[clang][NFC] simplify the unset check in `ParseLabeledStatement` (#117430)
[llvm-project.git] / llvm / lib / CodeGen / CodeGenPrepare.cpp
blobead8aa6d220973e5d92e47fdb50b01814408e1ee
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/CodeGenTypes/MachineValueType.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/Argument.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfo.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/GlobalVariable.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/IntrinsicsAArch64.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/MDBuilder.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Operator.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/ProfDataUtils.h"
72 #include "llvm/IR/Statepoint.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/IR/ValueMap.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BlockFrequency.h"
82 #include "llvm/Support/BranchProbability.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/CommandLine.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <optional>
103 #include <utility>
104 #include <vector>
106 using namespace llvm;
107 using namespace llvm::PatternMatch;
109 #define DEBUG_TYPE "codegenprepare"
111 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
112 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
113 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
114 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
115 "sunken Cmps");
116 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
117 "of sunken Casts");
118 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
119 "computations were sunk");
120 STATISTIC(NumMemoryInstsPhiCreated,
121 "Number of phis created when address "
122 "computations were sunk to memory instructions");
123 STATISTIC(NumMemoryInstsSelectCreated,
124 "Number of select created when address "
125 "computations were sunk to memory instructions");
126 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
127 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
128 STATISTIC(NumAndsAdded,
129 "Number of and mask instructions added to form ext loads");
130 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
131 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
132 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
133 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
134 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
136 static cl::opt<bool> DisableBranchOpts(
137 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
138 cl::desc("Disable branch optimizations in CodeGenPrepare"));
140 static cl::opt<bool>
141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
142 cl::desc("Disable GC optimizations in CodeGenPrepare"));
144 static cl::opt<bool>
145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
146 cl::init(false),
147 cl::desc("Disable select to branch conversion."));
149 static cl::opt<bool>
150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
151 cl::desc("Address sinking in CGP using GEPs."));
153 static cl::opt<bool>
154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
155 cl::desc("Enable sinkinig and/cmp into branches."));
157 static cl::opt<bool> DisableStoreExtract(
158 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
161 static cl::opt<bool> StressStoreExtract(
162 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
165 static cl::opt<bool> DisableExtLdPromotion(
166 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
168 "CodeGenPrepare"));
170 static cl::opt<bool> StressExtLdPromotion(
171 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173 "optimization in CodeGenPrepare"));
175 static cl::opt<bool> DisablePreheaderProtect(
176 "disable-preheader-prot", cl::Hidden, cl::init(false),
177 cl::desc("Disable protection against removing loop preheaders"));
179 static cl::opt<bool> ProfileGuidedSectionPrefix(
180 "profile-guided-section-prefix", cl::Hidden, cl::init(true),
181 cl::desc("Use profile info to add section prefix for hot/cold functions"));
183 static cl::opt<bool> ProfileUnknownInSpecialSection(
184 "profile-unknown-in-special-section", cl::Hidden,
185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186 "profile, we cannot tell the function is cold for sure because "
187 "it may be a function newly added without ever being sampled. "
188 "With the flag enabled, compiler can put such profile unknown "
189 "functions into a special section, so runtime system can choose "
190 "to handle it in a different way than .text section, to save "
191 "RAM for example. "));
193 static cl::opt<bool> BBSectionsGuidedSectionPrefix(
194 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
195 cl::desc("Use the basic-block-sections profile to determine the text "
196 "section prefix for hot functions. Functions with "
197 "basic-block-sections profile will be placed in `.text.hot` "
198 "regardless of their FDO profile info. Other functions won't be "
199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
200 "profiles."));
202 static cl::opt<uint64_t> FreqRatioToSkipMerge(
203 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
204 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205 "(frequency of destination block) is greater than this ratio"));
207 static cl::opt<bool> ForceSplitStore(
208 "force-split-store", cl::Hidden, cl::init(false),
209 cl::desc("Force store splitting no matter what the target query says."));
211 static cl::opt<bool> EnableTypePromotionMerge(
212 "cgp-type-promotion-merge", cl::Hidden,
213 cl::desc("Enable merging of redundant sexts when one is dominating"
214 " the other."),
215 cl::init(true));
217 static cl::opt<bool> DisableComplexAddrModes(
218 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
219 cl::desc("Disables combining addressing modes with different parts "
220 "in optimizeMemoryInst."));
222 static cl::opt<bool>
223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
224 cl::desc("Allow creation of Phis in Address sinking."));
226 static cl::opt<bool> AddrSinkNewSelects(
227 "addr-sink-new-select", cl::Hidden, cl::init(true),
228 cl::desc("Allow creation of selects in Address sinking."));
230 static cl::opt<bool> AddrSinkCombineBaseReg(
231 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
232 cl::desc("Allow combining of BaseReg field in Address sinking."));
234 static cl::opt<bool> AddrSinkCombineBaseGV(
235 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
236 cl::desc("Allow combining of BaseGV field in Address sinking."));
238 static cl::opt<bool> AddrSinkCombineBaseOffs(
239 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
240 cl::desc("Allow combining of BaseOffs field in Address sinking."));
242 static cl::opt<bool> AddrSinkCombineScaledReg(
243 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
244 cl::desc("Allow combining of ScaledReg field in Address sinking."));
246 static cl::opt<bool>
247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
248 cl::init(true),
249 cl::desc("Enable splitting large offset of GEP."));
251 static cl::opt<bool> EnableICMP_EQToICMP_ST(
252 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
255 static cl::opt<bool>
256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
257 cl::desc("Enable BFI update verification for "
258 "CodeGenPrepare."));
260 static cl::opt<bool>
261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
262 cl::desc("Enable converting phi types in CodeGenPrepare"));
264 static cl::opt<unsigned>
265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
266 cl::desc("Least BB number of huge function."));
268 static cl::opt<unsigned>
269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
270 cl::Hidden,
271 cl::desc("Max number of address users to look at"));
273 static cl::opt<bool>
274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
275 cl::desc("Disable elimination of dead PHI nodes."));
277 namespace {
279 enum ExtType {
280 ZeroExtension, // Zero extension has been seen.
281 SignExtension, // Sign extension has been seen.
282 BothExtension // This extension type is used if we saw sext after
283 // ZeroExtension had been set, or if we saw zext after
284 // SignExtension had been set. It makes the type
285 // information of a promoted instruction invalid.
288 enum ModifyDT {
289 NotModifyDT, // Not Modify any DT.
290 ModifyBBDT, // Modify the Basic Block Dominator Tree.
291 ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
292 // This usually means we move/delete/insert instruction
293 // in a Basic Block. So we should re-iterate instructions
294 // in such Basic Block.
297 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
298 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
299 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
300 using SExts = SmallVector<Instruction *, 16>;
301 using ValueToSExts = MapVector<Value *, SExts>;
303 class TypePromotionTransaction;
305 class CodeGenPrepare {
306 friend class CodeGenPrepareLegacyPass;
307 const TargetMachine *TM = nullptr;
308 const TargetSubtargetInfo *SubtargetInfo = nullptr;
309 const TargetLowering *TLI = nullptr;
310 const TargetRegisterInfo *TRI = nullptr;
311 const TargetTransformInfo *TTI = nullptr;
312 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
313 const TargetLibraryInfo *TLInfo = nullptr;
314 LoopInfo *LI = nullptr;
315 std::unique_ptr<BlockFrequencyInfo> BFI;
316 std::unique_ptr<BranchProbabilityInfo> BPI;
317 ProfileSummaryInfo *PSI = nullptr;
319 /// As we scan instructions optimizing them, this is the next instruction
320 /// to optimize. Transforms that can invalidate this should update it.
321 BasicBlock::iterator CurInstIterator;
323 /// Keeps track of non-local addresses that have been sunk into a block.
324 /// This allows us to avoid inserting duplicate code for blocks with
325 /// multiple load/stores of the same address. The usage of WeakTrackingVH
326 /// enables SunkAddrs to be treated as a cache whose entries can be
327 /// invalidated if a sunken address computation has been erased.
328 ValueMap<Value *, WeakTrackingVH> SunkAddrs;
330 /// Keeps track of all instructions inserted for the current function.
331 SetOfInstrs InsertedInsts;
333 /// Keeps track of the type of the related instruction before their
334 /// promotion for the current function.
335 InstrToOrigTy PromotedInsts;
337 /// Keep track of instructions removed during promotion.
338 SetOfInstrs RemovedInsts;
340 /// Keep track of sext chains based on their initial value.
341 DenseMap<Value *, Instruction *> SeenChainsForSExt;
343 /// Keep track of GEPs accessing the same data structures such as structs or
344 /// arrays that are candidates to be split later because of their large
345 /// size.
346 MapVector<AssertingVH<Value>,
347 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
348 LargeOffsetGEPMap;
350 /// Keep track of new GEP base after splitting the GEPs having large offset.
351 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
353 /// Map serial numbers to Large offset GEPs.
354 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
356 /// Keep track of SExt promoted.
357 ValueToSExts ValToSExtendedUses;
359 /// True if the function has the OptSize attribute.
360 bool OptSize;
362 /// DataLayout for the Function being processed.
363 const DataLayout *DL = nullptr;
365 /// Building the dominator tree can be expensive, so we only build it
366 /// lazily and update it when required.
367 std::unique_ptr<DominatorTree> DT;
369 public:
370 CodeGenPrepare(){};
371 CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
372 /// If encounter huge function, we need to limit the build time.
373 bool IsHugeFunc = false;
375 /// FreshBBs is like worklist, it collected the updated BBs which need
376 /// to be optimized again.
377 /// Note: Consider building time in this pass, when a BB updated, we need
378 /// to insert such BB into FreshBBs for huge function.
379 SmallSet<BasicBlock *, 32> FreshBBs;
381 void releaseMemory() {
382 // Clear per function information.
383 InsertedInsts.clear();
384 PromotedInsts.clear();
385 FreshBBs.clear();
386 BPI.reset();
387 BFI.reset();
390 bool run(Function &F, FunctionAnalysisManager &AM);
392 private:
393 template <typename F>
394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
395 // Substituting can cause recursive simplifications, which can invalidate
396 // our iterator. Use a WeakTrackingVH to hold onto it in case this
397 // happens.
398 Value *CurValue = &*CurInstIterator;
399 WeakTrackingVH IterHandle(CurValue);
401 f();
403 // If the iterator instruction was recursively deleted, start over at the
404 // start of the block.
405 if (IterHandle != CurValue) {
406 CurInstIterator = BB->begin();
407 SunkAddrs.clear();
411 // Get the DominatorTree, building if necessary.
412 DominatorTree &getDT(Function &F) {
413 if (!DT)
414 DT = std::make_unique<DominatorTree>(F);
415 return *DT;
418 void removeAllAssertingVHReferences(Value *V);
419 bool eliminateAssumptions(Function &F);
420 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
421 bool eliminateMostlyEmptyBlocks(Function &F);
422 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
423 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
424 void eliminateMostlyEmptyBlock(BasicBlock *BB);
425 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
426 bool isPreheader);
427 bool makeBitReverse(Instruction &I);
428 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
429 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
430 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
431 unsigned AddrSpace);
432 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
433 bool optimizeInlineAsmInst(CallInst *CS);
434 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
435 bool optimizeExt(Instruction *&I);
436 bool optimizeExtUses(Instruction *I);
437 bool optimizeLoadExt(LoadInst *Load);
438 bool optimizeShiftInst(BinaryOperator *BO);
439 bool optimizeFunnelShift(IntrinsicInst *Fsh);
440 bool optimizeSelectInst(SelectInst *SI);
441 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
442 bool optimizeSwitchType(SwitchInst *SI);
443 bool optimizeSwitchPhiConstants(SwitchInst *SI);
444 bool optimizeSwitchInst(SwitchInst *SI);
445 bool optimizeExtractElementInst(Instruction *Inst);
446 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
447 bool fixupDbgValue(Instruction *I);
448 bool fixupDbgVariableRecord(DbgVariableRecord &I);
449 bool fixupDbgVariableRecordsOnInst(Instruction &I);
450 bool placeDbgValues(Function &F);
451 bool placePseudoProbes(Function &F);
452 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
453 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
454 bool tryToPromoteExts(TypePromotionTransaction &TPT,
455 const SmallVectorImpl<Instruction *> &Exts,
456 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
457 unsigned CreatedInstsCost = 0);
458 bool mergeSExts(Function &F);
459 bool splitLargeGEPOffsets();
460 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
461 SmallPtrSetImpl<Instruction *> &DeletedInstrs);
462 bool optimizePhiTypes(Function &F);
463 bool performAddressTypePromotion(
464 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
465 bool HasPromoted, TypePromotionTransaction &TPT,
466 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
467 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
468 bool simplifyOffsetableRelocate(GCStatepointInst &I);
470 bool tryToSinkFreeOperands(Instruction *I);
471 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
472 CmpInst *Cmp, Intrinsic::ID IID);
473 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
474 bool optimizeURem(Instruction *Rem);
475 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
476 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
477 void verifyBFIUpdates(Function &F);
478 bool _run(Function &F);
481 class CodeGenPrepareLegacyPass : public FunctionPass {
482 public:
483 static char ID; // Pass identification, replacement for typeid
485 CodeGenPrepareLegacyPass() : FunctionPass(ID) {
486 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
489 bool runOnFunction(Function &F) override;
491 StringRef getPassName() const override { return "CodeGen Prepare"; }
493 void getAnalysisUsage(AnalysisUsage &AU) const override {
494 // FIXME: When we can selectively preserve passes, preserve the domtree.
495 AU.addRequired<ProfileSummaryInfoWrapperPass>();
496 AU.addRequired<TargetLibraryInfoWrapperPass>();
497 AU.addRequired<TargetPassConfig>();
498 AU.addRequired<TargetTransformInfoWrapperPass>();
499 AU.addRequired<LoopInfoWrapperPass>();
500 AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
504 } // end anonymous namespace
506 char CodeGenPrepareLegacyPass::ID = 0;
508 bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
509 if (skipFunction(F))
510 return false;
511 auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
512 CodeGenPrepare CGP(TM);
513 CGP.DL = &F.getDataLayout();
514 CGP.SubtargetInfo = TM->getSubtargetImpl(F);
515 CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
516 CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
517 CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
518 CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
519 CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
520 CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
521 CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
522 CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
523 auto BBSPRWP =
524 getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
525 CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
527 return CGP._run(F);
530 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
531 "Optimize for code generation", false, false)
532 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
533 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
534 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
535 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
536 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
537 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
538 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
539 "Optimize for code generation", false, false)
541 FunctionPass *llvm::createCodeGenPrepareLegacyPass() {
542 return new CodeGenPrepareLegacyPass();
545 PreservedAnalyses CodeGenPreparePass::run(Function &F,
546 FunctionAnalysisManager &AM) {
547 CodeGenPrepare CGP(TM);
549 bool Changed = CGP.run(F, AM);
550 if (!Changed)
551 return PreservedAnalyses::all();
553 PreservedAnalyses PA;
554 PA.preserve<TargetLibraryAnalysis>();
555 PA.preserve<TargetIRAnalysis>();
556 PA.preserve<LoopAnalysis>();
557 return PA;
560 bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
561 DL = &F.getDataLayout();
562 SubtargetInfo = TM->getSubtargetImpl(F);
563 TLI = SubtargetInfo->getTargetLowering();
564 TRI = SubtargetInfo->getRegisterInfo();
565 TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
566 TTI = &AM.getResult<TargetIRAnalysis>(F);
567 LI = &AM.getResult<LoopAnalysis>(F);
568 BPI.reset(new BranchProbabilityInfo(F, *LI));
569 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
570 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
571 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
572 BBSectionsProfileReader =
573 AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F);
574 return _run(F);
577 bool CodeGenPrepare::_run(Function &F) {
578 bool EverMadeChange = false;
580 OptSize = F.hasOptSize();
581 // Use the basic-block-sections profile to promote hot functions to .text.hot
582 // if requested.
583 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
584 BBSectionsProfileReader->isFunctionHot(F.getName())) {
585 F.setSectionPrefix("hot");
586 } else if (ProfileGuidedSectionPrefix) {
587 // The hot attribute overwrites profile count based hotness while profile
588 // counts based hotness overwrite the cold attribute.
589 // This is a conservative behabvior.
590 if (F.hasFnAttribute(Attribute::Hot) ||
591 PSI->isFunctionHotInCallGraph(&F, *BFI))
592 F.setSectionPrefix("hot");
593 // If PSI shows this function is not hot, we will placed the function
594 // into unlikely section if (1) PSI shows this is a cold function, or
595 // (2) the function has a attribute of cold.
596 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
597 F.hasFnAttribute(Attribute::Cold))
598 F.setSectionPrefix("unlikely");
599 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
600 PSI->isFunctionHotnessUnknown(F))
601 F.setSectionPrefix("unknown");
604 /// This optimization identifies DIV instructions that can be
605 /// profitably bypassed and carried out with a shorter, faster divide.
606 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
607 const DenseMap<unsigned int, unsigned int> &BypassWidths =
608 TLI->getBypassSlowDivWidths();
609 BasicBlock *BB = &*F.begin();
610 while (BB != nullptr) {
611 // bypassSlowDivision may create new BBs, but we don't want to reapply the
612 // optimization to those blocks.
613 BasicBlock *Next = BB->getNextNode();
614 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
615 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
616 BB = Next;
620 // Get rid of @llvm.assume builtins before attempting to eliminate empty
621 // blocks, since there might be blocks that only contain @llvm.assume calls
622 // (plus arguments that we can get rid of).
623 EverMadeChange |= eliminateAssumptions(F);
625 // Eliminate blocks that contain only PHI nodes and an
626 // unconditional branch.
627 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
629 ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
630 if (!DisableBranchOpts)
631 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
633 // Split some critical edges where one of the sources is an indirect branch,
634 // to help generate sane code for PHIs involving such edges.
635 EverMadeChange |=
636 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
638 // If we are optimzing huge function, we need to consider the build time.
639 // Because the basic algorithm's complex is near O(N!).
640 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
642 // Transformations above may invalidate dominator tree and/or loop info.
643 DT.reset();
644 LI->releaseMemory();
645 LI->analyze(getDT(F));
647 bool MadeChange = true;
648 bool FuncIterated = false;
649 while (MadeChange) {
650 MadeChange = false;
652 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
653 if (FuncIterated && !FreshBBs.contains(&BB))
654 continue;
656 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
657 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
659 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
660 DT.reset();
662 MadeChange |= Changed;
663 if (IsHugeFunc) {
664 // If the BB is updated, it may still has chance to be optimized.
665 // This usually happen at sink optimization.
666 // For example:
668 // bb0:
669 // %and = and i32 %a, 4
670 // %cmp = icmp eq i32 %and, 0
672 // If the %cmp sink to other BB, the %and will has chance to sink.
673 if (Changed)
674 FreshBBs.insert(&BB);
675 else if (FuncIterated)
676 FreshBBs.erase(&BB);
677 } else {
678 // For small/normal functions, we restart BB iteration if the dominator
679 // tree of the Function was changed.
680 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
681 break;
684 // We have iterated all the BB in the (only work for huge) function.
685 FuncIterated = IsHugeFunc;
687 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
688 MadeChange |= mergeSExts(F);
689 if (!LargeOffsetGEPMap.empty())
690 MadeChange |= splitLargeGEPOffsets();
691 MadeChange |= optimizePhiTypes(F);
693 if (MadeChange)
694 eliminateFallThrough(F, DT.get());
696 #ifndef NDEBUG
697 if (MadeChange && VerifyLoopInfo)
698 LI->verify(getDT(F));
699 #endif
701 // Really free removed instructions during promotion.
702 for (Instruction *I : RemovedInsts)
703 I->deleteValue();
705 EverMadeChange |= MadeChange;
706 SeenChainsForSExt.clear();
707 ValToSExtendedUses.clear();
708 RemovedInsts.clear();
709 LargeOffsetGEPMap.clear();
710 LargeOffsetGEPID.clear();
713 NewGEPBases.clear();
714 SunkAddrs.clear();
716 if (!DisableBranchOpts) {
717 MadeChange = false;
718 // Use a set vector to get deterministic iteration order. The order the
719 // blocks are removed may affect whether or not PHI nodes in successors
720 // are removed.
721 SmallSetVector<BasicBlock *, 8> WorkList;
722 for (BasicBlock &BB : F) {
723 SmallVector<BasicBlock *, 2> Successors(successors(&BB));
724 MadeChange |= ConstantFoldTerminator(&BB, true);
725 if (!MadeChange)
726 continue;
728 for (BasicBlock *Succ : Successors)
729 if (pred_empty(Succ))
730 WorkList.insert(Succ);
733 // Delete the dead blocks and any of their dead successors.
734 MadeChange |= !WorkList.empty();
735 while (!WorkList.empty()) {
736 BasicBlock *BB = WorkList.pop_back_val();
737 SmallVector<BasicBlock *, 2> Successors(successors(BB));
739 DeleteDeadBlock(BB);
741 for (BasicBlock *Succ : Successors)
742 if (pred_empty(Succ))
743 WorkList.insert(Succ);
746 // Merge pairs of basic blocks with unconditional branches, connected by
747 // a single edge.
748 if (EverMadeChange || MadeChange)
749 MadeChange |= eliminateFallThrough(F);
751 EverMadeChange |= MadeChange;
754 if (!DisableGCOpts) {
755 SmallVector<GCStatepointInst *, 2> Statepoints;
756 for (BasicBlock &BB : F)
757 for (Instruction &I : BB)
758 if (auto *SP = dyn_cast<GCStatepointInst>(&I))
759 Statepoints.push_back(SP);
760 for (auto &I : Statepoints)
761 EverMadeChange |= simplifyOffsetableRelocate(*I);
764 // Do this last to clean up use-before-def scenarios introduced by other
765 // preparatory transforms.
766 EverMadeChange |= placeDbgValues(F);
767 EverMadeChange |= placePseudoProbes(F);
769 #ifndef NDEBUG
770 if (VerifyBFIUpdates)
771 verifyBFIUpdates(F);
772 #endif
774 return EverMadeChange;
777 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
778 bool MadeChange = false;
779 for (BasicBlock &BB : F) {
780 CurInstIterator = BB.begin();
781 while (CurInstIterator != BB.end()) {
782 Instruction *I = &*(CurInstIterator++);
783 if (auto *Assume = dyn_cast<AssumeInst>(I)) {
784 MadeChange = true;
785 Value *Operand = Assume->getOperand(0);
786 Assume->eraseFromParent();
788 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
789 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
794 return MadeChange;
797 /// An instruction is about to be deleted, so remove all references to it in our
798 /// GEP-tracking data strcutures.
799 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
800 LargeOffsetGEPMap.erase(V);
801 NewGEPBases.erase(V);
803 auto GEP = dyn_cast<GetElementPtrInst>(V);
804 if (!GEP)
805 return;
807 LargeOffsetGEPID.erase(GEP);
809 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
810 if (VecI == LargeOffsetGEPMap.end())
811 return;
813 auto &GEPVector = VecI->second;
814 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
816 if (GEPVector.empty())
817 LargeOffsetGEPMap.erase(VecI);
820 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
821 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
822 DominatorTree NewDT(F);
823 LoopInfo NewLI(NewDT);
824 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
825 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
826 NewBFI.verifyMatch(*BFI);
829 /// Merge basic blocks which are connected by a single edge, where one of the
830 /// basic blocks has a single successor pointing to the other basic block,
831 /// which has a single predecessor.
832 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
833 bool Changed = false;
834 // Scan all of the blocks in the function, except for the entry block.
835 // Use a temporary array to avoid iterator being invalidated when
836 // deleting blocks.
837 SmallVector<WeakTrackingVH, 16> Blocks;
838 for (auto &Block : llvm::drop_begin(F))
839 Blocks.push_back(&Block);
841 SmallSet<WeakTrackingVH, 16> Preds;
842 for (auto &Block : Blocks) {
843 auto *BB = cast_or_null<BasicBlock>(Block);
844 if (!BB)
845 continue;
846 // If the destination block has a single pred, then this is a trivial
847 // edge, just collapse it.
848 BasicBlock *SinglePred = BB->getSinglePredecessor();
850 // Don't merge if BB's address is taken.
851 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
852 continue;
854 // Make an effort to skip unreachable blocks.
855 if (DT && !DT->isReachableFromEntry(BB))
856 continue;
858 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
859 if (Term && !Term->isConditional()) {
860 Changed = true;
861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
863 // Merge BB into SinglePred and delete it.
864 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
865 /* MemDep */ nullptr,
866 /* PredecessorWithTwoSuccessors */ false, DT);
867 Preds.insert(SinglePred);
869 if (IsHugeFunc) {
870 // Update FreshBBs to optimize the merged BB.
871 FreshBBs.insert(SinglePred);
872 FreshBBs.erase(BB);
877 // (Repeatedly) merging blocks into their predecessors can create redundant
878 // debug intrinsics.
879 for (const auto &Pred : Preds)
880 if (auto *BB = cast_or_null<BasicBlock>(Pred))
881 RemoveRedundantDbgInstrs(BB);
883 return Changed;
886 /// Find a destination block from BB if BB is mergeable empty block.
887 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
888 // If this block doesn't end with an uncond branch, ignore it.
889 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
890 if (!BI || !BI->isUnconditional())
891 return nullptr;
893 // If the instruction before the branch (skipping debug info) isn't a phi
894 // node, then other stuff is happening here.
895 BasicBlock::iterator BBI = BI->getIterator();
896 if (BBI != BB->begin()) {
897 --BBI;
898 while (isa<DbgInfoIntrinsic>(BBI)) {
899 if (BBI == BB->begin())
900 break;
901 --BBI;
903 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
904 return nullptr;
907 // Do not break infinite loops.
908 BasicBlock *DestBB = BI->getSuccessor(0);
909 if (DestBB == BB)
910 return nullptr;
912 if (!canMergeBlocks(BB, DestBB))
913 DestBB = nullptr;
915 return DestBB;
918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920 /// edges in ways that are non-optimal for isel. Start by eliminating these
921 /// blocks so we can split them the way we want them.
922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
923 SmallPtrSet<BasicBlock *, 16> Preheaders;
924 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
925 while (!LoopList.empty()) {
926 Loop *L = LoopList.pop_back_val();
927 llvm::append_range(LoopList, *L);
928 if (BasicBlock *Preheader = L->getLoopPreheader())
929 Preheaders.insert(Preheader);
932 bool MadeChange = false;
933 // Copy blocks into a temporary array to avoid iterator invalidation issues
934 // as we remove them.
935 // Note that this intentionally skips the entry block.
936 SmallVector<WeakTrackingVH, 16> Blocks;
937 for (auto &Block : llvm::drop_begin(F)) {
938 // Delete phi nodes that could block deleting other empty blocks.
939 if (!DisableDeletePHIs)
940 MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
941 Blocks.push_back(&Block);
944 for (auto &Block : Blocks) {
945 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
946 if (!BB)
947 continue;
948 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
949 if (!DestBB ||
950 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
951 continue;
953 eliminateMostlyEmptyBlock(BB);
954 MadeChange = true;
956 return MadeChange;
959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
960 BasicBlock *DestBB,
961 bool isPreheader) {
962 // Do not delete loop preheaders if doing so would create a critical edge.
963 // Loop preheaders can be good locations to spill registers. If the
964 // preheader is deleted and we create a critical edge, registers may be
965 // spilled in the loop body instead.
966 if (!DisablePreheaderProtect && isPreheader &&
967 !(BB->getSinglePredecessor() &&
968 BB->getSinglePredecessor()->getSingleSuccessor()))
969 return false;
971 // Skip merging if the block's successor is also a successor to any callbr
972 // that leads to this block.
973 // FIXME: Is this really needed? Is this a correctness issue?
974 for (BasicBlock *Pred : predecessors(BB)) {
975 if (isa<CallBrInst>(Pred->getTerminator()) &&
976 llvm::is_contained(successors(Pred), DestBB))
977 return false;
980 // Try to skip merging if the unique predecessor of BB is terminated by a
981 // switch or indirect branch instruction, and BB is used as an incoming block
982 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
983 // add COPY instructions in the predecessor of BB instead of BB (if it is not
984 // merged). Note that the critical edge created by merging such blocks wont be
985 // split in MachineSink because the jump table is not analyzable. By keeping
986 // such empty block (BB), ISel will place COPY instructions in BB, not in the
987 // predecessor of BB.
988 BasicBlock *Pred = BB->getUniquePredecessor();
989 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
990 isa<IndirectBrInst>(Pred->getTerminator())))
991 return true;
993 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
994 return true;
996 // We use a simple cost heuristic which determine skipping merging is
997 // profitable if the cost of skipping merging is less than the cost of
998 // merging : Cost(skipping merging) < Cost(merging BB), where the
999 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1000 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1001 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1002 // Freq(Pred) / Freq(BB) > 2.
1003 // Note that if there are multiple empty blocks sharing the same incoming
1004 // value for the PHIs in the DestBB, we consider them together. In such
1005 // case, Cost(merging BB) will be the sum of their frequencies.
1007 if (!isa<PHINode>(DestBB->begin()))
1008 return true;
1010 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1012 // Find all other incoming blocks from which incoming values of all PHIs in
1013 // DestBB are the same as the ones from BB.
1014 for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1015 if (DestBBPred == BB)
1016 continue;
1018 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1019 return DestPN.getIncomingValueForBlock(BB) ==
1020 DestPN.getIncomingValueForBlock(DestBBPred);
1022 SameIncomingValueBBs.insert(DestBBPred);
1025 // See if all BB's incoming values are same as the value from Pred. In this
1026 // case, no reason to skip merging because COPYs are expected to be place in
1027 // Pred already.
1028 if (SameIncomingValueBBs.count(Pred))
1029 return true;
1031 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1032 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1034 for (auto *SameValueBB : SameIncomingValueBBs)
1035 if (SameValueBB->getUniquePredecessor() == Pred &&
1036 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1037 BBFreq += BFI->getBlockFreq(SameValueBB);
1039 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1040 return !Limit || PredFreq <= *Limit;
1043 /// Return true if we can merge BB into DestBB if there is a single
1044 /// unconditional branch between them, and BB contains no other non-phi
1045 /// instructions.
1046 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1047 const BasicBlock *DestBB) const {
1048 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1049 // the successor. If there are more complex condition (e.g. preheaders),
1050 // don't mess around with them.
1051 for (const PHINode &PN : BB->phis()) {
1052 for (const User *U : PN.users()) {
1053 const Instruction *UI = cast<Instruction>(U);
1054 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1055 return false;
1056 // If User is inside DestBB block and it is a PHINode then check
1057 // incoming value. If incoming value is not from BB then this is
1058 // a complex condition (e.g. preheaders) we want to avoid here.
1059 if (UI->getParent() == DestBB) {
1060 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1061 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1062 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1063 if (Insn && Insn->getParent() == BB &&
1064 Insn->getParent() != UPN->getIncomingBlock(I))
1065 return false;
1071 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1072 // and DestBB may have conflicting incoming values for the block. If so, we
1073 // can't merge the block.
1074 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1075 if (!DestBBPN)
1076 return true; // no conflict.
1078 // Collect the preds of BB.
1079 SmallPtrSet<const BasicBlock *, 16> BBPreds;
1080 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1081 // It is faster to get preds from a PHI than with pred_iterator.
1082 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1083 BBPreds.insert(BBPN->getIncomingBlock(i));
1084 } else {
1085 BBPreds.insert(pred_begin(BB), pred_end(BB));
1088 // Walk the preds of DestBB.
1089 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1090 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1091 if (BBPreds.count(Pred)) { // Common predecessor?
1092 for (const PHINode &PN : DestBB->phis()) {
1093 const Value *V1 = PN.getIncomingValueForBlock(Pred);
1094 const Value *V2 = PN.getIncomingValueForBlock(BB);
1096 // If V2 is a phi node in BB, look up what the mapped value will be.
1097 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1098 if (V2PN->getParent() == BB)
1099 V2 = V2PN->getIncomingValueForBlock(Pred);
1101 // If there is a conflict, bail out.
1102 if (V1 != V2)
1103 return false;
1108 return true;
1111 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1112 static void replaceAllUsesWith(Value *Old, Value *New,
1113 SmallSet<BasicBlock *, 32> &FreshBBs,
1114 bool IsHuge) {
1115 auto *OldI = dyn_cast<Instruction>(Old);
1116 if (OldI) {
1117 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1118 UI != E; ++UI) {
1119 Instruction *User = cast<Instruction>(*UI);
1120 if (IsHuge)
1121 FreshBBs.insert(User->getParent());
1124 Old->replaceAllUsesWith(New);
1127 /// Eliminate a basic block that has only phi's and an unconditional branch in
1128 /// it.
1129 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1130 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1131 BasicBlock *DestBB = BI->getSuccessor(0);
1133 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1134 << *BB << *DestBB);
1136 // If the destination block has a single pred, then this is a trivial edge,
1137 // just collapse it.
1138 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1139 if (SinglePred != DestBB) {
1140 assert(SinglePred == BB &&
1141 "Single predecessor not the same as predecessor");
1142 // Merge DestBB into SinglePred/BB and delete it.
1143 MergeBlockIntoPredecessor(DestBB);
1144 // Note: BB(=SinglePred) will not be deleted on this path.
1145 // DestBB(=its single successor) is the one that was deleted.
1146 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1148 if (IsHugeFunc) {
1149 // Update FreshBBs to optimize the merged BB.
1150 FreshBBs.insert(SinglePred);
1151 FreshBBs.erase(DestBB);
1153 return;
1157 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1158 // to handle the new incoming edges it is about to have.
1159 for (PHINode &PN : DestBB->phis()) {
1160 // Remove the incoming value for BB, and remember it.
1161 Value *InVal = PN.removeIncomingValue(BB, false);
1163 // Two options: either the InVal is a phi node defined in BB or it is some
1164 // value that dominates BB.
1165 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1166 if (InValPhi && InValPhi->getParent() == BB) {
1167 // Add all of the input values of the input PHI as inputs of this phi.
1168 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1169 PN.addIncoming(InValPhi->getIncomingValue(i),
1170 InValPhi->getIncomingBlock(i));
1171 } else {
1172 // Otherwise, add one instance of the dominating value for each edge that
1173 // we will be adding.
1174 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1175 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1176 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1177 } else {
1178 for (BasicBlock *Pred : predecessors(BB))
1179 PN.addIncoming(InVal, Pred);
1184 // Preserve loop Metadata.
1185 if (BI->hasMetadata(LLVMContext::MD_loop)) {
1186 for (auto *Pred : predecessors(BB))
1187 Pred->getTerminator()->copyMetadata(*BI, LLVMContext::MD_loop);
1190 // The PHIs are now updated, change everything that refers to BB to use
1191 // DestBB and remove BB.
1192 BB->replaceAllUsesWith(DestBB);
1193 BB->eraseFromParent();
1194 ++NumBlocksElim;
1196 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1199 // Computes a map of base pointer relocation instructions to corresponding
1200 // derived pointer relocation instructions given a vector of all relocate calls
1201 static void computeBaseDerivedRelocateMap(
1202 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1203 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>>
1204 &RelocateInstMap) {
1205 // Collect information in two maps: one primarily for locating the base object
1206 // while filling the second map; the second map is the final structure holding
1207 // a mapping between Base and corresponding Derived relocate calls
1208 MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1209 for (auto *ThisRelocate : AllRelocateCalls) {
1210 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1211 ThisRelocate->getDerivedPtrIndex());
1212 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1214 for (auto &Item : RelocateIdxMap) {
1215 std::pair<unsigned, unsigned> Key = Item.first;
1216 if (Key.first == Key.second)
1217 // Base relocation: nothing to insert
1218 continue;
1220 GCRelocateInst *I = Item.second;
1221 auto BaseKey = std::make_pair(Key.first, Key.first);
1223 // We're iterating over RelocateIdxMap so we cannot modify it.
1224 auto MaybeBase = RelocateIdxMap.find(BaseKey);
1225 if (MaybeBase == RelocateIdxMap.end())
1226 // TODO: We might want to insert a new base object relocate and gep off
1227 // that, if there are enough derived object relocates.
