction::Br
:
3132 Code
= bitc::FUNC_CODE_INST_BR
;
3133 const BranchInst
&II
= cast
<BranchInst
>(I
);
3134 Vals
.push_back(VE
.getValueID(II
.getSuccessor(0)));
3135 if (II
.isConditional()) {
3136 Vals
.push_back(VE
.getValueID(II
.getSuccessor(1)));
3137 pushValue(II
.getCondition(), InstID
, Vals
);
3141 case Instruction::Switch
:
3143 Code
= bitc::FUNC_CODE_INST_SWITCH
;
3144 const SwitchInst
&SI
= cast
<SwitchInst
>(I
);
3145 Vals
.push_back(VE
.getTypeID(SI
.getCondition()->getType()));
3146 pushValue(SI
.getCondition(), InstID
, Vals
);
3147 Vals
.push_back(VE
.getValueID(SI
.getDefaultDest()));
3148 for (auto Case
: SI
.cases()) {
3149 Vals
.push_back(VE
.getValueID(Case
.getCaseValue()));
3150 Vals
.push_back(VE
.getValueID(Case
.getCaseSuccessor()));
3154 case Instruction::IndirectBr
:
3155 Code
= bitc::FUNC_CODE_INST_INDIRECTBR
;
3156 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
3157 // Encode the address operand as relative, but not the basic blocks.
3158 pushValue(I
.getOperand(0), InstID
, Vals
);
3159 for (const Value
*Op
: drop_begin(I
.operands()))
3160 Vals
.push_back(VE
.getValueID(Op
));
3163 case Instruction::Invoke
: {
3164 const InvokeInst
*II
= cast
<InvokeInst
>(&I
);
3165 const Value
*Callee
= II
->getCalledOperand();
3166 FunctionType
*FTy
= II
->getFunctionType();
3168 if (II
->hasOperandBundles())
3169 writeOperandBundles(*II
, InstID
);
3171 Code
= bitc::FUNC_CODE_INST_INVOKE
;
3173 Vals
.push_back(VE
.getAttributeListID(II
->getAttributes()));
3174 Vals
.push_back(II
->getCallingConv() | 1 << 13);
3175 Vals
.push_back(VE
.getValueID(II
->getNormalDest()));
3176 Vals
.push_back(VE
.getValueID(II
->getUnwindDest()));
3177 Vals
.push_back(VE
.getTypeID(FTy
));
3178 pushValueAndType(Callee
, InstID
, Vals
);
3180 // Emit value #'s for the fixed parameters.
3181 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
3182 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
3184 // Emit type/value pairs for varargs params.
3185 if (FTy
->isVarArg()) {
3186 for (unsigned i
= FTy
->getNumParams(), e
= II
->arg_size(); i
!= e
; ++i
)
3187 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
3191 case Instruction::Resume
:
3192 Code
= bitc::FUNC_CODE_INST_RESUME
;
3193 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3195 case Instruction::CleanupRet
: {
3196 Code
= bitc::FUNC_CODE_INST_CLEANUPRET
;
3197 const auto &CRI
= cast
<CleanupReturnInst
>(I
);
3198 pushValue(CRI
.getCleanupPad(), InstID
, Vals
);
3199 if (CRI
.hasUnwindDest())
3200 Vals
.push_back(VE
.getValueID(CRI
.getUnwindDest()));
3203 case Instruction::CatchRet
: {
3204 Code
= bitc::FUNC_CODE_INST_CATCHRET
;
3205 const auto &CRI
= cast
<CatchReturnInst
>(I
);
3206 pushValue(CRI
.getCatchPad(), InstID
, Vals
);
3207 Vals
.push_back(VE
.getValueID(CRI
.getSuccessor()));
3210 case Instruction::CleanupPad
:
3211 case Instruction::CatchPad
: {
3212 const auto &FuncletPad
= cast
<FuncletPadInst
>(I
);
3213 Code
= isa
<CatchPadInst
>(FuncletPad
) ? bitc::FUNC_CODE_INST_CATCHPAD
3214 : bitc::FUNC_CODE_INST_CLEANUPPAD
;
3215 pushValue(FuncletPad
.getParentPad(), InstID
, Vals
);
3217 unsigned NumArgOperands
= FuncletPad
.arg_size();
3218 Vals
.push_back(NumArgOperands
);
3219 for (unsigned Op
= 0; Op
!= NumArgOperands
; ++Op
)
3220 pushValueAndType(FuncletPad
.getArgOperand(Op
), InstID
, Vals
);
3223 case Instruction::CatchSwitch
: {
3224 Code
= bitc::FUNC_CODE_INST_CATCHSWITCH
;
3225 const auto &CatchSwitch
= cast
<CatchSwitchInst
>(I
);
3227 pushValue(CatchSwitch
.getParentPad(), InstID
, Vals
);
3229 unsigned NumHandlers
= CatchSwitch
.getNumHandlers();
3230 Vals
.push_back(NumHandlers
);
3231 for (const BasicBlock
*CatchPadBB
: CatchSwitch
.handlers())
3232 Vals
.push_back(VE
.getValueID(CatchPadBB
));
3234 if (CatchSwitch
.hasUnwindDest())
3235 Vals
.push_back(VE
.getValueID(CatchSwitch
.getUnwindDest()));
3238 case Instruction::CallBr
: {
3239 const CallBrInst
*CBI
= cast
<CallBrInst
>(&I
);
3240 const Value
*Callee
= CBI
->getCalledOperand();
3241 FunctionType
*FTy
= CBI
->getFunctionType();
3243 if (CBI
->hasOperandBundles())
3244 writeOperandBundles(*CBI
, InstID
);
3246 Code
= bitc::FUNC_CODE_INST_CALLBR
;
3248 Vals
.push_back(VE
.getAttributeListID(CBI
->getAttributes()));
3250 Vals
.push_back(CBI
->getCallingConv() << bitc::CALL_CCONV
|
3251 1 << bitc::CALL_EXPLICIT_TYPE
);
3253 Vals
.push_back(VE
.getValueID(CBI
->getDefaultDest()));
3254 Vals
.push_back(CBI
->getNumIndirectDests());
3255 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
3256 Vals
.push_back(VE
.getValueID(CBI
->getIndirectDest(i
)));
3258 Vals
.push_back(VE
.getTypeID(FTy
));
3259 pushValueAndType(Callee
, InstID
, Vals
);
3261 // Emit value #'s for the fixed parameters.
3262 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
3263 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
3265 // Emit type/value pairs for varargs params.
3266 if (FTy
->isVarArg()) {
3267 for (unsigned i
= FTy
->getNumParams(), e
= CBI
->arg_size(); i
!= e
; ++i
)
3268 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
3272 case Instruction::Unreachable
:
3273 Code
= bitc::FUNC_CODE_INST_UNREACHABLE
;
3274 AbbrevToUse
= FUNCTION_INST_UNREACHABLE_ABBREV
;
3277 case Instruction::PHI
: {
3278 const PHINode
&PN
= cast
<PHINode
>(I
);
3279 Code
= bitc::FUNC_CODE_INST_PHI
;
3280 // With the newer instruction encoding, forward references could give
3281 // negative valued IDs. This is most common for PHIs, so we use
3283 SmallVector
<uint64_t, 128> Vals64
;
3284 Vals64
.push_back(VE
.getTypeID(PN
.getType()));
3285 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
3286 pushValueSigned(PN
.getIncomingValue(i
), InstID
, Vals64
);
3287 Vals64
.push_back(VE
.getValueID(PN
.getIncomingBlock(i
)));
3290 uint64_t Flags
= getOptimizationFlags(&I
);
3292 Vals64
.push_back(Flags
);
3294 // Emit a Vals64 vector and exit.
3295 Stream
.EmitRecord(Code
, Vals64
, AbbrevToUse
);
3300 case Instruction::LandingPad
: {
3301 const LandingPadInst
&LP
= cast
<LandingPadInst
>(I
);
3302 Code
= bitc::FUNC_CODE_INST_LANDINGPAD
;
3303 Vals
.push_back(VE
.getTypeID(LP
.getType()));
3304 Vals
.push_back(LP
.isCleanup());
3305 Vals
.push_back(LP
.getNumClauses());
3306 for (unsigned I
= 0, E
= LP
.getNumClauses(); I
!= E
; ++I
) {
3308 Vals
.push_back(LandingPadInst::Catch
);
3310 Vals
.push_back(LandingPadInst::Filter
);
3311 pushValueAndType(LP
.getClause(I
), InstID
, Vals
);
3316 case Instruction::Alloca
: {
3317 Code
= bitc::FUNC_CODE_INST_ALLOCA
;
3318 const AllocaInst
&AI
= cast
<AllocaInst
>(I
);
3319 Vals
.push_back(VE
.getTypeID(AI
.getAllocatedType()));
3320 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
3321 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // size.
3322 using APV
= AllocaPackedValues
;
3323 unsigned Record
= 0;
3324 unsigned EncodedAlign
= getEncodedAlign(AI
.getAlign());
3325 Bitfield::set
<APV::AlignLower
>(
3326 Record
, EncodedAlign
& ((1 << APV::AlignLower::Bits
) - 1));
3327 Bitfield::set
<APV::AlignUpper
>(Record
,
3328 EncodedAlign
>> APV::AlignLower::Bits
);
3329 Bitfield::set
<APV::UsedWithInAlloca
>(Record
, AI
.isUsedWithInAlloca());
3330 Bitfield::set
<APV::ExplicitType
>(Record
, true);
3331 Bitfield::set
<APV::SwiftError
>(Record
, AI
.isSwiftError());
3332 Vals
.push_back(Record
);
3334 unsigned AS
= AI
.getAddressSpace();
3335 if (AS
!= M
.getDataLayout().getAllocaAddrSpace())
3340 case Instruction::Load
:
3341 if (cast
<LoadInst
>(I
).isAtomic()) {
3342 Code
= bitc::FUNC_CODE_INST_LOADATOMIC
;
3343 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3345 Code
= bitc::FUNC_CODE_INST_LOAD
;
3346 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
)) // ptr
3347 AbbrevToUse
= FUNCTION_INST_LOAD_ABBREV
;
3349 Vals
.push_back(VE
.getTypeID(I
.getType()));
3350 Vals
.push_back(getEncodedAlign(cast
<LoadInst
>(I
).getAlign()));
3351 Vals
.push_back(cast
<LoadInst
>(I
).isVolatile());
3352 if (cast
<LoadInst
>(I
).isAtomic()) {
3353 Vals
.push_back(getEncodedOrdering(cast
<LoadInst
>(I
).getOrdering()));
3354 Vals
.push_back(getEncodedSyncScopeID(cast
<LoadInst
>(I
).getSyncScopeID()));
3357 case Instruction::Store
:
3358 if (cast
<StoreInst
>(I
).isAtomic())
3359 Code
= bitc::FUNC_CODE_INST_STOREATOMIC
;
3361 Code
= bitc::FUNC_CODE_INST_STORE
;
3362 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // ptrty + ptr
3363 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // valty + val
3364 Vals
.push_back(getEncodedAlign(cast
<StoreInst
>(I
).getAlign()));
3365 Vals
.push_back(cast
<StoreInst
>(I
).isVolatile());
3366 if (cast
<StoreInst
>(I
).isAtomic()) {
3367 Vals
.push_back(getEncodedOrdering(cast
<StoreInst
>(I
).getOrdering()));
3369 getEncodedSyncScopeID(cast
<StoreInst
>(I
).getSyncScopeID()));
3372 case Instruction::AtomicCmpXchg
:
3373 Code
= bitc::FUNC_CODE_INST_CMPXCHG
;
3374 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
3375 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // cmp.
3376 pushValue(I
.getOperand(2), InstID
, Vals
); // newval.
