AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / CodeGen / GlobalISel / IRTranslator.cpp
blobf668e41094bbc8789d9aa1bf54ec828fd5d582ec
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
30 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
31 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/StackProtector.h"
42 #include "llvm/CodeGen/SwitchLoweringUtils.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/CodeGenTypes/LowLevelType.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/DiagnosticInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GetElementPtrTypeIterator.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/IntrinsicsAMDGPU.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Metadata.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Target/TargetIntrinsicInfo.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
86 #include <algorithm>
87 #include <cassert>
88 #include <cstdint>
89 #include <iterator>
90 #include <optional>
91 #include <string>
92 #include <utility>
93 #include <vector>
95 #define DEBUG_TYPE "irtranslator"
97 using namespace llvm;
99 static cl::opt<bool>
100 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
101 cl::desc("Should enable CSE in irtranslator"),
102 cl::Optional, cl::init(false));
103 char IRTranslator::ID = 0;
105 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
106 false, false)
107 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
108 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
109 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
110 INITIALIZE_PASS_DEPENDENCY(StackProtector)
111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
112 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
113 false, false)
115 static void reportTranslationError(MachineFunction &MF,
116 const TargetPassConfig &TPC,
117 OptimizationRemarkEmitter &ORE,
118 OptimizationRemarkMissed &R) {
119 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
121 // Print the function name explicitly if we don't have a debug location (which
122 // makes the diagnostic less useful) or if we're going to emit a raw error.
123 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
124 R << (" (in function: " + MF.getName() + ")").str();
126 if (TPC.isGlobalISelAbortEnabled())
127 report_fatal_error(Twine(R.getMsg()));
128 else
129 ORE.emit(R);
132 IRTranslator::IRTranslator(CodeGenOptLevel optlevel)
133 : MachineFunctionPass(ID), OptLevel(optlevel) {}
135 #ifndef NDEBUG
136 namespace {
137 /// Verify that every instruction created has the same DILocation as the
138 /// instruction being translated.
139 class DILocationVerifier : public GISelChangeObserver {
140 const Instruction *CurrInst = nullptr;
142 public:
143 DILocationVerifier() = default;
144 ~DILocationVerifier() = default;
146 const Instruction *getCurrentInst() const { return CurrInst; }
147 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
149 void erasingInstr(MachineInstr &MI) override {}
150 void changingInstr(MachineInstr &MI) override {}
151 void changedInstr(MachineInstr &MI) override {}
153 void createdInstr(MachineInstr &MI) override {
154 assert(getCurrentInst() && "Inserted instruction without a current MI");
156 // Only print the check message if we're actually checking it.
157 #ifndef NDEBUG
158 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
159 << " was copied to " << MI);
160 #endif
161 // We allow insts in the entry block to have no debug loc because
162 // they could have originated from constants, and we don't want a jumpy
163 // debug experience.
164 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
165 (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) ||
166 (MI.isDebugInstr())) &&
167 "Line info was not transferred to all instructions");
170 } // namespace
171 #endif // ifndef NDEBUG
174 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
175 AU.addRequired<StackProtector>();
176 AU.addRequired<TargetPassConfig>();
177 AU.addRequired<GISelCSEAnalysisWrapperPass>();
178 AU.addRequired<AssumptionCacheTracker>();
179 if (OptLevel != CodeGenOptLevel::None) {
180 AU.addRequired<BranchProbabilityInfoWrapperPass>();
181 AU.addRequired<AAResultsWrapperPass>();
183 AU.addRequired<TargetLibraryInfoWrapperPass>();
184 AU.addPreserved<TargetLibraryInfoWrapperPass>();
185 getSelectionDAGFallbackAnalysisUsage(AU);
186 MachineFunctionPass::getAnalysisUsage(AU);
189 IRTranslator::ValueToVRegInfo::VRegListT &
190 IRTranslator::allocateVRegs(const Value &Val) {
191 auto VRegsIt = VMap.findVRegs(Val);
192 if (VRegsIt != VMap.vregs_end())
193 return *VRegsIt->second;
194 auto *Regs = VMap.getVRegs(Val);
195 auto *Offsets = VMap.getOffsets(Val);
196 SmallVector<LLT, 4> SplitTys;
197 computeValueLLTs(*DL, *Val.getType(), SplitTys,
198 Offsets->empty() ? Offsets : nullptr);
199 for (unsigned i = 0; i < SplitTys.size(); ++i)
200 Regs->push_back(0);
201 return *Regs;
204 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
205 auto VRegsIt = VMap.findVRegs(Val);
206 if (VRegsIt != VMap.vregs_end())
207 return *VRegsIt->second;
209 if (Val.getType()->isVoidTy())
210 return *VMap.getVRegs(Val);
212 // Create entry for this type.
213 auto *VRegs = VMap.getVRegs(Val);
214 auto *Offsets = VMap.getOffsets(Val);
216 if (!Val.getType()->isTokenTy())
217 assert(Val.getType()->isSized() &&
218 "Don't know how to create an empty vreg");
220 SmallVector<LLT, 4> SplitTys;
221 computeValueLLTs(*DL, *Val.getType(), SplitTys,
222 Offsets->empty() ? Offsets : nullptr);
224 if (!isa<Constant>(Val)) {
225 for (auto Ty : SplitTys)
226 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
227 return *VRegs;
230 if (Val.getType()->isAggregateType()) {
231 // UndefValue, ConstantAggregateZero
232 auto &C = cast<Constant>(Val);
233 unsigned Idx = 0;
234 while (auto Elt = C.getAggregateElement(Idx++)) {
235 auto EltRegs = getOrCreateVRegs(*Elt);
236 llvm::copy(EltRegs, std::back_inserter(*VRegs));
238 } else {
239 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
240 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
241 bool Success = translate(cast<Constant>(Val), VRegs->front());
242 if (!Success) {
243 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
244 MF->getFunction().getSubprogram(),
245 &MF->getFunction().getEntryBlock());
246 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
247 reportTranslationError(*MF, *TPC, *ORE, R);
248 return *VRegs;
252 return *VRegs;
255 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
256 auto MapEntry = FrameIndices.find(&AI);
257 if (MapEntry != FrameIndices.end())
258 return MapEntry->second;
260 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
261 uint64_t Size =
262 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
264 // Always allocate at least one byte.
265 Size = std::max<uint64_t>(Size, 1u);
267 int &FI = FrameIndices[&AI];
268 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
269 return FI;
272 Align IRTranslator::getMemOpAlign(const Instruction &I) {
273 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
274 return SI->getAlign();
275 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
276 return LI->getAlign();
277 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
278 return AI->getAlign();
279 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
280 return AI->getAlign();
282 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
283 R << "unable to translate memop: " << ore::NV("Opcode", &I);
284 reportTranslationError(*MF, *TPC, *ORE, R);
285 return Align(1);
288 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
289 MachineBasicBlock *MBB = FuncInfo.getMBB(&BB);
290 assert(MBB && "BasicBlock was not encountered before");
291 return *MBB;
294 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
295 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
296 MachinePreds[Edge].push_back(NewPred);
299 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
300 MachineIRBuilder &MIRBuilder) {
301 // Get or create a virtual register for each value.
302 // Unless the value is a Constant => loadimm cst?
303 // or inline constant each time?
304 // Creation of a virtual register needs to have a size.
305 Register Op0 = getOrCreateVReg(*U.getOperand(0));
306 Register Op1 = getOrCreateVReg(*U.getOperand(1));
307 Register Res = getOrCreateVReg(U);
308 uint32_t Flags = 0;
309 if (isa<Instruction>(U)) {
310 const Instruction &I = cast<Instruction>(U);
311 Flags = MachineInstr::copyFlagsFromInstruction(I);
314 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
315 return true;
318 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
319 MachineIRBuilder &MIRBuilder) {
320 Register Op0 = getOrCreateVReg(*U.getOperand(0));
321 Register Res = getOrCreateVReg(U);
322 uint32_t Flags = 0;
323 if (isa<Instruction>(U)) {
324 const Instruction &I = cast<Instruction>(U);
325 Flags = MachineInstr::copyFlagsFromInstruction(I);
327 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
328 return true;
331 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
332 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
335 bool IRTranslator::translateCompare(const User &U,
336 MachineIRBuilder &MIRBuilder) {
337 auto *CI = cast<CmpInst>(&U);
338 Register Op0 = getOrCreateVReg(*U.getOperand(0));
339 Register Op1 = getOrCreateVReg(*U.getOperand(1));
340 Register Res = getOrCreateVReg(U);
341 CmpInst::Predicate Pred = CI->getPredicate();
342 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(*CI);
343 if (CmpInst::isIntPredicate(Pred))
344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1, Flags);
345 else if (Pred == CmpInst::FCMP_FALSE)
346 MIRBuilder.buildCopy(
347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
348 else if (Pred == CmpInst::FCMP_TRUE)
349 MIRBuilder.buildCopy(
350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
351 else
352 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
354 return true;
357 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
358 const ReturnInst &RI = cast<ReturnInst>(U);
359 const Value *Ret = RI.getReturnValue();
360 if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero())
361 Ret = nullptr;
363 ArrayRef<Register> VRegs;
364 if (Ret)
365 VRegs = getOrCreateVRegs(*Ret);
367 Register SwiftErrorVReg = 0;
368 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
369 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
370 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
373 // The target may mess up with the insertion point, but
374 // this is not important as a return is the last instruction
375 // of the block anyway.
376 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
379 void IRTranslator::emitBranchForMergedCondition(
380 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
381 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
382 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
383 // If the leaf of the tree is a comparison, merge the condition into
384 // the caseblock.
385 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
386 CmpInst::Predicate Condition;
387 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
388 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
389 } else {
390 const FCmpInst *FC = cast<FCmpInst>(Cond);
391 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
394 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
395 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
396 CurBuilder->getDebugLoc(), TProb, FProb);
397 SL->SwitchCases.push_back(CB);
398 return;
401 // Create a CaseBlock record representing this branch.
402 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
403 SwitchCG::CaseBlock CB(
404 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
405 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
406 SL->SwitchCases.push_back(CB);
409 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
410 if (const Instruction *I = dyn_cast<Instruction>(V))
411 return I->getParent() == BB;
412 return true;
415 void IRTranslator::findMergedConditions(
416 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
417 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
418 Instruction::BinaryOps Opc, BranchProbability TProb,
419 BranchProbability FProb, bool InvertCond) {
420 using namespace PatternMatch;
421 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
422 "Expected Opc to be AND/OR");
423 // Skip over not part of the tree and remember to invert op and operands at
424 // next level.
425 Value *NotCond;
426 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
427 isValInBlock(NotCond, CurBB->getBasicBlock())) {
428 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
429 !InvertCond);
430 return;
433 const Instruction *BOp = dyn_cast<Instruction>(Cond);
434 const Value *BOpOp0, *BOpOp1;
435 // Compute the effective opcode for Cond, taking into account whether it needs
436 // to be inverted, e.g.
437 // and (not (or A, B)), C
438 // gets lowered as
439 // and (and (not A, not B), C)
440 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
441 if (BOp) {
442 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
443 ? Instruction::And
444 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
445 ? Instruction::Or
446 : (Instruction::BinaryOps)0);
447 if (InvertCond) {
448 if (BOpc == Instruction::And)
449 BOpc = Instruction::Or;
450 else if (BOpc == Instruction::Or)
451 BOpc = Instruction::And;
455 // If this node is not part of the or/and tree, emit it as a branch.
456 // Note that all nodes in the tree should have same opcode.
457 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
458 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
459 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
460 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
461 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
462 InvertCond);
463 return;
466 // Create TmpBB after CurBB.
467 MachineFunction::iterator BBI(CurBB);
468 MachineBasicBlock *TmpBB =
469 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
470 CurBB->getParent()->insert(++BBI, TmpBB);
472 if (Opc == Instruction::Or) {
473 // Codegen X | Y as:
474 // BB1:
475 // jmp_if_X TBB
476 // jmp TmpBB
477 // TmpBB:
478 // jmp_if_Y TBB
479 // jmp FBB
482 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
483 // The requirement is that
484 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
485 // = TrueProb for original BB.
486 // Assuming the original probabilities are A and B, one choice is to set
487 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
488 // A/(1+B) and 2B/(1+B). This choice assumes that
489 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
490 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
491 // TmpBB, but the math is more complicated.
493 auto NewTrueProb = TProb / 2;
494 auto NewFalseProb = TProb / 2 + FProb;
495 // Emit the LHS condition.
496 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
497 NewFalseProb, InvertCond);
499 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
500 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
501 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
502 // Emit the RHS condition into TmpBB.
503 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
504 Probs[1], InvertCond);
505 } else {
506 assert(Opc == Instruction::And && "Unknown merge op!");
507 // Codegen X & Y as:
508 // BB1:
509 // jmp_if_X TmpBB
510 // jmp FBB
511 // TmpBB:
512 // jmp_if_Y TBB
513 // jmp FBB
515 // This requires creation of TmpBB after CurBB.
517 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
518 // The requirement is that
519 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
520 // = FalseProb for original BB.
521 // Assuming the original probabilities are A and B, one choice is to set
522 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
523 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
524 // TrueProb for BB1 * FalseProb for TmpBB.
526 auto NewTrueProb = TProb + FProb / 2;
527 auto NewFalseProb = FProb / 2;
528 // Emit the LHS condition.
529 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
530 NewFalseProb, InvertCond);
532 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
533 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
534 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
535 // Emit the RHS condition into TmpBB.
536 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
537 Probs[1], InvertCond);
541 bool IRTranslator::shouldEmitAsBranches(
542 const std::vector<SwitchCG::CaseBlock> &Cases) {
543 // For multiple cases, it's better to emit as branches.
544 if (Cases.size() != 2)
545 return true;
547 // If this is two comparisons of the same values or'd or and'd together, they
548 // will get folded into a single comparison, so don't emit two blocks.
549 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
550 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
551 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
552 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
553 return false;
556 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
557 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
558 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
559 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
560 isa<Constant>(Cases[0].CmpRHS) &&
561 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
562 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
563 Cases[0].TrueBB == Cases[1].ThisBB)
564 return false;
565 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
566 Cases[0].FalseBB == Cases[1].ThisBB)
567 return false;
570 return true;
573 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
574 const BranchInst &BrInst = cast<BranchInst>(U);
575 auto &CurMBB = MIRBuilder.getMBB();
576 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
578 if (BrInst.isUnconditional()) {
579 // If the unconditional target is the layout successor, fallthrough.
580 if (OptLevel == CodeGenOptLevel::None ||
581 !CurMBB.isLayoutSuccessor(Succ0MBB))
582 MIRBuilder.buildBr(*Succ0MBB);
584 // Link successors.
585 for (const BasicBlock *Succ : successors(&BrInst))
586 CurMBB.addSuccessor(&getMBB(*Succ));
587 return true;
590 // If this condition is one of the special cases we handle, do special stuff
591 // now.
592 const Value *CondVal = BrInst.getCondition();
593 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
595 // If this is a series of conditions that are or'd or and'd together, emit
596 // this as a sequence of branches instead of setcc's with and/or operations.
597 // As long as jumps are not expensive (exceptions for multi-use logic ops,
598 // unpredictable branches, and vector extracts because those jumps are likely
599 // expensive for any target), this should improve performance.
600 // For example, instead of something like:
601 // cmp A, B
602 // C = seteq
603 // cmp D, E
604 // F = setle
605 // or C, F
606 // jnz foo
607 // Emit:
608 // cmp A, B
609 // je foo
610 // cmp D, E
611 // jle foo
612 using namespace PatternMatch;
613 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
614 if (!TLI->isJumpExpensive() && CondI && CondI->hasOneUse() &&
615 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
616 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
617 Value *Vec;
618 const Value *BOp0, *BOp1;
619 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
620 Opcode = Instruction::And;
621 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
622 Opcode = Instruction::Or;
624 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
625 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
626 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
627 getEdgeProbability(&CurMBB, Succ0MBB),
628 getEdgeProbability(&CurMBB, Succ1MBB),
629 /*InvertCond=*/false);
630 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
632 // Allow some cases to be rejected.
633 if (shouldEmitAsBranches(SL->SwitchCases)) {
634 // Emit the branch for this block.
635 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
636 SL->SwitchCases.erase(SL->SwitchCases.begin());
637 return true;
640 // Okay, we decided not to do this, remove any inserted MBB's and clear
641 // SwitchCases.
642 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
643 MF->erase(SL->SwitchCases[I].ThisBB);
645 SL->SwitchCases.clear();
649 // Create a CaseBlock record representing this branch.
