1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
49 #define DEBUG_TYPE "regbankselect"
53 static cl::opt
<RegBankSelect::Mode
> RegBankSelectMode(
54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden
, cl::Optional
,
55 cl::values(clEnumValN(RegBankSelect::Mode::Fast
, "regbankselect-fast",
56 "Run the Fast mode (default mapping)"),
57 clEnumValN(RegBankSelect::Mode::Greedy
, "regbankselect-greedy",
58 "Use the Greedy mode (best local mapping)")));
60 char RegBankSelect::ID
= 0;
62 INITIALIZE_PASS_BEGIN(RegBankSelect
, DEBUG_TYPE
,
63 "Assign register bank of generic virtual registers",
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass
)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass
)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
68 INITIALIZE_PASS_END(RegBankSelect
, DEBUG_TYPE
,
69 "Assign register bank of generic virtual registers", false,
72 RegBankSelect::RegBankSelect(Mode RunningMode
)
73 : MachineFunctionPass(ID
), OptMode(RunningMode
) {
74 if (RegBankSelectMode
.getNumOccurrences() != 0) {
75 OptMode
= RegBankSelectMode
;
76 if (RegBankSelectMode
!= RunningMode
)
77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
81 void RegBankSelect::init(MachineFunction
&MF
) {
82 RBI
= MF
.getSubtarget().getRegBankInfo();
83 assert(RBI
&& "Cannot work without RegisterBankInfo");
84 MRI
= &MF
.getRegInfo();
85 TRI
= MF
.getSubtarget().getRegisterInfo();
86 TPC
= &getAnalysis
<TargetPassConfig
>();
87 if (OptMode
!= Mode::Fast
) {
88 MBFI
= &getAnalysis
<MachineBlockFrequencyInfoWrapperPass
>().getMBFI();
89 MBPI
= &getAnalysis
<MachineBranchProbabilityInfoWrapperPass
>().getMBPI();
95 MORE
= std::make_unique
<MachineOptimizationRemarkEmitter
>(MF
, MBFI
);
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage
&AU
) const {
99 if (OptMode
!= Mode::Fast
) {
100 // We could preserve the information from these two analysis but
101 // the APIs do not allow to do so yet.
102 AU
.addRequired
<MachineBlockFrequencyInfoWrapperPass
>();
103 AU
.addRequired
<MachineBranchProbabilityInfoWrapperPass
>();
105 AU
.addRequired
<TargetPassConfig
>();
106 getSelectionDAGFallbackAnalysisUsage(AU
);
107 MachineFunctionPass::getAnalysisUsage(AU
);
110 bool RegBankSelect::assignmentMatch(
111 Register Reg
, const RegisterBankInfo::ValueMapping
&ValMapping
,
112 bool &OnlyAssign
) const {
113 // By default we assume we will have to repair something.
115 // Each part of a break down needs to end up in a different register.
116 // In other word, Reg assignment does not match.
117 if (ValMapping
.NumBreakDowns
!= 1)
120 const RegisterBank
*CurRegBank
= RBI
->getRegBank(Reg
, *MRI
, *TRI
);
121 const RegisterBank
*DesiredRegBank
= ValMapping
.BreakDown
[0].RegBank
;
122 // Reg is free of assignment, a simple assignment will make the
123 // register bank to match.
124 OnlyAssign
= CurRegBank
== nullptr;
125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126 if (CurRegBank
) dbgs() << *CurRegBank
; else dbgs() << "none";
127 dbgs() << " against ";
128 assert(DesiredRegBank
&& "The mapping must be valid");
129 dbgs() << *DesiredRegBank
<< '\n';);
130 return CurRegBank
== DesiredRegBank
;
133 bool RegBankSelect::repairReg(
134 MachineOperand
&MO
, const RegisterBankInfo::ValueMapping
&ValMapping
,
135 RegBankSelect::RepairingPlacement
&RepairPt
,
136 const iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> &NewVRegs
) {
138 assert(ValMapping
.NumBreakDowns
== (unsigned)size(NewVRegs
) &&
139 "need new vreg for each breakdown");
141 // An empty range of new register means no repairing.
142 assert(!NewVRegs
.empty() && "We should not have to repair");
145 if (ValMapping
.NumBreakDowns
== 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 Register Src
= MO
.getReg();
149 Register Dst
= *NewVRegs
.begin();
151 // If we repair a definition, swap the source and destination for
156 assert((RepairPt
.getNumInsertPoints() == 1 || Dst
.isPhysical()) &&
157 "We are about to create several defs for Dst");
159 // Build the instruction used to repair, then clone it at the right
160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161 // same types because the type is a placeholder when this function is called.