1228 continue;
1230 RelocateInstMap[MaybeBase->second].push_back(I);
1234 // Accepts a GEP and extracts the operands into a vector provided they're all
1235 // small integer constants
1236 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1237 SmallVectorImpl<Value *> &OffsetV) {
1238 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1239 // Only accept small constant integer operands
1240 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1241 if (!Op || Op->getZExtValue() > 20)
1242 return false;
1245 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1246 OffsetV.push_back(GEP->getOperand(i));
1247 return true;
1250 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1251 // replace, computes a replacement, and affects it.
1252 static bool
1253 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1254 const SmallVectorImpl<GCRelocateInst *> &Targets) {
1255 bool MadeChange = false;
1256 // We must ensure the relocation of derived pointer is defined after
1257 // relocation of base pointer. If we find a relocation corresponding to base
1258 // defined earlier than relocation of base then we move relocation of base
1259 // right before found relocation. We consider only relocation in the same
1260 // basic block as relocation of base. Relocations from other basic block will
1261 // be skipped by optimization and we do not care about them.
1262 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1263 &*R != RelocatedBase; ++R)
1264 if (auto *RI = dyn_cast<GCRelocateInst>(R))
1265 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1266 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1267 RelocatedBase->moveBefore(RI);
1268 MadeChange = true;
1269 break;
1272 for (GCRelocateInst *ToReplace : Targets) {
1273 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1274 "Not relocating a derived object of the original base object");
1275 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1276 // A duplicate relocate call. TODO: coalesce duplicates.
1277 continue;
1280 if (RelocatedBase->getParent() != ToReplace->getParent()) {
1281 // Base and derived relocates are in different basic blocks.
1282 // In this case transform is only valid when base dominates derived
1283 // relocate. However it would be too expensive to check dominance
1284 // for each such relocate, so we skip the whole transformation.
1285 continue;
1288 Value *Base = ToReplace->getBasePtr();
1289 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1290 if (!Derived || Derived->getPointerOperand() != Base)
1291 continue;
1293 SmallVector<Value *, 2> OffsetV;
1294 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1295 continue;
1297 // Create a Builder and replace the target callsite with a gep
1298 assert(RelocatedBase->getNextNode() &&
1299 "Should always have one since it's not a terminator");
1301 // Insert after RelocatedBase
1302 IRBuilder<> Builder(RelocatedBase->getNextNode());
1303 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1305 // If gc_relocate does not match the actual type, cast it to the right type.
1306 // In theory, there must be a bitcast after gc_relocate if the type does not
1307 // match, and we should reuse it to get the derived pointer. But it could be
1308 // cases like this:
1309 // bb1:
1310 // ...
1311 // %g1 = call coldcc i8 addrspace(1)*
1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1314 // bb2:
1315 // ...
1316 // %g2 = call coldcc i8 addrspace(1)*
1317 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1319 // merge:
1320 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1321 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1323 // In this case, we can not find the bitcast any more. So we insert a new
1324 // bitcast no matter there is already one or not. In this way, we can handle
1325 // all cases, and the extra bitcast should be optimized away in later
1326 // passes.
1327 Value *ActualRelocatedBase = RelocatedBase;
1328 if (RelocatedBase->getType() != Base->getType()) {
1329 ActualRelocatedBase =
1330 Builder.CreateBitCast(RelocatedBase, Base->getType());
1332 Value *Replacement =
1333 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1334 ArrayRef(OffsetV));
1335 Replacement->takeName(ToReplace);
1336 // If the newly generated derived pointer's type does not match the original
1337 // derived pointer's type, cast the new derived pointer to match it. Same
1338 // reasoning as above.
1339 Value *ActualReplacement = Replacement;
1340 if (Replacement->getType() != ToReplace->getType()) {
1341 ActualReplacement =
1342 Builder.CreateBitCast(Replacement, ToReplace->getType());
1344 ToReplace->replaceAllUsesWith(ActualReplacement);
1345 ToReplace->eraseFromParent();
1347 MadeChange = true;
1349 return MadeChange;
1352 // Turns this:
1354 // %base = ...
1355 // %ptr = gep %base + 15
1356 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1357 // %base' = relocate(%tok, i32 4, i32 4)
1358 // %ptr' = relocate(%tok, i32 4, i32 5)
1359 // %val = load %ptr'
1361 // into this:
1363 // %base = ...
1364 // %ptr = gep %base + 15
1365 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1366 // %base' = gc.relocate(%tok, i32 4, i32 4)
1367 // %ptr' = gep %base' + 15
1368 // %val = load %ptr'
1369 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1370 bool MadeChange = false;
1371 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1372 for (auto *U : I.users())
1373 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1374 // Collect all the relocate calls associated with a statepoint
1375 AllRelocateCalls.push_back(Relocate);
1377 // We need at least one base pointer relocation + one derived pointer
1378 // relocation to mangle
1379 if (AllRelocateCalls.size() < 2)
1380 return false;
1382 // RelocateInstMap is a mapping from the base relocate instruction to the
1383 // corresponding derived relocate instructions
1384 MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap;
1385 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1386 if (RelocateInstMap.empty())
1387 return false;
1389 for (auto &Item : RelocateInstMap)
1390 // Item.first is the RelocatedBase to offset against
1391 // Item.second is the vector of Targets to replace
1392 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1393 return MadeChange;
1396 /// Sink the specified cast instruction into its user blocks.
1397 static bool SinkCast(CastInst *CI) {
1398 BasicBlock *DefBB = CI->getParent();
1400 /// InsertedCasts - Only insert a cast in each block once.
1401 DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1403 bool MadeChange = false;
1404 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1405 UI != E;) {
1406 Use &TheUse = UI.getUse();
1407 Instruction *User = cast<Instruction>(*UI);
1409 // Figure out which BB this cast is used in. For PHI's this is the
1410 // appropriate predecessor block.
1411 BasicBlock *UserBB = User->getParent();
1412 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1413 UserBB = PN->getIncomingBlock(TheUse);
1416 // Preincrement use iterator so we don't invalidate it.
1417 ++UI;
1419 // The first insertion point of a block containing an EH pad is after the
1420 // pad. If the pad is the user, we cannot sink the cast past the pad.
1421 if (User->isEHPad())
1422 continue;
1424 // If the block selected to receive the cast is an EH pad that does not
1425 // allow non-PHI instructions before the terminator, we can't sink the
1426 // cast.
1427 if (UserBB->getTerminator()->isEHPad())
1428 continue;
1430 // If this user is in the same block as the cast, don't change the cast.
1431 if (UserBB == DefBB)
1432 continue;
1434 // If we have already inserted a cast into this block, use it.
1435 CastInst *&InsertedCast = InsertedCasts[UserBB];
1437 if (!InsertedCast) {
1438 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1439 assert(InsertPt != UserBB->end());
1440 InsertedCast = cast<CastInst>(CI->clone());
1441 InsertedCast->insertBefore(*UserBB, InsertPt);
1444 // Replace a use of the cast with a use of the new cast.
1445 TheUse = InsertedCast;
1446 MadeChange = true;
1447 ++NumCastUses;
1450 // If we removed all uses, nuke the cast.
1451 if (CI->use_empty()) {
1452 salvageDebugInfo(*CI);
1453 CI->eraseFromParent();
1454 MadeChange = true;
1457 return MadeChange;
1460 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1461 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1462 /// reduce the number of virtual registers that must be created and coalesced.
1464 /// Return true if any changes are made.
1465 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1466 const DataLayout &DL) {
1467 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1468 // than sinking only nop casts, but is helpful on some platforms.
1469 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1470 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1471 ASC->getDestAddressSpace()))
1472 return false;
1475 // If this is a noop copy,
1476 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1477 EVT DstVT = TLI.getValueType(DL, CI->getType());
1479 // This is an fp<->int conversion?
1480 if (SrcVT.isInteger() != DstVT.isInteger())
1481 return false;
1483 // If this is an extension, it will be a zero or sign extension, which
1484 // isn't a noop.
1485 if (SrcVT.bitsLT(DstVT))
1486 return false;
1488 // If these values will be promoted, find out what they will be promoted
1489 // to. This helps us consider truncates on PPC as noop copies when they
1490 // are.
1491 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1492 TargetLowering::TypePromoteInteger)
1493 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1494 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1495 TargetLowering::TypePromoteInteger)
1496 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1498 // If, after promotion, these are the same types, this is a noop copy.
1499 if (SrcVT != DstVT)
1500 return false;
1502 return SinkCast(CI);
1505 // Match a simple increment by constant operation. Note that if a sub is
1506 // matched, the step is negated (as if the step had been canonicalized to
1507 // an add, even though we leave the instruction alone.)
1508 static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1509 Constant *&Step) {
1510 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1511 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1512 m_Instruction(LHS), m_Constant(Step)))))
1513 return true;
1514 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1515 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1516 m_Instruction(LHS), m_Constant(Step))))) {
1517 Step = ConstantExpr::getNeg(Step);
1518 return true;
1520 return false;
1523 /// If given \p PN is an inductive variable with value IVInc coming from the
1524 /// backedge, and on each iteration it gets increased by Step, return pair
1525 /// <IVInc, Step>. Otherwise, return std::nullopt.
1526 static std::optional<std::pair<Instruction *, Constant *>>
1527 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1528 const Loop *L = LI->getLoopFor(PN->getParent());
1529 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1530 return std::nullopt;
1531 auto *IVInc =
1532 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1533 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1534 return std::nullopt;
1535 Instruction *LHS = nullptr;
1536 Constant *Step = nullptr;
1537 if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1538 return std::make_pair(IVInc, Step);
1539 return std::nullopt;
1542 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1543 auto *I = dyn_cast<Instruction>(V);
1544 if (!I)
1545 return false;
1546 Instruction *LHS = nullptr;
1547 Constant *Step = nullptr;
1548 if (!matchIncrement(I, LHS, Step))
1549 return false;
1550 if (auto *PN = dyn_cast<PHINode>(LHS))
1551 if (auto IVInc = getIVIncrement(PN, LI))
1552 return IVInc->first == I;
1553 return false;
1556 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1557 Value *Arg0, Value *Arg1,
1558 CmpInst *Cmp,
1559 Intrinsic::ID IID) {
1560 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1561 if (!isIVIncrement(BO, LI))
1562 return false;
1563 const Loop *L = LI->getLoopFor(BO->getParent());
1564 assert(L && "L should not be null after isIVIncrement()");
1565 // Do not risk on moving increment into a child loop.
1566 if (LI->getLoopFor(Cmp->getParent()) != L)
1567 return false;
1569 // Finally, we need to ensure that the insert point will dominate all
1570 // existing uses of the increment.
1572 auto &DT = getDT(*BO->getParent()->getParent());
1573 if (DT.dominates(Cmp->getParent(), BO->getParent()))
1574 // If we're moving up the dom tree, all uses are trivially dominated.
1575 // (This is the common case for code produced by LSR.)
1576 return true;
1578 // Otherwise, special case the single use in the phi recurrence.
1579 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1581 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1582 // We used to use a dominator tree here to allow multi-block optimization.
1583 // But that was problematic because:
1584 // 1. It could cause a perf regression by hoisting the math op into the
1585 // critical path.
1586 // 2. It could cause a perf regression by creating a value that was live
1587 // across multiple blocks and increasing register pressure.
1588 // 3. Use of a dominator tree could cause large compile-time regression.
1589 // This is because we recompute the DT on every change in the main CGP
1590 // run-loop. The recomputing is probably unnecessary in many cases, so if
1591 // that was fixed, using a DT here would be ok.
1593 // There is one important particular case we still want to handle: if BO is
1594 // the IV increment. Important properties that make it profitable:
1595 // - We can speculate IV increment anywhere in the loop (as long as the
1596 // indvar Phi is its only user);
1597 // - Upon computing Cmp, we effectively compute something equivalent to the
1598 // IV increment (despite it loops differently in the IR). So moving it up
1599 // to the cmp point does not really increase register pressure.
1600 return false;
1603 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1604 if (BO->getOpcode() == Instruction::Add &&
1605 IID == Intrinsic::usub_with_overflow) {
1606 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1607 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1610 // Insert at the first instruction of the pair.
1611 Instruction *InsertPt = nullptr;
1612 for (Instruction &Iter : *Cmp->getParent()) {
1613 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1614 // the overflow intrinsic are defined.
1615 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1616 InsertPt = &Iter;
1617 break;
1620 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1622 IRBuilder<> Builder(InsertPt);
1623 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1624 if (BO->getOpcode() != Instruction::Xor) {
1625 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1626 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1627 } else
1628 assert(BO->hasOneUse() &&
1629 "Patterns with XOr should use the BO only in the compare");
1630 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1631 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1632 Cmp->eraseFromParent();
1633 BO->eraseFromParent();
1634 return true;
1637 /// Match special-case patterns that check for unsigned add overflow.
1638 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1639 BinaryOperator *&Add) {
1640 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1641 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1642 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1644 // We are not expecting non-canonical/degenerate code. Just bail out.
1645 if (isa<Constant>(A))
1646 return false;
1648 ICmpInst::Predicate Pred = Cmp->getPredicate();
1649 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1650 B = ConstantInt::get(B->getType(), 1);
1651 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1652 B = Constant::getAllOnesValue(B->getType());
1653 else
1654 return false;
1656 // Check the users of the variable operand of the compare looking for an add
1657 // with the adjusted constant.
1658 for (User *U : A->users()) {
1659 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1660 Add = cast<BinaryOperator>(U);
1661 return true;
1664 return false;
1667 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1668 /// intrinsic. Return true if any changes were made.
1669 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1670 ModifyDT &ModifiedDT) {
1671 bool EdgeCase = false;
1672 Value *A, *B;
1673 BinaryOperator *Add;
1674 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1675 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1676 return false;
1677 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1678 A = Add->getOperand(0);
1679 B = Add->getOperand(1);
1680 EdgeCase = true;
1683 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1684 TLI->getValueType(*DL, Add->getType()),
1685 Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1686 return false;
1688 // We don't want to move around uses of condition values this late, so we
1689 // check if it is legal to create the call to the intrinsic in the basic
1690 // block containing the icmp.
1691 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1692 return false;
1694 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1695 Intrinsic::uadd_with_overflow))
1696 return false;
1698 // Reset callers - do not crash by iterating over a dead instruction.
1699 ModifiedDT = ModifyDT::ModifyInstDT;
1700 return true;
1703 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1704 ModifyDT &ModifiedDT) {
1705 // We are not expecting non-canonical/degenerate code. Just bail out.
1706 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1707 if (isa<Constant>(A) && isa<Constant>(B))
1708 return false;
1710 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1711 ICmpInst::Predicate Pred = Cmp->getPredicate();
1712 if (Pred == ICmpInst::ICMP_UGT) {
1713 std::swap(A, B);
1714 Pred = ICmpInst::ICMP_ULT;
1716 // Convert special-case: (A == 0) is the same as (A u< 1).
1717 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1718 B = ConstantInt::get(B->getType(), 1);
1719 Pred = ICmpInst::ICMP_ULT;
1721 // Convert special-case: (A != 0) is the same as (0 u< A).
1722 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1723 std::swap(A, B);
1724 Pred = ICmpInst::ICMP_ULT;
1726 if (Pred != ICmpInst::ICMP_ULT)
1727 return false;
1729 // Walk the users of a variable operand of a compare looking for a subtract or
1730 // add with that same operand. Also match the 2nd operand of the compare to
1731 // the add/sub, but that may be a negated constant operand of an add.
1732 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1733 BinaryOperator *Sub = nullptr;
1734 for (User *U : CmpVariableOperand->users()) {
1735 // A - B, A u< B --> usubo(A, B)
1736 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1737 Sub = cast<BinaryOperator>(U);
1738 break;
1741 // A + (-C), A u< C (canonicalized form of (sub A, C))
1742 const APInt *CmpC, *AddC;
1743 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1744 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1745 Sub = cast<BinaryOperator>(U);
1746 break;
1749 if (!Sub)
1750 return false;
1752 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1753 TLI->getValueType(*DL, Sub->getType()),
1754 Sub->hasNUsesOrMore(1)))
1755 return false;
1757 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1758 Cmp, Intrinsic::usub_with_overflow))
1759 return false;
1761 // Reset callers - do not crash by iterating over a dead instruction.
1762 ModifiedDT = ModifyDT::ModifyInstDT;
1763 return true;
1766 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1767 /// registers that must be created and coalesced. This is a clear win except on
1768 /// targets with multiple condition code registers (PowerPC), where it might
1769 /// lose; some adjustment may be wanted there.
1771 /// Return true if any changes are made.
1772 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1773 if (TLI.hasMultipleConditionRegisters())
1774 return false;
1776 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1777 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1778 return false;
1780 // Only insert a cmp in each block once.
1781 DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1783 bool MadeChange = false;
1784 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1785 UI != E;) {
1786 Use &TheUse = UI.getUse();
1787 Instruction *User = cast<Instruction>(*UI);
1789 // Preincrement use iterator so we don't invalidate it.
1790 ++UI;
1792 // Don't bother for PHI nodes.
1793 if (isa<PHINode>(User))
1794 continue;
1796 // Figure out which BB this cmp is used in.
1797 BasicBlock *UserBB = User->getParent();
1798 BasicBlock *DefBB = Cmp->getParent();
1800 // If this user is in the same block as the cmp, don't change the cmp.
1801 if (UserBB == DefBB)
1802 continue;
1804 // If we have already inserted a cmp into this block, use it.
1805 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1807 if (!InsertedCmp) {
1808 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1809 assert(InsertPt != UserBB->end());
1810 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1811 Cmp->getOperand(0), Cmp->getOperand(1), "");
1812 InsertedCmp->insertBefore(*UserBB, InsertPt);
1813 // Propagate the debug info.
1814 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1817 // Replace a use of the cmp with a use of the new cmp.
1818 TheUse = InsertedCmp;
1819 MadeChange = true;
1820 ++NumCmpUses;
1823 // If we removed all uses, nuke the cmp.
1824 if (Cmp->use_empty()) {
1825 Cmp->eraseFromParent();
1826 MadeChange = true;
1829 return MadeChange;
1832 /// For pattern like:
1834 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1835 /// ...
1836 /// DomBB:
1837 /// ...
1838 /// br DomCond, TrueBB, CmpBB
1839 /// CmpBB: (with DomBB being the single predecessor)
1840 /// ...
1841 /// Cmp = icmp eq CmpOp0, CmpOp1
1842 /// ...
1844 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1845 /// different from lowering of icmp eq (PowerPC). This function try to convert
1846 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1847 /// After that, DomCond and Cmp can use the same comparison so reduce one
1848 /// comparison.
1850 /// Return true if any changes are made.
1851 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1852 const TargetLowering &TLI) {
1853 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1854 return false;
1856 ICmpInst::Predicate Pred = Cmp->getPredicate();
1857 if (Pred != ICmpInst::ICMP_EQ)
1858 return false;
1860 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1861 // icmp slt/sgt would introduce more redundant LLVM IR.
1862 for (User *U : Cmp->users()) {
1863 if (isa<BranchInst>(U))
1864 continue;
1865 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1866 continue;
1867 return false;
1870 // This is a cheap/incomplete check for dominance - just match a single
1871 // predecessor with a conditional branch.
1872 BasicBlock *CmpBB = Cmp->getParent();
1873 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1874 if (!DomBB)
1875 return false;
1877 // We want to ensure that the only way control gets to the comparison of
1878 // interest is that a less/greater than comparison on the same operands is
1879 // false.
1880 Value *DomCond;
1881 BasicBlock *TrueBB, *FalseBB;
1882 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1883 return false;
1884 if (CmpBB != FalseBB)
1885 return false;
1887 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1888 ICmpInst::Predicate DomPred;
1889 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1890 return false;
1891 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1892 return false;
1894 // Convert the equality comparison to the opposite of the dominating
1895 // comparison and swap the direction for all branch/select users.
1896 // We have conceptually converted:
1897 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1898 // to
1899 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1900 // And similarly for branches.
1901 for (User *U : Cmp->users()) {
1902 if (auto *BI = dyn_cast<BranchInst>(U)) {
1903 assert(BI->isConditional() && "Must be conditional");
1904 BI->swapSuccessors();
1905 continue;
1907 if (auto *SI = dyn_cast<SelectInst>(U)) {
1908 // Swap operands
1909 SI->swapValues();
1910 SI->swapProfMetadata();
1911 continue;
1913 llvm_unreachable("Must be a branch or a select");
1915 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1916 return true;
1919 /// Many architectures use the same instruction for both subtract and cmp. Try
1920 /// to swap cmp operands to match subtract operations to allow for CSE.
1921 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1922 Value *Op0 = Cmp->getOperand(0);
1923 Value *Op1 = Cmp->getOperand(1);
1924 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1925 isa<Constant>(Op1) || Op0 == Op1)
1926 return false;
1928 // If a subtract already has the same operands as a compare, swapping would be
1929 // bad. If a subtract has the same operands as a compare but in reverse order,
1930 // then swapping is good.
1931 int GoodToSwap = 0;
1932 unsigned NumInspected = 0;
1933 for (const User *U : Op0->users()) {
1934 // Avoid walking many users.
1935 if (++NumInspected > 128)
1936 return false;
1937 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1938 GoodToSwap++;
1939 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1940 GoodToSwap--;
1943 if (GoodToSwap > 0) {
1944 Cmp->swapOperands();
1945 return true;
1947 return false;
1950 static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI,
1951 const DataLayout &DL) {
1952 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp);
1953 if (!FCmp)
1954 return false;
1956 // Don't fold if the target offers free fabs and the predicate is legal.
1957 EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType());
1958 if (TLI.isFAbsFree(VT) &&
1959 TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()),
1960 VT.getSimpleVT()))
1961 return false;
1963 // Reverse the canonicalization if it is a FP class test
1964 auto ShouldReverseTransform = [](FPClassTest ClassTest) {
1965 return ClassTest == fcInf || ClassTest == (fcInf | fcNan);
1967 auto [ClassVal, ClassTest] =
1968 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1969 FCmp->getOperand(0), FCmp->getOperand(1));
1970 if (!ClassVal)
1971 return false;
1973 if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest))
1974 return false;
1976 IRBuilder<> Builder(Cmp);
1977 Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest);
1978 Cmp->replaceAllUsesWith(IsFPClass);
1979 RecursivelyDeleteTriviallyDeadInstructions(Cmp);
1980 return true;
1983 static bool isRemOfLoopIncrementWithLoopInvariant(
1984 Instruction *Rem, const LoopInfo *LI, Value *&RemAmtOut, Value *&AddInstOut,
1985 Value *&AddOffsetOut, PHINode *&LoopIncrPNOut) {
1986 Value *Incr, *RemAmt;
1987 // NB: If RemAmt is a power of 2 it *should* have been transformed by now.
1988 if (!match(Rem, m_URem(m_Value(Incr), m_Value(RemAmt))))
1989 return false;
1991 Value *AddInst, *AddOffset;
1992 // Find out loop increment PHI.
1993 auto *PN = dyn_cast<PHINode>(Incr);
1994 if (PN != nullptr) {
1995 AddInst = nullptr;
1996 AddOffset = nullptr;
1997 } else {
1998 // Search through a NUW add on top of the loop increment.
1999 Value *V0, *V1;
2000 if (!match(Incr, m_NUWAdd(m_Value(V0), m_Value(V1))))
2001 return false;
2003 AddInst = Incr;
2004 PN = dyn_cast<PHINode>(V0);
2005 if (PN != nullptr) {
2006 AddOffset = V1;
2007 } else {
2008 PN = dyn_cast<PHINode>(V1);
2009 AddOffset = V0;
2013 if (!PN)
2014 return false;
2016 // This isn't strictly necessary, what we really need is one increment and any
2017 // amount of initial values all being the same.
2018 if (PN->getNumIncomingValues() != 2)
2019 return false;
2021 // Only trivially analyzable loops.
2022 Loop *L = LI->getLoopFor(PN->getParent());
2023 if (!L || !L->getLoopPreheader() || !L->getLoopLatch())
2024 return false;
2026 // Req that the remainder is in the loop
2027 if (!L->contains(Rem))
2028 return false;
2030 // Only works if the remainder amount is a loop invaraint
2031 if (!L->isLoopInvariant(RemAmt))
2032 return false;
2034 // Is the PHI a loop increment?
2035 auto LoopIncrInfo = getIVIncrement(PN, LI);
2036 if (!LoopIncrInfo)
2037 return false;
2039 // We need remainder_amount % increment_amount to be zero. Increment of one
2040 // satisfies that without any special logic and is overwhelmingly the common
2041 // case.
2042 if (!match(LoopIncrInfo->second, m_One()))
2043 return false;
2045 // Need the increment to not overflow.
2046 if (!match(LoopIncrInfo->first, m_c_NUWAdd(m_Specific(PN), m_Value())))
2047 return false;
2049 // Set output variables.
2050 RemAmtOut = RemAmt;
2051 LoopIncrPNOut = PN;
2052 AddInstOut = AddInst;
2053 AddOffsetOut = AddOffset;
2055 return true;
2058 // Try to transform:
2060 // for(i = Start; i < End; ++i)
2061 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant;
2063 // ->
2065 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant;
2066 // for(i = Start; i < End; ++i, ++rem)
2067 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem;
2068 static bool foldURemOfLoopIncrement(Instruction *Rem, const DataLayout *DL,
2069 const LoopInfo *LI,
2070 SmallSet<BasicBlock *, 32> &FreshBBs,
2071 bool IsHuge) {
2072 Value *AddOffset, *RemAmt, *AddInst;
2073 PHINode *LoopIncrPN;
2074 if (!isRemOfLoopIncrementWithLoopInvariant(Rem, LI, RemAmt, AddInst,
2075 AddOffset, LoopIncrPN))
2076 return false;
2078 // Only non-constant remainder as the extra IV is probably not profitable
2079 // in that case.
2081 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If
2082 // we can rule out register pressure and ensure this `urem` is executed each
2083 // iteration, its probably profitable to handle the const case as well.
2085 // Potential TODO(2): Should we have a check for how "nested" this remainder
2086 // operation is? The new code runs every iteration so if the remainder is
2087 // guarded behind unlikely conditions this might not be worth it.
2088 if (match(RemAmt, m_ImmConstant()))
2089 return false;
2091 Loop *L = LI->getLoopFor(LoopIncrPN->getParent());
2092 Value *Start = LoopIncrPN->getIncomingValueForBlock(L->getLoopPreheader());
2093 // If we have add create initial value for remainder.
2094 // The logic here is:
2095 // (urem (add nuw Start, IncrLoopInvariant), RemAmtLoopInvariant
2097 // Only proceed if the expression simplifies (otherwise we can't fully
2098 // optimize out the urem).
2099 if (AddInst) {
2100 assert(AddOffset && "We found an add but missing values");
2101 // Without dom-condition/assumption cache we aren't likely to get much out
2102 // of a context instruction.
2103 Start = simplifyAddInst(Start, AddOffset,
2104 match(AddInst, m_NSWAdd(m_Value(), m_Value())),
2105 /*IsNUW=*/true, *DL);
2106 if (!Start)
2107 return false;
2110 // If we can't fully optimize out the `rem`, skip this transform.
2111 Start = simplifyURemInst(Start, RemAmt, *DL);
2112 if (!Start)
2113 return false;
2115 // Create new remainder with induction variable.
2116 Type *Ty = Rem->getType();
2117 IRBuilder<> Builder(Rem->getContext());
2119 Builder.SetInsertPoint(LoopIncrPN);
2120 PHINode *NewRem = Builder.CreatePHI(Ty, 2);
2122 Builder.SetInsertPoint(cast<Instruction>(
2123 LoopIncrPN->getIncomingValueForBlock(L->getLoopLatch())));
2124 // `(add (urem x, y), 1)` is always nuw.
2125 Value *RemAdd = Builder.CreateNUWAdd(NewRem, ConstantInt::get(Ty, 1));
2126 Value *RemCmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, RemAdd, RemAmt);
2127 Value *RemSel =
2128 Builder.CreateSelect(RemCmp, Constant::getNullValue(Ty), RemAdd);
2130 NewRem->addIncoming(Start, L->getLoopPreheader());
2131 NewRem->addIncoming(RemSel, L->getLoopLatch());
2133 // Insert all touched BBs.
2134 FreshBBs.insert(LoopIncrPN->getParent());
2135 FreshBBs.insert(L->getLoopLatch());
2136 FreshBBs.insert(Rem->getParent());
2137 if (AddInst)
2138 FreshBBs.insert(cast<Instruction>(AddInst)->getParent());
2139 replaceAllUsesWith(Rem, NewRem, FreshBBs, IsHuge);
2140 Rem->eraseFromParent();
2141 if (AddInst && AddInst->use_empty())
2142 cast<Instruction>(AddInst)->eraseFromParent();
2143 return true;
2146 bool CodeGenPrepare::optimizeURem(Instruction *Rem) {
2147 if (foldURemOfLoopIncrement(Rem, DL, LI, FreshBBs, IsHugeFunc))
2148 return true;
2149 return false;
2152 /// Some targets have better codegen for `ctpop(X) u< 2` than `ctpop(X) == 1`.
2153 /// This function converts `ctpop(X) ==/!= 1` into `ctpop(X) u</u> 2/1` if the
2154 /// result cannot be zero.
2155 static bool adjustIsPower2Test(CmpInst *Cmp, const TargetLowering &TLI,
2156 const TargetTransformInfo &TTI,
2157 const DataLayout &DL) {
2158 ICmpInst::Predicate Pred;
2159 if (!match(Cmp, m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(), m_One())))
2160 return false;
2161 if (!ICmpInst::isEquality(Pred))
2162 return false;
2163 auto *II = cast<IntrinsicInst>(Cmp->getOperand(0));
2165 if (isKnownNonZero(II, DL)) {
2166 if (Pred == ICmpInst::ICMP_EQ) {
2167 Cmp->setOperand(1, ConstantInt::get(II->getType(), 2));
2168 Cmp->setPredicate(ICmpInst::ICMP_ULT);
2169 } else {
2170 Cmp->setPredicate(ICmpInst::ICMP_UGT);
2172 return true;
2174 return false;
2177 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
2178 if (sinkCmpExpression(Cmp, *TLI))
2179 return true;
2181 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
2182 return true;
2184 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
2185 return true;
2187 if (foldICmpWithDominatingICmp(Cmp, *TLI))
2188 return true;
2190 if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
2191 return true;
2193 if (foldFCmpToFPClassTest(Cmp, *TLI, *DL))
2194 return true;
2196 if (adjustIsPower2Test(Cmp, *TLI, *TTI, *DL))
2197 return true;
2199 return false;
2202 /// Duplicate and sink the given 'and' instruction into user blocks where it is
2203 /// used in a compare to allow isel to generate better code for targets where
2204 /// this operation can be combined.
2206 /// Return true if any changes are made.
2207 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
2208 SetOfInstrs &InsertedInsts) {
2209 // Double-check that we're not trying to optimize an instruction that was
2210 // already optimized by some other part of this pass.
2211 assert(!InsertedInsts.count(AndI) &&
2212 "Attempting to optimize already optimized and instruction");
2213 (void)InsertedInsts;
2215 // Nothing to do for single use in same basic block.
2216 if (AndI->hasOneUse() &&
2217 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
2218 return false;
2220 // Try to avoid cases where sinking/duplicating is likely to increase register
2221 // pressure.
2222 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
2223 !isa<ConstantInt>(AndI->getOperand(1)) &&
2224 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
2225 return false;
2227 for (auto *U : AndI->users()) {
2228 Instruction *User = cast<Instruction>(U);
2230 // Only sink 'and' feeding icmp with 0.
2231 if (!isa<ICmpInst>(User))
2232 return false;
2234 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
2235 if (!CmpC || !CmpC->isZero())
2236 return false;
2239 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2240 return false;
2242 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2243 LLVM_DEBUG(AndI->getParent()->dump());
2245 // Push the 'and' into the same block as the icmp 0. There should only be
2246 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2247 // others, so we don't need to keep track of which BBs we insert into.
2248 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2249 UI != E;) {
2250 Use &TheUse = UI.getUse();
2251 Instruction *User = cast<Instruction>(*UI);
2253 // Preincrement use iterator so we don't invalidate it.
2254 ++UI;
2256 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2258 // Keep the 'and' in the same place if the use is already in the same block.
2259 Instruction *InsertPt =
2260 User->getParent() == AndI->getParent() ? AndI : User;
2261 Instruction *InsertedAnd = BinaryOperator::Create(
2262 Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "",
2263 InsertPt->getIterator());
2264 // Propagate the debug info.
2265 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2267 // Replace a use of the 'and' with a use of the new 'and'.
2268 TheUse = InsertedAnd;
2269 ++NumAndUses;
2270 LLVM_DEBUG(User->getParent()->dump());
2273 // We removed all uses, nuke the and.
2274 AndI->eraseFromParent();
2275 return true;
2278 /// Check if the candidates could be combined with a shift instruction, which
2279 /// includes:
2280 /// 1. Truncate instruction
2281 /// 2. And instruction and the imm is a mask of the low bits:
2282 /// imm & (imm+1) == 0
2283 static bool isExtractBitsCandidateUse(Instruction *User) {
2284 if (!isa<TruncInst>(User)) {
2285 if (User->getOpcode() != Instruction::And ||
2286 !isa<ConstantInt>(User->getOperand(1)))
2287 return false;
2289 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2291 if ((Cimm & (Cimm + 1)).getBoolValue())
2292 return false;
2294 return true;
2297 /// Sink both shift and truncate instruction to the use of truncate's BB.
2298 static bool
2299 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2300 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2301 const TargetLowering &TLI, const DataLayout &DL) {
2302 BasicBlock *UserBB = User->getParent();
2303 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2304 auto *TruncI = cast<TruncInst>(User);
2305 bool MadeChange = false;
2307 for (Value::user_iterator TruncUI = TruncI->user_begin(),
2308 TruncE = TruncI->user_end();
2309 TruncUI != TruncE;) {
2311 Use &TruncTheUse = TruncUI.getUse();
2312 Instruction *TruncUser = cast<Instruction>(*TruncUI);
2313 // Preincrement use iterator so we don't invalidate it.
2315 ++TruncUI;
2317 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2318 if (!ISDOpcode)
2319 continue;
2321 // If the use is actually a legal node, there will not be an
2322 // implicit truncate.
2323 // FIXME: always querying the result type is just an
2324 // approximation; some nodes' legality is determined by the
2325 // operand or other means. There's no good way to find out though.
2326 if (TLI.isOperationLegalOrCustom(
2327 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2328 continue;
2330 // Don't bother for PHI nodes.
2331 if (isa<PHINode>(TruncUser))
2332 continue;
2334 BasicBlock *TruncUserBB = TruncUser->getParent();
2336 if (UserBB == TruncUserBB)
2337 continue;
2339 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2340 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2342 if (!InsertedShift && !InsertedTrunc) {
2343 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2344 assert(InsertPt != TruncUserBB->end());
2345 // Sink the shift
2346 if (ShiftI->getOpcode() == Instruction::AShr)
2347 InsertedShift =
2348 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2349 else
2350 InsertedShift =
2351 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2352 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2353 InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2355 // Sink the trunc
2356 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2357 TruncInsertPt++;
2358 // It will go ahead of any debug-info.
2359 TruncInsertPt.setHeadBit(true);
2360 assert(TruncInsertPt != TruncUserBB->end());
2362 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2363 TruncI->getType(), "");
2364 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2365 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2367 MadeChange = true;
2369 TruncTheUse = InsertedTrunc;
2372 return MadeChange;
2375 /// Sink the shift *right* instruction into user blocks if the uses could
2376 /// potentially be combined with this shift instruction and generate BitExtract
2377 /// instruction. It will only be applied if the architecture supports BitExtract
2378 /// instruction. Here is an example:
2379 /// BB1:
2380 /// %x.extract.shift = lshr i64 %arg1, 32
2381 /// BB2:
2382 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2383 /// ==>
2385 /// BB2:
2386 /// %x.extract.shift.1 = lshr i64 %arg1, 32
2387 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2389 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2390 /// instruction.
2391 /// Return true if any changes are made.
2392 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2393 const TargetLowering &TLI,
2394 const DataLayout &DL) {
2395 BasicBlock *DefBB = ShiftI->getParent();
2397 /// Only insert instructions in each block once.
2398 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2400 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2402 bool MadeChange = false;
2403 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2404 UI != E;) {
2405 Use &TheUse = UI.getUse();
2406 Instruction *User = cast<Instruction>(*UI);
2407 // Preincrement use iterator so we don't invalidate it.
2408 ++UI;
2410 // Don't bother for PHI nodes.