650 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
651 ConstantInt::getTrue(MF->getFunction().getContext()),
652 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
653 CurBuilder->getDebugLoc());
655 // Use emitSwitchCase to actually insert the fast branch sequence for this
656 // cond branch.
657 emitSwitchCase(CB, &CurMBB, *CurBuilder);
658 return true;
661 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
662 MachineBasicBlock *Dst,
663 BranchProbability Prob) {
664 if (!FuncInfo.BPI) {
665 Src->addSuccessorWithoutProb(Dst);
666 return;
668 if (Prob.isUnknown())
669 Prob = getEdgeProbability(Src, Dst);
670 Src->addSuccessor(Dst, Prob);
673 BranchProbability
674 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
675 const MachineBasicBlock *Dst) const {
676 const BasicBlock *SrcBB = Src->getBasicBlock();
677 const BasicBlock *DstBB = Dst->getBasicBlock();
678 if (!FuncInfo.BPI) {
679 // If BPI is not available, set the default probability as 1 / N, where N is
680 // the number of successors.
681 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
682 return BranchProbability(1, SuccSize);
684 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
687 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
688 using namespace SwitchCG;
689 // Extract cases from the switch.
690 const SwitchInst &SI = cast<SwitchInst>(U);
691 BranchProbabilityInfo *BPI = FuncInfo.BPI;
692 CaseClusterVector Clusters;
693 Clusters.reserve(SI.getNumCases());
694 for (const auto &I : SI.cases()) {
695 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
696 assert(Succ && "Could not find successor mbb in mapping");
697 const ConstantInt *CaseVal = I.getCaseValue();
698 BranchProbability Prob =
699 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
700 : BranchProbability(1, SI.getNumCases() + 1);
701 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
704 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
706 // Cluster adjacent cases with the same destination. We do this at all
707 // optimization levels because it's cheap to do and will make codegen faster
708 // if there are many clusters.
709 sortAndRangeify(Clusters);
711 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
713 // If there is only the default destination, jump there directly.
714 if (Clusters.empty()) {
715 SwitchMBB->addSuccessor(DefaultMBB);
716 if (DefaultMBB != SwitchMBB->getNextNode())
717 MIB.buildBr(*DefaultMBB);
718 return true;
721 SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr);
722 SL->findBitTestClusters(Clusters, &SI);
724 LLVM_DEBUG({
725 dbgs() << "Case clusters: ";
726 for (const CaseCluster &C : Clusters) {
727 if (C.Kind == CC_JumpTable)
728 dbgs() << "JT:";
729 if (C.Kind == CC_BitTests)
730 dbgs() << "BT:";
732 C.Low->getValue().print(dbgs(), true);
733 if (C.Low != C.High) {
734 dbgs() << '-';
735 C.High->getValue().print(dbgs(), true);
737 dbgs() << ' ';
739 dbgs() << '\n';
742 assert(!Clusters.empty());
743 SwitchWorkList WorkList;
744 CaseClusterIt First = Clusters.begin();
745 CaseClusterIt Last = Clusters.end() - 1;
746 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
747 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
749 while (!WorkList.empty()) {
750 SwitchWorkListItem W = WorkList.pop_back_val();
752 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
753 // For optimized builds, lower large range as a balanced binary tree.
754 if (NumClusters > 3 &&
755 MF->getTarget().getOptLevel() != CodeGenOptLevel::None &&
756 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
757 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB);
758 continue;
761 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
762 return false;
764 return true;
767 void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
768 const SwitchCG::SwitchWorkListItem &W,
769 Value *Cond, MachineBasicBlock *SwitchMBB,
770 MachineIRBuilder &MIB) {
771 using namespace SwitchCG;
772 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
773 "Clusters not sorted?");
774 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
776 auto [LastLeft, FirstRight, LeftProb, RightProb] =
777 SL->computeSplitWorkItemInfo(W);
779 // Use the first element on the right as pivot since we will make less-than
780 // comparisons against it.
781 CaseClusterIt PivotCluster = FirstRight;
782 assert(PivotCluster > W.FirstCluster);
783 assert(PivotCluster <= W.LastCluster);
785 CaseClusterIt FirstLeft = W.FirstCluster;
786 CaseClusterIt LastRight = W.LastCluster;
788 const ConstantInt *Pivot = PivotCluster->Low;
790 // New blocks will be inserted immediately after the current one.
791 MachineFunction::iterator BBI(W.MBB);
792 ++BBI;
794 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
795 // we can branch to its destination directly if it's squeezed exactly in
796 // between the known lower bound and Pivot - 1.
797 MachineBasicBlock *LeftMBB;
798 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
799 FirstLeft->Low == W.GE &&
800 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
801 LeftMBB = FirstLeft->MBB;
802 } else {
803 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
804 FuncInfo.MF->insert(BBI, LeftMBB);
805 WorkList.push_back(
806 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
809 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
810 // single cluster, RHS.Low == Pivot, and we can branch to its destination
811 // directly if RHS.High equals the current upper bound.
812 MachineBasicBlock *RightMBB;
813 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT &&
814 (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
815 RightMBB = FirstRight->MBB;
816 } else {
817 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
818 FuncInfo.MF->insert(BBI, RightMBB);
819 WorkList.push_back(
820 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
823 // Create the CaseBlock record that will be used to lower the branch.
824 CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr,
825 LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb,
826 RightProb);
828 if (W.MBB == SwitchMBB)
829 emitSwitchCase(CB, SwitchMBB, MIB);
830 else
831 SL->SwitchCases.push_back(CB);
834 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
835 MachineBasicBlock *MBB) {
836 // Emit the code for the jump table
837 assert(JT.Reg && "Should lower JT Header first!");
838 MachineIRBuilder MIB(*MBB->getParent());
839 MIB.setMBB(*MBB);
840 MIB.setDebugLoc(CurBuilder->getDebugLoc());
842 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
843 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
845 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
846 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
849 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
850 SwitchCG::JumpTableHeader &JTH,
851 MachineBasicBlock *HeaderBB) {
852 MachineIRBuilder MIB(*HeaderBB->getParent());
853 MIB.setMBB(*HeaderBB);
854 MIB.setDebugLoc(CurBuilder->getDebugLoc());
856 const Value &SValue = *JTH.SValue;
857 // Subtract the lowest switch case value from the value being switched on.
858 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
859 Register SwitchOpReg = getOrCreateVReg(SValue);
860 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
861 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
863 // This value may be smaller or larger than the target's pointer type, and
864 // therefore require extension or truncating.
865 auto *PtrIRTy = PointerType::getUnqual(SValue.getContext());
866 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
867 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
869 JT.Reg = Sub.getReg(0);
871 if (JTH.FallthroughUnreachable) {
872 if (JT.MBB != HeaderBB->getNextNode())
873 MIB.buildBr(*JT.MBB);
874 return true;
877 // Emit the range check for the jump table, and branch to the default block
878 // for the switch statement if the value being switched on exceeds the
879 // largest case in the switch.
880 auto Cst = getOrCreateVReg(
881 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
882 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
883 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
885 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
887 // Avoid emitting unnecessary branches to the next block.
888 if (JT.MBB != HeaderBB->getNextNode())
889 BrCond = MIB.buildBr(*JT.MBB);
890 return true;
893 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
894 MachineBasicBlock *SwitchBB,
895 MachineIRBuilder &MIB) {
896 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
897 Register Cond;
898 DebugLoc OldDbgLoc = MIB.getDebugLoc();
899 MIB.setDebugLoc(CB.DbgLoc);
900 MIB.setMBB(*CB.ThisBB);
902 if (CB.PredInfo.NoCmp) {
903 // Branch or fall through to TrueBB.
904 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
905 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
906 CB.ThisBB);
907 CB.ThisBB->normalizeSuccProbs();
908 if (CB.TrueBB != CB.ThisBB->getNextNode())
909 MIB.buildBr(*CB.TrueBB);
910 MIB.setDebugLoc(OldDbgLoc);
911 return;
914 const LLT i1Ty = LLT::scalar(1);
915 // Build the compare.
916 if (!CB.CmpMHS) {
917 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
918 // For conditional branch lowering, we might try to do something silly like
919 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
920 // just re-use the existing condition vreg.
921 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
922 CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
923 Cond = CondLHS;
924 } else {
925 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
926 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
927 Cond =
928 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
929 else
930 Cond =
931 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
933 } else {
934 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
935 "Can only handle SLE ranges");
937 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
938 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
940 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
941 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
942 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
943 Cond =
944 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
945 } else {
946 const LLT CmpTy = MRI->getType(CmpOpReg);
947 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
948 auto Diff = MIB.buildConstant(CmpTy, High - Low);
949 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
953 // Update successor info
954 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
956 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
957 CB.ThisBB);
959 // TrueBB and FalseBB are always different unless the incoming IR is
960 // degenerate. This only happens when running llc on weird IR.
961 if (CB.TrueBB != CB.FalseBB)
962 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
963 CB.ThisBB->normalizeSuccProbs();
965 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
966 CB.ThisBB);
968 MIB.buildBrCond(Cond, *CB.TrueBB);
969 MIB.buildBr(*CB.FalseBB);
970 MIB.setDebugLoc(OldDbgLoc);
973 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
974 MachineBasicBlock *SwitchMBB,
975 MachineBasicBlock *CurMBB,
976 MachineBasicBlock *DefaultMBB,
977 MachineIRBuilder &MIB,
978 MachineFunction::iterator BBI,
979 BranchProbability UnhandledProbs,
980 SwitchCG::CaseClusterIt I,
981 MachineBasicBlock *Fallthrough,
982 bool FallthroughUnreachable) {
983 using namespace SwitchCG;
984 MachineFunction *CurMF = SwitchMBB->getParent();
985 // FIXME: Optimize away range check based on pivot comparisons.
986 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
987 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
988 BranchProbability DefaultProb = W.DefaultProb;
990 // The jump block hasn't been inserted yet; insert it here.
991 MachineBasicBlock *JumpMBB = JT->MBB;
992 CurMF->insert(BBI, JumpMBB);
994 // Since the jump table block is separate from the switch block, we need
995 // to keep track of it as a machine predecessor to the default block,
996 // otherwise we lose the phi edges.
997 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
998 CurMBB);
999 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1000 JumpMBB);
1002 auto JumpProb = I->Prob;
1003 auto FallthroughProb = UnhandledProbs;
1005 // If the default statement is a target of the jump table, we evenly
1006 // distribute the default probability to successors of CurMBB. Also
1007 // update the probability on the edge from JumpMBB to Fallthrough.
1008 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
1009 SE = JumpMBB->succ_end();
1010 SI != SE; ++SI) {
1011 if (*SI == DefaultMBB) {
1012 JumpProb += DefaultProb / 2;
1013 FallthroughProb -= DefaultProb / 2;
1014 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
1015 JumpMBB->normalizeSuccProbs();
1016 } else {
1017 // Also record edges from the jump table block to it's successors.
1018 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
1019 JumpMBB);
1023 if (FallthroughUnreachable)
1024 JTH->FallthroughUnreachable = true;
1026 if (!JTH->FallthroughUnreachable)
1027 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
1028 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
1029 CurMBB->normalizeSuccProbs();
1031 // The jump table header will be inserted in our current block, do the
1032 // range check, and fall through to our fallthrough block.
1033 JTH->HeaderBB = CurMBB;
1034 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
1036 // If we're in the right place, emit the jump table header right now.
1037 if (CurMBB == SwitchMBB) {
1038 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
1039 return false;
1040 JTH->Emitted = true;
1042 return true;
1044 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
1045 Value *Cond,
1046 MachineBasicBlock *Fallthrough,
1047 bool FallthroughUnreachable,
1048 BranchProbability UnhandledProbs,
1049 MachineBasicBlock *CurMBB,
1050 MachineIRBuilder &MIB,
1051 MachineBasicBlock *SwitchMBB) {
1052 using namespace SwitchCG;
1053 const Value *RHS, *LHS, *MHS;
1054 CmpInst::Predicate Pred;
1055 if (I->Low == I->High) {
1056 // Check Cond == I->Low.
1057 Pred = CmpInst::ICMP_EQ;
1058 LHS = Cond;
1059 RHS = I->Low;
1060 MHS = nullptr;
1061 } else {
1062 // Check I->Low <= Cond <= I->High.
1063 Pred = CmpInst::ICMP_SLE;
1064 LHS = I->Low;
1065 MHS = Cond;
1066 RHS = I->High;
1069 // If Fallthrough is unreachable, fold away the comparison.
1070 // The false probability is the sum of all unhandled cases.
1071 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
1072 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1074 emitSwitchCase(CB, SwitchMBB, MIB);
1075 return true;
1078 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1079 MachineBasicBlock *SwitchBB) {
1080 MachineIRBuilder &MIB = *CurBuilder;
1081 MIB.setMBB(*SwitchBB);
1083 // Subtract the minimum value.
1084 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1086 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1087 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1088 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1090 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
1091 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1093 LLT MaskTy = SwitchOpTy;
1094 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1095 !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits()))
1096 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1097 else {
1098 // Ensure that the type will fit the mask value.
1099 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1100 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1101 // Switch table case range are encoded into series of masks.
1102 // Just use pointer type, it's guaranteed to fit.
1103 MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1104 break;
1108 Register SubReg = RangeSub.getReg(0);
1109 if (SwitchOpTy != MaskTy)
1110 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1112 B.RegVT = getMVTForLLT(MaskTy);
1113 B.Reg = SubReg;
1115 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1117 if (!B.FallthroughUnreachable)
1118 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1119 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1121 SwitchBB->normalizeSuccProbs();
1123 if (!B.FallthroughUnreachable) {
1124 // Conditional branch to the default block.
1125 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1126 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1127 RangeSub, RangeCst);
1128 MIB.buildBrCond(RangeCmp, *B.Default);
1131 // Avoid emitting unnecessary branches to the next block.
1132 if (MBB != SwitchBB->getNextNode())
1133 MIB.buildBr(*MBB);
1136 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1137 MachineBasicBlock *NextMBB,
1138 BranchProbability BranchProbToNext,
1139 Register Reg, SwitchCG::BitTestCase &B,
1140 MachineBasicBlock *SwitchBB) {
1141 MachineIRBuilder &MIB = *CurBuilder;
1142 MIB.setMBB(*SwitchBB);
1144 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1145 Register Cmp;
1146 unsigned PopCount = llvm::popcount(B.Mask);
1147 if (PopCount == 1) {
1148 // Testing for a single bit; just compare the shift count with what it
1149 // would need to be to shift a 1 bit in that position.
1150 auto MaskTrailingZeros =
1151 MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask));
1152 Cmp =
1153 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1154 .getReg(0);
1155 } else if (PopCount == BB.Range) {
1156 // There is only one zero bit in the range, test for it directly.
1157 auto MaskTrailingOnes =
1158 MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask));
1159 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1160 .getReg(0);
1161 } else {
1162 // Make desired shift.
1163 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1164 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1166 // Emit bit tests and jumps.
1167 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1168 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1169 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1170 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1171 .getReg(0);
1174 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1175 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1176 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1177 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1178 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1179 // one as they are relative probabilities (and thus work more like weights),
1180 // and hence we need to normalize them to let the sum of them become one.
1181 SwitchBB->normalizeSuccProbs();
1183 // Record the fact that the IR edge from the header to the bit test target
1184 // will go through our new block. Neeeded for PHIs to have nodes added.
1185 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1186 SwitchBB);
1188 MIB.buildBrCond(Cmp, *B.TargetBB);
1190 // Avoid emitting unnecessary branches to the next block.
1191 if (NextMBB != SwitchBB->getNextNode())
1192 MIB.buildBr(*NextMBB);
1195 bool IRTranslator::lowerBitTestWorkItem(
1196 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1197 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1198 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1199 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1200 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1201 bool FallthroughUnreachable) {
1202 using namespace SwitchCG;
1203 MachineFunction *CurMF = SwitchMBB->getParent();
1204 // FIXME: Optimize away range check based on pivot comparisons.
1205 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1206 // The bit test blocks haven't been inserted yet; insert them here.
1207 for (BitTestCase &BTC : BTB->Cases)
1208 CurMF->insert(BBI, BTC.ThisBB);
1210 // Fill in fields of the BitTestBlock.
1211 BTB->Parent = CurMBB;
1212 BTB->Default = Fallthrough;
1214 BTB->DefaultProb = UnhandledProbs;
1215 // If the cases in bit test don't form a contiguous range, we evenly
1216 // distribute the probability on the edge to Fallthrough to two
1217 // successors of CurMBB.