162 MI
= MIRBuilder
.buildInstrNoInsert(TargetOpcode::COPY
)
165 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src
) << ':'
166 << printRegClassOrBank(Src
, *MRI
, TRI
)
167 << " to: " << printReg(Dst
) << ':'
168 << printRegClassOrBank(Dst
, *MRI
, TRI
) << '\n');
170 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
172 assert(ValMapping
.partsAllUniform() && "irregular breakdowns not supported");
174 LLT RegTy
= MRI
->getType(MO
.getReg());
177 if (RegTy
.isVector()) {
178 if (ValMapping
.NumBreakDowns
== RegTy
.getNumElements())
179 MergeOp
= TargetOpcode::G_BUILD_VECTOR
;
182 (ValMapping
.BreakDown
[0].Length
* ValMapping
.NumBreakDowns
==
183 RegTy
.getSizeInBits()) &&
184 (ValMapping
.BreakDown
[0].Length
% RegTy
.getScalarSizeInBits() ==
186 "don't understand this value breakdown");
188 MergeOp
= TargetOpcode::G_CONCAT_VECTORS
;
191 MergeOp
= TargetOpcode::G_MERGE_VALUES
;
194 MIRBuilder
.buildInstrNoInsert(MergeOp
)
195 .addDef(MO
.getReg());
197 for (Register SrcReg
: NewVRegs
)
198 MergeBuilder
.addUse(SrcReg
);
202 MachineInstrBuilder UnMergeBuilder
=
203 MIRBuilder
.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES
);
204 for (Register DefReg
: NewVRegs
)
205 UnMergeBuilder
.addDef(DefReg
);
207 UnMergeBuilder
.addUse(MO
.getReg());
212 if (RepairPt
.getNumInsertPoints() != 1)
213 report_fatal_error("need testcase to support multiple insertion points");
216 // Check if MI is legal. if not, we need to legalize all the
217 // instructions we are going to insert.
218 std::unique_ptr
<MachineInstr
*[]> NewInstrs(
219 new MachineInstr
*[RepairPt
.getNumInsertPoints()]);
222 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
227 CurMI
= MIRBuilder
.getMF().CloneMachineInstr(MI
);
228 InsertPt
->insert(*CurMI
);
229 NewInstrs
[Idx
++] = CurMI
;
233 // Legalize NewInstrs if need be.
237 uint64_t RegBankSelect::getRepairCost(
238 const MachineOperand
&MO
,
239 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
240 assert(MO
.isReg() && "We should only repair register operand");
241 assert(ValMapping
.NumBreakDowns
&& "Nothing to map??");
243 bool IsSameNumOfValues
= ValMapping
.NumBreakDowns
== 1;
244 const RegisterBank
*CurRegBank
= RBI
->getRegBank(MO
.getReg(), *MRI
, *TRI
);
245 // If MO does not have a register bank, we should have just been
246 // able to set one unless we have to break the value down.
247 assert(CurRegBank
|| MO
.isDef());
249 // Def: Val <- NewDefs
250 // Same number of values: copy
251 // Different number: Val = build_sequence Defs1, Defs2, ...
252 // Use: NewSources <- Val.
253 // Same number of values: copy.
254 // Different number: Src1, Src2, ... =
255 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256 // We should remember that this value is available somewhere else to
257 // coalesce the value.
259 if (ValMapping
.NumBreakDowns
!= 1)
260 return RBI
->getBreakDownCost(ValMapping
, CurRegBank
);
262 if (IsSameNumOfValues
) {
263 const RegisterBank
*DesiredRegBank
= ValMapping
.BreakDown
[0].RegBank
;
264 // If we repair a definition, swap the source and destination for
267 std::swap(CurRegBank
, DesiredRegBank
);
268 // TODO: It may be possible to actually avoid the copy.
269 // If we repair something where the source is defined by a copy
270 // and the source of that copy is on the right bank, we can reuse
273 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274 // = op RegToRepair<BankA>
275 // We can simply propagate AlternativeSrc instead of copying RegToRepair
276 // into a new virtual register.
277 // We would also need to propagate this information in the
278 // repairing placement.
279 unsigned Cost
= RBI
->copyCost(*DesiredRegBank
, *CurRegBank
,
280 RBI
->getSizeInBits(MO
.getReg(), *MRI
, *TRI
));
281 // TODO: use a dedicated constant for ImpossibleCost.
282 if (Cost
!= std::numeric_limits
<unsigned>::max())
284 // Return the legalization cost of that repairing.
286 return std::numeric_limits
<unsigned>::max();
289 const RegisterBankInfo::InstructionMapping
&RegBankSelect::findBestMapping(
290 MachineInstr
&MI
, RegisterBankInfo::InstructionMappings
&PossibleMappings
,
291 SmallVectorImpl
<RepairingPlacement
> &RepairPts
) {
292 assert(!PossibleMappings
.empty() &&
293 "Do not know how to map this instruction");
295 const RegisterBankInfo::InstructionMapping
*BestMapping
= nullptr;
296 MappingCost Cost
= MappingCost::ImpossibleCost();
297 SmallVector
<RepairingPlacement
, 4> LocalRepairPts
;
298 for (const RegisterBankInfo::InstructionMapping
*CurMapping
:
300 MappingCost CurCost
=
301 computeMapping(MI
, *CurMapping
, LocalRepairPts
, &Cost
);
302 if (CurCost
< Cost
) {
303 LLVM_DEBUG(dbgs() << "New best: " << CurCost
<< '\n');
305 BestMapping
= CurMapping
;
307 for (RepairingPlacement
&RepairPt
: LocalRepairPts
)
308 RepairPts
.emplace_back(std::move(RepairPt
));
311 if (!BestMapping
&& !TPC
->isGlobalISelAbortEnabled()) {
312 // If none of the mapping worked that means they are all impossible.