2411 if (isa<PHINode>(User))
2412 continue;
2414 if (!isExtractBitsCandidateUse(User))
2415 continue;
2417 BasicBlock *UserBB = User->getParent();
2419 if (UserBB == DefBB) {
2420 // If the shift and truncate instruction are in the same BB. The use of
2421 // the truncate(TruncUse) may still introduce another truncate if not
2422 // legal. In this case, we would like to sink both shift and truncate
2423 // instruction to the BB of TruncUse.
2424 // for example:
2425 // BB1:
2426 // i64 shift.result = lshr i64 opnd, imm
2427 // trunc.result = trunc shift.result to i16
2429 // BB2:
2430 // ----> We will have an implicit truncate here if the architecture does
2431 // not have i16 compare.
2432 // cmp i16 trunc.result, opnd2
2434 if (isa<TruncInst>(User) &&
2435 shiftIsLegal
2436 // If the type of the truncate is legal, no truncate will be
2437 // introduced in other basic blocks.
2438 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2439 MadeChange =
2440 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2442 continue;
2444 // If we have already inserted a shift into this block, use it.
2445 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2447 if (!InsertedShift) {
2448 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2449 assert(InsertPt != UserBB->end());
2451 if (ShiftI->getOpcode() == Instruction::AShr)
2452 InsertedShift =
2453 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2454 else
2455 InsertedShift =
2456 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2457 InsertedShift->insertBefore(*UserBB, InsertPt);
2458 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2460 MadeChange = true;
2463 // Replace a use of the shift with a use of the new shift.
2464 TheUse = InsertedShift;
2467 // If we removed all uses, or there are none, nuke the shift.
2468 if (ShiftI->use_empty()) {
2469 salvageDebugInfo(*ShiftI);
2470 ShiftI->eraseFromParent();
2471 MadeChange = true;
2474 return MadeChange;
2477 /// If counting leading or trailing zeros is an expensive operation and a zero
2478 /// input is defined, add a check for zero to avoid calling the intrinsic.
2480 /// We want to transform:
2481 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2483 /// into:
2484 /// entry:
2485 /// %cmpz = icmp eq i64 %A, 0
2486 /// br i1 %cmpz, label %cond.end, label %cond.false
2487 /// cond.false:
2488 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2489 /// br label %cond.end
2490 /// cond.end:
2491 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2493 /// If the transform is performed, return true and set ModifiedDT to true.
2494 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2495 LoopInfo &LI,
2496 const TargetLowering *TLI,
2497 const DataLayout *DL, ModifyDT &ModifiedDT,
2498 SmallSet<BasicBlock *, 32> &FreshBBs,
2499 bool IsHugeFunc) {
2500 // If a zero input is undefined, it doesn't make sense to despeculate that.
2501 if (match(CountZeros->getOperand(1), m_One()))
2502 return false;
2504 // If it's cheap to speculate, there's nothing to do.
2505 Type *Ty = CountZeros->getType();
2506 auto IntrinsicID = CountZeros->getIntrinsicID();
2507 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2508 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2509 return false;
2511 // Only handle legal scalar cases. Anything else requires too much work.
2512 unsigned SizeInBits = Ty->getScalarSizeInBits();
2513 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2514 return false;
2516 // Bail if the value is never zero.
2517 Use &Op = CountZeros->getOperandUse(0);
2518 if (isKnownNonZero(Op, *DL))
2519 return false;
2521 // The intrinsic will be sunk behind a compare against zero and branch.
2522 BasicBlock *StartBlock = CountZeros->getParent();
2523 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2524 if (IsHugeFunc)
2525 FreshBBs.insert(CallBlock);
2527 // Create another block after the count zero intrinsic. A PHI will be added
2528 // in this block to select the result of the intrinsic or the bit-width
2529 // constant if the input to the intrinsic is zero.
2530 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2531 // Any debug-info after CountZeros should not be included.
2532 SplitPt.setHeadBit(true);
2533 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2534 if (IsHugeFunc)
2535 FreshBBs.insert(EndBlock);
2537 // Update the LoopInfo. The new blocks are in the same loop as the start
2538 // block.
2539 if (Loop *L = LI.getLoopFor(StartBlock)) {
2540 L->addBasicBlockToLoop(CallBlock, LI);
2541 L->addBasicBlockToLoop(EndBlock, LI);
2544 // Set up a builder to create a compare, conditional branch, and PHI.
2545 IRBuilder<> Builder(CountZeros->getContext());
2546 Builder.SetInsertPoint(StartBlock->getTerminator());
2547 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2549 // Replace the unconditional branch that was created by the first split with
2550 // a compare against zero and a conditional branch.
2551 Value *Zero = Constant::getNullValue(Ty);
2552 // Avoid introducing branch on poison. This also replaces the ctz operand.
2553 if (!isGuaranteedNotToBeUndefOrPoison(Op))
2554 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2555 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2556 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2557 StartBlock->getTerminator()->eraseFromParent();
2559 // Create a PHI in the end block to select either the output of the intrinsic
2560 // or the bit width of the operand.
2561 Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2562 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2563 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2564 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2565 PN->addIncoming(BitWidth, StartBlock);
2566 PN->addIncoming(CountZeros, CallBlock);
2568 // We are explicitly handling the zero case, so we can set the intrinsic's
2569 // undefined zero argument to 'true'. This will also prevent reprocessing the
2570 // intrinsic; we only despeculate when a zero input is defined.
2571 CountZeros->setArgOperand(1, Builder.getTrue());
2572 ModifiedDT = ModifyDT::ModifyBBDT;
2573 return true;
2576 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2577 BasicBlock *BB = CI->getParent();
2579 // Lower inline assembly if we can.
2580 // If we found an inline asm expession, and if the target knows how to
2581 // lower it to normal LLVM code, do so now.
2582 if (CI->isInlineAsm()) {
2583 if (TLI->ExpandInlineAsm(CI)) {
2584 // Avoid invalidating the iterator.
2585 CurInstIterator = BB->begin();
2586 // Avoid processing instructions out of order, which could cause
2587 // reuse before a value is defined.
2588 SunkAddrs.clear();
2589 return true;
2591 // Sink address computing for memory operands into the block.
2592 if (optimizeInlineAsmInst(CI))
2593 return true;
2596 // Align the pointer arguments to this call if the target thinks it's a good
2597 // idea
2598 unsigned MinSize;
2599 Align PrefAlign;
2600 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2601 for (auto &Arg : CI->args()) {
2602 // We want to align both objects whose address is used directly and
2603 // objects whose address is used in casts and GEPs, though it only makes
2604 // sense for GEPs if the offset is a multiple of the desired alignment and
2605 // if size - offset meets the size threshold.
2606 if (!Arg->getType()->isPointerTy())
2607 continue;
2608 APInt Offset(DL->getIndexSizeInBits(
2609 cast<PointerType>(Arg->getType())->getAddressSpace()),
2611 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2612 uint64_t Offset2 = Offset.getLimitedValue();
2613 if (!isAligned(PrefAlign, Offset2))
2614 continue;
2615 AllocaInst *AI;
2616 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2617 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2618 AI->setAlignment(PrefAlign);
2619 // Global variables can only be aligned if they are defined in this
2620 // object (i.e. they are uniquely initialized in this object), and
2621 // over-aligning global variables that have an explicit section is
2622 // forbidden.
2623 GlobalVariable *GV;
2624 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2625 GV->getPointerAlignment(*DL) < PrefAlign &&
2626 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2627 GV->setAlignment(PrefAlign);
2630 // If this is a memcpy (or similar) then we may be able to improve the
2631 // alignment.
2632 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2633 Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2634 MaybeAlign MIDestAlign = MI->getDestAlign();
2635 if (!MIDestAlign || DestAlign > *MIDestAlign)
2636 MI->setDestAlignment(DestAlign);
2637 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2638 MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2639 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2640 if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2641 MTI->setSourceAlignment(SrcAlign);
2645 // If we have a cold call site, try to sink addressing computation into the
2646 // cold block. This interacts with our handling for loads and stores to
2647 // ensure that we can fold all uses of a potential addressing computation
2648 // into their uses. TODO: generalize this to work over profiling data
2649 if (CI->hasFnAttr(Attribute::Cold) &&
2650 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2651 for (auto &Arg : CI->args()) {
2652 if (!Arg->getType()->isPointerTy())
2653 continue;
2654 unsigned AS = Arg->getType()->getPointerAddressSpace();
2655 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2656 return true;
2659 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2660 if (II) {
2661 switch (II->getIntrinsicID()) {
2662 default:
2663 break;
2664 case Intrinsic::assume:
2665 llvm_unreachable("llvm.assume should have been removed already");
2666 case Intrinsic::allow_runtime_check:
2667 case Intrinsic::allow_ubsan_check:
2668 case Intrinsic::experimental_widenable_condition: {
2669 // Give up on future widening opportunities so that we can fold away dead
2670 // paths and merge blocks before going into block-local instruction
2671 // selection.
2672 if (II->use_empty()) {
2673 II->eraseFromParent();
2674 return true;
2676 Constant *RetVal = ConstantInt::getTrue(II->getContext());
2677 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2678 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2680 return true;
2682 case Intrinsic::objectsize:
2683 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2684 case Intrinsic::is_constant:
2685 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2686 case Intrinsic::aarch64_stlxr:
2687 case Intrinsic::aarch64_stxr: {
2688 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2689 if (!ExtVal || !ExtVal->hasOneUse() ||
2690 ExtVal->getParent() == CI->getParent())
2691 return false;
2692 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2693 ExtVal->moveBefore(CI);
2694 // Mark this instruction as "inserted by CGP", so that other
2695 // optimizations don't touch it.
2696 InsertedInsts.insert(ExtVal);
2697 return true;
2700 case Intrinsic::launder_invariant_group:
2701 case Intrinsic::strip_invariant_group: {
2702 Value *ArgVal = II->getArgOperand(0);
2703 auto it = LargeOffsetGEPMap.find(II);
2704 if (it != LargeOffsetGEPMap.end()) {
2705 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2706 // Make sure not to have to deal with iterator invalidation
2707 // after possibly adding ArgVal to LargeOffsetGEPMap.
2708 auto GEPs = std::move(it->second);
2709 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2710 LargeOffsetGEPMap.erase(II);
2713 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2714 II->eraseFromParent();
2715 return true;
2717 case Intrinsic::cttz:
2718 case Intrinsic::ctlz:
2719 // If counting zeros is expensive, try to avoid it.
2720 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2721 IsHugeFunc);
2722 case Intrinsic::fshl:
2723 case Intrinsic::fshr:
2724 return optimizeFunnelShift(II);
2725 case Intrinsic::dbg_assign:
2726 case Intrinsic::dbg_value:
2727 return fixupDbgValue(II);
2728 case Intrinsic::masked_gather:
2729 return optimizeGatherScatterInst(II, II->getArgOperand(0));
2730 case Intrinsic::masked_scatter:
2731 return optimizeGatherScatterInst(II, II->getArgOperand(1));
2734 SmallVector<Value *, 2> PtrOps;
2735 Type *AccessTy;
2736 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2737 while (!PtrOps.empty()) {
2738 Value *PtrVal = PtrOps.pop_back_val();
2739 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2740 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2741 return true;
2745 // From here on out we're working with named functions.
2746 auto *Callee = CI->getCalledFunction();
2747 if (!Callee)
2748 return false;
2750 // Lower all default uses of _chk calls. This is very similar
2751 // to what InstCombineCalls does, but here we are only lowering calls
2752 // to fortified library functions (e.g. __memcpy_chk) that have the default
2753 // "don't know" as the objectsize. Anything else should be left alone.
2754 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2755 IRBuilder<> Builder(CI);
2756 if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2757 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2758 CI->eraseFromParent();
2759 return true;
2762 // SCCP may have propagated, among other things, C++ static variables across
2763 // calls. If this happens to be the case, we may want to undo it in order to
2764 // avoid redundant pointer computation of the constant, as the function method
2765 // returning the constant needs to be executed anyways.
2766 auto GetUniformReturnValue = [](const Function *F) -> GlobalVariable * {
2767 if (!F->getReturnType()->isPointerTy())
2768 return nullptr;
2770 GlobalVariable *UniformValue = nullptr;
2771 for (auto &BB : *F) {
2772 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
2773 if (auto *V = dyn_cast<GlobalVariable>(RI->getReturnValue())) {
2774 if (!UniformValue)
2775 UniformValue = V;
2776 else if (V != UniformValue)
2777 return nullptr;
2778 } else {
2779 return nullptr;
2784 return UniformValue;
2787 if (Callee->hasExactDefinition()) {
2788 if (GlobalVariable *RV = GetUniformReturnValue(Callee)) {
2789 bool MadeChange = false;
2790 for (Use &U : make_early_inc_range(RV->uses())) {
2791 auto *I = dyn_cast<Instruction>(U.getUser());
2792 if (!I || I->getParent() != CI->getParent()) {
2793 // Limit to the same basic block to avoid extending the call-site live
2794 // range, which otherwise could increase register pressure.
2795 continue;
2797 if (CI->comesBefore(I)) {
2798 U.set(CI);
2799 MadeChange = true;
2803 return MadeChange;
2807 return false;
2810 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo,
2811 const CallInst *CI) {
2812 assert(CI && CI->use_empty());
2814 if (const auto *II = dyn_cast<IntrinsicInst>(CI))
2815 switch (II->getIntrinsicID()) {
2816 case Intrinsic::memset:
2817 case Intrinsic::memcpy:
2818 case Intrinsic::memmove:
2819 return true;
2820 default:
2821 return false;
2824 LibFunc LF;
2825 Function *Callee = CI->getCalledFunction();
2826 if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF))
2827 switch (LF) {
2828 case LibFunc_strcpy:
2829 case LibFunc_strncpy:
2830 case LibFunc_strcat:
2831 case LibFunc_strncat:
2832 return true;
2833 default:
2834 return false;
2837 return false;
2840 /// Look for opportunities to duplicate return instructions to the predecessor
2841 /// to enable tail call optimizations. The case it is currently looking for is
2842 /// the following one. Known intrinsics or library function that may be tail
2843 /// called are taken into account as well.
2844 /// @code
2845 /// bb0:
2846 /// %tmp0 = tail call i32 @f0()
2847 /// br label %return
2848 /// bb1:
2849 /// %tmp1 = tail call i32 @f1()
2850 /// br label %return
2851 /// bb2:
2852 /// %tmp2 = tail call i32 @f2()
2853 /// br label %return
2854 /// return:
2855 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2856 /// ret i32 %retval
2857 /// @endcode
2859 /// =>
2861 /// @code
2862 /// bb0:
2863 /// %tmp0 = tail call i32 @f0()
2864 /// ret i32 %tmp0
2865 /// bb1:
2866 /// %tmp1 = tail call i32 @f1()
2867 /// ret i32 %tmp1
2868 /// bb2:
2869 /// %tmp2 = tail call i32 @f2()
2870 /// ret i32 %tmp2
2871 /// @endcode
2872 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2873 ModifyDT &ModifiedDT) {
2874 if (!BB->getTerminator())
2875 return false;
2877 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2878 if (!RetI)
2879 return false;
2881 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2883 PHINode *PN = nullptr;
2884 ExtractValueInst *EVI = nullptr;
2885 BitCastInst *BCI = nullptr;
2886 Value *V = RetI->getReturnValue();
2887 if (V) {
2888 BCI = dyn_cast<BitCastInst>(V);
2889 if (BCI)
2890 V = BCI->getOperand(0);
2892 EVI = dyn_cast<ExtractValueInst>(V);
2893 if (EVI) {
2894 V = EVI->getOperand(0);
2895 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2896 return false;
2899 PN = dyn_cast<PHINode>(V);
2902 if (PN && PN->getParent() != BB)
2903 return false;
2905 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2906 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2907 if (BC && BC->hasOneUse())
2908 Inst = BC->user_back();
2910 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2911 return II->getIntrinsicID() == Intrinsic::lifetime_end;
2912 return false;
2915 SmallVector<const IntrinsicInst *, 4> FakeUses;
2917 auto isFakeUse = [&FakeUses](const Instruction *Inst) {
2918 if (auto *II = dyn_cast<IntrinsicInst>(Inst);
2919 II && II->getIntrinsicID() == Intrinsic::fake_use) {
2920 // Record the instruction so it can be preserved when the exit block is
2921 // removed. Do not preserve the fake use that uses the result of the
2922 // PHI instruction.
2923 // Do not copy fake uses that use the result of a PHI node.
2924 // FIXME: If we do want to copy the fake use into the return blocks, we
2925 // have to figure out which of the PHI node operands to use for each
2926 // copy.
2927 if (!isa<PHINode>(II->getOperand(0))) {
2928 FakeUses.push_back(II);
2930 return true;
2933 return false;
2936 // Make sure there are no instructions between the first instruction
2937 // and return.
2938 const Instruction *BI = BB->getFirstNonPHI();
2939 // Skip over debug and the bitcast.
2940 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2941 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI) ||
2942 isFakeUse(BI))
2943 BI = BI->getNextNode();
2944 if (BI != RetI)
2945 return false;
2947 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2948 /// call.
2949 const Function *F = BB->getParent();
2950 SmallVector<BasicBlock *, 4> TailCallBBs;
2951 // Record the call instructions so we can insert any fake uses
2952 // that need to be preserved before them.
2953 SmallVector<CallInst *, 4> CallInsts;
2954 if (PN) {
2955 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2956 // Look through bitcasts.
2957 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2958 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2959 BasicBlock *PredBB = PN->getIncomingBlock(I);
2960 // Make sure the phi value is indeed produced by the tail call.
2961 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2962 TLI->mayBeEmittedAsTailCall(CI) &&
2963 attributesPermitTailCall(F, CI, RetI, *TLI)) {
2964 TailCallBBs.push_back(PredBB);
2965 CallInsts.push_back(CI);
2966 } else {
2967 // Consider the cases in which the phi value is indirectly produced by
2968 // the tail call, for example when encountering memset(), memmove(),
2969 // strcpy(), whose return value may have been optimized out. In such
2970 // cases, the value needs to be the first function argument.
2972 // bb0:
2973 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1)
2974 // br label %return
2975 // return:
2976 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ]
2977 if (PredBB && PredBB->getSingleSuccessor() == BB)
2978 CI = dyn_cast_or_null<CallInst>(
2979 PredBB->getTerminator()->getPrevNonDebugInstruction(true));
2981 if (CI && CI->use_empty() &&
2982 isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2983 IncomingVal == CI->getArgOperand(0) &&
2984 TLI->mayBeEmittedAsTailCall(CI) &&
2985 attributesPermitTailCall(F, CI, RetI, *TLI)) {
2986 TailCallBBs.push_back(PredBB);
2987 CallInsts.push_back(CI);
2991 } else {
2992 SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2993 for (BasicBlock *Pred : predecessors(BB)) {
2994 if (!VisitedBBs.insert(Pred).second)
2995 continue;
2996 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2997 CallInst *CI = dyn_cast<CallInst>(I);
2998 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2999 attributesPermitTailCall(F, CI, RetI, *TLI)) {
3000 // Either we return void or the return value must be the first
3001 // argument of a known intrinsic or library function.
3002 if (!V || isa<UndefValue>(V) ||
3003 (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
3004 V == CI->getArgOperand(0))) {
3005 TailCallBBs.push_back(Pred);
3006 CallInsts.push_back(CI);
3013 bool Changed = false;
3014 for (auto const &TailCallBB : TailCallBBs) {
3015 // Make sure the call instruction is followed by an unconditional branch to
3016 // the return block.
3017 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
3018 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
3019 continue;
3021 // Duplicate the return into TailCallBB.
3022 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
3023 assert(!VerifyBFIUpdates ||
3024 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
3025 BFI->setBlockFreq(BB,
3026 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
3027 ModifiedDT = ModifyDT::ModifyBBDT;
3028 Changed = true;
3029 ++NumRetsDup;
3032 // If we eliminated all predecessors of the block, delete the block now.
3033 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) {
3034 // Copy the fake uses found in the original return block to all blocks
3035 // that contain tail calls.
3036 for (auto *CI : CallInsts) {
3037 for (auto const *FakeUse : FakeUses) {
3038 auto *ClonedInst = FakeUse->clone();
3039 ClonedInst->insertBefore(CI);
3042 BB->eraseFromParent();
3045 return Changed;
3048 //===----------------------------------------------------------------------===//
3049 // Memory Optimization
3050 //===----------------------------------------------------------------------===//
3052 namespace {
3054 /// This is an extended version of TargetLowering::AddrMode
3055 /// which holds actual Value*'s for register values.
3056 struct ExtAddrMode : public TargetLowering::AddrMode {
3057 Value *BaseReg = nullptr;
3058 Value *ScaledReg = nullptr;
3059 Value *OriginalValue = nullptr;
3060 bool InBounds = true;
3062 enum FieldName {
3063 NoField = 0x00,
3064 BaseRegField = 0x01,
3065 BaseGVField = 0x02,
3066 BaseOffsField = 0x04,
3067 ScaledRegField = 0x08,
3068 ScaleField = 0x10,
3069 MultipleFields = 0xff
3072 ExtAddrMode() = default;
3074 void print(raw_ostream &OS) const;
3075 void dump() const;
3077 FieldName compare(const ExtAddrMode &other) {
3078 // First check that the types are the same on each field, as differing types
3079 // is something we can't cope with later on.
3080 if (BaseReg && other.BaseReg &&
3081 BaseReg->getType() != other.BaseReg->getType())
3082 return MultipleFields;
3083 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
3084 return MultipleFields;
3085 if (ScaledReg && other.ScaledReg &&
3086 ScaledReg->getType() != other.ScaledReg->getType())
3087 return MultipleFields;
3089 // Conservatively reject 'inbounds' mismatches.
3090 if (InBounds != other.InBounds)
3091 return MultipleFields;
3093 // Check each field to see if it differs.
3094 unsigned Result = NoField;
3095 if (BaseReg != other.BaseReg)
3096 Result |= BaseRegField;
3097 if (BaseGV != other.BaseGV)
3098 Result |= BaseGVField;
3099 if (BaseOffs != other.BaseOffs)
3100 Result |= BaseOffsField;
3101 if (ScaledReg != other.ScaledReg)
3102 Result |= ScaledRegField;
3103 // Don't count 0 as being a different scale, because that actually means
3104 // unscaled (which will already be counted by having no ScaledReg).
3105 if (Scale && other.Scale && Scale != other.Scale)
3106 Result |= ScaleField;
3108 if (llvm::popcount(Result) > 1)
3109 return MultipleFields;
3110 else
3111 return static_cast<FieldName>(Result);
3114 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
3115 // with no offset.
3116 bool isTrivial() {
3117 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
3118 // trivial if at most one of these terms is nonzero, except that BaseGV and
3119 // BaseReg both being zero actually means a null pointer value, which we
3120 // consider to be 'non-zero' here.
3121 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
3124 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
3125 switch (Field) {
3126 default:
3127 return nullptr;
3128 case BaseRegField:
3129 return BaseReg;
3130 case BaseGVField:
3131 return BaseGV;
3132 case ScaledRegField:
3133 return ScaledReg;
3134 case BaseOffsField:
3135 return ConstantInt::get(IntPtrTy, BaseOffs);
3139 void SetCombinedField(FieldName Field, Value *V,
3140 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
3141 switch (Field) {
3142 default:
3143 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
3144 break;
3145 case ExtAddrMode::BaseRegField:
3146 BaseReg = V;
3147 break;
3148 case ExtAddrMode::BaseGVField:
3149 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
3150 // in the BaseReg field.
3151 assert(BaseReg == nullptr);
3152 BaseReg = V;
3153 BaseGV = nullptr;
3154 break;
3155 case ExtAddrMode::ScaledRegField:
3156 ScaledReg = V;
3157 // If we have a mix of scaled and unscaled addrmodes then we want scale
3158 // to be the scale and not zero.
3159 if (!Scale)
3160 for (const ExtAddrMode &AM : AddrModes)
3161 if (AM.Scale) {
3162 Scale = AM.Scale;
3163 break;
3165 break;
3166 case ExtAddrMode::BaseOffsField:
3167 // The offset is no longer a constant, so it goes in ScaledReg with a
3168 // scale of 1.
3169 assert(ScaledReg == nullptr);
3170 ScaledReg = V;
3171 Scale = 1;
3172 BaseOffs = 0;
3173 break;
3178 #ifndef NDEBUG
3179 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
3180 AM.print(OS);
3181 return OS;
3183 #endif
3185 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3186 void ExtAddrMode::print(raw_ostream &OS) const {
3187 bool NeedPlus = false;
3188 OS << "[";
3189 if (InBounds)
3190 OS << "inbounds ";
3191 if (BaseGV) {
3192 OS << "GV:";
3193 BaseGV->printAsOperand(OS, /*PrintType=*/false);
3194 NeedPlus = true;
3197 if (BaseOffs) {
3198 OS << (NeedPlus ? " + " : "") << BaseOffs;
3199 NeedPlus = true;
3202 if (BaseReg) {
3203 OS << (NeedPlus ? " + " : "") << "Base:";
3204 BaseReg->printAsOperand(OS, /*PrintType=*/false);
3205 NeedPlus = true;
3207 if (Scale) {
3208 OS << (NeedPlus ? " + " : "") << Scale << "*";
3209 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
3212 OS << ']';
3215 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
3216 print(dbgs());
3217 dbgs() << '\n';
3219 #endif
3221 } // end anonymous namespace
3223 namespace {
3225 /// This class provides transaction based operation on the IR.
3226 /// Every change made through this class is recorded in the internal state and
3227 /// can be undone (rollback) until commit is called.
3228 /// CGP does not check if instructions could be speculatively executed when
3229 /// moved. Preserving the original location would pessimize the debugging
3230 /// experience, as well as negatively impact the quality of sample PGO.
3231 class TypePromotionTransaction {
3232 /// This represents the common interface of the individual transaction.
3233 /// Each class implements the logic for doing one specific modification on
3234 /// the IR via the TypePromotionTransaction.
3235 class TypePromotionAction {
3236 protected:
3237 /// The Instruction modified.
3238 Instruction *Inst;
3240 public:
3241 /// Constructor of the action.
3242 /// The constructor performs the related action on the IR.
3243 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
3245 virtual ~TypePromotionAction() = default;
3247 /// Undo the modification done by this action.
3248 /// When this method is called, the IR must be in the same state as it was
3249 /// before this action was applied.
3250 /// \pre Undoing the action works if and only if the IR is in the exact same
3251 /// state as it was directly after this action was applied.
3252 virtual void undo() = 0;
3254 /// Advocate every change made by this action.
3255 /// When the results on the IR of the action are to be kept, it is important
3256 /// to call this function, otherwise hidden information may be kept forever.
3257 virtual void commit() {
3258 // Nothing to be done, this action is not doing anything.
3262 /// Utility to remember the position of an instruction.
3263 class InsertionHandler {
3264 /// Position of an instruction.
3265 /// Either an instruction:
3266 /// - Is the first in a basic block: BB is used.
3267 /// - Has a previous instruction: PrevInst is used.
3268 union {
3269 Instruction *PrevInst;
3270 BasicBlock *BB;
3271 } Point;
3272 std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt;
3274 /// Remember whether or not the instruction had a previous instruction.
3275 bool HasPrevInstruction;
3277 public:
3278 /// Record the position of \p Inst.
3279 InsertionHandler(Instruction *Inst) {
3280 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
3281 BasicBlock *BB = Inst->getParent();
3283 // Record where we would have to re-insert the instruction in the sequence
3284 // of DbgRecords, if we ended up reinserting.
3285 if (BB->IsNewDbgInfoFormat)
3286 BeforeDbgRecord = Inst->getDbgReinsertionPosition();
3288 if (HasPrevInstruction) {
3289 Point.PrevInst = &*std::prev(Inst->getIterator());
3290 } else {
3291 Point.BB = BB;
3295 /// Insert \p Inst at the recorded position.
3296 void insert(Instruction *Inst) {
3297 if (HasPrevInstruction) {
3298 if (Inst->getParent())
3299 Inst->removeFromParent();
3300 Inst->insertAfter(&*Point.PrevInst);
3301 } else {
3302 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
3303 if (Inst->getParent())
3304 Inst->moveBefore(*Point.BB, Position);
3305 else
3306 Inst->insertBefore(*Point.BB, Position);
3309 Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord);
3313 /// Move an instruction before another.
3314 class InstructionMoveBefore : public TypePromotionAction {
3315 /// Original position of the instruction.
3316 InsertionHandler Position;
3318 public:
3319 /// Move \p Inst before \p Before.
3320 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
3321 : TypePromotionAction(Inst), Position(Inst) {
3322 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
3323 << "\n");
3324 Inst->moveBefore(Before);
3327 /// Move the instruction back to its original position.
3328 void undo() override {
3329 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
3330 Position.insert(Inst);
3334 /// Set the operand of an instruction with a new value.
3335 class OperandSetter : public TypePromotionAction {
3336 /// Original operand of the instruction.
3337 Value *Origin;
3339 /// Index of the modified instruction.
3340 unsigned Idx;
3342 public:
3343 /// Set \p Idx operand of \p Inst with \p NewVal.
3344 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
3345 : TypePromotionAction(Inst), Idx(Idx) {
3346 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
3347 << "for:" << *Inst << "\n"
3348 << "with:" << *NewVal << "\n");
3349 Origin = Inst->getOperand(Idx);
3350 Inst->setOperand(Idx, NewVal);
3353 /// Restore the original value of the instruction.
3354 void undo() override {
3355 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
3356 << "for: " << *Inst << "\n"
3357 << "with: " << *Origin << "\n");
3358 Inst->setOperand(Idx, Origin);
3362 /// Hide the operands of an instruction.
3363 /// Do as if this instruction was not using any of its operands.
3364 class OperandsHider : public TypePromotionAction {
3365 /// The list of original operands.
3366 SmallVector<Value *, 4> OriginalValues;
3368 public:
3369 /// Remove \p Inst from the uses of the operands of \p Inst.
3370 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
3371 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
3372 unsigned NumOpnds = Inst->getNumOperands();
3373 OriginalValues.reserve(NumOpnds);
3374 for (unsigned It = 0; It < NumOpnds; ++It) {
3375 // Save the current operand.
3376 Value *Val = Inst->getOperand(It);
3377 OriginalValues.push_back(Val);
3378 // Set a dummy one.
3379 // We could use OperandSetter here, but that would imply an overhead
3380 // that we are not willing to pay.
3381 Inst->setOperand(It, PoisonValue::get(Val->getType()));
3385 /// Restore the original list of uses.
3386 void undo() override {
3387 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3388 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3389 Inst->setOperand(It, OriginalValues[It]);
3393 /// Build a truncate instruction.
3394 class TruncBuilder : public TypePromotionAction {
3395 Value *Val;
3397 public:
3398 /// Build a truncate instruction of \p Opnd producing a \p Ty
3399 /// result.
3400 /// trunc Opnd to Ty.
3401 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3402 IRBuilder<> Builder(Opnd);
3403 Builder.SetCurrentDebugLocation(DebugLoc());
3404 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3405 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3408 /// Get the built value.
3409 Value *getBuiltValue() { return Val; }
3411 /// Remove the built instruction.
3412 void undo() override {
3413 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3414 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3415 IVal->eraseFromParent();
3419 /// Build a sign extension instruction.
3420 class SExtBuilder : public TypePromotionAction {
3421 Value *Val;
3423 public:
3424 /// Build a sign extension instruction of \p Opnd producing a \p Ty
3425 /// result.
3426 /// sext Opnd to Ty.
3427 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3428 : TypePromotionAction(InsertPt) {
3429 IRBuilder<> Builder(InsertPt);
3430 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3431 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3434 /// Get the built value.
3435 Value *getBuiltValue() { return Val; }
3437 /// Remove the built instruction.
3438 void undo() override {
3439 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3440 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3441 IVal->eraseFromParent();
3445 /// Build a zero extension instruction.
3446 class ZExtBuilder : public TypePromotionAction {
3447 Value *Val;
3449 public:
3450 /// Build a zero extension instruction of \p Opnd producing a \p Ty
3451 /// result.
3452 /// zext Opnd to Ty.
3453 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3454 : TypePromotionAction(InsertPt) {
3455 IRBuilder<> Builder(InsertPt);
3456 Builder.SetCurrentDebugLocation(DebugLoc());
3457 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3458 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3461 /// Get the built value.
3462 Value *getBuiltValue() { return Val; }
3464 /// Remove the built instruction.
3465 void undo() override {
3466 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3467 if (Instruction *IVal = dyn_cast<Instruction>(Val))
3468 IVal->eraseFromParent();
3472 /// Mutate an instruction to another type.
3473 class TypeMutator : public TypePromotionAction {
3474 /// Record the original type.
3475 Type *OrigTy;
3477 public:
3478 /// Mutate the type of \p Inst into \p NewTy.
3479 TypeMutator(Instruction *Inst, Type *NewTy)
3480 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3481 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3482 << "\n");
3483 Inst->mutateType(NewTy);
3486 /// Mutate the instruction back to its original type.
3487 void undo() override {
3488 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3489 << "\n");
3490 Inst->mutateType(OrigTy);
3494 /// Replace the uses of an instruction by another instruction.
3495 class UsesReplacer : public TypePromotionAction {
3496 /// Helper structure to keep track of the replaced uses.
3497 struct InstructionAndIdx {
3498 /// The instruction using the instruction.
3499 Instruction *Inst;
3501 /// The index where this instruction is used for Inst.
3502 unsigned Idx;
3504 InstructionAndIdx(Instruction *Inst, unsigned Idx)
3505 : Inst(Inst), Idx(Idx) {}
3508 /// Keep track of the original uses (pair Instruction, Index).
3509 SmallVector<InstructionAndIdx, 4> OriginalUses;
3510 /// Keep track of the debug users.
3511 SmallVector<DbgValueInst *, 1> DbgValues;
3512 /// And non-instruction debug-users too.
3513 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
3515 /// Keep track of the new value so that we can undo it by replacing
3516 /// instances of the new value with the original value.
3517 Value *New;
3519 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3521 public:
3522 /// Replace all the use of \p Inst by \p New.
3523 UsesReplacer(Instruction *Inst, Value *New)
3524 : TypePromotionAction(Inst), New(New) {
3525 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3526 << "\n");
3527 // Record the original uses.
3528 for (Use &U : Inst->uses()) {
3529 Instruction *UserI = cast<Instruction>(U.getUser());
3530 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3532 // Record the debug uses separately. They are not in the instruction's
3533 // use list, but they are replaced by RAUW.
3534 findDbgValues(DbgValues, Inst, &DbgVariableRecords);
3536 // Now, we can replace the uses.
3537 Inst->replaceAllUsesWith(New);
3540 /// Reassign the original uses of Inst to Inst.
3541 void undo() override {
3542 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3543 for (InstructionAndIdx &Use : OriginalUses)
3544 Use.Inst->setOperand(Use.Idx, Inst);
3545 // RAUW has replaced all original uses with references to the new value,
3546 // including the debug uses. Since we are undoing the replacements,
3547 // the original debug uses must also be reinstated to maintain the
3548 // correctness and utility of debug value instructions.
3549 for (auto *DVI : DbgValues)
3550 DVI->replaceVariableLocationOp(New, Inst);
3551 // Similar story with DbgVariableRecords, the non-instruction
3552 // representation of dbg.values.
3553 for (DbgVariableRecord *DVR : DbgVariableRecords)
3554 DVR->replaceVariableLocationOp(New, Inst);
3558 /// Remove an instruction from the IR.
3559 class InstructionRemover : public TypePromotionAction {
3560 /// Original position of the instruction.
3561 InsertionHandler Inserter;
3563 /// Helper structure to hide all the link to the instruction. In other
3564 /// words, this helps to do as if the instruction was removed.
3565 OperandsHider Hider;
3567 /// Keep track of the uses replaced, if any.
3568 UsesReplacer *Replacer = nullptr;
3570 /// Keep track of instructions removed.
3571 SetOfInstrs &RemovedInsts;
3573 public:
3574 /// Remove all reference of \p Inst and optionally replace all its
3575 /// uses with New.
3576 /// \p RemovedInsts Keep track of the instructions removed by this Action.
