[RISCV] Add shrinkwrap test cases showing gaps in current impl
[llvm-project.git] / llvm / lib / CodeGen / InlineSpiller.cpp
blobe8f7c6850a507e5487c5b071e31b969e62596951
1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/LiveRangeEdit.h"
26 #include "llvm/CodeGen/LiveStacks.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineInstrBundle.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/Spiller.h"
39 #include "llvm/CodeGen/StackMaps.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/VirtRegMap.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <cassert>
54 #include <iterator>
55 #include <tuple>
56 #include <utility>
58 using namespace llvm;
60 #define DEBUG_TYPE "regalloc"
62 STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
63 STATISTIC(NumSnippets, "Number of spilled snippets");
64 STATISTIC(NumSpills, "Number of spills inserted");
65 STATISTIC(NumSpillsRemoved, "Number of spills removed");
66 STATISTIC(NumReloads, "Number of reloads inserted");
67 STATISTIC(NumReloadsRemoved, "Number of reloads removed");
68 STATISTIC(NumFolded, "Number of folded stack accesses");
69 STATISTIC(NumFoldedLoads, "Number of folded loads");
70 STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
72 static cl::opt<bool>
73 RestrictStatepointRemat("restrict-statepoint-remat",
74 cl::init(false), cl::Hidden,
75 cl::desc("Restrict remat for statepoint operands"));
77 namespace {
79 class HoistSpillHelper : private LiveRangeEdit::Delegate {
80 MachineFunction &MF;
81 LiveIntervals &LIS;
82 LiveStacks &LSS;
83 MachineDominatorTree &MDT;
84 VirtRegMap &VRM;
85 MachineRegisterInfo &MRI;
86 const TargetInstrInfo &TII;
87 const TargetRegisterInfo &TRI;
88 const MachineBlockFrequencyInfo &MBFI;
90 InsertPointAnalysis IPA;
92 // Map from StackSlot to the LiveInterval of the original register.
93 // Note the LiveInterval of the original register may have been deleted
94 // after it is spilled. We keep a copy here to track the range where
95 // spills can be moved.
96 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
98 // Map from pair of (StackSlot and Original VNI) to a set of spills which
99 // have the same stackslot and have equal values defined by Original VNI.
100 // These spills are mergeable and are hoist candidates.
101 using MergeableSpillsMap =
102 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
103 MergeableSpillsMap MergeableSpills;
105 /// This is the map from original register to a set containing all its
106 /// siblings. To hoist a spill to another BB, we need to find out a live
107 /// sibling there and use it as the source of the new spill.
108 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
110 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
111 MachineBasicBlock &BB, Register &LiveReg);
113 void rmRedundantSpills(
114 SmallPtrSet<MachineInstr *, 16> &Spills,
115 SmallVectorImpl<MachineInstr *> &SpillsToRm,
116 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
118 void getVisitOrders(
119 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
120 SmallVectorImpl<MachineDomTreeNode *> &Orders,
121 SmallVectorImpl<MachineInstr *> &SpillsToRm,
122 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
123 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
125 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
126 SmallPtrSet<MachineInstr *, 16> &Spills,
127 SmallVectorImpl<MachineInstr *> &SpillsToRm,
128 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
130 public:
131 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
132 VirtRegMap &vrm)
133 : MF(mf), LIS(pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS()),
134 LSS(pass.getAnalysis<LiveStacks>()),
135 MDT(pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()),
136 VRM(vrm), MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
137 TRI(*mf.getSubtarget().getRegisterInfo()),
138 MBFI(
139 pass.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()),
140 IPA(LIS, mf.getNumBlockIDs()) {}
142 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
143 unsigned Original);
144 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
145 void hoistAllSpills();
146 void LRE_DidCloneVirtReg(Register, Register) override;
149 class InlineSpiller : public Spiller {
150 MachineFunction &MF;
151 LiveIntervals &LIS;
152 LiveStacks &LSS;
153 MachineDominatorTree &MDT;
154 VirtRegMap &VRM;
155 MachineRegisterInfo &MRI;
156 const TargetInstrInfo &TII;
157 const TargetRegisterInfo &TRI;
158 const MachineBlockFrequencyInfo &MBFI;
160 // Variables that are valid during spill(), but used by multiple methods.
161 LiveRangeEdit *Edit = nullptr;
162 LiveInterval *StackInt = nullptr;
163 int StackSlot;
164 Register Original;
166 // All registers to spill to StackSlot, including the main register.
167 SmallVector<Register, 8> RegsToSpill;
169 // All registers that were replaced by the spiller through some other method,
170 // e.g. rematerialization.
171 SmallVector<Register, 8> RegsReplaced;
173 // All COPY instructions to/from snippets.
174 // They are ignored since both operands refer to the same stack slot.
175 // For bundled copies, this will only include the first header copy.
176 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
178 // Values that failed to remat at some point.
179 SmallPtrSet<VNInfo*, 8> UsedValues;
181 // Dead defs generated during spilling.
182 SmallVector<MachineInstr*, 8> DeadDefs;
184 // Object records spills information and does the hoisting.
185 HoistSpillHelper HSpiller;
187 // Live range weight calculator.
188 VirtRegAuxInfo &VRAI;
190 ~InlineSpiller() override = default;
192 public:
193 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
194 VirtRegAuxInfo &VRAI)
195 : MF(MF), LIS(Pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS()),
196 LSS(Pass.getAnalysis<LiveStacks>()),
197 MDT(Pass.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()),
198 VRM(VRM), MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
199 TRI(*MF.getSubtarget().getRegisterInfo()),
200 MBFI(
201 Pass.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()),
202 HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
204 void spill(LiveRangeEdit &) override;
205 ArrayRef<Register> getSpilledRegs() override { return RegsToSpill; }
206 ArrayRef<Register> getReplacedRegs() override { return RegsReplaced; }
207 void postOptimization() override;
209 private:
210 bool isSnippet(const LiveInterval &SnipLI);
211 void collectRegsToSpill();
213 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
215 bool isSibling(Register Reg);
216 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
217 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
219 void markValueUsed(LiveInterval*, VNInfo*);
220 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
221 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
222 void reMaterializeAll();
224 bool coalesceStackAccess(MachineInstr *MI, Register Reg);
225 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
226 MachineInstr *LoadMI = nullptr);
227 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
228 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
230 void spillAroundUses(Register Reg);
231 void spillAll();
234 } // end anonymous namespace
236 Spiller::~Spiller() = default;
238 void Spiller::anchor() {}
240 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
241 MachineFunction &MF, VirtRegMap &VRM,
242 VirtRegAuxInfo &VRAI) {
243 return new InlineSpiller(Pass, MF, VRM, VRAI);
246 //===----------------------------------------------------------------------===//
247 // Snippets
248 //===----------------------------------------------------------------------===//
250 // When spilling a virtual register, we also spill any snippets it is connected
251 // to. The snippets are small live ranges that only have a single real use,
252 // leftovers from live range splitting. Spilling them enables memory operand
253 // folding or tightens the live range around the single use.
