[DirectX] Set the EnableRawAndStructuredBuffers shader flag (#122667)
[llvm-project.git] / llvm / lib / CodeGen / AsmPrinter / CodeViewDebug.cpp
blobbda0e266d01de80369a04761f222fa84ff9d36c5
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/BinaryFormat/Dwarf.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/LexicalScopes.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
35 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
36 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
37 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
38 #include "llvm/DebugInfo/CodeView/EnumTables.h"
39 #include "llvm/DebugInfo/CodeView/Line.h"
40 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
41 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
42 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
43 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/MC/MCAsmInfo.h"
53 #include "llvm/MC/MCContext.h"
54 #include "llvm/MC/MCSectionCOFF.h"
55 #include "llvm/MC/MCStreamer.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/BinaryStreamWriter.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Error.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/FormatVariadic.h"
62 #include "llvm/Support/Path.h"
63 #include "llvm/Support/SMLoc.h"
64 #include "llvm/Support/ScopedPrinter.h"
65 #include "llvm/Target/TargetLoweringObjectFile.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include "llvm/TargetParser/Triple.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cctype>
71 #include <cstddef>
72 #include <limits>
74 using namespace llvm;
75 using namespace llvm::codeview;
77 namespace {
78 class CVMCAdapter : public CodeViewRecordStreamer {
79 public:
80 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
81 : OS(&OS), TypeTable(TypeTable) {}
83 void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
85 void emitIntValue(uint64_t Value, unsigned Size) override {
86 OS->emitIntValueInHex(Value, Size);
89 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
91 void AddComment(const Twine &T) override { OS->AddComment(T); }
93 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
95 bool isVerboseAsm() override { return OS->isVerboseAsm(); }
97 std::string getTypeName(TypeIndex TI) override {
98 std::string TypeName;
99 if (!TI.isNoneType()) {
100 if (TI.isSimple())
101 TypeName = std::string(TypeIndex::simpleTypeName(TI));
102 else
103 TypeName = std::string(TypeTable.getTypeName(TI));
105 return TypeName;
108 private:
109 MCStreamer *OS = nullptr;
110 TypeCollection &TypeTable;
112 } // namespace
114 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
115 switch (Type) {
116 case Triple::ArchType::x86:
117 return CPUType::Pentium3;
118 case Triple::ArchType::x86_64:
119 return CPUType::X64;
120 case Triple::ArchType::thumb:
121 // LLVM currently doesn't support Windows CE and so thumb
122 // here is indiscriminately mapped to ARMNT specifically.
123 return CPUType::ARMNT;
124 case Triple::ArchType::aarch64:
125 return CPUType::ARM64;
126 case Triple::ArchType::mipsel:
127 return CPUType::MIPS;
128 default:
129 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
133 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
134 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
136 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
137 std::string &Filepath = FileToFilepathMap[File];
138 if (!Filepath.empty())
139 return Filepath;
141 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
143 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
144 // it textually because one of the path components could be a symlink.
145 if (Dir.starts_with("/") || Filename.starts_with("/")) {
146 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
147 return Filename;
148 Filepath = std::string(Dir);
149 if (Dir.back() != '/')
150 Filepath += '/';
151 Filepath += Filename;
152 return Filepath;
155 // Clang emits directory and relative filename info into the IR, but CodeView
156 // operates on full paths. We could change Clang to emit full paths too, but
157 // that would increase the IR size and probably not needed for other users.
158 // For now, just concatenate and canonicalize the path here.
159 if (Filename.find(':') == 1)
160 Filepath = std::string(Filename);
161 else
162 Filepath = (Dir + "\\" + Filename).str();
164 // Canonicalize the path. We have to do it textually because we may no longer
165 // have access the file in the filesystem.
166 // First, replace all slashes with backslashes.
167 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
169 // Remove all "\.\" with "\".
170 size_t Cursor = 0;
171 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
172 Filepath.erase(Cursor, 2);
174 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
175 // path should be well-formatted, e.g. start with a drive letter, etc.
176 Cursor = 0;
177 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
178 // Something's wrong if the path starts with "\..\", abort.
179 if (Cursor == 0)
180 break;
182 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
183 if (PrevSlash == std::string::npos)
184 // Something's wrong, abort.
185 break;
187 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
188 // The next ".." might be following the one we've just erased.
189 Cursor = PrevSlash;
192 // Remove all duplicate backslashes.
193 Cursor = 0;
194 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
195 Filepath.erase(Cursor, 1);
197 return Filepath;
200 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
201 StringRef FullPath = getFullFilepath(F);
202 unsigned NextId = FileIdMap.size() + 1;
203 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
204 if (Insertion.second) {
205 // We have to compute the full filepath and emit a .cv_file directive.
206 ArrayRef<uint8_t> ChecksumAsBytes;
207 FileChecksumKind CSKind = FileChecksumKind::None;
208 if (F->getChecksum()) {
209 std::string Checksum = fromHex(F->getChecksum()->Value);
210 void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
211 memcpy(CKMem, Checksum.data(), Checksum.size());
212 ChecksumAsBytes = ArrayRef<uint8_t>(
213 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
214 switch (F->getChecksum()->Kind) {
215 case DIFile::CSK_MD5:
216 CSKind = FileChecksumKind::MD5;
217 break;
218 case DIFile::CSK_SHA1:
219 CSKind = FileChecksumKind::SHA1;
220 break;
221 case DIFile::CSK_SHA256:
222 CSKind = FileChecksumKind::SHA256;
223 break;
226 bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
227 static_cast<unsigned>(CSKind));
228 (void)Success;
229 assert(Success && ".cv_file directive failed");
231 return Insertion.first->second;
234 CodeViewDebug::InlineSite &
235 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
236 const DISubprogram *Inlinee) {
237 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
238 InlineSite *Site = &SiteInsertion.first->second;
239 if (SiteInsertion.second) {
240 unsigned ParentFuncId = CurFn->FuncId;
241 if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
242 ParentFuncId =
243 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
244 .SiteFuncId;
246 Site->SiteFuncId = NextFuncId++;
247 OS.emitCVInlineSiteIdDirective(
248 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
249 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
250 Site->Inlinee = Inlinee;
251 InlinedSubprograms.insert(Inlinee);
252 auto InlineeIdx = getFuncIdForSubprogram(Inlinee);
254 if (InlinedAt->getInlinedAt() == nullptr)
255 CurFn->Inlinees.insert(InlineeIdx);
257 return *Site;
260 static StringRef getPrettyScopeName(const DIScope *Scope) {
261 StringRef ScopeName = Scope->getName();
262 if (!ScopeName.empty())
263 return ScopeName;
265 switch (Scope->getTag()) {
266 case dwarf::DW_TAG_enumeration_type:
267 case dwarf::DW_TAG_class_type:
268 case dwarf::DW_TAG_structure_type:
269 case dwarf::DW_TAG_union_type:
270 return "<unnamed-tag>";
271 case dwarf::DW_TAG_namespace:
272 return "`anonymous namespace'";
273 default:
274 return StringRef();
278 const DISubprogram *CodeViewDebug::collectParentScopeNames(
279 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
280 const DISubprogram *ClosestSubprogram = nullptr;
281 while (Scope != nullptr) {
282 if (ClosestSubprogram == nullptr)
283 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
285 // If a type appears in a scope chain, make sure it gets emitted. The
286 // frontend will be responsible for deciding if this should be a forward
287 // declaration or a complete type.
288 if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
289 DeferredCompleteTypes.push_back(Ty);
291 StringRef ScopeName = getPrettyScopeName(Scope);
292 if (!ScopeName.empty())
293 QualifiedNameComponents.push_back(ScopeName);
294 Scope = Scope->getScope();
296 return ClosestSubprogram;
299 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
300 StringRef TypeName) {
301 std::string FullyQualifiedName;
302 for (StringRef QualifiedNameComponent :
303 llvm::reverse(QualifiedNameComponents)) {
304 FullyQualifiedName.append(std::string(QualifiedNameComponent));
305 FullyQualifiedName.append("::");
307 FullyQualifiedName.append(std::string(TypeName));
308 return FullyQualifiedName;
311 struct CodeViewDebug::TypeLoweringScope {
312 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
313 ~TypeLoweringScope() {
314 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
315 // inner TypeLoweringScopes don't attempt to emit deferred types.
316 if (CVD.TypeEmissionLevel == 1)
317 CVD.emitDeferredCompleteTypes();
318 --CVD.TypeEmissionLevel;
320 CodeViewDebug &CVD;
323 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
324 StringRef Name) {
325 // Ensure types in the scope chain are emitted as soon as possible.
326 // This can create otherwise a situation where S_UDTs are emitted while
327 // looping in emitDebugInfoForUDTs.
328 TypeLoweringScope S(*this);
329 SmallVector<StringRef, 5> QualifiedNameComponents;
330 collectParentScopeNames(Scope, QualifiedNameComponents);
331 return formatNestedName(QualifiedNameComponents, Name);
334 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
335 const DIScope *Scope = Ty->getScope();
336 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
339 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
340 // No scope means global scope and that uses the zero index.
342 // We also use zero index when the scope is a DISubprogram
343 // to suppress the emission of LF_STRING_ID for the function,
344 // which can trigger a link-time error with the linker in
345 // VS2019 version 16.11.2 or newer.
346 // Note, however, skipping the debug info emission for the DISubprogram
347 // is a temporary fix. The root issue here is that we need to figure out
348 // the proper way to encode a function nested in another function
349 // (as introduced by the Fortran 'contains' keyword) in CodeView.
350 if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope))
351 return TypeIndex();
353 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
355 // Check if we've already translated this scope.
356 auto I = TypeIndices.find({Scope, nullptr});
357 if (I != TypeIndices.end())
358 return I->second;
360 // Build the fully qualified name of the scope.
361 std::string ScopeName = getFullyQualifiedName(Scope);
362 StringIdRecord SID(TypeIndex(), ScopeName);
363 auto TI = TypeTable.writeLeafType(SID);
364 return recordTypeIndexForDINode(Scope, TI);
367 static StringRef removeTemplateArgs(StringRef Name) {
368 // Remove template args from the display name. Assume that the template args
369 // are the last thing in the name.
370 if (Name.empty() || Name.back() != '>')
371 return Name;
373 int OpenBrackets = 0;
374 for (int i = Name.size() - 1; i >= 0; --i) {
375 if (Name[i] == '>')
376 ++OpenBrackets;
377 else if (Name[i] == '<') {
378 --OpenBrackets;
379 if (OpenBrackets == 0)
380 return Name.substr(0, i);
383 return Name;
386 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
387 assert(SP);
389 // Check if we've already translated this subprogram.
390 auto I = TypeIndices.find({SP, nullptr});
391 if (I != TypeIndices.end())
392 return I->second;
394 // The display name includes function template arguments. Drop them to match
395 // MSVC. We need to have the template arguments in the DISubprogram name
396 // because they are used in other symbol records, such as S_GPROC32_IDs.
397 StringRef DisplayName = removeTemplateArgs(SP->getName());
399 const DIScope *Scope = SP->getScope();
400 TypeIndex TI;
401 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
402 // If the scope is a DICompositeType, then this must be a method. Member
403 // function types take some special handling, and require access to the
404 // subprogram.
405 TypeIndex ClassType = getTypeIndex(Class);
406 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
407 DisplayName);
408 TI = TypeTable.writeLeafType(MFuncId);
409 } else {
410 // Otherwise, this must be a free function.
411 TypeIndex ParentScope = getScopeIndex(Scope);
412 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
413 TI = TypeTable.writeLeafType(FuncId);
416 return recordTypeIndexForDINode(SP, TI);
419 static bool isNonTrivial(const DICompositeType *DCTy) {
420 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
423 static FunctionOptions
424 getFunctionOptions(const DISubroutineType *Ty,
425 const DICompositeType *ClassTy = nullptr,
426 StringRef SPName = StringRef("")) {
427 FunctionOptions FO = FunctionOptions::None;
428 const DIType *ReturnTy = nullptr;
429 if (auto TypeArray = Ty->getTypeArray()) {
430 if (TypeArray.size())
431 ReturnTy = TypeArray[0];
434 // Add CxxReturnUdt option to functions that return nontrivial record types
435 // or methods that return record types.
436 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
437 if (isNonTrivial(ReturnDCTy) || ClassTy)
438 FO |= FunctionOptions::CxxReturnUdt;
440 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
441 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
442 FO |= FunctionOptions::Constructor;
444 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
447 return FO;
450 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
451 const DICompositeType *Class) {
452 // Always use the method declaration as the key for the function type. The
453 // method declaration contains the this adjustment.
454 if (SP->getDeclaration())
455 SP = SP->getDeclaration();
456 assert(!SP->getDeclaration() && "should use declaration as key");
458 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
459 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
460 auto I = TypeIndices.find({SP, Class});
461 if (I != TypeIndices.end())
462 return I->second;
464 // Make sure complete type info for the class is emitted *after* the member
465 // function type, as the complete class type is likely to reference this
466 // member function type.
467 TypeLoweringScope S(*this);
468 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
470 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
471 TypeIndex TI = lowerTypeMemberFunction(
472 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
473 return recordTypeIndexForDINode(SP, TI, Class);
476 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
477 TypeIndex TI,
478 const DIType *ClassTy) {
479 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
480 (void)InsertResult;
481 assert(InsertResult.second && "DINode was already assigned a type index");
482 return TI;
485 unsigned CodeViewDebug::getPointerSizeInBytes() {
486 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
489 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
490 const LexicalScope *LS) {
491 if (const DILocation *InlinedAt = LS->getInlinedAt()) {
492 // This variable was inlined. Associate it with the InlineSite.
493 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
494 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
495 Site.InlinedLocals.emplace_back(std::move(Var));
496 } else {
497 // This variable goes into the corresponding lexical scope.
498 ScopeVariables[LS].emplace_back(std::move(Var));
502 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
503 const DILocation *Loc) {
504 if (!llvm::is_contained(Locs, Loc))
505 Locs.push_back(Loc);
508 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
509 const MachineFunction *MF) {
510 // Skip this instruction if it has the same location as the previous one.
511 if (!DL || DL == PrevInstLoc)
512 return;
514 const DIScope *Scope = DL->getScope();
515 if (!Scope)
516 return;
518 // Skip this line if it is longer than the maximum we can record.
519 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
520 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
521 LI.isNeverStepInto())
522 return;
524 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
525 if (CI.getStartColumn() != DL.getCol())
526 return;
528 if (!CurFn->HaveLineInfo)
529 CurFn->HaveLineInfo = true;
530 unsigned FileId = 0;
531 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
532 FileId = CurFn->LastFileId;
533 else
534 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
535 PrevInstLoc = DL;
537 unsigned FuncId = CurFn->FuncId;
538 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
539 const DILocation *Loc = DL.get();
541 // If this location was actually inlined from somewhere else, give it the ID
542 // of the inline call site.