3577 /// \pre If !Inst->use_empty(), then New != nullptr
3578 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3579 Value *New = nullptr)
3580 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3581 RemovedInsts(RemovedInsts) {
3582 if (New)
3583 Replacer = new UsesReplacer(Inst, New);
3584 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3585 RemovedInsts.insert(Inst);
3586 /// The instructions removed here will be freed after completing
3587 /// optimizeBlock() for all blocks as we need to keep track of the
3588 /// removed instructions during promotion.
3589 Inst->removeFromParent();
3592 ~InstructionRemover() override { delete Replacer; }
3594 InstructionRemover &operator=(const InstructionRemover &other) = delete;
3595 InstructionRemover(const InstructionRemover &other) = delete;
3597 /// Resurrect the instruction and reassign it to the proper uses if
3598 /// new value was provided when build this action.
3599 void undo() override {
3600 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3601 Inserter.insert(Inst);
3602 if (Replacer)
3603 Replacer->undo();
3604 Hider.undo();
3605 RemovedInsts.erase(Inst);
3609 public:
3610 /// Restoration point.
3611 /// The restoration point is a pointer to an action instead of an iterator
3612 /// because the iterator may be invalidated but not the pointer.
3613 using ConstRestorationPt = const TypePromotionAction *;
3615 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3616 : RemovedInsts(RemovedInsts) {}
3618 /// Advocate every changes made in that transaction. Return true if any change
3619 /// happen.
3620 bool commit();
3622 /// Undo all the changes made after the given point.
3623 void rollback(ConstRestorationPt Point);
3625 /// Get the current restoration point.
3626 ConstRestorationPt getRestorationPoint() const;
3628 /// \name API for IR modification with state keeping to support rollback.
3629 /// @{
3630 /// Same as Instruction::setOperand.
3631 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3633 /// Same as Instruction::eraseFromParent.
3634 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3636 /// Same as Value::replaceAllUsesWith.
3637 void replaceAllUsesWith(Instruction *Inst, Value *New);
3639 /// Same as Value::mutateType.
3640 void mutateType(Instruction *Inst, Type *NewTy);
3642 /// Same as IRBuilder::createTrunc.
3643 Value *createTrunc(Instruction *Opnd, Type *Ty);
3645 /// Same as IRBuilder::createSExt.
3646 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3648 /// Same as IRBuilder::createZExt.
3649 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3651 private:
3652 /// The ordered list of actions made so far.
3653 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3655 using CommitPt =
3656 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3658 SetOfInstrs &RemovedInsts;
3661 } // end anonymous namespace
3663 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3664 Value *NewVal) {
3665 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3666 Inst, Idx, NewVal));
3669 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3670 Value *NewVal) {
3671 Actions.push_back(
3672 std::make_unique<TypePromotionTransaction::InstructionRemover>(
3673 Inst, RemovedInsts, NewVal));
3676 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3677 Value *New) {
3678 Actions.push_back(
3679 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3682 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3683 Actions.push_back(
3684 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3687 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3688 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3689 Value *Val = Ptr->getBuiltValue();
3690 Actions.push_back(std::move(Ptr));
3691 return Val;
3694 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3695 Type *Ty) {
3696 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3697 Value *Val = Ptr->getBuiltValue();
3698 Actions.push_back(std::move(Ptr));
3699 return Val;
3702 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3703 Type *Ty) {
3704 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3705 Value *Val = Ptr->getBuiltValue();
3706 Actions.push_back(std::move(Ptr));
3707 return Val;
3710 TypePromotionTransaction::ConstRestorationPt
3711 TypePromotionTransaction::getRestorationPoint() const {
3712 return !Actions.empty() ? Actions.back().get() : nullptr;
3715 bool TypePromotionTransaction::commit() {
3716 for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3717 Action->commit();
3718 bool Modified = !Actions.empty();
3719 Actions.clear();
3720 return Modified;
3723 void TypePromotionTransaction::rollback(
3724 TypePromotionTransaction::ConstRestorationPt Point) {
3725 while (!Actions.empty() && Point != Actions.back().get()) {
3726 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3727 Curr->undo();
3731 namespace {
3733 /// A helper class for matching addressing modes.
3735 /// This encapsulates the logic for matching the target-legal addressing modes.
3736 class AddressingModeMatcher {
3737 SmallVectorImpl<Instruction *> &AddrModeInsts;
3738 const TargetLowering &TLI;
3739 const TargetRegisterInfo &TRI;
3740 const DataLayout &DL;
3741 const LoopInfo &LI;
3742 const std::function<const DominatorTree &()> getDTFn;
3744 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3745 /// the memory instruction that we're computing this address for.
3746 Type *AccessTy;
3747 unsigned AddrSpace;
3748 Instruction *MemoryInst;
3750 /// This is the addressing mode that we're building up. This is
3751 /// part of the return value of this addressing mode matching stuff.
3752 ExtAddrMode &AddrMode;
3754 /// The instructions inserted by other CodeGenPrepare optimizations.
3755 const SetOfInstrs &InsertedInsts;
3757 /// A map from the instructions to their type before promotion.
3758 InstrToOrigTy &PromotedInsts;
3760 /// The ongoing transaction where every action should be registered.
3761 TypePromotionTransaction &TPT;
3763 // A GEP which has too large offset to be folded into the addressing mode.
3764 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3766 /// This is set to true when we should not do profitability checks.
3767 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3768 bool IgnoreProfitability;
3770 /// True if we are optimizing for size.
3771 bool OptSize = false;
3773 ProfileSummaryInfo *PSI;
3774 BlockFrequencyInfo *BFI;
3776 AddressingModeMatcher(
3777 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3778 const TargetRegisterInfo &TRI, const LoopInfo &LI,
3779 const std::function<const DominatorTree &()> getDTFn, Type *AT,
3780 unsigned AS, Instruction *MI, ExtAddrMode &AM,
3781 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3782 TypePromotionTransaction &TPT,
3783 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3784 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3785 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3786 DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn),
3787 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3788 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3789 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3790 IgnoreProfitability = false;
3793 public:
3794 /// Find the maximal addressing mode that a load/store of V can fold,
3795 /// give an access type of AccessTy. This returns a list of involved
3796 /// instructions in AddrModeInsts.
3797 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3798 /// optimizations.
3799 /// \p PromotedInsts maps the instructions to their type before promotion.
3800 /// \p The ongoing transaction where every action should be registered.
3801 static ExtAddrMode
3802 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3803 SmallVectorImpl<Instruction *> &AddrModeInsts,
3804 const TargetLowering &TLI, const LoopInfo &LI,
3805 const std::function<const DominatorTree &()> getDTFn,
3806 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3807 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3808 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3809 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3810 ExtAddrMode Result;
3812 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3813 AccessTy, AS, MemoryInst, Result,
3814 InsertedInsts, PromotedInsts, TPT,
3815 LargeOffsetGEP, OptSize, PSI, BFI)
3816 .matchAddr(V, 0);
3817 (void)Success;
3818 assert(Success && "Couldn't select *anything*?");
3819 return Result;
3822 private:
3823 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3824 bool matchAddr(Value *Addr, unsigned Depth);
3825 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3826 bool *MovedAway = nullptr);
3827 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3828 ExtAddrMode &AMBefore,
3829 ExtAddrMode &AMAfter);
3830 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3831 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3832 Value *PromotedOperand) const;
3835 class PhiNodeSet;
3837 /// An iterator for PhiNodeSet.
3838 class PhiNodeSetIterator {
3839 PhiNodeSet *const Set;
3840 size_t CurrentIndex = 0;
3842 public:
3843 /// The constructor. Start should point to either a valid element, or be equal
3844 /// to the size of the underlying SmallVector of the PhiNodeSet.
3845 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3846 PHINode *operator*() const;
3847 PhiNodeSetIterator &operator++();
3848 bool operator==(const PhiNodeSetIterator &RHS) const;
3849 bool operator!=(const PhiNodeSetIterator &RHS) const;
3852 /// Keeps a set of PHINodes.
3854 /// This is a minimal set implementation for a specific use case:
3855 /// It is very fast when there are very few elements, but also provides good
3856 /// performance when there are many. It is similar to SmallPtrSet, but also
3857 /// provides iteration by insertion order, which is deterministic and stable
3858 /// across runs. It is also similar to SmallSetVector, but provides removing
3859 /// elements in O(1) time. This is achieved by not actually removing the element
3860 /// from the underlying vector, so comes at the cost of using more memory, but
3861 /// that is fine, since PhiNodeSets are used as short lived objects.
3862 class PhiNodeSet {
3863 friend class PhiNodeSetIterator;
3865 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3866 using iterator = PhiNodeSetIterator;
3868 /// Keeps the elements in the order of their insertion in the underlying
3869 /// vector. To achieve constant time removal, it never deletes any element.
3870 SmallVector<PHINode *, 32> NodeList;
3872 /// Keeps the elements in the underlying set implementation. This (and not the
3873 /// NodeList defined above) is the source of truth on whether an element
3874 /// is actually in the collection.
3875 MapType NodeMap;
3877 /// Points to the first valid (not deleted) element when the set is not empty
3878 /// and the value is not zero. Equals to the size of the underlying vector
3879 /// when the set is empty. When the value is 0, as in the beginning, the
3880 /// first element may or may not be valid.
3881 size_t FirstValidElement = 0;
3883 public:
3884 /// Inserts a new element to the collection.
3885 /// \returns true if the element is actually added, i.e. was not in the
3886 /// collection before the operation.
3887 bool insert(PHINode *Ptr) {
3888 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3889 NodeList.push_back(Ptr);
3890 return true;
3892 return false;
3895 /// Removes the element from the collection.
3896 /// \returns whether the element is actually removed, i.e. was in the
3897 /// collection before the operation.
3898 bool erase(PHINode *Ptr) {
3899 if (NodeMap.erase(Ptr)) {
3900 SkipRemovedElements(FirstValidElement);
3901 return true;
3903 return false;
3906 /// Removes all elements and clears the collection.
3907 void clear() {
3908 NodeMap.clear();
3909 NodeList.clear();
3910 FirstValidElement = 0;
3913 /// \returns an iterator that will iterate the elements in the order of
3914 /// insertion.
3915 iterator begin() {
3916 if (FirstValidElement == 0)
3917 SkipRemovedElements(FirstValidElement);
3918 return PhiNodeSetIterator(this, FirstValidElement);
3921 /// \returns an iterator that points to the end of the collection.
3922 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3924 /// Returns the number of elements in the collection.
3925 size_t size() const { return NodeMap.size(); }
3927 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3928 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3930 private:
3931 /// Updates the CurrentIndex so that it will point to a valid element.
3933 /// If the element of NodeList at CurrentIndex is valid, it does not
3934 /// change it. If there are no more valid elements, it updates CurrentIndex
3935 /// to point to the end of the NodeList.
3936 void SkipRemovedElements(size_t &CurrentIndex) {
3937 while (CurrentIndex < NodeList.size()) {
3938 auto it = NodeMap.find(NodeList[CurrentIndex]);
3939 // If the element has been deleted and added again later, NodeMap will
3940 // point to a different index, so CurrentIndex will still be invalid.
3941 if (it != NodeMap.end() && it->second == CurrentIndex)
3942 break;
3943 ++CurrentIndex;
3948 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3949 : Set(Set), CurrentIndex(Start) {}
3951 PHINode *PhiNodeSetIterator::operator*() const {
3952 assert(CurrentIndex < Set->NodeList.size() &&
3953 "PhiNodeSet access out of range");
3954 return Set->NodeList[CurrentIndex];
3957 PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3958 assert(CurrentIndex < Set->NodeList.size() &&
3959 "PhiNodeSet access out of range");
3960 ++CurrentIndex;
3961 Set->SkipRemovedElements(CurrentIndex);
3962 return *this;
3965 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3966 return CurrentIndex == RHS.CurrentIndex;
3969 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3970 return !((*this) == RHS);
3973 /// Keep track of simplification of Phi nodes.
3974 /// Accept the set of all phi nodes and erase phi node from this set
3975 /// if it is simplified.
3976 class SimplificationTracker {
3977 DenseMap<Value *, Value *> Storage;
3978 const SimplifyQuery &SQ;
3979 // Tracks newly created Phi nodes. The elements are iterated by insertion
3980 // order.
3981 PhiNodeSet AllPhiNodes;
3982 // Tracks newly created Select nodes.
3983 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3985 public:
3986 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3988 Value *Get(Value *V) {
3989 do {
3990 auto SV = Storage.find(V);
3991 if (SV == Storage.end())
3992 return V;
3993 V = SV->second;
3994 } while (true);
3997 Value *Simplify(Value *Val) {
3998 SmallVector<Value *, 32> WorkList;
3999 SmallPtrSet<Value *, 32> Visited;
4000 WorkList.push_back(Val);
4001 while (!WorkList.empty()) {
4002 auto *P = WorkList.pop_back_val();
4003 if (!Visited.insert(P).second)
4004 continue;
4005 if (auto *PI = dyn_cast<Instruction>(P))
4006 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
4007 for (auto *U : PI->users())
4008 WorkList.push_back(cast<Value>(U));
4009 Put(PI, V);
4010 PI->replaceAllUsesWith(V);
4011 if (auto *PHI = dyn_cast<PHINode>(PI))
4012 AllPhiNodes.erase(PHI);
4013 if (auto *Select = dyn_cast<SelectInst>(PI))
4014 AllSelectNodes.erase(Select);
4015 PI->eraseFromParent();
4018 return Get(Val);
4021 void Put(Value *From, Value *To) { Storage.insert({From, To}); }
4023 void ReplacePhi(PHINode *From, PHINode *To) {
4024 Value *OldReplacement = Get(From);
4025 while (OldReplacement != From) {
4026 From = To;
4027 To = dyn_cast<PHINode>(OldReplacement);
4028 OldReplacement = Get(From);
4030 assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
4031 Put(From, To);
4032 From->replaceAllUsesWith(To);
4033 AllPhiNodes.erase(From);
4034 From->eraseFromParent();
4037 PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
4039 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
4041 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
4043 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
4045 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
4047 void destroyNewNodes(Type *CommonType) {
4048 // For safe erasing, replace the uses with dummy value first.
4049 auto *Dummy = PoisonValue::get(CommonType);
4050 for (auto *I : AllPhiNodes) {
4051 I->replaceAllUsesWith(Dummy);
4052 I->eraseFromParent();
4054 AllPhiNodes.clear();
4055 for (auto *I : AllSelectNodes) {
4056 I->replaceAllUsesWith(Dummy);
4057 I->eraseFromParent();
4059 AllSelectNodes.clear();
4063 /// A helper class for combining addressing modes.
4064 class AddressingModeCombiner {
4065 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
4066 typedef std::pair<PHINode *, PHINode *> PHIPair;
4068 private:
4069 /// The addressing modes we've collected.
4070 SmallVector<ExtAddrMode, 16> AddrModes;
4072 /// The field in which the AddrModes differ, when we have more than one.
4073 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
4075 /// Are the AddrModes that we have all just equal to their original values?
4076 bool AllAddrModesTrivial = true;
4078 /// Common Type for all different fields in addressing modes.
4079 Type *CommonType = nullptr;
4081 /// SimplifyQuery for simplifyInstruction utility.
4082 const SimplifyQuery &SQ;
4084 /// Original Address.
4085 Value *Original;
4087 /// Common value among addresses
4088 Value *CommonValue = nullptr;
4090 public:
4091 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
4092 : SQ(_SQ), Original(OriginalValue) {}
4094 ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
4096 /// Get the combined AddrMode
4097 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
4099 /// Add a new AddrMode if it's compatible with the AddrModes we already
4100 /// have.
4101 /// \return True iff we succeeded in doing so.
4102 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
4103 // Take note of if we have any non-trivial AddrModes, as we need to detect
4104 // when all AddrModes are trivial as then we would introduce a phi or select
4105 // which just duplicates what's already there.
4106 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
4108 // If this is the first addrmode then everything is fine.
4109 if (AddrModes.empty()) {
4110 AddrModes.emplace_back(NewAddrMode);
4111 return true;
4114 // Figure out how different this is from the other address modes, which we
4115 // can do just by comparing against the first one given that we only care
4116 // about the cumulative difference.
4117 ExtAddrMode::FieldName ThisDifferentField =
4118 AddrModes[0].compare(NewAddrMode);
4119 if (DifferentField == ExtAddrMode::NoField)
4120 DifferentField = ThisDifferentField;
4121 else if (DifferentField != ThisDifferentField)
4122 DifferentField = ExtAddrMode::MultipleFields;
4124 // If NewAddrMode differs in more than one dimension we cannot handle it.
4125 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
4127 // If Scale Field is different then we reject.
4128 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
4130 // We also must reject the case when base offset is different and
4131 // scale reg is not null, we cannot handle this case due to merge of
4132 // different offsets will be used as ScaleReg.
4133 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
4134 !NewAddrMode.ScaledReg);
4136 // We also must reject the case when GV is different and BaseReg installed
4137 // due to we want to use base reg as a merge of GV values.
4138 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
4139 !NewAddrMode.HasBaseReg);
4141 // Even if NewAddMode is the same we still need to collect it due to
4142 // original value is different. And later we will need all original values
4143 // as anchors during finding the common Phi node.
4144 if (CanHandle)
4145 AddrModes.emplace_back(NewAddrMode);
4146 else
4147 AddrModes.clear();
4149 return CanHandle;
4152 /// Combine the addressing modes we've collected into a single
4153 /// addressing mode.
4154 /// \return True iff we successfully combined them or we only had one so
4155 /// didn't need to combine them anyway.
4156 bool combineAddrModes() {
4157 // If we have no AddrModes then they can't be combined.
4158 if (AddrModes.size() == 0)
4159 return false;
4161 // A single AddrMode can trivially be combined.
4162 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
4163 return true;
4165 // If the AddrModes we collected are all just equal to the value they are
4166 // derived from then combining them wouldn't do anything useful.
4167 if (AllAddrModesTrivial)
4168 return false;
4170 if (!addrModeCombiningAllowed())
4171 return false;
4173 // Build a map between <original value, basic block where we saw it> to
4174 // value of base register.
4175 // Bail out if there is no common type.
4176 FoldAddrToValueMapping Map;
4177 if (!initializeMap(Map))
4178 return false;
4180 CommonValue = findCommon(Map);
4181 if (CommonValue)
4182 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
4183 return CommonValue != nullptr;
4186 private:
4187 /// `CommonValue` may be a placeholder inserted by us.
4188 /// If the placeholder is not used, we should remove this dead instruction.
4189 void eraseCommonValueIfDead() {
4190 if (CommonValue && CommonValue->getNumUses() == 0)
4191 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
4192 CommonInst->eraseFromParent();
4195 /// Initialize Map with anchor values. For address seen
4196 /// we set the value of different field saw in this address.
4197 /// At the same time we find a common type for different field we will
4198 /// use to create new Phi/Select nodes. Keep it in CommonType field.
4199 /// Return false if there is no common type found.
4200 bool initializeMap(FoldAddrToValueMapping &Map) {
4201 // Keep track of keys where the value is null. We will need to replace it
4202 // with constant null when we know the common type.
4203 SmallVector<Value *, 2> NullValue;
4204 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
4205 for (auto &AM : AddrModes) {
4206 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
4207 if (DV) {
4208 auto *Type = DV->getType();
4209 if (CommonType && CommonType != Type)
4210 return false;
4211 CommonType = Type;
4212 Map[AM.OriginalValue] = DV;
4213 } else {
4214 NullValue.push_back(AM.OriginalValue);
4217 assert(CommonType && "At least one non-null value must be!");
4218 for (auto *V : NullValue)
4219 Map[V] = Constant::getNullValue(CommonType);
4220 return true;
4223 /// We have mapping between value A and other value B where B was a field in
4224 /// addressing mode represented by A. Also we have an original value C
4225 /// representing an address we start with. Traversing from C through phi and
4226 /// selects we ended up with A's in a map. This utility function tries to find
4227 /// a value V which is a field in addressing mode C and traversing through phi
4228 /// nodes and selects we will end up in corresponded values B in a map.
4229 /// The utility will create a new Phi/Selects if needed.
4230 // The simple example looks as follows:
4231 // BB1:
4232 // p1 = b1 + 40
4233 // br cond BB2, BB3
4234 // BB2:
4235 // p2 = b2 + 40
4236 // br BB3
4237 // BB3:
4238 // p = phi [p1, BB1], [p2, BB2]
4239 // v = load p
4240 // Map is
4241 // p1 -> b1
4242 // p2 -> b2
4243 // Request is
4244 // p -> ?
4245 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
4246 Value *findCommon(FoldAddrToValueMapping &Map) {
4247 // Tracks the simplification of newly created phi nodes. The reason we use
4248 // this mapping is because we will add new created Phi nodes in AddrToBase.
4249 // Simplification of Phi nodes is recursive, so some Phi node may
4250 // be simplified after we added it to AddrToBase. In reality this
4251 // simplification is possible only if original phi/selects were not
4252 // simplified yet.
4253 // Using this mapping we can find the current value in AddrToBase.
4254 SimplificationTracker ST(SQ);
4256 // First step, DFS to create PHI nodes for all intermediate blocks.
4257 // Also fill traverse order for the second step.
4258 SmallVector<Value *, 32> TraverseOrder;
4259 InsertPlaceholders(Map, TraverseOrder, ST);
4261 // Second Step, fill new nodes by merged values and simplify if possible.
4262 FillPlaceholders(Map, TraverseOrder, ST);
4264 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
4265 ST.destroyNewNodes(CommonType);
4266 return nullptr;
4269 // Now we'd like to match New Phi nodes to existed ones.
4270 unsigned PhiNotMatchedCount = 0;
4271 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
4272 ST.destroyNewNodes(CommonType);
4273 return nullptr;
4276 auto *Result = ST.Get(Map.find(Original)->second);
4277 if (Result) {
4278 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
4279 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
4281 return Result;
4284 /// Try to match PHI node to Candidate.
4285 /// Matcher tracks the matched Phi nodes.
4286 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
4287 SmallSetVector<PHIPair, 8> &Matcher,
4288 PhiNodeSet &PhiNodesToMatch) {
4289 SmallVector<PHIPair, 8> WorkList;
4290 Matcher.insert({PHI, Candidate});
4291 SmallSet<PHINode *, 8> MatchedPHIs;
4292 MatchedPHIs.insert(PHI);
4293 WorkList.push_back({PHI, Candidate});
4294 SmallSet<PHIPair, 8> Visited;
4295 while (!WorkList.empty()) {
4296 auto Item = WorkList.pop_back_val();
4297 if (!Visited.insert(Item).second)
4298 continue;
4299 // We iterate over all incoming values to Phi to compare them.
4300 // If values are different and both of them Phi and the first one is a
4301 // Phi we added (subject to match) and both of them is in the same basic
4302 // block then we can match our pair if values match. So we state that
4303 // these values match and add it to work list to verify that.
4304 for (auto *B : Item.first->blocks()) {
4305 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
4306 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
4307 if (FirstValue == SecondValue)
4308 continue;
4310 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
4311 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
4313 // One of them is not Phi or
4314 // The first one is not Phi node from the set we'd like to match or
4315 // Phi nodes from different basic blocks then
4316 // we will not be able to match.
4317 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
4318 FirstPhi->getParent() != SecondPhi->getParent())
4319 return false;
4321 // If we already matched them then continue.
4322 if (Matcher.count({FirstPhi, SecondPhi}))
4323 continue;
4324 // So the values are different and does not match. So we need them to
4325 // match. (But we register no more than one match per PHI node, so that
4326 // we won't later try to replace them twice.)
4327 if (MatchedPHIs.insert(FirstPhi).second)
4328 Matcher.insert({FirstPhi, SecondPhi});
4329 // But me must check it.
4330 WorkList.push_back({FirstPhi, SecondPhi});
4333 return true;
4336 /// For the given set of PHI nodes (in the SimplificationTracker) try
4337 /// to find their equivalents.
4338 /// Returns false if this matching fails and creation of new Phi is disabled.
4339 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
4340 unsigned &PhiNotMatchedCount) {
4341 // Matched and PhiNodesToMatch iterate their elements in a deterministic
4342 // order, so the replacements (ReplacePhi) are also done in a deterministic
4343 // order.
4344 SmallSetVector<PHIPair, 8> Matched;
4345 SmallPtrSet<PHINode *, 8> WillNotMatch;
4346 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
4347 while (PhiNodesToMatch.size()) {
4348 PHINode *PHI = *PhiNodesToMatch.begin();
4350 // Add us, if no Phi nodes in the basic block we do not match.
4351 WillNotMatch.clear();
4352 WillNotMatch.insert(PHI);
4354 // Traverse all Phis until we found equivalent or fail to do that.
4355 bool IsMatched = false;
4356 for (auto &P : PHI->getParent()->phis()) {
4357 // Skip new Phi nodes.
4358 if (PhiNodesToMatch.count(&P))
4359 continue;
4360 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
4361 break;
4362 // If it does not match, collect all Phi nodes from matcher.
4363 // if we end up with no match, them all these Phi nodes will not match
4364 // later.
4365 for (auto M : Matched)
4366 WillNotMatch.insert(M.first);
4367 Matched.clear();
4369 if (IsMatched) {
4370 // Replace all matched values and erase them.
4371 for (auto MV : Matched)
4372 ST.ReplacePhi(MV.first, MV.second);
4373 Matched.clear();
4374 continue;
4376 // If we are not allowed to create new nodes then bail out.
4377 if (!AllowNewPhiNodes)
4378 return false;
4379 // Just remove all seen values in matcher. They will not match anything.
4380 PhiNotMatchedCount += WillNotMatch.size();
4381 for (auto *P : WillNotMatch)
4382 PhiNodesToMatch.erase(P);
4384 return true;
4386 /// Fill the placeholders with values from predecessors and simplify them.
4387 void FillPlaceholders(FoldAddrToValueMapping &Map,
4388 SmallVectorImpl<Value *> &TraverseOrder,
4389 SimplificationTracker &ST) {
4390 while (!TraverseOrder.empty()) {
4391 Value *Current = TraverseOrder.pop_back_val();
4392 assert(Map.contains(Current) && "No node to fill!!!");
4393 Value *V = Map[Current];
4395 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4396 // CurrentValue also must be Select.
4397 auto *CurrentSelect = cast<SelectInst>(Current);
4398 auto *TrueValue = CurrentSelect->getTrueValue();
4399 assert(Map.contains(TrueValue) && "No True Value!");
4400 Select->setTrueValue(ST.Get(Map[TrueValue]));
4401 auto *FalseValue = CurrentSelect->getFalseValue();
4402 assert(Map.contains(FalseValue) && "No False Value!");
4403 Select->setFalseValue(ST.Get(Map[FalseValue]));
4404 } else {
4405 // Must be a Phi node then.
4406 auto *PHI = cast<PHINode>(V);
4407 // Fill the Phi node with values from predecessors.
4408 for (auto *B : predecessors(PHI->getParent())) {
4409 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4410 assert(Map.contains(PV) && "No predecessor Value!");
4411 PHI->addIncoming(ST.Get(Map[PV]), B);
4414 Map[Current] = ST.Simplify(V);
4418 /// Starting from original value recursively iterates over def-use chain up to
4419 /// known ending values represented in a map. For each traversed phi/select
4420 /// inserts a placeholder Phi or Select.
4421 /// Reports all new created Phi/Select nodes by adding them to set.
4422 /// Also reports and order in what values have been traversed.
4423 void InsertPlaceholders(FoldAddrToValueMapping &Map,
4424 SmallVectorImpl<Value *> &TraverseOrder,
4425 SimplificationTracker &ST) {
4426 SmallVector<Value *, 32> Worklist;
4427 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4428 "Address must be a Phi or Select node");
4429 auto *Dummy = PoisonValue::get(CommonType);
4430 Worklist.push_back(Original);
4431 while (!Worklist.empty()) {
4432 Value *Current = Worklist.pop_back_val();
4433 // if it is already visited or it is an ending value then skip it.
4434 if (Map.contains(Current))
4435 continue;
4436 TraverseOrder.push_back(Current);
4438 // CurrentValue must be a Phi node or select. All others must be covered
4439 // by anchors.
4440 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4441 // Is it OK to get metadata from OrigSelect?!
4442 // Create a Select placeholder with dummy value.
4443 SelectInst *Select =
4444 SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy,
4445 CurrentSelect->getName(),
4446 CurrentSelect->getIterator(), CurrentSelect);
4447 Map[Current] = Select;
4448 ST.insertNewSelect(Select);
4449 // We are interested in True and False values.
4450 Worklist.push_back(CurrentSelect->getTrueValue());
4451 Worklist.push_back(CurrentSelect->getFalseValue());
4452 } else {
4453 // It must be a Phi node then.
4454 PHINode *CurrentPhi = cast<PHINode>(Current);
4455 unsigned PredCount = CurrentPhi->getNumIncomingValues();
4456 PHINode *PHI =
4457 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator());
4458 Map[Current] = PHI;
4459 ST.insertNewPhi(PHI);
4460 append_range(Worklist, CurrentPhi->incoming_values());
4465 bool addrModeCombiningAllowed() {
4466 if (DisableComplexAddrModes)
4467 return false;
4468 switch (DifferentField) {
4469 default:
4470 return false;
4471 case ExtAddrMode::BaseRegField:
4472 return AddrSinkCombineBaseReg;
4473 case ExtAddrMode::BaseGVField:
4474 return AddrSinkCombineBaseGV;
4475 case ExtAddrMode::BaseOffsField:
4476 return AddrSinkCombineBaseOffs;
4477 case ExtAddrMode::ScaledRegField:
4478 return AddrSinkCombineScaledReg;
4482 } // end anonymous namespace
4484 /// Try adding ScaleReg*Scale to the current addressing mode.
4485 /// Return true and update AddrMode if this addr mode is legal for the target,
4486 /// false if not.
4487 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4488 unsigned Depth) {
4489 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4490 // mode. Just process that directly.
4491 if (Scale == 1)
4492 return matchAddr(ScaleReg, Depth);
4494 // If the scale is 0, it takes nothing to add this.
4495 if (Scale == 0)
4496 return true;
4498 // If we already have a scale of this value, we can add to it, otherwise, we
4499 // need an available scale field.
4500 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4501 return false;
4503 ExtAddrMode TestAddrMode = AddrMode;
4505 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
4506 // [A+B + A*7] -> [B+A*8].
4507 TestAddrMode.Scale += Scale;
4508 TestAddrMode.ScaledReg = ScaleReg;
4510 // If the new address isn't legal, bail out.
4511 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4512 return false;
4514 // It was legal, so commit it.
4515 AddrMode = TestAddrMode;
4517 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4518 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
4519 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4520 // go any further: we can reuse it and cannot eliminate it.
4521 ConstantInt *CI = nullptr;
4522 Value *AddLHS = nullptr;
4523 if (isa<Instruction>(ScaleReg) && // not a constant expr.
4524 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4525 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4526 TestAddrMode.InBounds = false;
4527 TestAddrMode.ScaledReg = AddLHS;
4528 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4530 // If this addressing mode is legal, commit it and remember that we folded
4531 // this instruction.
4532 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4533 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4534 AddrMode = TestAddrMode;
4535 return true;
4537 // Restore status quo.
4538 TestAddrMode = AddrMode;
4541 // If this is an add recurrence with a constant step, return the increment
4542 // instruction and the canonicalized step.
4543 auto GetConstantStep =
4544 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4545 auto *PN = dyn_cast<PHINode>(V);
4546 if (!PN)
4547 return std::nullopt;
4548 auto IVInc = getIVIncrement(PN, &LI);
4549 if (!IVInc)
4550 return std::nullopt;
4551 // TODO: The result of the intrinsics above is two-complement. However when
4552 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4553 // If it has nuw or nsw flags, we need to make sure that these flags are
4554 // inferrable at the point of memory instruction. Otherwise we are replacing
4555 // well-defined two-complement computation with poison. Currently, to avoid
4556 // potentially complex analysis needed to prove this, we reject such cases.
4557 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4558 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4559 return std::nullopt;
4560 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4561 return std::make_pair(IVInc->first, ConstantStep->getValue());
4562 return std::nullopt;
4565 // Try to account for the following special case:
4566 // 1. ScaleReg is an inductive variable;
4567 // 2. We use it with non-zero offset;
4568 // 3. IV's increment is available at the point of memory instruction.
4570 // In this case, we may reuse the IV increment instead of the IV Phi to
4571 // achieve the following advantages:
4572 // 1. If IV step matches the offset, we will have no need in the offset;
4573 // 2. Even if they don't match, we will reduce the overlap of living IV
4574 // and IV increment, that will potentially lead to better register
4575 // assignment.
4576 if (AddrMode.BaseOffs) {
4577 if (auto IVStep = GetConstantStep(ScaleReg)) {
4578 Instruction *IVInc = IVStep->first;
4579 // The following assert is important to ensure a lack of infinite loops.
4580 // This transforms is (intentionally) the inverse of the one just above.
4581 // If they don't agree on the definition of an increment, we'd alternate
4582 // back and forth indefinitely.
4583 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4584 APInt Step = IVStep->second;
4585 APInt Offset = Step * AddrMode.Scale;
4586 if (Offset.isSignedIntN(64)) {
4587 TestAddrMode.InBounds = false;
4588 TestAddrMode.ScaledReg = IVInc;
4589 TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4590 // If this addressing mode is legal, commit it..
4591 // (Note that we defer the (expensive) domtree base legality check
4592 // to the very last possible point.)
4593 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4594 getDTFn().dominates(IVInc, MemoryInst)) {
4595 AddrModeInsts.push_back(cast<Instruction>(IVInc));
4596 AddrMode = TestAddrMode;
4597 return true;
4599 // Restore status quo.
4600 TestAddrMode = AddrMode;
4605 // Otherwise, just return what we have.
4606 return true;
4609 /// This is a little filter, which returns true if an addressing computation
4610 /// involving I might be folded into a load/store accessing it.
4611 /// This doesn't need to be perfect, but needs to accept at least
4612 /// the set of instructions that MatchOperationAddr can.
4613 static bool MightBeFoldableInst(Instruction *I) {
4614 switch (I->getOpcode()) {
4615 case Instruction::BitCast:
4616 case Instruction::AddrSpaceCast:
4617 // Don't touch identity bitcasts.
4618 if (I->getType() == I->getOperand(0)->getType())
4619 return false;
4620 return I->getType()->isIntOrPtrTy();
4621 case Instruction::PtrToInt:
4622 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4623 return true;
4624 case Instruction::IntToPtr:
4625 // We know the input is intptr_t, so this is foldable.
4626 return true;
4627 case Instruction::Add:
4628 return true;
4629 case Instruction::Mul:
4630 case Instruction::Shl:
4631 // Can only handle X*C and X << C.
4632 return isa<ConstantInt>(I->getOperand(1));
4633 case Instruction::GetElementPtr:
4634 return true;
4635 default:
4636 return false;
4640 /// Check whether or not \p Val is a legal instruction for \p TLI.
4641 /// \note \p Val is assumed to be the product of some type promotion.
4642 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4643 /// to be legal, as the non-promoted value would have had the same state.
4644 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4645 const DataLayout &DL, Value *Val) {
4646 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4647 if (!PromotedInst)
4648 return false;
4649 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4650 // If the ISDOpcode is undefined, it was undefined before the promotion.
4651 if (!ISDOpcode)
4652 return true;
4653 // Otherwise, check if the promoted instruction is legal or not.
4654 return TLI.isOperationLegalOrCustom(
4655 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4658 namespace {
4660 /// Hepler class to perform type promotion.
4661 class TypePromotionHelper {
4662 /// Utility function to add a promoted instruction \p ExtOpnd to
4663 /// \p PromotedInsts and record the type of extension we have seen.
4664 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4665 Instruction *ExtOpnd, bool IsSExt) {
4666 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4667 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4668 if (It != PromotedInsts.end()) {
4669 // If the new extension is same as original, the information in
4670 // PromotedInsts[ExtOpnd] is still correct.
4671 if (It->second.getInt() == ExtTy)
4672 return;
4674 // Now the new extension is different from old extension, we make
4675 // the type information invalid by setting extension type to
4676 // BothExtension.
4677 ExtTy = BothExtension;
4679 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4682 /// Utility function to query the original type of instruction \p Opnd
4683 /// with a matched extension type. If the extension doesn't match, we
4684 /// cannot use the information we had on the original type.
4685 /// BothExtension doesn't match any extension type.