313 // Thus, pick the first one and set an impossible repairing point.
314 // It will trigger the failed isel mode.
315 BestMapping
= *PossibleMappings
.begin();
316 RepairPts
.emplace_back(
317 RepairingPlacement(MI
, 0, *TRI
, *this, RepairingPlacement::Impossible
));
319 assert(BestMapping
&& "No suitable mapping for instruction");
323 void RegBankSelect::tryAvoidingSplit(
324 RegBankSelect::RepairingPlacement
&RepairPt
, const MachineOperand
&MO
,
325 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
326 const MachineInstr
&MI
= *MO
.getParent();
327 assert(RepairPt
.hasSplit() && "We should not have to adjust for split");
328 // Splitting should only occur for PHIs or between terminators,
329 // because we only do local repairing.
330 assert((MI
.isPHI() || MI
.isTerminator()) && "Why do we split?");
332 assert(&MI
.getOperand(RepairPt
.getOpIdx()) == &MO
&&
333 "Repairing placement does not match operand");
335 // If we need splitting for phis, that means it is because we
336 // could not find an insertion point before the terminators of
337 // the predecessor block for this argument. In other words,
338 // the input value is defined by one of the terminators.
339 assert((!MI
.isPHI() || !MO
.isDef()) && "Need split for phi def?");
341 // We split to repair the use of a phi or a terminator.
343 if (MI
.isTerminator()) {
344 assert(&MI
!= &(*MI
.getParent()->getFirstTerminator()) &&
345 "Need to split for the first terminator?!");
347 // For the PHI case, the split may not be actually required.
348 // In the copy case, a phi is already a copy on the incoming edge,
349 // therefore there is no need to split.
350 if (ValMapping
.NumBreakDowns
== 1)
351 // This is a already a copy, there is nothing to do.
352 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Reassign
);
357 // At this point, we need to repair a defintion of a terminator.
359 // Technically we need to fix the def of MI on all outgoing
360 // edges of MI to keep the repairing local. In other words, we
361 // will create several definitions of the same register. This
362 // does not work for SSA unless that definition is a physical
364 // However, there are other cases where we can get away with
365 // that while still keeping the repairing local.
366 assert(MI
.isTerminator() && MO
.isDef() &&
367 "This code is for the def of a terminator");
369 // Since we use RPO traversal, if we need to repair a definition
370 // this means this definition could be:
371 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
372 // uses of a phi.), or
373 // 2. Part of a target specific instruction (i.e., the target applied
374 // some register class constraints when creating the instruction.)
375 // If the constraints come for #2, the target said that another mapping
376 // is supported so we may just drop them. Indeed, if we do not change
377 // the number of registers holding that value, the uses will get fixed
378 // when we get to them.
379 // Uses in PHIs may have already been proceeded though.
380 // If the constraints come for #1, then, those are weak constraints and
381 // no actual uses may rely on them. However, the problem remains mainly
382 // the same as for #2. If the value stays in one register, we could
383 // just switch the register bank of the definition, but we would need to
384 // account for a repairing cost for each phi we silently change.
386 // In any case, if the value needs to be broken down into several
387 // registers, the repairing is not local anymore as we need to patch
388 // every uses to rebuild the value in just one register.
391 // - If the value is in a physical register, we can do the split and
393 // Otherwise if the value is in a virtual register:
394 // - If the value remains in one register, we do not have to split
395 // just switching the register bank would do, but we need to account
396 // in the repairing cost all the phi we changed.
397 // - If the value spans several registers, then we cannot do a local
400 // Check if this is a physical or virtual register.
401 Register Reg
= MO
.getReg();
402 if (Reg
.isPhysical()) {
403 // We are going to split every outgoing edges.
404 // Check that this is possible.
405 // FIXME: The machine representation is currently broken
406 // since it also several terminators in one basic block.
407 // Because of that we would technically need a way to get
408 // the targets of just one terminator to know which edges
410 // Assert that we do not hit the ill-formed representation.
412 // If there are other terminators before that one, some of
413 // the outgoing edges may not be dominated by this definition.
414 assert(&MI
== &(*MI
.getParent()->getFirstTerminator()) &&
415 "Do not know which outgoing edges are relevant");
416 const MachineInstr
*Next
= MI
.getNextNode();
417 assert((!Next
|| Next
->isUnconditionalBranch()) &&
418 "Do not know where each terminator ends up");
420 // If the next terminator uses Reg, this means we have
421 // to split right after MI and thus we need a way to ask
422 // which outgoing edges are affected.
423 assert(!Next
->readsRegister(Reg
, /*TRI=*/nullptr) &&
424 "Need to split between terminators");
425 // We will split all the edges and repair there.
427 // This is a virtual register defined by a terminator.
428 if (ValMapping
.NumBreakDowns
== 1) {
429 // There is nothing to repair, but we may actually lie on
430 // the repairing cost because of the PHIs already proceeded
431 // as already stated.