1218 if (!BTB->ContiguousRange) {
1219 BTB->Prob += DefaultProb / 2;
1220 BTB->DefaultProb -= DefaultProb / 2;
1223 if (FallthroughUnreachable)
1224 BTB->FallthroughUnreachable = true;
1226 // If we're in the right place, emit the bit test header right now.
1227 if (CurMBB == SwitchMBB) {
1228 emitBitTestHeader(*BTB, SwitchMBB);
1229 BTB->Emitted = true;
1231 return true;
1234 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1235 Value *Cond,
1236 MachineBasicBlock *SwitchMBB,
1237 MachineBasicBlock *DefaultMBB,
1238 MachineIRBuilder &MIB) {
1239 using namespace SwitchCG;
1240 MachineFunction *CurMF = FuncInfo.MF;
1241 MachineBasicBlock *NextMBB = nullptr;
1242 MachineFunction::iterator BBI(W.MBB);
1243 if (++BBI != FuncInfo.MF->end())
1244 NextMBB = &*BBI;
1246 if (EnableOpts) {
1247 // Here, we order cases by probability so the most likely case will be
1248 // checked first. However, two clusters can have the same probability in
1249 // which case their relative ordering is non-deterministic. So we use Low
1250 // as a tie-breaker as clusters are guaranteed to never overlap.
1251 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1252 [](const CaseCluster &a, const CaseCluster &b) {
1253 return a.Prob != b.Prob
1254 ? a.Prob > b.Prob
1255 : a.Low->getValue().slt(b.Low->getValue());
1258 // Rearrange the case blocks so that the last one falls through if possible
1259 // without changing the order of probabilities.
1260 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1261 --I;
1262 if (I->Prob > W.LastCluster->Prob)
1263 break;
1264 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1265 std::swap(*I, *W.LastCluster);
1266 break;
1271 // Compute total probability.
1272 BranchProbability DefaultProb = W.DefaultProb;
1273 BranchProbability UnhandledProbs = DefaultProb;
1274 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1275 UnhandledProbs += I->Prob;
1277 MachineBasicBlock *CurMBB = W.MBB;
1278 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1279 bool FallthroughUnreachable = false;
1280 MachineBasicBlock *Fallthrough;
1281 if (I == W.LastCluster) {
1282 // For the last cluster, fall through to the default destination.
1283 Fallthrough = DefaultMBB;
1284 FallthroughUnreachable = isa<UnreachableInst>(
1285 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1286 } else {
1287 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1288 CurMF->insert(BBI, Fallthrough);
1290 UnhandledProbs -= I->Prob;
1292 switch (I->Kind) {
1293 case CC_BitTests: {
1294 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1295 DefaultProb, UnhandledProbs, I, Fallthrough,
1296 FallthroughUnreachable)) {
1297 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1298 return false;
1300 break;
1303 case CC_JumpTable: {
1304 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1305 UnhandledProbs, I, Fallthrough,
1306 FallthroughUnreachable)) {
1307 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1308 return false;
1310 break;
1312 case CC_Range: {
1313 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1314 FallthroughUnreachable, UnhandledProbs,
1315 CurMBB, MIB, SwitchMBB)) {
1316 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1317 return false;
1319 break;
1322 CurMBB = Fallthrough;
1325 return true;
1328 bool IRTranslator::translateIndirectBr(const User &U,
1329 MachineIRBuilder &MIRBuilder) {
1330 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1332 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1333 MIRBuilder.buildBrIndirect(Tgt);
1335 // Link successors.
1336 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1337 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1338 for (const BasicBlock *Succ : successors(&BrInst)) {
1339 // It's legal for indirectbr instructions to have duplicate blocks in the
1340 // destination list. We don't allow this in MIR. Skip anything that's
1341 // already a successor.
1342 if (!AddedSuccessors.insert(Succ).second)
1343 continue;
1344 CurBB.addSuccessor(&getMBB(*Succ));
1347 return true;
1350 static bool isSwiftError(const Value *V) {
1351 if (auto Arg = dyn_cast<Argument>(V))
1352 return Arg->hasSwiftErrorAttr();
1353 if (auto AI = dyn_cast<AllocaInst>(V))
1354 return AI->isSwiftError();
1355 return false;
1358 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1359 const LoadInst &LI = cast<LoadInst>(U);
1360 TypeSize StoreSize = DL->getTypeStoreSize(LI.getType());
1361 if (StoreSize.isZero())
1362 return true;
1364 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1365 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1366 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1367 AAMDNodes AAInfo = LI.getAAMetadata();
1369 const Value *Ptr = LI.getPointerOperand();
1370 Type *OffsetIRTy = DL->getIndexType(Ptr->getType());
1371 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1373 if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1374 assert(Regs.size() == 1 && "swifterror should be single pointer");
1375 Register VReg =
1376 SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1377 MIRBuilder.buildCopy(Regs[0], VReg);
1378 return true;
1381 MachineMemOperand::Flags Flags =
1382 TLI->getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1383 if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1384 if (AA->pointsToConstantMemory(
1385 MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1386 Flags |= MachineMemOperand::MOInvariant;
1390 const MDNode *Ranges =
1391 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1392 for (unsigned i = 0; i < Regs.size(); ++i) {
1393 Register Addr;
1394 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1396 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1397 Align BaseAlign = getMemOpAlign(LI);
1398 auto MMO = MF->getMachineMemOperand(
1399 Ptr, Flags, MRI->getType(Regs[i]),
1400 commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1401 LI.getSyncScopeID(), LI.getOrdering());
1402 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1405 return true;
1408 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1409 const StoreInst &SI = cast<StoreInst>(U);
1410 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()).isZero())
1411 return true;
1413 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1414 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1415 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1417 Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType());
1418 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1420 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1421 assert(Vals.size() == 1 && "swifterror should be single pointer");
1423 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1424 SI.getPointerOperand());
1425 MIRBuilder.buildCopy(VReg, Vals[0]);
1426 return true;
1429 MachineMemOperand::Flags Flags = TLI->getStoreMemOperandFlags(SI, *DL);
1431 for (unsigned i = 0; i < Vals.size(); ++i) {
1432 Register Addr;
1433 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1435 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1436 Align BaseAlign = getMemOpAlign(SI);
1437 auto MMO = MF->getMachineMemOperand(
1438 Ptr, Flags, MRI->getType(Vals[i]),
1439 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1440 SI.getSyncScopeID(), SI.getOrdering());
1441 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1443 return true;
1446 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1447 const Value *Src = U.getOperand(0);
1448 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1450 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1451 // usual array element rather than looking into the actual aggregate.
1452 SmallVector<Value *, 1> Indices;
1453 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1455 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1456 for (auto Idx : EVI->indices())
1457 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1458 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1459 for (auto Idx : IVI->indices())
1460 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1461 } else {
1462 for (Value *Op : drop_begin(U.operands()))
1463 Indices.push_back(Op);
1466 return 8 * static_cast<uint64_t>(
1467 DL.getIndexedOffsetInType(Src->getType(), Indices));
1470 bool IRTranslator::translateExtractValue(const User &U,
1471 MachineIRBuilder &MIRBuilder) {
1472 const Value *Src = U.getOperand(0);
1473 uint64_t Offset = getOffsetFromIndices(U, *DL);
1474 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1475 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1476 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1477 auto &DstRegs = allocateVRegs(U);
1479 for (unsigned i = 0; i < DstRegs.size(); ++i)
1480 DstRegs[i] = SrcRegs[Idx++];
1482 return true;
1485 bool IRTranslator::translateInsertValue(const User &U,
1486 MachineIRBuilder &MIRBuilder) {
1487 const Value *Src = U.getOperand(0);
1488 uint64_t Offset = getOffsetFromIndices(U, *DL);
1489 auto &DstRegs = allocateVRegs(U);
1490 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1491 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1492 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1493 auto *InsertedIt = InsertedRegs.begin();
1495 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1496 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1497 DstRegs[i] = *InsertedIt++;
1498 else
1499 DstRegs[i] = SrcRegs[i];
1502 return true;
1505 bool IRTranslator::translateSelect(const User &U,
1506 MachineIRBuilder &MIRBuilder) {
1507 Register Tst = getOrCreateVReg(*U.getOperand(0));
1508 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1509 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1510 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1512 uint32_t Flags = 0;
1513 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1514 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1516 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1517 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1520 return true;
1523 bool IRTranslator::translateCopy(const User &U, const Value &V,
1524 MachineIRBuilder &MIRBuilder) {
1525 Register Src = getOrCreateVReg(V);
1526 auto &Regs = *VMap.getVRegs(U);
1527 if (Regs.empty()) {
1528 Regs.push_back(Src);
1529 VMap.getOffsets(U)->push_back(0);
1530 } else {
1531 // If we already assigned a vreg for this instruction, we can't change that.
1532 // Emit a copy to satisfy the users we already emitted.
1533 MIRBuilder.buildCopy(Regs[0], Src);
1535 return true;
1538 bool IRTranslator::translateBitCast(const User &U,
1539 MachineIRBuilder &MIRBuilder) {
1540 // If we're bitcasting to the source type, we can reuse the source vreg.
1541 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1542 getLLTForType(*U.getType(), *DL)) {
1543 // If the source is a ConstantInt then it was probably created by
1544 // ConstantHoisting and we should leave it alone.
1545 if (isa<ConstantInt>(U.getOperand(0)))
1546 return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1547 MIRBuilder);
1548 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1551 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1554 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1555 MachineIRBuilder &MIRBuilder) {
1556 if (U.getType()->getScalarType()->isBFloatTy() ||
1557 U.getOperand(0)->getType()->getScalarType()->isBFloatTy())
1558 return false;
1560 uint32_t Flags = 0;
1561 if (const Instruction *I = dyn_cast<Instruction>(&U))
1562 Flags = MachineInstr::copyFlagsFromInstruction(*I);
1564 Register Op = getOrCreateVReg(*U.getOperand(0));
1565 Register Res = getOrCreateVReg(U);
1566 MIRBuilder.buildInstr(Opcode, {Res}, {Op}, Flags);
1567 return true;
1570 bool IRTranslator::translateGetElementPtr(const User &U,
1571 MachineIRBuilder &MIRBuilder) {
1572 Value &Op0 = *U.getOperand(0);
1573 Register BaseReg = getOrCreateVReg(Op0);
1574 Type *PtrIRTy = Op0.getType();
1575 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1576 Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1577 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1579 uint32_t Flags = 0;
1580 if (const Instruction *I = dyn_cast<Instruction>(&U))
1581 Flags = MachineInstr::copyFlagsFromInstruction(*I);
1583 // Normalize Vector GEP - all scalar operands should be converted to the
1584 // splat vector.
1585 unsigned VectorWidth = 0;
1587 // True if we should use a splat vector; using VectorWidth alone is not
1588 // sufficient.
1589 bool WantSplatVector = false;
1590 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1591 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1592 // We don't produce 1 x N vectors; those are treated as scalars.
1593 WantSplatVector = VectorWidth > 1;
1596 // We might need to splat the base pointer into a vector if the offsets
1597 // are vectors.
1598 if (WantSplatVector && !PtrTy.isVector()) {
1599 BaseReg = MIRBuilder
1600 .buildSplatBuildVector(LLT::fixed_vector(VectorWidth, PtrTy),
1601 BaseReg)
1602 .getReg(0);
1603 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1604 PtrTy = getLLTForType(*PtrIRTy, *DL);
1605 OffsetIRTy = DL->getIndexType(PtrIRTy);
1606 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1609 int64_t Offset = 0;
1610 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1611 GTI != E; ++GTI) {
1612 const Value *Idx = GTI.getOperand();
1613 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1614 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1615 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1616 continue;
1617 } else {
1618 uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
1620 // If this is a scalar constant or a splat vector of constants,
1621 // handle it quickly.
1622 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1623 if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) {
1624 Offset += ElementSize * *Val;
1625 continue;
1629 if (Offset != 0) {
1630 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1631 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1632 .getReg(0);
1633 Offset = 0;
1636 Register IdxReg = getOrCreateVReg(*Idx);
1637 LLT IdxTy = MRI->getType(IdxReg);
1638 if (IdxTy != OffsetTy) {
1639 if (!IdxTy.isVector() && WantSplatVector) {
1640 IdxReg = MIRBuilder
1641 .buildSplatBuildVector(OffsetTy.changeElementType(IdxTy),
1642 IdxReg)
1643 .getReg(0);
1646 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1649 // N = N + Idx * ElementSize;
1650 // Avoid doing it for ElementSize of 1.
1651 Register GepOffsetReg;
1652 if (ElementSize != 1) {
1653 auto ElementSizeMIB = MIRBuilder.buildConstant(
1654 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1655 GepOffsetReg =
1656 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1657 } else
1658 GepOffsetReg = IdxReg;
1660 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1664 if (Offset != 0) {
1665 auto OffsetMIB =
1666 MIRBuilder.buildConstant(OffsetTy, Offset);
1668 if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds())
1669 Flags |= MachineInstr::MIFlag::NoUWrap;
1671 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0),
1672 Flags);
1673 return true;
1676 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1677 return true;
1680 bool IRTranslator::translateMemFunc(const CallInst &CI,
1681 MachineIRBuilder &MIRBuilder,
1682 unsigned Opcode) {
1683 const Value *SrcPtr = CI.getArgOperand(1);
1684 // If the source is undef, then just emit a nop.
1685 if (isa<UndefValue>(SrcPtr))
1686 return true;
1688 SmallVector<Register, 3> SrcRegs;
1690 unsigned MinPtrSize = UINT_MAX;
1691 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1692 Register SrcReg = getOrCreateVReg(**AI);
1693 LLT SrcTy = MRI->getType(SrcReg);
1694 if (SrcTy.isPointer())
1695 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1696 SrcRegs.push_back(SrcReg);
1699 LLT SizeTy = LLT::scalar(MinPtrSize);
1701 // The size operand should be the minimum of the pointer sizes.
1702 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1703 if (MRI->getType(SizeOpReg) != SizeTy)
1704 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1706 auto ICall = MIRBuilder.buildInstr(Opcode);
1707 for (Register SrcReg : SrcRegs)
1708 ICall.addUse(SrcReg);
1710 Align DstAlign;
1711 Align SrcAlign;
1712 unsigned IsVol =
1713 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1715 ConstantInt *CopySize = nullptr;
1717 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1718 DstAlign = MCI->getDestAlign().valueOrOne();
1719 SrcAlign = MCI->getSourceAlign().valueOrOne();
1720 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1721 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1722 DstAlign = MCI->getDestAlign().valueOrOne();
1723 SrcAlign = MCI->getSourceAlign().valueOrOne();
1724 CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1725 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1726 DstAlign = MMI->getDestAlign().valueOrOne();
1727 SrcAlign = MMI->getSourceAlign().valueOrOne();
1728 CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1729 } else {
1730 auto *MSI = cast<MemSetInst>(&CI);
1731 DstAlign = MSI->getDestAlign().valueOrOne();
1734 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1735 // We need to propagate the tail call flag from the IR inst as an argument.
1736 // Otherwise, we have to pessimize and assume later that we cannot tail call
1737 // any memory intrinsics.
1738 ICall.addImm(CI.isTailCall() ? 1 : 0);
1741 // Create mem operands to store the alignment and volatile info.
1742 MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1743 MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1744 if (IsVol) {
1745 LoadFlags |= MachineMemOperand::MOVolatile;
1746 StoreFlags |= MachineMemOperand::MOVolatile;
1749 AAMDNodes AAInfo = CI.getAAMetadata();
1750 if (AA && CopySize &&
1751 AA->pointsToConstantMemory(MemoryLocation(
1752 SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1753 LoadFlags |= MachineMemOperand::MOInvariant;
1755 // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1756 // but the previous usage implied it did. Probably should check
1757 // isDereferenceableAndAlignedPointer.