3377 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isVolatile());
3379 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getSuccessOrdering()));
3381 getEncodedSyncScopeID(cast
<AtomicCmpXchgInst
>(I
).getSyncScopeID()));
3383 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getFailureOrdering()));
3384 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isWeak());
3385 Vals
.push_back(getEncodedAlign(cast
<AtomicCmpXchgInst
>(I
).getAlign()));
3387 case Instruction::AtomicRMW
:
3388 Code
= bitc::FUNC_CODE_INST_ATOMICRMW
;
3389 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
3390 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // valty + val
3392 getEncodedRMWOperation(cast
<AtomicRMWInst
>(I
).getOperation()));
3393 Vals
.push_back(cast
<AtomicRMWInst
>(I
).isVolatile());
3394 Vals
.push_back(getEncodedOrdering(cast
<AtomicRMWInst
>(I
).getOrdering()));
3396 getEncodedSyncScopeID(cast
<AtomicRMWInst
>(I
).getSyncScopeID()));
3397 Vals
.push_back(getEncodedAlign(cast
<AtomicRMWInst
>(I
).getAlign()));
3399 case Instruction::Fence
:
3400 Code
= bitc::FUNC_CODE_INST_FENCE
;
3401 Vals
.push_back(getEncodedOrdering(cast
<FenceInst
>(I
).getOrdering()));
3402 Vals
.push_back(getEncodedSyncScopeID(cast
<FenceInst
>(I
).getSyncScopeID()));
3404 case Instruction::Call
: {
3405 const CallInst
&CI
= cast
<CallInst
>(I
);
3406 FunctionType
*FTy
= CI
.getFunctionType();
3408 if (CI
.hasOperandBundles())
3409 writeOperandBundles(CI
, InstID
);
3411 Code
= bitc::FUNC_CODE_INST_CALL
;
3413 Vals
.push_back(VE
.getAttributeListID(CI
.getAttributes()));
3415 unsigned Flags
= getOptimizationFlags(&I
);
3416 Vals
.push_back(CI
.getCallingConv() << bitc::CALL_CCONV
|
3417 unsigned(CI
.isTailCall()) << bitc::CALL_TAIL
|
3418 unsigned(CI
.isMustTailCall()) << bitc::CALL_MUSTTAIL
|
3419 1 << bitc::CALL_EXPLICIT_TYPE
|
3420 unsigned(CI
.isNoTailCall()) << bitc::CALL_NOTAIL
|
3421 unsigned(Flags
!= 0) << bitc::CALL_FMF
);
3423 Vals
.push_back(Flags
);
3425 Vals
.push_back(VE
.getTypeID(FTy
));
3426 pushValueAndType(CI
.getCalledOperand(), InstID
, Vals
); // Callee
3428 // Emit value #'s for the fixed parameters.
3429 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
3430 // Check for labels (can happen with asm labels).
3431 if (FTy
->getParamType(i
)->isLabelTy())
3432 Vals
.push_back(VE
.getValueID(CI
.getArgOperand(i
)));
3434 pushValue(CI
.getArgOperand(i
), InstID
, Vals
); // fixed param.
3437 // Emit type/value pairs for varargs params.
3438 if (FTy
->isVarArg()) {
3439 for (unsigned i
= FTy
->getNumParams(), e
= CI
.arg_size(); i
!= e
; ++i
)
3440 pushValueAndType(CI
.getArgOperand(i
), InstID
, Vals
); // varargs
3444 case Instruction::VAArg
:
3445 Code
= bitc::FUNC_CODE_INST_VAARG
;
3446 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType())); // valistty
3447 pushValue(I
.getOperand(0), InstID
, Vals
); // valist.
3448 Vals
.push_back(VE
.getTypeID(I
.getType())); // restype.
3450 case Instruction::Freeze
:
3451 Code
= bitc::FUNC_CODE_INST_FREEZE
;
3452 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
3456 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
3460 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3461 /// to allow clients to efficiently find the function body.
3462 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3463 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3464 // Get the offset of the VST we are writing, and backpatch it into
3465 // the VST forward declaration record.
3466 uint64_t VSTOffset
= Stream
.GetCurrentBitNo();
3467 // The BitcodeStartBit was the stream offset of the identification block.
3468 VSTOffset
-= bitcodeStartBit();
3469 assert((VSTOffset
& 31) == 0 && "VST block not 32-bit aligned");
3470 // Note that we add 1 here because the offset is relative to one word
3471 // before the start of the identification block, which was historically
3472 // always the start of the regular bitcode header.
3473 Stream
.BackpatchWord(VSTOffsetPlaceholder
, VSTOffset
/ 32 + 1);
3475 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3477 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3478 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY
));
3479 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3480 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // funcoffset
3481 unsigned FnEntryAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3483 for (const Function
&F
: M
) {
3486 if (F
.isDeclaration())
3489 Record
[0] = VE
.getValueID(&F
);
3491 // Save the word offset of the function (from the start of the
3492 // actual bitcode written to the stream).
3493 uint64_t BitcodeIndex
= FunctionToBitcodeIndex
[&F
] - bitcodeStartBit();
3494 assert((BitcodeIndex
& 31) == 0 && "function block not 32-bit aligned");
3495 // Note that we add 1 here because the offset is relative to one word
3496 // before the start of the identification block, which was historically
3497 // always the start of the regular bitcode header.
3498 Record
[1] = BitcodeIndex
/ 32 + 1;
3500 Stream
.EmitRecord(bitc::VST_CODE_FNENTRY
, Record
, FnEntryAbbrev
);
3506 /// Emit names for arguments, instructions and basic blocks in a function.
3507 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3508 const ValueSymbolTable
&VST
) {
3512 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3514 // FIXME: Set up the abbrev, we know how many values there are!
3515 // FIXME: We know if the type names can use 7-bit ascii.
3516 SmallVector
<uint64_t, 64> NameVals
;
3518 for (const ValueName
&Name
: VST
) {
3519 // Figure out the encoding to use for the name.
3520 StringEncoding Bits
= getStringEncoding(Name
.getKey());
3522 unsigned AbbrevToUse
= VST_ENTRY_8_ABBREV
;
3523 NameVals
.push_back(VE
.getValueID(Name
.getValue()));
3525 // VST_CODE_ENTRY: [valueid, namechar x N]
3526 // VST_CODE_BBENTRY: [bbid, namechar x N]
3528 if (isa
<BasicBlock
>(Name
.getValue())) {
3529 Code
= bitc::VST_CODE_BBENTRY
;
3530 if (Bits
== SE_Char6
)
3531 AbbrevToUse
= VST_BBENTRY_6_ABBREV
;
3533 Code
= bitc::VST_CODE_ENTRY
;
3534 if (Bits
== SE_Char6
)
3535 AbbrevToUse
= VST_ENTRY_6_ABBREV
;
3536 else if (Bits
== SE_Fixed7
)
3537 AbbrevToUse
= VST_ENTRY_7_ABBREV
;
3540 for (const auto P
: Name
.getKey())
3541 NameVals
.push_back((unsigned char)P
);
3543 // Emit the finished record.
3544 Stream
.EmitRecord(Code
, NameVals
, AbbrevToUse
);
3551 void ModuleBitcodeWriter::writeUseList(UseListOrder
&&Order
) {
3552 assert(Order
.Shuffle
.size() >= 2 && "Shuffle too small");
3554 if (isa
<BasicBlock
>(Order
.V
))
3555 Code
= bitc::USELIST_CODE_BB
;
3557 Code
= bitc::USELIST_CODE_DEFAULT
;
3559 SmallVector
<uint64_t, 64> Record(Order
.Shuffle
.begin(), Order
.Shuffle
.end());
3560 Record
.push_back(VE
.getValueID(Order
.V
));
3561 Stream
.EmitRecord(Code
, Record
);
3564 void ModuleBitcodeWriter::writeUseListBlock(const Function
*F
) {
3565 assert(VE
.shouldPreserveUseListOrder() &&
3566 "Expected to be preserving use-list order");
3568 auto hasMore
= [&]() {
3569 return !VE
.UseListOrders
.empty() && VE
.UseListOrders
.back().F
== F
;
3575 Stream
.EnterSubblock(bitc::USELIST_BLOCK_ID
, 3);
3577 writeUseList(std::move(VE
.UseListOrders
.back()));
3578 VE
.UseListOrders
.pop_back();
3583 /// Emit a function body to the module stream.
3584 void ModuleBitcodeWriter::writeFunction(
3586 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3587 // Save the bitcode index of the start of this function block for recording
3589 FunctionToBitcodeIndex
[&F
] = Stream
.GetCurrentBitNo();
3591 Stream
.EnterSubblock(bitc::FUNCTION_BLOCK_ID
, 4);
3592 VE
.incorporateFunction(F
);
3594 SmallVector
<unsigned, 64> Vals
;
3596 // Emit the number of basic blocks, so the reader can create them ahead of
3598 Vals
.push_back(VE
.getBasicBlocks().size());
3599 Stream
.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS
, Vals
);
3602 // If there are function-local constants, emit them now.
3603 unsigned CstStart
, CstEnd
;
3604 VE
.getFunctionConstantRange(CstStart
, CstEnd
);
3605 writeConstants(CstStart
, CstEnd
, false);
3607 // If there is function-local metadata, emit it now.
3608 writeFunctionMetadata(F
);
3610 // Keep a running idea of what the instruction ID is.
3611 unsigned InstID
= CstEnd
;
3613 bool NeedsMetadataAttachment
= F
.hasMetadata();
3615 DILocation
*LastDL
= nullptr;
3616 SmallSetVector
<Function
*, 4> BlockAddressUsers
;
3618 // Finally, emit all the instructions, in order.
3619 for (const BasicBlock
&BB
: F
) {
3620 for (const Instruction
&I
: BB
) {
3621 writeInstruction(I
, InstID
, Vals
);
3623 if (!I
.getType()->isVoidTy())
3626 // If the instruction has metadata, write a metadata attachment later.
3627 NeedsMetadataAttachment
|= I
.hasMetadataOtherThanDebugLoc();
3629 // If the instruction has a debug location, emit it.
3630 if (DILocation
*DL
= I
.getDebugLoc()) {
3632 // Just repeat the same debug loc as last time.
3633 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN
, Vals
);
3635 Vals
.push_back(DL
->getLine());
3636 Vals
.push_back(DL
->getColumn());
3637 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getScope()));
3638 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getInlinedAt()));
3639 Vals
.push_back(DL
->isImplicitCode());
3640 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC
, Vals
);
3646 // If the instruction has DbgRecords attached to it, emit them. Note that
3647 // they come after the instruction so that it's easy to attach them again
3648 // when reading the bitcode, even though conceptually the debug locations
3649 // start "before" the instruction.
3650 if (I
.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode
) {
3651 /// Try to push the value only (unwrapped), otherwise push the
3652 /// metadata wrapped value. Returns true if the value was pushed
3653 /// without the ValueAsMetadata wrapper.
3654 auto PushValueOrMetadata
= [&Vals
, InstID
,
3655 this](Metadata
*RawLocation
) {
3656 assert(RawLocation
&&
3657 "RawLocation unexpectedly null in DbgVariableRecord");
3658 if (ValueAsMetadata
*VAM
= dyn_cast
<ValueAsMetadata
>(RawLocation
)) {
3659 SmallVector
<unsigned, 2> ValAndType
;
3660 // If the value is a fwd-ref the type is also pushed. We don't
3661 // want the type, so fwd-refs are kept wrapped (pushValueAndType
3662 // returns false if the value is pushed without type).
3663 if (!pushValueAndType(VAM
->getValue(), InstID
, ValAndType
)) {
3664 Vals
.push_back(ValAndType
[0]);
3668 // The metadata is a DIArgList, or ValueAsMetadata wrapping a
3669 // fwd-ref. Push the metadata ID.
3670 Vals
.push_back(VE
.getMetadataID(RawLocation
));
3674 // Write out non-instruction debug information attached to this
3675 // instruction. Write it after the instruction so that it's easy to
3676 // re-attach to the instruction reading the records in.