4686 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4687 Instruction *Opnd, bool IsSExt) {
4688 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4689 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4690 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4691 return It->second.getPointer();
4692 return nullptr;
4695 /// Utility function to check whether or not a sign or zero extension
4696 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4697 /// either using the operands of \p Inst or promoting \p Inst.
4698 /// The type of the extension is defined by \p IsSExt.
4699 /// In other words, check if:
4700 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4701 /// #1 Promotion applies:
4702 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4703 /// #2 Operand reuses:
4704 /// ext opnd1 to ConsideredExtType.
4705 /// \p PromotedInsts maps the instructions to their type before promotion.
4706 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4707 const InstrToOrigTy &PromotedInsts, bool IsSExt);
4709 /// Utility function to determine if \p OpIdx should be promoted when
4710 /// promoting \p Inst.
4711 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4712 return !(isa<SelectInst>(Inst) && OpIdx == 0);
4715 /// Utility function to promote the operand of \p Ext when this
4716 /// operand is a promotable trunc or sext or zext.
4717 /// \p PromotedInsts maps the instructions to their type before promotion.
4718 /// \p CreatedInstsCost[out] contains the cost of all instructions
4719 /// created to promote the operand of Ext.
4720 /// Newly added extensions are inserted in \p Exts.
4721 /// Newly added truncates are inserted in \p Truncs.
4722 /// Should never be called directly.
4723 /// \return The promoted value which is used instead of Ext.
4724 static Value *promoteOperandForTruncAndAnyExt(
4725 Instruction *Ext, TypePromotionTransaction &TPT,
4726 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4727 SmallVectorImpl<Instruction *> *Exts,
4728 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4730 /// Utility function to promote the operand of \p Ext when this
4731 /// operand is promotable and is not a supported trunc or sext.
4732 /// \p PromotedInsts maps the instructions to their type before promotion.
4733 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4734 /// created to promote the operand of Ext.
4735 /// Newly added extensions are inserted in \p Exts.
4736 /// Newly added truncates are inserted in \p Truncs.
4737 /// Should never be called directly.
4738 /// \return The promoted value which is used instead of Ext.
4739 static Value *promoteOperandForOther(Instruction *Ext,
4740 TypePromotionTransaction &TPT,
4741 InstrToOrigTy &PromotedInsts,
4742 unsigned &CreatedInstsCost,
4743 SmallVectorImpl<Instruction *> *Exts,
4744 SmallVectorImpl<Instruction *> *Truncs,
4745 const TargetLowering &TLI, bool IsSExt);
4747 /// \see promoteOperandForOther.
4748 static Value *signExtendOperandForOther(
4749 Instruction *Ext, TypePromotionTransaction &TPT,
4750 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4751 SmallVectorImpl<Instruction *> *Exts,
4752 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4753 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4754 Exts, Truncs, TLI, true);
4757 /// \see promoteOperandForOther.
4758 static Value *zeroExtendOperandForOther(
4759 Instruction *Ext, TypePromotionTransaction &TPT,
4760 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4761 SmallVectorImpl<Instruction *> *Exts,
4762 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4763 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4764 Exts, Truncs, TLI, false);
4767 public:
4768 /// Type for the utility function that promotes the operand of Ext.
4769 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4770 InstrToOrigTy &PromotedInsts,
4771 unsigned &CreatedInstsCost,
4772 SmallVectorImpl<Instruction *> *Exts,
4773 SmallVectorImpl<Instruction *> *Truncs,
4774 const TargetLowering &TLI);
4776 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4777 /// action to promote the operand of \p Ext instead of using Ext.
4778 /// \return NULL if no promotable action is possible with the current
4779 /// sign extension.
4780 /// \p InsertedInsts keeps track of all the instructions inserted by the
4781 /// other CodeGenPrepare optimizations. This information is important
4782 /// because we do not want to promote these instructions as CodeGenPrepare
4783 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4784 /// \p PromotedInsts maps the instructions to their type before promotion.
4785 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4786 const TargetLowering &TLI,
4787 const InstrToOrigTy &PromotedInsts);
4790 } // end anonymous namespace
4792 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4793 Type *ConsideredExtType,
4794 const InstrToOrigTy &PromotedInsts,
4795 bool IsSExt) {
4796 // The promotion helper does not know how to deal with vector types yet.
4797 // To be able to fix that, we would need to fix the places where we
4798 // statically extend, e.g., constants and such.
4799 if (Inst->getType()->isVectorTy())
4800 return false;
4802 // We can always get through zext.
4803 if (isa<ZExtInst>(Inst))
4804 return true;
4806 // sext(sext) is ok too.
4807 if (IsSExt && isa<SExtInst>(Inst))
4808 return true;
4810 // We can get through binary operator, if it is legal. In other words, the
4811 // binary operator must have a nuw or nsw flag.
4812 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4813 if (isa<OverflowingBinaryOperator>(BinOp) &&
4814 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4815 (IsSExt && BinOp->hasNoSignedWrap())))
4816 return true;
4818 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4819 if ((Inst->getOpcode() == Instruction::And ||
4820 Inst->getOpcode() == Instruction::Or))
4821 return true;
4823 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4824 if (Inst->getOpcode() == Instruction::Xor) {
4825 // Make sure it is not a NOT.
4826 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4827 if (!Cst->getValue().isAllOnes())
4828 return true;
4831 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4832 // It may change a poisoned value into a regular value, like
4833 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4834 // poisoned value regular value
4835 // It should be OK since undef covers valid value.
4836 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4837 return true;
4839 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4840 // It may change a poisoned value into a regular value, like
4841 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4842 // poisoned value regular value
4843 // It should be OK since undef covers valid value.
4844 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4845 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4846 if (ExtInst->hasOneUse()) {
4847 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4848 if (AndInst && AndInst->getOpcode() == Instruction::And) {
4849 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4850 if (Cst &&
4851 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4852 return true;
4857 // Check if we can do the following simplification.
4858 // ext(trunc(opnd)) --> ext(opnd)
4859 if (!isa<TruncInst>(Inst))
4860 return false;
4862 Value *OpndVal = Inst->getOperand(0);
4863 // Check if we can use this operand in the extension.
4864 // If the type is larger than the result type of the extension, we cannot.
4865 if (!OpndVal->getType()->isIntegerTy() ||
4866 OpndVal->getType()->getIntegerBitWidth() >
4867 ConsideredExtType->getIntegerBitWidth())
4868 return false;
4870 // If the operand of the truncate is not an instruction, we will not have
4871 // any information on the dropped bits.
4872 // (Actually we could for constant but it is not worth the extra logic).
4873 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4874 if (!Opnd)
4875 return false;
4877 // Check if the source of the type is narrow enough.
4878 // I.e., check that trunc just drops extended bits of the same kind of
4879 // the extension.
4880 // #1 get the type of the operand and check the kind of the extended bits.
4881 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4882 if (OpndType)
4884 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4885 OpndType = Opnd->getOperand(0)->getType();
4886 else
4887 return false;
4889 // #2 check that the truncate just drops extended bits.
4890 return Inst->getType()->getIntegerBitWidth() >=
4891 OpndType->getIntegerBitWidth();
4894 TypePromotionHelper::Action TypePromotionHelper::getAction(
4895 Instruction *Ext, const SetOfInstrs &InsertedInsts,
4896 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4897 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4898 "Unexpected instruction type");
4899 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4900 Type *ExtTy = Ext->getType();
4901 bool IsSExt = isa<SExtInst>(Ext);
4902 // If the operand of the extension is not an instruction, we cannot
4903 // get through.
4904 // If it, check we can get through.
4905 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4906 return nullptr;
4908 // Do not promote if the operand has been added by codegenprepare.
4909 // Otherwise, it means we are undoing an optimization that is likely to be
4910 // redone, thus causing potential infinite loop.
4911 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4912 return nullptr;
4914 // SExt or Trunc instructions.
4915 // Return the related handler.
4916 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4917 isa<ZExtInst>(ExtOpnd))
4918 return promoteOperandForTruncAndAnyExt;
4920 // Regular instruction.
4921 // Abort early if we will have to insert non-free instructions.
4922 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4923 return nullptr;
4924 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4927 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4928 Instruction *SExt, TypePromotionTransaction &TPT,
4929 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4930 SmallVectorImpl<Instruction *> *Exts,
4931 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4932 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4933 // get through it and this method should not be called.
4934 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4935 Value *ExtVal = SExt;
4936 bool HasMergedNonFreeExt = false;
4937 if (isa<ZExtInst>(SExtOpnd)) {
4938 // Replace s|zext(zext(opnd))
4939 // => zext(opnd).
4940 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4941 Value *ZExt =
4942 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4943 TPT.replaceAllUsesWith(SExt, ZExt);
4944 TPT.eraseInstruction(SExt);
4945 ExtVal = ZExt;
4946 } else {
4947 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4948 // => z|sext(opnd).
4949 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4951 CreatedInstsCost = 0;
4953 // Remove dead code.
4954 if (SExtOpnd->use_empty())
4955 TPT.eraseInstruction(SExtOpnd);
4957 // Check if the extension is still needed.
4958 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4959 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4960 if (ExtInst) {
4961 if (Exts)
4962 Exts->push_back(ExtInst);
4963 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4965 return ExtVal;
4968 // At this point we have: ext ty opnd to ty.
4969 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4970 Value *NextVal = ExtInst->getOperand(0);
4971 TPT.eraseInstruction(ExtInst, NextVal);
4972 return NextVal;
4975 Value *TypePromotionHelper::promoteOperandForOther(
4976 Instruction *Ext, TypePromotionTransaction &TPT,
4977 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4978 SmallVectorImpl<Instruction *> *Exts,
4979 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4980 bool IsSExt) {
4981 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4982 // get through it and this method should not be called.
4983 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4984 CreatedInstsCost = 0;
4985 if (!ExtOpnd->hasOneUse()) {
4986 // ExtOpnd will be promoted.
4987 // All its uses, but Ext, will need to use a truncated value of the
4988 // promoted version.
4989 // Create the truncate now.
4990 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4991 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4992 // Insert it just after the definition.
4993 ITrunc->moveAfter(ExtOpnd);
4994 if (Truncs)
4995 Truncs->push_back(ITrunc);
4998 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4999 // Restore the operand of Ext (which has been replaced by the previous call
5000 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
5001 TPT.setOperand(Ext, 0, ExtOpnd);
5004 // Get through the Instruction:
5005 // 1. Update its type.
5006 // 2. Replace the uses of Ext by Inst.
5007 // 3. Extend each operand that needs to be extended.
5009 // Remember the original type of the instruction before promotion.
5010 // This is useful to know that the high bits are sign extended bits.
5011 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
5012 // Step #1.
5013 TPT.mutateType(ExtOpnd, Ext->getType());
5014 // Step #2.
5015 TPT.replaceAllUsesWith(Ext, ExtOpnd);
5016 // Step #3.
5017 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
5018 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
5019 ++OpIdx) {
5020 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
5021 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
5022 !shouldExtOperand(ExtOpnd, OpIdx)) {
5023 LLVM_DEBUG(dbgs() << "No need to propagate\n");
5024 continue;
5026 // Check if we can statically extend the operand.
5027 Value *Opnd = ExtOpnd->getOperand(OpIdx);
5028 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
5029 LLVM_DEBUG(dbgs() << "Statically extend\n");
5030 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
5031 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
5032 : Cst->getValue().zext(BitWidth);
5033 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
5034 continue;
5036 // UndefValue are typed, so we have to statically sign extend them.
5037 if (isa<UndefValue>(Opnd)) {
5038 LLVM_DEBUG(dbgs() << "Statically extend\n");
5039 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
5040 continue;
5043 // Otherwise we have to explicitly sign extend the operand.
5044 Value *ValForExtOpnd = IsSExt
5045 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
5046 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
5047 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
5048 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
5049 if (!InstForExtOpnd)
5050 continue;
5052 if (Exts)
5053 Exts->push_back(InstForExtOpnd);
5055 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
5057 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
5058 TPT.eraseInstruction(Ext);
5059 return ExtOpnd;
5062 /// Check whether or not promoting an instruction to a wider type is profitable.
5063 /// \p NewCost gives the cost of extension instructions created by the
5064 /// promotion.
5065 /// \p OldCost gives the cost of extension instructions before the promotion
5066 /// plus the number of instructions that have been
5067 /// matched in the addressing mode the promotion.
5068 /// \p PromotedOperand is the value that has been promoted.
5069 /// \return True if the promotion is profitable, false otherwise.
5070 bool AddressingModeMatcher::isPromotionProfitable(
5071 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
5072 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
5073 << '\n');
5074 // The cost of the new extensions is greater than the cost of the
5075 // old extension plus what we folded.
5076 // This is not profitable.
5077 if (NewCost > OldCost)
5078 return false;
5079 if (NewCost < OldCost)
5080 return true;
5081 // The promotion is neutral but it may help folding the sign extension in
5082 // loads for instance.
5083 // Check that we did not create an illegal instruction.
5084 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
5087 /// Given an instruction or constant expr, see if we can fold the operation
5088 /// into the addressing mode. If so, update the addressing mode and return
5089 /// true, otherwise return false without modifying AddrMode.
5090 /// If \p MovedAway is not NULL, it contains the information of whether or
5091 /// not AddrInst has to be folded into the addressing mode on success.
5092 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
5093 /// because it has been moved away.
5094 /// Thus AddrInst must not be added in the matched instructions.
5095 /// This state can happen when AddrInst is a sext, since it may be moved away.
5096 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
5097 /// not be referenced anymore.
5098 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
5099 unsigned Depth,
5100 bool *MovedAway) {
5101 // Avoid exponential behavior on extremely deep expression trees.
5102 if (Depth >= 5)
5103 return false;
5105 // By default, all matched instructions stay in place.
5106 if (MovedAway)
5107 *MovedAway = false;
5109 switch (Opcode) {
5110 case Instruction::PtrToInt:
5111 // PtrToInt is always a noop, as we know that the int type is pointer sized.
5112 return matchAddr(AddrInst->getOperand(0), Depth);
5113 case Instruction::IntToPtr: {
5114 auto AS = AddrInst->getType()->getPointerAddressSpace();
5115 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
5116 // This inttoptr is a no-op if the integer type is pointer sized.
5117 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
5118 return matchAddr(AddrInst->getOperand(0), Depth);
5119 return false;
5121 case Instruction::BitCast:
5122 // BitCast is always a noop, and we can handle it as long as it is
5123 // int->int or pointer->pointer (we don't want int<->fp or something).
5124 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
5125 // Don't touch identity bitcasts. These were probably put here by LSR,
5126 // and we don't want to mess around with them. Assume it knows what it
5127 // is doing.
5128 AddrInst->getOperand(0)->getType() != AddrInst->getType())
5129 return matchAddr(AddrInst->getOperand(0), Depth);
5130 return false;
5131 case Instruction::AddrSpaceCast: {
5132 unsigned SrcAS =
5133 AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
5134 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
5135 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
5136 return matchAddr(AddrInst->getOperand(0), Depth);
5137 return false;
5139 case Instruction::Add: {
5140 // Check to see if we can merge in one operand, then the other. If so, we
5141 // win.
5142 ExtAddrMode BackupAddrMode = AddrMode;
5143 unsigned OldSize = AddrModeInsts.size();
5144 // Start a transaction at this point.
5145 // The LHS may match but not the RHS.
5146 // Therefore, we need a higher level restoration point to undo partially
5147 // matched operation.
5148 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5149 TPT.getRestorationPoint();
5151 // Try to match an integer constant second to increase its chance of ending
5152 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
5153 int First = 0, Second = 1;
5154 if (isa<ConstantInt>(AddrInst->getOperand(First))
5155 && !isa<ConstantInt>(AddrInst->getOperand(Second)))
5156 std::swap(First, Second);
5157 AddrMode.InBounds = false;
5158 if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
5159 matchAddr(AddrInst->getOperand(Second), Depth + 1))
5160 return true;
5162 // Restore the old addr mode info.
5163 AddrMode = BackupAddrMode;
5164 AddrModeInsts.resize(OldSize);
5165 TPT.rollback(LastKnownGood);
5167 // Otherwise this was over-aggressive. Try merging operands in the opposite
5168 // order.
5169 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
5170 matchAddr(AddrInst->getOperand(First), Depth + 1))
5171 return true;
5173 // Otherwise we definitely can't merge the ADD in.
5174 AddrMode = BackupAddrMode;
5175 AddrModeInsts.resize(OldSize);
5176 TPT.rollback(LastKnownGood);
5177 break;
5179 // case Instruction::Or:
5180 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
5181 // break;
5182 case Instruction::Mul:
5183 case Instruction::Shl: {
5184 // Can only handle X*C and X << C.
5185 AddrMode.InBounds = false;
5186 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
5187 if (!RHS || RHS->getBitWidth() > 64)
5188 return false;
5189 int64_t Scale = Opcode == Instruction::Shl
5190 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
5191 : RHS->getSExtValue();
5193 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
5195 case Instruction::GetElementPtr: {
5196 // Scan the GEP. We check it if it contains constant offsets and at most
5197 // one variable offset.
5198 int VariableOperand = -1;
5199 unsigned VariableScale = 0;
5201 int64_t ConstantOffset = 0;
5202 gep_type_iterator GTI = gep_type_begin(AddrInst);
5203 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
5204 if (StructType *STy = GTI.getStructTypeOrNull()) {
5205 const StructLayout *SL = DL.getStructLayout(STy);
5206 unsigned Idx =
5207 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
5208 ConstantOffset += SL->getElementOffset(Idx);
5209 } else {
5210 TypeSize TS = GTI.getSequentialElementStride(DL);
5211 if (TS.isNonZero()) {
5212 // The optimisations below currently only work for fixed offsets.
5213 if (TS.isScalable())
5214 return false;
5215 int64_t TypeSize = TS.getFixedValue();
5216 if (ConstantInt *CI =
5217 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
5218 const APInt &CVal = CI->getValue();
5219 if (CVal.getSignificantBits() <= 64) {
5220 ConstantOffset += CVal.getSExtValue() * TypeSize;
5221 continue;
5224 // We only allow one variable index at the moment.
5225 if (VariableOperand != -1)
5226 return false;
5228 // Remember the variable index.
5229 VariableOperand = i;
5230 VariableScale = TypeSize;
5235 // A common case is for the GEP to only do a constant offset. In this case,
5236 // just add it to the disp field and check validity.
5237 if (VariableOperand == -1) {
5238 AddrMode.BaseOffs += ConstantOffset;
5239 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
5240 if (!cast<GEPOperator>(AddrInst)->isInBounds())
5241 AddrMode.InBounds = false;
5242 return true;
5244 AddrMode.BaseOffs -= ConstantOffset;
5246 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
5247 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
5248 ConstantOffset > 0) {
5249 // Record GEPs with non-zero offsets as candidates for splitting in
5250 // the event that the offset cannot fit into the r+i addressing mode.
5251 // Simple and common case that only one GEP is used in calculating the
5252 // address for the memory access.
5253 Value *Base = AddrInst->getOperand(0);
5254 auto *BaseI = dyn_cast<Instruction>(Base);
5255 auto *GEP = cast<GetElementPtrInst>(AddrInst);
5256 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
5257 (BaseI && !isa<CastInst>(BaseI) &&
5258 !isa<GetElementPtrInst>(BaseI))) {
5259 // Make sure the parent block allows inserting non-PHI instructions
5260 // before the terminator.
5261 BasicBlock *Parent = BaseI ? BaseI->getParent()
5262 : &GEP->getFunction()->getEntryBlock();
5263 if (!Parent->getTerminator()->isEHPad())
5264 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
5268 return false;
5271 // Save the valid addressing mode in case we can't match.
5272 ExtAddrMode BackupAddrMode = AddrMode;
5273 unsigned OldSize = AddrModeInsts.size();
5275 // See if the scale and offset amount is valid for this target.
5276 AddrMode.BaseOffs += ConstantOffset;
5277 if (!cast<GEPOperator>(AddrInst)->isInBounds())
5278 AddrMode.InBounds = false;
5280 // Match the base operand of the GEP.
5281 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
5282 // If it couldn't be matched, just stuff the value in a register.
5283 if (AddrMode.HasBaseReg) {
5284 AddrMode = BackupAddrMode;
5285 AddrModeInsts.resize(OldSize);
5286 return false;
5288 AddrMode.HasBaseReg = true;
5289 AddrMode.BaseReg = AddrInst->getOperand(0);
5292 // Match the remaining variable portion of the GEP.
5293 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
5294 Depth)) {
5295 // If it couldn't be matched, try stuffing the base into a register
5296 // instead of matching it, and retrying the match of the scale.
5297 AddrMode = BackupAddrMode;
5298 AddrModeInsts.resize(OldSize);
5299 if (AddrMode.HasBaseReg)
5300 return false;
5301 AddrMode.HasBaseReg = true;
5302 AddrMode.BaseReg = AddrInst->getOperand(0);
5303 AddrMode.BaseOffs += ConstantOffset;
5304 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
5305 VariableScale, Depth)) {
5306 // If even that didn't work, bail.
5307 AddrMode = BackupAddrMode;
5308 AddrModeInsts.resize(OldSize);
5309 return false;
5313 return true;
5315 case Instruction::SExt:
5316 case Instruction::ZExt: {
5317 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
5318 if (!Ext)
5319 return false;
5321 // Try to move this ext out of the way of the addressing mode.
5322 // Ask for a method for doing so.
5323 TypePromotionHelper::Action TPH =
5324 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
5325 if (!TPH)
5326 return false;
5328 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5329 TPT.getRestorationPoint();
5330 unsigned CreatedInstsCost = 0;
5331 unsigned ExtCost = !TLI.isExtFree(Ext);
5332 Value *PromotedOperand =
5333 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
5334 // SExt has been moved away.
5335 // Thus either it will be rematched later in the recursive calls or it is
5336 // gone. Anyway, we must not fold it into the addressing mode at this point.
5337 // E.g.,
5338 // op = add opnd, 1
5339 // idx = ext op
5340 // addr = gep base, idx
5341 // is now:
5342 // promotedOpnd = ext opnd <- no match here
5343 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
5344 // addr = gep base, op <- match
5345 if (MovedAway)
5346 *MovedAway = true;
5348 assert(PromotedOperand &&
5349 "TypePromotionHelper should have filtered out those cases");
5351 ExtAddrMode BackupAddrMode = AddrMode;
5352 unsigned OldSize = AddrModeInsts.size();
5354 if (!matchAddr(PromotedOperand, Depth) ||
5355 // The total of the new cost is equal to the cost of the created
5356 // instructions.
5357 // The total of the old cost is equal to the cost of the extension plus
5358 // what we have saved in the addressing mode.
5359 !isPromotionProfitable(CreatedInstsCost,
5360 ExtCost + (AddrModeInsts.size() - OldSize),
5361 PromotedOperand)) {
5362 AddrMode = BackupAddrMode;
5363 AddrModeInsts.resize(OldSize);
5364 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
5365 TPT.rollback(LastKnownGood);
5366 return false;
5368 return true;
5370 case Instruction::Call:
5371 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) {
5372 if (II->getIntrinsicID() == Intrinsic::threadlocal_address) {
5373 GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0));
5374 if (TLI.addressingModeSupportsTLS(GV))
5375 return matchAddr(AddrInst->getOperand(0), Depth);
5378 break;
5380 return false;
5383 /// If we can, try to add the value of 'Addr' into the current addressing mode.
5384 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
5385 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
5386 /// for the target.
5388 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
5389 // Start a transaction at this point that we will rollback if the matching
5390 // fails.
5391 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5392 TPT.getRestorationPoint();
5393 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5394 if (CI->getValue().isSignedIntN(64)) {
5395 // Fold in immediates if legal for the target.
5396 AddrMode.BaseOffs += CI->getSExtValue();
5397 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5398 return true;
5399 AddrMode.BaseOffs -= CI->getSExtValue();
5401 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5402 // If this is a global variable, try to fold it into the addressing mode.
5403 if (!AddrMode.BaseGV) {
5404 AddrMode.BaseGV = GV;
5405 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5406 return true;
5407 AddrMode.BaseGV = nullptr;
5409 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5410 ExtAddrMode BackupAddrMode = AddrMode;
5411 unsigned OldSize = AddrModeInsts.size();
5413 // Check to see if it is possible to fold this operation.
5414 bool MovedAway = false;
5415 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5416 // This instruction may have been moved away. If so, there is nothing
5417 // to check here.
5418 if (MovedAway)
5419 return true;
5420 // Okay, it's possible to fold this. Check to see if it is actually
5421 // *profitable* to do so. We use a simple cost model to avoid increasing
5422 // register pressure too much.
5423 if (I->hasOneUse() ||
5424 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5425 AddrModeInsts.push_back(I);
5426 return true;
5429 // It isn't profitable to do this, roll back.
5430 AddrMode = BackupAddrMode;
5431 AddrModeInsts.resize(OldSize);
5432 TPT.rollback(LastKnownGood);
5434 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5435 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5436 return true;
5437 TPT.rollback(LastKnownGood);
5438 } else if (isa<ConstantPointerNull>(Addr)) {
5439 // Null pointer gets folded without affecting the addressing mode.
5440 return true;
5443 // Worse case, the target should support [reg] addressing modes. :)
5444 if (!AddrMode.HasBaseReg) {
5445 AddrMode.HasBaseReg = true;
5446 AddrMode.BaseReg = Addr;
5447 // Still check for legality in case the target supports [imm] but not [i+r].
5448 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5449 return true;
5450 AddrMode.HasBaseReg = false;
5451 AddrMode.BaseReg = nullptr;
5454 // If the base register is already taken, see if we can do [r+r].
5455 if (AddrMode.Scale == 0) {
5456 AddrMode.Scale = 1;
5457 AddrMode.ScaledReg = Addr;
5458 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5459 return true;
5460 AddrMode.Scale = 0;
5461 AddrMode.ScaledReg = nullptr;
5463 // Couldn't match.
5464 TPT.rollback(LastKnownGood);
5465 return false;
5468 /// Check to see if all uses of OpVal by the specified inline asm call are due
5469 /// to memory operands. If so, return true, otherwise return false.
5470 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5471 const TargetLowering &TLI,
5472 const TargetRegisterInfo &TRI) {
5473 const Function *F = CI->getFunction();
5474 TargetLowering::AsmOperandInfoVector TargetConstraints =
5475 TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI);
5477 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5478 // Compute the constraint code and ConstraintType to use.
5479 TLI.ComputeConstraintToUse(OpInfo, SDValue());
5481 // If this asm operand is our Value*, and if it isn't an indirect memory
5482 // operand, we can't fold it! TODO: Also handle C_Address?
5483 if (OpInfo.CallOperandVal == OpVal &&
5484 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
5485 !OpInfo.isIndirect))
5486 return false;
5489 return true;
5492 /// Recursively walk all the uses of I until we find a memory use.
5493 /// If we find an obviously non-foldable instruction, return true.
5494 /// Add accessed addresses and types to MemoryUses.
5495 static bool FindAllMemoryUses(
5496 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5497 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5498 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5499 BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5500 // If we already considered this instruction, we're done.
5501 if (!ConsideredInsts.insert(I).second)
5502 return false;
5504 // If this is an obviously unfoldable instruction, bail out.
5505 if (!MightBeFoldableInst(I))
5506 return true;
5508 // Loop over all the uses, recursively processing them.
5509 for (Use &U : I->uses()) {
5510 // Conservatively return true if we're seeing a large number or a deep chain
5511 // of users. This avoids excessive compilation times in pathological cases.
5512 if (SeenInsts++ >= MaxAddressUsersToScan)
5513 return true;
5515 Instruction *UserI = cast<Instruction>(U.getUser());
5516 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5517 MemoryUses.push_back({&U, LI->getType()});
5518 continue;
5521 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5522 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5523 return true; // Storing addr, not into addr.
5524 MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5525 continue;
5528 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5529 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5530 return true; // Storing addr, not into addr.
5531 MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5532 continue;
5535 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5536 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5537 return true; // Storing addr, not into addr.
5538 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5539 continue;
5542 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5543 if (CI->hasFnAttr(Attribute::Cold)) {
5544 // If this is a cold call, we can sink the addressing calculation into
5545 // the cold path. See optimizeCallInst
5546 if (!llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI))
5547 continue;
5550 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5551 if (!IA)
5552 return true;
5554 // If this is a memory operand, we're cool, otherwise bail out.
5555 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5556 return true;
5557 continue;
5560 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5561 PSI, BFI, SeenInsts))
5562 return true;
5565 return false;
5568 static bool FindAllMemoryUses(
5569 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5570 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5571 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5572 unsigned SeenInsts = 0;
5573 SmallPtrSet<Instruction *, 16> ConsideredInsts;
5574 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5575 PSI, BFI, SeenInsts);
5579 /// Return true if Val is already known to be live at the use site that we're
5580 /// folding it into. If so, there is no cost to include it in the addressing
5581 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5582 /// instruction already.
5583 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5584 Value *KnownLive1,
5585 Value *KnownLive2) {
5586 // If Val is either of the known-live values, we know it is live!
5587 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5588 return true;
5590 // All values other than instructions and arguments (e.g. constants) are live.
5591 if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5592 return true;
5594 // If Val is a constant sized alloca in the entry block, it is live, this is
5595 // true because it is just a reference to the stack/frame pointer, which is
5596 // live for the whole function.
5597 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5598 if (AI->isStaticAlloca())
5599 return true;
5601 // Check to see if this value is already used in the memory instruction's
5602 // block. If so, it's already live into the block at the very least, so we
5603 // can reasonably fold it.
5604 return Val->isUsedInBasicBlock(MemoryInst->getParent());
5607 /// It is possible for the addressing mode of the machine to fold the specified
5608 /// instruction into a load or store that ultimately uses it.
5609 /// However, the specified instruction has multiple uses.
5610 /// Given this, it may actually increase register pressure to fold it
5611 /// into the load. For example, consider this code:
5613 /// X = ...
5614 /// Y = X+1
5615 /// use(Y) -> nonload/store
5616 /// Z = Y+1
5617 /// load Z
5619 /// In this case, Y has multiple uses, and can be folded into the load of Z
5620 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5621 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5622 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5623 /// number of computations either.
5625 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5626 /// X was live across 'load Z' for other reasons, we actually *would* want to
5627 /// fold the addressing mode in the Z case. This would make Y die earlier.
5628 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5629 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5630 if (IgnoreProfitability)
5631 return true;
5633 // AMBefore is the addressing mode before this instruction was folded into it,
5634 // and AMAfter is the addressing mode after the instruction was folded. Get
5635 // the set of registers referenced by AMAfter and subtract out those
5636 // referenced by AMBefore: this is the set of values which folding in this
5637 // address extends the lifetime of.
5639 // Note that there are only two potential values being referenced here,
5640 // BaseReg and ScaleReg (global addresses are always available, as are any
5641 // folded immediates).
5642 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5644 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5645 // lifetime wasn't extended by adding this instruction.
5646 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5647 BaseReg = nullptr;
5648 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5649 ScaledReg = nullptr;
5651 // If folding this instruction (and it's subexprs) didn't extend any live
5652 // ranges, we're ok with it.
5653 if (!BaseReg && !ScaledReg)
5654 return true;
5656 // If all uses of this instruction can have the address mode sunk into them,
5657 // we can remove the addressing mode and effectively trade one live register
5658 // for another (at worst.) In this context, folding an addressing mode into
5659 // the use is just a particularly nice way of sinking it.
5660 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5661 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5662 return false; // Has a non-memory, non-foldable use!
5664 // Now that we know that all uses of this instruction are part of a chain of
5665 // computation involving only operations that could theoretically be folded
5666 // into a memory use, loop over each of these memory operation uses and see
5667 // if they could *actually* fold the instruction. The assumption is that
5668 // addressing modes are cheap and that duplicating the computation involved
5669 // many times is worthwhile, even on a fastpath. For sinking candidates
5670 // (i.e. cold call sites), this serves as a way to prevent excessive code
5671 // growth since most architectures have some reasonable small and fast way to
5672 // compute an effective address. (i.e LEA on x86)
5673 SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5674 for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5675 Value *Address = Pair.first->get();
5676 Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5677 Type *AddressAccessTy = Pair.second;
5678 unsigned AS = Address->getType()->getPointerAddressSpace();
5680 // Do a match against the root of this address, ignoring profitability. This
5681 // will tell us if the addressing mode for the memory operation will
5682 // *actually* cover the shared instruction.
5683 ExtAddrMode Result;
5684 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5686 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5687 TPT.getRestorationPoint();
5688 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5689 AddressAccessTy, AS, UserI, Result,
5690 InsertedInsts, PromotedInsts, TPT,
5691 LargeOffsetGEP, OptSize, PSI, BFI);
5692 Matcher.IgnoreProfitability = true;
5693 bool Success = Matcher.matchAddr(Address, 0);
5694 (void)Success;
5695 assert(Success && "Couldn't select *anything*?");
5697 // The match was to check the profitability, the changes made are not
5698 // part of the original matcher. Therefore, they should be dropped
5699 // otherwise the original matcher will not present the right state.
5700 TPT.rollback(LastKnownGood);
5702 // If the match didn't cover I, then it won't be shared by it.
5703 if (!is_contained(MatchedAddrModeInsts, I))
5704 return false;
5706 MatchedAddrModeInsts.clear();
5709 return true;
5712 /// Return true if the specified values are defined in a
5713 /// different basic block than BB.
5714 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5715 if (Instruction *I = dyn_cast<Instruction>(V))
5716 return I->getParent() != BB;
5717 return false;
5720 /// Sink addressing mode computation immediate before MemoryInst if doing so
5721 /// can be done without increasing register pressure. The need for the
5722 /// register pressure constraint means this can end up being an all or nothing
5723 /// decision for all uses of the same addressing computation.
5725 /// Load and Store Instructions often have addressing modes that can do
5726 /// significant amounts of computation. As such, instruction selection will try
5727 /// to get the load or store to do as much computation as possible for the
5728 /// program. The problem is that isel can only see within a single block. As
5729 /// such, we sink as much legal addressing mode work into the block as possible.
5731 /// This method is used to optimize both load/store and inline asms with memory
5732 /// operands. It's also used to sink addressing computations feeding into cold
5733 /// call sites into their (cold) basic block.
5735 /// The motivation for handling sinking into cold blocks is that doing so can
5736 /// both enable other address mode sinking (by satisfying the register pressure
5737 /// constraint above), and reduce register pressure globally (by removing the
5738 /// addressing mode computation from the fast path entirely.).
5739 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5740 Type *AccessTy, unsigned AddrSpace) {
5741 Value *Repl = Addr;
5743 // Try to collapse single-value PHI nodes. This is necessary to undo
5744 // unprofitable PRE transformations.
5745 SmallVector<Value *, 8> worklist;
5746 SmallPtrSet<Value *, 16> Visited;
5747 worklist.push_back(Addr);
5749 // Use a worklist to iteratively look through PHI and select nodes, and
5750 // ensure that the addressing mode obtained from the non-PHI/select roots of
5751 // the graph are compatible.
5752 bool PhiOrSelectSeen = false;
5753 SmallVector<Instruction *, 16> AddrModeInsts;
5754 const SimplifyQuery SQ(*DL, TLInfo);
5755 AddressingModeCombiner AddrModes(SQ, Addr);
5756 TypePromotionTransaction TPT(RemovedInsts);
5757 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5758 TPT.getRestorationPoint();
5759 while (!worklist.empty()) {
5760 Value *V = worklist.pop_back_val();
5762 // We allow traversing cyclic Phi nodes.
5763 // In case of success after this loop we ensure that traversing through
5764 // Phi nodes ends up with all cases to compute address of the form
5765 // BaseGV + Base + Scale * Index + Offset
5766 // where Scale and Offset are constans and BaseGV, Base and Index
5767 // are exactly the same Values in all cases.
5768 // It means that BaseGV, Scale and Offset dominate our memory instruction
5769 // and have the same value as they had in address computation represented
5770 // as Phi. So we can safely sink address computation to memory instruction.
5771 if (!Visited.insert(V).second)
5772 continue;
5774 // For a PHI node, push all of its incoming values.
5775 if (PHINode *P = dyn_cast<PHINode>(V)) {
5776 append_range(worklist, P->incoming_values());
5777 PhiOrSelectSeen = true;
5778 continue;
5780 // Similar for select.