543 FuncId =
544 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
546 // Ensure we have links in the tree of inline call sites.
547 bool FirstLoc = true;
548 while ((SiteLoc = Loc->getInlinedAt())) {
549 InlineSite &Site =
550 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
551 if (!FirstLoc)
552 addLocIfNotPresent(Site.ChildSites, Loc);
553 FirstLoc = false;
554 Loc = SiteLoc;
556 addLocIfNotPresent(CurFn->ChildSites, Loc);
559 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
560 /*PrologueEnd=*/false, /*IsStmt=*/false,
561 DL->getFilename(), SMLoc());
564 void CodeViewDebug::emitCodeViewMagicVersion() {
565 OS.emitValueToAlignment(Align(4));
566 OS.AddComment("Debug section magic");
567 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
570 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
571 switch (DWLang) {
572 case dwarf::DW_LANG_C:
573 case dwarf::DW_LANG_C89:
574 case dwarf::DW_LANG_C99:
575 case dwarf::DW_LANG_C11:
576 return SourceLanguage::C;
577 case dwarf::DW_LANG_C_plus_plus:
578 case dwarf::DW_LANG_C_plus_plus_03:
579 case dwarf::DW_LANG_C_plus_plus_11:
580 case dwarf::DW_LANG_C_plus_plus_14:
581 return SourceLanguage::Cpp;
582 case dwarf::DW_LANG_Fortran77:
583 case dwarf::DW_LANG_Fortran90:
584 case dwarf::DW_LANG_Fortran95:
585 case dwarf::DW_LANG_Fortran03:
586 case dwarf::DW_LANG_Fortran08:
587 return SourceLanguage::Fortran;
588 case dwarf::DW_LANG_Pascal83:
589 return SourceLanguage::Pascal;
590 case dwarf::DW_LANG_Cobol74:
591 case dwarf::DW_LANG_Cobol85:
592 return SourceLanguage::Cobol;
593 case dwarf::DW_LANG_Java:
594 return SourceLanguage::Java;
595 case dwarf::DW_LANG_D:
596 return SourceLanguage::D;
597 case dwarf::DW_LANG_Swift:
598 return SourceLanguage::Swift;
599 case dwarf::DW_LANG_Rust:
600 return SourceLanguage::Rust;
601 case dwarf::DW_LANG_ObjC:
602 return SourceLanguage::ObjC;
603 case dwarf::DW_LANG_ObjC_plus_plus:
604 return SourceLanguage::ObjCpp;
605 default:
606 // There's no CodeView representation for this language, and CV doesn't
607 // have an "unknown" option for the language field, so we'll use MASM,
608 // as it's very low level.
609 return SourceLanguage::Masm;
613 void CodeViewDebug::beginModule(Module *M) {
614 // If module doesn't have named metadata anchors or COFF debug section
615 // is not available, skip any debug info related stuff.
616 if (!Asm->hasDebugInfo() ||
617 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
618 Asm = nullptr;
619 return;
622 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
624 // Get the current source language.
625 const MDNode *Node = *M->debug_compile_units_begin();
626 const auto *CU = cast<DICompileUnit>(Node);
628 CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage());
630 collectGlobalVariableInfo();
632 // Check if we should emit type record hashes.
633 ConstantInt *GH =
634 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
635 EmitDebugGlobalHashes = GH && !GH->isZero();
638 void CodeViewDebug::endModule() {
639 if (!Asm || !Asm->hasDebugInfo())
640 return;
642 // The COFF .debug$S section consists of several subsections, each starting
643 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
644 // of the payload followed by the payload itself. The subsections are 4-byte
645 // aligned.
647 // Use the generic .debug$S section, and make a subsection for all the inlined
648 // subprograms.
649 switchToDebugSectionForSymbol(nullptr);
651 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
652 emitObjName();
653 emitCompilerInformation();
654 endCVSubsection(CompilerInfo);
656 emitInlineeLinesSubsection();
658 // Emit per-function debug information.
659 for (auto &P : FnDebugInfo)
660 if (!P.first->isDeclarationForLinker())
661 emitDebugInfoForFunction(P.first, *P.second);
663 // Get types used by globals without emitting anything.
664 // This is meant to collect all static const data members so they can be
665 // emitted as globals.
666 collectDebugInfoForGlobals();
668 // Emit retained types.
669 emitDebugInfoForRetainedTypes();
671 // Emit global variable debug information.
672 setCurrentSubprogram(nullptr);
673 emitDebugInfoForGlobals();
675 // Switch back to the generic .debug$S section after potentially processing
676 // comdat symbol sections.
677 switchToDebugSectionForSymbol(nullptr);
679 // Emit UDT records for any types used by global variables.
680 if (!GlobalUDTs.empty()) {
681 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
682 emitDebugInfoForUDTs(GlobalUDTs);
683 endCVSubsection(SymbolsEnd);
686 // This subsection holds a file index to offset in string table table.
687 OS.AddComment("File index to string table offset subsection");
688 OS.emitCVFileChecksumsDirective();
690 // This subsection holds the string table.
691 OS.AddComment("String table");
692 OS.emitCVStringTableDirective();
694 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
695 // subsection in the generic .debug$S section at the end. There is no
696 // particular reason for this ordering other than to match MSVC.
697 emitBuildInfo();
699 // Emit type information and hashes last, so that any types we translate while
700 // emitting function info are included.
701 emitTypeInformation();
703 if (EmitDebugGlobalHashes)
704 emitTypeGlobalHashes();
706 clear();
709 static void
710 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
711 unsigned MaxFixedRecordLength = 0xF00) {
712 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
713 // after a fixed length portion of the record. The fixed length portion should
714 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
715 // overall record size is less than the maximum allowed.
716 SmallString<32> NullTerminatedString(
717 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
718 NullTerminatedString.push_back('\0');
719 OS.emitBytes(NullTerminatedString);
722 void CodeViewDebug::emitTypeInformation() {
723 if (TypeTable.empty())
724 return;
726 // Start the .debug$T or .debug$P section with 0x4.
727 OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
728 emitCodeViewMagicVersion();
730 TypeTableCollection Table(TypeTable.records());
731 TypeVisitorCallbackPipeline Pipeline;
733 // To emit type record using Codeview MCStreamer adapter
734 CVMCAdapter CVMCOS(OS, Table);
735 TypeRecordMapping typeMapping(CVMCOS);
736 Pipeline.addCallbackToPipeline(typeMapping);
738 std::optional<TypeIndex> B = Table.getFirst();
739 while (B) {
740 // This will fail if the record data is invalid.
741 CVType Record = Table.getType(*B);
743 Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
745 if (E) {
746 logAllUnhandledErrors(std::move(E), errs(), "error: ");
747 llvm_unreachable("produced malformed type record");
750 B = Table.getNext(*B);
754 void CodeViewDebug::emitTypeGlobalHashes() {
755 if (TypeTable.empty())
756 return;
758 // Start the .debug$H section with the version and hash algorithm, currently
759 // hardcoded to version 0, SHA1.
760 OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
762 OS.emitValueToAlignment(Align(4));
763 OS.AddComment("Magic");
764 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
765 OS.AddComment("Section Version");
766 OS.emitInt16(0);
767 OS.AddComment("Hash Algorithm");
768 OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3));
770 TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
771 for (const auto &GHR : TypeTable.hashes()) {
772 if (OS.isVerboseAsm()) {
773 // Emit an EOL-comment describing which TypeIndex this hash corresponds
774 // to, as well as the stringified SHA1 hash.
775 SmallString<32> Comment;
776 raw_svector_ostream CommentOS(Comment);
777 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
778 OS.AddComment(Comment);
779 ++TI;
781 assert(GHR.Hash.size() == 8);
782 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
783 GHR.Hash.size());
784 OS.emitBinaryData(S);
788 void CodeViewDebug::emitObjName() {
789 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME);
791 StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug);
792 llvm::SmallString<256> PathStore(PathRef);
794 if (PathRef.empty() || PathRef == "-") {
795 // Don't emit the filename if we're writing to stdout or to /dev/null.
796 PathRef = {};
797 } else {
798 PathRef = PathStore;
801 OS.AddComment("Signature");
802 OS.emitIntValue(0, 4);
804 OS.AddComment("Object name");
805 emitNullTerminatedSymbolName(OS, PathRef);
807 endSymbolRecord(CompilerEnd);
810 namespace {
811 struct Version {
812 int Part[4];
814 } // end anonymous namespace
816 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
817 // the version number.
818 static Version parseVersion(StringRef Name) {
819 Version V = {{0}};
820 int N = 0;
821 for (const char C : Name) {
822 if (isdigit(C)) {
823 V.Part[N] *= 10;
824 V.Part[N] += C - '0';
825 V.Part[N] =
826 std::min<int>(V.Part[N], std::numeric_limits<uint16_t>::max());
827 } else if (C == '.') {
828 ++N;
829 if (N >= 4)
830 return V;
831 } else if (N > 0)
832 return V;
834 return V;
837 void CodeViewDebug::emitCompilerInformation() {
838 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
839 uint32_t Flags = 0;
841 // The low byte of the flags indicates the source language.
842 Flags = CurrentSourceLanguage;
843 // TODO: Figure out which other flags need to be set.
844 if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
845 Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
847 using ArchType = llvm::Triple::ArchType;
848 ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch();
849 if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb ||
850 Arch == ArchType::aarch64) {
851 Flags |= static_cast<uint32_t>(CompileSym3Flags::HotPatch);
854 OS.AddComment("Flags and language");
855 OS.emitInt32(Flags);
857 OS.AddComment("CPUType");
858 OS.emitInt16(static_cast<uint64_t>(TheCPU));
860 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
861 const MDNode *Node = *CUs->operands().begin();
862 const auto *CU = cast<DICompileUnit>(Node);
864 StringRef CompilerVersion = CU->getProducer();
865 Version FrontVer = parseVersion(CompilerVersion);
866 OS.AddComment("Frontend version");
867 for (int N : FrontVer.Part) {
868 OS.emitInt16(N);
871 // Some Microsoft tools, like Binscope, expect a backend version number of at
872 // least 8.something, so we'll coerce the LLVM version into a form that
873 // guarantees it'll be big enough without really lying about the version.
874 int Major = 1000 * LLVM_VERSION_MAJOR +
875 10 * LLVM_VERSION_MINOR +
876 LLVM_VERSION_PATCH;
877 // Clamp it for builds that use unusually large version numbers.
878 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
879 Version BackVer = {{ Major, 0, 0, 0 }};
880 OS.AddComment("Backend version");
881 for (int N : BackVer.Part)
882 OS.emitInt16(N);
884 OS.AddComment("Null-terminated compiler version string");
885 emitNullTerminatedSymbolName(OS, CompilerVersion);
887 endSymbolRecord(CompilerEnd);
890 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
891 StringRef S) {
892 StringIdRecord SIR(TypeIndex(0x0), S);
893 return TypeTable.writeLeafType(SIR);
896 void CodeViewDebug::emitBuildInfo() {
897 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
898 // build info. The known prefix is:
899 // - Absolute path of current directory
900 // - Compiler path
901 // - Main source file path, relative to CWD or absolute
902 // - Type server PDB file
903 // - Canonical compiler command line
904 // If frontend and backend compilation are separated (think llc or LTO), it's
905 // not clear if the compiler path should refer to the executable for the
906 // frontend or the backend. Leave it blank for now.
907 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
908 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
909 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
910 const auto *CU = cast<DICompileUnit>(Node);
911 const DIFile *MainSourceFile = CU->getFile();
912 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
913 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
914 BuildInfoArgs[BuildInfoRecord::SourceFile] =
915 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
916 // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
917 BuildInfoArgs[BuildInfoRecord::TypeServerPDB] =
918 getStringIdTypeIdx(TypeTable, "");
919 BuildInfoArgs[BuildInfoRecord::BuildTool] =
920 getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0);
921 BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx(
922 TypeTable, Asm->TM.Options.MCOptions.CommandlineArgs);
924 BuildInfoRecord BIR(BuildInfoArgs);
925 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
927 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
928 // from the module symbols into the type stream.
929 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
930 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
931 OS.AddComment("LF_BUILDINFO index");
932 OS.emitInt32(BuildInfoIndex.getIndex());
933 endSymbolRecord(BIEnd);
934 endCVSubsection(BISubsecEnd);
937 void CodeViewDebug::emitInlineeLinesSubsection() {
938 if (InlinedSubprograms.empty())
939 return;
941 OS.AddComment("Inlinee lines subsection");
942 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
944 // We emit the checksum info for files. This is used by debuggers to
945 // determine if a pdb matches the source before loading it. Visual Studio,
946 // for instance, will display a warning that the breakpoints are not valid if
947 // the pdb does not match the source.
948 OS.AddComment("Inlinee lines signature");
949 OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
951 for (const DISubprogram *SP : InlinedSubprograms) {
952 assert(TypeIndices.count({SP, nullptr}));
953 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
955 OS.addBlankLine();
956 unsigned FileId = maybeRecordFile(SP->getFile());
957 OS.AddComment("Inlined function " + SP->getName() + " starts at " +
958 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
959 OS.addBlankLine();
960 OS.AddComment("Type index of inlined function");
961 OS.emitInt32(InlineeIdx.getIndex());
962 OS.AddComment("Offset into filechecksum table");
963 OS.emitCVFileChecksumOffsetDirective(FileId);
964 OS.AddComment("Starting line number");
965 OS.emitInt32(SP->getLine());
968 endCVSubsection(InlineEnd);
971 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
972 const DILocation *InlinedAt,
973 const InlineSite &Site) {
974 assert(TypeIndices.count({Site.Inlinee, nullptr}));
975 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
977 // SymbolRecord
978 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
980 OS.AddComment("PtrParent");
981 OS.emitInt32(0);
982 OS.AddComment("PtrEnd");
983 OS.emitInt32(0);
984 OS.AddComment("Inlinee type index");
985 OS.emitInt32(InlineeIdx.getIndex());
987 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
988 unsigned StartLineNum = Site.Inlinee->getLine();
990 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
991 FI.Begin, FI.End);
993 endSymbolRecord(InlineEnd);
995 emitLocalVariableList(FI, Site.InlinedLocals);
997 // Recurse on child inlined call sites before closing the scope.
998 for (const DILocation *ChildSite : Site.ChildSites) {
999 auto I = FI.InlineSites.find(ChildSite);
1000 assert(I != FI.InlineSites.end() &&
1001 "child site not in function inline site map");
1002 emitInlinedCallSite(FI, ChildSite, I->second);
1005 // Close the scope.
1006 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
1009 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
1010 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
1011 // comdat key. A section may be comdat because of -ffunction-sections or
1012 // because it is comdat in the IR.