255 // This minimizes register pressure and maximizes the store-to-load distance for
256 // spill slots which can be important in tight loops.
258 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
259 /// otherwise return 0.
260 static Register isCopyOf(const MachineInstr &MI, Register Reg,
261 const TargetInstrInfo &TII) {
262 if (!TII.isCopyInstr(MI))
263 return Register();
265 const MachineOperand &DstOp = MI.getOperand(0);
266 const MachineOperand &SrcOp = MI.getOperand(1);
268 // TODO: Probably only worth allowing subreg copies with undef dests.
269 if (DstOp.getSubReg() != SrcOp.getSubReg())
270 return Register();
271 if (DstOp.getReg() == Reg)
272 return SrcOp.getReg();
273 if (SrcOp.getReg() == Reg)
274 return DstOp.getReg();
275 return Register();
278 /// Check for a copy bundle as formed by SplitKit.
279 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg,
280 const TargetInstrInfo &TII) {
281 if (!FirstMI.isBundled())
282 return isCopyOf(FirstMI, Reg, TII);
284 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() &&
285 "expected to see first instruction in bundle");
287 Register SnipReg;
288 MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator();
289 while (I->isBundledWithSucc()) {
290 const MachineInstr &MI = *I;
291 auto CopyInst = TII.isCopyInstr(MI);
292 if (!CopyInst)
293 return Register();
295 const MachineOperand &DstOp = *CopyInst->Destination;
296 const MachineOperand &SrcOp = *CopyInst->Source;
297 if (DstOp.getReg() == Reg) {
298 if (!SnipReg)
299 SnipReg = SrcOp.getReg();
300 else if (SnipReg != SrcOp.getReg())
301 return Register();
302 } else if (SrcOp.getReg() == Reg) {
303 if (!SnipReg)
304 SnipReg = DstOp.getReg();
305 else if (SnipReg != DstOp.getReg())
306 return Register();
309 ++I;
312 return Register();
315 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
316 for (const MachineOperand &MO : MI.all_defs())
317 if (MO.getReg().isVirtual())
318 LIS.getInterval(MO.getReg());
321 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
322 /// It is assumed that SnipLI is a virtual register with the same original as
323 /// Edit->getReg().
324 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
325 Register Reg = Edit->getReg();
327 // A snippet is a tiny live range with only a single instruction using it
328 // besides copies to/from Reg or spills/fills.
329 // Exception is done for statepoint instructions which will fold fills
330 // into their operands.
331 // We accept:
333 // %snip = COPY %Reg / FILL fi#
334 // %snip = USE %snip
335 // %snip = STATEPOINT %snip in var arg area
336 // %Reg = COPY %snip / SPILL %snip, fi#
338 if (!LIS.intervalIsInOneMBB(SnipLI))
339 return false;
341 // Number of defs should not exceed 2 not accounting defs coming from
342 // statepoint instructions.
343 unsigned NumValNums = SnipLI.getNumValNums();
344 for (auto *VNI : SnipLI.vnis()) {
345 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
346 if (MI->getOpcode() == TargetOpcode::STATEPOINT)
347 --NumValNums;
349 if (NumValNums > 2)
350 return false;
352 MachineInstr *UseMI = nullptr;
354 // Check that all uses satisfy our criteria.
355 for (MachineRegisterInfo::reg_bundle_nodbg_iterator
356 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()),
357 E = MRI.reg_bundle_nodbg_end();
358 RI != E;) {
359 MachineInstr &MI = *RI++;
361 // Allow copies to/from Reg.
362 if (isCopyOfBundle(MI, Reg, TII))
363 continue;
365 // Allow stack slot loads.
366 int FI;
367 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
368 continue;
370 // Allow stack slot stores.
371 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
372 continue;
374 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg()))
375 continue;
377 // Allow a single additional instruction.
378 if (UseMI && &MI != UseMI)
379 return false;
380 UseMI = &MI;
382 return true;
385 /// collectRegsToSpill - Collect live range snippets that only have a single
386 /// real use.
387 void InlineSpiller::collectRegsToSpill() {
388 Register Reg = Edit->getReg();
390 // Main register always spills.
391 RegsToSpill.assign(1, Reg);
392 SnippetCopies.clear();
393 RegsReplaced.clear();
395 // Snippets all have the same original, so there can't be any for an original
396 // register.
397 if (Original == Reg)
398 return;
400 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
401 Register SnipReg = isCopyOfBundle(MI, Reg, TII);
402 if (!isSibling(SnipReg))
403 continue;
404 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
405 if (!isSnippet(SnipLI))
406 continue;
407 SnippetCopies.insert(&MI);
408 if (isRegToSpill(SnipReg))
409 continue;
410 RegsToSpill.push_back(SnipReg);
411 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
412 ++NumSnippets;
416 bool InlineSpiller::isSibling(Register Reg) {
417 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
420 /// It is beneficial to spill to earlier place in the same BB in case
421 /// as follows:
422 /// There is an alternative def earlier in the same MBB.
423 /// Hoist the spill as far as possible in SpillMBB. This can ease
424 /// register pressure:
426 /// x = def
427 /// y = use x
428 /// s = copy x
430 /// Hoisting the spill of s to immediately after the def removes the
431 /// interference between x and y:
433 /// x = def
434 /// spill x
435 /// y = use killed x
437 /// This hoist only helps when the copy kills its source.