5781 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5782 worklist.push_back(SI->getFalseValue());
5783 worklist.push_back(SI->getTrueValue());
5784 PhiOrSelectSeen = true;
5785 continue;
5788 // For non-PHIs, determine the addressing mode being computed. Note that
5789 // the result may differ depending on what other uses our candidate
5790 // addressing instructions might have.
5791 AddrModeInsts.clear();
5792 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5794 // Defer the query (and possible computation of) the dom tree to point of
5795 // actual use. It's expected that most address matches don't actually need
5796 // the domtree.
5797 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5798 Function *F = MemoryInst->getParent()->getParent();
5799 return this->getDT(*F);
5801 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5802 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5803 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5804 BFI.get());
5806 GetElementPtrInst *GEP = LargeOffsetGEP.first;
5807 if (GEP && !NewGEPBases.count(GEP)) {
5808 // If splitting the underlying data structure can reduce the offset of a
5809 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5810 // previously split data structures.
5811 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5812 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5815 NewAddrMode.OriginalValue = V;
5816 if (!AddrModes.addNewAddrMode(NewAddrMode))
5817 break;
5820 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5821 // or we have multiple but either couldn't combine them or combining them
5822 // wouldn't do anything useful, bail out now.
5823 if (!AddrModes.combineAddrModes()) {
5824 TPT.rollback(LastKnownGood);
5825 return false;
5827 bool Modified = TPT.commit();
5829 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5830 ExtAddrMode AddrMode = AddrModes.getAddrMode();
5832 // If all the instructions matched are already in this BB, don't do anything.
5833 // If we saw a Phi node then it is not local definitely, and if we saw a
5834 // select then we want to push the address calculation past it even if it's
5835 // already in this BB.
5836 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5837 return IsNonLocalValue(V, MemoryInst->getParent());
5838 })) {
5839 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5840 << "\n");
5841 return Modified;
5844 // Insert this computation right after this user. Since our caller is
5845 // scanning from the top of the BB to the bottom, reuse of the expr are
5846 // guaranteed to happen later.
5847 IRBuilder<> Builder(MemoryInst);
5849 // Now that we determined the addressing expression we want to use and know
5850 // that we have to sink it into this block. Check to see if we have already
5851 // done this for some other load/store instr in this block. If so, reuse
5852 // the computation. Before attempting reuse, check if the address is valid
5853 // as it may have been erased.
5855 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5857 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5858 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5859 if (SunkAddr) {
5860 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5861 << " for " << *MemoryInst << "\n");
5862 if (SunkAddr->getType() != Addr->getType()) {
5863 if (SunkAddr->getType()->getPointerAddressSpace() !=
5864 Addr->getType()->getPointerAddressSpace() &&
5865 !DL->isNonIntegralPointerType(Addr->getType())) {
5866 // There are two reasons the address spaces might not match: a no-op
5867 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5868 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5869 // TODO: allow bitcast between different address space pointers with the
5870 // same size.
5871 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5872 SunkAddr =
5873 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5874 } else
5875 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5877 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5878 SubtargetInfo->addrSinkUsingGEPs())) {
5879 // By default, we use the GEP-based method when AA is used later. This
5880 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5881 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5882 << " for " << *MemoryInst << "\n");
5883 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5885 // First, find the pointer.
5886 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5887 ResultPtr = AddrMode.BaseReg;
5888 AddrMode.BaseReg = nullptr;
5891 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5892 // We can't add more than one pointer together, nor can we scale a
5893 // pointer (both of which seem meaningless).
5894 if (ResultPtr || AddrMode.Scale != 1)
5895 return Modified;
5897 ResultPtr = AddrMode.ScaledReg;
5898 AddrMode.Scale = 0;
5901 // It is only safe to sign extend the BaseReg if we know that the math
5902 // required to create it did not overflow before we extend it. Since
5903 // the original IR value was tossed in favor of a constant back when
5904 // the AddrMode was created we need to bail out gracefully if widths
5905 // do not match instead of extending it.
5907 // (See below for code to add the scale.)
5908 if (AddrMode.Scale) {
5909 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5910 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5911 cast<IntegerType>(ScaledRegTy)->getBitWidth())
5912 return Modified;
5915 GlobalValue *BaseGV = AddrMode.BaseGV;
5916 if (BaseGV != nullptr) {
5917 if (ResultPtr)
5918 return Modified;
5920 if (BaseGV->isThreadLocal()) {
5921 ResultPtr = Builder.CreateThreadLocalAddress(BaseGV);
5922 } else {
5923 ResultPtr = BaseGV;
5927 // If the real base value actually came from an inttoptr, then the matcher
5928 // will look through it and provide only the integer value. In that case,
5929 // use it here.
5930 if (!DL->isNonIntegralPointerType(Addr->getType())) {
5931 if (!ResultPtr && AddrMode.BaseReg) {
5932 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5933 "sunkaddr");
5934 AddrMode.BaseReg = nullptr;
5935 } else if (!ResultPtr && AddrMode.Scale == 1) {
5936 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5937 "sunkaddr");
5938 AddrMode.Scale = 0;
5942 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5943 !AddrMode.BaseOffs) {
5944 SunkAddr = Constant::getNullValue(Addr->getType());
5945 } else if (!ResultPtr) {
5946 return Modified;
5947 } else {
5948 Type *I8PtrTy =
5949 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
5951 // Start with the base register. Do this first so that subsequent address
5952 // matching finds it last, which will prevent it from trying to match it
5953 // as the scaled value in case it happens to be a mul. That would be
5954 // problematic if we've sunk a different mul for the scale, because then
5955 // we'd end up sinking both muls.
5956 if (AddrMode.BaseReg) {
5957 Value *V = AddrMode.BaseReg;
5958 if (V->getType() != IntPtrTy)
5959 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5961 ResultIndex = V;
5964 // Add the scale value.
5965 if (AddrMode.Scale) {
5966 Value *V = AddrMode.ScaledReg;
5967 if (V->getType() == IntPtrTy) {
5968 // done.
5969 } else {
5970 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5971 cast<IntegerType>(V->getType())->getBitWidth() &&
5972 "We can't transform if ScaledReg is too narrow");
5973 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5976 if (AddrMode.Scale != 1)
5977 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5978 "sunkaddr");
5979 if (ResultIndex)
5980 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5981 else
5982 ResultIndex = V;
5985 // Add in the Base Offset if present.
5986 if (AddrMode.BaseOffs) {
5987 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5988 if (ResultIndex) {
5989 // We need to add this separately from the scale above to help with
5990 // SDAG consecutive load/store merging.
5991 if (ResultPtr->getType() != I8PtrTy)
5992 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5993 ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5994 AddrMode.InBounds);
5997 ResultIndex = V;
6000 if (!ResultIndex) {
6001 SunkAddr = ResultPtr;
6002 } else {
6003 if (ResultPtr->getType() != I8PtrTy)
6004 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
6005 SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
6006 AddrMode.InBounds);
6009 if (SunkAddr->getType() != Addr->getType()) {
6010 if (SunkAddr->getType()->getPointerAddressSpace() !=
6011 Addr->getType()->getPointerAddressSpace() &&
6012 !DL->isNonIntegralPointerType(Addr->getType())) {
6013 // There are two reasons the address spaces might not match: a no-op
6014 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
6015 // ptrtoint/inttoptr pair to ensure we match the original semantics.
6016 // TODO: allow bitcast between different address space pointers with
6017 // the same size.
6018 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
6019 SunkAddr =
6020 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
6021 } else
6022 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
6025 } else {
6026 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
6027 // non-integral pointers, so in that case bail out now.
6028 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
6029 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
6030 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
6031 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
6032 if (DL->isNonIntegralPointerType(Addr->getType()) ||
6033 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
6034 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
6035 (AddrMode.BaseGV &&
6036 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
6037 return Modified;
6039 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
6040 << " for " << *MemoryInst << "\n");
6041 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
6042 Value *Result = nullptr;
6044 // Start with the base register. Do this first so that subsequent address
6045 // matching finds it last, which will prevent it from trying to match it
6046 // as the scaled value in case it happens to be a mul. That would be
6047 // problematic if we've sunk a different mul for the scale, because then
6048 // we'd end up sinking both muls.
6049 if (AddrMode.BaseReg) {
6050 Value *V = AddrMode.BaseReg;
6051 if (V->getType()->isPointerTy())
6052 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
6053 if (V->getType() != IntPtrTy)
6054 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
6055 Result = V;
6058 // Add the scale value.
6059 if (AddrMode.Scale) {
6060 Value *V = AddrMode.ScaledReg;
6061 if (V->getType() == IntPtrTy) {
6062 // done.
6063 } else if (V->getType()->isPointerTy()) {
6064 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
6065 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
6066 cast<IntegerType>(V->getType())->getBitWidth()) {
6067 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
6068 } else {
6069 // It is only safe to sign extend the BaseReg if we know that the math
6070 // required to create it did not overflow before we extend it. Since
6071 // the original IR value was tossed in favor of a constant back when
6072 // the AddrMode was created we need to bail out gracefully if widths
6073 // do not match instead of extending it.
6074 Instruction *I = dyn_cast_or_null<Instruction>(Result);
6075 if (I && (Result != AddrMode.BaseReg))
6076 I->eraseFromParent();
6077 return Modified;
6079 if (AddrMode.Scale != 1)
6080 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
6081 "sunkaddr");
6082 if (Result)
6083 Result = Builder.CreateAdd(Result, V, "sunkaddr");
6084 else
6085 Result = V;
6088 // Add in the BaseGV if present.
6089 GlobalValue *BaseGV = AddrMode.BaseGV;
6090 if (BaseGV != nullptr) {
6091 Value *BaseGVPtr;
6092 if (BaseGV->isThreadLocal()) {
6093 BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV);
6094 } else {
6095 BaseGVPtr = BaseGV;
6097 Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr");
6098 if (Result)
6099 Result = Builder.CreateAdd(Result, V, "sunkaddr");
6100 else
6101 Result = V;
6104 // Add in the Base Offset if present.
6105 if (AddrMode.BaseOffs) {
6106 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
6107 if (Result)
6108 Result = Builder.CreateAdd(Result, V, "sunkaddr");
6109 else
6110 Result = V;
6113 if (!Result)
6114 SunkAddr = Constant::getNullValue(Addr->getType());
6115 else
6116 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
6119 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
6120 // Store the newly computed address into the cache. In the case we reused a
6121 // value, this should be idempotent.
6122 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
6124 // If we have no uses, recursively delete the value and all dead instructions
6125 // using it.
6126 if (Repl->use_empty()) {
6127 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
6128 RecursivelyDeleteTriviallyDeadInstructions(
6129 Repl, TLInfo, nullptr,
6130 [&](Value *V) { removeAllAssertingVHReferences(V); });
6133 ++NumMemoryInsts;
6134 return true;
6137 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
6138 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
6139 /// only handle a 2 operand GEP in the same basic block or a splat constant
6140 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
6141 /// index.
6143 /// If the existing GEP has a vector base pointer that is splat, we can look
6144 /// through the splat to find the scalar pointer. If we can't find a scalar
6145 /// pointer there's nothing we can do.
6147 /// If we have a GEP with more than 2 indices where the middle indices are all
6148 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
6150 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
6151 /// followed by a GEP with an all zeroes vector index. This will enable
6152 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
6153 /// zero index.
6154 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
6155 Value *Ptr) {
6156 Value *NewAddr;
6158 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
6159 // Don't optimize GEPs that don't have indices.
6160 if (!GEP->hasIndices())
6161 return false;
6163 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
6164 // FIXME: We should support this by sinking the GEP.
6165 if (MemoryInst->getParent() != GEP->getParent())
6166 return false;
6168 SmallVector<Value *, 2> Ops(GEP->operands());
6170 bool RewriteGEP = false;
6172 if (Ops[0]->getType()->isVectorTy()) {
6173 Ops[0] = getSplatValue(Ops[0]);
6174 if (!Ops[0])
6175 return false;
6176 RewriteGEP = true;
6179 unsigned FinalIndex = Ops.size() - 1;
6181 // Ensure all but the last index is 0.
6182 // FIXME: This isn't strictly required. All that's required is that they are
6183 // all scalars or splats.
6184 for (unsigned i = 1; i < FinalIndex; ++i) {
6185 auto *C = dyn_cast<Constant>(Ops[i]);
6186 if (!C)
6187 return false;
6188 if (isa<VectorType>(C->getType()))
6189 C = C->getSplatValue();
6190 auto *CI = dyn_cast_or_null<ConstantInt>(C);
6191 if (!CI || !CI->isZero())
6192 return false;
6193 // Scalarize the index if needed.
6194 Ops[i] = CI;
6197 // Try to scalarize the final index.
6198 if (Ops[FinalIndex]->getType()->isVectorTy()) {
6199 if (Value *V = getSplatValue(Ops[FinalIndex])) {
6200 auto *C = dyn_cast<ConstantInt>(V);
6201 // Don't scalarize all zeros vector.
6202 if (!C || !C->isZero()) {
6203 Ops[FinalIndex] = V;
6204 RewriteGEP = true;
6209 // If we made any changes or the we have extra operands, we need to generate
6210 // new instructions.
6211 if (!RewriteGEP && Ops.size() == 2)
6212 return false;
6214 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
6216 IRBuilder<> Builder(MemoryInst);
6218 Type *SourceTy = GEP->getSourceElementType();
6219 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
6221 // If the final index isn't a vector, emit a scalar GEP containing all ops
6222 // and a vector GEP with all zeroes final index.
6223 if (!Ops[FinalIndex]->getType()->isVectorTy()) {
6224 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
6225 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
6226 auto *SecondTy = GetElementPtrInst::getIndexedType(
6227 SourceTy, ArrayRef(Ops).drop_front());
6228 NewAddr =
6229 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
6230 } else {
6231 Value *Base = Ops[0];
6232 Value *Index = Ops[FinalIndex];
6234 // Create a scalar GEP if there are more than 2 operands.
6235 if (Ops.size() != 2) {
6236 // Replace the last index with 0.
6237 Ops[FinalIndex] =
6238 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
6239 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
6240 SourceTy = GetElementPtrInst::getIndexedType(
6241 SourceTy, ArrayRef(Ops).drop_front());
6244 // Now create the GEP with scalar pointer and vector index.
6245 NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
6247 } else if (!isa<Constant>(Ptr)) {
6248 // Not a GEP, maybe its a splat and we can create a GEP to enable
6249 // SelectionDAGBuilder to use it as a uniform base.
6250 Value *V = getSplatValue(Ptr);
6251 if (!V)
6252 return false;
6254 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
6256 IRBuilder<> Builder(MemoryInst);
6258 // Emit a vector GEP with a scalar pointer and all 0s vector index.
6259 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
6260 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
6261 Type *ScalarTy;
6262 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
6263 Intrinsic::masked_gather) {
6264 ScalarTy = MemoryInst->getType()->getScalarType();
6265 } else {
6266 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
6267 Intrinsic::masked_scatter);
6268 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
6270 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
6271 } else {
6272 // Constant, SelectionDAGBuilder knows to check if its a splat.
6273 return false;
6276 MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
6278 // If we have no uses, recursively delete the value and all dead instructions
6279 // using it.
6280 if (Ptr->use_empty())
6281 RecursivelyDeleteTriviallyDeadInstructions(
6282 Ptr, TLInfo, nullptr,
6283 [&](Value *V) { removeAllAssertingVHReferences(V); });
6285 return true;
6288 /// If there are any memory operands, use OptimizeMemoryInst to sink their
6289 /// address computing into the block when possible / profitable.
6290 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
6291 bool MadeChange = false;
6293 const TargetRegisterInfo *TRI =
6294 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
6295 TargetLowering::AsmOperandInfoVector TargetConstraints =
6296 TLI->ParseConstraints(*DL, TRI, *CS);
6297 unsigned ArgNo = 0;
6298 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
6299 // Compute the constraint code and ConstraintType to use.
6300 TLI->ComputeConstraintToUse(OpInfo, SDValue());
6302 // TODO: Also handle C_Address?
6303 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6304 OpInfo.isIndirect) {
6305 Value *OpVal = CS->getArgOperand(ArgNo++);
6306 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
6307 } else if (OpInfo.Type == InlineAsm::isInput)
6308 ArgNo++;
6311 return MadeChange;
6314 /// Check if all the uses of \p Val are equivalent (or free) zero or
6315 /// sign extensions.
6316 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
6317 assert(!Val->use_empty() && "Input must have at least one use");
6318 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
6319 bool IsSExt = isa<SExtInst>(FirstUser);
6320 Type *ExtTy = FirstUser->getType();
6321 for (const User *U : Val->users()) {
6322 const Instruction *UI = cast<Instruction>(U);
6323 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
6324 return false;
6325 Type *CurTy = UI->getType();
6326 // Same input and output types: Same instruction after CSE.
6327 if (CurTy == ExtTy)
6328 continue;
6330 // If IsSExt is true, we are in this situation:
6331 // a = Val
6332 // b = sext ty1 a to ty2
6333 // c = sext ty1 a to ty3
6334 // Assuming ty2 is shorter than ty3, this could be turned into:
6335 // a = Val
6336 // b = sext ty1 a to ty2
6337 // c = sext ty2 b to ty3
6338 // However, the last sext is not free.
6339 if (IsSExt)
6340 return false;
6342 // This is a ZExt, maybe this is free to extend from one type to another.
6343 // In that case, we would not account for a different use.
6344 Type *NarrowTy;
6345 Type *LargeTy;
6346 if (ExtTy->getScalarType()->getIntegerBitWidth() >
6347 CurTy->getScalarType()->getIntegerBitWidth()) {
6348 NarrowTy = CurTy;
6349 LargeTy = ExtTy;
6350 } else {
6351 NarrowTy = ExtTy;
6352 LargeTy = CurTy;
6355 if (!TLI.isZExtFree(NarrowTy, LargeTy))
6356 return false;
6358 // All uses are the same or can be derived from one another for free.
6359 return true;
6362 /// Try to speculatively promote extensions in \p Exts and continue
6363 /// promoting through newly promoted operands recursively as far as doing so is
6364 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
6365 /// When some promotion happened, \p TPT contains the proper state to revert
6366 /// them.
6368 /// \return true if some promotion happened, false otherwise.
6369 bool CodeGenPrepare::tryToPromoteExts(
6370 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
6371 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
6372 unsigned CreatedInstsCost) {
6373 bool Promoted = false;
6375 // Iterate over all the extensions to try to promote them.
6376 for (auto *I : Exts) {
6377 // Early check if we directly have ext(load).
6378 if (isa<LoadInst>(I->getOperand(0))) {
6379 ProfitablyMovedExts.push_back(I);
6380 continue;
6383 // Check whether or not we want to do any promotion. The reason we have
6384 // this check inside the for loop is to catch the case where an extension
6385 // is directly fed by a load because in such case the extension can be moved
6386 // up without any promotion on its operands.
6387 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
6388 return false;
6390 // Get the action to perform the promotion.
6391 TypePromotionHelper::Action TPH =
6392 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
6393 // Check if we can promote.
6394 if (!TPH) {
6395 // Save the current extension as we cannot move up through its operand.
6396 ProfitablyMovedExts.push_back(I);
6397 continue;
6400 // Save the current state.
6401 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6402 TPT.getRestorationPoint();
6403 SmallVector<Instruction *, 4> NewExts;
6404 unsigned NewCreatedInstsCost = 0;
6405 unsigned ExtCost = !TLI->isExtFree(I);
6406 // Promote.
6407 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6408 &NewExts, nullptr, *TLI);
6409 assert(PromotedVal &&
6410 "TypePromotionHelper should have filtered out those cases");
6412 // We would be able to merge only one extension in a load.
6413 // Therefore, if we have more than 1 new extension we heuristically
6414 // cut this search path, because it means we degrade the code quality.
6415 // With exactly 2, the transformation is neutral, because we will merge
6416 // one extension but leave one. However, we optimistically keep going,
6417 // because the new extension may be removed too. Also avoid replacing a
6418 // single free extension with multiple extensions, as this increases the
6419 // number of IR instructions while not providing any savings.
6420 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6421 // FIXME: It would be possible to propagate a negative value instead of
6422 // conservatively ceiling it to 0.
6423 TotalCreatedInstsCost =
6424 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6425 if (!StressExtLdPromotion &&
6426 (TotalCreatedInstsCost > 1 ||
6427 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6428 (ExtCost == 0 && NewExts.size() > 1))) {
6429 // This promotion is not profitable, rollback to the previous state, and
6430 // save the current extension in ProfitablyMovedExts as the latest
6431 // speculative promotion turned out to be unprofitable.
6432 TPT.rollback(LastKnownGood);
6433 ProfitablyMovedExts.push_back(I);
6434 continue;
6436 // Continue promoting NewExts as far as doing so is profitable.
6437 SmallVector<Instruction *, 2> NewlyMovedExts;
6438 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6439 bool NewPromoted = false;
6440 for (auto *ExtInst : NewlyMovedExts) {
6441 Instruction *MovedExt = cast<Instruction>(ExtInst);
6442 Value *ExtOperand = MovedExt->getOperand(0);
6443 // If we have reached to a load, we need this extra profitability check
6444 // as it could potentially be merged into an ext(load).
6445 if (isa<LoadInst>(ExtOperand) &&
6446 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6447 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6448 continue;
6450 ProfitablyMovedExts.push_back(MovedExt);
6451 NewPromoted = true;
6454 // If none of speculative promotions for NewExts is profitable, rollback
6455 // and save the current extension (I) as the last profitable extension.
6456 if (!NewPromoted) {
6457 TPT.rollback(LastKnownGood);
6458 ProfitablyMovedExts.push_back(I);
6459 continue;
6461 // The promotion is profitable.
6462 Promoted = true;
6464 return Promoted;
6467 /// Merging redundant sexts when one is dominating the other.
6468 bool CodeGenPrepare::mergeSExts(Function &F) {
6469 bool Changed = false;
6470 for (auto &Entry : ValToSExtendedUses) {
6471 SExts &Insts = Entry.second;
6472 SExts CurPts;
6473 for (Instruction *Inst : Insts) {
6474 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6475 Inst->getOperand(0) != Entry.first)
6476 continue;
6477 bool inserted = false;
6478 for (auto &Pt : CurPts) {
6479 if (getDT(F).dominates(Inst, Pt)) {
6480 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6481 RemovedInsts.insert(Pt);
6482 Pt->removeFromParent();
6483 Pt = Inst;
6484 inserted = true;
6485 Changed = true;
6486 break;
6488 if (!getDT(F).dominates(Pt, Inst))
6489 // Give up if we need to merge in a common dominator as the
6490 // experiments show it is not profitable.
6491 continue;
6492 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6493 RemovedInsts.insert(Inst);
6494 Inst->removeFromParent();
6495 inserted = true;
6496 Changed = true;
6497 break;
6499 if (!inserted)
6500 CurPts.push_back(Inst);
6503 return Changed;
6506 // Splitting large data structures so that the GEPs accessing them can have
6507 // smaller offsets so that they can be sunk to the same blocks as their users.
6508 // For example, a large struct starting from %base is split into two parts
6509 // where the second part starts from %new_base.
6511 // Before:
6512 // BB0:
6513 // %base =
6515 // BB1:
6516 // %gep0 = gep %base, off0
6517 // %gep1 = gep %base, off1
6518 // %gep2 = gep %base, off2
6520 // BB2:
6521 // %load1 = load %gep0
6522 // %load2 = load %gep1
6523 // %load3 = load %gep2
6525 // After:
6526 // BB0:
6527 // %base =
6528 // %new_base = gep %base, off0
6530 // BB1:
6531 // %new_gep0 = %new_base
6532 // %new_gep1 = gep %new_base, off1 - off0
6533 // %new_gep2 = gep %new_base, off2 - off0
6535 // BB2:
6536 // %load1 = load i32, i32* %new_gep0
6537 // %load2 = load i32, i32* %new_gep1
6538 // %load3 = load i32, i32* %new_gep2
6540 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6541 // their offsets are smaller enough to fit into the addressing mode.
6542 bool CodeGenPrepare::splitLargeGEPOffsets() {
6543 bool Changed = false;
6544 for (auto &Entry : LargeOffsetGEPMap) {
6545 Value *OldBase = Entry.first;
6546 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6547 &LargeOffsetGEPs = Entry.second;
6548 auto compareGEPOffset =
6549 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6550 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6551 if (LHS.first == RHS.first)
6552 return false;
6553 if (LHS.second != RHS.second)
6554 return LHS.second < RHS.second;
6555 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6557 // Sorting all the GEPs of the same data structures based on the offsets.
6558 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6559 LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end());
6560 // Skip if all the GEPs have the same offsets.
6561 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6562 continue;
6563 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6564 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6565 Value *NewBaseGEP = nullptr;
6567 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6568 GetElementPtrInst *GEP) {
6569 LLVMContext &Ctx = GEP->getContext();
6570 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6571 Type *I8PtrTy =
6572 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6574 BasicBlock::iterator NewBaseInsertPt;
6575 BasicBlock *NewBaseInsertBB;
6576 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6577 // If the base of the struct is an instruction, the new base will be
6578 // inserted close to it.
6579 NewBaseInsertBB = BaseI->getParent();
6580 if (isa<PHINode>(BaseI))
6581 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6582 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6583 NewBaseInsertBB =
6584 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6585 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6586 } else
6587 NewBaseInsertPt = std::next(BaseI->getIterator());
6588 } else {
6589 // If the current base is an argument or global value, the new base
6590 // will be inserted to the entry block.
6591 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6592 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6594 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6595 // Create a new base.
6596 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6597 NewBaseGEP = OldBase;
6598 if (NewBaseGEP->getType() != I8PtrTy)
6599 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6600 NewBaseGEP =
6601 NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6602 NewGEPBases.insert(NewBaseGEP);
6603 return;
6606 // Check whether all the offsets can be encoded with prefered common base.
6607 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6608 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6609 BaseOffset = PreferBase;
6610 // Create a new base if the offset of the BaseGEP can be decoded with one
6611 // instruction.
6612 createNewBase(BaseOffset, OldBase, BaseGEP);
6615 auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6616 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6617 GetElementPtrInst *GEP = LargeOffsetGEP->first;
6618 int64_t Offset = LargeOffsetGEP->second;
6619 if (Offset != BaseOffset) {
6620 TargetLowering::AddrMode AddrMode;
6621 AddrMode.HasBaseReg = true;
6622 AddrMode.BaseOffs = Offset - BaseOffset;
6623 // The result type of the GEP might not be the type of the memory
6624 // access.
6625 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6626 GEP->getResultElementType(),
6627 GEP->getAddressSpace())) {
6628 // We need to create a new base if the offset to the current base is
6629 // too large to fit into the addressing mode. So, a very large struct
6630 // may be split into several parts.
6631 BaseGEP = GEP;
6632 BaseOffset = Offset;
6633 NewBaseGEP = nullptr;
6637 // Generate a new GEP to replace the current one.
6638 Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6640 if (!NewBaseGEP) {
6641 // Create a new base if we don't have one yet. Find the insertion
6642 // pointer for the new base first.
6643 createNewBase(BaseOffset, OldBase, GEP);
6646 IRBuilder<> Builder(GEP);
6647 Value *NewGEP = NewBaseGEP;
6648 if (Offset != BaseOffset) {
6649 // Calculate the new offset for the new GEP.
6650 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6651 NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6653 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6654 LargeOffsetGEPID.erase(GEP);
6655 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6656 GEP->eraseFromParent();
6657 Changed = true;
6660 return Changed;
6663 bool CodeGenPrepare::optimizePhiType(
6664 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6665 SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6666 // We are looking for a collection on interconnected phi nodes that together
6667 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6668 // are of the same type. Convert the whole set of nodes to the type of the
6669 // bitcast.
6670 Type *PhiTy = I->getType();
6671 Type *ConvertTy = nullptr;
6672 if (Visited.count(I) ||
6673 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6674 return false;
6676 SmallVector<Instruction *, 4> Worklist;
6677 Worklist.push_back(cast<Instruction>(I));
6678 SmallPtrSet<PHINode *, 4> PhiNodes;
6679 SmallPtrSet<ConstantData *, 4> Constants;
6680 PhiNodes.insert(I);
6681 Visited.insert(I);
6682 SmallPtrSet<Instruction *, 4> Defs;
6683 SmallPtrSet<Instruction *, 4> Uses;
6684 // This works by adding extra bitcasts between load/stores and removing
6685 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6686 // we can get in the situation where we remove a bitcast in one iteration
6687 // just to add it again in the next. We need to ensure that at least one
6688 // bitcast we remove are anchored to something that will not change back.
6689 bool AnyAnchored = false;
6691 while (!Worklist.empty()) {
6692 Instruction *II = Worklist.pop_back_val();
6694 if (auto *Phi = dyn_cast<PHINode>(II)) {
6695 // Handle Defs, which might also be PHI's
6696 for (Value *V : Phi->incoming_values()) {
6697 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6698 if (!PhiNodes.count(OpPhi)) {
6699 if (!Visited.insert(OpPhi).second)
6700 return false;
6701 PhiNodes.insert(OpPhi);
6702 Worklist.push_back(OpPhi);
6704 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6705 if (!OpLoad->isSimple())
6706 return false;
6707 if (Defs.insert(OpLoad).second)
6708 Worklist.push_back(OpLoad);
6709 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6710 if (Defs.insert(OpEx).second)
6711 Worklist.push_back(OpEx);
6712 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6713 if (!ConvertTy)
6714 ConvertTy = OpBC->getOperand(0)->getType();
6715 if (OpBC->getOperand(0)->getType() != ConvertTy)
6716 return false;
6717 if (Defs.insert(OpBC).second) {
6718 Worklist.push_back(OpBC);
6719 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6720 !isa<ExtractElementInst>(OpBC->getOperand(0));
6722 } else if (auto *OpC = dyn_cast<ConstantData>(V))
6723 Constants.insert(OpC);
6724 else
6725 return false;
6729 // Handle uses which might also be phi's
6730 for (User *V : II->users()) {
6731 if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6732 if (!PhiNodes.count(OpPhi)) {
6733 if (Visited.count(OpPhi))
6734 return false;
6735 PhiNodes.insert(OpPhi);
6736 Visited.insert(OpPhi);
6737 Worklist.push_back(OpPhi);
6739 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6740 if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6741 return false;
6742 Uses.insert(OpStore);
6743 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6744 if (!ConvertTy)
6745 ConvertTy = OpBC->getType();
6746 if (OpBC->getType() != ConvertTy)
6747 return false;
6748 Uses.insert(OpBC);
6749 AnyAnchored |=
6750 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6751 } else {
6752 return false;
6757 if (!ConvertTy || !AnyAnchored ||
6758 !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6759 return false;
6761 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "
6762 << *ConvertTy << "\n");
6764 // Create all the new phi nodes of the new type, and bitcast any loads to the
6765 // correct type.
6766 ValueToValueMap ValMap;
6767 for (ConstantData *C : Constants)
6768 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
6769 for (Instruction *D : Defs) {
6770 if (isa<BitCastInst>(D)) {
6771 ValMap[D] = D->getOperand(0);
6772 DeletedInstrs.insert(D);
6773 } else {
6774 BasicBlock::iterator insertPt = std::next(D->getIterator());
6775 ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt);
6778 for (PHINode *Phi : PhiNodes)
6779 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6780 Phi->getName() + ".tc", Phi->getIterator());
6781 // Pipe together all the PhiNodes.
6782 for (PHINode *Phi : PhiNodes) {
6783 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6784 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6785 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6786 Phi->getIncomingBlock(i));
6787 Visited.insert(NewPhi);
6789 // And finally pipe up the stores and bitcasts
6790 for (Instruction *U : Uses) {
6791 if (isa<BitCastInst>(U)) {
6792 DeletedInstrs.insert(U);
6793 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6794 } else {
6795 U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc",
6796 U->getIterator()));
6800 // Save the removed phis to be deleted later.
6801 for (PHINode *Phi : PhiNodes)
6802 DeletedInstrs.insert(Phi);
6803 return true;
6806 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6807 if (!OptimizePhiTypes)
6808 return false;
6810 bool Changed = false;
6811 SmallPtrSet<PHINode *, 4> Visited;
6812 SmallPtrSet<Instruction *, 4> DeletedInstrs;
6814 // Attempt to optimize all the phis in the functions to the correct type.
6815 for (auto &BB : F)
6816 for (auto &Phi : BB.phis())
6817 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6819 // Remove any old phi's that have been converted.
6820 for (auto *I : DeletedInstrs) {
6821 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6822 I->eraseFromParent();
6825 return Changed;
6828 /// Return true, if an ext(load) can be formed from an extension in
6829 /// \p MovedExts.
6830 bool CodeGenPrepare::canFormExtLd(
6831 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6832 Instruction *&Inst, bool HasPromoted) {
6833 for (auto *MovedExtInst : MovedExts) {
6834 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6835 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6836 Inst = MovedExtInst;
6837 break;
6840 if (!LI)
6841 return false;
6843 // If they're already in the same block, there's nothing to do.
6844 // Make the cheap checks first if we did not promote.
6845 // If we promoted, we need to check if it is indeed profitable.
6846 if (!HasPromoted && LI->getParent() == Inst->getParent())
6847 return false;
6849 return TLI->isExtLoad(LI, Inst, *DL);
6852 /// Move a zext or sext fed by a load into the same basic block as the load,
6853 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6854 /// extend into the load.
6856 /// E.g.,
6857 /// \code
6858 /// %ld = load i32* %addr
6859 /// %add = add nuw i32 %ld, 4
6860 /// %zext = zext i32 %add to i64
6861 // \endcode
6862 /// =>
6863 /// \code
6864 /// %ld = load i32* %addr
6865 /// %zext = zext i32 %ld to i64
6866 /// %add = add nuw i64 %zext, 4
6867 /// \encode
6868 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6869 /// allow us to match zext(load i32*) to i64.
6871 /// Also, try to promote the computations used to obtain a sign extended
6872 /// value used into memory accesses.
6873 /// E.g.,
6874 /// \code
6875 /// a = add nsw i32 b, 3
6876 /// d = sext i32 a to i64
6877 /// e = getelementptr ..., i64 d
6878 /// \endcode
6879 /// =>
6880 /// \code
6881 /// f = sext i32 b to i64
6882 /// a = add nsw i64 f, 3
6883 /// e = getelementptr ..., i64 a
6884 /// \endcode
6886 /// \p Inst[in/out] the extension may be modified during the process if some
6887 /// promotions apply.
6888 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6889 bool AllowPromotionWithoutCommonHeader = false;
6890 /// See if it is an interesting sext operations for the address type
6891 /// promotion before trying to promote it, e.g., the ones with the right
6892 /// type and used in memory accesses.
6893 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6894 *Inst, AllowPromotionWithoutCommonHeader);
6895 TypePromotionTransaction TPT(RemovedInsts);
6896 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6897 TPT.getRestorationPoint();
6898 SmallVector<Instruction *, 1> Exts;
6899 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6900 Exts.push_back(Inst);
6902 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6904 // Look for a load being extended.
6905 LoadInst *LI = nullptr;
6906 Instruction *ExtFedByLoad;
6908 // Try to promote a chain of computation if it allows to form an extended
6909 // load.
6910 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6911 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6912 TPT.commit();
6913 // Move the extend into the same block as the load.
6914 ExtFedByLoad->moveAfter(LI);
6915 ++NumExtsMoved;
6916 Inst = ExtFedByLoad;
6917 return true;
6920 // Continue promoting SExts if known as considerable depending on targets.
6921 if (ATPConsiderable &&
6922 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6923 HasPromoted, TPT, SpeculativelyMovedExts))
6924 return true;
6926 TPT.rollback(LastKnownGood);
6927 return false;
6930 // Perform address type promotion if doing so is profitable.
6931 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6932 // instructions that sign extended the same initial value. However, if
6933 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6934 // extension is just profitable.
6935 bool CodeGenPrepare::performAddressTypePromotion(
6936 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6937 bool HasPromoted, TypePromotionTransaction &TPT,
6938 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6939 bool Promoted = false;
6940 SmallPtrSet<Instruction *, 1> UnhandledExts;
6941 bool AllSeenFirst = true;
6942 for (auto *I : SpeculativelyMovedExts) {
6943 Value *HeadOfChain = I->getOperand(0);
6944 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6945 SeenChainsForSExt.find(HeadOfChain);
6946 // If there is an unhandled SExt which has the same header, try to promote
6947 // it as well.