1013 MCSectionCOFF *GVSec =
1014 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
1015 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
1017 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
1018 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
1019 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
1021 OS.switchSection(DebugSec);
1023 // Emit the magic version number if this is the first time we've switched to
1024 // this section.
1025 if (ComdatDebugSections.insert(DebugSec).second)
1026 emitCodeViewMagicVersion();
1029 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
1030 // The only supported thunk ordinal is currently the standard type.
1031 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
1032 FunctionInfo &FI,
1033 const MCSymbol *Fn) {
1034 std::string FuncName =
1035 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1036 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
1038 OS.AddComment("Symbol subsection for " + Twine(FuncName));
1039 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1041 // Emit S_THUNK32
1042 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
1043 OS.AddComment("PtrParent");
1044 OS.emitInt32(0);
1045 OS.AddComment("PtrEnd");
1046 OS.emitInt32(0);
1047 OS.AddComment("PtrNext");
1048 OS.emitInt32(0);
1049 OS.AddComment("Thunk section relative address");
1050 OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
1051 OS.AddComment("Thunk section index");
1052 OS.emitCOFFSectionIndex(Fn);
1053 OS.AddComment("Code size");
1054 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1055 OS.AddComment("Ordinal");
1056 OS.emitInt8(unsigned(ordinal));
1057 OS.AddComment("Function name");
1058 emitNullTerminatedSymbolName(OS, FuncName);
1059 // Additional fields specific to the thunk ordinal would go here.
1060 endSymbolRecord(ThunkRecordEnd);
1062 // Local variables/inlined routines are purposely omitted here. The point of
1063 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1065 // Emit S_PROC_ID_END
1066 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1068 endCVSubsection(SymbolsEnd);
1071 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1072 FunctionInfo &FI) {
1073 // For each function there is a separate subsection which holds the PC to
1074 // file:line table.
1075 const MCSymbol *Fn = Asm->getSymbol(GV);
1076 assert(Fn);
1078 // Switch to the to a comdat section, if appropriate.
1079 switchToDebugSectionForSymbol(Fn);
1081 std::string FuncName;
1082 auto *SP = GV->getSubprogram();
1083 assert(SP);
1084 setCurrentSubprogram(SP);
1086 if (SP->isThunk()) {
1087 emitDebugInfoForThunk(GV, FI, Fn);
1088 return;
1091 // If we have a display name, build the fully qualified name by walking the
1092 // chain of scopes.
1093 if (!SP->getName().empty())
1094 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1096 // If our DISubprogram name is empty, use the mangled name.
1097 if (FuncName.empty())
1098 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1100 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1101 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1102 OS.emitCVFPOData(Fn);
1104 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1105 OS.AddComment("Symbol subsection for " + Twine(FuncName));
1106 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1108 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1109 : SymbolKind::S_GPROC32_ID;
1110 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1112 // These fields are filled in by tools like CVPACK which run after the fact.
1113 OS.AddComment("PtrParent");
1114 OS.emitInt32(0);
1115 OS.AddComment("PtrEnd");
1116 OS.emitInt32(0);
1117 OS.AddComment("PtrNext");
1118 OS.emitInt32(0);
1119 // This is the important bit that tells the debugger where the function
1120 // code is located and what's its size:
1121 OS.AddComment("Code size");
1122 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1123 OS.AddComment("Offset after prologue");
1124 OS.emitInt32(0);
1125 OS.AddComment("Offset before epilogue");
1126 OS.emitInt32(0);
1127 OS.AddComment("Function type index");
1128 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1129 OS.AddComment("Function section relative address");
1130 OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
1131 OS.AddComment("Function section index");
1132 OS.emitCOFFSectionIndex(Fn);
1133 OS.AddComment("Flags");
1134 ProcSymFlags ProcFlags = ProcSymFlags::HasOptimizedDebugInfo;
1135 if (FI.HasFramePointer)
1136 ProcFlags |= ProcSymFlags::HasFP;
1137 if (GV->hasFnAttribute(Attribute::NoReturn))
1138 ProcFlags |= ProcSymFlags::IsNoReturn;
1139 if (GV->hasFnAttribute(Attribute::NoInline))
1140 ProcFlags |= ProcSymFlags::IsNoInline;
1141 OS.emitInt8(static_cast<uint8_t>(ProcFlags));
1142 // Emit the function display name as a null-terminated string.
1143 OS.AddComment("Function name");
1144 // Truncate the name so we won't overflow the record length field.
1145 emitNullTerminatedSymbolName(OS, FuncName);
1146 endSymbolRecord(ProcRecordEnd);
1148 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1149 // Subtract out the CSR size since MSVC excludes that and we include it.
1150 OS.AddComment("FrameSize");
1151 OS.emitInt32(FI.FrameSize - FI.CSRSize);
1152 OS.AddComment("Padding");
1153 OS.emitInt32(0);
1154 OS.AddComment("Offset of padding");
1155 OS.emitInt32(0);
1156 OS.AddComment("Bytes of callee saved registers");
1157 OS.emitInt32(FI.CSRSize);
1158 OS.AddComment("Exception handler offset");
1159 OS.emitInt32(0);
1160 OS.AddComment("Exception handler section");
1161 OS.emitInt16(0);
1162 OS.AddComment("Flags (defines frame register)");
1163 OS.emitInt32(uint32_t(FI.FrameProcOpts));
1164 endSymbolRecord(FrameProcEnd);
1166 emitInlinees(FI.Inlinees);
1167 emitLocalVariableList(FI, FI.Locals);
1168 emitGlobalVariableList(FI.Globals);
1169 emitLexicalBlockList(FI.ChildBlocks, FI);
1171 // Emit inlined call site information. Only emit functions inlined directly
1172 // into the parent function. We'll emit the other sites recursively as part
1173 // of their parent inline site.
1174 for (const DILocation *InlinedAt : FI.ChildSites) {
1175 auto I = FI.InlineSites.find(InlinedAt);
1176 assert(I != FI.InlineSites.end() &&
1177 "child site not in function inline site map");
1178 emitInlinedCallSite(FI, InlinedAt, I->second);
1181 for (auto Annot : FI.Annotations) {
1182 MCSymbol *Label = Annot.first;
1183 MDTuple *Strs = cast<MDTuple>(Annot.second);
1184 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1185 OS.emitCOFFSecRel32(Label, /*Offset=*/0);
1186 // FIXME: Make sure we don't overflow the max record size.
1187 OS.emitCOFFSectionIndex(Label);
1188 OS.emitInt16(Strs->getNumOperands());
1189 for (Metadata *MD : Strs->operands()) {
1190 // MDStrings are null terminated, so we can do EmitBytes and get the
1191 // nice .asciz directive.
1192 StringRef Str = cast<MDString>(MD)->getString();
1193 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1194 OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1196 endSymbolRecord(AnnotEnd);
1199 for (auto HeapAllocSite : FI.HeapAllocSites) {
1200 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1201 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1202 const DIType *DITy = std::get<2>(HeapAllocSite);
1203 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1204 OS.AddComment("Call site offset");
1205 OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1206 OS.AddComment("Call site section index");
1207 OS.emitCOFFSectionIndex(BeginLabel);
1208 OS.AddComment("Call instruction length");
1209 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1210 OS.AddComment("Type index");
1211 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1212 endSymbolRecord(HeapAllocEnd);
1215 if (SP != nullptr)
1216 emitDebugInfoForUDTs(LocalUDTs);
1218 emitDebugInfoForJumpTables(FI);
1220 // We're done with this function.
1221 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1223 endCVSubsection(SymbolsEnd);
1225 // We have an assembler directive that takes care of the whole line table.
1226 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1229 CodeViewDebug::LocalVarDef
1230 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1231 LocalVarDef DR;
1232 DR.InMemory = -1;
1233 DR.DataOffset = Offset;
1234 assert(DR.DataOffset == Offset && "truncation");
1235 DR.IsSubfield = 0;
1236 DR.StructOffset = 0;
1237 DR.CVRegister = CVRegister;
1238 return DR;
1241 void CodeViewDebug::collectVariableInfoFromMFTable(
1242 DenseSet<InlinedEntity> &Processed) {
1243 const MachineFunction &MF = *Asm->MF;
1244 const TargetSubtargetInfo &TSI = MF.getSubtarget();
1245 const TargetFrameLowering *TFI = TSI.getFrameLowering();
1246 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1248 for (const MachineFunction::VariableDbgInfo &VI :
1249 MF.getInStackSlotVariableDbgInfo()) {
1250 if (!VI.Var)
1251 continue;
1252 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1253 "Expected inlined-at fields to agree");
1255 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1256 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1258 // If variable scope is not found then skip this variable.
1259 if (!Scope)
1260 continue;
1262 // If the variable has an attached offset expression, extract it.
1263 // FIXME: Try to handle DW_OP_deref as well.
1264 int64_t ExprOffset = 0;
1265 bool Deref = false;
1266 if (VI.Expr) {
1267 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1268 if (VI.Expr->getNumElements() == 1 &&
1269 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1270 Deref = true;
1271 else if (!VI.Expr->extractIfOffset(ExprOffset))
1272 continue;
1275 // Get the frame register used and the offset.
1276 Register FrameReg;
1277 StackOffset FrameOffset =
1278 TFI->getFrameIndexReference(*Asm->MF, VI.getStackSlot(), FrameReg);
1279 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1281 assert(!FrameOffset.getScalable() &&
1282 "Frame offsets with a scalable component are not supported");
1284 // Calculate the label ranges.
1285 LocalVarDef DefRange =
1286 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1288 LocalVariable Var;
1289 Var.DIVar = VI.Var;
1291 for (const InsnRange &Range : Scope->getRanges()) {
1292 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1293 const MCSymbol *End = getLabelAfterInsn(Range.second);
1294 End = End ? End : Asm->getFunctionEnd();
1295 Var.DefRanges[DefRange].emplace_back(Begin, End);
1298 if (Deref)
1299 Var.UseReferenceType = true;
1301 recordLocalVariable(std::move(Var), Scope);
1305 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1306 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1309 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1310 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1313 void CodeViewDebug::calculateRanges(
1314 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1315 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1317 // Calculate the definition ranges.
1318 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1319 const auto &Entry = *I;
1320 if (!Entry.isDbgValue())
1321 continue;
1322 const MachineInstr *DVInst = Entry.getInstr();
1323 assert(DVInst->isDebugValue() && "Invalid History entry");
1324 // FIXME: Find a way to represent constant variables, since they are
1325 // relatively common.
1326 std::optional<DbgVariableLocation> Location =
1327 DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1328 if (!Location)
1330 // When we don't have a location this is usually because LLVM has
1331 // transformed it into a constant and we only have an llvm.dbg.value. We
1332 // can't represent these well in CodeView since S_LOCAL only works on
1333 // registers and memory locations. Instead, we will pretend this to be a
1334 // constant value to at least have it show up in the debugger.
1335 auto Op = DVInst->getDebugOperand(0);
1336 if (Op.isImm())
1337 Var.ConstantValue = APSInt(APInt(64, Op.getImm()), false);
1338 continue;
1341 // CodeView can only express variables in register and variables in memory
1342 // at a constant offset from a register. However, for variables passed
1343 // indirectly by pointer, it is common for that pointer to be spilled to a
1344 // stack location. For the special case of one offseted load followed by a
1345 // zero offset load (a pointer spilled to the stack), we change the type of
1346 // the local variable from a value type to a reference type. This tricks the
1347 // debugger into doing the load for us.
1348 if (Var.UseReferenceType) {
1349 // We're using a reference type. Drop the last zero offset load.
1350 if (canUseReferenceType(*Location))
1351 Location->LoadChain.pop_back();
1352 else
1353 continue;
1354 } else if (needsReferenceType(*Location)) {
1355 // This location can't be expressed without switching to a reference type.
1356 // Start over using that.
1357 Var.UseReferenceType = true;
1358 Var.DefRanges.clear();
1359 calculateRanges(Var, Entries);
1360 return;
1363 // We can only handle a register or an offseted load of a register.
1364 if (Location->Register == 0 || Location->LoadChain.size() > 1)
1365 continue;
1367 // Codeview can only express byte-aligned offsets, ensure that we have a
1368 // byte-boundaried location.
1369 if (Location->FragmentInfo)
1370 if (Location->FragmentInfo->OffsetInBits % 8)
1371 continue;
1373 LocalVarDef DR;
1374 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1375 DR.InMemory = !Location->LoadChain.empty();
1376 DR.DataOffset =
1377 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1378 if (Location->FragmentInfo) {
1379 DR.IsSubfield = true;
1380 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1381 } else {
1382 DR.IsSubfield = false;
1383 DR.StructOffset = 0;
1386 // Compute the label range.
1387 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1388 const MCSymbol *End;
1389 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1390 auto &EndingEntry = Entries[Entry.getEndIndex()];
1391 End = EndingEntry.isDbgValue()
1392 ? getLabelBeforeInsn(EndingEntry.getInstr())
1393 : getLabelAfterInsn(EndingEntry.getInstr());
1394 } else
1395 End = Asm->getFunctionEnd();
1397 // If the last range end is our begin, just extend the last range.
1398 // Otherwise make a new range.
1399 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1400 Var.DefRanges[DR];
1401 if (!R.empty() && R.back().second == Begin)
1402 R.back().second = End;
1403 else
1404 R.emplace_back(Begin, End);
1406 // FIXME: Do more range combining.
1410 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1411 DenseSet<InlinedEntity> Processed;
1412 // Grab the variable info that was squirreled away in the MMI side-table.
1413 collectVariableInfoFromMFTable(Processed);
1415 for (const auto &I : DbgValues) {
1416 InlinedEntity IV = I.first;
1417 if (Processed.count(IV))
1418 continue;
1419 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1420 const DILocation *InlinedAt = IV.second;
1422 // Instruction ranges, specifying where IV is accessible.
1423 const auto &Entries = I.second;
1425 LexicalScope *Scope = nullptr;
1426 if (InlinedAt)
1427 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1428 else
1429 Scope = LScopes.findLexicalScope(DIVar->getScope());
1430 // If variable scope is not found then skip this variable.
1431 if (!Scope)
1432 continue;
1434 LocalVariable Var;
1435 Var.DIVar = DIVar;
1437 calculateRanges(Var, Entries);
1438 recordLocalVariable(std::move(Var), Scope);
1442 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1443 const TargetSubtargetInfo &TSI = MF->getSubtarget();
1444 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1445 const MachineFrameInfo &MFI = MF->getFrameInfo();
1446 const Function &GV = MF->getFunction();
1447 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1448 assert(Insertion.second && "function already has info");
1449 CurFn = Insertion.first->second.get();
1450 CurFn->FuncId = NextFuncId++;
1451 CurFn->Begin = Asm->getFunctionBegin();
1453 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1454 // callee-saved registers were used. For targets that don't use a PUSH
1455 // instruction (AArch64), this will be zero.