1758 LoadFlags |= MachineMemOperand::MODereferenceable;
1761 ICall.addMemOperand(
1762 MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1763 StoreFlags, 1, DstAlign, AAInfo));
1764 if (Opcode != TargetOpcode::G_MEMSET)
1765 ICall.addMemOperand(MF->getMachineMemOperand(
1766 MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1768 return true;
1771 bool IRTranslator::translateTrap(const CallInst &CI,
1772 MachineIRBuilder &MIRBuilder,
1773 unsigned Opcode) {
1774 StringRef TrapFuncName =
1775 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
1776 if (TrapFuncName.empty()) {
1777 if (Opcode == TargetOpcode::G_UBSANTRAP) {
1778 uint64_t Code = cast<ConstantInt>(CI.getOperand(0))->getZExtValue();
1779 MIRBuilder.buildInstr(Opcode, {}, ArrayRef<llvm::SrcOp>{Code});
1780 } else {
1781 MIRBuilder.buildInstr(Opcode);
1783 return true;
1786 CallLowering::CallLoweringInfo Info;
1787 if (Opcode == TargetOpcode::G_UBSANTRAP)
1788 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
1789 CI.getArgOperand(0)->getType(), 0});
1791 Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
1792 Info.CB = &CI;
1793 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
1794 return CLI->lowerCall(MIRBuilder, Info);
1797 bool IRTranslator::translateVectorInterleave2Intrinsic(
1798 const CallInst &CI, MachineIRBuilder &MIRBuilder) {
1799 assert(CI.getIntrinsicID() == Intrinsic::vector_interleave2 &&
1800 "This function can only be called on the interleave2 intrinsic!");
1801 // Canonicalize interleave2 to G_SHUFFLE_VECTOR (similar to SelectionDAG).
1802 Register Op0 = getOrCreateVReg(*CI.getOperand(0));
1803 Register Op1 = getOrCreateVReg(*CI.getOperand(1));
1804 Register Res = getOrCreateVReg(CI);
1806 LLT OpTy = MRI->getType(Op0);
1807 MIRBuilder.buildShuffleVector(Res, Op0, Op1,
1808 createInterleaveMask(OpTy.getNumElements(), 2));
1810 return true;
1813 bool IRTranslator::translateVectorDeinterleave2Intrinsic(
1814 const CallInst &CI, MachineIRBuilder &MIRBuilder) {
1815 assert(CI.getIntrinsicID() == Intrinsic::vector_deinterleave2 &&
1816 "This function can only be called on the deinterleave2 intrinsic!");
1817 // Canonicalize deinterleave2 to shuffles that extract sub-vectors (similar to
1818 // SelectionDAG).
1819 Register Op = getOrCreateVReg(*CI.getOperand(0));
1820 auto Undef = MIRBuilder.buildUndef(MRI->getType(Op));
1821 ArrayRef<Register> Res = getOrCreateVRegs(CI);
1823 LLT ResTy = MRI->getType(Res[0]);
1824 MIRBuilder.buildShuffleVector(Res[0], Op, Undef,
1825 createStrideMask(0, 2, ResTy.getNumElements()));
1826 MIRBuilder.buildShuffleVector(Res[1], Op, Undef,
1827 createStrideMask(1, 2, ResTy.getNumElements()));
1829 return true;
1832 void IRTranslator::getStackGuard(Register DstReg,
1833 MachineIRBuilder &MIRBuilder) {
1834 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1835 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1836 auto MIB =
1837 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1839 Value *Global = TLI->getSDagStackGuard(*MF->getFunction().getParent());
1840 if (!Global)
1841 return;
1843 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1844 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1846 MachinePointerInfo MPInfo(Global);
1847 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1848 MachineMemOperand::MODereferenceable;
1849 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1850 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1851 MIB.setMemRefs({MemRef});
1854 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1855 MachineIRBuilder &MIRBuilder) {
1856 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1857 MIRBuilder.buildInstr(
1858 Op, {ResRegs[0], ResRegs[1]},
1859 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1861 return true;
1864 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1865 MachineIRBuilder &MIRBuilder) {
1866 Register Dst = getOrCreateVReg(CI);
1867 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1868 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1869 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1870 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1871 return true;
1874 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1875 switch (ID) {
1876 default:
1877 break;
1878 case Intrinsic::acos:
1879 return TargetOpcode::G_FACOS;
1880 case Intrinsic::asin:
1881 return TargetOpcode::G_FASIN;
1882 case Intrinsic::atan:
1883 return TargetOpcode::G_FATAN;
1884 case Intrinsic::atan2:
1885 return TargetOpcode::G_FATAN2;
1886 case Intrinsic::bswap:
1887 return TargetOpcode::G_BSWAP;
1888 case Intrinsic::bitreverse:
1889 return TargetOpcode::G_BITREVERSE;
1890 case Intrinsic::fshl:
1891 return TargetOpcode::G_FSHL;
1892 case Intrinsic::fshr:
1893 return TargetOpcode::G_FSHR;
1894 case Intrinsic::ceil:
1895 return TargetOpcode::G_FCEIL;
1896 case Intrinsic::cos:
1897 return TargetOpcode::G_FCOS;
1898 case Intrinsic::cosh:
1899 return TargetOpcode::G_FCOSH;
1900 case Intrinsic::ctpop:
1901 return TargetOpcode::G_CTPOP;
1902 case Intrinsic::exp:
1903 return TargetOpcode::G_FEXP;
1904 case Intrinsic::exp2:
1905 return TargetOpcode::G_FEXP2;
1906 case Intrinsic::exp10:
1907 return TargetOpcode::G_FEXP10;
1908 case Intrinsic::fabs:
1909 return TargetOpcode::G_FABS;
1910 case Intrinsic::copysign:
1911 return TargetOpcode::G_FCOPYSIGN;
1912 case Intrinsic::minnum:
1913 return TargetOpcode::G_FMINNUM;
1914 case Intrinsic::maxnum:
1915 return TargetOpcode::G_FMAXNUM;
1916 case Intrinsic::minimum:
1917 return TargetOpcode::G_FMINIMUM;
1918 case Intrinsic::maximum:
1919 return TargetOpcode::G_FMAXIMUM;
1920 case Intrinsic::canonicalize:
1921 return TargetOpcode::G_FCANONICALIZE;
1922 case Intrinsic::floor:
1923 return TargetOpcode::G_FFLOOR;
1924 case Intrinsic::fma:
1925 return TargetOpcode::G_FMA;
1926 case Intrinsic::log:
1927 return TargetOpcode::G_FLOG;
1928 case Intrinsic::log2:
1929 return TargetOpcode::G_FLOG2;
1930 case Intrinsic::log10:
1931 return TargetOpcode::G_FLOG10;
1932 case Intrinsic::ldexp:
1933 return TargetOpcode::G_FLDEXP;
1934 case Intrinsic::nearbyint:
1935 return TargetOpcode::G_FNEARBYINT;
1936 case Intrinsic::pow:
1937 return TargetOpcode::G_FPOW;
1938 case Intrinsic::powi:
1939 return TargetOpcode::G_FPOWI;
1940 case Intrinsic::rint:
1941 return TargetOpcode::G_FRINT;
1942 case Intrinsic::round:
1943 return TargetOpcode::G_INTRINSIC_ROUND;
1944 case Intrinsic::roundeven:
1945 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1946 case Intrinsic::sin:
1947 return TargetOpcode::G_FSIN;
1948 case Intrinsic::sinh:
1949 return TargetOpcode::G_FSINH;
1950 case Intrinsic::sqrt:
1951 return TargetOpcode::G_FSQRT;
1952 case Intrinsic::tan:
1953 return TargetOpcode::G_FTAN;
1954 case Intrinsic::tanh:
1955 return TargetOpcode::G_FTANH;
1956 case Intrinsic::trunc:
1957 return TargetOpcode::G_INTRINSIC_TRUNC;
1958 case Intrinsic::readcyclecounter:
1959 return TargetOpcode::G_READCYCLECOUNTER;
1960 case Intrinsic::readsteadycounter:
1961 return TargetOpcode::G_READSTEADYCOUNTER;
1962 case Intrinsic::ptrmask:
1963 return TargetOpcode::G_PTRMASK;
1964 case Intrinsic::lrint:
1965 return TargetOpcode::G_INTRINSIC_LRINT;
1966 case Intrinsic::llrint:
1967 return TargetOpcode::G_INTRINSIC_LLRINT;
1968 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1969 case Intrinsic::vector_reduce_fmin:
1970 return TargetOpcode::G_VECREDUCE_FMIN;
1971 case Intrinsic::vector_reduce_fmax:
1972 return TargetOpcode::G_VECREDUCE_FMAX;
1973 case Intrinsic::vector_reduce_fminimum:
1974 return TargetOpcode::G_VECREDUCE_FMINIMUM;
1975 case Intrinsic::vector_reduce_fmaximum:
1976 return TargetOpcode::G_VECREDUCE_FMAXIMUM;
1977 case Intrinsic::vector_reduce_add:
1978 return TargetOpcode::G_VECREDUCE_ADD;
1979 case Intrinsic::vector_reduce_mul:
1980 return TargetOpcode::G_VECREDUCE_MUL;
1981 case Intrinsic::vector_reduce_and:
1982 return TargetOpcode::G_VECREDUCE_AND;
1983 case Intrinsic::vector_reduce_or:
1984 return TargetOpcode::G_VECREDUCE_OR;
1985 case Intrinsic::vector_reduce_xor:
1986 return TargetOpcode::G_VECREDUCE_XOR;
1987 case Intrinsic::vector_reduce_smax:
1988 return TargetOpcode::G_VECREDUCE_SMAX;
1989 case Intrinsic::vector_reduce_smin:
1990 return TargetOpcode::G_VECREDUCE_SMIN;
1991 case Intrinsic::vector_reduce_umax:
1992 return TargetOpcode::G_VECREDUCE_UMAX;
1993 case Intrinsic::vector_reduce_umin:
1994 return TargetOpcode::G_VECREDUCE_UMIN;
1995 case Intrinsic::experimental_vector_compress:
1996 return TargetOpcode::G_VECTOR_COMPRESS;
1997 case Intrinsic::lround:
1998 return TargetOpcode::G_LROUND;
1999 case Intrinsic::llround:
2000 return TargetOpcode::G_LLROUND;
2001 case Intrinsic::get_fpenv:
2002 return TargetOpcode::G_GET_FPENV;
2003 case Intrinsic::get_fpmode:
2004 return TargetOpcode::G_GET_FPMODE;
2006 return Intrinsic::not_intrinsic;
2009 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
2010 Intrinsic::ID ID,
2011 MachineIRBuilder &MIRBuilder) {
2013 unsigned Op = getSimpleIntrinsicOpcode(ID);
2015 // Is this a simple intrinsic?
2016 if (Op == Intrinsic::not_intrinsic)
2017 return false;
2019 // Yes. Let's translate it.
2020 SmallVector<llvm::SrcOp, 4> VRegs;
2021 for (const auto &Arg : CI.args())
2022 VRegs.push_back(getOrCreateVReg(*Arg));
2024 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
2025 MachineInstr::copyFlagsFromInstruction(CI));
2026 return true;
2029 // TODO: Include ConstainedOps.def when all strict instructions are defined.
2030 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
2031 switch (ID) {
2032 case Intrinsic::experimental_constrained_fadd:
2033 return TargetOpcode::G_STRICT_FADD;
2034 case Intrinsic::experimental_constrained_fsub:
2035 return TargetOpcode::G_STRICT_FSUB;
2036 case Intrinsic::experimental_constrained_fmul:
2037 return TargetOpcode::G_STRICT_FMUL;
2038 case Intrinsic::experimental_constrained_fdiv:
2039 return TargetOpcode::G_STRICT_FDIV;
2040 case Intrinsic::experimental_constrained_frem:
2041 return TargetOpcode::G_STRICT_FREM;
2042 case Intrinsic::experimental_constrained_fma:
2043 return TargetOpcode::G_STRICT_FMA;
2044 case Intrinsic::experimental_constrained_sqrt:
2045 return TargetOpcode::G_STRICT_FSQRT;
2046 case Intrinsic::experimental_constrained_ldexp:
2047 return TargetOpcode::G_STRICT_FLDEXP;
2048 default:
2049 return 0;
2053 bool IRTranslator::translateConstrainedFPIntrinsic(
2054 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
2055 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
2057 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
2058 if (!Opcode)
2059 return false;
2061 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI);
2062 if (EB == fp::ExceptionBehavior::ebIgnore)
2063 Flags |= MachineInstr::NoFPExcept;
2065 SmallVector<llvm::SrcOp, 4> VRegs;
2066 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
2067 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(I)));
2069 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
2070 return true;
2073 std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
2074 auto VRegs = getOrCreateVRegs(Arg);
2075 if (VRegs.size() != 1)
2076 return std::nullopt;
2078 // Arguments are lowered as a copy of a livein physical register.
2079 auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
2080 if (!VRegDef || !VRegDef->isCopy())
2081 return std::nullopt;
2082 return VRegDef->getOperand(1).getReg().asMCReg();
2085 bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val,
2086 const DILocalVariable *Var,
2087 const DIExpression *Expr,
2088 const DebugLoc &DL,
2089 MachineIRBuilder &MIRBuilder) {
2090 auto *Arg = dyn_cast<Argument>(Val);
2091 if (!Arg)
2092 return false;
2094 if (!Expr->isEntryValue())
2095 return false;
2097 std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
2098 if (!PhysReg) {
2099 LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value")
2100 << ": expression is entry_value but "
2101 << "couldn't find a physical register\n");
2102 LLVM_DEBUG(dbgs() << *Var << "\n");
2103 return true;
2106 if (isDeclare) {
2107 // Append an op deref to account for the fact that this is a dbg_declare.
2108 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
2109 MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL);
2110 } else {
2111 MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr);
2114 return true;
2117 static unsigned getConvOpcode(Intrinsic::ID ID) {
2118 switch (ID) {
2119 default:
2120 llvm_unreachable("Unexpected intrinsic");
2121 case Intrinsic::experimental_convergence_anchor:
2122 return TargetOpcode::CONVERGENCECTRL_ANCHOR;
2123 case Intrinsic::experimental_convergence_entry:
2124 return TargetOpcode::CONVERGENCECTRL_ENTRY;
2125 case Intrinsic::experimental_convergence_loop:
2126 return TargetOpcode::CONVERGENCECTRL_LOOP;
2130 bool IRTranslator::translateConvergenceControlIntrinsic(
2131 const CallInst &CI, Intrinsic::ID ID, MachineIRBuilder &MIRBuilder) {
2132 MachineInstrBuilder MIB = MIRBuilder.buildInstr(getConvOpcode(ID));
2133 Register OutputReg = getOrCreateConvergenceTokenVReg(CI);
2134 MIB.addDef(OutputReg);
2136 if (ID == Intrinsic::experimental_convergence_loop) {
2137 auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl);
2138 assert(Bundle && "Expected a convergence control token.");
2139 Register InputReg =
2140 getOrCreateConvergenceTokenVReg(*Bundle->Inputs[0].get());
2141 MIB.addUse(InputReg);
2144 return true;
2147 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
2148 MachineIRBuilder &MIRBuilder) {
2149 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
2150 if (ORE->enabled()) {
2151 if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
2152 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2153 R.visit(MI);
2158 // If this is a simple intrinsic (that is, we just need to add a def of
2159 // a vreg, and uses for each arg operand, then translate it.
2160 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
2161 return true;
2163 switch (ID) {
2164 default:
2165 break;
2166 case Intrinsic::lifetime_start:
2167 case Intrinsic::lifetime_end: {
2168 // No stack colouring in O0, discard region information.
2169 if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None ||
2170 MF->getFunction().hasOptNone())
2171 return true;
2173 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
2174 : TargetOpcode::LIFETIME_END;
2176 // Get the underlying objects for the location passed on the lifetime
2177 // marker.
2178 SmallVector<const Value *, 4> Allocas;
2179 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
2181 // Iterate over each underlying object, creating lifetime markers for each
2182 // static alloca. Quit if we find a non-static alloca.
2183 for (const Value *V : Allocas) {
2184 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
2185 if (!AI)
2186 continue;
2188 if (!AI->isStaticAlloca())
2189 return true;
2191 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
2193 return true;
2195 case Intrinsic::fake_use: {
2196 SmallVector<llvm::SrcOp, 4> VRegs;
2197 for (const auto &Arg : CI.args())
2198 for (auto VReg : getOrCreateVRegs(*Arg))
2199 VRegs.push_back(VReg);
2200 MIRBuilder.buildInstr(TargetOpcode::FAKE_USE, {}, VRegs);
2201 MF->setHasFakeUses(true);
2202 return true;
2204 case Intrinsic::dbg_declare: {
2205 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
2206 assert(DI.getVariable() && "Missing variable");
2207 translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(),
2208 DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2209 return true;
2211 case Intrinsic::dbg_label: {
2212 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
2213 assert(DI.getLabel() && "Missing label");
2215 assert(DI.getLabel()->isValidLocationForIntrinsic(
2216 MIRBuilder.getDebugLoc()) &&
2217 "Expected inlined-at fields to agree");
2219 MIRBuilder.buildDbgLabel(DI.getLabel());
2220 return true;
2222 case Intrinsic::vaend:
2223 // No target I know of cares about va_end. Certainly no in-tree target
2224 // does. Simplest intrinsic ever!