432 // Though the code will be correct.
433 assert(false && "Repairing cost may not be accurate");
435 // We need to do non-local repairing. Basically, patch all
436 // the uses (i.e., phis) that we already proceeded.
437 // For now, just say this mapping is not possible.
438 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Impossible
);
443 RegBankSelect::MappingCost
RegBankSelect::computeMapping(
444 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
445 SmallVectorImpl
<RepairingPlacement
> &RepairPts
,
446 const RegBankSelect::MappingCost
*BestCost
) {
447 assert((MBFI
|| !BestCost
) && "Costs comparison require MBFI");
449 if (!InstrMapping
.isValid())
450 return MappingCost::ImpossibleCost();
452 // If mapped with InstrMapping, MI will have the recorded cost.
453 MappingCost
Cost(MBFI
? MBFI
->getBlockFreq(MI
.getParent())
454 : BlockFrequency(1));
455 bool Saturated
= Cost
.addLocalCost(InstrMapping
.getCost());
456 assert(!Saturated
&& "Possible mapping saturated the cost");
457 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI
);
458 LLVM_DEBUG(dbgs() << "With: " << InstrMapping
<< '\n');
460 if (BestCost
&& Cost
> *BestCost
) {
461 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
464 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
466 // Moreover, to realize this mapping, the register bank of each operand must
467 // match this mapping. In other words, we may need to locally reassign the
468 // register banks. Account for that repairing cost as well.
469 // In this context, local means in the surrounding of MI.
470 for (unsigned OpIdx
= 0, EndOpIdx
= InstrMapping
.getNumOperands();
471 OpIdx
!= EndOpIdx
; ++OpIdx
) {
472 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
475 Register Reg
= MO
.getReg();
478 LLT Ty
= MRI
.getType(Reg
);
482 LLVM_DEBUG(dbgs() << "Opd" << OpIdx
<< '\n');
483 const RegisterBankInfo::ValueMapping
&ValMapping
=
484 InstrMapping
.getOperandMapping(OpIdx
);
485 // If Reg is already properly mapped, this is free.
487 if (assignmentMatch(Reg
, ValMapping
, Assign
)) {
488 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
492 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
493 RepairPts
.emplace_back(RepairingPlacement(MI
, OpIdx
, *TRI
, *this,
494 RepairingPlacement::Reassign
));
498 // Find the insertion point for the repairing code.
499 RepairPts
.emplace_back(
500 RepairingPlacement(MI
, OpIdx
, *TRI
, *this, RepairingPlacement::Insert
));
501 RepairingPlacement
&RepairPt
= RepairPts
.back();
503 // If we need to split a basic block to materialize this insertion point,
504 // we may give a higher cost to this mapping.
505 // Nevertheless, we may get away with the split, so try that first.
506 if (RepairPt
.hasSplit())
507 tryAvoidingSplit(RepairPt
, MO
, ValMapping
);
509 // Check that the materialization of the repairing is possible.
510 if (!RepairPt
.canMaterialize()) {
511 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
512 return MappingCost::ImpossibleCost();
515 // Account for the split cost and repair cost.
516 // Unless the cost is already saturated or we do not care about the cost.
517 if (!BestCost
|| Saturated
)
520 // To get accurate information we need MBFI and MBPI.
521 // Thus, if we end up here this information should be here.
522 assert(MBFI
&& MBPI
&& "Cost computation requires MBFI and MBPI");
524 // FIXME: We will have to rework the repairing cost model.
525 // The repairing cost depends on the register bank that MO has.
526 // However, when we break down the value into different values,
527 // MO may not have a register bank while still needing repairing.
528 // For the fast mode, we don't compute the cost so that is fine,
529 // but still for the repairing code, we will have to make a choice.
530 // For the greedy mode, we should choose greedily what is the best
531 // choice based on the next use of MO.
533 // Sums up the repairing cost of MO at each insertion point.
534 uint64_t RepairCost
= getRepairCost(MO
, ValMapping
);
536 // This is an impossible to repair cost.
537 if (RepairCost
== std::numeric_limits
<unsigned>::max())
538 return MappingCost::ImpossibleCost();
540 // Bias used for splitting: 5%.
541 const uint64_t PercentageForBias
= 5;
542 uint64_t Bias
= (RepairCost
* PercentageForBias
+ 99) / 100;
543 // We should not need more than a couple of instructions to repair
544 // an assignment. In other words, the computation should not
545 // overflow because the repairing cost is free of basic block
547 assert(((RepairCost
< RepairCost
* PercentageForBias
) &&
548 (RepairCost
* PercentageForBias
<
549 RepairCost
* PercentageForBias
+ 99)) &&
550 "Repairing involves more than a billion of instructions?!");
551 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
552 assert(InsertPt
->canMaterialize() && "We should not have made it here");
553 // We will applied some basic block frequency and those uses uint64_t.
554 if (!InsertPt
->isSplit())
555 Saturated
= Cost
.addLocalCost(RepairCost
);
557 uint64_t CostForInsertPt
= RepairCost
;
558 // Again we shouldn't overflow here givent that
559 // CostForInsertPt is frequency free at this point.