1456 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1457 CurFn->FrameSize = MFI.getStackSize();
1458 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1459 CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1461 // For this function S_FRAMEPROC record, figure out which codeview register
1462 // will be the frame pointer.
1463 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1464 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1465 if (CurFn->FrameSize > 0) {
1466 if (!TSI.getFrameLowering()->hasFP(*MF)) {
1467 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1468 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1469 } else {
1470 CurFn->HasFramePointer = true;
1471 // If there is an FP, parameters are always relative to it.
1472 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1473 if (CurFn->HasStackRealignment) {
1474 // If the stack needs realignment, locals are relative to SP or VFRAME.
1475 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1476 } else {
1477 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1478 // other stack adjustments.
1479 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1484 // Compute other frame procedure options.
1485 FrameProcedureOptions FPO = FrameProcedureOptions::None;
1486 if (MFI.hasVarSizedObjects())
1487 FPO |= FrameProcedureOptions::HasAlloca;
1488 if (MF->exposesReturnsTwice())
1489 FPO |= FrameProcedureOptions::HasSetJmp;
1490 // FIXME: Set HasLongJmp if we ever track that info.
1491 if (MF->hasInlineAsm())
1492 FPO |= FrameProcedureOptions::HasInlineAssembly;
1493 if (GV.hasPersonalityFn()) {
1494 if (isAsynchronousEHPersonality(
1495 classifyEHPersonality(GV.getPersonalityFn())))
1496 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1497 else
1498 FPO |= FrameProcedureOptions::HasExceptionHandling;
1500 if (GV.hasFnAttribute(Attribute::InlineHint))
1501 FPO |= FrameProcedureOptions::MarkedInline;
1502 if (GV.hasFnAttribute(Attribute::Naked))
1503 FPO |= FrameProcedureOptions::Naked;
1504 if (MFI.hasStackProtectorIndex()) {
1505 FPO |= FrameProcedureOptions::SecurityChecks;
1506 if (GV.hasFnAttribute(Attribute::StackProtectStrong) ||
1507 GV.hasFnAttribute(Attribute::StackProtectReq)) {
1508 FPO |= FrameProcedureOptions::StrictSecurityChecks;
1510 } else if (!GV.hasStackProtectorFnAttr()) {
1511 // __declspec(safebuffers) disables stack guards.
1512 FPO |= FrameProcedureOptions::SafeBuffers;
1514 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1515 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1516 if (Asm->TM.getOptLevel() != CodeGenOptLevel::None && !GV.hasOptSize() &&
1517 !GV.hasOptNone())
1518 FPO |= FrameProcedureOptions::OptimizedForSpeed;
1519 if (GV.hasProfileData()) {
1520 FPO |= FrameProcedureOptions::ValidProfileCounts;
1521 FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1523 // FIXME: Set GuardCfg when it is implemented.
1524 CurFn->FrameProcOpts = FPO;
1526 OS.emitCVFuncIdDirective(CurFn->FuncId);
1528 // Find the end of the function prolog. First known non-DBG_VALUE and
1529 // non-frame setup location marks the beginning of the function body.
1530 // FIXME: is there a simpler a way to do this? Can we just search
1531 // for the first instruction of the function, not the last of the prolog?
1532 DebugLoc PrologEndLoc;
1533 bool EmptyPrologue = true;
1534 for (const auto &MBB : *MF) {
1535 for (const auto &MI : MBB) {
1536 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1537 MI.getDebugLoc()) {
1538 PrologEndLoc = MI.getDebugLoc();
1539 break;
1540 } else if (!MI.isMetaInstruction()) {
1541 EmptyPrologue = false;
1546 // Record beginning of function if we have a non-empty prologue.
1547 if (PrologEndLoc && !EmptyPrologue) {
1548 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1549 maybeRecordLocation(FnStartDL, MF);
1552 // Find heap alloc sites and emit labels around them.
1553 for (const auto &MBB : *MF) {
1554 for (const auto &MI : MBB) {
1555 if (MI.getHeapAllocMarker()) {
1556 requestLabelBeforeInsn(&MI);
1557 requestLabelAfterInsn(&MI);
1562 // Mark branches that may potentially be using jump tables with labels.
1563 bool isThumb = Triple(MMI->getModule()->getTargetTriple()).getArch() ==
1564 llvm::Triple::ArchType::thumb;
1565 discoverJumpTableBranches(MF, isThumb);
1568 static bool shouldEmitUdt(const DIType *T) {
1569 if (!T)
1570 return false;
1572 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1573 if (T->getTag() == dwarf::DW_TAG_typedef) {
1574 if (DIScope *Scope = T->getScope()) {
1575 switch (Scope->getTag()) {
1576 case dwarf::DW_TAG_structure_type:
1577 case dwarf::DW_TAG_class_type:
1578 case dwarf::DW_TAG_union_type:
1579 return false;
1580 default:
1581 // do nothing.
1587 while (true) {
1588 if (!T || T->isForwardDecl())
1589 return false;
1591 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1592 if (!DT)
1593 return true;
1594 T = DT->getBaseType();
1596 return true;
1599 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1600 // Don't record empty UDTs.
1601 if (Ty->getName().empty())
1602 return;
1603 if (!shouldEmitUdt(Ty))
1604 return;
1606 SmallVector<StringRef, 5> ParentScopeNames;
1607 const DISubprogram *ClosestSubprogram =
1608 collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1610 std::string FullyQualifiedName =
1611 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1613 if (ClosestSubprogram == nullptr) {
1614 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1615 } else if (ClosestSubprogram == CurrentSubprogram) {
1616 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1619 // TODO: What if the ClosestSubprogram is neither null or the current
1620 // subprogram? Currently, the UDT just gets dropped on the floor.
1622 // The current behavior is not desirable. To get maximal fidelity, we would
1623 // need to perform all type translation before beginning emission of .debug$S
1624 // and then make LocalUDTs a member of FunctionInfo
1627 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1628 // Generic dispatch for lowering an unknown type.
1629 switch (Ty->getTag()) {
1630 case dwarf::DW_TAG_array_type:
1631 return lowerTypeArray(cast<DICompositeType>(Ty));
1632 case dwarf::DW_TAG_typedef:
1633 return lowerTypeAlias(cast<DIDerivedType>(Ty));
1634 case dwarf::DW_TAG_base_type:
1635 return lowerTypeBasic(cast<DIBasicType>(Ty));
1636 case dwarf::DW_TAG_pointer_type:
1637 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1638 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1639 [[fallthrough]];
1640 case dwarf::DW_TAG_reference_type:
1641 case dwarf::DW_TAG_rvalue_reference_type:
1642 return lowerTypePointer(cast<DIDerivedType>(Ty));
1643 case dwarf::DW_TAG_ptr_to_member_type:
1644 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1645 case dwarf::DW_TAG_restrict_type:
1646 case dwarf::DW_TAG_const_type:
1647 case dwarf::DW_TAG_volatile_type:
1648 // TODO: add support for DW_TAG_atomic_type here
1649 return lowerTypeModifier(cast<DIDerivedType>(Ty));
1650 case dwarf::DW_TAG_subroutine_type:
1651 if (ClassTy) {
1652 // The member function type of a member function pointer has no
1653 // ThisAdjustment.
1654 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1655 /*ThisAdjustment=*/0,
1656 /*IsStaticMethod=*/false);
1658 return lowerTypeFunction(cast<DISubroutineType>(Ty));
1659 case dwarf::DW_TAG_enumeration_type:
1660 return lowerTypeEnum(cast<DICompositeType>(Ty));
1661 case dwarf::DW_TAG_class_type:
1662 case dwarf::DW_TAG_structure_type:
1663 return lowerTypeClass(cast<DICompositeType>(Ty));
1664 case dwarf::DW_TAG_union_type:
1665 return lowerTypeUnion(cast<DICompositeType>(Ty));
1666 case dwarf::DW_TAG_string_type:
1667 return lowerTypeString(cast<DIStringType>(Ty));
1668 case dwarf::DW_TAG_unspecified_type:
1669 if (Ty->getName() == "decltype(nullptr)")
1670 return TypeIndex::NullptrT();
1671 return TypeIndex::None();
1672 default:
1673 // Use the null type index.
1674 return TypeIndex();
1678 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1679 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1680 StringRef TypeName = Ty->getName();
1682 addToUDTs(Ty);
1684 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1685 TypeName == "HRESULT")
1686 return TypeIndex(SimpleTypeKind::HResult);
1687 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1688 TypeName == "wchar_t")
1689 return TypeIndex(SimpleTypeKind::WideCharacter);
1691 return UnderlyingTypeIndex;
1694 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1695 const DIType *ElementType = Ty->getBaseType();
1696 TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1697 // IndexType is size_t, which depends on the bitness of the target.
1698 TypeIndex IndexType = getPointerSizeInBytes() == 8
1699 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1700 : TypeIndex(SimpleTypeKind::UInt32Long);
1702 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1704 // Add subranges to array type.
1705 DINodeArray Elements = Ty->getElements();
1706 for (int i = Elements.size() - 1; i >= 0; --i) {
1707 const DINode *Element = Elements[i];
1708 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1710 const DISubrange *Subrange = cast<DISubrange>(Element);
1711 int64_t Count = -1;
1713 // If Subrange has a Count field, use it.
1714 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1715 // where lowerbound is from the LowerBound field of the Subrange,
1716 // or the language default lowerbound if that field is unspecified.
1717 if (auto *CI = dyn_cast_if_present<ConstantInt *>(Subrange->getCount()))
1718 Count = CI->getSExtValue();
1719 else if (auto *UI = dyn_cast_if_present<ConstantInt *>(
1720 Subrange->getUpperBound())) {
1721 // Fortran uses 1 as the default lowerbound; other languages use 0.
1722 int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0;
1723 auto *LI = dyn_cast_if_present<ConstantInt *>(Subrange->getLowerBound());
1724 Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound;
1725 Count = UI->getSExtValue() - Lowerbound + 1;
1728 // Forward declarations of arrays without a size and VLAs use a count of -1.
1729 // Emit a count of zero in these cases to match what MSVC does for arrays
1730 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1731 // should do for them even if we could distinguish them.
1732 if (Count == -1)
1733 Count = 0;
1735 // Update the element size and element type index for subsequent subranges.
1736 ElementSize *= Count;
1738 // If this is the outermost array, use the size from the array. It will be
1739 // more accurate if we had a VLA or an incomplete element type size.
1740 uint64_t ArraySize =
1741 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1743 StringRef Name = (i == 0) ? Ty->getName() : "";
1744 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1745 ElementTypeIndex = TypeTable.writeLeafType(AR);
1748 return ElementTypeIndex;
1751 // This function lowers a Fortran character type (DIStringType).
1752 // Note that it handles only the character*n variant (using SizeInBits
1753 // field in DIString to describe the type size) at the moment.
1754 // Other variants (leveraging the StringLength and StringLengthExp
1755 // fields in DIStringType) remain TBD.
1756 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) {
1757 TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter);
1758 uint64_t ArraySize = Ty->getSizeInBits() >> 3;
1759 StringRef Name = Ty->getName();
1760 // IndexType is size_t, which depends on the bitness of the target.
1761 TypeIndex IndexType = getPointerSizeInBytes() == 8
1762 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1763 : TypeIndex(SimpleTypeKind::UInt32Long);
1765 // Create a type of character array of ArraySize.
1766 ArrayRecord AR(CharType, IndexType, ArraySize, Name);
1768 return TypeTable.writeLeafType(AR);
1771 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1772 TypeIndex Index;
1773 dwarf::TypeKind Kind;
1774 uint32_t ByteSize;
1776 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1777 ByteSize = Ty->getSizeInBits() / 8;
1779 SimpleTypeKind STK = SimpleTypeKind::None;
1780 switch (Kind) {
1781 case dwarf::DW_ATE_address:
1782 // FIXME: Translate
1783 break;
1784 case dwarf::DW_ATE_boolean:
1785 switch (ByteSize) {
1786 case 1: STK = SimpleTypeKind::Boolean8; break;
1787 case 2: STK = SimpleTypeKind::Boolean16; break;
1788 case 4: STK = SimpleTypeKind::Boolean32; break;
1789 case 8: STK = SimpleTypeKind::Boolean64; break;
1790 case 16: STK = SimpleTypeKind::Boolean128; break;
1792 break;
1793 case dwarf::DW_ATE_complex_float:
1794 // The CodeView size for a complex represents the size of
1795 // an individual component.
1796 switch (ByteSize) {
1797 case 4: STK = SimpleTypeKind::Complex16; break;
1798 case 8: STK = SimpleTypeKind::Complex32; break;
1799 case 16: STK = SimpleTypeKind::Complex64; break;
1800 case 20: STK = SimpleTypeKind::Complex80; break;
1801 case 32: STK = SimpleTypeKind::Complex128; break;
1803 break;
1804 case dwarf::DW_ATE_float:
1805 switch (ByteSize) {
1806 case 2: STK = SimpleTypeKind::Float16; break;
1807 case 4: STK = SimpleTypeKind::Float32; break;
1808 case 6: STK = SimpleTypeKind::Float48; break;
1809 case 8: STK = SimpleTypeKind::Float64; break;
1810 case 10: STK = SimpleTypeKind::Float80; break;
1811 case 16: STK = SimpleTypeKind::Float128; break;
1813 break;
1814 case dwarf::DW_ATE_signed:
1815 switch (ByteSize) {
1816 case 1: STK = SimpleTypeKind::SignedCharacter; break;
1817 case 2: STK = SimpleTypeKind::Int16Short; break;
1818 case 4: STK = SimpleTypeKind::Int32; break;
1819 case 8: STK = SimpleTypeKind::Int64Quad; break;
1820 case 16: STK = SimpleTypeKind::Int128Oct; break;
1822 break;
1823 case dwarf::DW_ATE_unsigned:
1824 switch (ByteSize) {
1825 case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
1826 case 2: STK = SimpleTypeKind::UInt16Short; break;
1827 case 4: STK = SimpleTypeKind::UInt32; break;
1828 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1829 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1831 break;
1832 case dwarf::DW_ATE_UTF:
1833 switch (ByteSize) {
1834 case 1: STK = SimpleTypeKind::Character8; break;
1835 case 2: STK = SimpleTypeKind::Character16; break;
1836 case 4: STK = SimpleTypeKind::Character32; break;
1838 break;
1839 case dwarf::DW_ATE_signed_char:
1840 if (ByteSize == 1)
1841 STK = SimpleTypeKind::SignedCharacter;
1842 break;
1843 case dwarf::DW_ATE_unsigned_char:
1844 if (ByteSize == 1)
1845 STK = SimpleTypeKind::UnsignedCharacter;
1846 break;
1847 default:
1848 break;
1851 // Apply some fixups based on the source-level type name.