3677 for (DbgRecord
&DR
: I
.DebugMarker
->getDbgRecordRange()) {
3678 if (DbgLabelRecord
*DLR
= dyn_cast
<DbgLabelRecord
>(&DR
)) {
3679 Vals
.push_back(VE
.getMetadataID(&*DLR
->getDebugLoc()));
3680 Vals
.push_back(VE
.getMetadataID(DLR
->getLabel()));
3681 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL
, Vals
);
3686 // First 3 fields are common to all kinds:
3687 // DILocation, DILocalVariable, DIExpression
3688 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3689 // ..., LocationMetadata
3690 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3692 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3693 // ..., LocationMetadata
3694 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3695 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3696 DbgVariableRecord
&DVR
= cast
<DbgVariableRecord
>(DR
);
3697 Vals
.push_back(VE
.getMetadataID(&*DVR
.getDebugLoc()));
3698 Vals
.push_back(VE
.getMetadataID(DVR
.getVariable()));
3699 Vals
.push_back(VE
.getMetadataID(DVR
.getExpression()));
3700 if (DVR
.isDbgValue()) {
3701 if (PushValueOrMetadata(DVR
.getRawLocation()))
3702 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE
, Vals
,
3703 FUNCTION_DEBUG_RECORD_VALUE_ABBREV
);
3705 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE
, Vals
);
3706 } else if (DVR
.isDbgDeclare()) {
3707 Vals
.push_back(VE
.getMetadataID(DVR
.getRawLocation()));
3708 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE
, Vals
);
3710 assert(DVR
.isDbgAssign() && "Unexpected DbgRecord kind");
3711 Vals
.push_back(VE
.getMetadataID(DVR
.getRawLocation()));
3712 Vals
.push_back(VE
.getMetadataID(DVR
.getAssignID()));
3713 Vals
.push_back(VE
.getMetadataID(DVR
.getAddressExpression()));
3714 Vals
.push_back(VE
.getMetadataID(DVR
.getRawAddress()));
3715 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN
, Vals
);
3722 if (BlockAddress
*BA
= BlockAddress::lookup(&BB
)) {
3723 SmallVector
<Value
*> Worklist
{BA
};
3724 SmallPtrSet
<Value
*, 8> Visited
{BA
};
3725 while (!Worklist
.empty()) {
3726 Value
*V
= Worklist
.pop_back_val();
3727 for (User
*U
: V
->users()) {
3728 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
3729 Function
*P
= I
->getFunction();
3731 BlockAddressUsers
.insert(P
);
3732 } else if (isa
<Constant
>(U
) && !isa
<GlobalValue
>(U
) &&
3733 Visited
.insert(U
).second
)
3734 Worklist
.push_back(U
);
3740 if (!BlockAddressUsers
.empty()) {
3741 Vals
.resize(BlockAddressUsers
.size());
3742 for (auto I
: llvm::enumerate(BlockAddressUsers
))
3743 Vals
[I
.index()] = VE
.getValueID(I
.value());
3744 Stream
.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS
, Vals
);
3748 // Emit names for all the instructions etc.
3749 if (auto *Symtab
= F
.getValueSymbolTable())
3750 writeFunctionLevelValueSymbolTable(*Symtab
);
3752 if (NeedsMetadataAttachment
)
3753 writeFunctionMetadataAttachment(F
);
3754 if (VE
.shouldPreserveUseListOrder())
3755 writeUseListBlock(&F
);
3760 // Emit blockinfo, which defines the standard abbreviations etc.
3761 void ModuleBitcodeWriter::writeBlockInfo() {
3762 // We only want to emit block info records for blocks that have multiple
3763 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3764 // Other blocks can define their abbrevs inline.
3765 Stream
.EnterBlockInfoBlock();
3767 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3768 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3769 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
3770 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3771 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3772 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3773 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3775 llvm_unreachable("Unexpected abbrev ordering!");
3778 { // 7-bit fixed width VST_CODE_ENTRY strings.
3779 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3780 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3781 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3782 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3783 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3784 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3786 llvm_unreachable("Unexpected abbrev ordering!");
3788 { // 6-bit char6 VST_CODE_ENTRY strings.
3789 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3790 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3791 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3792 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3793 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3794 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3796 llvm_unreachable("Unexpected abbrev ordering!");
3798 { // 6-bit char6 VST_CODE_BBENTRY strings.
3799 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3800 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY
));
3801 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3802 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3803 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3804 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3805 VST_BBENTRY_6_ABBREV
)
3806 llvm_unreachable("Unexpected abbrev ordering!");
3809 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3810 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3811 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE
));
3812 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
3813 VE
.computeBitsRequiredForTypeIndices()));
3814 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3815 CONSTANTS_SETTYPE_ABBREV
)
3816 llvm_unreachable("Unexpected abbrev ordering!");
3819 { // INTEGER abbrev for CONSTANTS_BLOCK.
3820 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3821 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER
));
3822 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3823 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3824 CONSTANTS_INTEGER_ABBREV
)
3825 llvm_unreachable("Unexpected abbrev ordering!");
3828 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3829 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3830 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST
));
3831 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // cast opc
3832 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // typeid
3833 VE
.computeBitsRequiredForTypeIndices()));
3834 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3836 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3837 CONSTANTS_CE_CAST_Abbrev
)
3838 llvm_unreachable("Unexpected abbrev ordering!");
3840 { // NULL abbrev for CONSTANTS_BLOCK.
3841 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3842 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL
));
3843 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3844 CONSTANTS_NULL_Abbrev
)
3845 llvm_unreachable("Unexpected abbrev ordering!");
3848 // FIXME: This should only use space for first class types!
3850 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3851 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3852 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD
));
3853 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Ptr
3854 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3855 VE
.computeBitsRequiredForTypeIndices()));
3856 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // Align
3857 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // volatile
3858 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3859 FUNCTION_INST_LOAD_ABBREV
)
3860 llvm_unreachable("Unexpected abbrev ordering!");
3862 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3863 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3864 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3865 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3866 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3867 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3868 FUNCTION_INST_UNOP_ABBREV
)
3869 llvm_unreachable("Unexpected abbrev ordering!");
3871 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3872 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3873 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3874 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3875 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3876 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3877 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3878 FUNCTION_INST_UNOP_FLAGS_ABBREV
)
3879 llvm_unreachable("Unexpected abbrev ordering!");
3881 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3882 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3883 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3884 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3885 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3886 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3887 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3888 FUNCTION_INST_BINOP_ABBREV
)
3889 llvm_unreachable("Unexpected abbrev ordering!");
3891 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3892 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3893 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3894 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3895 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3896 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3897 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3898 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3899 FUNCTION_INST_BINOP_FLAGS_ABBREV
)
3900 llvm_unreachable("Unexpected abbrev ordering!");
3902 { // INST_CAST abbrev for FUNCTION_BLOCK.
3903 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3904 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
3905 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
3906 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3907 VE
.computeBitsRequiredForTypeIndices()));
3908 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3909 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3910 FUNCTION_INST_CAST_ABBREV
)
3911 llvm_unreachable("Unexpected abbrev ordering!");
3913 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3914 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3915 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
3916 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
3917 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3918 VE
.computeBitsRequiredForTypeIndices()));
3919 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3920 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3921 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3922 FUNCTION_INST_CAST_FLAGS_ABBREV
)
3923 llvm_unreachable("Unexpected abbrev ordering!");
3926 { // INST_RET abbrev for FUNCTION_BLOCK.
3927 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3928 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3929 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3930 FUNCTION_INST_RET_VOID_ABBREV
)
3931 llvm_unreachable("Unexpected abbrev ordering!");
3933 { // INST_RET abbrev for FUNCTION_BLOCK.
3934 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3935 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3936 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // ValID
3937 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3938 FUNCTION_INST_RET_VAL_ABBREV
)
3939 llvm_unreachable("Unexpected abbrev ordering!");
3941 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3942 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3943 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE
));
3944 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3945 FUNCTION_INST_UNREACHABLE_ABBREV
)
3946 llvm_unreachable("Unexpected abbrev ordering!");
3949 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3950 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP
));
3951 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
3952 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3953 Log2_32_Ceil(VE
.getTypes().size() + 1)));
3954 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3955 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
3956 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3957 FUNCTION_INST_GEP_ABBREV
)
3958 llvm_unreachable("Unexpected abbrev ordering!");
3961 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3962 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE
));
3963 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 7)); // dbgloc
3964 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 7)); // var
3965 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 7)); // expr
3966 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // val
3967 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3968 FUNCTION_DEBUG_RECORD_VALUE_ABBREV
)
3969 llvm_unreachable("Unexpected abbrev ordering! 1");
3974 /// Write the module path strings, currently only used when generating
3975 /// a combined index file.
3976 void IndexBitcodeWriter::writeModStrings() {
3977 Stream
.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID
, 3);
3979 // TODO: See which abbrev sizes we actually need to emit
3981 // 8-bit fixed-width MST_ENTRY strings.
3982 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3983 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3984 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3985 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3986 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3987 unsigned Abbrev8Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3989 // 7-bit fixed width MST_ENTRY strings.
3990 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3991 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3992 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3993 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3994 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3995 unsigned Abbrev7Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3997 // 6-bit char6 MST_ENTRY strings.
3998 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3999 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
4000 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4001 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4002 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
4003 unsigned Abbrev6Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
4005 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
4006 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4007 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH
));
4008 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4009 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4010 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4011 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4012 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4013 unsigned AbbrevHash
= Stream
.EmitAbbrev(std::move(Abbv
));
4015 SmallVector
<unsigned, 64> Vals
;
4016 forEachModule([&](const StringMapEntry
<ModuleHash
> &MPSE
) {
4017 StringRef Key
= MPSE
.getKey();
4018 const auto &Hash
= MPSE
.getValue();
4019 StringEncoding Bits
= getStringEncoding(Key
);
4020 unsigned AbbrevToUse
= Abbrev8Bit
;
4021 if (Bits
== SE_Char6
)
4022 AbbrevToUse
= Abbrev6Bit
;
4023 else if (Bits
== SE_Fixed7
)
4024 AbbrevToUse
= Abbrev7Bit
;
4026 auto ModuleId
= ModuleIdMap
.size();
4027 ModuleIdMap
[Key
] = ModuleId
;
4028 Vals
.push_back(ModuleId
);
4029 Vals
.append(Key
.begin(), Key
.end());
4031 // Emit the finished record.
4032 Stream
.EmitRecord(bitc::MST_CODE_ENTRY
, Vals
, AbbrevToUse
);
4034 // Emit an optional hash for the module now
4035 if (llvm::any_of(Hash
, [](uint32_t H
) { return H
; })) {
4036 Vals
.assign(Hash
.begin(), Hash
.end());
4037 // Emit the hash record.
4038 Stream
.EmitRecord(bitc::MST_CODE_HASH
, Vals
, AbbrevHash
);
4046 /// Write the function type metadata related records that need to appear before
4047 /// a function summary entry (whether per-module or combined).
4048 template <typename Fn
>
4049 static void writeFunctionTypeMetadataRecords(BitstreamWriter
&Stream
,
4050 FunctionSummary
*FS
,
4052 if (!FS
->type_tests().empty())
4053 Stream
.EmitRecord(bitc::FS_TYPE_TESTS
, FS
->type_tests());
4055 SmallVector
<uint64_t, 64> Record
;
4057 auto WriteVFuncIdVec
= [&](uint64_t Ty
,
4058 ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
4062 for (auto &VF
: VFs
) {
4063 Record
.push_back(VF
.GUID
);
4064 Record
.push_back(VF
.Offset
);
4066 Stream
.EmitRecord(Ty
, Record
);
4069 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS
,
4070 FS
->type_test_assume_vcalls());
4071 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS
,
4072 FS
->type_checked_load_vcalls());
4074 auto WriteConstVCallVec
= [&](uint64_t Ty
,
4075 ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
4076 for (auto &VC
: VCs
) {
4078 Record
.push_back(VC
.VFunc
.GUID
);
4079 Record
.push_back(VC
.VFunc
.Offset
);
4080 llvm::append_range(Record
, VC
.Args
);
4081 Stream
.EmitRecord(Ty
, Record
);
4085 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL
,
4086 FS
->type_test_assume_const_vcalls());
4087 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL
,
4088 FS
->type_checked_load_const_vcalls());
4090 auto WriteRange
= [&](ConstantRange Range
) {
4091 Range
= Range
.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth
);
4092 assert(Range
.getLower().getNumWords() == 1);
4093 assert(Range
.getUpper().getNumWords() == 1);
4094 emitSignedInt64(Record
, *Range
.getLower().getRawData());
4095 emitSignedInt64(Record
, *Range
.getUpper().getRawData());
4098 if (!FS
->paramAccesses().empty()) {
4100 for (auto &Arg
: FS
->paramAccesses()) {
4101 size_t UndoSize
= Record
.size();
4102 Record
.push_back(Arg
.ParamNo
);
4103 WriteRange(Arg
.Use
);
4104 Record
.push_back(Arg
.Calls
.size());
4105 for (auto &Call
: Arg
.Calls
) {
4106 Record
.push_back(Call
.ParamNo
);
4107 std::optional
<unsigned> ValueID
= GetValueID(Call
.Callee
);
4109 // If ValueID is unknown we can't drop just this call, we must drop
4110 // entire parameter.