560 assert(CostForInsertPt
+ Bias
> CostForInsertPt
&&
561 "Repairing + split bias overflows");
562 CostForInsertPt
+= Bias
;
563 uint64_t PtCost
= InsertPt
->frequency(*this) * CostForInsertPt
;
564 // Check if we just overflowed.
565 if ((Saturated
= PtCost
< CostForInsertPt
))
568 Saturated
= Cost
.addNonLocalCost(PtCost
);
571 // Stop looking into what it takes to repair, this is already
573 if (BestCost
&& Cost
> *BestCost
) {
574 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
578 // No need to accumulate more cost information.
579 // We need to still gather the repairing information though.
584 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost
<< "\n");
588 bool RegBankSelect::applyMapping(
589 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
590 SmallVectorImpl
<RegBankSelect::RepairingPlacement
> &RepairPts
) {
591 // OpdMapper will hold all the information needed for the rewriting.
592 RegisterBankInfo::OperandsMapper
OpdMapper(MI
, InstrMapping
, *MRI
);
594 // First, place the repairing code.
595 for (RepairingPlacement
&RepairPt
: RepairPts
) {
596 if (!RepairPt
.canMaterialize() ||
597 RepairPt
.getKind() == RepairingPlacement::Impossible
)
599 assert(RepairPt
.getKind() != RepairingPlacement::None
&&
600 "This should not make its way in the list");
601 unsigned OpIdx
= RepairPt
.getOpIdx();
602 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
603 const RegisterBankInfo::ValueMapping
&ValMapping
=
604 InstrMapping
.getOperandMapping(OpIdx
);
605 Register Reg
= MO
.getReg();
607 switch (RepairPt
.getKind()) {
608 case RepairingPlacement::Reassign
:
609 assert(ValMapping
.NumBreakDowns
== 1 &&
610 "Reassignment should only be for simple mapping");
611 MRI
->setRegBank(Reg
, *ValMapping
.BreakDown
[0].RegBank
);
613 case RepairingPlacement::Insert
:
614 // Don't insert additional instruction for debug instruction.
615 if (MI
.isDebugInstr())
617 OpdMapper
.createVRegs(OpIdx
);
618 if (!repairReg(MO
, ValMapping
, RepairPt
, OpdMapper
.getVRegs(OpIdx
)))
622 llvm_unreachable("Other kind should not happen");
626 // Second, rewrite the instruction.
627 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper
<< '\n');
628 RBI
->applyMapping(MIRBuilder
, OpdMapper
);
633 bool RegBankSelect::assignInstr(MachineInstr
&MI
) {
634 LLVM_DEBUG(dbgs() << "Assign: " << MI
);
636 unsigned Opc
= MI
.getOpcode();
637 if (isPreISelGenericOptimizationHint(Opc
)) {
638 assert((Opc
== TargetOpcode::G_ASSERT_ZEXT
||
639 Opc
== TargetOpcode::G_ASSERT_SEXT
||
640 Opc
== TargetOpcode::G_ASSERT_ALIGN
) &&
641 "Unexpected hint opcode!");
642 // The only correct mapping for these is to always use the source register
644 const RegisterBank
*RB
=
645 RBI
->getRegBank(MI
.getOperand(1).getReg(), *MRI
, *TRI
);
646 // We can assume every instruction above this one has a selected register
648 assert(RB
&& "Expected source register to have a register bank?");
649 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
650 MRI
->setRegBank(MI
.getOperand(0).getReg(), *RB
);
654 // Remember the repairing placement for all the operands.
655 SmallVector
<RepairingPlacement
, 4> RepairPts
;
657 const RegisterBankInfo::InstructionMapping
*BestMapping
;
658 if (OptMode
== RegBankSelect::Mode::Fast
) {
659 BestMapping
= &RBI
->getInstrMapping(MI
);
660 MappingCost DefaultCost
= computeMapping(MI
, *BestMapping
, RepairPts
);
662 if (DefaultCost
== MappingCost::ImpossibleCost())
665 RegisterBankInfo::InstructionMappings PossibleMappings
=
666 RBI
->getInstrPossibleMappings(MI
);
667 if (PossibleMappings
.empty())
669 BestMapping
= &findBestMapping(MI
, PossibleMappings
, RepairPts
);
671 // Make sure the mapping is valid for MI.
672 assert(BestMapping
->verify(MI
) && "Invalid instruction mapping");
674 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping
<< '\n');
676 // After this call, MI may not be valid anymore.
678 return applyMapping(MI
, *BestMapping
, RepairPts
);
681 bool RegBankSelect::assignRegisterBanks(MachineFunction
&MF
) {
682 // Walk the function and assign register banks to all operands.
683 // Use a RPOT to make sure all registers are assigned before we choose
684 // the best mapping of the current instruction.