439 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
440 MachineInstr &CopyMI) {
441 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
442 #ifndef NDEBUG
443 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
444 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
445 #endif
447 Register SrcReg = CopyMI.getOperand(1).getReg();
448 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
449 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
450 LiveQueryResult SrcQ = SrcLI.Query(Idx);
451 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
452 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
453 return false;
455 // Conservatively extend the stack slot range to the range of the original
456 // value. We may be able to do better with stack slot coloring by being more
457 // careful here.
458 assert(StackInt && "No stack slot assigned yet.");
459 LiveInterval &OrigLI = LIS.getInterval(Original);
460 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
461 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
462 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
463 << *StackInt << '\n');
465 // We are going to spill SrcVNI immediately after its def, so clear out
466 // any later spills of the same value.
467 eliminateRedundantSpills(SrcLI, SrcVNI);
469 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
470 MachineBasicBlock::iterator MII;
471 if (SrcVNI->isPHIDef())
472 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg);
473 else {
474 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
475 assert(DefMI && "Defining instruction disappeared");
476 MII = DefMI;
477 ++MII;
479 MachineInstrSpan MIS(MII, MBB);
480 // Insert spill without kill flag immediately after def.
481 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
482 MRI.getRegClass(SrcReg), &TRI, Register());
483 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
484 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
485 getVDefInterval(MI, LIS);
486 --MII; // Point to store instruction.
487 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
489 // If there is only 1 store instruction is required for spill, add it
490 // to mergeable list. In X86 AMX, 2 intructions are required to store.
491 // We disable the merge for this case.
492 if (MIS.begin() == MII)
493 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
494 ++NumSpills;
495 return true;
498 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
499 /// redundant spills of this value in SLI.reg and sibling copies.
500 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
501 assert(VNI && "Missing value");
502 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
503 WorkList.push_back(std::make_pair(&SLI, VNI));
504 assert(StackInt && "No stack slot assigned yet.");
506 do {
507 LiveInterval *LI;
508 std::tie(LI, VNI) = WorkList.pop_back_val();
509 Register Reg = LI->reg();
510 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
511 << VNI->def << " in " << *LI << '\n');
513 // Regs to spill are taken care of.
514 if (isRegToSpill(Reg))
515 continue;
517 // Add all of VNI's live range to StackInt.
518 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
519 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
521 // Find all spills and copies of VNI.
522 for (MachineInstr &MI :
523 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) {
524 if (!MI.mayStore() && !TII.isCopyInstr(MI))
525 continue;
526 SlotIndex Idx = LIS.getInstructionIndex(MI);
527 if (LI->getVNInfoAt(Idx) != VNI)
528 continue;
530 // Follow sibling copies down the dominator tree.
531 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) {
532 if (isSibling(DstReg)) {
533 LiveInterval &DstLI = LIS.getInterval(DstReg);
534 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
535 assert(DstVNI && "Missing defined value");
536 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
538 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
540 continue;
543 // Erase spills.
544 int FI;
545 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
546 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
547 // eliminateDeadDefs won't normally remove stores, so switch opcode.
548 MI.setDesc(TII.get(TargetOpcode::KILL));
549 DeadDefs.push_back(&MI);
550 ++NumSpillsRemoved;
551 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
552 --NumSpills;
555 } while (!WorkList.empty());
558 //===----------------------------------------------------------------------===//
559 // Rematerialization
560 //===----------------------------------------------------------------------===//
562 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
563 /// instruction cannot be eliminated. See through snippet copies
564 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
565 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
566 WorkList.push_back(std::make_pair(LI, VNI));
567 do {
568 std::tie(LI, VNI) = WorkList.pop_back_val();
569 if (!UsedValues.insert(VNI).second)
570 continue;
572 if (VNI->isPHIDef()) {
573 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
574 for (MachineBasicBlock *P : MBB->predecessors()) {
575 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
576 if (PVNI)
577 WorkList.push_back(std::make_pair(LI, PVNI));
579 continue;
582 // Follow snippet copies.
583 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
584 if (!SnippetCopies.count(MI))
585 continue;
586 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
587 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
588 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
589 assert(SnipVNI && "Snippet undefined before copy");
590 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
591 } while (!WorkList.empty());
594 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
595 MachineInstr &MI) {
596 if (!RestrictStatepointRemat)
597 return true;
598 // Here's a quick explanation of the problem we're trying to handle here:
599 // * There are some pseudo instructions with more vreg uses than there are
600 // physical registers on the machine.
601 // * This is normally handled by spilling the vreg, and folding the reload
602 // into the user instruction. (Thus decreasing the number of used vregs
603 // until the remainder can be assigned to physregs.)
604 // * However, since we may try to spill vregs in any order, we can end up
605 // trying to spill each operand to the instruction, and then rematting it
606 // instead. When that happens, the new live intervals (for the remats) are
607 // expected to be trivially assignable (i.e. RS_Done). However, since we
608 // may have more remats than physregs, we're guaranteed to fail to assign
609 // one.
610 // At the moment, we only handle this for STATEPOINTs since they're the only
611 // pseudo op where we've seen this. If we start seeing other instructions
612 // with the same problem, we need to revisit this.
613 if (MI.getOpcode() != TargetOpcode::STATEPOINT)
614 return true;
615 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
616 // that number of physical registers is enough to cover all fixed arguments.
617 // If it is not true we need to revisit it.
618 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
619 EndIdx = MI.getNumOperands();
620 Idx < EndIdx; ++Idx) {
621 MachineOperand &MO = MI.getOperand(Idx);
622 if (MO.isReg() && MO.getReg() == VReg)
623 return false;
625 return true;
628 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
629 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
630 // Analyze instruction
631 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
632 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
634 if (!RI.Reads)
635 return false;
637 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
638 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
640 if (!ParentVNI) {
641 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
642 for (MachineOperand &MO : MI.all_uses())
643 if (MO.getReg() == VirtReg.reg())
644 MO.setIsUndef();
645 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
646 return true;
649 if (SnippetCopies.count(&MI))
650 return false;
652 LiveInterval &OrigLI = LIS.getInterval(Original);
653 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
654 LiveRangeEdit::Remat RM(ParentVNI);
655 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
657 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
658 markValueUsed(&VirtReg, ParentVNI);
659 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
660 return false;
663 // If the instruction also writes VirtReg.reg, it had better not require the
664 // same register for uses and defs.