4111 Record
.resize(UndoSize
);
4114 Record
.push_back(*ValueID
);
4115 WriteRange(Call
.Offsets
);
4118 if (!Record
.empty())
4119 Stream
.EmitRecord(bitc::FS_PARAM_ACCESS
, Record
);
4123 /// Collect type IDs from type tests used by function.
4125 getReferencedTypeIds(FunctionSummary
*FS
,
4126 std::set
<GlobalValue::GUID
> &ReferencedTypeIds
) {
4127 if (!FS
->type_tests().empty())
4128 for (auto &TT
: FS
->type_tests())
4129 ReferencedTypeIds
.insert(TT
);
4131 auto GetReferencedTypesFromVFuncIdVec
=
4132 [&](ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
4133 for (auto &VF
: VFs
)
4134 ReferencedTypeIds
.insert(VF
.GUID
);
4137 GetReferencedTypesFromVFuncIdVec(FS
->type_test_assume_vcalls());
4138 GetReferencedTypesFromVFuncIdVec(FS
->type_checked_load_vcalls());
4140 auto GetReferencedTypesFromConstVCallVec
=
4141 [&](ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
4142 for (auto &VC
: VCs
)
4143 ReferencedTypeIds
.insert(VC
.VFunc
.GUID
);
4146 GetReferencedTypesFromConstVCallVec(FS
->type_test_assume_const_vcalls());
4147 GetReferencedTypesFromConstVCallVec(FS
->type_checked_load_const_vcalls());
4150 static void writeWholeProgramDevirtResolutionByArg(
4151 SmallVector
<uint64_t, 64> &NameVals
, const std::vector
<uint64_t> &args
,
4152 const WholeProgramDevirtResolution::ByArg
&ByArg
) {
4153 NameVals
.push_back(args
.size());
4154 llvm::append_range(NameVals
, args
);
4156 NameVals
.push_back(ByArg
.TheKind
);
4157 NameVals
.push_back(ByArg
.Info
);
4158 NameVals
.push_back(ByArg
.Byte
);
4159 NameVals
.push_back(ByArg
.Bit
);
4162 static void writeWholeProgramDevirtResolution(
4163 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
4164 uint64_t Id
, const WholeProgramDevirtResolution
&Wpd
) {
4165 NameVals
.push_back(Id
);
4167 NameVals
.push_back(Wpd
.TheKind
);
4168 NameVals
.push_back(StrtabBuilder
.add(Wpd
.SingleImplName
));
4169 NameVals
.push_back(Wpd
.SingleImplName
.size());
4171 NameVals
.push_back(Wpd
.ResByArg
.size());
4172 for (auto &A
: Wpd
.ResByArg
)
4173 writeWholeProgramDevirtResolutionByArg(NameVals
, A
.first
, A
.second
);
4176 static void writeTypeIdSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
4177 StringTableBuilder
&StrtabBuilder
,
4179 const TypeIdSummary
&Summary
) {
4180 NameVals
.push_back(StrtabBuilder
.add(Id
));
4181 NameVals
.push_back(Id
.size());
4183 NameVals
.push_back(Summary
.TTRes
.TheKind
);
4184 NameVals
.push_back(Summary
.TTRes
.SizeM1BitWidth
);
4185 NameVals
.push_back(Summary
.TTRes
.AlignLog2
);
4186 NameVals
.push_back(Summary
.TTRes
.SizeM1
);
4187 NameVals
.push_back(Summary
.TTRes
.BitMask
);
4188 NameVals
.push_back(Summary
.TTRes
.InlineBits
);
4190 for (auto &W
: Summary
.WPDRes
)
4191 writeWholeProgramDevirtResolution(NameVals
, StrtabBuilder
, W
.first
,
4195 static void writeTypeIdCompatibleVtableSummaryRecord(
4196 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
4197 StringRef Id
, const TypeIdCompatibleVtableInfo
&Summary
,
4198 ValueEnumerator
&VE
) {
4199 NameVals
.push_back(StrtabBuilder
.add(Id
));
4200 NameVals
.push_back(Id
.size());
4202 for (auto &P
: Summary
) {
4203 NameVals
.push_back(P
.AddressPointOffset
);
4204 NameVals
.push_back(VE
.getValueID(P
.VTableVI
.getValue()));
4208 // Adds the allocation contexts to the CallStacks map. We simply use the
4209 // size at the time the context was added as the CallStackId. This works because
4210 // when we look up the call stacks later on we process the function summaries
4211 // and their allocation records in the same exact order.
4212 static void collectMemProfCallStacks(
4213 FunctionSummary
*FS
, std::function
<LinearFrameId(unsigned)> GetStackIndex
,
4214 MapVector
<CallStackId
, llvm::SmallVector
<LinearFrameId
>> &CallStacks
) {
4215 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame
4216 // id offset into the index of the full stack frames. The ModuleSummaryIndex
4217 // currently uses unsigned. Make sure these stay in sync.
4218 static_assert(std::is_same_v
<LinearFrameId
, unsigned>);
4219 for (auto &AI
: FS
->allocs()) {
4220 for (auto &MIB
: AI
.MIBs
) {
4221 SmallVector
<unsigned> StackIdIndices
;
4222 StackIdIndices
.reserve(MIB
.StackIdIndices
.size());
4223 for (auto Id
: MIB
.StackIdIndices
)
4224 StackIdIndices
.push_back(GetStackIndex(Id
));
4225 // The CallStackId is the size at the time this context was inserted.
4226 CallStacks
.insert({CallStacks
.size(), StackIdIndices
});
4231 // Build the radix tree from the accumulated CallStacks, write out the resulting
4232 // linearized radix tree array, and return the map of call stack positions into
4233 // this array for use when writing the allocation records. The returned map is
4234 // indexed by a CallStackId which in this case is implicitly determined by the
4235 // order of function summaries and their allocation infos being written.
4236 static DenseMap
<CallStackId
, LinearCallStackId
> writeMemoryProfileRadixTree(
4237 MapVector
<CallStackId
, llvm::SmallVector
<LinearFrameId
>> &&CallStacks
,
4238 BitstreamWriter
&Stream
, unsigned RadixAbbrev
) {
4239 assert(!CallStacks
.empty());
4240 DenseMap
<unsigned, FrameStat
> FrameHistogram
=
4241 computeFrameHistogram
<LinearFrameId
>(CallStacks
);
4242 CallStackRadixTreeBuilder
<LinearFrameId
> Builder
;
4243 // We don't need a MemProfFrameIndexes map as we have already converted the
4244 // full stack id hash to a linear offset into the StackIds array.
4245 Builder
.build(std::move(CallStacks
), /*MemProfFrameIndexes=*/nullptr,
4247 Stream
.EmitRecord(bitc::FS_CONTEXT_RADIX_TREE_ARRAY
, Builder
.getRadixArray(),
4249 return Builder
.takeCallStackPos();
4252 static void writeFunctionHeapProfileRecords(
4253 BitstreamWriter
&Stream
, FunctionSummary
*FS
, unsigned CallsiteAbbrev
,
4254 unsigned AllocAbbrev
, unsigned ContextIdAbbvId
, bool PerModule
,
4255 std::function
<unsigned(const ValueInfo
&VI
)> GetValueID
,
4256 std::function
<unsigned(unsigned)> GetStackIndex
,
4257 bool WriteContextSizeInfoIndex
,
4258 DenseMap
<CallStackId
, LinearCallStackId
> &CallStackPos
,
4259 CallStackId
&CallStackCount
) {
4260 SmallVector
<uint64_t> Record
;
4262 for (auto &CI
: FS
->callsites()) {
4264 // Per module callsite clones should always have a single entry of
4266 assert(!PerModule
|| (CI
.Clones
.size() == 1 && CI
.Clones
[0] == 0));
4267 Record
.push_back(GetValueID(CI
.Callee
));
4269 Record
.push_back(CI
.StackIdIndices
.size());
4270 Record
.push_back(CI
.Clones
.size());
4272 for (auto Id
: CI
.StackIdIndices
)
4273 Record
.push_back(GetStackIndex(Id
));
4275 for (auto V
: CI
.Clones
)
4276 Record
.push_back(V
);
4278 Stream
.EmitRecord(PerModule
? bitc::FS_PERMODULE_CALLSITE_INFO
4279 : bitc::FS_COMBINED_CALLSITE_INFO
,
4280 Record
, CallsiteAbbrev
);
4283 for (auto &AI
: FS
->allocs()) {
4285 // Per module alloc versions should always have a single entry of
4287 assert(!PerModule
|| (AI
.Versions
.size() == 1 && AI
.Versions
[0] == 0));
4288 Record
.push_back(AI
.MIBs
.size());
4290 Record
.push_back(AI
.Versions
.size());
4291 for (auto &MIB
: AI
.MIBs
) {
4292 Record
.push_back((uint8_t)MIB
.AllocType
);
4293 // Record the index into the radix tree array for this context.
4294 assert(CallStackCount
<= CallStackPos
.size());
4295 Record
.push_back(CallStackPos
[CallStackCount
++]);
4298 for (auto V
: AI
.Versions
)
4299 Record
.push_back(V
);
4301 assert(AI
.ContextSizeInfos
.empty() ||
4302 AI
.ContextSizeInfos
.size() == AI
.MIBs
.size());
4303 // Optionally emit the context size information if it exists.
4304 if (WriteContextSizeInfoIndex
&& !AI
.ContextSizeInfos
.empty()) {
4305 // The abbreviation id for the context ids record should have been created
4306 // if we are emitting the per-module index, which is where we write this
4308 assert(ContextIdAbbvId
);
4309 SmallVector
<uint32_t> ContextIds
;
4310 // At least one context id per ContextSizeInfos entry (MIB), broken into 2
4312 ContextIds
.reserve(AI
.ContextSizeInfos
.size() * 2);
4313 for (auto &Infos
: AI
.ContextSizeInfos
) {
4314 Record
.push_back(Infos
.size());
4315 for (auto [FullStackId
, TotalSize
] : Infos
) {
4316 // The context ids are emitted separately as a fixed width array,
4317 // which is more efficient than a VBR given that these hashes are
4318 // typically close to 64-bits. The max fixed width entry is 32 bits so
4319 // it is split into 2.
4320 ContextIds
.push_back(static_cast<uint32_t>(FullStackId
>> 32));
4321 ContextIds
.push_back(static_cast<uint32_t>(FullStackId
));
4322 Record
.push_back(TotalSize
);
4325 // The context ids are expected by the reader to immediately precede the
4326 // associated alloc info record.
4327 Stream
.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS
, ContextIds
,
4330 Stream
.EmitRecord(PerModule
? bitc::FS_PERMODULE_ALLOC_INFO
4331 : bitc::FS_COMBINED_ALLOC_INFO
,
4332 Record
, AllocAbbrev
);
4336 // Helper to emit a single function summary record.