685 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
686 for (MachineBasicBlock
*MBB
: RPOT
) {
687 // Set a sensible insertion point so that subsequent calls to
689 MIRBuilder
.setMBB(*MBB
);
690 SmallVector
<MachineInstr
*> WorkList(
691 make_pointer_range(reverse(MBB
->instrs())));
693 while (!WorkList
.empty()) {
694 MachineInstr
&MI
= *WorkList
.pop_back_val();
696 // Ignore target-specific post-isel instructions: they should use proper
698 if (isTargetSpecificOpcode(MI
.getOpcode()) && !MI
.isPreISelOpcode())
701 // Ignore inline asm instructions: they should use physical
702 // registers/regclasses
703 if (MI
.isInlineAsm())
706 // Ignore IMPLICIT_DEF which must have a regclass.
707 if (MI
.isImplicitDef())
710 if (!assignInstr(MI
)) {
711 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
712 "unable to map instruction", MI
);
721 bool RegBankSelect::checkFunctionIsLegal(MachineFunction
&MF
) const {
723 if (!DisableGISelLegalityCheck
) {
724 if (const MachineInstr
*MI
= machineFunctionIsIllegal(MF
)) {
725 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
726 "instruction is not legal", *MI
);
734 bool RegBankSelect::runOnMachineFunction(MachineFunction
&MF
) {
735 // If the ISel pipeline failed, do not bother running that pass.
736 if (MF
.getProperties().hasProperty(
737 MachineFunctionProperties::Property::FailedISel
))
740 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF
.getName() << '\n');
741 const Function
&F
= MF
.getFunction();
742 Mode SaveOptMode
= OptMode
;
744 OptMode
= Mode::Fast
;
748 if (!checkFunctionIsLegal(MF
))
752 assignRegisterBanks(MF
);
754 OptMode
= SaveOptMode
;
758 //------------------------------------------------------------------------------
759 // Helper Classes Implementation
760 //------------------------------------------------------------------------------
761 RegBankSelect::RepairingPlacement::RepairingPlacement(
762 MachineInstr
&MI
, unsigned OpIdx
, const TargetRegisterInfo
&TRI
, Pass
&P
,
763 RepairingPlacement::RepairingKind Kind
)
764 // Default is, we are going to insert code to repair OpIdx.
765 : Kind(Kind
), OpIdx(OpIdx
),
766 CanMaterialize(Kind
!= RepairingKind::Impossible
), P(P
) {
767 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
768 assert(MO
.isReg() && "Trying to repair a non-reg operand");
770 if (Kind
!= RepairingKind::Insert
)
773 // Repairings for definitions happen after MI, uses happen before.
774 bool Before
= !MO
.isDef();
776 // Check if we are done with MI.
777 if (!MI
.isPHI() && !MI
.isTerminator()) {
778 addInsertPoint(MI
, Before
);
779 // We are done with the initialization.
783 // Now, look for the special cases.
785 // - PHI must be the first instructions:
786 // * Before, we have to split the related incoming edge.
787 // * After, move the insertion point past the last phi.
789 MachineBasicBlock::iterator It
= MI
.getParent()->getFirstNonPHI();
790 if (It
!= MI
.getParent()->end())
791 addInsertPoint(*It
, /*Before*/ true);
793 addInsertPoint(*(--It
), /*Before*/ false);
796 // We repair a use of a phi, we may need to split the related edge.
797 MachineBasicBlock
&Pred
= *MI
.getOperand(OpIdx
+ 1).getMBB();
798 // Check if we can move the insertion point prior to the
799 // terminators of the predecessor.
800 Register Reg
= MO
.getReg();
801 MachineBasicBlock::iterator It
= Pred
.getLastNonDebugInstr();
802 for (auto Begin
= Pred
.begin(); It
!= Begin
&& It
->isTerminator(); --It
)
803 if (It
->modifiesRegister(Reg
, &TRI
)) {
804 // We cannot hoist the repairing code in the predecessor.
806 addInsertPoint(Pred
, *MI
.getParent());
809 // At this point, we can insert in Pred.
811 // - If It is invalid, Pred is empty and we can insert in Pred
813 // - If It is valid, It is the first non-terminator, insert after It.
814 if (It
== Pred
.end())
815 addInsertPoint(Pred
, /*Beginning*/ false);
817 addInsertPoint(*It
, /*Before*/ false);
819 // - Terminators must be the last instructions:
820 // * Before, move the insert point before the first terminator.
821 // * After, we have to split the outcoming edges.
823 // Check whether Reg is defined by any terminator.
824 MachineBasicBlock::reverse_iterator It
= MI
;
825 auto REnd
= MI
.getParent()->rend();
827 for (; It
!= REnd
&& It
->isTerminator(); ++It
) {
828 assert(!It
->modifiesRegister(MO
.getReg(), &TRI
) &&
829 "copy insertion in middle of terminators not handled");
833 addInsertPoint(*MI
.getParent()->begin(), true);
837 // We are sure to be right before the first terminator.
838 addInsertPoint(*It
, /*Before*/ false);
841 // Make sure Reg is not redefined by other terminators, otherwise
842 // we do not know how to split.
843 for (MachineBasicBlock::iterator It
= MI
, End
= MI
.getParent()->end();
845 // The machine verifier should reject this kind of code.
846 assert(It
->modifiesRegister(MO
.getReg(), &TRI
) &&
847 "Do not know where to split");
848 // Split each outcoming edges.