665 if (RI.Tied) {
666 markValueUsed(&VirtReg, ParentVNI);
667 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
668 return false;
671 // Before rematerializing into a register for a single instruction, try to
672 // fold a load into the instruction. That avoids allocating a new register.
673 if (RM.OrigMI->canFoldAsLoad() &&
674 foldMemoryOperand(Ops, RM.OrigMI)) {
675 Edit->markRematerialized(RM.ParentVNI);
676 ++NumFoldedLoads;
677 return true;
680 // If we can't guarantee that we'll be able to actually assign the new vreg,
681 // we can't remat.
682 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
683 markValueUsed(&VirtReg, ParentVNI);
684 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
685 return false;
688 // Allocate a new register for the remat.
689 Register NewVReg = Edit->createFrom(Original);
691 // Finally we can rematerialize OrigMI before MI.
692 SlotIndex DefIdx =
693 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
695 // We take the DebugLoc from MI, since OrigMI may be attributed to a
696 // different source location.
697 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
698 NewMI->setDebugLoc(MI.getDebugLoc());
700 (void)DefIdx;
701 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
702 << *LIS.getInstructionFromIndex(DefIdx));
704 // Replace operands
705 for (const auto &OpPair : Ops) {
706 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
707 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
708 MO.setReg(NewVReg);
709 MO.setIsKill();
712 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
714 ++NumRemats;
715 return true;
718 /// reMaterializeAll - Try to rematerialize as many uses as possible,
719 /// and trim the live ranges after.
720 void InlineSpiller::reMaterializeAll() {
721 if (!Edit->anyRematerializable())
722 return;
724 UsedValues.clear();
726 // Try to remat before all uses of snippets.
727 bool anyRemat = false;
728 for (Register Reg : RegsToSpill) {
729 LiveInterval &LI = LIS.getInterval(Reg);
730 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
731 // Debug values are not allowed to affect codegen.
732 if (MI.isDebugValue())
733 continue;
735 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
736 "instruction that isn't a DBG_VALUE");
738 anyRemat |= reMaterializeFor(LI, MI);
741 if (!anyRemat)
742 return;
744 // Remove any values that were completely rematted.
745 for (Register Reg : RegsToSpill) {
746 LiveInterval &LI = LIS.getInterval(Reg);
747 for (VNInfo *VNI : LI.vnis()) {
748 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
749 continue;
750 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
751 MI->addRegisterDead(Reg, &TRI);
752 if (!MI->allDefsAreDead())
753 continue;
754 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
755 DeadDefs.push_back(MI);
756 // If MI is a bundle header, also try removing copies inside the bundle,
757 // otherwise the verifier would complain "live range continues after dead
758 // def flag".
759 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) {
760 MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(),
761 EndIt = MI->getParent()->instr_end();
762 ++BeginIt; // Skip MI that was already handled.
764 bool OnlyDeadCopies = true;
765 for (MachineBasicBlock::instr_iterator It = BeginIt;
766 It != EndIt && It->isBundledWithPred(); ++It) {
768 auto DestSrc = TII.isCopyInstr(*It);
769 bool IsCopyToDeadReg =
770 DestSrc && DestSrc->Destination->getReg() == Reg;
771 if (!IsCopyToDeadReg) {
772 OnlyDeadCopies = false;
773 break;
776 if (OnlyDeadCopies) {
777 for (MachineBasicBlock::instr_iterator It = BeginIt;
778 It != EndIt && It->isBundledWithPred(); ++It) {
779 It->addRegisterDead(Reg, &TRI);
780 LLVM_DEBUG(dbgs() << "All defs dead: " << *It);
781 DeadDefs.push_back(&*It);
788 // Eliminate dead code after remat. Note that some snippet copies may be
789 // deleted here.
790 if (DeadDefs.empty())
791 return;
792 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
793 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
795 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
796 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
797 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
798 // removed, PHI VNI are still left in the LiveInterval.
799 // So to get rid of unused reg, we need to check whether it has non-dbg
800 // reference instead of whether it has non-empty interval.
801 unsigned ResultPos = 0;
802 for (Register Reg : RegsToSpill) {
803 if (MRI.reg_nodbg_empty(Reg)) {
804 Edit->eraseVirtReg(Reg);
805 RegsReplaced.push_back(Reg);
806 continue;
809 assert(LIS.hasInterval(Reg) &&
810 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
811 "Empty and not used live-range?!");
813 RegsToSpill[ResultPos++] = Reg;
815 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
816 LLVM_DEBUG(dbgs() << RegsToSpill.size()
817 << " registers to spill after remat.\n");
820 //===----------------------------------------------------------------------===//
821 // Spilling
822 //===----------------------------------------------------------------------===//
824 /// If MI is a load or store of StackSlot, it can be removed.
825 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
826 int FI = 0;
827 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
828 bool IsLoad = InstrReg;
829 if (!IsLoad)
830 InstrReg = TII.isStoreToStackSlot(*MI, FI);
832 // We have a stack access. Is it the right register and slot?
833 if (InstrReg != Reg || FI != StackSlot)
834 return false;
836 if (!IsLoad)
837 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
839 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
840 LIS.RemoveMachineInstrFromMaps(*MI);
841 MI->eraseFromParent();
843 if (IsLoad) {
844 ++NumReloadsRemoved;
845 --NumReloads;
846 } else {
847 ++NumSpillsRemoved;
848 --NumSpills;
851 return true;
854 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
855 LLVM_DUMP_METHOD
856 // Dump the range of instructions from B to E with their slot indexes.
857 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
858 MachineBasicBlock::iterator E,
859 LiveIntervals const &LIS,
860 const char *const header,
861 Register VReg = Register()) {
862 char NextLine = '\n';
863 char SlotIndent = '\t';
865 if (std::next(B) == E) {
866 NextLine = ' ';
867 SlotIndent = ' ';
870 dbgs() << '\t' << header << ": " << NextLine;
872 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
873 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
875 // If a register was passed in and this instruction has it as a
876 // destination that is marked as an early clobber, print the
877 // early-clobber slot index.