4337 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4338 SmallVector
<uint64_t, 64> &NameVals
, GlobalValueSummary
*Summary
,
4339 unsigned ValueID
, unsigned FSCallsRelBFAbbrev
,
4340 unsigned FSCallsProfileAbbrev
, unsigned CallsiteAbbrev
,
4341 unsigned AllocAbbrev
, unsigned ContextIdAbbvId
, const Function
&F
,
4342 DenseMap
<CallStackId
, LinearCallStackId
> &CallStackPos
,
4343 CallStackId
&CallStackCount
) {
4344 NameVals
.push_back(ValueID
);
4346 FunctionSummary
*FS
= cast
<FunctionSummary
>(Summary
);
4348 writeFunctionTypeMetadataRecords(
4349 Stream
, FS
, [&](const ValueInfo
&VI
) -> std::optional
<unsigned> {
4350 return {VE
.getValueID(VI
.getValue())};
4353 writeFunctionHeapProfileRecords(
4354 Stream
, FS
, CallsiteAbbrev
, AllocAbbrev
, ContextIdAbbvId
,
4356 /*GetValueId*/ [&](const ValueInfo
&VI
) { return getValueId(VI
); },
4357 /*GetStackIndex*/ [&](unsigned I
) { return I
; },
4358 /*WriteContextSizeInfoIndex*/ true, CallStackPos
, CallStackCount
);
4360 auto SpecialRefCnts
= FS
->specialRefCounts();
4361 NameVals
.push_back(getEncodedGVSummaryFlags(FS
->flags()));
4362 NameVals
.push_back(FS
->instCount());
4363 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
4364 NameVals
.push_back(FS
->refs().size());
4365 NameVals
.push_back(SpecialRefCnts
.first
); // rorefcnt
4366 NameVals
.push_back(SpecialRefCnts
.second
); // worefcnt
4368 for (auto &RI
: FS
->refs())
4369 NameVals
.push_back(getValueId(RI
));
4371 const bool UseRelBFRecord
=
4372 WriteRelBFToSummary
&& !F
.hasProfileData() &&
4373 ForceSummaryEdgesCold
== FunctionSummary::FSHT_None
;
4374 for (auto &ECI
: FS
->calls()) {
4375 NameVals
.push_back(getValueId(ECI
.first
));
4377 NameVals
.push_back(getEncodedRelBFCallEdgeInfo(ECI
.second
));
4379 NameVals
.push_back(getEncodedHotnessCallEdgeInfo(ECI
.second
));
4383 (UseRelBFRecord
? FSCallsRelBFAbbrev
: FSCallsProfileAbbrev
);
4385 (UseRelBFRecord
? bitc::FS_PERMODULE_RELBF
: bitc::FS_PERMODULE_PROFILE
);
4387 // Emit the finished record.
4388 Stream
.EmitRecord(Code
, NameVals
, FSAbbrev
);
4392 // Collect the global value references in the given variable's initializer,
4393 // and emit them in a summary record.
4394 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4395 const GlobalVariable
&V
, SmallVector
<uint64_t, 64> &NameVals
,
4396 unsigned FSModRefsAbbrev
, unsigned FSModVTableRefsAbbrev
) {
4397 auto VI
= Index
->getValueInfo(V
.getGUID());
4398 if (!VI
|| VI
.getSummaryList().empty()) {
4399 // Only declarations should not have a summary (a declaration might however
4400 // have a summary if the def was in module level asm).
4401 assert(V
.isDeclaration());
4404 auto *Summary
= VI
.getSummaryList()[0].get();
4405 NameVals
.push_back(VE
.getValueID(&V
));
4406 GlobalVarSummary
*VS
= cast
<GlobalVarSummary
>(Summary
);
4407 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
4408 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
4410 auto VTableFuncs
= VS
->vTableFuncs();
4411 if (!VTableFuncs
.empty())
4412 NameVals
.push_back(VS
->refs().size());
4414 unsigned SizeBeforeRefs
= NameVals
.size();
4415 for (auto &RI
: VS
->refs())
4416 NameVals
.push_back(VE
.getValueID(RI
.getValue()));
4417 // Sort the refs for determinism output, the vector returned by FS->refs() has
4418 // been initialized from a DenseSet.
4419 llvm::sort(drop_begin(NameVals
, SizeBeforeRefs
));
4421 if (VTableFuncs
.empty())
4422 Stream
.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
, NameVals
,
4425 // VTableFuncs pairs should already be sorted by offset.
4426 for (auto &P
: VTableFuncs
) {
4427 NameVals
.push_back(VE
.getValueID(P
.FuncVI
.getValue()));
4428 NameVals
.push_back(P
.VTableOffset
);
4431 Stream
.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS
, NameVals
,
4432 FSModVTableRefsAbbrev
);
4437 /// Emit the per-module summary section alongside the rest of
4438 /// the module's bitcode.
4439 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4440 // By default we compile with ThinLTO if the module has a summary, but the
4441 // client can request full LTO with a module flag.
4442 bool IsThinLTO
= true;
4444 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
4445 IsThinLTO
= MD
->getZExtValue();
4446 Stream
.EnterSubblock(IsThinLTO
? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4447 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID
,
4452 ArrayRef
<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion
});
4454 // Write the index flags.
4456 // Bits 1-3 are set only in the combined index, skip them.
4457 if (Index
->enableSplitLTOUnit())
4459 if (Index
->hasUnifiedLTO())
4462 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Flags
});
4464 if (Index
->begin() == Index
->end()) {
4469 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4470 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID
));
4471 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4472 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4473 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4474 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4475 unsigned ValueGuidAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4477 for (const auto &GVI
: valueIds()) {
4478 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
4479 ArrayRef
<uint32_t>{GVI
.second
,
4480 static_cast<uint32_t>(GVI
.first
>> 32),
4481 static_cast<uint32_t>(GVI
.first
)},
4485 if (!Index
->stackIds().empty()) {
4486 auto StackIdAbbv
= std::make_shared
<BitCodeAbbrev
>();
4487 StackIdAbbv
->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS
));
4489 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4490 // The stack ids are hashes that are close to 64 bits in size, so emitting
4491 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4492 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4493 unsigned StackIdAbbvId
= Stream
.EmitAbbrev(std::move(StackIdAbbv
));
4494 SmallVector
<uint32_t> Vals
;
4495 Vals
.reserve(Index
->stackIds().size() * 2);
4496 for (auto Id
: Index
->stackIds()) {
4497 Vals
.push_back(static_cast<uint32_t>(Id
>> 32));
4498 Vals
.push_back(static_cast<uint32_t>(Id
));
4500 Stream
.EmitRecord(bitc::FS_STACK_IDS
, Vals
, StackIdAbbvId
);
4504 auto ContextIdAbbv
= std::make_shared
<BitCodeAbbrev
>();
4505 ContextIdAbbv
->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS
));
4506 ContextIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4507 // The context ids are hashes that are close to 64 bits in size, so emitting
4508 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4509 ContextIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4510 unsigned ContextIdAbbvId
= Stream
.EmitAbbrev(std::move(ContextIdAbbv
));
4512 // Abbrev for FS_PERMODULE_PROFILE.
4513 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4514 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE
));
4515 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4516 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // flags
4517 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
4518 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
4519 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4520 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
4521 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
4522 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4523 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4524 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4525 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4527 // Abbrev for FS_PERMODULE_RELBF.
4528 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4529 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF
));
4530 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4531 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4532 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
4533 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
4534 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4535 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
4536 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
4537 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4538 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4539 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4540 unsigned FSCallsRelBFAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4542 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4543 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4544 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
));
4545 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4546 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4547 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
4548 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4549 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4551 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4552 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4553 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS
));
4554 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4555 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4556 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4557 // numrefs x valueid, n x (valueid , offset)
4558 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4559 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4560 unsigned FSModVTableRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4562 // Abbrev for FS_ALIAS.
4563 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4564 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_ALIAS
));
4565 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4566 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4567 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4568 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4570 // Abbrev for FS_TYPE_ID_METADATA
4571 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4572 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA
));
4573 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // typeid strtab index
4574 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // typeid length
4575 // n x (valueid , offset)
4576 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4577 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4578 unsigned TypeIdCompatibleVtableAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4580 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4581 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO
));
4582 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4584 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4585 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4586 unsigned CallsiteAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4588 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4589 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO
));
4590 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // nummib
4591 // n x (alloc type, context radix tree index)
4592 // optional: nummib x (numcontext x total size)
4593 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4594 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4595 unsigned AllocAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4597 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4598 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY
));
4600 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4601 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4602 unsigned RadixAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4604 // First walk through all the functions and collect the allocation contexts in
4605 // their associated summaries, for use in constructing a radix tree of
4606 // contexts. Note that we need to do this in the same order as the functions
4607 // are processed further below since the call stack positions in the resulting
4608 // radix tree array are identified based on this order.
4609 MapVector
<CallStackId
, llvm::SmallVector
<LinearFrameId
>> CallStacks
;
4610 for (const Function
&F
: M
) {
4611 // Summary emission does not support anonymous functions, they have to be
4612 // renamed using the anonymous function renaming pass.
4614 report_fatal_error("Unexpected anonymous function when writing summary");
4616 ValueInfo VI
= Index
->getValueInfo(F
.getGUID());
4617 if (!VI
|| VI
.getSummaryList().empty()) {
4618 // Only declarations should not have a summary (a declaration might
4619 // however have a summary if the def was in module level asm).
4620 assert(F
.isDeclaration());
4623 auto *Summary
= VI
.getSummaryList()[0].get();
4624 FunctionSummary
*FS
= cast
<FunctionSummary
>(Summary
);
4625 collectMemProfCallStacks(
4626 FS
, /*GetStackIndex*/ [](unsigned I
) { return I
; }, CallStacks
);
4628 // Finalize the radix tree, write it out, and get the map of positions in the
4629 // linearized tree array.
4630 DenseMap
<CallStackId
, LinearCallStackId
> CallStackPos
;
4631 if (!CallStacks
.empty()) {
4633 writeMemoryProfileRadixTree(std::move(CallStacks
), Stream
, RadixAbbrev
);
4636 // Keep track of the current index into the CallStackPos map.
4637 CallStackId CallStackCount
= 0;
4639 SmallVector
<uint64_t, 64> NameVals
;
4640 // Iterate over the list of functions instead of the Index to
4641 // ensure the ordering is stable.
4642 for (const Function
&F
: M
) {
4643 // Summary emission does not support anonymous functions, they have to
4644 // renamed using the anonymous function renaming pass.
4646 report_fatal_error("Unexpected anonymous function when writing summary");
4648 ValueInfo VI
= Index
->getValueInfo(F
.getGUID());
4649 if (!VI
|| VI
.getSummaryList().empty()) {
4650 // Only declarations should not have a summary (a declaration might
4651 // however have a summary if the def was in module level asm).
4652 assert(F
.isDeclaration());
4655 auto *Summary
= VI
.getSummaryList()[0].get();
4656 writePerModuleFunctionSummaryRecord(
4657 NameVals
, Summary
, VE
.getValueID(&F
), FSCallsRelBFAbbrev
,
4658 FSCallsProfileAbbrev
, CallsiteAbbrev
, AllocAbbrev
, ContextIdAbbvId
, F
,
4659 CallStackPos
, CallStackCount
);
4662 // Capture references from GlobalVariable initializers, which are outside
4663 // of a function scope.
4664 for (const GlobalVariable
&G
: M
.globals())
4665 writeModuleLevelReferences(G
, NameVals
, FSModRefsAbbrev
,
4666 FSModVTableRefsAbbrev
);
4668 for (const GlobalAlias
&A
: M
.aliases()) {
4669 auto *Aliasee
= A
.getAliaseeObject();
4670 // Skip ifunc and nameless functions which don't have an entry in the
4672 if (!Aliasee
->hasName() || isa
<GlobalIFunc
>(Aliasee
))
4674 auto AliasId
= VE
.getValueID(&A
);
4675 auto AliaseeId
= VE
.getValueID(Aliasee
);
4676 NameVals
.push_back(AliasId
);
4677 auto *Summary
= Index
->getGlobalValueSummary(A
);
4678 AliasSummary
*AS
= cast
<AliasSummary
>(Summary
);
4679 NameVals
.push_back(getEncodedGVSummaryFlags(AS
->flags()));
4680 NameVals
.push_back(AliaseeId
);
4681 Stream
.EmitRecord(bitc::FS_ALIAS
, NameVals
, FSAliasAbbrev
);
4685 for (auto &S
: Index
->typeIdCompatibleVtableMap()) {
4686 writeTypeIdCompatibleVtableSummaryRecord(NameVals
, StrtabBuilder
, S
.first
,
4688 Stream
.EmitRecord(bitc::FS_TYPE_ID_METADATA
, NameVals
,
4689 TypeIdCompatibleVtableAbbrev
);
4693 if (Index
->getBlockCount())
4694 Stream
.EmitRecord(bitc::FS_BLOCK_COUNT
,
4695 ArrayRef
<uint64_t>{Index
->getBlockCount()});
4700 /// Emit the combined summary section into the combined index file.