6948 if (AlreadySeen != SeenChainsForSExt.end()) {
6949 if (AlreadySeen->second != nullptr)
6950 UnhandledExts.insert(AlreadySeen->second);
6951 AllSeenFirst = false;
6955 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6956 SpeculativelyMovedExts.size() == 1)) {
6957 TPT.commit();
6958 if (HasPromoted)
6959 Promoted = true;
6960 for (auto *I : SpeculativelyMovedExts) {
6961 Value *HeadOfChain = I->getOperand(0);
6962 SeenChainsForSExt[HeadOfChain] = nullptr;
6963 ValToSExtendedUses[HeadOfChain].push_back(I);
6965 // Update Inst as promotion happen.
6966 Inst = SpeculativelyMovedExts.pop_back_val();
6967 } else {
6968 // This is the first chain visited from the header, keep the current chain
6969 // as unhandled. Defer to promote this until we encounter another SExt
6970 // chain derived from the same header.
6971 for (auto *I : SpeculativelyMovedExts) {
6972 Value *HeadOfChain = I->getOperand(0);
6973 SeenChainsForSExt[HeadOfChain] = Inst;
6975 return false;
6978 if (!AllSeenFirst && !UnhandledExts.empty())
6979 for (auto *VisitedSExt : UnhandledExts) {
6980 if (RemovedInsts.count(VisitedSExt))
6981 continue;
6982 TypePromotionTransaction TPT(RemovedInsts);
6983 SmallVector<Instruction *, 1> Exts;
6984 SmallVector<Instruction *, 2> Chains;
6985 Exts.push_back(VisitedSExt);
6986 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6987 TPT.commit();
6988 if (HasPromoted)
6989 Promoted = true;
6990 for (auto *I : Chains) {
6991 Value *HeadOfChain = I->getOperand(0);
6992 // Mark this as handled.
6993 SeenChainsForSExt[HeadOfChain] = nullptr;
6994 ValToSExtendedUses[HeadOfChain].push_back(I);
6997 return Promoted;
7000 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
7001 BasicBlock *DefBB = I->getParent();
7003 // If the result of a {s|z}ext and its source are both live out, rewrite all
7004 // other uses of the source with result of extension.
7005 Value *Src = I->getOperand(0);
7006 if (Src->hasOneUse())
7007 return false;
7009 // Only do this xform if truncating is free.
7010 if (!TLI->isTruncateFree(I->getType(), Src->getType()))
7011 return false;
7013 // Only safe to perform the optimization if the source is also defined in
7014 // this block.
7015 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
7016 return false;
7018 bool DefIsLiveOut = false;
7019 for (User *U : I->users()) {
7020 Instruction *UI = cast<Instruction>(U);
7022 // Figure out which BB this ext is used in.
7023 BasicBlock *UserBB = UI->getParent();
7024 if (UserBB == DefBB)
7025 continue;
7026 DefIsLiveOut = true;
7027 break;
7029 if (!DefIsLiveOut)
7030 return false;
7032 // Make sure none of the uses are PHI nodes.
7033 for (User *U : Src->users()) {
7034 Instruction *UI = cast<Instruction>(U);
7035 BasicBlock *UserBB = UI->getParent();
7036 if (UserBB == DefBB)
7037 continue;
7038 // Be conservative. We don't want this xform to end up introducing
7039 // reloads just before load / store instructions.
7040 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
7041 return false;
7044 // InsertedTruncs - Only insert one trunc in each block once.
7045 DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
7047 bool MadeChange = false;
7048 for (Use &U : Src->uses()) {
7049 Instruction *User = cast<Instruction>(U.getUser());
7051 // Figure out which BB this ext is used in.
7052 BasicBlock *UserBB = User->getParent();
7053 if (UserBB == DefBB)
7054 continue;
7056 // Both src and def are live in this block. Rewrite the use.
7057 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
7059 if (!InsertedTrunc) {
7060 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
7061 assert(InsertPt != UserBB->end());
7062 InsertedTrunc = new TruncInst(I, Src->getType(), "");
7063 InsertedTrunc->insertBefore(*UserBB, InsertPt);
7064 InsertedInsts.insert(InsertedTrunc);
7067 // Replace a use of the {s|z}ext source with a use of the result.
7068 U = InsertedTrunc;
7069 ++NumExtUses;
7070 MadeChange = true;
7073 return MadeChange;
7076 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
7077 // just after the load if the target can fold this into one extload instruction,
7078 // with the hope of eliminating some of the other later "and" instructions using
7079 // the loaded value. "and"s that are made trivially redundant by the insertion
7080 // of the new "and" are removed by this function, while others (e.g. those whose
7081 // path from the load goes through a phi) are left for isel to potentially
7082 // remove.
7084 // For example:
7086 // b0:
7087 // x = load i32
7088 // ...
7089 // b1:
7090 // y = and x, 0xff
7091 // z = use y
7093 // becomes:
7095 // b0:
7096 // x = load i32
7097 // x' = and x, 0xff
7098 // ...
7099 // b1:
7100 // z = use x'
7102 // whereas:
7104 // b0:
7105 // x1 = load i32
7106 // ...
7107 // b1:
7108 // x2 = load i32
7109 // ...
7110 // b2:
7111 // x = phi x1, x2
7112 // y = and x, 0xff
7114 // becomes (after a call to optimizeLoadExt for each load):
7116 // b0:
7117 // x1 = load i32
7118 // x1' = and x1, 0xff
7119 // ...
7120 // b1:
7121 // x2 = load i32
7122 // x2' = and x2, 0xff
7123 // ...
7124 // b2:
7125 // x = phi x1', x2'
7126 // y = and x, 0xff
7127 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
7128 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
7129 return false;
7131 // Skip loads we've already transformed.
7132 if (Load->hasOneUse() &&
7133 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
7134 return false;
7136 // Look at all uses of Load, looking through phis, to determine how many bits
7137 // of the loaded value are needed.
7138 SmallVector<Instruction *, 8> WorkList;
7139 SmallPtrSet<Instruction *, 16> Visited;
7140 SmallVector<Instruction *, 8> AndsToMaybeRemove;
7141 for (auto *U : Load->users())
7142 WorkList.push_back(cast<Instruction>(U));
7144 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
7145 unsigned BitWidth = LoadResultVT.getSizeInBits();
7146 // If the BitWidth is 0, do not try to optimize the type
7147 if (BitWidth == 0)
7148 return false;
7150 APInt DemandBits(BitWidth, 0);
7151 APInt WidestAndBits(BitWidth, 0);
7153 while (!WorkList.empty()) {
7154 Instruction *I = WorkList.pop_back_val();
7156 // Break use-def graph loops.
7157 if (!Visited.insert(I).second)
7158 continue;
7160 // For a PHI node, push all of its users.
7161 if (auto *Phi = dyn_cast<PHINode>(I)) {
7162 for (auto *U : Phi->users())
7163 WorkList.push_back(cast<Instruction>(U));
7164 continue;
7167 switch (I->getOpcode()) {
7168 case Instruction::And: {
7169 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
7170 if (!AndC)
7171 return false;
7172 APInt AndBits = AndC->getValue();
7173 DemandBits |= AndBits;
7174 // Keep track of the widest and mask we see.
7175 if (AndBits.ugt(WidestAndBits))
7176 WidestAndBits = AndBits;
7177 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
7178 AndsToMaybeRemove.push_back(I);
7179 break;
7182 case Instruction::Shl: {
7183 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
7184 if (!ShlC)
7185 return false;
7186 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
7187 DemandBits.setLowBits(BitWidth - ShiftAmt);
7188 break;
7191 case Instruction::Trunc: {
7192 EVT TruncVT = TLI->getValueType(*DL, I->getType());
7193 unsigned TruncBitWidth = TruncVT.getSizeInBits();
7194 DemandBits.setLowBits(TruncBitWidth);
7195 break;
7198 default:
7199 return false;
7203 uint32_t ActiveBits = DemandBits.getActiveBits();
7204 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
7205 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
7206 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
7207 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
7208 // followed by an AND.
7209 // TODO: Look into removing this restriction by fixing backends to either
7210 // return false for isLoadExtLegal for i1 or have them select this pattern to
7211 // a single instruction.
7213 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
7214 // mask, since these are the only ands that will be removed by isel.
7215 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
7216 WidestAndBits != DemandBits)
7217 return false;
7219 LLVMContext &Ctx = Load->getType()->getContext();
7220 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
7221 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
7223 // Reject cases that won't be matched as extloads.
7224 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
7225 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
7226 return false;
7228 IRBuilder<> Builder(Load->getNextNonDebugInstruction());
7229 auto *NewAnd = cast<Instruction>(
7230 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
7231 // Mark this instruction as "inserted by CGP", so that other
7232 // optimizations don't touch it.
7233 InsertedInsts.insert(NewAnd);
7235 // Replace all uses of load with new and (except for the use of load in the
7236 // new and itself).
7237 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
7238 NewAnd->setOperand(0, Load);
7240 // Remove any and instructions that are now redundant.
7241 for (auto *And : AndsToMaybeRemove)
7242 // Check that the and mask is the same as the one we decided to put on the
7243 // new and.
7244 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
7245 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
7246 if (&*CurInstIterator == And)
7247 CurInstIterator = std::next(And->getIterator());
7248 And->eraseFromParent();
7249 ++NumAndUses;
7252 ++NumAndsAdded;
7253 return true;
7256 /// Check if V (an operand of a select instruction) is an expensive instruction
7257 /// that is only used once.
7258 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
7259 auto *I = dyn_cast<Instruction>(V);
7260 // If it's safe to speculatively execute, then it should not have side
7261 // effects; therefore, it's safe to sink and possibly *not* execute.
7262 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
7263 TTI->isExpensiveToSpeculativelyExecute(I);
7266 /// Returns true if a SelectInst should be turned into an explicit branch.
7267 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
7268 const TargetLowering *TLI,
7269 SelectInst *SI) {
7270 // If even a predictable select is cheap, then a branch can't be cheaper.
7271 if (!TLI->isPredictableSelectExpensive())
7272 return false;
7274 // FIXME: This should use the same heuristics as IfConversion to determine
7275 // whether a select is better represented as a branch.
7277 // If metadata tells us that the select condition is obviously predictable,
7278 // then we want to replace the select with a branch.
7279 uint64_t TrueWeight, FalseWeight;
7280 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
7281 uint64_t Max = std::max(TrueWeight, FalseWeight);
7282 uint64_t Sum = TrueWeight + FalseWeight;
7283 if (Sum != 0) {
7284 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
7285 if (Probability > TTI->getPredictableBranchThreshold())
7286 return true;
7290 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
7292 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
7293 // comparison condition. If the compare has more than one use, there's
7294 // probably another cmov or setcc around, so it's not worth emitting a branch.
7295 if (!Cmp || !Cmp->hasOneUse())
7296 return false;
7298 // If either operand of the select is expensive and only needed on one side
7299 // of the select, we should form a branch.
7300 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
7301 sinkSelectOperand(TTI, SI->getFalseValue()))
7302 return true;
7304 return false;
7307 /// If \p isTrue is true, return the true value of \p SI, otherwise return
7308 /// false value of \p SI. If the true/false value of \p SI is defined by any
7309 /// select instructions in \p Selects, look through the defining select
7310 /// instruction until the true/false value is not defined in \p Selects.
7311 static Value *
7312 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
7313 const SmallPtrSet<const Instruction *, 2> &Selects) {
7314 Value *V = nullptr;
7316 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
7317 DefSI = dyn_cast<SelectInst>(V)) {
7318 assert(DefSI->getCondition() == SI->getCondition() &&
7319 "The condition of DefSI does not match with SI");
7320 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
7323 assert(V && "Failed to get select true/false value");
7324 return V;
7327 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
7328 assert(Shift->isShift() && "Expected a shift");
7330 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
7331 // general vector shifts, and (3) the shift amount is a select-of-splatted
7332 // values, hoist the shifts before the select:
7333 // shift Op0, (select Cond, TVal, FVal) -->
7334 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
7336 // This is inverting a generic IR transform when we know that the cost of a
7337 // general vector shift is more than the cost of 2 shift-by-scalars.
7338 // We can't do this effectively in SDAG because we may not be able to
7339 // determine if the select operands are splats from within a basic block.
7340 Type *Ty = Shift->getType();
7341 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty))
7342 return false;
7343 Value *Cond, *TVal, *FVal;
7344 if (!match(Shift->getOperand(1),
7345 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7346 return false;
7347 if (!isSplatValue(TVal) || !isSplatValue(FVal))
7348 return false;
7350 IRBuilder<> Builder(Shift);
7351 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
7352 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
7353 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
7354 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7355 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
7356 Shift->eraseFromParent();
7357 return true;
7360 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
7361 Intrinsic::ID Opcode = Fsh->getIntrinsicID();
7362 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
7363 "Expected a funnel shift");
7365 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
7366 // than general vector shifts, and (3) the shift amount is select-of-splatted
7367 // values, hoist the funnel shifts before the select:
7368 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
7369 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
7371 // This is inverting a generic IR transform when we know that the cost of a
7372 // general vector shift is more than the cost of 2 shift-by-scalars.
7373 // We can't do this effectively in SDAG because we may not be able to
7374 // determine if the select operands are splats from within a basic block.
7375 Type *Ty = Fsh->getType();
7376 if (!Ty->isVectorTy() || !TTI->isVectorShiftByScalarCheap(Ty))
7377 return false;
7378 Value *Cond, *TVal, *FVal;
7379 if (!match(Fsh->getOperand(2),
7380 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7381 return false;
7382 if (!isSplatValue(TVal) || !isSplatValue(FVal))
7383 return false;
7385 IRBuilder<> Builder(Fsh);
7386 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
7387 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
7388 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
7389 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7390 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
7391 Fsh->eraseFromParent();
7392 return true;
7395 /// If we have a SelectInst that will likely profit from branch prediction,
7396 /// turn it into a branch.
7397 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
7398 if (DisableSelectToBranch)
7399 return false;
7401 // If the SelectOptimize pass is enabled, selects have already been optimized.
7402 if (!getCGPassBuilderOption().DisableSelectOptimize)
7403 return false;
7405 // Find all consecutive select instructions that share the same condition.
7406 SmallVector<SelectInst *, 2> ASI;
7407 ASI.push_back(SI);
7408 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
7409 It != SI->getParent()->end(); ++It) {
7410 SelectInst *I = dyn_cast<SelectInst>(&*It);
7411 if (I && SI->getCondition() == I->getCondition()) {
7412 ASI.push_back(I);
7413 } else {
7414 break;
7418 SelectInst *LastSI = ASI.back();
7419 // Increment the current iterator to skip all the rest of select instructions
7420 // because they will be either "not lowered" or "all lowered" to branch.
7421 CurInstIterator = std::next(LastSI->getIterator());
7422 // Examine debug-info attached to the consecutive select instructions. They
7423 // won't be individually optimised by optimizeInst, so we need to perform
7424 // DbgVariableRecord maintenence here instead.
7425 for (SelectInst *SI : ArrayRef(ASI).drop_front())
7426 fixupDbgVariableRecordsOnInst(*SI);
7428 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7430 // Can we convert the 'select' to CF ?
7431 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7432 return false;
7434 TargetLowering::SelectSupportKind SelectKind;
7435 if (SI->getType()->isVectorTy())
7436 SelectKind = TargetLowering::ScalarCondVectorVal;
7437 else
7438 SelectKind = TargetLowering::ScalarValSelect;
7440 if (TLI->isSelectSupported(SelectKind) &&
7441 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) ||
7442 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7443 return false;
7445 // The DominatorTree needs to be rebuilt by any consumers after this
7446 // transformation. We simply reset here rather than setting the ModifiedDT
7447 // flag to avoid restarting the function walk in runOnFunction for each
7448 // select optimized.
7449 DT.reset();
7451 // Transform a sequence like this:
7452 // start:
7453 // %cmp = cmp uge i32 %a, %b
7454 // %sel = select i1 %cmp, i32 %c, i32 %d
7456 // Into:
7457 // start:
7458 // %cmp = cmp uge i32 %a, %b
7459 // %cmp.frozen = freeze %cmp
7460 // br i1 %cmp.frozen, label %select.true, label %select.false
7461 // select.true:
7462 // br label %select.end
7463 // select.false:
7464 // br label %select.end
7465 // select.end:
7466 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7468 // %cmp should be frozen, otherwise it may introduce undefined behavior.
7469 // In addition, we may sink instructions that produce %c or %d from
7470 // the entry block into the destination(s) of the new branch.
7471 // If the true or false blocks do not contain a sunken instruction, that
7472 // block and its branch may be optimized away. In that case, one side of the
7473 // first branch will point directly to select.end, and the corresponding PHI
7474 // predecessor block will be the start block.
7476 // Collect values that go on the true side and the values that go on the false
7477 // side.
7478 SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7479 for (SelectInst *SI : ASI) {
7480 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7481 TrueInstrs.push_back(cast<Instruction>(V));
7482 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7483 FalseInstrs.push_back(cast<Instruction>(V));
7486 // Split the select block, according to how many (if any) values go on each
7487 // side.
7488 BasicBlock *StartBlock = SI->getParent();
7489 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7490 // We should split before any debug-info.
7491 SplitPt.setHeadBit(true);
7493 IRBuilder<> IB(SI);
7494 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7496 BasicBlock *TrueBlock = nullptr;
7497 BasicBlock *FalseBlock = nullptr;
7498 BasicBlock *EndBlock = nullptr;
7499 BranchInst *TrueBranch = nullptr;
7500 BranchInst *FalseBranch = nullptr;
7501 if (TrueInstrs.size() == 0) {
7502 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7503 CondFr, SplitPt, false, nullptr, nullptr, LI));
7504 FalseBlock = FalseBranch->getParent();
7505 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7506 } else if (FalseInstrs.size() == 0) {
7507 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7508 CondFr, SplitPt, false, nullptr, nullptr, LI));
7509 TrueBlock = TrueBranch->getParent();
7510 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7511 } else {
7512 Instruction *ThenTerm = nullptr;
7513 Instruction *ElseTerm = nullptr;
7514 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7515 nullptr, nullptr, LI);
7516 TrueBranch = cast<BranchInst>(ThenTerm);
7517 FalseBranch = cast<BranchInst>(ElseTerm);
7518 TrueBlock = TrueBranch->getParent();
7519 FalseBlock = FalseBranch->getParent();
7520 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7523 EndBlock->setName("select.end");
7524 if (TrueBlock)
7525 TrueBlock->setName("select.true.sink");
7526 if (FalseBlock)
7527 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7528 : "select.false.sink");
7530 if (IsHugeFunc) {
7531 if (TrueBlock)
7532 FreshBBs.insert(TrueBlock);
7533 if (FalseBlock)
7534 FreshBBs.insert(FalseBlock);
7535 FreshBBs.insert(EndBlock);
7538 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7540 static const unsigned MD[] = {
7541 LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7542 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7543 StartBlock->getTerminator()->copyMetadata(*SI, MD);
7545 // Sink expensive instructions into the conditional blocks to avoid executing
7546 // them speculatively.
7547 for (Instruction *I : TrueInstrs)
7548 I->moveBefore(TrueBranch);
7549 for (Instruction *I : FalseInstrs)
7550 I->moveBefore(FalseBranch);
7552 // If we did not create a new block for one of the 'true' or 'false' paths
7553 // of the condition, it means that side of the branch goes to the end block
7554 // directly and the path originates from the start block from the point of
7555 // view of the new PHI.
7556 if (TrueBlock == nullptr)
7557 TrueBlock = StartBlock;
7558 else if (FalseBlock == nullptr)
7559 FalseBlock = StartBlock;
7561 SmallPtrSet<const Instruction *, 2> INS;
7562 INS.insert(ASI.begin(), ASI.end());
7563 // Use reverse iterator because later select may use the value of the
7564 // earlier select, and we need to propagate value through earlier select
7565 // to get the PHI operand.
7566 for (SelectInst *SI : llvm::reverse(ASI)) {
7567 // The select itself is replaced with a PHI Node.
7568 PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7569 PN->insertBefore(EndBlock->begin());
7570 PN->takeName(SI);
7571 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7572 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7573 PN->setDebugLoc(SI->getDebugLoc());
7575 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7576 SI->eraseFromParent();
7577 INS.erase(SI);
7578 ++NumSelectsExpanded;
7581 // Instruct OptimizeBlock to skip to the next block.
7582 CurInstIterator = StartBlock->end();
7583 return true;
7586 /// Some targets only accept certain types for splat inputs. For example a VDUP
7587 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7588 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7589 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7590 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7591 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7592 m_Undef(), m_ZeroMask())))
7593 return false;
7594 Type *NewType = TLI->shouldConvertSplatType(SVI);
7595 if (!NewType)
7596 return false;
7598 auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7599 assert(!NewType->isVectorTy() && "Expected a scalar type!");
7600 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7601 "Expected a type of the same size!");
7602 auto *NewVecType =
7603 FixedVectorType::get(NewType, SVIVecType->getNumElements());
7605 // Create a bitcast (shuffle (insert (bitcast(..))))
7606 IRBuilder<> Builder(SVI->getContext());
7607 Builder.SetInsertPoint(SVI);
7608 Value *BC1 = Builder.CreateBitCast(
7609 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7610 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7611 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7613 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7614 RecursivelyDeleteTriviallyDeadInstructions(
7615 SVI, TLInfo, nullptr,
7616 [&](Value *V) { removeAllAssertingVHReferences(V); });
7618 // Also hoist the bitcast up to its operand if it they are not in the same
7619 // block.
7620 if (auto *BCI = dyn_cast<Instruction>(BC1))
7621 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7622 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7623 !Op->isTerminator() && !Op->isEHPad())
7624 BCI->moveAfter(Op);
7626 return true;
7629 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7630 // If the operands of I can be folded into a target instruction together with
7631 // I, duplicate and sink them.
7632 SmallVector<Use *, 4> OpsToSink;
7633 if (!TTI->isProfitableToSinkOperands(I, OpsToSink))
7634 return false;
7636 // OpsToSink can contain multiple uses in a use chain (e.g.
7637 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7638 // uses must come first, so we process the ops in reverse order so as to not
7639 // create invalid IR.
7640 BasicBlock *TargetBB = I->getParent();
7641 bool Changed = false;
7642 SmallVector<Use *, 4> ToReplace;
7643 Instruction *InsertPoint = I;
7644 DenseMap<const Instruction *, unsigned long> InstOrdering;
7645 unsigned long InstNumber = 0;
7646 for (const auto &I : *TargetBB)
7647 InstOrdering[&I] = InstNumber++;
7649 for (Use *U : reverse(OpsToSink)) {
7650 auto *UI = cast<Instruction>(U->get());
7651 if (isa<PHINode>(UI))
7652 continue;
7653 if (UI->getParent() == TargetBB) {
7654 if (InstOrdering[UI] < InstOrdering[InsertPoint])
7655 InsertPoint = UI;
7656 continue;
7658 ToReplace.push_back(U);
7661 SetVector<Instruction *> MaybeDead;
7662 DenseMap<Instruction *, Instruction *> NewInstructions;
7663 for (Use *U : ToReplace) {
7664 auto *UI = cast<Instruction>(U->get());
7665 Instruction *NI = UI->clone();
7667 if (IsHugeFunc) {
7668 // Now we clone an instruction, its operands' defs may sink to this BB
7669 // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7670 for (Value *Op : NI->operands())
7671 if (auto *OpDef = dyn_cast<Instruction>(Op))
7672 FreshBBs.insert(OpDef->getParent());
7675 NewInstructions[UI] = NI;
7676 MaybeDead.insert(UI);
7677 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7678 NI->insertBefore(InsertPoint);
7679 InsertPoint = NI;
7680 InsertedInsts.insert(NI);
7682 // Update the use for the new instruction, making sure that we update the
7683 // sunk instruction uses, if it is part of a chain that has already been
7684 // sunk.
7685 Instruction *OldI = cast<Instruction>(U->getUser());
7686 if (NewInstructions.count(OldI))
7687 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7688 else
7689 U->set(NI);
7690 Changed = true;
7693 // Remove instructions that are dead after sinking.
7694 for (auto *I : MaybeDead) {
7695 if (!I->hasNUsesOrMore(1)) {
7696 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7697 I->eraseFromParent();
7701 return Changed;
7704 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7705 Value *Cond = SI->getCondition();
7706 Type *OldType = Cond->getType();
7707 LLVMContext &Context = Cond->getContext();
7708 EVT OldVT = TLI->getValueType(*DL, OldType);
7709 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7710 unsigned RegWidth = RegType.getSizeInBits();
7712 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7713 return false;
7715 // If the register width is greater than the type width, expand the condition
7716 // of the switch instruction and each case constant to the width of the
7717 // register. By widening the type of the switch condition, subsequent
7718 // comparisons (for case comparisons) will not need to be extended to the
7719 // preferred register width, so we will potentially eliminate N-1 extends,
7720 // where N is the number of cases in the switch.
7721 auto *NewType = Type::getIntNTy(Context, RegWidth);
7723 // Extend the switch condition and case constants using the target preferred
7724 // extend unless the switch condition is a function argument with an extend
7725 // attribute. In that case, we can avoid an unnecessary mask/extension by
7726 // matching the argument extension instead.
7727 Instruction::CastOps ExtType = Instruction::ZExt;
7728 // Some targets prefer SExt over ZExt.
7729 if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7730 ExtType = Instruction::SExt;
7732 if (auto *Arg = dyn_cast<Argument>(Cond)) {
7733 if (Arg->hasSExtAttr())
7734 ExtType = Instruction::SExt;
7735 if (Arg->hasZExtAttr())
7736 ExtType = Instruction::ZExt;
7739 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7740 ExtInst->insertBefore(SI);
7741 ExtInst->setDebugLoc(SI->getDebugLoc());
7742 SI->setCondition(ExtInst);
7743 for (auto Case : SI->cases()) {
7744 const APInt &NarrowConst = Case.getCaseValue()->getValue();
7745 APInt WideConst = (ExtType == Instruction::ZExt)
7746 ? NarrowConst.zext(RegWidth)
7747 : NarrowConst.sext(RegWidth);
7748 Case.setValue(ConstantInt::get(Context, WideConst));
7751 return true;
7754 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7755 // The SCCP optimization tends to produce code like this:
7756 // switch(x) { case 42: phi(42, ...) }
7757 // Materializing the constant for the phi-argument needs instructions; So we
7758 // change the code to:
7759 // switch(x) { case 42: phi(x, ...) }
7761 Value *Condition = SI->getCondition();
7762 // Avoid endless loop in degenerate case.
7763 if (isa<ConstantInt>(*Condition))
7764 return false;
7766 bool Changed = false;
7767 BasicBlock *SwitchBB = SI->getParent();
7768 Type *ConditionType = Condition->getType();
7770 for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7771 ConstantInt *CaseValue = Case.getCaseValue();
7772 BasicBlock *CaseBB = Case.getCaseSuccessor();
7773 // Set to true if we previously checked that `CaseBB` is only reached by
7774 // a single case from this switch.
7775 bool CheckedForSinglePred = false;
7776 for (PHINode &PHI : CaseBB->phis()) {
7777 Type *PHIType = PHI.getType();
7778 // If ZExt is free then we can also catch patterns like this:
7779 // switch((i32)x) { case 42: phi((i64)42, ...); }
7780 // and replace `(i64)42` with `zext i32 %x to i64`.
7781 bool TryZExt =
7782 PHIType->isIntegerTy() &&
7783 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7784 TLI->isZExtFree(ConditionType, PHIType);
7785 if (PHIType == ConditionType || TryZExt) {
7786 // Set to true to skip this case because of multiple preds.
7787 bool SkipCase = false;
7788 Value *Replacement = nullptr;
7789 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7790 Value *PHIValue = PHI.getIncomingValue(I);
7791 if (PHIValue != CaseValue) {
7792 if (!TryZExt)
7793 continue;
7794 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7795 if (!PHIValueInt ||
7796 PHIValueInt->getValue() !=
7797 CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7798 continue;
7800 if (PHI.getIncomingBlock(I) != SwitchBB)
7801 continue;
7802 // We cannot optimize if there are multiple case labels jumping to
7803 // this block. This check may get expensive when there are many
7804 // case labels so we test for it last.
7805 if (!CheckedForSinglePred) {
7806 CheckedForSinglePred = true;
7807 if (SI->findCaseDest(CaseBB) == nullptr) {
7808 SkipCase = true;
7809 break;
7813 if (Replacement == nullptr) {
7814 if (PHIValue == CaseValue) {
7815 Replacement = Condition;
7816 } else {
7817 IRBuilder<> Builder(SI);
7818 Replacement = Builder.CreateZExt(Condition, PHIType);
7821 PHI.setIncomingValue(I, Replacement);
7822 Changed = true;
7824 if (SkipCase)
7825 break;
7829 return Changed;
7832 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7833 bool Changed = optimizeSwitchType(SI);
7834 Changed |= optimizeSwitchPhiConstants(SI);
7835 return Changed;
7838 namespace {
7840 /// Helper class to promote a scalar operation to a vector one.
7841 /// This class is used to move downward extractelement transition.
7842 /// E.g.,
7843 /// a = vector_op <2 x i32>
7844 /// b = extractelement <2 x i32> a, i32 0
7845 /// c = scalar_op b
7846 /// store c
7848 /// =>
7849 /// a = vector_op <2 x i32>
7850 /// c = vector_op a (equivalent to scalar_op on the related lane)
7851 /// * d = extractelement <2 x i32> c, i32 0
7852 /// * store d
7853 /// Assuming both extractelement and store can be combine, we get rid of the
7854 /// transition.
7855 class VectorPromoteHelper {
7856 /// DataLayout associated with the current module.
7857 const DataLayout &DL;
7859 /// Used to perform some checks on the legality of vector operations.
7860 const TargetLowering &TLI;
7862 /// Used to estimated the cost of the promoted chain.
7863 const TargetTransformInfo &TTI;
7865 /// The transition being moved downwards.
7866 Instruction *Transition;
7868 /// The sequence of instructions to be promoted.
7869 SmallVector<Instruction *, 4> InstsToBePromoted;
7871 /// Cost of combining a store and an extract.
7872 unsigned StoreExtractCombineCost;
7874 /// Instruction that will be combined with the transition.
7875 Instruction *CombineInst = nullptr;
7877 /// The instruction that represents the current end of the transition.
7878 /// Since we are faking the promotion until we reach the end of the chain
7879 /// of computation, we need a way to get the current end of the transition.
7880 Instruction *getEndOfTransition() const {
7881 if (InstsToBePromoted.empty())
7882 return Transition;
7883 return InstsToBePromoted.back();
7886 /// Return the index of the original value in the transition.
7887 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7888 /// c, is at index 0.
7889 unsigned getTransitionOriginalValueIdx() const {
7890 assert(isa<ExtractElementInst>(Transition) &&
7891 "Other kind of transitions are not supported yet");
7892 return 0;
7895 /// Return the index of the index in the transition.
7896 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7897 /// is at index 1.
7898 unsigned getTransitionIdx() const {
7899 assert(isa<ExtractElementInst>(Transition) &&
7900 "Other kind of transitions are not supported yet");
7901 return 1;
7904 /// Get the type of the transition.
7905 /// This is the type of the original value.
7906 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7907 /// transition is <2 x i32>.
7908 Type *getTransitionType() const {
7909 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7912 /// Promote \p ToBePromoted by moving \p Def downward through.
7913 /// I.e., we have the following sequence:
7914 /// Def = Transition <ty1> a to <ty2>
7915 /// b = ToBePromoted <ty2> Def, ...
7916 /// =>
7917 /// b = ToBePromoted <ty1> a, ...
7918 /// Def = Transition <ty1> ToBePromoted to <ty2>
7919 void promoteImpl(Instruction *ToBePromoted);
7921 /// Check whether or not it is profitable to promote all the
7922 /// instructions enqueued to be promoted.
7923 bool isProfitableToPromote() {
7924 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7925 unsigned Index = isa<ConstantInt>(ValIdx)
7926 ? cast<ConstantInt>(ValIdx)->getZExtValue()
7927 : -1;
7928 Type *PromotedType = getTransitionType();
7930 StoreInst *ST = cast<StoreInst>(CombineInst);
7931 unsigned AS = ST->getPointerAddressSpace();
7932 // Check if this store is supported.
7933 if (!TLI.allowsMisalignedMemoryAccesses(
7934 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7935 ST->getAlign())) {
7936 // If this is not supported, there is no way we can combine
7937 // the extract with the store.
7938 return false;
7941 // The scalar chain of computation has to pay for the transition
7942 // scalar to vector.
7943 // The vector chain has to account for the combining cost.
7944 enum TargetTransformInfo::TargetCostKind CostKind =
7945 TargetTransformInfo::TCK_RecipThroughput;
7946 InstructionCost ScalarCost =
7947 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7948 InstructionCost VectorCost = StoreExtractCombineCost;
7949 for (const auto &Inst : InstsToBePromoted) {
7950 // Compute the cost.
7951 // By construction, all instructions being promoted are arithmetic ones.
7952 // Moreover, one argument is a constant that can be viewed as a splat
7953 // constant.
7954 Value *Arg0 = Inst->getOperand(0);
7955 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7956 isa<ConstantFP>(Arg0);
7957 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7958 if (IsArg0Constant)
7959 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7960 else
7961 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7963 ScalarCost += TTI.getArithmeticInstrCost(
7964 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7965 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7966 CostKind, Arg0Info, Arg1Info);
7968 LLVM_DEBUG(
7969 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7970 << ScalarCost << "\nVector: " << VectorCost << '\n');
7971 return ScalarCost > VectorCost;
7974 /// Generate a constant vector with \p Val with the same
7975 /// number of elements as the transition.
7976 /// \p UseSplat defines whether or not \p Val should be replicated
7977 /// across the whole vector.
7978 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7979 /// otherwise we generate a vector with as many undef as possible:
7980 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7981 /// used at the index of the extract.
7982 Value *getConstantVector(Constant *Val, bool UseSplat) const {
7983 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7984 if (!UseSplat) {
7985 // If we cannot determine where the constant must be, we have to
7986 // use a splat constant.
7987 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7988 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7989 ExtractIdx = CstVal->getSExtValue();
7990 else
7991 UseSplat = true;
7994 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7995 if (UseSplat)
7996 return ConstantVector::getSplat(EC, Val);
7998 if (!EC.isScalable()) {
7999 SmallVector<Constant *, 4> ConstVec;
8000 UndefValue *UndefVal = UndefValue::get(Val->getType());
8001 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
8002 if (Idx == ExtractIdx)
8003 ConstVec.push_back(Val);
8004 else
8005 ConstVec.push_back(UndefVal);
8007 return ConstantVector::get(ConstVec);
8008 } else
8009 llvm_unreachable(
8010 "Generate scalable vector for non-splat is unimplemented");
8013 /// Check if promoting to a vector type an operand at \p OperandIdx
8014 /// in \p Use can trigger undefined behavior.
8015 static bool canCauseUndefinedBehavior(const Instruction *Use,
8016 unsigned OperandIdx) {
8017 // This is not safe to introduce undef when the operand is on
8018 // the right hand side of a division-like instruction.
8019 if (OperandIdx != 1)
8020 return false;
8021 switch (Use->getOpcode()) {
8022 default:
8023 return false;
8024 case Instruction::SDiv:
8025 case Instruction::UDiv:
8026 case Instruction::SRem:
8027 case Instruction::URem:
8028 return true;
8029 case Instruction::FDiv:
8030 case Instruction::FRem:
8031 return !Use->hasNoNaNs();
8033 llvm_unreachable(nullptr);
8036 public:
8037 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
8038 const TargetTransformInfo &TTI, Instruction *Transition,
8039 unsigned CombineCost)
8040 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
8041 StoreExtractCombineCost(CombineCost) {
8042 assert(Transition && "Do not know how to promote null");
8045 /// Check if we can promote \p ToBePromoted to \p Type.
8046 bool canPromote(const Instruction *ToBePromoted) const {
8047 // We could support CastInst too.
8048 return isa<BinaryOperator>(ToBePromoted);
8051 /// Check if it is profitable to promote \p ToBePromoted
8052 /// by moving downward the transition through.
8053 bool shouldPromote(const Instruction *ToBePromoted) const {
8054 // Promote only if all the operands can be statically expanded.
8055 // Indeed, we do not want to introduce any new kind of transitions.