1852 // Include some amount of canonicalization from an old naming scheme Clang
1853 // used to use for integer types (in an outdated effort to be compatible with
1854 // GCC's debug info/GDB's behavior, which has since been addressed).
1855 if (STK == SimpleTypeKind::Int32 &&
1856 (Ty->getName() == "long int" || Ty->getName() == "long"))
1857 STK = SimpleTypeKind::Int32Long;
1858 if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" ||
1859 Ty->getName() == "unsigned long"))
1860 STK = SimpleTypeKind::UInt32Long;
1861 if (STK == SimpleTypeKind::UInt16Short &&
1862 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1863 STK = SimpleTypeKind::WideCharacter;
1864 if ((STK == SimpleTypeKind::SignedCharacter ||
1865 STK == SimpleTypeKind::UnsignedCharacter) &&
1866 Ty->getName() == "char")
1867 STK = SimpleTypeKind::NarrowCharacter;
1869 return TypeIndex(STK);
1872 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1873 PointerOptions PO) {
1874 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1876 // Pointers to simple types without any options can use SimpleTypeMode, rather
1877 // than having a dedicated pointer type record.
1878 if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1879 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1880 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1881 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1882 ? SimpleTypeMode::NearPointer64
1883 : SimpleTypeMode::NearPointer32;
1884 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1887 PointerKind PK =
1888 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1889 PointerMode PM = PointerMode::Pointer;
1890 switch (Ty->getTag()) {
1891 default: llvm_unreachable("not a pointer tag type");
1892 case dwarf::DW_TAG_pointer_type:
1893 PM = PointerMode::Pointer;
1894 break;
1895 case dwarf::DW_TAG_reference_type:
1896 PM = PointerMode::LValueReference;
1897 break;
1898 case dwarf::DW_TAG_rvalue_reference_type:
1899 PM = PointerMode::RValueReference;
1900 break;
1903 if (Ty->isObjectPointer())
1904 PO |= PointerOptions::Const;
1906 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1907 return TypeTable.writeLeafType(PR);
1910 static PointerToMemberRepresentation
1911 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1912 // SizeInBytes being zero generally implies that the member pointer type was
1913 // incomplete, which can happen if it is part of a function prototype. In this
1914 // case, use the unknown model instead of the general model.
1915 if (IsPMF) {
1916 switch (Flags & DINode::FlagPtrToMemberRep) {
1917 case 0:
1918 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1919 : PointerToMemberRepresentation::GeneralFunction;
1920 case DINode::FlagSingleInheritance:
1921 return PointerToMemberRepresentation::SingleInheritanceFunction;
1922 case DINode::FlagMultipleInheritance:
1923 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1924 case DINode::FlagVirtualInheritance:
1925 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1927 } else {
1928 switch (Flags & DINode::FlagPtrToMemberRep) {
1929 case 0:
1930 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1931 : PointerToMemberRepresentation::GeneralData;
1932 case DINode::FlagSingleInheritance:
1933 return PointerToMemberRepresentation::SingleInheritanceData;
1934 case DINode::FlagMultipleInheritance:
1935 return PointerToMemberRepresentation::MultipleInheritanceData;
1936 case DINode::FlagVirtualInheritance:
1937 return PointerToMemberRepresentation::VirtualInheritanceData;
1940 llvm_unreachable("invalid ptr to member representation");
1943 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1944 PointerOptions PO) {
1945 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1946 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1947 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1948 TypeIndex PointeeTI =
1949 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1950 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1951 : PointerKind::Near32;
1952 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1953 : PointerMode::PointerToDataMember;
1955 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1956 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1957 MemberPointerInfo MPI(
1958 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1959 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1960 return TypeTable.writeLeafType(PR);
1963 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1964 /// have a translation, use the NearC convention.
1965 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1966 switch (DwarfCC) {
1967 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1968 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1969 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1970 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1971 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1972 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1974 return CallingConvention::NearC;
1977 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1978 ModifierOptions Mods = ModifierOptions::None;
1979 PointerOptions PO = PointerOptions::None;
1980 bool IsModifier = true;
1981 const DIType *BaseTy = Ty;
1982 while (IsModifier && BaseTy) {
1983 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1984 switch (BaseTy->getTag()) {
1985 case dwarf::DW_TAG_const_type:
1986 Mods |= ModifierOptions::Const;
1987 PO |= PointerOptions::Const;
1988 break;
1989 case dwarf::DW_TAG_volatile_type:
1990 Mods |= ModifierOptions::Volatile;
1991 PO |= PointerOptions::Volatile;
1992 break;
1993 case dwarf::DW_TAG_restrict_type:
1994 // Only pointer types be marked with __restrict. There is no known flag
1995 // for __restrict in LF_MODIFIER records.
1996 PO |= PointerOptions::Restrict;
1997 break;
1998 default:
1999 IsModifier = false;
2000 break;
2002 if (IsModifier)
2003 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
2006 // Check if the inner type will use an LF_POINTER record. If so, the
2007 // qualifiers will go in the LF_POINTER record. This comes up for types like
2008 // 'int *const' and 'int *__restrict', not the more common cases like 'const
2009 // char *'.
2010 if (BaseTy) {
2011 switch (BaseTy->getTag()) {
2012 case dwarf::DW_TAG_pointer_type:
2013 case dwarf::DW_TAG_reference_type:
2014 case dwarf::DW_TAG_rvalue_reference_type:
2015 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
2016 case dwarf::DW_TAG_ptr_to_member_type:
2017 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
2018 default:
2019 break;
2023 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
2025 // Return the base type index if there aren't any modifiers. For example, the
2026 // metadata could contain restrict wrappers around non-pointer types.
2027 if (Mods == ModifierOptions::None)
2028 return ModifiedTI;
2030 ModifierRecord MR(ModifiedTI, Mods);
2031 return TypeTable.writeLeafType(MR);
2034 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
2035 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
2036 for (const DIType *ArgType : Ty->getTypeArray())
2037 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
2039 // MSVC uses type none for variadic argument.
2040 if (ReturnAndArgTypeIndices.size() > 1 &&
2041 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
2042 ReturnAndArgTypeIndices.back() = TypeIndex::None();
2044 TypeIndex ReturnTypeIndex = TypeIndex::Void();
2045 ArrayRef<TypeIndex> ArgTypeIndices = {};
2046 if (!ReturnAndArgTypeIndices.empty()) {
2047 auto ReturnAndArgTypesRef = ArrayRef(ReturnAndArgTypeIndices);
2048 ReturnTypeIndex = ReturnAndArgTypesRef.front();
2049 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
2052 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2053 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2055 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2057 FunctionOptions FO = getFunctionOptions(Ty);
2058 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
2059 ArgListIndex);
2060 return TypeTable.writeLeafType(Procedure);
2063 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
2064 const DIType *ClassTy,
2065 int ThisAdjustment,
2066 bool IsStaticMethod,
2067 FunctionOptions FO) {
2068 // Lower the containing class type.
2069 TypeIndex ClassType = getTypeIndex(ClassTy);
2071 DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
2073 unsigned Index = 0;
2074 SmallVector<TypeIndex, 8> ArgTypeIndices;
2075 TypeIndex ReturnTypeIndex = TypeIndex::Void();
2076 if (ReturnAndArgs.size() > Index) {
2077 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
2080 // If the first argument is a pointer type and this isn't a static method,
2081 // treat it as the special 'this' parameter, which is encoded separately from
2082 // the arguments.
2083 TypeIndex ThisTypeIndex;
2084 if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
2085 if (const DIDerivedType *PtrTy =
2086 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
2087 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
2088 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
2089 Index++;
2094 while (Index < ReturnAndArgs.size())
2095 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
2097 // MSVC uses type none for variadic argument.
2098 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
2099 ArgTypeIndices.back() = TypeIndex::None();
2101 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2102 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2104 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2106 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
2107 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
2108 return TypeTable.writeLeafType(MFR);
2111 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
2112 unsigned VSlotCount =
2113 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
2114 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
2116 VFTableShapeRecord VFTSR(Slots);
2117 return TypeTable.writeLeafType(VFTSR);
2120 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
2121 switch (Flags & DINode::FlagAccessibility) {
2122 case DINode::FlagPrivate: return MemberAccess::Private;
2123 case DINode::FlagPublic: return MemberAccess::Public;
2124 case DINode::FlagProtected: return MemberAccess::Protected;
2125 case 0:
2126 // If there was no explicit access control, provide the default for the tag.
2127 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2128 : MemberAccess::Public;
2130 llvm_unreachable("access flags are exclusive");
2133 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2134 if (SP->isArtificial())
2135 return MethodOptions::CompilerGenerated;
2137 // FIXME: Handle other MethodOptions.
2139 return MethodOptions::None;
2142 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2143 bool Introduced) {
2144 if (SP->getFlags() & DINode::FlagStaticMember)
2145 return MethodKind::Static;
2147 switch (SP->getVirtuality()) {
2148 case dwarf::DW_VIRTUALITY_none:
2149 break;
2150 case dwarf::DW_VIRTUALITY_virtual:
2151 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2152 case dwarf::DW_VIRTUALITY_pure_virtual:
2153 return Introduced ? MethodKind::PureIntroducingVirtual
2154 : MethodKind::PureVirtual;
2155 default:
2156 llvm_unreachable("unhandled virtuality case");
2159 return MethodKind::Vanilla;
2162 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2163 switch (Ty->getTag()) {
2164 case dwarf::DW_TAG_class_type:
2165 return TypeRecordKind::Class;
2166 case dwarf::DW_TAG_structure_type:
2167 return TypeRecordKind::Struct;
2168 default:
2169 llvm_unreachable("unexpected tag");
2173 /// Return ClassOptions that should be present on both the forward declaration
2174 /// and the defintion of a tag type.
2175 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2176 ClassOptions CO = ClassOptions::None;
2178 // MSVC always sets this flag, even for local types. Clang doesn't always
2179 // appear to give every type a linkage name, which may be problematic for us.
2180 // FIXME: Investigate the consequences of not following them here.
2181 if (!Ty->getIdentifier().empty())
2182 CO |= ClassOptions::HasUniqueName;
2184 // Put the Nested flag on a type if it appears immediately inside a tag type.
2185 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2186 // here. That flag is only set on definitions, and not forward declarations.
2187 const DIScope *ImmediateScope = Ty->getScope();
2188 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2189 CO |= ClassOptions::Nested;
2191 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2192 // type only when it has an immediate function scope. Clang never puts enums
2193 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2194 // always in function, class, or file scopes.
2195 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2196 if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2197 CO |= ClassOptions::Scoped;
2198 } else {
2199 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2200 Scope = Scope->getScope()) {
2201 if (isa<DISubprogram>(Scope)) {
2202 CO |= ClassOptions::Scoped;
2203 break;
2208 return CO;
2211 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2212 switch (Ty->getTag()) {
2213 case dwarf::DW_TAG_class_type:
2214 case dwarf::DW_TAG_structure_type:
2215 case dwarf::DW_TAG_union_type:
2216 case dwarf::DW_TAG_enumeration_type:
2217 break;
2218 default:
2219 return;
2222 if (const auto *File = Ty->getFile()) {
2223 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2224 TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2226 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2227 TypeTable.writeLeafType(USLR);
2231 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2232 ClassOptions CO = getCommonClassOptions(Ty);
2233 TypeIndex FTI;
2234 unsigned EnumeratorCount = 0;
2236 if (Ty->isForwardDecl()) {
2237 CO |= ClassOptions::ForwardReference;
2238 } else {
2239 ContinuationRecordBuilder ContinuationBuilder;
2240 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2241 for (const DINode *Element : Ty->getElements()) {
2242 // We assume that the frontend provides all members in source declaration
2243 // order, which is what MSVC does.
2244 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2245 // FIXME: Is it correct to always emit these as unsigned here?
2246 EnumeratorRecord ER(MemberAccess::Public,
2247 APSInt(Enumerator->getValue(), true),
2248 Enumerator->getName());
2249 ContinuationBuilder.writeMemberType(ER);
2250 EnumeratorCount++;
2253 FTI = TypeTable.insertRecord(ContinuationBuilder);
2256 std::string FullName = getFullyQualifiedName(Ty);
2258 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2259 getTypeIndex(Ty->getBaseType()));
2260 TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2262 addUDTSrcLine(Ty, EnumTI);
2264 return EnumTI;
2267 //===----------------------------------------------------------------------===//
2268 // ClassInfo
2269 //===----------------------------------------------------------------------===//
2271 struct llvm::ClassInfo {
2272 struct MemberInfo {
2273 const DIDerivedType *MemberTypeNode;
2274 uint64_t BaseOffset;
2276 // [MemberInfo]
2277 using MemberList = std::vector<MemberInfo>;
2279 using MethodsList = TinyPtrVector<const DISubprogram *>;
2280 // MethodName -> MethodsList
2281 using MethodsMap = MapVector<MDString *, MethodsList>;
2283 /// Base classes.
2284 std::vector<const DIDerivedType *> Inheritance;
2286 /// Direct members.
2287 MemberList Members;
2288 // Direct overloaded methods gathered by name.
2289 MethodsMap Methods;
2291 TypeIndex VShapeTI;
2293 std::vector<const DIType *> NestedTypes;
2296 void CodeViewDebug::clear() {
2297 assert(CurFn == nullptr);
2298 FileIdMap.clear();
2299 FnDebugInfo.clear();
2300 FileToFilepathMap.clear();
2301 LocalUDTs.clear();
2302 GlobalUDTs.clear();
2303 TypeIndices.clear();
2304 CompleteTypeIndices.clear();
2305 ScopeGlobals.clear();
2306 CVGlobalVariableOffsets.clear();
2309 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2310 const DIDerivedType *DDTy) {
2311 if (!DDTy->getName().empty()) {
2312 Info.Members.push_back({DDTy, 0});
2314 // Collect static const data members with values.
2315 if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2316 DINode::FlagStaticMember) {
2317 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2318 isa<ConstantFP>(DDTy->getConstant())))
2319 StaticConstMembers.push_back(DDTy);
2322 return;
2325 // An unnamed member may represent a nested struct or union. Attempt to
2326 // interpret the unnamed member as a DICompositeType possibly wrapped in
2327 // qualifier types. Add all the indirect fields to the current record if that
2328 // succeeds, and drop the member if that fails.
2329 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2330 uint64_t Offset = DDTy->getOffsetInBits();
2331 const DIType *Ty = DDTy->getBaseType();
2332 bool FullyResolved = false;
2333 while (!FullyResolved) {
2334 switch (Ty->getTag()) {
2335 case dwarf::DW_TAG_const_type:
2336 case dwarf::DW_TAG_volatile_type:
2337 // FIXME: we should apply the qualifier types to the indirect fields
2338 // rather than dropping them.