878 if (VReg) {
879 MachineOperand *MO = I->findRegisterDefOperand(VReg, /*TRI=*/nullptr);
880 if (MO && MO->isEarlyClobber())
881 Idx = Idx.getRegSlot(true);
884 dbgs() << SlotIndent << Idx << '\t' << *I;
887 #endif
889 /// foldMemoryOperand - Try folding stack slot references in Ops into their
890 /// instructions.
892 /// @param Ops Operand indices from AnalyzeVirtRegInBundle().
893 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
894 /// @return True on success.
895 bool InlineSpiller::
896 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
897 MachineInstr *LoadMI) {
898 if (Ops.empty())
899 return false;
900 // Don't attempt folding in bundles.
901 MachineInstr *MI = Ops.front().first;
902 if (Ops.back().first != MI || MI->isBundled())
903 return false;
905 bool WasCopy = TII.isCopyInstr(*MI).has_value();
906 Register ImpReg;
908 // TII::foldMemoryOperand will do what we need here for statepoint
909 // (fold load into use and remove corresponding def). We will replace
910 // uses of removed def with loads (spillAroundUses).
911 // For that to work we need to untie def and use to pass it through
912 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
913 // fold them.
914 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
916 // Spill subregs if the target allows it.
917 // We always want to spill subregs for stackmap/patchpoint pseudos.
918 bool SpillSubRegs = TII.isSubregFoldable() ||
919 MI->getOpcode() == TargetOpcode::STATEPOINT ||
920 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
921 MI->getOpcode() == TargetOpcode::STACKMAP;
923 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
924 // operands.
925 SmallVector<unsigned, 8> FoldOps;
926 for (const auto &OpPair : Ops) {
927 unsigned Idx = OpPair.second;
928 assert(MI == OpPair.first && "Instruction conflict during operand folding");
929 MachineOperand &MO = MI->getOperand(Idx);
931 // No point restoring an undef read, and we'll produce an invalid live
932 // interval.
933 // TODO: Is this really the correct way to handle undef tied uses?
934 if (MO.isUse() && !MO.readsReg() && !MO.isTied())
935 continue;
937 if (MO.isImplicit()) {
938 ImpReg = MO.getReg();
939 continue;
942 if (!SpillSubRegs && MO.getSubReg())
943 return false;
944 // We cannot fold a load instruction into a def.
945 if (LoadMI && MO.isDef())
946 return false;
947 // Tied use operands should not be passed to foldMemoryOperand.
948 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
949 FoldOps.push_back(Idx);
952 // If we only have implicit uses, we won't be able to fold that.
953 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
954 if (FoldOps.empty())
955 return false;
957 MachineInstrSpan MIS(MI, MI->getParent());
959 SmallVector<std::pair<unsigned, unsigned> > TiedOps;
960 if (UntieRegs)
961 for (unsigned Idx : FoldOps) {
962 MachineOperand &MO = MI->getOperand(Idx);
963 if (!MO.isTied())
964 continue;
965 unsigned Tied = MI->findTiedOperandIdx(Idx);
966 if (MO.isUse())
967 TiedOps.emplace_back(Tied, Idx);
968 else {
969 assert(MO.isDef() && "Tied to not use and def?");
970 TiedOps.emplace_back(Idx, Tied);
972 MI->untieRegOperand(Idx);
975 MachineInstr *FoldMI =
976 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
977 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
978 if (!FoldMI) {
979 // Re-tie operands.
980 for (auto Tied : TiedOps)
981 MI->tieOperands(Tied.first, Tied.second);
982 return false;
985 // Remove LIS for any dead defs in the original MI not in FoldMI.
986 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
987 if (!MO->isReg())
988 continue;
989 Register Reg = MO->getReg();
990 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) {
991 continue;
993 // Skip non-Defs, including undef uses and internal reads.
994 if (MO->isUse())
995 continue;
996 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
997 if (RI.FullyDefined)
998 continue;
999 // FoldMI does not define this physreg. Remove the LI segment.
1000 assert(MO->isDead() && "Cannot fold physreg def");
1001 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1002 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
1005 int FI;
1006 if (TII.isStoreToStackSlot(*MI, FI) &&
1007 HSpiller.rmFromMergeableSpills(*MI, FI))
1008 --NumSpills;
1009 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
1010 // Update the call site info.
1011 if (MI->isCandidateForCallSiteEntry())
1012 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1014 // If we've folded a store into an instruction labelled with debug-info,
1015 // record a substitution from the old operand to the memory operand. Handle
1016 // the simple common case where operand 0 is the one being folded, plus when
1017 // the destination operand is also a tied def. More values could be
1018 // substituted / preserved with more analysis.
1019 if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
1020 // Helper lambda.
1021 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
1022 // Substitute old operand zero to the new instructions memory operand.
1023 unsigned OldOperandNum = Ops[0].second;
1024 unsigned NewNum = FoldMI->getDebugInstrNum();
1025 unsigned OldNum = MI->getDebugInstrNum();
1026 MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
1027 {NewNum, MachineFunction::DebugOperandMemNumber});
1030 const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
1031 if (Ops.size() == 1 && Op0.isDef()) {
1032 MakeSubstitution();
1033 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
1034 Op0.getReg() == MI->getOperand(1).getReg()) {
1035 MakeSubstitution();
1037 } else if (MI->peekDebugInstrNum()) {
1038 // This is a debug-labelled instruction, but the operand being folded isn't
1039 // at operand zero. Most likely this means it's a load being folded in.
1040 // Substitute any register defs from operand zero up to the one being
1041 // folded -- past that point, we don't know what the new operand indexes
1042 // will be.
1043 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
1046 MI->eraseFromParent();
1048 // Insert any new instructions other than FoldMI into the LIS maps.
1049 assert(!MIS.empty() && "Unexpected empty span of instructions!");
1050 for (MachineInstr &MI : MIS)
1051 if (&MI != FoldMI)
1052 LIS.InsertMachineInstrInMaps(MI);
1054 // TII.foldMemoryOperand may have left some implicit operands on the
1055 // instruction. Strip them.