4701 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4702 Stream
.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID
, 4);
4705 ArrayRef
<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion
});
4707 // Write the index flags.
4708 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Index
.getFlags()});
4710 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4711 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID
));
4712 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4713 // GUIDS often use up most of 64-bits, so encode as two Fixed 32.
4714 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4715 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4716 unsigned ValueGuidAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4718 for (const auto &GVI
: valueIds()) {
4719 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
4720 ArrayRef
<uint32_t>{GVI
.second
,
4721 static_cast<uint32_t>(GVI
.first
>> 32),
4722 static_cast<uint32_t>(GVI
.first
)},
4726 // Write the stack ids used by this index, which will be a subset of those in
4727 // the full index in the case of distributed indexes.
4728 if (!StackIds
.empty()) {
4729 auto StackIdAbbv
= std::make_shared
<BitCodeAbbrev
>();
4730 StackIdAbbv
->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS
));
4732 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4733 // The stack ids are hashes that are close to 64 bits in size, so emitting
4734 // as a pair of 32-bit fixed-width values is more efficient than a VBR.
4735 StackIdAbbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
4736 unsigned StackIdAbbvId
= Stream
.EmitAbbrev(std::move(StackIdAbbv
));
4737 SmallVector
<uint32_t> Vals
;
4738 Vals
.reserve(StackIds
.size() * 2);
4739 for (auto Id
: StackIds
) {
4740 Vals
.push_back(static_cast<uint32_t>(Id
>> 32));
4741 Vals
.push_back(static_cast<uint32_t>(Id
));
4743 Stream
.EmitRecord(bitc::FS_STACK_IDS
, Vals
, StackIdAbbvId
);
4746 // Abbrev for FS_COMBINED_PROFILE.
4747 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4748 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE
));
4749 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4750 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
4751 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4752 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
4753 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
4754 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // entrycount
4755 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
4756 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // rorefcnt
4757 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // worefcnt
4758 // numrefs x valueid, n x (valueid, hotness+tailcall flags)
4759 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4760 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4761 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4763 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4764 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4765 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
));
4766 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4767 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
4768 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4769 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
4770 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4771 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4773 // Abbrev for FS_COMBINED_ALIAS.
4774 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4775 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS
));
4776 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4777 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
4778 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
4779 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4780 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4782 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4783 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO
));
4784 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
4785 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numstackindices
4786 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numver
4787 // numstackindices x stackidindex, numver x version
4788 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4789 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4790 unsigned CallsiteAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4792 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4793 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO
));
4794 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // nummib
4795 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numver
4796 // nummib x (alloc type, context radix tree index),
4798 // optional: nummib x total size
4799 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4800 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4801 unsigned AllocAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4803 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4804 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY
));
4806 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4807 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
4808 unsigned RadixAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4810 auto shouldImportValueAsDecl
= [&](GlobalValueSummary
*GVS
) -> bool {
4811 if (DecSummaries
== nullptr)
4813 return DecSummaries
->count(GVS
);
4816 // The aliases are emitted as a post-pass, and will point to the value
4817 // id of the aliasee. Save them in a vector for post-processing.
4818 SmallVector
<AliasSummary
*, 64> Aliases
;
4820 // Save the value id for each summary for alias emission.
4821 DenseMap
<const GlobalValueSummary
*, unsigned> SummaryToValueIdMap
;
4823 SmallVector
<uint64_t, 64> NameVals
;
4825 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4826 // with the type ids referenced by this index file.
4827 std::set
<GlobalValue::GUID
> ReferencedTypeIds
;
4829 // For local linkage, we also emit the original name separately
4830 // immediately after the record.
4831 auto MaybeEmitOriginalName
= [&](GlobalValueSummary
&S
) {
4832 // We don't need to emit the original name if we are writing the index for
4833 // distributed backends (in which case ModuleToSummariesForIndex is
4834 // non-null). The original name is only needed during the thin link, since
4835 // for SamplePGO the indirect call targets for local functions have
4836 // have the original name annotated in profile.
4837 // Continue to emit it when writing out the entire combined index, which is
4838 // used in testing the thin link via llvm-lto.
4839 if (ModuleToSummariesForIndex
|| !GlobalValue::isLocalLinkage(S
.linkage()))
4841 NameVals
.push_back(S
.getOriginalName());
4842 Stream
.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME
, NameVals
);
4846 // First walk through all the functions and collect the allocation contexts in
4847 // their associated summaries, for use in constructing a radix tree of
4848 // contexts. Note that we need to do this in the same order as the functions
4849 // are processed further below since the call stack positions in the resulting
4850 // radix tree array are identified based on this order.
4851 MapVector
<CallStackId
, llvm::SmallVector
<LinearFrameId
>> CallStacks
;
4852 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
4853 // Don't collect this when invoked for an aliasee, as it is not needed for
4854 // the alias summary. If the aliasee is to be imported, we will invoke this
4855 // separately with IsAliasee=false.
4858 GlobalValueSummary
*S
= I
.second
;
4860 auto *FS
= dyn_cast
<FunctionSummary
>(S
);
4863 collectMemProfCallStacks(
4867 // Get the corresponding index into the list of StackIds actually
4868 // being written for this combined index (which may be a subset in
4869 // the case of distributed indexes).
4870 assert(StackIdIndicesToIndex
.contains(I
));
4871 return StackIdIndicesToIndex
[I
];
4875 // Finalize the radix tree, write it out, and get the map of positions in the
4876 // linearized tree array.
4877 DenseMap
<CallStackId
, LinearCallStackId
> CallStackPos
;
4878 if (!CallStacks
.empty()) {
4880 writeMemoryProfileRadixTree(std::move(CallStacks
), Stream
, RadixAbbrev
);
4883 // Keep track of the current index into the CallStackPos map.
4884 CallStackId CallStackCount
= 0;
4886 DenseSet
<GlobalValue::GUID
> DefOrUseGUIDs
;
4887 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
4888 GlobalValueSummary
*S
= I
.second
;
4890 DefOrUseGUIDs
.insert(I
.first
);
4891 for (const ValueInfo
&VI
: S
->refs())
4892 DefOrUseGUIDs
.insert(VI
.getGUID());
4894 auto ValueId
= getValueId(I
.first
);
4896 SummaryToValueIdMap
[S
] = *ValueId
;
4898 // If this is invoked for an aliasee, we want to record the above
4899 // mapping, but then not emit a summary entry (if the aliasee is
4900 // to be imported, we will invoke this separately with IsAliasee=false).
4904 if (auto *AS
= dyn_cast
<AliasSummary
>(S
)) {
4905 // Will process aliases as a post-pass because the reader wants all
4906 // global to be loaded first.
4907 Aliases
.push_back(AS
);
4911 if (auto *VS
= dyn_cast
<GlobalVarSummary
>(S
)) {
4912 NameVals
.push_back(*ValueId
);
4913 assert(ModuleIdMap
.count(VS
->modulePath()));
4914 NameVals
.push_back(ModuleIdMap
[VS
->modulePath()]);
4916 getEncodedGVSummaryFlags(VS
->flags(), shouldImportValueAsDecl(VS
)));
4917 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
4918 for (auto &RI
: VS
->refs()) {
4919 auto RefValueId
= getValueId(RI
.getGUID());
4922 NameVals
.push_back(*RefValueId
);
4925 // Emit the finished record.
4926 Stream
.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
, NameVals
,
4929 MaybeEmitOriginalName(*S
);
4933 auto GetValueId
= [&](const ValueInfo
&VI
) -> std::optional
<unsigned> {
4935 return std::nullopt
;
4936 return getValueId(VI
.getGUID());
4939 auto *FS
= cast
<FunctionSummary
>(S
);
4940 writeFunctionTypeMetadataRecords(Stream
, FS
, GetValueId
);
4941 getReferencedTypeIds(FS
, ReferencedTypeIds
);
4943 writeFunctionHeapProfileRecords(
4944 Stream
, FS
, CallsiteAbbrev
, AllocAbbrev
, /*ContextIdAbbvId*/ 0,
4945 /*PerModule*/ false,
4947 [&](const ValueInfo
&VI
) -> unsigned {
4948 std::optional
<unsigned> ValueID
= GetValueId(VI
);
4949 // This can happen in shared index files for distributed ThinLTO if
4950 // the callee function summary is not included. Record 0 which we
4951 // will have to deal with conservatively when doing any kind of
4952 // validation in the ThinLTO backends.
4959 // Get the corresponding index into the list of StackIds actually
4960 // being written for this combined index (which may be a subset in
4961 // the case of distributed indexes).
4962 assert(StackIdIndicesToIndex
.contains(I
));
4963 return StackIdIndicesToIndex
[I
];
4965 /*WriteContextSizeInfoIndex*/ false, CallStackPos
, CallStackCount
);
4967 NameVals
.push_back(*ValueId
);
4968 assert(ModuleIdMap
.count(FS
->modulePath()));
4969 NameVals
.push_back(ModuleIdMap
[FS
->modulePath()]);
4971 getEncodedGVSummaryFlags(FS
->flags(), shouldImportValueAsDecl(FS
)));
4972 NameVals
.push_back(FS
->instCount());
4973 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
4974 // TODO: Stop writing entry count and bump bitcode version.
4975 NameVals
.push_back(0 /* EntryCount */);
4978 NameVals
.push_back(0); // numrefs
4979 NameVals
.push_back(0); // rorefcnt
4980 NameVals
.push_back(0); // worefcnt
4982 unsigned Count
= 0, RORefCnt
= 0, WORefCnt
= 0;
4983 for (auto &RI
: FS
->refs()) {
4984 auto RefValueId
= getValueId(RI
.getGUID());
4987 NameVals
.push_back(*RefValueId
);
4988 if (RI
.isReadOnly())
4990 else if (RI
.isWriteOnly())
4994 NameVals
[6] = Count
;
4995 NameVals
[7] = RORefCnt
;
4996 NameVals
[8] = WORefCnt
;
4998 for (auto &EI
: FS
->calls()) {
4999 // If this GUID doesn't have a value id, it doesn't have a function
5000 // summary and we don't need to record any calls to it.
5001 std::optional
<unsigned> CallValueId
= GetValueId(EI
.first
);
5004 NameVals
.push_back(*CallValueId
);
5005 NameVals
.push_back(getEncodedHotnessCallEdgeInfo(EI
.second
));
5008 // Emit the finished record.
5009 Stream
.EmitRecord(bitc::FS_COMBINED_PROFILE
, NameVals
,
5010 FSCallsProfileAbbrev
);
5012 MaybeEmitOriginalName(*S
);
5015 for (auto *AS
: Aliases
) {
5016 auto AliasValueId
= SummaryToValueIdMap
[AS
];
5017 assert(AliasValueId
);
5018 NameVals
.push_back(AliasValueId
);
5019 assert(ModuleIdMap
.count(AS
->modulePath()));
5020 NameVals
.push_back(ModuleIdMap
[AS
->modulePath()]);
5022 getEncodedGVSummaryFlags(AS
->flags(), shouldImportValueAsDecl(AS
)));
5023 auto AliaseeValueId
= SummaryToValueIdMap
[&AS
->getAliasee()];
5024 assert(AliaseeValueId
);
5025 NameVals
.push_back(AliaseeValueId
);
5027 // Emit the finished record.
5028 Stream
.EmitRecord(bitc::FS_COMBINED_ALIAS
, NameVals
, FSAliasAbbrev
);
5030 MaybeEmitOriginalName(*AS
);
5032 if (auto *FS
= dyn_cast
<FunctionSummary
>(&AS
->getAliasee()))
5033 getReferencedTypeIds(FS
, ReferencedTypeIds
);
5036 if (!Index
.cfiFunctionDefs().empty()) {
5037 for (auto &S
: Index
.cfiFunctionDefs()) {
5038 if (DefOrUseGUIDs
.contains(
5039 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S
)))) {
5040 NameVals
.push_back(StrtabBuilder
.add(S
));
5041 NameVals
.push_back(S
.size());
5044 if (!NameVals
.empty()) {
5045 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS
, NameVals
);
5050 if (!Index
.cfiFunctionDecls().empty()) {
5051 for (auto &S
: Index
.cfiFunctionDecls()) {
5052 if (DefOrUseGUIDs
.contains(
5053 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S
)))) {
5054 NameVals
.push_back(StrtabBuilder
.add(S
));
5055 NameVals
.push_back(S
.size());
5058 if (!NameVals
.empty()) {
5059 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS
, NameVals
);
5064 // Walk the GUIDs that were referenced, and write the
5065 // corresponding type id records.