2339 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2340 break;
2341 default:
2342 FullyResolved = true;
2343 break;
2347 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2348 if (!DCTy)
2349 return;
2351 ClassInfo NestedInfo = collectClassInfo(DCTy);
2352 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2353 Info.Members.push_back(
2354 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2357 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2358 ClassInfo Info;
2359 // Add elements to structure type.
2360 DINodeArray Elements = Ty->getElements();
2361 for (auto *Element : Elements) {
2362 // We assume that the frontend provides all members in source declaration
2363 // order, which is what MSVC does.
2364 if (!Element)
2365 continue;
2366 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2367 Info.Methods[SP->getRawName()].push_back(SP);
2368 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2369 if (DDTy->getTag() == dwarf::DW_TAG_member) {
2370 collectMemberInfo(Info, DDTy);
2371 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2372 Info.Inheritance.push_back(DDTy);
2373 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2374 DDTy->getName() == "__vtbl_ptr_type") {
2375 Info.VShapeTI = getTypeIndex(DDTy);
2376 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2377 Info.NestedTypes.push_back(DDTy);
2378 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2379 // Ignore friend members. It appears that MSVC emitted info about
2380 // friends in the past, but modern versions do not.
2382 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2383 Info.NestedTypes.push_back(Composite);
2385 // Skip other unrecognized kinds of elements.
2387 return Info;
2390 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2391 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2392 // if a complete type should be emitted instead of a forward reference.
2393 return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2394 !Ty->isForwardDecl();
2397 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2398 // Emit the complete type for unnamed structs. C++ classes with methods
2399 // which have a circular reference back to the class type are expected to
2400 // be named by the front-end and should not be "unnamed". C unnamed
2401 // structs should not have circular references.
2402 if (shouldAlwaysEmitCompleteClassType(Ty)) {
2403 // If this unnamed complete type is already in the process of being defined
2404 // then the description of the type is malformed and cannot be emitted
2405 // into CodeView correctly so report a fatal error.
2406 auto I = CompleteTypeIndices.find(Ty);
2407 if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2408 report_fatal_error("cannot debug circular reference to unnamed type");
2409 return getCompleteTypeIndex(Ty);
2412 // First, construct the forward decl. Don't look into Ty to compute the
2413 // forward decl options, since it might not be available in all TUs.
2414 TypeRecordKind Kind = getRecordKind(Ty);
2415 ClassOptions CO =
2416 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2417 std::string FullName = getFullyQualifiedName(Ty);
2418 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2419 FullName, Ty->getIdentifier());
2420 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2421 if (!Ty->isForwardDecl())
2422 DeferredCompleteTypes.push_back(Ty);
2423 return FwdDeclTI;
2426 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2427 // Construct the field list and complete type record.
2428 TypeRecordKind Kind = getRecordKind(Ty);
2429 ClassOptions CO = getCommonClassOptions(Ty);
2430 TypeIndex FieldTI;
2431 TypeIndex VShapeTI;
2432 unsigned FieldCount;
2433 bool ContainsNestedClass;
2434 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2435 lowerRecordFieldList(Ty);
2437 if (ContainsNestedClass)
2438 CO |= ClassOptions::ContainsNestedClass;
2440 // MSVC appears to set this flag by searching any destructor or method with
2441 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2442 // the members, however special member functions are not yet emitted into
2443 // debug information. For now checking a class's non-triviality seems enough.
2444 // FIXME: not true for a nested unnamed struct.
2445 if (isNonTrivial(Ty))
2446 CO |= ClassOptions::HasConstructorOrDestructor;
2448 std::string FullName = getFullyQualifiedName(Ty);
2450 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2452 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2453 SizeInBytes, FullName, Ty->getIdentifier());
2454 TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2456 addUDTSrcLine(Ty, ClassTI);
2458 addToUDTs(Ty);
2460 return ClassTI;
2463 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2464 // Emit the complete type for unnamed unions.
2465 if (shouldAlwaysEmitCompleteClassType(Ty))
2466 return getCompleteTypeIndex(Ty);
2468 ClassOptions CO =
2469 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2470 std::string FullName = getFullyQualifiedName(Ty);
2471 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2472 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2473 if (!Ty->isForwardDecl())
2474 DeferredCompleteTypes.push_back(Ty);
2475 return FwdDeclTI;
2478 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2479 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2480 TypeIndex FieldTI;
2481 unsigned FieldCount;
2482 bool ContainsNestedClass;
2483 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2484 lowerRecordFieldList(Ty);
2486 if (ContainsNestedClass)
2487 CO |= ClassOptions::ContainsNestedClass;
2489 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2490 std::string FullName = getFullyQualifiedName(Ty);
2492 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2493 Ty->getIdentifier());
2494 TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2496 addUDTSrcLine(Ty, UnionTI);
2498 addToUDTs(Ty);
2500 return UnionTI;
2503 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2504 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2505 // Manually count members. MSVC appears to count everything that generates a
2506 // field list record. Each individual overload in a method overload group
2507 // contributes to this count, even though the overload group is a single field
2508 // list record.
2509 unsigned MemberCount = 0;
2510 ClassInfo Info = collectClassInfo(Ty);
2511 ContinuationRecordBuilder ContinuationBuilder;
2512 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2514 // Create base classes.
2515 for (const DIDerivedType *I : Info.Inheritance) {
2516 if (I->getFlags() & DINode::FlagVirtual) {
2517 // Virtual base.
2518 unsigned VBPtrOffset = I->getVBPtrOffset();
2519 // FIXME: Despite the accessor name, the offset is really in bytes.
2520 unsigned VBTableIndex = I->getOffsetInBits() / 4;
2521 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2522 ? TypeRecordKind::IndirectVirtualBaseClass
2523 : TypeRecordKind::VirtualBaseClass;
2524 VirtualBaseClassRecord VBCR(
2525 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2526 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2527 VBTableIndex);
2529 ContinuationBuilder.writeMemberType(VBCR);
2530 MemberCount++;
2531 } else {
2532 assert(I->getOffsetInBits() % 8 == 0 &&
2533 "bases must be on byte boundaries");
2534 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2535 getTypeIndex(I->getBaseType()),
2536 I->getOffsetInBits() / 8);
2537 ContinuationBuilder.writeMemberType(BCR);
2538 MemberCount++;
2542 // Create members.
2543 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2544 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2545 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2546 StringRef MemberName = Member->getName();
2547 MemberAccess Access =
2548 translateAccessFlags(Ty->getTag(), Member->getFlags());
2550 if (Member->isStaticMember()) {
2551 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2552 ContinuationBuilder.writeMemberType(SDMR);
2553 MemberCount++;
2554 continue;
2557 // Virtual function pointer member.
2558 if ((Member->getFlags() & DINode::FlagArtificial) &&
2559 Member->getName().starts_with("_vptr$")) {
2560 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2561 ContinuationBuilder.writeMemberType(VFPR);
2562 MemberCount++;
2563 continue;
2566 // Data member.
2567 uint64_t MemberOffsetInBits =
2568 Member->getOffsetInBits() + MemberInfo.BaseOffset;
2569 if (Member->isBitField()) {
2570 uint64_t StartBitOffset = MemberOffsetInBits;
2571 if (const auto *CI =
2572 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2573 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2575 StartBitOffset -= MemberOffsetInBits;
2576 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2577 StartBitOffset);
2578 MemberBaseType = TypeTable.writeLeafType(BFR);
2580 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2581 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2582 MemberName);
2583 ContinuationBuilder.writeMemberType(DMR);
2584 MemberCount++;
2587 // Create methods
2588 for (auto &MethodItr : Info.Methods) {
2589 StringRef Name = MethodItr.first->getString();
2591 std::vector<OneMethodRecord> Methods;
2592 for (const DISubprogram *SP : MethodItr.second) {
2593 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2594 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2596 unsigned VFTableOffset = -1;
2597 if (Introduced)
2598 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2600 Methods.push_back(OneMethodRecord(
2601 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2602 translateMethodKindFlags(SP, Introduced),
2603 translateMethodOptionFlags(SP), VFTableOffset, Name));
2604 MemberCount++;
2606 assert(!Methods.empty() && "Empty methods map entry");
2607 if (Methods.size() == 1)
2608 ContinuationBuilder.writeMemberType(Methods[0]);
2609 else {
2610 // FIXME: Make this use its own ContinuationBuilder so that
2611 // MethodOverloadList can be split correctly.
2612 MethodOverloadListRecord MOLR(Methods);
2613 TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2615 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2616 ContinuationBuilder.writeMemberType(OMR);
2620 // Create nested classes.
2621 for (const DIType *Nested : Info.NestedTypes) {
2622 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2623 ContinuationBuilder.writeMemberType(R);
2624 MemberCount++;
2627 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2628 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2629 !Info.NestedTypes.empty());
2632 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2633 if (!VBPType.getIndex()) {
2634 // Make a 'const int *' type.
2635 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2636 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2638 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2639 : PointerKind::Near32;
2640 PointerMode PM = PointerMode::Pointer;
2641 PointerOptions PO = PointerOptions::None;
2642 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2643 VBPType = TypeTable.writeLeafType(PR);
2646 return VBPType;
2649 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2650 // The null DIType is the void type. Don't try to hash it.
2651 if (!Ty)
2652 return TypeIndex::Void();
2654 // Check if we've already translated this type. Don't try to do a
2655 // get-or-create style insertion that caches the hash lookup across the
2656 // lowerType call. It will update the TypeIndices map.
2657 auto I = TypeIndices.find({Ty, ClassTy});
2658 if (I != TypeIndices.end())
2659 return I->second;
2661 TypeLoweringScope S(*this);
2662 TypeIndex TI = lowerType(Ty, ClassTy);
2663 return recordTypeIndexForDINode(Ty, TI, ClassTy);
2666 codeview::TypeIndex
2667 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2668 const DISubroutineType *SubroutineTy) {
2669 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2670 "this type must be a pointer type");
2672 PointerOptions Options = PointerOptions::None;
2673 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2674 Options = PointerOptions::LValueRefThisPointer;
2675 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2676 Options = PointerOptions::RValueRefThisPointer;
2678 // Check if we've already translated this type. If there is no ref qualifier
2679 // on the function then we look up this pointer type with no associated class
2680 // so that the TypeIndex for the this pointer can be shared with the type
2681 // index for other pointers to this class type. If there is a ref qualifier
2682 // then we lookup the pointer using the subroutine as the parent type.
2683 auto I = TypeIndices.find({PtrTy, SubroutineTy});
2684 if (I != TypeIndices.end())
2685 return I->second;
2687 TypeLoweringScope S(*this);
2688 TypeIndex TI = lowerTypePointer(PtrTy, Options);
2689 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2692 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2693 PointerRecord PR(getTypeIndex(Ty),
2694 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2695 : PointerKind::Near32,
2696 PointerMode::LValueReference, PointerOptions::None,
2697 Ty->getSizeInBits() / 8);
2698 return TypeTable.writeLeafType(PR);
2701 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2702 // The null DIType is the void type. Don't try to hash it.
2703 if (!Ty)
2704 return TypeIndex::Void();
2706 // Look through typedefs when getting the complete type index. Call
2707 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2708 // emitted only once.
2709 if (Ty->getTag() == dwarf::DW_TAG_typedef)
2710 (void)getTypeIndex(Ty);
2711 while (Ty->getTag() == dwarf::DW_TAG_typedef)
2712 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2714 // If this is a non-record type, the complete type index is the same as the
2715 // normal type index. Just call getTypeIndex.
2716 switch (Ty->getTag()) {
2717 case dwarf::DW_TAG_class_type:
2718 case dwarf::DW_TAG_structure_type:
2719 case dwarf::DW_TAG_union_type:
2720 break;
2721 default:
2722 return getTypeIndex(Ty);
2725 const auto *CTy = cast<DICompositeType>(Ty);
2727 TypeLoweringScope S(*this);
2729 // Make sure the forward declaration is emitted first. It's unclear if this
2730 // is necessary, but MSVC does it, and we should follow suit until we can show
2731 // otherwise.
2732 // We only emit a forward declaration for named types.
2733 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2734 TypeIndex FwdDeclTI = getTypeIndex(CTy);
2736 // Just use the forward decl if we don't have complete type info. This
2737 // might happen if the frontend is using modules and expects the complete
2738 // definition to be emitted elsewhere.
2739 if (CTy->isForwardDecl())
2740 return FwdDeclTI;
2743 // Check if we've already translated the complete record type.
2744 // Insert the type with a null TypeIndex to signify that the type is currently
2745 // being lowered.
2746 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2747 if (!InsertResult.second)
2748 return InsertResult.first->second;
2750 TypeIndex TI;
2751 switch (CTy->getTag()) {
2752 case dwarf::DW_TAG_class_type:
2753 case dwarf::DW_TAG_structure_type:
2754 TI = lowerCompleteTypeClass(CTy);
2755 break;
2756 case dwarf::DW_TAG_union_type:
2757 TI = lowerCompleteTypeUnion(CTy);
2758 break;
2759 default:
2760 llvm_unreachable("not a record");
2763 // Update the type index associated with this CompositeType. This cannot
2764 // use the 'InsertResult' iterator above because it is potentially
2765 // invalidated by map insertions which can occur while lowering the class
2766 // type above.
2767 CompleteTypeIndices[CTy] = TI;
2768 return TI;
2771 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2772 /// and do this until fixpoint, as each complete record type typically
2773 /// references
2774 /// many other record types.
2775 void CodeViewDebug::emitDeferredCompleteTypes() {
2776 SmallVector<const DICompositeType *, 4> TypesToEmit;
2777 while (!DeferredCompleteTypes.empty()) {
2778 std::swap(DeferredCompleteTypes, TypesToEmit);
2779 for (const DICompositeType *RecordTy : TypesToEmit)
2780 getCompleteTypeIndex(RecordTy);
2781 TypesToEmit.clear();
2785 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2786 ArrayRef<LocalVariable> Locals) {
2787 // Get the sorted list of parameters and emit them first.
2788 SmallVector<const LocalVariable *, 6> Params;
2789 for (const LocalVariable &L : Locals)
2790 if (L.DIVar->isParameter())
2791 Params.push_back(&L);
2792 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2793 return L->DIVar->getArg() < R->DIVar->getArg();
2795 for (const LocalVariable *L : Params)
2796 emitLocalVariable(FI, *L);
2798 // Next emit all non-parameters in the order that we found them.
2799 for (const LocalVariable &L : Locals) {
2800 if (!L.DIVar->isParameter()) {
2801 if (L.ConstantValue) {
2802 // If ConstantValue is set we will emit it as a S_CONSTANT instead of a
2803 // S_LOCAL in order to be able to represent it at all.
2804 const DIType *Ty = L.DIVar->getType();
2805 APSInt Val(*L.ConstantValue);
2806 emitConstantSymbolRecord(Ty, Val, std::string(L.DIVar->getName()));
2807 } else {
2808 emitLocalVariable(FI, L);
2814 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2815 const LocalVariable &Var) {
2816 // LocalSym record, see SymbolRecord.h for more info.