1056 if (ImpReg)
1057 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1058 MachineOperand &MO = FoldMI->getOperand(i - 1);
1059 if (!MO.isReg() || !MO.isImplicit())
1060 break;
1061 if (MO.getReg() == ImpReg)
1062 FoldMI->removeOperand(i - 1);
1065 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1066 "folded"));
1068 if (!WasCopy)
1069 ++NumFolded;
1070 else if (Ops.front().second == 0) {
1071 ++NumSpills;
1072 // If there is only 1 store instruction is required for spill, add it
1073 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1074 // We disable the merge for this case.
1075 if (std::distance(MIS.begin(), MIS.end()) <= 1)
1076 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
1077 } else
1078 ++NumReloads;
1079 return true;
1082 void InlineSpiller::insertReload(Register NewVReg,
1083 SlotIndex Idx,
1084 MachineBasicBlock::iterator MI) {
1085 MachineBasicBlock &MBB = *MI->getParent();
1087 MachineInstrSpan MIS(MI, &MBB);
1088 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1089 MRI.getRegClass(NewVReg), &TRI, Register());
1091 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1093 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1094 NewVReg));
1095 ++NumReloads;
1098 /// Check if \p Def fully defines a VReg with an undefined value.
1099 /// If that's the case, that means the value of VReg is actually
1100 /// not relevant.
1101 static bool isRealSpill(const MachineInstr &Def) {
1102 if (!Def.isImplicitDef())
1103 return true;
1105 // We can say that the VReg defined by Def is undef, only if it is
1106 // fully defined by Def. Otherwise, some of the lanes may not be
1107 // undef and the value of the VReg matters.
1108 return Def.getOperand(0).getSubReg();
1111 /// insertSpill - Insert a spill of NewVReg after MI.
1112 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1113 MachineBasicBlock::iterator MI) {
1114 // Spill are not terminators, so inserting spills after terminators will
1115 // violate invariants in MachineVerifier.
1116 assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1117 MachineBasicBlock &MBB = *MI->getParent();
1119 MachineInstrSpan MIS(MI, &MBB);
1120 MachineBasicBlock::iterator SpillBefore = std::next(MI);
1121 bool IsRealSpill = isRealSpill(*MI);
1123 if (IsRealSpill)
1124 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1125 MRI.getRegClass(NewVReg), &TRI, Register());
1126 else
1127 // Don't spill undef value.
1128 // Anything works for undef, in particular keeping the memory
1129 // uninitialized is a viable option and it saves code size and
1130 // run time.
1131 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1132 .addReg(NewVReg, getKillRegState(isKill));
1134 MachineBasicBlock::iterator Spill = std::next(MI);
1135 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1136 for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1137 getVDefInterval(MI, LIS);
1139 LLVM_DEBUG(
1140 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1141 ++NumSpills;
1142 // If there is only 1 store instruction is required for spill, add it
1143 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1144 // We disable the merge for this case.
1145 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1146 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1149 /// spillAroundUses - insert spill code around each use of Reg.
1150 void InlineSpiller::spillAroundUses(Register Reg) {
1151 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1152 LiveInterval &OldLI = LIS.getInterval(Reg);
1154 // Iterate over instructions using Reg.
1155 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1156 // Debug values are not allowed to affect codegen.
1157 if (MI.isDebugValue()) {
1158 // Modify DBG_VALUE now that the value is in a spill slot.
1159 MachineBasicBlock *MBB = MI.getParent();
1160 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1161 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1162 MBB->erase(MI);
1163 continue;
1166 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1167 "instruction that isn't a DBG_VALUE");
1169 // Ignore copies to/from snippets. We'll delete them.
1170 if (SnippetCopies.count(&MI))
1171 continue;
1173 // Stack slot accesses may coalesce away.
1174 if (coalesceStackAccess(&MI, Reg))
1175 continue;
1177 // Analyze instruction.
1178 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1179 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1181 // Find the slot index where this instruction reads and writes OldLI.
1182 // This is usually the def slot, except for tied early clobbers.
1183 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1184 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1185 if (SlotIndex::isSameInstr(Idx, VNI->def))
1186 Idx = VNI->def;
1188 // Check for a sibling copy.
1189 Register SibReg = isCopyOfBundle(MI, Reg, TII);
1190 if (SibReg && isSibling(SibReg)) {
1191 // This may actually be a copy between snippets.
1192 if (isRegToSpill(SibReg)) {
1193 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1194 SnippetCopies.insert(&MI);
1195 continue;
1197 if (RI.Writes) {
1198 if (hoistSpillInsideBB(OldLI, MI)) {
1199 // This COPY is now dead, the value is already in the stack slot.
1200 MI.getOperand(0).setIsDead();
1201 DeadDefs.push_back(&MI);
1202 continue;
1204 } else {
1205 // This is a reload for a sib-reg copy. Drop spills downstream.
1206 LiveInterval &SibLI = LIS.getInterval(SibReg);
1207 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1208 // The COPY will fold to a reload below.
1212 // Attempt to fold memory ops.
1213 if (foldMemoryOperand(Ops))
1214 continue;
1216 // Create a new virtual register for spill/fill.
1217 // FIXME: Infer regclass from instruction alone.
1218 Register NewVReg = Edit->createFrom(Reg);
1220 if (RI.Reads)
1221 insertReload(NewVReg, Idx, &MI);
1223 // Rewrite instruction operands.
1224 bool hasLiveDef = false;
1225 for (const auto &OpPair : Ops) {
1226 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1227 MO.setReg(NewVReg);
1228 if (MO.isUse()) {
1229 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1230 MO.setIsKill();
1231 } else {
1232 if (!MO.isDead())
1233 hasLiveDef = true;
1236 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1238 // FIXME: Use a second vreg if instruction has no tied ops.
1239 if (RI.Writes)
1240 if (hasLiveDef)
1241 insertSpill(NewVReg, true, &MI);
1245 /// spillAll - Spill all registers remaining after rematerialization.
1246 void InlineSpiller::spillAll() {
1247 // Update LiveStacks now that we are committed to spilling.