2225 return true;
2226 case Intrinsic::vastart: {
2227 Value *Ptr = CI.getArgOperand(0);
2228 unsigned ListSize = TLI->getVaListSizeInBits(*DL) / 8;
2229 Align Alignment = getKnownAlignment(Ptr, *DL);
2231 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
2232 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
2233 MachineMemOperand::MOStore,
2234 ListSize, Alignment));
2235 return true;
2237 case Intrinsic::dbg_assign:
2238 // A dbg.assign is a dbg.value with more information about stack locations,
2239 // typically produced during optimisation of variables with leaked
2240 // addresses. We can treat it like a normal dbg_value intrinsic here; to
2241 // benefit from the full analysis of stack/SSA locations, GlobalISel would
2242 // need to register for and use the AssignmentTrackingAnalysis pass.
2243 [[fallthrough]];
2244 case Intrinsic::dbg_value: {
2245 // This form of DBG_VALUE is target-independent.
2246 const DbgValueInst &DI = cast<DbgValueInst>(CI);
2247 translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(),
2248 DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2249 return true;
2251 case Intrinsic::uadd_with_overflow:
2252 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2253 case Intrinsic::sadd_with_overflow:
2254 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2255 case Intrinsic::usub_with_overflow:
2256 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2257 case Intrinsic::ssub_with_overflow:
2258 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2259 case Intrinsic::umul_with_overflow:
2260 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2261 case Intrinsic::smul_with_overflow:
2262 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2263 case Intrinsic::uadd_sat:
2264 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2265 case Intrinsic::sadd_sat:
2266 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2267 case Intrinsic::usub_sat:
2268 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2269 case Intrinsic::ssub_sat:
2270 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2271 case Intrinsic::ushl_sat:
2272 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2273 case Intrinsic::sshl_sat:
2274 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2275 case Intrinsic::umin:
2276 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2277 case Intrinsic::umax:
2278 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2279 case Intrinsic::smin:
2280 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2281 case Intrinsic::smax:
2282 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2283 case Intrinsic::abs:
2284 // TODO: Preserve "int min is poison" arg in GMIR?
2285 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2286 case Intrinsic::smul_fix:
2287 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2288 case Intrinsic::umul_fix:
2289 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2290 case Intrinsic::smul_fix_sat:
2291 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2292 case Intrinsic::umul_fix_sat:
2293 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2294 case Intrinsic::sdiv_fix:
2295 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2296 case Intrinsic::udiv_fix:
2297 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2298 case Intrinsic::sdiv_fix_sat:
2299 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2300 case Intrinsic::udiv_fix_sat:
2301 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2302 case Intrinsic::fmuladd: {
2303 const TargetMachine &TM = MF->getTarget();
2304 Register Dst = getOrCreateVReg(CI);
2305 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2306 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2307 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2308 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2309 TLI->isFMAFasterThanFMulAndFAdd(*MF,
2310 TLI->getValueType(*DL, CI.getType()))) {
2311 // TODO: Revisit this to see if we should move this part of the
2312 // lowering to the combiner.
2313 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2314 MachineInstr::copyFlagsFromInstruction(CI));
2315 } else {
2316 LLT Ty = getLLTForType(*CI.getType(), *DL);
2317 auto FMul = MIRBuilder.buildFMul(
2318 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2319 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2320 MachineInstr::copyFlagsFromInstruction(CI));
2322 return true;
2324 case Intrinsic::convert_from_fp16:
2325 // FIXME: This intrinsic should probably be removed from the IR.
2326 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2327 getOrCreateVReg(*CI.getArgOperand(0)),
2328 MachineInstr::copyFlagsFromInstruction(CI));
2329 return true;
2330 case Intrinsic::convert_to_fp16:
2331 // FIXME: This intrinsic should probably be removed from the IR.
2332 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2333 getOrCreateVReg(*CI.getArgOperand(0)),
2334 MachineInstr::copyFlagsFromInstruction(CI));
2335 return true;
2336 case Intrinsic::frexp: {
2337 ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2338 MIRBuilder.buildFFrexp(VRegs[0], VRegs[1],
2339 getOrCreateVReg(*CI.getArgOperand(0)),
2340 MachineInstr::copyFlagsFromInstruction(CI));
2341 return true;
2343 case Intrinsic::sincos: {
2344 ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2345 MIRBuilder.buildFSincos(VRegs[0], VRegs[1],
2346 getOrCreateVReg(*CI.getArgOperand(0)),
2347 MachineInstr::copyFlagsFromInstruction(CI));
2348 return true;
2350 case Intrinsic::fptosi_sat:
2351 MIRBuilder.buildFPTOSI_SAT(getOrCreateVReg(CI),
2352 getOrCreateVReg(*CI.getArgOperand(0)));
2353 return true;
2354 case Intrinsic::fptoui_sat:
2355 MIRBuilder.buildFPTOUI_SAT(getOrCreateVReg(CI),
2356 getOrCreateVReg(*CI.getArgOperand(0)));
2357 return true;
2358 case Intrinsic::memcpy_inline:
2359 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2360 case Intrinsic::memcpy:
2361 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2362 case Intrinsic::memmove:
2363 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2364 case Intrinsic::memset:
2365 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2366 case Intrinsic::eh_typeid_for: {
2367 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2368 Register Reg = getOrCreateVReg(CI);
2369 unsigned TypeID = MF->getTypeIDFor(GV);
2370 MIRBuilder.buildConstant(Reg, TypeID);
2371 return true;
2373 case Intrinsic::objectsize:
2374 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2376 case Intrinsic::is_constant:
2377 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2379 case Intrinsic::stackguard:
2380 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2381 return true;
2382 case Intrinsic::stackprotector: {
2383 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2384 Register GuardVal;
2385 if (TLI->useLoadStackGuardNode(*CI.getModule())) {
2386 GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2387 getStackGuard(GuardVal, MIRBuilder);
2388 } else
2389 GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2391 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2392 int FI = getOrCreateFrameIndex(*Slot);
2393 MF->getFrameInfo().setStackProtectorIndex(FI);
2395 MIRBuilder.buildStore(
2396 GuardVal, getOrCreateVReg(*Slot),
2397 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2398 MachineMemOperand::MOStore |
2399 MachineMemOperand::MOVolatile,
2400 PtrTy, Align(8)));
2401 return true;
2403 case Intrinsic::stacksave: {
2404 MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {});
2405 return true;
2407 case Intrinsic::stackrestore: {
2408 MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {},
2409 {getOrCreateVReg(*CI.getArgOperand(0))});
2410 return true;
2412 case Intrinsic::cttz:
2413 case Intrinsic::ctlz: {
2414 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2415 bool isTrailing = ID == Intrinsic::cttz;
2416 unsigned Opcode = isTrailing
2417 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2418 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2419 : Cst->isZero() ? TargetOpcode::G_CTLZ
2420 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2421 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2422 {getOrCreateVReg(*CI.getArgOperand(0))});
2423 return true;
2425 case Intrinsic::invariant_start: {
2426 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2427 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2428 MIRBuilder.buildUndef(Undef);
2429 return true;
2431 case Intrinsic::invariant_end:
2432 return true;
2433 case Intrinsic::expect:
2434 case Intrinsic::expect_with_probability:
2435 case Intrinsic::annotation:
2436 case Intrinsic::ptr_annotation:
2437 case Intrinsic::launder_invariant_group:
2438 case Intrinsic::strip_invariant_group: {
2439 // Drop the intrinsic, but forward the value.
2440 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2441 getOrCreateVReg(*CI.getArgOperand(0)));
2442 return true;
2444 case Intrinsic::assume:
2445 case Intrinsic::experimental_noalias_scope_decl:
2446 case Intrinsic::var_annotation:
2447 case Intrinsic::sideeffect:
2448 // Discard annotate attributes, assumptions, and artificial side-effects.
2449 return true;
2450 case Intrinsic::read_volatile_register:
2451 case Intrinsic::read_register: {
2452 Value *Arg = CI.getArgOperand(0);
2453 MIRBuilder
2454 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2455 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2456 return true;
2458 case Intrinsic::write_register: {
2459 Value *Arg = CI.getArgOperand(0);
2460 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2461 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2462 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2463 return true;
2465 case Intrinsic::localescape: {
2466 MachineBasicBlock &EntryMBB = MF->front();
2467 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2469 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2470 // is the same on all targets.
2471 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2472 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2473 if (isa<ConstantPointerNull>(Arg))
2474 continue; // Skip null pointers. They represent a hole in index space.
2476 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2477 MCSymbol *FrameAllocSym =
2478 MF->getContext().getOrCreateFrameAllocSymbol(EscapedName, Idx);
2480 // This should be inserted at the start of the entry block.
2481 auto LocalEscape =
2482 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2483 .addSym(FrameAllocSym)
2484 .addFrameIndex(FI);
2486 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2489 return true;
2491 case Intrinsic::vector_reduce_fadd:
2492 case Intrinsic::vector_reduce_fmul: {
2493 // Need to check for the reassoc flag to decide whether we want a
2494 // sequential reduction opcode or not.
2495 Register Dst = getOrCreateVReg(CI);
2496 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2497 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2498 unsigned Opc = 0;
2499 if (!CI.hasAllowReassoc()) {
2500 // The sequential ordering case.
2501 Opc = ID == Intrinsic::vector_reduce_fadd
2502 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2503 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2504 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2505 MachineInstr::copyFlagsFromInstruction(CI));
2506 return true;
2508 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2509 // since the associativity doesn't matter.
2510 unsigned ScalarOpc;
2511 if (ID == Intrinsic::vector_reduce_fadd) {
2512 Opc = TargetOpcode::G_VECREDUCE_FADD;
2513 ScalarOpc = TargetOpcode::G_FADD;
2514 } else {
2515 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2516 ScalarOpc = TargetOpcode::G_FMUL;
2518 LLT DstTy = MRI->getType(Dst);
2519 auto Rdx = MIRBuilder.buildInstr(
2520 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2521 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2522 MachineInstr::copyFlagsFromInstruction(CI));
2524 return true;
2526 case Intrinsic::trap:
2527 return translateTrap(CI, MIRBuilder, TargetOpcode::G_TRAP);
2528 case Intrinsic::debugtrap:
2529 return translateTrap(CI, MIRBuilder, TargetOpcode::G_DEBUGTRAP);
2530 case Intrinsic::ubsantrap:
2531 return translateTrap(CI, MIRBuilder, TargetOpcode::G_UBSANTRAP);
2532 case Intrinsic::allow_runtime_check:
2533 case Intrinsic::allow_ubsan_check:
2534 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2535 getOrCreateVReg(*ConstantInt::getTrue(CI.getType())));
2536 return true;
2537 case Intrinsic::amdgcn_cs_chain:
2538 return translateCallBase(CI, MIRBuilder);
2539 case Intrinsic::fptrunc_round: {
2540 uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI);
2542 // Convert the metadata argument to a constant integer
2543 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2544 std::optional<RoundingMode> RoundMode =
2545 convertStrToRoundingMode(cast<MDString>(MD)->getString());
2547 // Add the Rounding mode as an integer
2548 MIRBuilder
2549 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2550 {getOrCreateVReg(CI)},
2551 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2552 .addImm((int)*RoundMode);
2554 return true;
2556 case Intrinsic::is_fpclass: {
2557 Value *FpValue = CI.getOperand(0);
2558 ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2560 MIRBuilder
2561 .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2562 {getOrCreateVReg(*FpValue)})
2563 .addImm(TestMaskValue->getZExtValue());
2565 return true;
2567 case Intrinsic::set_fpenv: {
2568 Value *FPEnv = CI.getOperand(0);
2569 MIRBuilder.buildSetFPEnv(getOrCreateVReg(*FPEnv));
2570 return true;
2572 case Intrinsic::reset_fpenv:
2573 MIRBuilder.buildResetFPEnv();
2574 return true;
2575 case Intrinsic::set_fpmode: {
2576 Value *FPState = CI.getOperand(0);
2577 MIRBuilder.buildSetFPMode(getOrCreateVReg(*FPState));
2578 return true;
2580 case Intrinsic::reset_fpmode:
2581 MIRBuilder.buildResetFPMode();
2582 return true;
2583 case Intrinsic::vscale: {
2584 MIRBuilder.buildVScale(getOrCreateVReg(CI), 1);
2585 return true;
2587 case Intrinsic::scmp:
2588 MIRBuilder.buildSCmp(getOrCreateVReg(CI),
2589 getOrCreateVReg(*CI.getOperand(0)),
2590 getOrCreateVReg(*CI.getOperand(1)));
2591 return true;
2592 case Intrinsic::ucmp:
2593 MIRBuilder.buildUCmp(getOrCreateVReg(CI),
2594 getOrCreateVReg(*CI.getOperand(0)),
2595 getOrCreateVReg(*CI.getOperand(1)));
2596 return true;
2597 case Intrinsic::vector_extract:
2598 return translateExtractVector(CI, MIRBuilder);
2599 case Intrinsic::vector_insert:
2600 return translateInsertVector(CI, MIRBuilder);
2601 case Intrinsic::stepvector: {
2602 MIRBuilder.buildStepVector(getOrCreateVReg(CI), 1);
2603 return true;
2605 case Intrinsic::prefetch: {
2606 Value *Addr = CI.getOperand(0);
2607 unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue();
2608 unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
2609 unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue();
2611 auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
2612 auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags,
2613 LLT(), Align());
2615 MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType,
2616 MMO);
2618 return true;
2621 case Intrinsic::vector_interleave2:
2622 case Intrinsic::vector_deinterleave2: {
2623 // Both intrinsics have at least one operand.
2624 Value *Op0 = CI.getOperand(0);
2625 LLT ResTy = getLLTForType(*Op0->getType(), MIRBuilder.getDataLayout());
2626 if (!ResTy.isFixedVector())
2627 return false;
2629 if (CI.getIntrinsicID() == Intrinsic::vector_interleave2)
2630 return translateVectorInterleave2Intrinsic(CI, MIRBuilder);
2632 return translateVectorDeinterleave2Intrinsic(CI, MIRBuilder);
2635 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2636 case Intrinsic::INTRINSIC:
2637 #include "llvm/IR/ConstrainedOps.def"
2638 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2639 MIRBuilder);
2640 case Intrinsic::experimental_convergence_anchor:
2641 case Intrinsic::experimental_convergence_entry:
2642 case Intrinsic::experimental_convergence_loop:
2643 return translateConvergenceControlIntrinsic(CI, ID, MIRBuilder);
2645 return false;
2648 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2649 MachineIRBuilder &MIRBuilder) {
2651 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2653 if (!ALI) {
2654 LLVM_DEBUG(
2655 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2656 return false;
2659 return ALI->lowerInlineAsm(
2660 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2663 bool IRTranslator::translateCallBase(const CallBase &CB,
2664 MachineIRBuilder &MIRBuilder) {
2665 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2667 SmallVector<ArrayRef<Register>, 8> Args;
2668 Register SwiftInVReg = 0;
2669 Register SwiftErrorVReg = 0;
2670 for (const auto &Arg : CB.args()) {
2671 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2672 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2673 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2674 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2675 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2676 &CB, &MIRBuilder.getMBB(), Arg));
2677 Args.emplace_back(ArrayRef(SwiftInVReg));
2678 SwiftErrorVReg =
2679 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2680 continue;
2682 Args.push_back(getOrCreateVRegs(*Arg));
2685 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2686 if (ORE->enabled()) {
2687 if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2688 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2689 R.visit(CI);
2694 std::optional<CallLowering::PtrAuthInfo> PAI;
2695 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
2696 // Functions should never be ptrauth-called directly.
2697 assert(!CB.getCalledFunction() && "invalid direct ptrauth call");
2699 const Value *Key = Bundle->Inputs[0];
2700 const Value *Discriminator = Bundle->Inputs[1];
2702 // Look through ptrauth constants to try to eliminate the matching bundle
2703 // and turn this into a direct call with no ptrauth.
2704 // CallLowering will use the raw pointer if it doesn't find the PAI.
2705 const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CB.getCalledOperand());
2706 if (!CalleeCPA || !isa<Function>(CalleeCPA->getPointer()) ||
2707 !CalleeCPA->isKnownCompatibleWith(Key, Discriminator, *DL)) {
2708 // If we can't make it direct, package the bundle into PAI.