5066 for (auto &T
: ReferencedTypeIds
) {
5067 auto TidIter
= Index
.typeIds().equal_range(T
);
5068 for (const auto &[GUID
, TypeIdPair
] : make_range(TidIter
)) {
5069 writeTypeIdSummaryRecord(NameVals
, StrtabBuilder
, TypeIdPair
.first
,
5071 Stream
.EmitRecord(bitc::FS_TYPE_ID
, NameVals
);
5076 if (Index
.getBlockCount())
5077 Stream
.EmitRecord(bitc::FS_BLOCK_COUNT
,
5078 ArrayRef
<uint64_t>{Index
.getBlockCount()});
5083 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
5084 /// current llvm version, and a record for the epoch number.
5085 static void writeIdentificationBlock(BitstreamWriter
&Stream
) {
5086 Stream
.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID
, 5);
5088 // Write the "user readable" string identifying the bitcode producer
5089 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
5090 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING
));
5091 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
5092 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
5093 auto StringAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
5094 writeStringRecord(Stream
, bitc::IDENTIFICATION_CODE_STRING
,
5095 "LLVM" LLVM_VERSION_STRING
, StringAbbrev
);
5097 // Write the epoch version
5098 Abbv
= std::make_shared
<BitCodeAbbrev
>();
5099 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH
));
5100 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
5101 auto EpochAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
5102 constexpr std::array
<unsigned, 1> Vals
= {{bitc::BITCODE_CURRENT_EPOCH
}};
5103 Stream
.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH
, Vals
, EpochAbbrev
);
5107 void ModuleBitcodeWriter::writeModuleHash(StringRef View
) {
5108 // Emit the module's hash.
5109 // MODULE_CODE_HASH: [5*i32]
5112 Hasher
.update(ArrayRef
<uint8_t>(
5113 reinterpret_cast<const uint8_t *>(View
.data()), View
.size()));
5114 std::array
<uint8_t, 20> Hash
= Hasher
.result();
5115 for (int Pos
= 0; Pos
< 20; Pos
+= 4) {
5116 Vals
[Pos
/ 4] = support::endian::read32be(Hash
.data() + Pos
);
5119 // Emit the finished record.
5120 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, Vals
);
5123 // Save the written hash value.
5124 llvm::copy(Vals
, std::begin(*ModHash
));
5128 void ModuleBitcodeWriter::write() {
5129 writeIdentificationBlock(Stream
);
5131 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
5132 // We will want to write the module hash at this point. Block any flushing so
5133 // we can have access to the whole underlying data later.
5134 Stream
.markAndBlockFlushing();
5136 writeModuleVersion();
5138 // Emit blockinfo, which defines the standard abbreviations etc.
5141 // Emit information describing all of the types in the module.
5144 // Emit information about attribute groups.
5145 writeAttributeGroupTable();
5147 // Emit information about parameter attributes.
5148 writeAttributeTable();
5152 // Emit top-level description of module, including target triple, inline asm,
5153 // descriptors for global variables, and function prototype info.
5157 writeModuleConstants();
5159 // Emit metadata kind names.
5160 writeModuleMetadataKinds();
5163 writeModuleMetadata();
5165 // Emit module-level use-lists.
5166 if (VE
.shouldPreserveUseListOrder())
5167 writeUseListBlock(nullptr);
5169 writeOperandBundleTags();
5170 writeSyncScopeNames();
5172 // Emit function bodies.
5173 DenseMap
<const Function
*, uint64_t> FunctionToBitcodeIndex
;
5174 for (const Function
&F
: M
)
5175 if (!F
.isDeclaration())
5176 writeFunction(F
, FunctionToBitcodeIndex
);
5178 // Need to write after the above call to WriteFunction which populates
5179 // the summary information in the index.
5181 writePerModuleGlobalValueSummary();
5183 writeGlobalValueSymbolTable(FunctionToBitcodeIndex
);
5185 writeModuleHash(Stream
.getMarkedBufferAndResumeFlushing());
5190 static void writeInt32ToBuffer(uint32_t Value
, SmallVectorImpl
<char> &Buffer
,
5191 uint32_t &Position
) {
5192 support::endian::write32le(&Buffer
[Position
], Value
);
5196 /// If generating a bc file on darwin, we have to emit a
5197 /// header and trailer to make it compatible with the system archiver. To do
5198 /// this we emit the following header, and then emit a trailer that pads the
5199 /// file out to be a multiple of 16 bytes.
5201 /// struct bc_header {
5202 /// uint32_t Magic; // 0x0B17C0DE
5203 /// uint32_t Version; // Version, currently always 0.
5204 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
5205 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
5206 /// uint32_t CPUType; // CPU specifier.
5207 /// ... potentially more later ...
5209 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl
<char> &Buffer
,
5211 unsigned CPUType
= ~0U;
5213 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
5214 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
5215 // number from /usr/include/mach/machine.h. It is ok to reproduce the
5216 // specific constants here because they are implicitly part of the Darwin ABI.
5218 DARWIN_CPU_ARCH_ABI64
= 0x01000000,
5219 DARWIN_CPU_TYPE_X86
= 7,
5220 DARWIN_CPU_TYPE_ARM
= 12,
5221 DARWIN_CPU_TYPE_POWERPC
= 18
5224 Triple::ArchType Arch
= TT
.getArch();
5225 if (Arch
== Triple::x86_64
)
5226 CPUType
= DARWIN_CPU_TYPE_X86
| DARWIN_CPU_ARCH_ABI64
;
5227 else if (Arch
== Triple::x86
)
5228 CPUType
= DARWIN_CPU_TYPE_X86
;
5229 else if (Arch
== Triple::ppc
)
5230 CPUType
= DARWIN_CPU_TYPE_POWERPC
;
5231 else if (Arch
== Triple::ppc64
)
5232 CPUType
= DARWIN_CPU_TYPE_POWERPC
| DARWIN_CPU_ARCH_ABI64
;
5233 else if (Arch
== Triple::arm
|| Arch
== Triple::thumb
)
5234 CPUType
= DARWIN_CPU_TYPE_ARM
;
5236 // Traditional Bitcode starts after header.
5237 assert(Buffer
.size() >= BWH_HeaderSize
&&
5238 "Expected header size to be reserved");
5239 unsigned BCOffset
= BWH_HeaderSize
;
5240 unsigned BCSize
= Buffer
.size() - BWH_HeaderSize
;
5242 // Write the magic and version.
5243 unsigned Position
= 0;
5244 writeInt32ToBuffer(0x0B17C0DE, Buffer
, Position
);
5245 writeInt32ToBuffer(0, Buffer
, Position
); // Version.
5246 writeInt32ToBuffer(BCOffset
, Buffer
, Position
);
5247 writeInt32ToBuffer(BCSize
, Buffer
, Position
);
5248 writeInt32ToBuffer(CPUType
, Buffer
, Position
);
5250 // If the file is not a multiple of 16 bytes, insert dummy padding.
5251 while (Buffer
.size() & 15)
5252 Buffer
.push_back(0);
5255 /// Helper to write the header common to all bitcode files.
5256 static void writeBitcodeHeader(BitstreamWriter
&Stream
) {
5257 // Emit the file header.
5258 Stream
.Emit((unsigned)'B', 8);
5259 Stream
.Emit((unsigned)'C', 8);
5260 Stream
.Emit(0x0, 4);
5261 Stream
.Emit(0xC, 4);
5262 Stream
.Emit(0xE, 4);
5263 Stream
.Emit(0xD, 4);
5266 BitcodeWriter::BitcodeWriter(SmallVectorImpl
<char> &Buffer
)
5267 : Stream(new BitstreamWriter(Buffer
)) {
5268 writeBitcodeHeader(*Stream
);
5271 BitcodeWriter::BitcodeWriter(raw_ostream
&FS
)
5272 : Stream(new BitstreamWriter(FS
, FlushThreshold
)) {
5273 writeBitcodeHeader(*Stream
);
5276 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab
); }
5278 void BitcodeWriter::writeBlob(unsigned Block
, unsigned Record
, StringRef Blob
) {
5279 Stream
->EnterSubblock(Block
, 3);
5281 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
5282 Abbv
->Add(BitCodeAbbrevOp(Record
));
5283 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
5284 auto AbbrevNo
= Stream
->EmitAbbrev(std::move(Abbv
));
5286 Stream
->EmitRecordWithBlob(AbbrevNo
, ArrayRef
<uint64_t>{Record
}, Blob
);
5288 Stream
->ExitBlock();
5291 void BitcodeWriter::writeSymtab() {
5292 assert(!WroteStrtab
&& !WroteSymtab
);
5294 // If any module has module-level inline asm, we will require a registered asm
5295 // parser for the target so that we can create an accurate symbol table for
5297 for (Module
*M
: Mods
) {
5298 if (M
->getModuleInlineAsm().empty())
5302 const Triple
TT(M
->getTargetTriple());
5303 const Target
*T
= TargetRegistry::lookupTarget(TT
.str(), Err
);
5304 if (!T
|| !T
->hasMCAsmParser())
5309 SmallVector
<char, 0> Symtab
;
5310 // The irsymtab::build function may be unable to create a symbol table if the
5311 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
5312 // table is not required for correctness, but we still want to be able to
5313 // write malformed modules to bitcode files, so swallow the error.
5314 if (Error E
= irsymtab::build(Mods
, Symtab
, StrtabBuilder
, Alloc
)) {
5315 consumeError(std::move(E
));
5319 writeBlob(bitc::SYMTAB_BLOCK_ID
, bitc::SYMTAB_BLOB
,
5320 {Symtab
.data(), Symtab
.size()});
5323 void BitcodeWriter::writeStrtab() {
5324 assert(!WroteStrtab
);
5326 std::vector
<char> Strtab
;
5327 StrtabBuilder
.finalizeInOrder();
5328 Strtab
.resize(StrtabBuilder
.getSize());
5329 StrtabBuilder
.write((uint8_t *)Strtab
.data());
5331 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
,
5332 {Strtab
.data(), Strtab
.size()});
5337 void BitcodeWriter::copyStrtab(StringRef Strtab
) {
5338 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
, Strtab
);
5342 void BitcodeWriter::writeModule(const Module
&M
,
5343 bool ShouldPreserveUseListOrder
,
5344 const ModuleSummaryIndex
*Index
,
5345 bool GenerateHash
, ModuleHash
*ModHash
) {
5346 assert(!WroteStrtab
);
5348 // The Mods vector is used by irsymtab::build, which requires non-const
5349 // Modules in case it needs to materialize metadata. But the bitcode writer
5350 // requires that the module is materialized, so we can cast to non-const here,
5351 // after checking that it is in fact materialized.
5352 assert(M
.isMaterialized());
5353 Mods
.push_back(const_cast<Module
*>(&M
));
5355 ModuleBitcodeWriter
ModuleWriter(M
, StrtabBuilder
, *Stream
,
5356 ShouldPreserveUseListOrder
, Index
,
5357 GenerateHash
, ModHash
);
5358 ModuleWriter
.write();
5361 void BitcodeWriter::writeIndex(
5362 const ModuleSummaryIndex
*Index
,
5363 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
,
5364 const GVSummaryPtrSet
*DecSummaries
) {
5365 IndexBitcodeWriter
IndexWriter(*Stream
, StrtabBuilder
, *Index
, DecSummaries
,
5366 ModuleToSummariesForIndex
);
5367 IndexWriter
.write();
5370 /// Write the specified module to the specified output stream.