1248 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1249 StackSlot = VRM.assignVirt2StackSlot(Original);
1250 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1251 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1252 } else
1253 StackInt = &LSS.getInterval(StackSlot);
1255 if (Original != Edit->getReg())
1256 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1258 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1259 for (Register Reg : RegsToSpill)
1260 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1261 StackInt->getValNumInfo(0));
1262 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1264 // Spill around uses of all RegsToSpill.
1265 for (Register Reg : RegsToSpill) {
1266 spillAroundUses(Reg);
1267 // Assign all of the spilled registers to the slot so that
1268 // LiveDebugVariables knows about these locations later on.
1269 if (VRM.getStackSlot(Reg) == VirtRegMap::NO_STACK_SLOT)
1270 VRM.assignVirt2StackSlot(Reg, StackSlot);
1273 // Hoisted spills may cause dead code.
1274 if (!DeadDefs.empty()) {
1275 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1276 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1279 // Finally delete the SnippetCopies.
1280 for (Register Reg : RegsToSpill) {
1281 for (MachineInstr &MI :
1282 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1283 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1284 // FIXME: Do this with a LiveRangeEdit callback.
1285 LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI);
1286 MI.eraseFromBundle();
1290 // Delete all spilled registers.
1291 for (Register Reg : RegsToSpill)
1292 Edit->eraseVirtReg(Reg);
1295 void InlineSpiller::spill(LiveRangeEdit &edit) {
1296 ++NumSpilledRanges;
1297 Edit = &edit;
1298 assert(!Register::isStackSlot(edit.getReg()) &&
1299 "Trying to spill a stack slot.");
1300 // Share a stack slot among all descendants of Original.
1301 Original = VRM.getOriginal(edit.getReg());
1302 StackSlot = VRM.getStackSlot(Original);
1303 StackInt = nullptr;
1305 LLVM_DEBUG(dbgs() << "Inline spilling "
1306 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1307 << ':' << edit.getParent() << "\nFrom original "
1308 << printReg(Original) << '\n');
1309 assert(edit.getParent().isSpillable() &&
1310 "Attempting to spill already spilled value.");
1311 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1313 collectRegsToSpill();
1314 reMaterializeAll();
1316 // Remat may handle everything.
1317 if (!RegsToSpill.empty())
1318 spillAll();
1320 Edit->calculateRegClassAndHint(MF, VRAI);
1323 /// Optimizations after all the reg selections and spills are done.
1324 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1326 /// When a spill is inserted, add the spill to MergeableSpills map.
1327 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1328 unsigned Original) {
1329 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1330 LiveInterval &OrigLI = LIS.getInterval(Original);
1331 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1332 // LiveInterval may be cleared after all its references are spilled.
1333 if (!StackSlotToOrigLI.contains(StackSlot)) {
1334 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1335 LI->assign(OrigLI, Allocator);
1336 StackSlotToOrigLI[StackSlot] = std::move(LI);
1338 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1339 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1340 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1341 MergeableSpills[MIdx].insert(&Spill);
1344 /// When a spill is removed, remove the spill from MergeableSpills map.
1345 /// Return true if the spill is removed successfully.
1346 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1347 int StackSlot) {
1348 auto It = StackSlotToOrigLI.find(StackSlot);
1349 if (It == StackSlotToOrigLI.end())
1350 return false;
1351 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1352 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1353 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1354 return MergeableSpills[MIdx].erase(&Spill);
1357 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1358 /// i.e., there should be a living sibling of OrigReg at the insert point.
1359 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1360 MachineBasicBlock &BB, Register &LiveReg) {
1361 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1362 // The original def could be after the last insert point in the root block,
1363 // we can't hoist to here.
1364 if (Idx < OrigVNI.def) {
1365 // TODO: We could be better here. If LI is not alive in landing pad
1366 // we could hoist spill after LIP.
1367 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1368 return false;
1370 Register OrigReg = OrigLI.reg();
1371 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1372 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1374 for (const Register &SibReg : Siblings) {
1375 LiveInterval &LI = LIS.getInterval(SibReg);
1376 VNInfo *VNI = LI.getVNInfoAt(Idx);
1377 if (VNI) {
1378 LiveReg = SibReg;
1379 return true;
1382 return false;
1385 /// Remove redundant spills in the same BB. Save those redundant spills in
1386 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1387 void HoistSpillHelper::rmRedundantSpills(
1388 SmallPtrSet<MachineInstr *, 16> &Spills,
1389 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1390 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1391 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1392 // another spill inside. If a BB contains more than one spill, only keep the
1393 // earlier spill with smaller SlotIndex.
1394 for (auto *const CurrentSpill : Spills) {
1395 MachineBasicBlock *Block = CurrentSpill->getParent();
1396 MachineDomTreeNode *Node = MDT.getNode(Block);
1397 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1398 if (PrevSpill) {
1399 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1400 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1401 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1402 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1403 SpillsToRm.push_back(SpillToRm);
1404 SpillBBToSpill[MDT.getNode(Block)] = SpillToKeep;
1405 } else {
1406 SpillBBToSpill[MDT.getNode(Block)] = CurrentSpill;
1409 for (auto *const SpillToRm : SpillsToRm)
1410 Spills.erase(SpillToRm);
1413 /// Starting from \p Root find a top-down traversal order of the dominator
1414 /// tree to visit all basic blocks containing the elements of \p Spills.
1415 /// Redundant spills will be found and put into \p SpillsToRm at the same
1416 /// time. \p SpillBBToSpill will be populated as part of the process and
1417 /// maps a basic block to the first store occurring in the basic block.
1418 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1419 void HoistSpillHelper::getVisitOrders(
1420 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1421 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1422 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1423 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1424 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1425 // The set contains all the possible BB nodes to which we may hoist
1426 // original spills.
1427 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1428 // Save the BB nodes on the path from the first BB node containing
1429 // non-redundant spill to the Root node.
1430 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1431 // All the spills to be hoisted must originate from a single def instruction
1432 // to the OrigReg. It means the def instruction should dominate all the spills
1433 // to be hoisted. We choose the BB where the def instruction is located as
1434 // the Root.