2709 Register DiscReg = getOrCreateVReg(*Discriminator);
2710 PAI = CallLowering::PtrAuthInfo{cast<ConstantInt>(Key)->getZExtValue(),
2711 DiscReg};
2715 Register ConvergenceCtrlToken = 0;
2716 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
2717 const auto &Token = *Bundle->Inputs[0].get();
2718 ConvergenceCtrlToken = getOrCreateConvergenceTokenVReg(Token);
2721 // We don't set HasCalls on MFI here yet because call lowering may decide to
2722 // optimize into tail calls. Instead, we defer that to selection where a final
2723 // scan is done to check if any instructions are calls.
2724 bool Success = CLI->lowerCall(
2725 MIRBuilder, CB, Res, Args, SwiftErrorVReg, PAI, ConvergenceCtrlToken,
2726 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2728 // Check if we just inserted a tail call.
2729 if (Success) {
2730 assert(!HasTailCall && "Can't tail call return twice from block?");
2731 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2732 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2735 return Success;
2738 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2739 const CallInst &CI = cast<CallInst>(U);
2740 auto TII = MF->getTarget().getIntrinsicInfo();
2741 const Function *F = CI.getCalledFunction();
2743 // FIXME: support Windows dllimport function calls and calls through
2744 // weak symbols.
2745 if (F && (F->hasDLLImportStorageClass() ||
2746 (MF->getTarget().getTargetTriple().isOSWindows() &&
2747 F->hasExternalWeakLinkage())))
2748 return false;
2750 // FIXME: support control flow guard targets.
2751 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2752 return false;
2754 // FIXME: support statepoints and related.
2755 if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2756 return false;
2758 if (CI.isInlineAsm())
2759 return translateInlineAsm(CI, MIRBuilder);
2761 diagnoseDontCall(CI);
2763 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2764 if (F && F->isIntrinsic()) {
2765 ID = F->getIntrinsicID();
2766 if (TII && ID == Intrinsic::not_intrinsic)
2767 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2770 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2771 return translateCallBase(CI, MIRBuilder);
2773 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2775 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2776 return true;
2778 ArrayRef<Register> ResultRegs;
2779 if (!CI.getType()->isVoidTy())
2780 ResultRegs = getOrCreateVRegs(CI);
2782 // Ignore the callsite attributes. Backend code is most likely not expecting
2783 // an intrinsic to sometimes have side effects and sometimes not.
2784 MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs);
2785 if (isa<FPMathOperator>(CI))
2786 MIB->copyIRFlags(CI);
2788 for (const auto &Arg : enumerate(CI.args())) {
2789 // If this is required to be an immediate, don't materialize it in a
2790 // register.
2791 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2792 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2793 // imm arguments are more convenient than cimm (and realistically
2794 // probably sufficient), so use them.
2795 assert(CI->getBitWidth() <= 64 &&
2796 "large intrinsic immediates not handled");
2797 MIB.addImm(CI->getSExtValue());
2798 } else {
2799 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2801 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2802 auto *MD = MDVal->getMetadata();
2803 auto *MDN = dyn_cast<MDNode>(MD);
2804 if (!MDN) {
2805 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2806 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2807 else // This was probably an MDString.
2808 return false;
2810 MIB.addMetadata(MDN);
2811 } else {
2812 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2813 if (VRegs.size() > 1)
2814 return false;
2815 MIB.addUse(VRegs[0]);
2819 // Add a MachineMemOperand if it is a target mem intrinsic.
2820 TargetLowering::IntrinsicInfo Info;
2821 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2822 if (TLI->getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2823 Align Alignment = Info.align.value_or(
2824 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2825 LLT MemTy = Info.memVT.isSimple()
2826 ? getLLTForMVT(Info.memVT.getSimpleVT())
2827 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2829 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2830 // didn't yield anything useful.
2831 MachinePointerInfo MPI;
2832 if (Info.ptrVal)
2833 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2834 else if (Info.fallbackAddressSpace)
2835 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2836 MIB.addMemOperand(
2837 MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2840 if (CI.isConvergent()) {
2841 if (auto Bundle = CI.getOperandBundle(LLVMContext::OB_convergencectrl)) {
2842 auto *Token = Bundle->Inputs[0].get();
2843 Register TokenReg = getOrCreateVReg(*Token);
2844 MIB.addUse(TokenReg, RegState::Implicit);
2848 return true;
2851 bool IRTranslator::findUnwindDestinations(
2852 const BasicBlock *EHPadBB,
2853 BranchProbability Prob,
2854 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2855 &UnwindDests) {
2856 EHPersonality Personality = classifyEHPersonality(
2857 EHPadBB->getParent()->getFunction().getPersonalityFn());
2858 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2859 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2860 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2861 bool IsSEH = isAsynchronousEHPersonality(Personality);
2863 if (IsWasmCXX) {
2864 // Ignore this for now.
2865 return false;
2868 while (EHPadBB) {
2869 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2870 BasicBlock *NewEHPadBB = nullptr;
2871 if (isa<LandingPadInst>(Pad)) {
2872 // Stop on landingpads. They are not funclets.
2873 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2874 break;
2876 if (isa<CleanupPadInst>(Pad)) {
2877 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2878 // personalities.
2879 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2880 UnwindDests.back().first->setIsEHScopeEntry();
2881 UnwindDests.back().first->setIsEHFuncletEntry();
2882 break;
2884 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2885 // Add the catchpad handlers to the possible destinations.
2886 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2887 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2888 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2889 if (IsMSVCCXX || IsCoreCLR)
2890 UnwindDests.back().first->setIsEHFuncletEntry();
2891 if (!IsSEH)
2892 UnwindDests.back().first->setIsEHScopeEntry();
2894 NewEHPadBB = CatchSwitch->getUnwindDest();
2895 } else {
2896 continue;
2899 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2900 if (BPI && NewEHPadBB)
2901 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2902 EHPadBB = NewEHPadBB;
2904 return true;
2907 bool IRTranslator::translateInvoke(const User &U,
2908 MachineIRBuilder &MIRBuilder) {
2909 const InvokeInst &I = cast<InvokeInst>(U);
2910 MCContext &Context = MF->getContext();
2912 const BasicBlock *ReturnBB = I.getSuccessor(0);
2913 const BasicBlock *EHPadBB = I.getSuccessor(1);
2915 const Function *Fn = I.getCalledFunction();
2917 // FIXME: support invoking patchpoint and statepoint intrinsics.
2918 if (Fn && Fn->isIntrinsic())
2919 return false;
2921 // FIXME: support whatever these are.
2922 if (I.hasDeoptState())
2923 return false;
2925 // FIXME: support control flow guard targets.
2926 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2927 return false;
2929 // FIXME: support Windows exception handling.
2930 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2931 return false;
2933 // FIXME: support Windows dllimport function calls and calls through
2934 // weak symbols.
2935 if (Fn && (Fn->hasDLLImportStorageClass() ||
2936 (MF->getTarget().getTargetTriple().isOSWindows() &&
2937 Fn->hasExternalWeakLinkage())))
2938 return false;
2940 bool LowerInlineAsm = I.isInlineAsm();
2941 bool NeedEHLabel = true;
2943 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2944 // the region covered by the try.
2945 MCSymbol *BeginSymbol = nullptr;
2946 if (NeedEHLabel) {
2947 MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2948 BeginSymbol = Context.createTempSymbol();
2949 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2952 if (LowerInlineAsm) {
2953 if (!translateInlineAsm(I, MIRBuilder))
2954 return false;
2955 } else if (!translateCallBase(I, MIRBuilder))
2956 return false;
2958 MCSymbol *EndSymbol = nullptr;
2959 if (NeedEHLabel) {
2960 EndSymbol = Context.createTempSymbol();
2961 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2964 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2965 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2966 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2967 BranchProbability EHPadBBProb =
2968 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2969 : BranchProbability::getZero();
2971 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2972 return false;
2974 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2975 &ReturnMBB = getMBB(*ReturnBB);
2976 // Update successor info.
2977 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2978 for (auto &UnwindDest : UnwindDests) {
2979 UnwindDest.first->setIsEHPad();
2980 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2982 InvokeMBB->normalizeSuccProbs();
2984 if (NeedEHLabel) {
2985 assert(BeginSymbol && "Expected a begin symbol!");
2986 assert(EndSymbol && "Expected an end symbol!");
2987 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2990 MIRBuilder.buildBr(ReturnMBB);
2991 return true;
2994 bool IRTranslator::translateCallBr(const User &U,
2995 MachineIRBuilder &MIRBuilder) {
2996 // FIXME: Implement this.
2997 return false;
3000 bool IRTranslator::translateLandingPad(const User &U,
3001 MachineIRBuilder &MIRBuilder) {
3002 const LandingPadInst &LP = cast<LandingPadInst>(U);
3004 MachineBasicBlock &MBB = MIRBuilder.getMBB();
3006 MBB.setIsEHPad();
3008 // If there aren't registers to copy the values into (e.g., during SjLj
3009 // exceptions), then don't bother.
3010 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
3011 if (TLI->getExceptionPointerRegister(PersonalityFn) == 0 &&
3012 TLI->getExceptionSelectorRegister(PersonalityFn) == 0)
3013 return true;
3015 // If landingpad's return type is token type, we don't create DAG nodes
3016 // for its exception pointer and selector value. The extraction of exception
3017 // pointer or selector value from token type landingpads is not currently
3018 // supported.
3019 if (LP.getType()->isTokenTy())
3020 return true;
3022 // Add a label to mark the beginning of the landing pad. Deletion of the
3023 // landing pad can thus be detected via the MachineModuleInfo.
3024 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
3025 .addSym(MF->addLandingPad(&MBB));
3027 // If the unwinder does not preserve all registers, ensure that the
3028 // function marks the clobbered registers as used.
3029 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
3030 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
3031 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
3033 LLT Ty = getLLTForType(*LP.getType(), *DL);
3034 Register Undef = MRI->createGenericVirtualRegister(Ty);
3035 MIRBuilder.buildUndef(Undef);
3037 SmallVector<LLT, 2> Tys;
3038 for (Type *Ty : cast<StructType>(LP.getType())->elements())
3039 Tys.push_back(getLLTForType(*Ty, *DL));
3040 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
3042 // Mark exception register as live in.
3043 Register ExceptionReg = TLI->getExceptionPointerRegister(PersonalityFn);
3044 if (!ExceptionReg)
3045 return false;
3047 MBB.addLiveIn(ExceptionReg);
3048 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
3049 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
3051 Register SelectorReg = TLI->getExceptionSelectorRegister(PersonalityFn);
3052 if (!SelectorReg)
3053 return false;
3055 MBB.addLiveIn(SelectorReg);
3056 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
3057 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
3058 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
3060 return true;
3063 bool IRTranslator::translateAlloca(const User &U,
3064 MachineIRBuilder &MIRBuilder) {
3065 auto &AI = cast<AllocaInst>(U);
3067 if (AI.isSwiftError())
3068 return true;
3070 if (AI.isStaticAlloca()) {
3071 Register Res = getOrCreateVReg(AI);
3072 int FI = getOrCreateFrameIndex(AI);
3073 MIRBuilder.buildFrameIndex(Res, FI);
3074 return true;
3077 // FIXME: support stack probing for Windows.
3078 if (MF->getTarget().getTargetTriple().isOSWindows())
3079 return false;
3081 // Now we're in the harder dynamic case.
3082 Register NumElts = getOrCreateVReg(*AI.getArraySize());
3083 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
3084 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
3085 if (MRI->getType(NumElts) != IntPtrTy) {
3086 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
3087 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
3088 NumElts = ExtElts;
3091 Type *Ty = AI.getAllocatedType();
3093 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
3094 Register TySize =
3095 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
3096 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
3098 // Round the size of the allocation up to the stack alignment size
3099 // by add SA-1 to the size. This doesn't overflow because we're computing
3100 // an address inside an alloca.
3101 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
3102 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
3103 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
3104 MachineInstr::NoUWrap);
3105 auto AlignCst =
3106 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
3107 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
3109 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
3110 if (Alignment <= StackAlign)
3111 Alignment = Align(1);
3112 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
3114 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
3115 assert(MF->getFrameInfo().hasVarSizedObjects());
3116 return true;
3119 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
3120 // FIXME: We may need more info about the type. Because of how LLT works,
3121 // we're completely discarding the i64/double distinction here (amongst
3122 // others). Fortunately the ABIs I know of where that matters don't use va_arg
3123 // anyway but that's not guaranteed.
3124 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
3125 {getOrCreateVReg(*U.getOperand(0)),
3126 DL->getABITypeAlign(U.getType()).value()});
3127 return true;
3130 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
3131 if (!MF->getTarget().Options.TrapUnreachable)
3132 return true;
3134 auto &UI = cast<UnreachableInst>(U);
3136 // We may be able to ignore unreachable behind a noreturn call.
3137 if (const CallInst *Call = dyn_cast_or_null<CallInst>(UI.getPrevNode());
3138 Call && Call->doesNotReturn()) {
3139 if (MF->getTarget().Options.NoTrapAfterNoreturn)
3140 return true;
3141 // Do not emit an additional trap instruction.
3142 if (Call->isNonContinuableTrap())
3143 return true;
3146 MIRBuilder.buildTrap();
3147 return true;
3150 bool IRTranslator::translateInsertElement(const User &U,
3151 MachineIRBuilder &MIRBuilder) {
3152 // If it is a <1 x Ty> vector, use the scalar as it is
3153 // not a legal vector type in LLT.
3154 if (auto *FVT = dyn_cast<FixedVectorType>(U.getType());
3155 FVT && FVT->getNumElements() == 1)
3156 return translateCopy(U, *U.getOperand(1), MIRBuilder);
3158 Register Res = getOrCreateVReg(U);
3159 Register Val = getOrCreateVReg(*U.getOperand(0));
3160 Register Elt = getOrCreateVReg(*U.getOperand(1));
3161 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits();
3162 Register Idx;
3163 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(2))) {
3164 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3165 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3166 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
3167 Idx = getOrCreateVReg(*NewIdxCI);
3170 if (!Idx)
3171 Idx = getOrCreateVReg(*U.getOperand(2));
3172 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
3173 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
3174 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
3176 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
3177 return true;
3180 bool IRTranslator::translateInsertVector(const User &U,
3181 MachineIRBuilder &MIRBuilder) {
3182 Register Dst = getOrCreateVReg(U);
3183 Register Vec = getOrCreateVReg(*U.getOperand(0));
3184 Register Elt = getOrCreateVReg(*U.getOperand(1));
3186 ConstantInt *CI = cast<ConstantInt>(U.getOperand(2));
3187 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits();
3189 // Resize Index to preferred index width.
3190 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3191 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3192 CI = ConstantInt::get(CI->getContext(), NewIdx);
3195 // If it is a <1 x Ty> vector, we have to use other means.
3196 if (auto *ResultType = dyn_cast<FixedVectorType>(U.getOperand(1)->getType());
3197 ResultType && ResultType->getNumElements() == 1) {
3198 if (auto *InputType = dyn_cast<FixedVectorType>(U.getOperand(0)->getType());
3199 InputType && InputType->getNumElements() == 1) {
3200 // We are inserting an illegal fixed vector into an illegal
3201 // fixed vector, use the scalar as it is not a legal vector type
3202 // in LLT.
3203 return translateCopy(U, *U.getOperand(0), MIRBuilder);
3205 if (isa<FixedVectorType>(U.getOperand(0)->getType())) {
3206 // We are inserting an illegal fixed vector into a legal fixed
3207 // vector, use the scalar as it is not a legal vector type in
3208 // LLT.
3209 Register Idx = getOrCreateVReg(*CI);
3210 MIRBuilder.buildInsertVectorElement(Dst, Vec, Elt, Idx);
3211 return true;
3213 if (isa<ScalableVectorType>(U.getOperand(0)->getType())) {
3214 // We are inserting an illegal fixed vector into a scalable
3215 // vector, use a scalar element insert.
3216 LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
3217 Register Idx = getOrCreateVReg(*CI);
3218 auto ScaledIndex = MIRBuilder.buildMul(
3219 VecIdxTy, MIRBuilder.buildVScale(VecIdxTy, 1), Idx);
3220 MIRBuilder.buildInsertVectorElement(Dst, Vec, Elt, ScaledIndex);
3221 return true;
3225 MIRBuilder.buildInsertSubvector(
3226 getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)),
3227 getOrCreateVReg(*U.getOperand(1)), CI->getZExtValue());
3228 return true;
3231 bool IRTranslator::translateExtractElement(const User &U,
3232 MachineIRBuilder &MIRBuilder) {
3233 // If it is a <1 x Ty> vector, use the scalar as it is
3234 // not a legal vector type in LLT.