2817 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2819 LocalSymFlags Flags = LocalSymFlags::None;
2820 if (Var.DIVar->isParameter())
2821 Flags |= LocalSymFlags::IsParameter;
2822 if (Var.DefRanges.empty())
2823 Flags |= LocalSymFlags::IsOptimizedOut;
2825 OS.AddComment("TypeIndex");
2826 TypeIndex TI = Var.UseReferenceType
2827 ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2828 : getCompleteTypeIndex(Var.DIVar->getType());
2829 OS.emitInt32(TI.getIndex());
2830 OS.AddComment("Flags");
2831 OS.emitInt16(static_cast<uint16_t>(Flags));
2832 // Truncate the name so we won't overflow the record length field.
2833 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2834 endSymbolRecord(LocalEnd);
2836 // Calculate the on disk prefix of the appropriate def range record. The
2837 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2838 // should be big enough to hold all forms without memory allocation.
2839 SmallString<20> BytePrefix;
2840 for (const auto &Pair : Var.DefRanges) {
2841 LocalVarDef DefRange = Pair.first;
2842 const auto &Ranges = Pair.second;
2843 BytePrefix.clear();
2844 if (DefRange.InMemory) {
2845 int Offset = DefRange.DataOffset;
2846 unsigned Reg = DefRange.CVRegister;
2848 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2849 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2850 // instead. In frames without stack realignment, $T0 will be the CFA.
2851 if (RegisterId(Reg) == RegisterId::ESP) {
2852 Reg = unsigned(RegisterId::VFRAME);
2853 Offset += FI.OffsetAdjustment;
2856 // If we can use the chosen frame pointer for the frame and this isn't a
2857 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2858 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2859 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2860 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2861 (bool(Flags & LocalSymFlags::IsParameter)
2862 ? (EncFP == FI.EncodedParamFramePtrReg)
2863 : (EncFP == FI.EncodedLocalFramePtrReg))) {
2864 DefRangeFramePointerRelHeader DRHdr;
2865 DRHdr.Offset = Offset;
2866 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2867 } else {
2868 uint16_t RegRelFlags = 0;
2869 if (DefRange.IsSubfield) {
2870 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2871 (DefRange.StructOffset
2872 << DefRangeRegisterRelSym::OffsetInParentShift);
2874 DefRangeRegisterRelHeader DRHdr;
2875 DRHdr.Register = Reg;
2876 DRHdr.Flags = RegRelFlags;
2877 DRHdr.BasePointerOffset = Offset;
2878 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2880 } else {
2881 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2882 if (DefRange.IsSubfield) {
2883 DefRangeSubfieldRegisterHeader DRHdr;
2884 DRHdr.Register = DefRange.CVRegister;
2885 DRHdr.MayHaveNoName = 0;
2886 DRHdr.OffsetInParent = DefRange.StructOffset;
2887 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2888 } else {
2889 DefRangeRegisterHeader DRHdr;
2890 DRHdr.Register = DefRange.CVRegister;
2891 DRHdr.MayHaveNoName = 0;
2892 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2898 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2899 const FunctionInfo& FI) {
2900 for (LexicalBlock *Block : Blocks)
2901 emitLexicalBlock(*Block, FI);
2904 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2905 /// lexical block scope.
2906 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2907 const FunctionInfo& FI) {
2908 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2909 OS.AddComment("PtrParent");
2910 OS.emitInt32(0); // PtrParent
2911 OS.AddComment("PtrEnd");
2912 OS.emitInt32(0); // PtrEnd
2913 OS.AddComment("Code size");
2914 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
2915 OS.AddComment("Function section relative address");
2916 OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2917 OS.AddComment("Function section index");
2918 OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol
2919 OS.AddComment("Lexical block name");
2920 emitNullTerminatedSymbolName(OS, Block.Name); // Name
2921 endSymbolRecord(RecordEnd);
2923 // Emit variables local to this lexical block.
2924 emitLocalVariableList(FI, Block.Locals);
2925 emitGlobalVariableList(Block.Globals);
2927 // Emit lexical blocks contained within this block.
2928 emitLexicalBlockList(Block.Children, FI);
2930 // Close the lexical block scope.
2931 emitEndSymbolRecord(SymbolKind::S_END);
2934 /// Convenience routine for collecting lexical block information for a list
2935 /// of lexical scopes.
2936 void CodeViewDebug::collectLexicalBlockInfo(
2937 SmallVectorImpl<LexicalScope *> &Scopes,
2938 SmallVectorImpl<LexicalBlock *> &Blocks,
2939 SmallVectorImpl<LocalVariable> &Locals,
2940 SmallVectorImpl<CVGlobalVariable> &Globals) {
2941 for (LexicalScope *Scope : Scopes)
2942 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2945 /// Populate the lexical blocks and local variable lists of the parent with
2946 /// information about the specified lexical scope.
2947 void CodeViewDebug::collectLexicalBlockInfo(
2948 LexicalScope &Scope,
2949 SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2950 SmallVectorImpl<LocalVariable> &ParentLocals,
2951 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2952 if (Scope.isAbstractScope())
2953 return;
2955 // Gather information about the lexical scope including local variables,
2956 // global variables, and address ranges.
2957 bool IgnoreScope = false;
2958 auto LI = ScopeVariables.find(&Scope);
2959 SmallVectorImpl<LocalVariable> *Locals =
2960 LI != ScopeVariables.end() ? &LI->second : nullptr;
2961 auto GI = ScopeGlobals.find(Scope.getScopeNode());
2962 SmallVectorImpl<CVGlobalVariable> *Globals =
2963 GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2964 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2965 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2967 // Ignore lexical scopes which do not contain variables.
2968 if (!Locals && !Globals)
2969 IgnoreScope = true;
2971 // Ignore lexical scopes which are not lexical blocks.
2972 if (!DILB)
2973 IgnoreScope = true;
2975 // Ignore scopes which have too many address ranges to represent in the
2976 // current CodeView format or do not have a valid address range.
2978 // For lexical scopes with multiple address ranges you may be tempted to
2979 // construct a single range covering every instruction where the block is
2980 // live and everything in between. Unfortunately, Visual Studio only
2981 // displays variables from the first matching lexical block scope. If the
2982 // first lexical block contains exception handling code or cold code which
2983 // is moved to the bottom of the routine creating a single range covering
2984 // nearly the entire routine, then it will hide all other lexical blocks
2985 // and the variables they contain.
2986 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2987 IgnoreScope = true;
2989 if (IgnoreScope) {
2990 // This scope can be safely ignored and eliminating it will reduce the
2991 // size of the debug information. Be sure to collect any variable and scope
2992 // information from the this scope or any of its children and collapse them
2993 // into the parent scope.
2994 if (Locals)
2995 ParentLocals.append(Locals->begin(), Locals->end());
2996 if (Globals)
2997 ParentGlobals.append(Globals->begin(), Globals->end());
2998 collectLexicalBlockInfo(Scope.getChildren(),
2999 ParentBlocks,
3000 ParentLocals,
3001 ParentGlobals);
3002 return;
3005 // Create a new CodeView lexical block for this lexical scope. If we've
3006 // seen this DILexicalBlock before then the scope tree is malformed and
3007 // we can handle this gracefully by not processing it a second time.
3008 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
3009 if (!BlockInsertion.second)
3010 return;
3012 // Create a lexical block containing the variables and collect the
3013 // lexical block information for the children.
3014 const InsnRange &Range = Ranges.front();
3015 assert(Range.first && Range.second);
3016 LexicalBlock &Block = BlockInsertion.first->second;
3017 Block.Begin = getLabelBeforeInsn(Range.first);
3018 Block.End = getLabelAfterInsn(Range.second);
3019 assert(Block.Begin && "missing label for scope begin");
3020 assert(Block.End && "missing label for scope end");
3021 Block.Name = DILB->getName();
3022 if (Locals)
3023 Block.Locals = std::move(*Locals);
3024 if (Globals)
3025 Block.Globals = std::move(*Globals);
3026 ParentBlocks.push_back(&Block);
3027 collectLexicalBlockInfo(Scope.getChildren(),
3028 Block.Children,
3029 Block.Locals,
3030 Block.Globals);
3033 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
3034 const Function &GV = MF->getFunction();
3035 assert(FnDebugInfo.count(&GV));
3036 assert(CurFn == FnDebugInfo[&GV].get());
3038 collectVariableInfo(GV.getSubprogram());
3040 // Build the lexical block structure to emit for this routine.
3041 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
3042 collectLexicalBlockInfo(*CFS,
3043 CurFn->ChildBlocks,
3044 CurFn->Locals,
3045 CurFn->Globals);
3047 // Clear the scope and variable information from the map which will not be
3048 // valid after we have finished processing this routine. This also prepares
3049 // the map for the subsequent routine.
3050 ScopeVariables.clear();
3052 // Don't emit anything if we don't have any line tables.
3053 // Thunks are compiler-generated and probably won't have source correlation.
3054 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
3055 FnDebugInfo.erase(&GV);
3056 CurFn = nullptr;
3057 return;
3060 // Find heap alloc sites and add to list.
3061 for (const auto &MBB : *MF) {
3062 for (const auto &MI : MBB) {
3063 if (MDNode *MD = MI.getHeapAllocMarker()) {
3064 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
3065 getLabelAfterInsn(&MI),
3066 dyn_cast<DIType>(MD)));
3071 bool isThumb = Triple(MMI->getModule()->getTargetTriple()).getArch() ==
3072 llvm::Triple::ArchType::thumb;
3073 collectDebugInfoForJumpTables(MF, isThumb);
3075 CurFn->Annotations = MF->getCodeViewAnnotations();
3077 CurFn->End = Asm->getFunctionEnd();
3079 CurFn = nullptr;
3082 // Usable locations are valid with non-zero line numbers. A line number of zero
3083 // corresponds to optimized code that doesn't have a distinct source location.
3084 // In this case, we try to use the previous or next source location depending on
3085 // the context.
3086 static bool isUsableDebugLoc(DebugLoc DL) {
3087 return DL && DL.getLine() != 0;
3090 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
3091 DebugHandlerBase::beginInstruction(MI);
3093 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
3094 if (!Asm || !CurFn || MI->isDebugInstr() ||
3095 MI->getFlag(MachineInstr::FrameSetup))
3096 return;
3098 // If the first instruction of a new MBB has no location, find the first
3099 // instruction with a location and use that.
3100 DebugLoc DL = MI->getDebugLoc();
3101 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
3102 for (const auto &NextMI : *MI->getParent()) {
3103 if (NextMI.isDebugInstr())
3104 continue;
3105 DL = NextMI.getDebugLoc();
3106 if (isUsableDebugLoc(DL))
3107 break;
3109 // FIXME: Handle the case where the BB has no valid locations. This would
3110 // probably require doing a real dataflow analysis.
3112 PrevInstBB = MI->getParent();
3114 // If we still don't have a debug location, don't record a location.
3115 if (!isUsableDebugLoc(DL))
3116 return;
3118 maybeRecordLocation(DL, Asm->MF);
3121 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
3122 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3123 *EndLabel = MMI->getContext().createTempSymbol();
3124 OS.emitInt32(unsigned(Kind));
3125 OS.AddComment("Subsection size");
3126 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
3127 OS.emitLabel(BeginLabel);
3128 return EndLabel;
3131 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
3132 OS.emitLabel(EndLabel);
3133 // Every subsection must be aligned to a 4-byte boundary.
3134 OS.emitValueToAlignment(Align(4));
3137 static StringRef getSymbolName(SymbolKind SymKind) {
3138 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
3139 if (EE.Value == SymKind)
3140 return EE.Name;
3141 return "";
3144 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
3145 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3146 *EndLabel = MMI->getContext().createTempSymbol();
3147 OS.AddComment("Record length");
3148 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
3149 OS.emitLabel(BeginLabel);
3150 if (OS.isVerboseAsm())
3151 OS.AddComment("Record kind: " + getSymbolName(SymKind));
3152 OS.emitInt16(unsigned(SymKind));
3153 return EndLabel;
3156 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3157 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3158 // an extra copy of every symbol record in LLD. This increases object file
3159 // size by less than 1% in the clang build, and is compatible with the Visual
3160 // C++ linker.
3161 OS.emitValueToAlignment(Align(4));
3162 OS.emitLabel(SymEnd);
3165 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3166 OS.AddComment("Record length");
3167 OS.emitInt16(2);
3168 if (OS.isVerboseAsm())
3169 OS.AddComment("Record kind: " + getSymbolName(EndKind));
3170 OS.emitInt16(uint16_t(EndKind)); // Record Kind
3173 void CodeViewDebug::emitDebugInfoForUDTs(
3174 const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3175 #ifndef NDEBUG
3176 size_t OriginalSize = UDTs.size();
3177 #endif
3178 for (const auto &UDT : UDTs) {
3179 const DIType *T = UDT.second;
3180 assert(shouldEmitUdt(T));
3181 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3182 OS.AddComment("Type");
3183 OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3184 assert(OriginalSize == UDTs.size() &&
3185 "getCompleteTypeIndex found new UDTs!");
3186 emitNullTerminatedSymbolName(OS, UDT.first);
3187 endSymbolRecord(UDTRecordEnd);
3191 void CodeViewDebug::collectGlobalVariableInfo() {
3192 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3193 GlobalMap;
3194 for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3195 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3196 GV.getDebugInfo(GVEs);
3197 for (const auto *GVE : GVEs)
3198 GlobalMap[GVE] = &GV;
3201 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3202 for (const MDNode *Node : CUs->operands()) {
3203 const auto *CU = cast<DICompileUnit>(Node);
3204 for (const auto *GVE : CU->getGlobalVariables()) {
3205 const DIGlobalVariable *DIGV = GVE->getVariable();
3206 const DIExpression *DIE = GVE->getExpression();
3207 // Don't emit string literals in CodeView, as the only useful parts are
3208 // generally the filename and line number, which isn't possible to output
3209 // in CodeView. String literals should be the only unnamed GlobalVariable
3210 // with debug info.
3211 if (DIGV->getName().empty()) continue;
3213 if ((DIE->getNumElements() == 2) &&
3214 (DIE->getElement(0) == dwarf::DW_OP_plus_uconst))
3215 // Record the constant offset for the variable.
3217 // A Fortran common block uses this idiom to encode the offset
3218 // of a variable from the common block's starting address.
3219 CVGlobalVariableOffsets.insert(
3220 std::make_pair(DIGV, DIE->getElement(1)));
3222 // Emit constant global variables in a global symbol section.