5371 void llvm::WriteBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
5372 bool ShouldPreserveUseListOrder
,
5373 const ModuleSummaryIndex
*Index
,
5374 bool GenerateHash
, ModuleHash
*ModHash
) {
5375 auto Write
= [&](BitcodeWriter
&Writer
) {
5376 Writer
.writeModule(M
, ShouldPreserveUseListOrder
, Index
, GenerateHash
,
5378 Writer
.writeSymtab();
5379 Writer
.writeStrtab();
5381 Triple
TT(M
.getTargetTriple());
5382 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO()) {
5383 // If this is darwin or another generic macho target, reserve space for the
5384 // header. Note that the header is computed *after* the output is known, so
5385 // we currently explicitly use a buffer, write to it, and then subsequently
5387 SmallVector
<char, 0> Buffer
;
5388 Buffer
.reserve(256 * 1024);
5389 Buffer
.insert(Buffer
.begin(), BWH_HeaderSize
, 0);
5390 BitcodeWriter
Writer(Buffer
);
5392 emitDarwinBCHeaderAndTrailer(Buffer
, TT
);
5393 Out
.write(Buffer
.data(), Buffer
.size());
5395 BitcodeWriter
Writer(Out
);
5400 void IndexBitcodeWriter::write() {
5401 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
5403 writeModuleVersion();
5405 // Write the module paths in the combined index.
5408 // Write the summary combined index records.
5409 writeCombinedGlobalValueSummary();
5414 // Write the specified module summary index to the given raw output stream,
5415 // where it will be written in a new bitcode block. This is used when
5416 // writing the combined index file for ThinLTO. When writing a subset of the
5417 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5418 void llvm::writeIndexToFile(
5419 const ModuleSummaryIndex
&Index
, raw_ostream
&Out
,
5420 const ModuleToSummariesForIndexTy
*ModuleToSummariesForIndex
,
5421 const GVSummaryPtrSet
*DecSummaries
) {
5422 SmallVector
<char, 0> Buffer
;
5423 Buffer
.reserve(256 * 1024);
5425 BitcodeWriter
Writer(Buffer
);
5426 Writer
.writeIndex(&Index
, ModuleToSummariesForIndex
, DecSummaries
);
5427 Writer
.writeStrtab();
5429 Out
.write((char *)&Buffer
.front(), Buffer
.size());
5434 /// Class to manage the bitcode writing for a thin link bitcode file.
5435 class ThinLinkBitcodeWriter
: public ModuleBitcodeWriterBase
{
5436 /// ModHash is for use in ThinLTO incremental build, generated while writing
5437 /// the module bitcode file.
5438 const ModuleHash
*ModHash
;
5441 ThinLinkBitcodeWriter(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
5442 BitstreamWriter
&Stream
,
5443 const ModuleSummaryIndex
&Index
,
5444 const ModuleHash
&ModHash
)
5445 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
5446 /*ShouldPreserveUseListOrder=*/false, &Index
),
5447 ModHash(&ModHash
) {}
5452 void writeSimplifiedModuleInfo();
5455 } // end anonymous namespace
5457 // This function writes a simpilified module info for thin link bitcode file.
5458 // It only contains the source file name along with the name(the offset and
5459 // size in strtab) and linkage for global values. For the global value info
5460 // entry, in order to keep linkage at offset 5, there are three zeros used
5462 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5463 SmallVector
<unsigned, 64> Vals
;
5464 // Emit the module's source file name.
5466 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
5467 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
5468 if (Bits
== SE_Char6
)
5469 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
5470 else if (Bits
== SE_Fixed7
)
5471 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
5473 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5474 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
5475 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
5476 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
5477 Abbv
->Add(AbbrevOpToUse
);
5478 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
5480 for (const auto P
: M
.getSourceFileName())
5481 Vals
.push_back((unsigned char)P
);
5483 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
5487 // Emit the global variable information.
5488 for (const GlobalVariable
&GV
: M
.globals()) {
5489 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5490 Vals
.push_back(StrtabBuilder
.add(GV
.getName()));
5491 Vals
.push_back(GV
.getName().size());
5495 Vals
.push_back(getEncodedLinkage(GV
));
5497 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
);
5501 // Emit the function proto information.
5502 for (const Function
&F
: M
) {
5503 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5504 Vals
.push_back(StrtabBuilder
.add(F
.getName()));
5505 Vals
.push_back(F
.getName().size());
5509 Vals
.push_back(getEncodedLinkage(F
));
5511 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
);
5515 // Emit the alias information.
5516 for (const GlobalAlias
&A
: M
.aliases()) {
5517 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5518 Vals
.push_back(StrtabBuilder
.add(A
.getName()));
5519 Vals
.push_back(A
.getName().size());
5523 Vals
.push_back(getEncodedLinkage(A
));
5525 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
);
5529 // Emit the ifunc information.
5530 for (const GlobalIFunc
&I
: M
.ifuncs()) {
5531 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5532 Vals
.push_back(StrtabBuilder
.add(I
.getName()));
5533 Vals
.push_back(I
.getName().size());
5537 Vals
.push_back(getEncodedLinkage(I
));
5539 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
5544 void ThinLinkBitcodeWriter::write() {
5545 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
5547 writeModuleVersion();
5549 writeSimplifiedModuleInfo();
5551 writePerModuleGlobalValueSummary();
5553 // Write module hash.
5554 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, ArrayRef
<uint32_t>(*ModHash
));
5559 void BitcodeWriter::writeThinLinkBitcode(const Module
&M
,
5560 const ModuleSummaryIndex
&Index
,
5561 const ModuleHash
&ModHash
) {
5562 assert(!WroteStrtab
);
5564 // The Mods vector is used by irsymtab::build, which requires non-const
5565 // Modules in case it needs to materialize metadata. But the bitcode writer
5566 // requires that the module is materialized, so we can cast to non-const here,
5567 // after checking that it is in fact materialized.
5568 assert(M
.isMaterialized());
5569 Mods
.push_back(const_cast<Module
*>(&M
));
5571 ThinLinkBitcodeWriter
ThinLinkWriter(M
, StrtabBuilder
, *Stream
, Index
,
5573 ThinLinkWriter
.write();
5576 // Write the specified thin link bitcode file to the given raw output stream,
5577 // where it will be written in a new bitcode block. This is used when
5578 // writing the per-module index file for ThinLTO.
5579 void llvm::writeThinLinkBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
5580 const ModuleSummaryIndex
&Index
,
5581 const ModuleHash
&ModHash
) {
5582 SmallVector
<char, 0> Buffer
;
5583 Buffer
.reserve(256 * 1024);
5585 BitcodeWriter
Writer(Buffer
);
5586 Writer
.writeThinLinkBitcode(M
, Index
, ModHash
);
5587 Writer
.writeSymtab();
5588 Writer
.writeStrtab();
5590 Out
.write((char *)&Buffer
.front(), Buffer
.size());
5593 static const char *getSectionNameForBitcode(const Triple
&T
) {
5594 switch (T
.getObjectFormat()) {
5596 return "__LLVM,__bitcode";
5600 case Triple::UnknownObjectFormat
:
5603 llvm_unreachable("GOFF is not yet implemented");
5606 if (T
.getVendor() == Triple::AMD
)
5608 llvm_unreachable("SPIRV is not yet implemented");
5611 llvm_unreachable("XCOFF is not yet implemented");
5613 case Triple::DXContainer
:
5614 llvm_unreachable("DXContainer is not yet implemented");
5617 llvm_unreachable("Unimplemented ObjectFormatType");
5620 static const char *getSectionNameForCommandline(const Triple
&T
) {
5621 switch (T
.getObjectFormat()) {
5623 return "__LLVM,__cmdline";
5627 case Triple::UnknownObjectFormat
:
5630 llvm_unreachable("GOFF is not yet implemented");
5633 if (T
.getVendor() == Triple::AMD
)
5635 llvm_unreachable("SPIRV is not yet implemented");
5638 llvm_unreachable("XCOFF is not yet implemented");
5640 case Triple::DXContainer
:
5641 llvm_unreachable("DXC is not yet implemented");
5644 llvm_unreachable("Unimplemented ObjectFormatType");
5647 void llvm::embedBitcodeInModule(llvm::Module
&M
, llvm::MemoryBufferRef Buf
,
5648 bool EmbedBitcode
, bool EmbedCmdline
,
5649 const std::vector
<uint8_t> &CmdArgs
) {
5650 // Save llvm.compiler.used and remove it.
5651 SmallVector
<Constant
*, 2> UsedArray
;
5652 SmallVector
<GlobalValue
*, 4> UsedGlobals
;
5653 GlobalVariable
*Used
= collectUsedGlobalVariables(M
, UsedGlobals
, true);
5654 Type
*UsedElementType
= Used
? Used
->getValueType()->getArrayElementType()
5655 : PointerType::getUnqual(M
.getContext());
5656 for (auto *GV
: UsedGlobals
) {
5657 if (GV
->getName() != "llvm.embedded.module" &&
5658 GV
->getName() != "llvm.cmdline")
5659 UsedArray
.push_back(
5660 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, UsedElementType
));
5663 Used
->eraseFromParent();
5665 // Embed the bitcode for the llvm module.
5667 ArrayRef
<uint8_t> ModuleData
;
5668 Triple
T(M
.getTargetTriple());
5671 if (Buf
.getBufferSize() == 0 ||
5672 !isBitcode((const unsigned char *)Buf
.getBufferStart(),
5673 (const unsigned char *)Buf
.getBufferEnd())) {
5674 // If the input is LLVM Assembly, bitcode is produced by serializing
5675 // the module. Use-lists order need to be preserved in this case.
5676 llvm::raw_string_ostream
OS(Data
);
5677 llvm::WriteBitcodeToFile(M
, OS
, /* ShouldPreserveUseListOrder */ true);
5679 ArrayRef
<uint8_t>((const uint8_t *)OS
.str().data(), OS
.str().size());
5681 // If the input is LLVM bitcode, write the input byte stream directly.
5682 ModuleData
= ArrayRef
<uint8_t>((const uint8_t *)Buf
.getBufferStart(),
5683 Buf
.getBufferSize());
5685 llvm::Constant
*ModuleConstant
=
5686 llvm::ConstantDataArray::get(M
.getContext(), ModuleData
);
5687 llvm::GlobalVariable
*GV
= new llvm::GlobalVariable(
5688 M
, ModuleConstant
->getType(), true, llvm::GlobalValue::PrivateLinkage
,
5690 GV
->setSection(getSectionNameForBitcode(T
));
5691 // Set alignment to 1 to prevent padding between two contributions from input
5692 // sections after linking.
5693 GV
->setAlignment(Align(1));
5694 UsedArray
.push_back(
5695 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, UsedElementType
));
5696 if (llvm::GlobalVariable
*Old
=
5697 M
.getGlobalVariable("llvm.embedded.module", true)) {
5698 assert(Old
->hasZeroLiveUses() &&
5699 "llvm.embedded.module can only be used once in llvm.compiler.used");
5701 Old
->eraseFromParent();
5703 GV
->setName("llvm.embedded.module");
5706 // Skip if only bitcode needs to be embedded.
5708 // Embed command-line options.
5709 ArrayRef
<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs
.data()),
5711 llvm::Constant
*CmdConstant
=
5712 llvm::ConstantDataArray::get(M
.getContext(), CmdData
);
5713 GV
= new llvm::GlobalVariable(M
, CmdConstant
->getType(), true,
5714 llvm::GlobalValue::PrivateLinkage
,
5716 GV
->setSection(getSectionNameForCommandline(T
));
5717 GV
->setAlignment(Align(1));
5718 UsedArray
.push_back(
5719 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, UsedElementType
));
5720 if (llvm::GlobalVariable
*Old
= M
.getGlobalVariable("llvm.cmdline", true)) {
5721 assert(Old
->hasZeroLiveUses() &&
5722 "llvm.cmdline can only be used once in llvm.compiler.used");
5724 Old
->eraseFromParent();
5726 GV
->setName("llvm.cmdline");
5730 if (UsedArray
.empty())
5733 // Recreate llvm.compiler.used.
5734 ArrayType
*ATy
= ArrayType::get(UsedElementType
, UsedArray
.size());
5735 auto *NewUsed
= new GlobalVariable(
5736 M
, ATy
, false, llvm::GlobalValue::AppendingLinkage
,
5737 llvm::ConstantArray::get(ATy
, UsedArray
), "llvm.compiler.used");
5738 NewUsed
->setSection("llvm.metadata");