3235 if (const FixedVectorType *FVT =
3236 dyn_cast<FixedVectorType>(U.getOperand(0)->getType()))
3237 if (FVT->getNumElements() == 1)
3238 return translateCopy(U, *U.getOperand(0), MIRBuilder);
3240 Register Res = getOrCreateVReg(U);
3241 Register Val = getOrCreateVReg(*U.getOperand(0));
3242 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits();
3243 Register Idx;
3244 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
3245 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3246 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3247 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
3248 Idx = getOrCreateVReg(*NewIdxCI);
3251 if (!Idx)
3252 Idx = getOrCreateVReg(*U.getOperand(1));
3253 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
3254 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
3255 Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
3257 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
3258 return true;
3261 bool IRTranslator::translateExtractVector(const User &U,
3262 MachineIRBuilder &MIRBuilder) {
3263 Register Res = getOrCreateVReg(U);
3264 Register Vec = getOrCreateVReg(*U.getOperand(0));
3265 ConstantInt *CI = cast<ConstantInt>(U.getOperand(1));
3266 unsigned PreferredVecIdxWidth = TLI->getVectorIdxTy(*DL).getSizeInBits();
3268 // Resize Index to preferred index width.
3269 if (CI->getBitWidth() != PreferredVecIdxWidth) {
3270 APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
3271 CI = ConstantInt::get(CI->getContext(), NewIdx);
3274 // If it is a <1 x Ty> vector, we have to use other means.
3275 if (auto *ResultType = dyn_cast<FixedVectorType>(U.getType());
3276 ResultType && ResultType->getNumElements() == 1) {
3277 if (auto *InputType = dyn_cast<FixedVectorType>(U.getOperand(0)->getType());
3278 InputType && InputType->getNumElements() == 1) {
3279 // We are extracting an illegal fixed vector from an illegal fixed vector,
3280 // use the scalar as it is not a legal vector type in LLT.
3281 return translateCopy(U, *U.getOperand(0), MIRBuilder);
3283 if (isa<FixedVectorType>(U.getOperand(0)->getType())) {
3284 // We are extracting an illegal fixed vector from a legal fixed
3285 // vector, use the scalar as it is not a legal vector type in
3286 // LLT.
3287 Register Idx = getOrCreateVReg(*CI);
3288 MIRBuilder.buildExtractVectorElement(Res, Vec, Idx);
3289 return true;
3291 if (isa<ScalableVectorType>(U.getOperand(0)->getType())) {
3292 // We are extracting an illegal fixed vector from a scalable
3293 // vector, use a scalar element extract.
3294 LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
3295 Register Idx = getOrCreateVReg(*CI);
3296 auto ScaledIndex = MIRBuilder.buildMul(
3297 VecIdxTy, MIRBuilder.buildVScale(VecIdxTy, 1), Idx);
3298 MIRBuilder.buildExtractVectorElement(Res, Vec, ScaledIndex);
3299 return true;
3303 MIRBuilder.buildExtractSubvector(getOrCreateVReg(U),
3304 getOrCreateVReg(*U.getOperand(0)),
3305 CI->getZExtValue());
3306 return true;
3309 bool IRTranslator::translateShuffleVector(const User &U,
3310 MachineIRBuilder &MIRBuilder) {
3311 // A ShuffleVector that operates on scalable vectors is a splat vector where
3312 // the value of the splat vector is the 0th element of the first operand,
3313 // since the index mask operand is the zeroinitializer (undef and
3314 // poison are treated as zeroinitializer here).
3315 if (U.getOperand(0)->getType()->isScalableTy()) {
3316 Register Val = getOrCreateVReg(*U.getOperand(0));
3317 auto SplatVal = MIRBuilder.buildExtractVectorElementConstant(
3318 MRI->getType(Val).getElementType(), Val, 0);
3319 MIRBuilder.buildSplatVector(getOrCreateVReg(U), SplatVal);
3320 return true;
3323 ArrayRef<int> Mask;
3324 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
3325 Mask = SVI->getShuffleMask();
3326 else
3327 Mask = cast<ConstantExpr>(U).getShuffleMask();
3328 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
3329 MIRBuilder
3330 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
3331 {getOrCreateVReg(*U.getOperand(0)),
3332 getOrCreateVReg(*U.getOperand(1))})
3333 .addShuffleMask(MaskAlloc);
3334 return true;
3337 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
3338 const PHINode &PI = cast<PHINode>(U);
3340 SmallVector<MachineInstr *, 4> Insts;
3341 for (auto Reg : getOrCreateVRegs(PI)) {
3342 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
3343 Insts.push_back(MIB.getInstr());
3346 PendingPHIs.emplace_back(&PI, std::move(Insts));
3347 return true;
3350 bool IRTranslator::translateAtomicCmpXchg(const User &U,
3351 MachineIRBuilder &MIRBuilder) {
3352 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
3354 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL);
3356 auto Res = getOrCreateVRegs(I);
3357 Register OldValRes = Res[0];
3358 Register SuccessRes = Res[1];
3359 Register Addr = getOrCreateVReg(*I.getPointerOperand());
3360 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
3361 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
3363 MIRBuilder.buildAtomicCmpXchgWithSuccess(
3364 OldValRes, SuccessRes, Addr, Cmp, NewVal,
3365 *MF->getMachineMemOperand(
3366 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
3367 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3368 I.getSuccessOrdering(), I.getFailureOrdering()));
3369 return true;
3372 bool IRTranslator::translateAtomicRMW(const User &U,
3373 MachineIRBuilder &MIRBuilder) {
3374 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
3375 auto Flags = TLI->getAtomicMemOperandFlags(I, *DL);
3377 Register Res = getOrCreateVReg(I);
3378 Register Addr = getOrCreateVReg(*I.getPointerOperand());
3379 Register Val = getOrCreateVReg(*I.getValOperand());
3381 unsigned Opcode = 0;
3382 switch (I.getOperation()) {
3383 default:
3384 return false;
3385 case AtomicRMWInst::Xchg:
3386 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3387 break;
3388 case AtomicRMWInst::Add:
3389 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3390 break;
3391 case AtomicRMWInst::Sub:
3392 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3393 break;
3394 case AtomicRMWInst::And:
3395 Opcode = TargetOpcode::G_ATOMICRMW_AND;
3396 break;
3397 case AtomicRMWInst::Nand:
3398 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3399 break;
3400 case AtomicRMWInst::Or:
3401 Opcode = TargetOpcode::G_ATOMICRMW_OR;
3402 break;
3403 case AtomicRMWInst::Xor:
3404 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3405 break;
3406 case AtomicRMWInst::Max:
3407 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3408 break;
3409 case AtomicRMWInst::Min:
3410 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3411 break;
3412 case AtomicRMWInst::UMax:
3413 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3414 break;
3415 case AtomicRMWInst::UMin:
3416 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3417 break;
3418 case AtomicRMWInst::FAdd:
3419 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3420 break;
3421 case AtomicRMWInst::FSub:
3422 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3423 break;
3424 case AtomicRMWInst::FMax:
3425 Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3426 break;
3427 case AtomicRMWInst::FMin:
3428 Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3429 break;
3430 case AtomicRMWInst::UIncWrap:
3431 Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3432 break;
3433 case AtomicRMWInst::UDecWrap:
3434 Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3435 break;
3436 case AtomicRMWInst::USubCond:
3437 Opcode = TargetOpcode::G_ATOMICRMW_USUB_COND;
3438 break;
3439 case AtomicRMWInst::USubSat:
3440 Opcode = TargetOpcode::G_ATOMICRMW_USUB_SAT;
3441 break;
3444 MIRBuilder.buildAtomicRMW(
3445 Opcode, Res, Addr, Val,
3446 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3447 Flags, MRI->getType(Val), getMemOpAlign(I),
3448 I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3449 I.getOrdering()));
3450 return true;
3453 bool IRTranslator::translateFence(const User &U,
3454 MachineIRBuilder &MIRBuilder) {
3455 const FenceInst &Fence = cast<FenceInst>(U);
3456 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
3457 Fence.getSyncScopeID());
3458 return true;
3461 bool IRTranslator::translateFreeze(const User &U,
3462 MachineIRBuilder &MIRBuilder) {
3463 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
3464 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
3466 assert(DstRegs.size() == SrcRegs.size() &&
3467 "Freeze with different source and destination type?");
3469 for (unsigned I = 0; I < DstRegs.size(); ++I) {
3470 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
3473 return true;
3476 void IRTranslator::finishPendingPhis() {
3477 #ifndef NDEBUG
3478 DILocationVerifier Verifier;
3479 GISelObserverWrapper WrapperObserver(&Verifier);
3480 RAIIMFObsDelInstaller ObsInstall(*MF, WrapperObserver);
3481 #endif // ifndef NDEBUG
3482 for (auto &Phi : PendingPHIs) {
3483 const PHINode *PI = Phi.first;
3484 if (PI->getType()->isEmptyTy())
3485 continue;
3486 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3487 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3488 EntryBuilder->setDebugLoc(PI->getDebugLoc());
3489 #ifndef NDEBUG
3490 Verifier.setCurrentInst(PI);
3491 #endif // ifndef NDEBUG
3493 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3494 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3495 auto IRPred = PI->getIncomingBlock(i);
3496 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3497 for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3498 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3499 continue;
3500 SeenPreds.insert(Pred);
3501 for (unsigned j = 0; j < ValRegs.size(); ++j) {
3502 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3503 MIB.addUse(ValRegs[j]);
3504 MIB.addMBB(Pred);
3511 void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList,
3512 const DILocalVariable *Variable,
3513 const DIExpression *Expression,
3514 const DebugLoc &DL,
3515 MachineIRBuilder &MIRBuilder) {
3516 assert(Variable->isValidLocationForIntrinsic(DL) &&
3517 "Expected inlined-at fields to agree");
3518 // Act as if we're handling a debug intrinsic.
3519 MIRBuilder.setDebugLoc(DL);
3521 if (!V || HasArgList) {
3522 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
3523 // terminate any prior location.
3524 MIRBuilder.buildIndirectDbgValue(0, Variable, Expression);
3525 return;
3528 if (const auto *CI = dyn_cast<Constant>(V)) {
3529 MIRBuilder.buildConstDbgValue(*CI, Variable, Expression);
3530 return;
3533 if (auto *AI = dyn_cast<AllocaInst>(V);
3534 AI && AI->isStaticAlloca() && Expression->startsWithDeref()) {
3535 // If the value is an alloca and the expression starts with a
3536 // dereference, track a stack slot instead of a register, as registers
3537 // may be clobbered.
3538 auto ExprOperands = Expression->getElements();
3539 auto *ExprDerefRemoved =
3540 DIExpression::get(AI->getContext(), ExprOperands.drop_front());
3541 MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable,
3542 ExprDerefRemoved);
3543 return;
3545 if (translateIfEntryValueArgument(false, V, Variable, Expression, DL,
3546 MIRBuilder))
3547 return;
3548 for (Register Reg : getOrCreateVRegs(*V)) {
3549 // FIXME: This does not handle register-indirect values at offset 0. The
3550 // direct/indirect thing shouldn't really be handled by something as
3551 // implicit as reg+noreg vs reg+imm in the first place, but it seems
3552 // pretty baked in right now.
3553 MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression);
3557 void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList,
3558 const DILocalVariable *Variable,
3559 const DIExpression *Expression,
3560 const DebugLoc &DL,
3561 MachineIRBuilder &MIRBuilder) {
3562 if (!Address || isa<UndefValue>(Address)) {
3563 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n");
3564 return;
3567 assert(Variable->isValidLocationForIntrinsic(DL) &&
3568 "Expected inlined-at fields to agree");
3569 auto AI = dyn_cast<AllocaInst>(Address);
3570 if (AI && AI->isStaticAlloca()) {
3571 // Static allocas are tracked at the MF level, no need for DBG_VALUE
3572 // instructions (in fact, they get ignored if they *do* exist).
3573 MF->setVariableDbgInfo(Variable, Expression,
3574 getOrCreateFrameIndex(*AI), DL);
3575 return;
3578 if (translateIfEntryValueArgument(true, Address, Variable,
3579 Expression, DL,
3580 MIRBuilder))
3581 return;
3583 // A dbg.declare describes the address of a source variable, so lower it
3584 // into an indirect DBG_VALUE.
3585 MIRBuilder.setDebugLoc(DL);
3586 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
3587 Variable, Expression);
3588 return;
3591 void IRTranslator::translateDbgInfo(const Instruction &Inst,
3592 MachineIRBuilder &MIRBuilder) {
3593 for (DbgRecord &DR : Inst.getDbgRecordRange()) {
3594 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3595 MIRBuilder.setDebugLoc(DLR->getDebugLoc());
3596 assert(DLR->getLabel() && "Missing label");
3597 assert(DLR->getLabel()->isValidLocationForIntrinsic(
3598 MIRBuilder.getDebugLoc()) &&
3599 "Expected inlined-at fields to agree");
3600 MIRBuilder.buildDbgLabel(DLR->getLabel());
3601 continue;
3603 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3604 const DILocalVariable *Variable = DVR.getVariable();
3605 const DIExpression *Expression = DVR.getExpression();
3606 Value *V = DVR.getVariableLocationOp(0);
3607 if (DVR.isDbgDeclare())
3608 translateDbgDeclareRecord(V, DVR.hasArgList(), Variable, Expression,
3609 DVR.getDebugLoc(), MIRBuilder);
3610 else
3611 translateDbgValueRecord(V, DVR.hasArgList(), Variable, Expression,
3612 DVR.getDebugLoc(), MIRBuilder);
3616 bool IRTranslator::translate(const Instruction &Inst) {
3617 CurBuilder->setDebugLoc(Inst.getDebugLoc());
3618 CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3619 CurBuilder->setMMRAMetadata(Inst.getMetadata(LLVMContext::MD_mmra));
3621 if (TLI->fallBackToDAGISel(Inst))
3622 return false;
3624 switch (Inst.getOpcode()) {
3625 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3626 case Instruction::OPCODE: \
3627 return translate##OPCODE(Inst, *CurBuilder.get());
3628 #include "llvm/IR/Instruction.def"
3629 default:
3630 return false;
3634 bool IRTranslator::translate(const Constant &C, Register Reg) {
3635 // We only emit constants into the entry block from here. To prevent jumpy
3636 // debug behaviour remove debug line.
3637 if (auto CurrInstDL = CurBuilder->getDL())
3638 EntryBuilder->setDebugLoc(DebugLoc());
3640 if (auto CI = dyn_cast<ConstantInt>(&C))
3641 EntryBuilder->buildConstant(Reg, *CI);
3642 else if (auto CF = dyn_cast<ConstantFP>(&C))
3643 EntryBuilder->buildFConstant(Reg, *CF);
3644 else if (isa<UndefValue>(C))
3645 EntryBuilder->buildUndef(Reg);
3646 else if (isa<ConstantPointerNull>(C))
3647 EntryBuilder->buildConstant(Reg, 0);
3648 else if (auto GV = dyn_cast<GlobalValue>(&C))
3649 EntryBuilder->buildGlobalValue(Reg, GV);
3650 else if (auto CPA = dyn_cast<ConstantPtrAuth>(&C)) {
3651 Register Addr = getOrCreateVReg(*CPA->getPointer());
3652 Register AddrDisc = getOrCreateVReg(*CPA->getAddrDiscriminator());
3653 EntryBuilder->buildConstantPtrAuth(Reg, CPA, Addr, AddrDisc);
3654 } else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3655 Constant &Elt = *CAZ->getElementValue(0u);
3656 if (isa<ScalableVectorType>(CAZ->getType())) {
3657 EntryBuilder->buildSplatVector(Reg, getOrCreateVReg(Elt));
3658 return true;
3660 // Return the scalar if it is a <1 x Ty> vector.
3661 unsigned NumElts = CAZ->getElementCount().getFixedValue();
3662 if (NumElts == 1)
3663 return translateCopy(C, Elt, *EntryBuilder);
3664 // All elements are zero so we can just use the first one.
3665 EntryBuilder->buildSplatBuildVector(Reg, getOrCreateVReg(Elt));
3666 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3667 // Return the scalar if it is a <1 x Ty> vector.