3223 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3224 CVGlobalVariable CVGV = {DIGV, DIE};
3225 GlobalVariables.emplace_back(std::move(CVGV));
3228 const auto *GV = GlobalMap.lookup(GVE);
3229 if (!GV || GV->isDeclarationForLinker())
3230 continue;
3232 DIScope *Scope = DIGV->getScope();
3233 SmallVector<CVGlobalVariable, 1> *VariableList;
3234 if (Scope && isa<DILocalScope>(Scope)) {
3235 // Locate a global variable list for this scope, creating one if
3236 // necessary.
3237 auto Insertion = ScopeGlobals.insert(
3238 {Scope, std::unique_ptr<GlobalVariableList>()});
3239 if (Insertion.second)
3240 Insertion.first->second = std::make_unique<GlobalVariableList>();
3241 VariableList = Insertion.first->second.get();
3242 } else if (GV->hasComdat())
3243 // Emit this global variable into a COMDAT section.
3244 VariableList = &ComdatVariables;
3245 else
3246 // Emit this global variable in a single global symbol section.
3247 VariableList = &GlobalVariables;
3248 CVGlobalVariable CVGV = {DIGV, GV};
3249 VariableList->emplace_back(std::move(CVGV));
3254 void CodeViewDebug::collectDebugInfoForGlobals() {
3255 for (const CVGlobalVariable &CVGV : GlobalVariables) {
3256 const DIGlobalVariable *DIGV = CVGV.DIGV;
3257 const DIScope *Scope = DIGV->getScope();
3258 getCompleteTypeIndex(DIGV->getType());
3259 getFullyQualifiedName(Scope, DIGV->getName());
3262 for (const CVGlobalVariable &CVGV : ComdatVariables) {
3263 const DIGlobalVariable *DIGV = CVGV.DIGV;
3264 const DIScope *Scope = DIGV->getScope();
3265 getCompleteTypeIndex(DIGV->getType());
3266 getFullyQualifiedName(Scope, DIGV->getName());
3270 void CodeViewDebug::emitDebugInfoForGlobals() {
3271 // First, emit all globals that are not in a comdat in a single symbol
3272 // substream. MSVC doesn't like it if the substream is empty, so only open
3273 // it if we have at least one global to emit.
3274 switchToDebugSectionForSymbol(nullptr);
3275 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3276 OS.AddComment("Symbol subsection for globals");
3277 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3278 emitGlobalVariableList(GlobalVariables);
3279 emitStaticConstMemberList();
3280 endCVSubsection(EndLabel);
3283 // Second, emit each global that is in a comdat into its own .debug$S
3284 // section along with its own symbol substream.
3285 for (const CVGlobalVariable &CVGV : ComdatVariables) {
3286 const GlobalVariable *GV = cast<const GlobalVariable *>(CVGV.GVInfo);
3287 MCSymbol *GVSym = Asm->getSymbol(GV);
3288 OS.AddComment("Symbol subsection for " +
3289 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3290 switchToDebugSectionForSymbol(GVSym);
3291 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3292 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3293 emitDebugInfoForGlobal(CVGV);
3294 endCVSubsection(EndLabel);
3298 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3299 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3300 for (const MDNode *Node : CUs->operands()) {
3301 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3302 if (DIType *RT = dyn_cast<DIType>(Ty)) {
3303 getTypeIndex(RT);
3304 // FIXME: Add to global/local DTU list.
3310 // Emit each global variable in the specified array.
3311 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3312 for (const CVGlobalVariable &CVGV : Globals) {
3313 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3314 emitDebugInfoForGlobal(CVGV);
3318 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
3319 const std::string &QualifiedName) {
3320 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3321 OS.AddComment("Type");
3322 OS.emitInt32(getTypeIndex(DTy).getIndex());
3324 OS.AddComment("Value");
3326 // Encoded integers shouldn't need more than 10 bytes.
3327 uint8_t Data[10];
3328 BinaryStreamWriter Writer(Data, llvm::endianness::little);
3329 CodeViewRecordIO IO(Writer);
3330 cantFail(IO.mapEncodedInteger(Value));
3331 StringRef SRef((char *)Data, Writer.getOffset());
3332 OS.emitBinaryData(SRef);
3334 OS.AddComment("Name");
3335 emitNullTerminatedSymbolName(OS, QualifiedName);
3336 endSymbolRecord(SConstantEnd);
3339 void CodeViewDebug::emitStaticConstMemberList() {
3340 for (const DIDerivedType *DTy : StaticConstMembers) {
3341 const DIScope *Scope = DTy->getScope();
3343 APSInt Value;
3344 if (const ConstantInt *CI =
3345 dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3346 Value = APSInt(CI->getValue(),
3347 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3348 else if (const ConstantFP *CFP =
3349 dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3350 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3351 else
3352 llvm_unreachable("cannot emit a constant without a value");
3354 emitConstantSymbolRecord(DTy->getBaseType(), Value,
3355 getFullyQualifiedName(Scope, DTy->getName()));
3359 static bool isFloatDIType(const DIType *Ty) {
3360 if (isa<DICompositeType>(Ty))
3361 return false;
3363 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3364 dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3365 if (T == dwarf::DW_TAG_pointer_type ||
3366 T == dwarf::DW_TAG_ptr_to_member_type ||
3367 T == dwarf::DW_TAG_reference_type ||
3368 T == dwarf::DW_TAG_rvalue_reference_type)
3369 return false;
3370 assert(DTy->getBaseType() && "Expected valid base type");
3371 return isFloatDIType(DTy->getBaseType());
3374 auto *BTy = cast<DIBasicType>(Ty);
3375 return (BTy->getEncoding() == dwarf::DW_ATE_float);
3378 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3379 const DIGlobalVariable *DIGV = CVGV.DIGV;
3381 const DIScope *Scope = DIGV->getScope();
3382 // For static data members, get the scope from the declaration.
3383 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3384 DIGV->getRawStaticDataMemberDeclaration()))
3385 Scope = MemberDecl->getScope();
3386 // For static local variables and Fortran, the scoping portion is elided
3387 // in its name so that we can reference the variable in the command line
3388 // of the VS debugger.
3389 std::string QualifiedName =
3390 (moduleIsInFortran() || (Scope && isa<DILocalScope>(Scope)))
3391 ? std::string(DIGV->getName())
3392 : getFullyQualifiedName(Scope, DIGV->getName());
3394 if (const GlobalVariable *GV =
3395 dyn_cast_if_present<const GlobalVariable *>(CVGV.GVInfo)) {
3396 // DataSym record, see SymbolRecord.h for more info. Thread local data
3397 // happens to have the same format as global data.
3398 MCSymbol *GVSym = Asm->getSymbol(GV);
3399 SymbolKind DataSym = GV->isThreadLocal()
3400 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3401 : SymbolKind::S_GTHREAD32)
3402 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3403 : SymbolKind::S_GDATA32);
3404 MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3405 OS.AddComment("Type");
3406 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3407 OS.AddComment("DataOffset");
3409 // Use the offset seen while collecting info on globals.
3410 uint64_t Offset = CVGlobalVariableOffsets.lookup(DIGV);
3411 OS.emitCOFFSecRel32(GVSym, Offset);
3413 OS.AddComment("Segment");
3414 OS.emitCOFFSectionIndex(GVSym);
3415 OS.AddComment("Name");
3416 const unsigned LengthOfDataRecord = 12;
3417 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3418 endSymbolRecord(DataEnd);
3419 } else {
3420 const DIExpression *DIE = cast<const DIExpression *>(CVGV.GVInfo);
3421 assert(DIE->isConstant() &&
3422 "Global constant variables must contain a constant expression.");
3424 // Use unsigned for floats.
3425 bool isUnsigned = isFloatDIType(DIGV->getType())
3426 ? true
3427 : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3428 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3429 emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
3433 void forEachJumpTableBranch(
3434 const MachineFunction *MF, bool isThumb,
3435 const std::function<void(const MachineJumpTableInfo &, const MachineInstr &,
3436 int64_t)> &Callback) {
3437 auto JTI = MF->getJumpTableInfo();
3438 if (JTI && !JTI->isEmpty()) {
3439 #ifndef NDEBUG
3440 auto UsedJTs = llvm::SmallBitVector(JTI->getJumpTables().size());
3441 #endif
3442 for (const auto &MBB : *MF) {
3443 // Search for indirect branches...
3444 const auto LastMI = MBB.getFirstTerminator();
3445 if (LastMI != MBB.end() && LastMI->isIndirectBranch()) {
3446 if (isThumb) {
3447 // ... that directly use jump table operands.
3448 // NOTE: ARM uses pattern matching to lower its BR_JT SDNode to
3449 // machine instructions, hence inserting a JUMP_TABLE_DEBUG_INFO node
3450 // interferes with this process *but* the resulting pseudo-instruction
3451 // uses a Jump Table operand, so extract the jump table index directly
3452 // from that.
3453 for (const auto &MO : LastMI->operands()) {
3454 if (MO.isJTI()) {
3455 unsigned Index = MO.getIndex();
3456 #ifndef NDEBUG
3457 UsedJTs.set(Index);
3458 #endif
3459 Callback(*JTI, *LastMI, Index);
3460 break;
3463 } else {
3464 // ... that have jump table debug info.
3465 // NOTE: The debug info is inserted as a JUMP_TABLE_DEBUG_INFO node
3466 // when lowering the BR_JT SDNode to an indirect branch.
3467 for (auto I = MBB.instr_rbegin(), E = MBB.instr_rend(); I != E; ++I) {
3468 if (I->isJumpTableDebugInfo()) {
3469 unsigned Index = I->getOperand(0).getImm();
3470 #ifndef NDEBUG
3471 UsedJTs.set(Index);
3472 #endif
3473 Callback(*JTI, *LastMI, Index);
3474 break;
3480 #ifndef NDEBUG
3481 assert(UsedJTs.all() &&
3482 "Some of jump tables were not used in a debug info instruction");
3483 #endif
3487 void CodeViewDebug::discoverJumpTableBranches(const MachineFunction *MF,
3488 bool isThumb) {
3489 forEachJumpTableBranch(
3490 MF, isThumb,
3491 [this](const MachineJumpTableInfo &, const MachineInstr &BranchMI,
3492 int64_t) { requestLabelBeforeInsn(&BranchMI); });
3495 void CodeViewDebug::collectDebugInfoForJumpTables(const MachineFunction *MF,
3496 bool isThumb) {
3497 forEachJumpTableBranch(
3498 MF, isThumb,
3499 [this, MF](const MachineJumpTableInfo &JTI, const MachineInstr &BranchMI,
3500 int64_t JumpTableIndex) {
3501 // For label-difference jump tables, find the base expression.
3502 // Otherwise the jump table uses an absolute address (so no base
3503 // is required).
3504 const MCSymbol *Base;
3505 uint64_t BaseOffset = 0;
3506 const MCSymbol *Branch = getLabelBeforeInsn(&BranchMI);
3507 JumpTableEntrySize EntrySize;
3508 switch (JTI.getEntryKind()) {
3509 case MachineJumpTableInfo::EK_Custom32:
3510 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
3511 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
3512 llvm_unreachable(
3513 "EK_Custom32, EK_GPRel32BlockAddress, and "
3514 "EK_GPRel64BlockAddress should never be emitted for COFF");
3515 case MachineJumpTableInfo::EK_BlockAddress:
3516 // Each entry is an absolute address.
3517 EntrySize = JumpTableEntrySize::Pointer;
3518 Base = nullptr;
3519 break;
3520 case MachineJumpTableInfo::EK_Inline:
3521 case MachineJumpTableInfo::EK_LabelDifference32:
3522 case MachineJumpTableInfo::EK_LabelDifference64:
3523 // Ask the AsmPrinter.
3524 std::tie(Base, BaseOffset, Branch, EntrySize) =
3525 Asm->getCodeViewJumpTableInfo(JumpTableIndex, &BranchMI, Branch);
3526 break;
3529 CurFn->JumpTables.push_back(
3530 {EntrySize, Base, BaseOffset, Branch,
3531 MF->getJTISymbol(JumpTableIndex, MMI->getContext()),
3532 JTI.getJumpTables()[JumpTableIndex].MBBs.size()});
3536 void CodeViewDebug::emitDebugInfoForJumpTables(const FunctionInfo &FI) {
3537 for (auto JumpTable : FI.JumpTables) {
3538 MCSymbol *JumpTableEnd = beginSymbolRecord(SymbolKind::S_ARMSWITCHTABLE);
3539 if (JumpTable.Base) {
3540 OS.AddComment("Base offset");
3541 OS.emitCOFFSecRel32(JumpTable.Base, JumpTable.BaseOffset);
3542 OS.AddComment("Base section index");
3543 OS.emitCOFFSectionIndex(JumpTable.Base);
3544 } else {
3545 OS.AddComment("Base offset");
3546 OS.emitInt32(0);
3547 OS.AddComment("Base section index");
3548 OS.emitInt16(0);
3550 OS.AddComment("Switch type");
3551 OS.emitInt16(static_cast<uint16_t>(JumpTable.EntrySize));
3552 OS.AddComment("Branch offset");
3553 OS.emitCOFFSecRel32(JumpTable.Branch, /*Offset=*/0);
3554 OS.AddComment("Table offset");
3555 OS.emitCOFFSecRel32(JumpTable.Table, /*Offset=*/0);
3556 OS.AddComment("Branch section index");
3557 OS.emitCOFFSectionIndex(JumpTable.Branch);
3558 OS.AddComment("Table section index");
3559 OS.emitCOFFSectionIndex(JumpTable.Table);
3560 OS.AddComment("Entries count");
3561 OS.emitInt32(JumpTable.TableSize);
3562 endSymbolRecord(JumpTableEnd);
3566 void CodeViewDebug::emitInlinees(
3567 const SmallSet<codeview::TypeIndex, 1> &Inlinees) {
3568 // Divide the list of inlinees into chunks such that each chunk fits within
3569 // one record.
3570 constexpr size_t ChunkSize =
3571 (MaxRecordLength - sizeof(SymbolKind) - sizeof(uint32_t)) /
3572 sizeof(uint32_t);
3574 SmallVector<TypeIndex> SortedInlinees{Inlinees.begin(), Inlinees.end()};
3575 llvm::sort(SortedInlinees);
3577 size_t CurrentIndex = 0;
3578 while (CurrentIndex < SortedInlinees.size()) {
3579 auto Symbol = beginSymbolRecord(SymbolKind::S_INLINEES);
3580 auto CurrentChunkSize =
3581 std::min(ChunkSize, SortedInlinees.size() - CurrentIndex);
3582 OS.AddComment("Count");
3583 OS.emitInt32(CurrentChunkSize);
3585 const size_t CurrentChunkEnd = CurrentIndex + CurrentChunkSize;
3586 for (; CurrentIndex < CurrentChunkEnd; ++CurrentIndex) {
3587 OS.AddComment("Inlinee");
3588 OS.emitInt32(SortedInlinees[CurrentIndex].getIndex());
3590 endSymbolRecord(Symbol);