849 MachineBasicBlock
&Src
= *MI
.getParent();
850 for (auto &Succ
: Src
.successors())
851 addInsertPoint(Src
, Succ
);
855 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr
&MI
,
857 addInsertPoint(*new InstrInsertPoint(MI
, Before
));
860 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&MBB
,
862 addInsertPoint(*new MBBInsertPoint(MBB
, Beginning
));
865 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&Src
,
866 MachineBasicBlock
&Dst
) {
867 addInsertPoint(*new EdgeInsertPoint(Src
, Dst
, P
));
870 void RegBankSelect::RepairingPlacement::addInsertPoint(
871 RegBankSelect::InsertPoint
&Point
) {
872 CanMaterialize
&= Point
.canMaterialize();
873 HasSplit
|= Point
.isSplit();
874 InsertPoints
.emplace_back(&Point
);
877 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr
&Instr
,
879 : Instr(Instr
), Before(Before
) {
880 // Since we do not support splitting, we do not need to update
881 // liveness and such, so do not do anything with P.
882 assert((!Before
|| !Instr
.isPHI()) &&
883 "Splitting before phis requires more points");
884 assert((!Before
|| !Instr
.getNextNode() || !Instr
.getNextNode()->isPHI()) &&
885 "Splitting between phis does not make sense");
888 void RegBankSelect::InstrInsertPoint::materialize() {
890 // Slice and return the beginning of the new block.
891 // If we need to split between the terminators, we theoritically
892 // need to know where the first and second set of terminators end
893 // to update the successors properly.
894 // Now, in pratice, we should have a maximum of 2 branch
895 // instructions; one conditional and one unconditional. Therefore
896 // we know how to update the successor by looking at the target of
897 // the unconditional branch.
898 // If we end up splitting at some point, then, we should update
899 // the liveness information and such. I.e., we would need to
901 // The machine verifier should actually make sure such cases
903 llvm_unreachable("Not yet implemented");
905 // Otherwise the insertion point is just the current or next
906 // instruction depending on Before. I.e., there is nothing to do
910 bool RegBankSelect::InstrInsertPoint::isSplit() const {
911 // If the insertion point is after a terminator, we need to split.
913 return Instr
.isTerminator();
914 // If we insert before an instruction that is after a terminator,
915 // we are still after a terminator.
916 return Instr
.getPrevNode() && Instr
.getPrevNode()->isTerminator();
919 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass
&P
) const {
920 // Even if we need to split, because we insert between terminators,
921 // this split has actually the same frequency as the instruction.
922 const auto *MBFIWrapper
=
923 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfoWrapperPass
>();
926 return MBFIWrapper
->getMBFI().getBlockFreq(Instr
.getParent()).getFrequency();
929 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass
&P
) const {
930 const auto *MBFIWrapper
=
931 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfoWrapperPass
>();
934 return MBFIWrapper
->getMBFI().getBlockFreq(&MBB
).getFrequency();
937 void RegBankSelect::EdgeInsertPoint::materialize() {
938 // If we end up repairing twice at the same place before materializing the
939 // insertion point, we may think we have to split an edge twice.
940 // We should have a factory for the insert point such that identical points
941 // are the same instance.
942 assert(Src
.isSuccessor(DstOrSplit
) && DstOrSplit
->isPredecessor(&Src
) &&
943 "This point has already been split");
944 MachineBasicBlock
*NewBB
= Src
.SplitCriticalEdge(DstOrSplit
, P
);
945 assert(NewBB
&& "Invalid call to materialize");
946 // We reuse the destination block to hold the information of the new block.
950 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass
&P
) const {
951 const auto *MBFIWrapper
=
952 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfoWrapperPass
>();
955 const auto *MBFI
= &MBFIWrapper
->getMBFI();
957 return MBFI
->getBlockFreq(DstOrSplit
).getFrequency();
960 P
.getAnalysisIfAvailable
<MachineBranchProbabilityInfoWrapperPass
>();
961 const MachineBranchProbabilityInfo
*MBPI
=
962 MBPIWrapper
? &MBPIWrapper
->getMBPI() : nullptr;
965 // The basic block will be on the edge.
966 return (MBFI
->getBlockFreq(&Src
) * MBPI
->getEdgeProbability(&Src
, DstOrSplit
))
970 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
971 // If this is not a critical edge, we should not have used this insert
972 // point. Indeed, either the successor or the predecessor should
974 assert(Src
.succ_size() > 1 && DstOrSplit
->pred_size() > 1 &&
975 "Edge is not critical");
976 return Src
.canSplitCriticalEdge(DstOrSplit
);
979 RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq
)
980 : LocalFreq(LocalFreq
.getFrequency()) {}
982 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost
) {
983 // Check if this overflows.
984 if (LocalCost
+ Cost
< LocalCost
) {
989 return isSaturated();
992 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost
) {
993 // Check if this overflows.