3668 if (CV->getNumElements() == 1)
3669 return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3670 SmallVector<Register, 4> Ops;
3671 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3672 Constant &Elt = *CV->getElementAsConstant(i);
3673 Ops.push_back(getOrCreateVReg(Elt));
3675 EntryBuilder->buildBuildVector(Reg, Ops);
3676 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3677 switch(CE->getOpcode()) {
3678 #define HANDLE_INST(NUM, OPCODE, CLASS) \
3679 case Instruction::OPCODE: \
3680 return translate##OPCODE(*CE, *EntryBuilder.get());
3681 #include "llvm/IR/Instruction.def"
3682 default:
3683 return false;
3685 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3686 if (CV->getNumOperands() == 1)
3687 return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3688 SmallVector<Register, 4> Ops;
3689 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3690 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3692 EntryBuilder->buildBuildVector(Reg, Ops);
3693 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3694 EntryBuilder->buildBlockAddress(Reg, BA);
3695 } else
3696 return false;
3698 return true;
3701 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3702 MachineBasicBlock &MBB) {
3703 for (auto &BTB : SL->BitTestCases) {
3704 // Emit header first, if it wasn't already emitted.
3705 if (!BTB.Emitted)
3706 emitBitTestHeader(BTB, BTB.Parent);
3708 BranchProbability UnhandledProb = BTB.Prob;
3709 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3710 UnhandledProb -= BTB.Cases[j].ExtraProb;
3711 // Set the current basic block to the mbb we wish to insert the code into
3712 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3713 // If all cases cover a contiguous range, it is not necessary to jump to
3714 // the default block after the last bit test fails. This is because the
3715 // range check during bit test header creation has guaranteed that every
3716 // case here doesn't go outside the range. In this case, there is no need
3717 // to perform the last bit test, as it will always be true. Instead, make
3718 // the second-to-last bit-test fall through to the target of the last bit
3719 // test, and delete the last bit test.
3721 MachineBasicBlock *NextMBB;
3722 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3723 // Second-to-last bit-test with contiguous range: fall through to the
3724 // target of the final bit test.
3725 NextMBB = BTB.Cases[j + 1].TargetBB;
3726 } else if (j + 1 == ej) {
3727 // For the last bit test, fall through to Default.
3728 NextMBB = BTB.Default;
3729 } else {
3730 // Otherwise, fall through to the next bit test.
3731 NextMBB = BTB.Cases[j + 1].ThisBB;
3734 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3736 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3737 // We need to record the replacement phi edge here that normally
3738 // happens in emitBitTestCase before we delete the case, otherwise the
3739 // phi edge will be lost.
3740 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3741 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3742 MBB);
3743 // Since we're not going to use the final bit test, remove it.
3744 BTB.Cases.pop_back();
3745 break;
3748 // This is "default" BB. We have two jumps to it. From "header" BB and from
3749 // last "case" BB, unless the latter was skipped.
3750 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3751 BTB.Default->getBasicBlock()};
3752 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3753 if (!BTB.ContiguousRange) {
3754 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3757 SL->BitTestCases.clear();
3759 for (auto &JTCase : SL->JTCases) {
3760 // Emit header first, if it wasn't already emitted.
3761 if (!JTCase.first.Emitted)
3762 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3764 emitJumpTable(JTCase.second, JTCase.second.MBB);
3766 SL->JTCases.clear();
3768 for (auto &SwCase : SL->SwitchCases)
3769 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3770 SL->SwitchCases.clear();
3772 // Check if we need to generate stack-protector guard checks.
3773 StackProtector &SP = getAnalysis<StackProtector>();
3774 if (SP.shouldEmitSDCheck(BB)) {
3775 bool FunctionBasedInstrumentation =
3776 TLI->getSSPStackGuardCheck(*MF->getFunction().getParent());
3777 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3779 // Handle stack protector.
3780 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3781 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3782 return false;
3783 } else if (SPDescriptor.shouldEmitStackProtector()) {
3784 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3785 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3787 // Find the split point to split the parent mbb. At the same time copy all
3788 // physical registers used in the tail of parent mbb into virtual registers
3789 // before the split point and back into physical registers after the split
3790 // point. This prevents us needing to deal with Live-ins and many other
3791 // register allocation issues caused by us splitting the parent mbb. The
3792 // register allocator will clean up said virtual copies later on.
3793 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3794 ParentMBB, *MF->getSubtarget().getInstrInfo());
3796 // Splice the terminator of ParentMBB into SuccessMBB.
3797 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3798 ParentMBB->end());
3800 // Add compare/jump on neq/jump to the parent BB.
3801 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3802 return false;
3804 // CodeGen Failure MBB if we have not codegened it yet.
3805 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3806 if (FailureMBB->empty()) {
3807 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3808 return false;
3811 // Clear the Per-BB State.
3812 SPDescriptor.resetPerBBState();
3814 return true;
3817 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3818 MachineBasicBlock *ParentBB) {
3819 CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3820 // First create the loads to the guard/stack slot for the comparison.
3821 Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
3822 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3823 LLT PtrMemTy = getLLTForMVT(TLI->getPointerMemTy(*DL));
3825 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3826 int FI = MFI.getStackProtectorIndex();
3828 Register Guard;
3829 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3830 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3831 Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext()));
3833 // Generate code to load the content of the guard slot.
3834 Register GuardVal =
3835 CurBuilder
3836 ->buildLoad(PtrMemTy, StackSlotPtr,
3837 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3838 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3839 .getReg(0);
3841 if (TLI->useStackGuardXorFP()) {
3842 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3843 return false;
3846 // Retrieve guard check function, nullptr if instrumentation is inlined.
3847 if (const Function *GuardCheckFn = TLI->getSSPStackGuardCheck(M)) {
3848 // This path is currently untestable on GlobalISel, since the only platform
3849 // that needs this seems to be Windows, and we fall back on that currently.
3850 // The code still lives here in case that changes.
3851 // Silence warning about unused variable until the code below that uses
3852 // 'GuardCheckFn' is enabled.
3853 (void)GuardCheckFn;
3854 return false;
3855 #if 0
3856 // The target provides a guard check function to validate the guard value.
3857 // Generate a call to that function with the content of the guard slot as
3858 // argument.
3859 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3860 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3861 ISD::ArgFlagsTy Flags;
3862 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3863 Flags.setInReg();
3864 CallLowering::ArgInfo GuardArgInfo(
3865 {GuardVal, FnTy->getParamType(0), {Flags}});
3867 CallLowering::CallLoweringInfo Info;
3868 Info.OrigArgs.push_back(GuardArgInfo);
3869 Info.CallConv = GuardCheckFn->getCallingConv();
3870 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3871 Info.OrigRet = {Register(), FnTy->getReturnType()};
3872 if (!CLI->lowerCall(MIRBuilder, Info)) {
3873 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3874 return false;
3876 return true;
3877 #endif
3880 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3881 // Otherwise, emit a volatile load to retrieve the stack guard value.
3882 if (TLI->useLoadStackGuardNode(*ParentBB->getBasicBlock()->getModule())) {
3883 Guard =
3884 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3885 getStackGuard(Guard, *CurBuilder);
3886 } else {
3887 // TODO: test using android subtarget when we support @llvm.thread.pointer.
3888 const Value *IRGuard = TLI->getSDagStackGuard(M);
3889 Register GuardPtr = getOrCreateVReg(*IRGuard);
3891 Guard = CurBuilder
3892 ->buildLoad(PtrMemTy, GuardPtr,
3893 MachinePointerInfo::getFixedStack(*MF, FI), Align,
3894 MachineMemOperand::MOLoad |
3895 MachineMemOperand::MOVolatile)
3896 .getReg(0);
3899 // Perform the comparison.
3900 auto Cmp =
3901 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3902 // If the guard/stackslot do not equal, branch to failure MBB.
3903 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3904 // Otherwise branch to success MBB.
3905 CurBuilder->buildBr(*SPD.getSuccessMBB());
3906 return true;
3909 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3910 MachineBasicBlock *FailureBB) {
3911 CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3913 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3914 const char *Name = TLI->getLibcallName(Libcall);
3916 CallLowering::CallLoweringInfo Info;
3917 Info.CallConv = TLI->getLibcallCallingConv(Libcall);
3918 Info.Callee = MachineOperand::CreateES(Name);
3919 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3921 if (!CLI->lowerCall(*CurBuilder, Info)) {
3922 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3923 return false;
3926 // Emit a trap instruction if we are required to do so.
3927 const TargetOptions &TargetOpts = TLI->getTargetMachine().Options;
3928 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3929 CurBuilder->buildInstr(TargetOpcode::G_TRAP);
3931 return true;
3934 void IRTranslator::finalizeFunction() {
3935 // Release the memory used by the different maps we
3936 // needed during the translation.
3937 PendingPHIs.clear();
3938 VMap.reset();
3939 FrameIndices.clear();
3940 MachinePreds.clear();
3941 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3942 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3943 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3944 EntryBuilder.reset();
3945 CurBuilder.reset();
3946 FuncInfo.clear();
3947 SPDescriptor.resetPerFunctionState();
3950 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3951 /// variadic musttail call.
3952 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3953 if (!IsVarArg)
3954 return false;
3956 // Walk the block backwards, because tail calls usually only appear at the end
3957 // of a block.
3958 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3959 const auto *CI = dyn_cast<CallInst>(&I);
3960 return CI && CI->isMustTailCall();
3964 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3965 MF = &CurMF;
3966 const Function &F = MF->getFunction();
3967 GISelCSEAnalysisWrapper &Wrapper =
3968 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3969 // Set the CSEConfig and run the analysis.
3970 GISelCSEInfo *CSEInfo = nullptr;
3971 TPC = &getAnalysis<TargetPassConfig>();
3972 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3973 ? EnableCSEInIRTranslator
3974 : TPC->isGISelCSEEnabled();
3975 TLI = MF->getSubtarget().getTargetLowering();
3977 if (EnableCSE) {
3978 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3979 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3980 EntryBuilder->setCSEInfo(CSEInfo);
3981 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3982 CurBuilder->setCSEInfo(CSEInfo);
3983 } else {
3984 EntryBuilder = std::make_unique<MachineIRBuilder>();
3985 CurBuilder = std::make_unique<MachineIRBuilder>();
3987 CLI = MF->getSubtarget().getCallLowering();
3988 CurBuilder->setMF(*MF);
3989 EntryBuilder->setMF(*MF);
3990 MRI = &MF->getRegInfo();
3991 DL = &F.getDataLayout();
3992 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3993 const TargetMachine &TM = MF->getTarget();
3994 TM.resetTargetOptions(F);
3995 EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F);
3996 FuncInfo.MF = MF;
3997 if (EnableOpts) {
3998 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3999 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
4000 } else {
4001 AA = nullptr;
4002 FuncInfo.BPI = nullptr;
4005 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
4006 MF->getFunction());
4007 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4008 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
4010 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
4011 SL->init(*TLI, TM, *DL);
4013 assert(PendingPHIs.empty() && "stale PHIs");
4015 // Targets which want to use big endian can enable it using
4016 // enableBigEndian()
4017 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
4018 // Currently we don't properly handle big endian code.
4019 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
4020 F.getSubprogram(), &F.getEntryBlock());
4021 R << "unable to translate in big endian mode";
4022 reportTranslationError(*MF, *TPC, *ORE, R);
4023 return false;
4026 // Release the per-function state when we return, whether we succeeded or not.
4027 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
4029 // Setup a separate basic-block for the arguments and constants
4030 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
4031 MF->push_back(EntryBB);
4032 EntryBuilder->setMBB(*EntryBB);
4034 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
4035 SwiftError.setFunction(CurMF);
4036 SwiftError.createEntriesInEntryBlock(DbgLoc);
4038 bool IsVarArg = F.isVarArg();
4039 bool HasMustTailInVarArgFn = false;
4041 // Create all blocks, in IR order, to preserve the layout.
4042 FuncInfo.MBBMap.resize(F.getMaxBlockNumber());
4043 for (const BasicBlock &BB: F) {
4044 auto *&MBB = FuncInfo.MBBMap[BB.getNumber()];
4046 MBB = MF->CreateMachineBasicBlock(&BB);
4047 MF->push_back(MBB);
4049 if (BB.hasAddressTaken())
4050 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
4052 if (!HasMustTailInVarArgFn)
4053 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
4056 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
4058 // Make our arguments/constants entry block fallthrough to the IR entry block.
4059 EntryBB->addSuccessor(&getMBB(F.front()));
4061 if (CLI->fallBackToDAGISel(*MF)) {
4062 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
4063 F.getSubprogram(), &F.getEntryBlock());
4064 R << "unable to lower function: "
4065 << ore::NV("Prototype", F.getFunctionType());
4066 reportTranslationError(*MF, *TPC, *ORE, R);
4067 return false;
4070 // Lower the actual args into this basic block.
4071 SmallVector<ArrayRef<Register>, 8> VRegArgs;
4072 for (const Argument &Arg: F.args()) {
4073 if (DL->getTypeStoreSize(Arg.getType()).isZero())
4074 continue; // Don't handle zero sized types.
4075 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
4076 VRegArgs.push_back(VRegs);
4078 if (Arg.hasSwiftErrorAttr()) {
4079 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
4080 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
4084 if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
4085 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
4086 F.getSubprogram(), &F.getEntryBlock());
4087 R << "unable to lower arguments: "
4088 << ore::NV("Prototype", F.getFunctionType());
4089 reportTranslationError(*MF, *TPC, *ORE, R);
4090 return false;
4093 // Need to visit defs before uses when translating instructions.
4094 GISelObserverWrapper WrapperObserver;
4095 if (EnableCSE && CSEInfo)
4096 WrapperObserver.addObserver(CSEInfo);
4098 ReversePostOrderTraversal<const Function *> RPOT(&F);
4099 #ifndef NDEBUG
4100 DILocationVerifier Verifier;
4101 WrapperObserver.addObserver(&Verifier);
4102 #endif // ifndef NDEBUG
4103 RAIIMFObsDelInstaller ObsInstall(*MF, WrapperObserver);
4104 for (const BasicBlock *BB : RPOT) {
4105 MachineBasicBlock &MBB = getMBB(*BB);
4106 // Set the insertion point of all the following translations to
4107 // the end of this basic block.
4108 CurBuilder->setMBB(MBB);
4109 HasTailCall = false;
4110 for (const Instruction &Inst : *BB) {
4111 // If we translated a tail call in the last step, then we know
4112 // everything after the call is either a return, or something that is
4113 // handled by the call itself. (E.g. a lifetime marker or assume
4114 // intrinsic.) In this case, we should stop translating the block and
4115 // move on.
4116 if (HasTailCall)
4117 break;
4118 #ifndef NDEBUG
4119 Verifier.setCurrentInst(&Inst);
4120 #endif // ifndef NDEBUG
4122 // Translate any debug-info attached to the instruction.
4123 translateDbgInfo(Inst, *CurBuilder);
4125 if (translate(Inst))
4126 continue;
4128 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
4129 Inst.getDebugLoc(), BB);
4130 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
4132 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
4133 std::string InstStrStorage;
4134 raw_string_ostream InstStr(InstStrStorage);
4135 InstStr << Inst;
4137 R << ": '" << InstStrStorage << "'";
4140 reportTranslationError(*MF, *TPC, *ORE, R);
4141 return false;
4144 if (!finalizeBasicBlock(*BB, MBB)) {
4145 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
4146 BB->getTerminator()->getDebugLoc(), BB);
4147 R << "unable to translate basic block";
4148 reportTranslationError(*MF, *TPC, *ORE, R);
4149 return false;
4152 #ifndef NDEBUG
4153 WrapperObserver.removeObserver(&Verifier);
4154 #endif
4157 finishPendingPhis();
4159 SwiftError.propagateVRegs();
4161 // Merge the argument lowering and constants block with its single
4162 // successor, the LLVM-IR entry block. We want the basic block to
4163 // be maximal.
4164 assert(EntryBB->succ_size() == 1 &&
4165 "Custom BB used for lowering should have only one successor");
4166 // Get the successor of the current entry block.
4167 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
4168 assert(NewEntryBB.pred_size() == 1 &&
4169 "LLVM-IR entry block has a predecessor!?");
4170 // Move all the instruction from the current entry block to the
4171 // new entry block.
4172 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
4173 EntryBB->end());
4175 // Update the live-in information for the new entry block.
4176 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
4177 NewEntryBB.addLiveIn(LiveIn);
4178 NewEntryBB.sortUniqueLiveIns();
4180 // Get rid of the now empty basic block.
4181 EntryBB->removeSuccessor(&NewEntryBB);
4182 MF->remove(EntryBB);
4183 MF->deleteMachineBasicBlock(EntryBB);
4185 assert(&MF->front() == &NewEntryBB &&
4186 "New entry wasn't next in the list of basic block!");
4188 // Initialize stack protector information.
4189 StackProtector &SP = getAnalysis<StackProtector>();
4190 SP.copyToMachineFrameInfo(MF->getFrameInfo());
4192 return false;