8056 for (const Use &U : ToBePromoted->operands()) {
8057 const Value *Val = U.get();
8058 if (Val == getEndOfTransition()) {
8059 // If the use is a division and the transition is on the rhs,
8060 // we cannot promote the operation, otherwise we may create a
8061 // division by zero.
8062 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
8063 return false;
8064 continue;
8066 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
8067 !isa<ConstantFP>(Val))
8068 return false;
8070 // Check that the resulting operation is legal.
8071 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
8072 if (!ISDOpcode)
8073 return false;
8074 return StressStoreExtract ||
8075 TLI.isOperationLegalOrCustom(
8076 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
8079 /// Check whether or not \p Use can be combined
8080 /// with the transition.
8081 /// I.e., is it possible to do Use(Transition) => AnotherUse?
8082 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
8084 /// Record \p ToBePromoted as part of the chain to be promoted.
8085 void enqueueForPromotion(Instruction *ToBePromoted) {
8086 InstsToBePromoted.push_back(ToBePromoted);
8089 /// Set the instruction that will be combined with the transition.
8090 void recordCombineInstruction(Instruction *ToBeCombined) {
8091 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
8092 CombineInst = ToBeCombined;
8095 /// Promote all the instructions enqueued for promotion if it is
8096 /// is profitable.
8097 /// \return True if the promotion happened, false otherwise.
8098 bool promote() {
8099 // Check if there is something to promote.
8100 // Right now, if we do not have anything to combine with,
8101 // we assume the promotion is not profitable.
8102 if (InstsToBePromoted.empty() || !CombineInst)
8103 return false;
8105 // Check cost.
8106 if (!StressStoreExtract && !isProfitableToPromote())
8107 return false;
8109 // Promote.
8110 for (auto &ToBePromoted : InstsToBePromoted)
8111 promoteImpl(ToBePromoted);
8112 InstsToBePromoted.clear();
8113 return true;
8117 } // end anonymous namespace
8119 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
8120 // At this point, we know that all the operands of ToBePromoted but Def
8121 // can be statically promoted.
8122 // For Def, we need to use its parameter in ToBePromoted:
8123 // b = ToBePromoted ty1 a
8124 // Def = Transition ty1 b to ty2
8125 // Move the transition down.
8126 // 1. Replace all uses of the promoted operation by the transition.
8127 // = ... b => = ... Def.
8128 assert(ToBePromoted->getType() == Transition->getType() &&
8129 "The type of the result of the transition does not match "
8130 "the final type");
8131 ToBePromoted->replaceAllUsesWith(Transition);
8132 // 2. Update the type of the uses.
8133 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
8134 Type *TransitionTy = getTransitionType();
8135 ToBePromoted->mutateType(TransitionTy);
8136 // 3. Update all the operands of the promoted operation with promoted
8137 // operands.
8138 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
8139 for (Use &U : ToBePromoted->operands()) {
8140 Value *Val = U.get();
8141 Value *NewVal = nullptr;
8142 if (Val == Transition)
8143 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
8144 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
8145 isa<ConstantFP>(Val)) {
8146 // Use a splat constant if it is not safe to use undef.
8147 NewVal = getConstantVector(
8148 cast<Constant>(Val),
8149 isa<UndefValue>(Val) ||
8150 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
8151 } else
8152 llvm_unreachable("Did you modified shouldPromote and forgot to update "
8153 "this?");
8154 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
8156 Transition->moveAfter(ToBePromoted);
8157 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
8160 /// Some targets can do store(extractelement) with one instruction.
8161 /// Try to push the extractelement towards the stores when the target
8162 /// has this feature and this is profitable.
8163 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
8164 unsigned CombineCost = std::numeric_limits<unsigned>::max();
8165 if (DisableStoreExtract ||
8166 (!StressStoreExtract &&
8167 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
8168 Inst->getOperand(1), CombineCost)))
8169 return false;
8171 // At this point we know that Inst is a vector to scalar transition.
8172 // Try to move it down the def-use chain, until:
8173 // - We can combine the transition with its single use
8174 // => we got rid of the transition.
8175 // - We escape the current basic block
8176 // => we would need to check that we are moving it at a cheaper place and
8177 // we do not do that for now.
8178 BasicBlock *Parent = Inst->getParent();
8179 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
8180 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
8181 // If the transition has more than one use, assume this is not going to be
8182 // beneficial.
8183 while (Inst->hasOneUse()) {
8184 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
8185 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
8187 if (ToBePromoted->getParent() != Parent) {
8188 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
8189 << ToBePromoted->getParent()->getName()
8190 << ") than the transition (" << Parent->getName()
8191 << ").\n");
8192 return false;
8195 if (VPH.canCombine(ToBePromoted)) {
8196 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
8197 << "will be combined with: " << *ToBePromoted << '\n');
8198 VPH.recordCombineInstruction(ToBePromoted);
8199 bool Changed = VPH.promote();
8200 NumStoreExtractExposed += Changed;
8201 return Changed;
8204 LLVM_DEBUG(dbgs() << "Try promoting.\n");
8205 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
8206 return false;
8208 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
8210 VPH.enqueueForPromotion(ToBePromoted);
8211 Inst = ToBePromoted;
8213 return false;
8216 /// For the instruction sequence of store below, F and I values
8217 /// are bundled together as an i64 value before being stored into memory.
8218 /// Sometimes it is more efficient to generate separate stores for F and I,
8219 /// which can remove the bitwise instructions or sink them to colder places.
8221 /// (store (or (zext (bitcast F to i32) to i64),
8222 /// (shl (zext I to i64), 32)), addr) -->
8223 /// (store F, addr) and (store I, addr+4)
8225 /// Similarly, splitting for other merged store can also be beneficial, like:
8226 /// For pair of {i32, i32}, i64 store --> two i32 stores.
8227 /// For pair of {i32, i16}, i64 store --> two i32 stores.
8228 /// For pair of {i16, i16}, i32 store --> two i16 stores.
8229 /// For pair of {i16, i8}, i32 store --> two i16 stores.
8230 /// For pair of {i8, i8}, i16 store --> two i8 stores.
8232 /// We allow each target to determine specifically which kind of splitting is
8233 /// supported.
8235 /// The store patterns are commonly seen from the simple code snippet below
8236 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
8237 /// void goo(const std::pair<int, float> &);
8238 /// hoo() {
8239 /// ...
8240 /// goo(std::make_pair(tmp, ftmp));
8241 /// ...
8242 /// }
8244 /// Although we already have similar splitting in DAG Combine, we duplicate
8245 /// it in CodeGenPrepare to catch the case in which pattern is across
8246 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
8247 /// during code expansion.
8248 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
8249 const TargetLowering &TLI) {
8250 // Handle simple but common cases only.
8251 Type *StoreType = SI.getValueOperand()->getType();
8253 // The code below assumes shifting a value by <number of bits>,
8254 // whereas scalable vectors would have to be shifted by
8255 // <2log(vscale) + number of bits> in order to store the
8256 // low/high parts. Bailing out for now.
8257 if (StoreType->isScalableTy())
8258 return false;
8260 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
8261 DL.getTypeSizeInBits(StoreType) == 0)
8262 return false;
8264 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
8265 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
8266 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
8267 return false;
8269 // Don't split the store if it is volatile.
8270 if (SI.isVolatile())
8271 return false;
8273 // Match the following patterns:
8274 // (store (or (zext LValue to i64),
8275 // (shl (zext HValue to i64), 32)), HalfValBitSize)
8276 // or
8277 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
8278 // (zext LValue to i64),
8279 // Expect both operands of OR and the first operand of SHL have only
8280 // one use.
8281 Value *LValue, *HValue;
8282 if (!match(SI.getValueOperand(),
8283 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
8284 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
8285 m_SpecificInt(HalfValBitSize))))))
8286 return false;
8288 // Check LValue and HValue are int with size less or equal than 32.
8289 if (!LValue->getType()->isIntegerTy() ||
8290 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
8291 !HValue->getType()->isIntegerTy() ||
8292 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
8293 return false;
8295 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
8296 // as the input of target query.
8297 auto *LBC = dyn_cast<BitCastInst>(LValue);
8298 auto *HBC = dyn_cast<BitCastInst>(HValue);
8299 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
8300 : EVT::getEVT(LValue->getType());
8301 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
8302 : EVT::getEVT(HValue->getType());
8303 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
8304 return false;
8306 // Start to split store.
8307 IRBuilder<> Builder(SI.getContext());
8308 Builder.SetInsertPoint(&SI);
8310 // If LValue/HValue is a bitcast in another BB, create a new one in current
8311 // BB so it may be merged with the splitted stores by dag combiner.
8312 if (LBC && LBC->getParent() != SI.getParent())
8313 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
8314 if (HBC && HBC->getParent() != SI.getParent())
8315 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
8317 bool IsLE = SI.getDataLayout().isLittleEndian();
8318 auto CreateSplitStore = [&](Value *V, bool Upper) {
8319 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
8320 Value *Addr = SI.getPointerOperand();
8321 Align Alignment = SI.getAlign();
8322 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
8323 if (IsOffsetStore) {
8324 Addr = Builder.CreateGEP(
8325 SplitStoreType, Addr,
8326 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
8328 // When splitting the store in half, naturally one half will retain the
8329 // alignment of the original wider store, regardless of whether it was
8330 // over-aligned or not, while the other will require adjustment.
8331 Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
8333 Builder.CreateAlignedStore(V, Addr, Alignment);
8336 CreateSplitStore(LValue, false);
8337 CreateSplitStore(HValue, true);
8339 // Delete the old store.
8340 SI.eraseFromParent();
8341 return true;
8344 // Return true if the GEP has two operands, the first operand is of a sequential
8345 // type, and the second operand is a constant.
8346 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
8347 gep_type_iterator I = gep_type_begin(*GEP);
8348 return GEP->getNumOperands() == 2 && I.isSequential() &&
8349 isa<ConstantInt>(GEP->getOperand(1));
8352 // Try unmerging GEPs to reduce liveness interference (register pressure) across
8353 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
8354 // reducing liveness interference across those edges benefits global register
8355 // allocation. Currently handles only certain cases.
8357 // For example, unmerge %GEPI and %UGEPI as below.
8359 // ---------- BEFORE ----------
8360 // SrcBlock:
8361 // ...
8362 // %GEPIOp = ...
8363 // ...
8364 // %GEPI = gep %GEPIOp, Idx
8365 // ...
8366 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
8367 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
8368 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
8369 // %UGEPI)
8371 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
8372 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
8373 // ...
8375 // DstBi:
8376 // ...
8377 // %UGEPI = gep %GEPIOp, UIdx
8378 // ...
8379 // ---------------------------
8381 // ---------- AFTER ----------
8382 // SrcBlock:
8383 // ... (same as above)
8384 // (* %GEPI is still alive on the indirectbr edges)
8385 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
8386 // unmerging)
8387 // ...
8389 // DstBi:
8390 // ...
8391 // %UGEPI = gep %GEPI, (UIdx-Idx)
8392 // ...
8393 // ---------------------------
8395 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8396 // no longer alive on them.
8398 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8399 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8400 // not to disable further simplications and optimizations as a result of GEP
8401 // merging.
8403 // Note this unmerging may increase the length of the data flow critical path
8404 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8405 // between the register pressure and the length of data-flow critical
8406 // path. Restricting this to the uncommon IndirectBr case would minimize the
8407 // impact of potentially longer critical path, if any, and the impact on compile
8408 // time.
8409 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
8410 const TargetTransformInfo *TTI) {
8411 BasicBlock *SrcBlock = GEPI->getParent();
8412 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8413 // (non-IndirectBr) cases exit early here.
8414 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8415 return false;
8416 // Check that GEPI is a simple gep with a single constant index.
8417 if (!GEPSequentialConstIndexed(GEPI))
8418 return false;
8419 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8420 // Check that GEPI is a cheap one.
8421 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8422 TargetTransformInfo::TCK_SizeAndLatency) >
8423 TargetTransformInfo::TCC_Basic)
8424 return false;
8425 Value *GEPIOp = GEPI->getOperand(0);
8426 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8427 if (!isa<Instruction>(GEPIOp))
8428 return false;
8429 auto *GEPIOpI = cast<Instruction>(GEPIOp);
8430 if (GEPIOpI->getParent() != SrcBlock)
8431 return false;
8432 // Check that GEP is used outside the block, meaning it's alive on the
8433 // IndirectBr edge(s).
8434 if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8435 if (auto *I = dyn_cast<Instruction>(Usr)) {
8436 if (I->getParent() != SrcBlock) {
8437 return true;
8440 return false;
8442 return false;
8443 // The second elements of the GEP chains to be unmerged.
8444 std::vector<GetElementPtrInst *> UGEPIs;
8445 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8446 // on IndirectBr edges.
8447 for (User *Usr : GEPIOp->users()) {
8448 if (Usr == GEPI)
8449 continue;
8450 // Check if Usr is an Instruction. If not, give up.
8451 if (!isa<Instruction>(Usr))
8452 return false;
8453 auto *UI = cast<Instruction>(Usr);
8454 // Check if Usr in the same block as GEPIOp, which is fine, skip.
8455 if (UI->getParent() == SrcBlock)
8456 continue;
8457 // Check if Usr is a GEP. If not, give up.
8458 if (!isa<GetElementPtrInst>(Usr))
8459 return false;
8460 auto *UGEPI = cast<GetElementPtrInst>(Usr);
8461 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8462 // the pointer operand to it. If so, record it in the vector. If not, give
8463 // up.
8464 if (!GEPSequentialConstIndexed(UGEPI))
8465 return false;
8466 if (UGEPI->getOperand(0) != GEPIOp)
8467 return false;
8468 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8469 return false;
8470 if (GEPIIdx->getType() !=
8471 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8472 return false;
8473 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8474 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8475 TargetTransformInfo::TCK_SizeAndLatency) >
8476 TargetTransformInfo::TCC_Basic)
8477 return false;
8478 UGEPIs.push_back(UGEPI);
8480 if (UGEPIs.size() == 0)
8481 return false;
8482 // Check the materializing cost of (Uidx-Idx).
8483 for (GetElementPtrInst *UGEPI : UGEPIs) {
8484 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8485 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8486 InstructionCost ImmCost = TTI->getIntImmCost(
8487 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8488 if (ImmCost > TargetTransformInfo::TCC_Basic)
8489 return false;
8491 // Now unmerge between GEPI and UGEPIs.
8492 for (GetElementPtrInst *UGEPI : UGEPIs) {
8493 UGEPI->setOperand(0, GEPI);
8494 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8495 Constant *NewUGEPIIdx = ConstantInt::get(
8496 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8497 UGEPI->setOperand(1, NewUGEPIIdx);
8498 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8499 // inbounds to avoid UB.
8500 if (!GEPI->isInBounds()) {
8501 UGEPI->setIsInBounds(false);
8504 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8505 // alive on IndirectBr edges).
8506 assert(llvm::none_of(GEPIOp->users(),
8507 [&](User *Usr) {
8508 return cast<Instruction>(Usr)->getParent() != SrcBlock;
8509 }) &&
8510 "GEPIOp is used outside SrcBlock");
8511 return true;
8514 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8515 SmallSet<BasicBlock *, 32> &FreshBBs,
8516 bool IsHugeFunc) {
8517 // Try and convert
8518 // %c = icmp ult %x, 8
8519 // br %c, bla, blb
8520 // %tc = lshr %x, 3
8521 // to
8522 // %tc = lshr %x, 3
8523 // %c = icmp eq %tc, 0
8524 // br %c, bla, blb
8525 // Creating the cmp to zero can be better for the backend, especially if the
8526 // lshr produces flags that can be used automatically.
8527 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8528 return false;
8530 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8531 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8532 return false;
8534 Value *X = Cmp->getOperand(0);
8535 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8537 for (auto *U : X->users()) {
8538 Instruction *UI = dyn_cast<Instruction>(U);
8539 // A quick dominance check
8540 if (!UI ||
8541 (UI->getParent() != Branch->getParent() &&
8542 UI->getParent() != Branch->getSuccessor(0) &&
8543 UI->getParent() != Branch->getSuccessor(1)) ||
8544 (UI->getParent() != Branch->getParent() &&
8545 !UI->getParent()->getSinglePredecessor()))
8546 continue;
8548 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8549 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8550 IRBuilder<> Builder(Branch);
8551 if (UI->getParent() != Branch->getParent())
8552 UI->moveBefore(Branch);
8553 UI->dropPoisonGeneratingFlags();
8554 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8555 ConstantInt::get(UI->getType(), 0));
8556 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8557 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8558 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8559 return true;
8561 if (Cmp->isEquality() &&
8562 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8563 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8564 IRBuilder<> Builder(Branch);
8565 if (UI->getParent() != Branch->getParent())
8566 UI->moveBefore(Branch);
8567 UI->dropPoisonGeneratingFlags();
8568 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8569 ConstantInt::get(UI->getType(), 0));
8570 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8571 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8572 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8573 return true;
8576 return false;
8579 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8580 bool AnyChange = false;
8581 AnyChange = fixupDbgVariableRecordsOnInst(*I);
8583 // Bail out if we inserted the instruction to prevent optimizations from
8584 // stepping on each other's toes.
8585 if (InsertedInsts.count(I))
8586 return AnyChange;
8588 // TODO: Move into the switch on opcode below here.
8589 if (PHINode *P = dyn_cast<PHINode>(I)) {
8590 // It is possible for very late stage optimizations (such as SimplifyCFG)
8591 // to introduce PHI nodes too late to be cleaned up. If we detect such a
8592 // trivial PHI, go ahead and zap it here.
8593 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8594 LargeOffsetGEPMap.erase(P);
8595 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8596 P->eraseFromParent();
8597 ++NumPHIsElim;
8598 return true;
8600 return AnyChange;
8603 if (CastInst *CI = dyn_cast<CastInst>(I)) {
8604 // If the source of the cast is a constant, then this should have
8605 // already been constant folded. The only reason NOT to constant fold
8606 // it is if something (e.g. LSR) was careful to place the constant
8607 // evaluation in a block other than then one that uses it (e.g. to hoist
8608 // the address of globals out of a loop). If this is the case, we don't
8609 // want to forward-subst the cast.
8610 if (isa<Constant>(CI->getOperand(0)))
8611 return AnyChange;
8613 if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8614 return true;
8616 if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) ||
8617 isa<TruncInst>(I)) &&
8618 TLI->optimizeExtendOrTruncateConversion(
8619 I, LI->getLoopFor(I->getParent()), *TTI))
8620 return true;
8622 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8623 /// Sink a zext or sext into its user blocks if the target type doesn't
8624 /// fit in one register
8625 if (TLI->getTypeAction(CI->getContext(),
8626 TLI->getValueType(*DL, CI->getType())) ==
8627 TargetLowering::TypeExpandInteger) {
8628 return SinkCast(CI);
8629 } else {
8630 if (TLI->optimizeExtendOrTruncateConversion(
8631 I, LI->getLoopFor(I->getParent()), *TTI))
8632 return true;
8634 bool MadeChange = optimizeExt(I);
8635 return MadeChange | optimizeExtUses(I);
8638 return AnyChange;
8641 if (auto *Cmp = dyn_cast<CmpInst>(I))
8642 if (optimizeCmp(Cmp, ModifiedDT))
8643 return true;
8645 if (match(I, m_URem(m_Value(), m_Value())))
8646 if (optimizeURem(I))
8647 return true;
8649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8650 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8651 bool Modified = optimizeLoadExt(LI);
8652 unsigned AS = LI->getPointerAddressSpace();
8653 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8654 return Modified;
8657 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8658 if (splitMergedValStore(*SI, *DL, *TLI))
8659 return true;
8660 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8661 unsigned AS = SI->getPointerAddressSpace();
8662 return optimizeMemoryInst(I, SI->getOperand(1),
8663 SI->getOperand(0)->getType(), AS);
8666 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8667 unsigned AS = RMW->getPointerAddressSpace();
8668 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8671 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8672 unsigned AS = CmpX->getPointerAddressSpace();
8673 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8674 CmpX->getCompareOperand()->getType(), AS);
8677 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8679 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8680 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8681 return true;
8683 // TODO: Move this into the switch on opcode - it handles shifts already.
8684 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8685 BinOp->getOpcode() == Instruction::LShr)) {
8686 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8687 if (CI && TLI->hasExtractBitsInsn())
8688 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8689 return true;
8692 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8693 if (GEPI->hasAllZeroIndices()) {
8694 /// The GEP operand must be a pointer, so must its result -> BitCast
8695 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8696 GEPI->getName(), GEPI->getIterator());
8697 NC->setDebugLoc(GEPI->getDebugLoc());
8698 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8699 RecursivelyDeleteTriviallyDeadInstructions(
8700 GEPI, TLInfo, nullptr,
8701 [&](Value *V) { removeAllAssertingVHReferences(V); });
8702 ++NumGEPsElim;
8703 optimizeInst(NC, ModifiedDT);
8704 return true;
8706 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8707 return true;
8711 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8712 // freeze(icmp a, const)) -> icmp (freeze a), const
8713 // This helps generate efficient conditional jumps.
8714 Instruction *CmpI = nullptr;
8715 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8716 CmpI = II;
8717 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8718 CmpI = F->getFastMathFlags().none() ? F : nullptr;
8720 if (CmpI && CmpI->hasOneUse()) {
8721 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8722 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8723 isa<ConstantPointerNull>(Op0);
8724 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8725 isa<ConstantPointerNull>(Op1);
8726 if (Const0 || Const1) {
8727 if (!Const0 || !Const1) {
8728 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator());
8729 F->takeName(FI);
8730 CmpI->setOperand(Const0 ? 1 : 0, F);
8732 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8733 FI->eraseFromParent();
8734 return true;
8737 return AnyChange;
8740 if (tryToSinkFreeOperands(I))
8741 return true;
8743 switch (I->getOpcode()) {
8744 case Instruction::Shl:
8745 case Instruction::LShr:
8746 case Instruction::AShr:
8747 return optimizeShiftInst(cast<BinaryOperator>(I));
8748 case Instruction::Call:
8749 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8750 case Instruction::Select:
8751 return optimizeSelectInst(cast<SelectInst>(I));
8752 case Instruction::ShuffleVector:
8753 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8754 case Instruction::Switch:
8755 return optimizeSwitchInst(cast<SwitchInst>(I));
8756 case Instruction::ExtractElement:
8757 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8758 case Instruction::Br:
8759 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8762 return AnyChange;
8765 /// Given an OR instruction, check to see if this is a bitreverse
8766 /// idiom. If so, insert the new intrinsic and return true.
8767 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8768 if (!I.getType()->isIntegerTy() ||
8769 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8770 TLI->getValueType(*DL, I.getType(), true)))
8771 return false;
8773 SmallVector<Instruction *, 4> Insts;
8774 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8775 return false;
8776 Instruction *LastInst = Insts.back();
8777 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8778 RecursivelyDeleteTriviallyDeadInstructions(
8779 &I, TLInfo, nullptr,
8780 [&](Value *V) { removeAllAssertingVHReferences(V); });
8781 return true;
8784 // In this pass we look for GEP and cast instructions that are used
8785 // across basic blocks and rewrite them to improve basic-block-at-a-time
8786 // selection.
8787 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8788 SunkAddrs.clear();
8789 bool MadeChange = false;
8791 do {
8792 CurInstIterator = BB.begin();
8793 ModifiedDT = ModifyDT::NotModifyDT;
8794 while (CurInstIterator != BB.end()) {
8795 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8796 if (ModifiedDT != ModifyDT::NotModifyDT) {
8797 // For huge function we tend to quickly go though the inner optmization
8798 // opportunities in the BB. So we go back to the BB head to re-optimize
8799 // each instruction instead of go back to the function head.
8800 if (IsHugeFunc) {
8801 DT.reset();
8802 getDT(*BB.getParent());
8803 break;
8804 } else {
8805 return true;
8809 } while (ModifiedDT == ModifyDT::ModifyInstDT);
8811 bool MadeBitReverse = true;
8812 while (MadeBitReverse) {
8813 MadeBitReverse = false;
8814 for (auto &I : reverse(BB)) {
8815 if (makeBitReverse(I)) {
8816 MadeBitReverse = MadeChange = true;
8817 break;
8821 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8823 return MadeChange;
8826 // Some CGP optimizations may move or alter what's computed in a block. Check
8827 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8828 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8829 assert(isa<DbgValueInst>(I));
8830 DbgValueInst &DVI = *cast<DbgValueInst>(I);
8832 // Does this dbg.value refer to a sunk address calculation?
8833 bool AnyChange = false;
8834 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8835 DVI.location_ops().end());
8836 for (Value *Location : LocationOps) {
8837 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8838 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8839 if (SunkAddr) {
8840 // Point dbg.value at locally computed address, which should give the best
8841 // opportunity to be accurately lowered. This update may change the type
8842 // of pointer being referred to; however this makes no difference to
8843 // debugging information, and we can't generate bitcasts that may affect
8844 // codegen.
8845 DVI.replaceVariableLocationOp(Location, SunkAddr);
8846 AnyChange = true;
8849 return AnyChange;
8852 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) {
8853 bool AnyChange = false;
8854 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
8855 AnyChange |= fixupDbgVariableRecord(DVR);
8856 return AnyChange;
8859 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8860 // which can cause a function to be reprocessed?
8861 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) {
8862 if (DVR.Type != DbgVariableRecord::LocationType::Value &&
8863 DVR.Type != DbgVariableRecord::LocationType::Assign)
8864 return false;
8866 // Does this DbgVariableRecord refer to a sunk address calculation?
8867 bool AnyChange = false;
8868 SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(),
8869 DVR.location_ops().end());
8870 for (Value *Location : LocationOps) {
8871 WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8872 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8873 if (SunkAddr) {
8874 // Point dbg.value at locally computed address, which should give the best
8875 // opportunity to be accurately lowered. This update may change the type
8876 // of pointer being referred to; however this makes no difference to
8877 // debugging information, and we can't generate bitcasts that may affect
8878 // codegen.
8879 DVR.replaceVariableLocationOp(Location, SunkAddr);
8880 AnyChange = true;
8883 return AnyChange;
8886 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) {
8887 DVI->removeFromParent();
8888 if (isa<PHINode>(VI))
8889 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8890 else
8891 DVI->insertAfter(VI);
8894 static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) {
8895 DVR->removeFromParent();
8896 BasicBlock *VIBB = VI->getParent();
8897 if (isa<PHINode>(VI))
8898 VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt());
8899 else
8900 VIBB->insertDbgRecordAfter(DVR, VI);
8903 // A llvm.dbg.value may be using a value before its definition, due to
8904 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8905 // them by moving the dbg.value to immediately after the value definition.
8906 // FIXME: Ideally this should never be necessary, and this has the potential
8907 // to re-order dbg.value intrinsics.
8908 bool CodeGenPrepare::placeDbgValues(Function &F) {
8909 bool MadeChange = false;
8910 DominatorTree DT(F);
8912 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
8913 SmallVector<Instruction *, 4> VIs;
8914 for (Value *V : DbgItem->location_ops())
8915 if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8916 VIs.push_back(VI);
8918 // This item may depend on multiple instructions, complicating any
8919 // potential sink. This block takes the defensive approach, opting to
8920 // "undef" the item if it has more than one instruction and any of them do
8921 // not dominate iem.
8922 for (Instruction *VI : VIs) {
8923 if (VI->isTerminator())
8924 continue;
8926 // If VI is a phi in a block with an EHPad terminator, we can't insert
8927 // after it.
8928 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8929 continue;
8931 // If the defining instruction dominates the dbg.value, we do not need
8932 // to move the dbg.value.
8933 if (DT.dominates(VI, Position))
8934 continue;
8936 // If we depend on multiple instructions and any of them doesn't
8937 // dominate this DVI, we probably can't salvage it: moving it to
8938 // after any of the instructions could cause us to lose the others.
8939 if (VIs.size() > 1) {
8940 LLVM_DEBUG(
8941 dbgs()
8942 << "Unable to find valid location for Debug Value, undefing:\n"
8943 << *DbgItem);
8944 DbgItem->setKillLocation();
8945 break;
8948 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8949 << *DbgItem << ' ' << *VI);
8950 DbgInserterHelper(DbgItem, VI);
8951 MadeChange = true;
8952 ++NumDbgValueMoved;
8956 for (BasicBlock &BB : F) {
8957 for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8958 // Process dbg.value intrinsics.
8959 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8960 if (DVI) {
8961 DbgProcessor(DVI, DVI);
8962 continue;
8965 // If this isn't a dbg.value, process any attached DbgVariableRecord
8966 // records attached to this instruction.
8967 for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
8968 filterDbgVars(Insn.getDbgRecordRange()))) {
8969 if (DVR.Type != DbgVariableRecord::LocationType::Value)
8970 continue;
8971 DbgProcessor(&DVR, &Insn);
8976 return MadeChange;
8979 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8980 // probes can be chained dependencies of other regular DAG nodes and block DAG
8981 // combine optimizations.
8982 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8983 bool MadeChange = false;
8984 for (auto &Block : F) {
8985 // Move the rest probes to the beginning of the block.
8986 auto FirstInst = Block.getFirstInsertionPt();
8987 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8988 ++FirstInst;
8989 BasicBlock::iterator I(FirstInst);
8990 I++;
8991 while (I != Block.end()) {
8992 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8993 II->moveBefore(&*FirstInst);
8994 MadeChange = true;
8998 return MadeChange;
9001 /// Scale down both weights to fit into uint32_t.
9002 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
9003 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
9004 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
9005 NewTrue = NewTrue / Scale;
9006 NewFalse = NewFalse / Scale;
9009 /// Some targets prefer to split a conditional branch like:
9010 /// \code
9011 /// %0 = icmp ne i32 %a, 0
9012 /// %1 = icmp ne i32 %b, 0
9013 /// %or.cond = or i1 %0, %1
9014 /// br i1 %or.cond, label %TrueBB, label %FalseBB
9015 /// \endcode
9016 /// into multiple branch instructions like:
9017 /// \code
9018 /// bb1:
9019 /// %0 = icmp ne i32 %a, 0
9020 /// br i1 %0, label %TrueBB, label %bb2
9021 /// bb2:
9022 /// %1 = icmp ne i32 %b, 0
9023 /// br i1 %1, label %TrueBB, label %FalseBB
9024 /// \endcode
9025 /// This usually allows instruction selection to do even further optimizations
9026 /// and combine the compare with the branch instruction. Currently this is
9027 /// applied for targets which have "cheap" jump instructions.
9029 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
9031 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
9032 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
9033 return false;
9035 bool MadeChange = false;
9036 for (auto &BB : F) {
9037 // Does this BB end with the following?
9038 // %cond1 = icmp|fcmp|binary instruction ...
9039 // %cond2 = icmp|fcmp|binary instruction ...
9040 // %cond.or = or|and i1 %cond1, cond2
9041 // br i1 %cond.or label %dest1, label %dest2"
9042 Instruction *LogicOp;
9043 BasicBlock *TBB, *FBB;
9044 if (!match(BB.getTerminator(),
9045 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
9046 continue;
9048 auto *Br1 = cast<BranchInst>(BB.getTerminator());
9049 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
9050 continue;
9052 // The merging of mostly empty BB can cause a degenerate branch.
9053 if (TBB == FBB)
9054 continue;
9056 unsigned Opc;
9057 Value *Cond1, *Cond2;
9058 if (match(LogicOp,
9059 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
9060 Opc = Instruction::And;
9061 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
9062 m_OneUse(m_Value(Cond2)))))
9063 Opc = Instruction::Or;
9064 else
9065 continue;
9067 auto IsGoodCond = [](Value *Cond) {
9068 return match(
9069 Cond,
9070 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
9071 m_LogicalOr(m_Value(), m_Value()))));
9073 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
9074 continue;
9076 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
9078 // Create a new BB.
9079 auto *TmpBB =
9080 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
9081 BB.getParent(), BB.getNextNode());
9082 if (IsHugeFunc)
9083 FreshBBs.insert(TmpBB);
9085 // Update original basic block by using the first condition directly by the
9086 // branch instruction and removing the no longer needed and/or instruction.
9087 Br1->setCondition(Cond1);
9088 LogicOp->eraseFromParent();
9090 // Depending on the condition we have to either replace the true or the
9091 // false successor of the original branch instruction.
9092 if (Opc == Instruction::And)
9093 Br1->setSuccessor(0, TmpBB);
9094 else
9095 Br1->setSuccessor(1, TmpBB);
9097 // Fill in the new basic block.
9098 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
9099 if (auto *I = dyn_cast<Instruction>(Cond2)) {
9100 I->removeFromParent();
9101 I->insertBefore(Br2);
9104 // Update PHI nodes in both successors. The original BB needs to be
9105 // replaced in one successor's PHI nodes, because the branch comes now from
9106 // the newly generated BB (NewBB). In the other successor we need to add one
9107 // incoming edge to the PHI nodes, because both branch instructions target
9108 // now the same successor. Depending on the original branch condition
9109 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
9110 // we perform the correct update for the PHI nodes.
9111 // This doesn't change the successor order of the just created branch
9112 // instruction (or any other instruction).
9113 if (Opc == Instruction::Or)
9114 std::swap(TBB, FBB);
9116 // Replace the old BB with the new BB.
9117 TBB->replacePhiUsesWith(&BB, TmpBB);
9119 // Add another incoming edge from the new BB.
9120 for (PHINode &PN : FBB->phis()) {
9121 auto *Val = PN.getIncomingValueForBlock(&BB);
9122 PN.addIncoming(Val, TmpBB);
9125 // Update the branch weights (from SelectionDAGBuilder::
9126 // FindMergedConditions).
9127 if (Opc == Instruction::Or) {
9128 // Codegen X | Y as:
9129 // BB1:
9130 // jmp_if_X TBB
9131 // jmp TmpBB
9132 // TmpBB:
9133 // jmp_if_Y TBB
9134 // jmp FBB
9137 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
9138 // The requirement is that
9139 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
9140 // = TrueProb for original BB.
9141 // Assuming the original weights are A and B, one choice is to set BB1's
9142 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
9143 // assumes that
9144 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
9145 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
9146 // TmpBB, but the math is more complicated.
9147 uint64_t TrueWeight, FalseWeight;
9148 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
9149 uint64_t NewTrueWeight = TrueWeight;
9150 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
9151 scaleWeights(NewTrueWeight, NewFalseWeight);
9152 Br1->setMetadata(LLVMContext::MD_prof,
9153 MDBuilder(Br1->getContext())
9154 .createBranchWeights(TrueWeight, FalseWeight,
9155 hasBranchWeightOrigin(*Br1)));
9157 NewTrueWeight = TrueWeight;
9158 NewFalseWeight = 2 * FalseWeight;
9159 scaleWeights(NewTrueWeight, NewFalseWeight);
9160 Br2->setMetadata(LLVMContext::MD_prof,
9161 MDBuilder(Br2->getContext())
9162 .createBranchWeights(TrueWeight, FalseWeight));
9164 } else {
9165 // Codegen X & Y as:
9166 // BB1:
9167 // jmp_if_X TmpBB
9168 // jmp FBB
9169 // TmpBB:
9170 // jmp_if_Y TBB
9171 // jmp FBB
9173 // This requires creation of TmpBB after CurBB.
9175 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
9176 // The requirement is that
9177 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
9178 // = FalseProb for original BB.
9179 // Assuming the original weights are A and B, one choice is to set BB1's
9180 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
9181 // assumes that
9182 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
9183 uint64_t TrueWeight, FalseWeight;
9184 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
9185 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
9186 uint64_t NewFalseWeight = FalseWeight;
9187 scaleWeights(NewTrueWeight, NewFalseWeight);
9188 Br1->setMetadata(LLVMContext::MD_prof,
9189 MDBuilder(Br1->getContext())
9190 .createBranchWeights(TrueWeight, FalseWeight));
9192 NewTrueWeight = 2 * TrueWeight;
9193 NewFalseWeight = FalseWeight;
9194 scaleWeights(NewTrueWeight, NewFalseWeight);
9195 Br2->setMetadata(LLVMContext::MD_prof,
9196 MDBuilder(Br2->getContext())
9197 .createBranchWeights(TrueWeight, FalseWeight));
9201 ModifiedDT = ModifyDT::ModifyBBDT;
9202 MadeChange = true;
9204 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
9205 TmpBB->dump());
9207 return MadeChange;