994 if (NonLocalCost
+ Cost
< NonLocalCost
) {
998 NonLocalCost
+= Cost
;
999 return isSaturated();
1002 bool RegBankSelect::MappingCost::isSaturated() const {
1003 return LocalCost
== UINT64_MAX
- 1 && NonLocalCost
== UINT64_MAX
&&
1004 LocalFreq
== UINT64_MAX
;
1007 void RegBankSelect::MappingCost::saturate() {
1008 *this = ImpossibleCost();
1012 RegBankSelect::MappingCost
RegBankSelect::MappingCost::ImpossibleCost() {
1013 return MappingCost(UINT64_MAX
, UINT64_MAX
, UINT64_MAX
);
1016 bool RegBankSelect::MappingCost::operator<(const MappingCost
&Cost
) const {
1017 // Sort out the easy cases.
1020 // If one is impossible to realize the other is cheaper unless it is
1021 // impossible as well.
1022 if ((*this == ImpossibleCost()) || (Cost
== ImpossibleCost()))
1023 return (*this == ImpossibleCost()) < (Cost
== ImpossibleCost());
1024 // If one is saturated the other is cheaper, unless it is saturated
1026 if (isSaturated() || Cost
.isSaturated())
1027 return isSaturated() < Cost
.isSaturated();
1028 // At this point we know both costs hold sensible values.
1030 // If both values have a different base frequency, there is no much
1031 // we can do but to scale everything.
1032 // However, if they have the same base frequency we can avoid making
1033 // complicated computation.
1034 uint64_t ThisLocalAdjust
;
1035 uint64_t OtherLocalAdjust
;
1036 if (LLVM_LIKELY(LocalFreq
== Cost
.LocalFreq
)) {
1038 // At this point, we know the local costs are comparable.
1039 // Do the case that do not involve potential overflow first.
1040 if (NonLocalCost
== Cost
.NonLocalCost
)
1041 // Since the non-local costs do not discriminate on the result,
1042 // just compare the local costs.
1043 return LocalCost
< Cost
.LocalCost
;
1045 // The base costs are comparable so we may only keep the relative
1046 // value to increase our chances of avoiding overflows.
1047 ThisLocalAdjust
= 0;
1048 OtherLocalAdjust
= 0;
1049 if (LocalCost
< Cost
.LocalCost
)
1050 OtherLocalAdjust
= Cost
.LocalCost
- LocalCost
;
1052 ThisLocalAdjust
= LocalCost
- Cost
.LocalCost
;
1054 ThisLocalAdjust
= LocalCost
;
1055 OtherLocalAdjust
= Cost
.LocalCost
;
1058 // The non-local costs are comparable, just keep the relative value.
1059 uint64_t ThisNonLocalAdjust
= 0;
1060 uint64_t OtherNonLocalAdjust
= 0;
1061 if (NonLocalCost
< Cost
.NonLocalCost
)
1062 OtherNonLocalAdjust
= Cost
.NonLocalCost
- NonLocalCost
;
1064 ThisNonLocalAdjust
= NonLocalCost
- Cost
.NonLocalCost
;
1065 // Scale everything to make them comparable.
1066 uint64_t ThisScaledCost
= ThisLocalAdjust
* LocalFreq
;
1067 // Check for overflow on that operation.
1068 bool ThisOverflows
= ThisLocalAdjust
&& (ThisScaledCost
< ThisLocalAdjust
||
1069 ThisScaledCost
< LocalFreq
);
1070 uint64_t OtherScaledCost
= OtherLocalAdjust
* Cost
.LocalFreq
;
1071 // Check for overflow on the last operation.
1072 bool OtherOverflows
=
1074 (OtherScaledCost
< OtherLocalAdjust
|| OtherScaledCost
< Cost
.LocalFreq
);
1075 // Add the non-local costs.
1076 ThisOverflows
|= ThisNonLocalAdjust
&&
1077 ThisScaledCost
+ ThisNonLocalAdjust
< ThisNonLocalAdjust
;
1078 ThisScaledCost
+= ThisNonLocalAdjust
;
1079 OtherOverflows
|= OtherNonLocalAdjust
&&
1080 OtherScaledCost
+ OtherNonLocalAdjust
< OtherNonLocalAdjust
;
1081 OtherScaledCost
+= OtherNonLocalAdjust
;
1082 // If both overflows, we cannot compare without additional
1083 // precision, e.g., APInt. Just give up on that case.
1084 if (ThisOverflows
&& OtherOverflows
)
1086 // If one overflows but not the other, we can still compare.
1087 if (ThisOverflows
|| OtherOverflows
)
1088 return ThisOverflows
< OtherOverflows
;
1089 // Otherwise, just compare the values.
1090 return ThisScaledCost
< OtherScaledCost
;
1093 bool RegBankSelect::MappingCost::operator==(const MappingCost
&Cost
) const {
1094 return LocalCost
== Cost
.LocalCost
&& NonLocalCost
== Cost
.NonLocalCost
&&
1095 LocalFreq
== Cost
.LocalFreq
;
1098 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1099 LLVM_DUMP_METHOD
void RegBankSelect::MappingCost::dump() const {
1105 void RegBankSelect::MappingCost::print(raw_ostream
&OS
) const {
1106 if (*this == ImpossibleCost()) {
1110 if (isSaturated()) {
1114 OS
<< LocalFreq
<< " * " << LocalCost
<< " + " << NonLocalCost
;