1435 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1436 // For every node on the dominator tree with spill, walk up on the dominator
1437 // tree towards the Root node until it is reached. If there is other node
1438 // containing spill in the middle of the path, the previous spill saw will
1439 // be redundant and the node containing it will be removed. All the nodes on
1440 // the path starting from the first node with non-redundant spill to the Root
1441 // node will be added to the WorkSet, which will contain all the possible
1442 // locations where spills may be hoisted to after the loop below is done.
1443 for (auto *const Spill : Spills) {
1444 MachineBasicBlock *Block = Spill->getParent();
1445 MachineDomTreeNode *Node = MDT[Block];
1446 MachineInstr *SpillToRm = nullptr;
1447 while (Node != RootIDomNode) {
1448 // If Node dominates Block, and it already contains a spill, the spill in
1449 // Block will be redundant.
1450 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1451 SpillToRm = SpillBBToSpill[MDT[Block]];
1452 break;
1453 /// If we see the Node already in WorkSet, the path from the Node to
1454 /// the Root node must already be traversed by another spill.
1455 /// Then no need to repeat.
1456 } else if (WorkSet.count(Node)) {
1457 break;
1458 } else {
1459 NodesOnPath.insert(Node);
1461 Node = Node->getIDom();
1463 if (SpillToRm) {
1464 SpillsToRm.push_back(SpillToRm);
1465 } else {
1466 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1467 // set the initial status before hoisting start. The value of BBs
1468 // containing original spills is set to 0, in order to descriminate
1469 // with BBs containing hoisted spills which will be inserted to
1470 // SpillsToKeep later during hoisting.
1471 SpillsToKeep[MDT[Block]] = 0;
1472 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1474 NodesOnPath.clear();
1477 // Sort the nodes in WorkSet in top-down order and save the nodes
1478 // in Orders. Orders will be used for hoisting in runHoistSpills.
1479 unsigned idx = 0;
1480 Orders.push_back(MDT.getNode(Root));
1481 do {
1482 MachineDomTreeNode *Node = Orders[idx++];
1483 for (MachineDomTreeNode *Child : Node->children()) {
1484 if (WorkSet.count(Child))
1485 Orders.push_back(Child);
1487 } while (idx != Orders.size());
1488 assert(Orders.size() == WorkSet.size() &&
1489 "Orders have different size with WorkSet");
1491 #ifndef NDEBUG
1492 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1493 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1494 for (; RIt != Orders.rend(); RIt++)
1495 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1496 LLVM_DEBUG(dbgs() << "\n");
1497 #endif
1500 /// Try to hoist spills according to BB hotness. The spills to removed will
1501 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1502 /// \p SpillsToIns.
1503 void HoistSpillHelper::runHoistSpills(
1504 LiveInterval &OrigLI, VNInfo &OrigVNI,
1505 SmallPtrSet<MachineInstr *, 16> &Spills,
1506 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1507 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1508 // Visit order of dominator tree nodes.
1509 SmallVector<MachineDomTreeNode *, 32> Orders;
1510 // SpillsToKeep contains all the nodes where spills are to be inserted
1511 // during hoisting. If the spill to be inserted is an original spill
1512 // (not a hoisted one), the value of the map entry is 0. If the spill
1513 // is a hoisted spill, the value of the map entry is the VReg to be used
1514 // as the source of the spill.
1515 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1516 // Map from BB to the first spill inside of it.
1517 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1519 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1521 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1522 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1523 SpillBBToSpill);
1525 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1526 // nodes set and the cost of all the spills inside those nodes.
1527 // The nodes set are the locations where spills are to be inserted
1528 // in the subtree of current node.
1529 using NodesCostPair =
1530 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1531 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1533 // Iterate Orders set in reverse order, which will be a bottom-up order
1534 // in the dominator tree. Once we visit a dom tree node, we know its
1535 // children have already been visited and the spill locations in the
1536 // subtrees of all the children have been determined.
1537 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1538 for (; RIt != Orders.rend(); RIt++) {
1539 MachineBasicBlock *Block = (*RIt)->getBlock();
1541 // If Block contains an original spill, simply continue.
1542 if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) {
1543 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1544 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1545 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1546 continue;
1549 // Collect spills in subtree of current node (*RIt) to
1550 // SpillsInSubTreeMap[*RIt].first.
1551 for (MachineDomTreeNode *Child : (*RIt)->children()) {
1552 if (!SpillsInSubTreeMap.contains(Child))
1553 continue;
1554 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1555 // should be placed before getting the begin and end iterators of
1556 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1557 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1558 // and the map grows and then the original buckets in the map are moved.
1559 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1560 SpillsInSubTreeMap[*RIt].first;
1561 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1562 SubTreeCost += SpillsInSubTreeMap[Child].second;
1563 auto BI = SpillsInSubTreeMap[Child].first.begin();
1564 auto EI = SpillsInSubTreeMap[Child].first.end();
1565 SpillsInSubTree.insert(BI, EI);
1566 SpillsInSubTreeMap.erase(Child);
1569 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1570 SpillsInSubTreeMap[*RIt].first;
1571 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1572 // No spills in subtree, simply continue.
1573 if (SpillsInSubTree.empty())
1574 continue;
1576 // Check whether Block is a possible candidate to insert spill.
1577 Register LiveReg;
1578 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1579 continue;
1581 // If there are multiple spills that could be merged, bias a little
1582 // to hoist the spill.
1583 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1584 ? BranchProbability(9, 10)
1585 : BranchProbability(1, 1);
1586 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1587 // Hoist: Move spills to current Block.
1588 for (auto *const SpillBB : SpillsInSubTree) {
1589 // When SpillBB is a BB contains original spill, insert the spill
1590 // to SpillsToRm.
1591 if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) {
1592 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1593 SpillsToRm.push_back(SpillToRm);
1595 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1596 SpillsToKeep.erase(SpillBB);
1598 // Current Block is the BB containing the new hoisted spill. Add it to
1599 // SpillsToKeep. LiveReg is the source of the new spill.
1600 SpillsToKeep[*RIt] = LiveReg;
1601 LLVM_DEBUG({
1602 dbgs() << "spills in BB: ";
1603 for (const auto Rspill : SpillsInSubTree)
1604 dbgs() << Rspill->getBlock()->getNumber() << " ";
1605 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1606 << "\n";
1608 SpillsInSubTree.clear();
1609 SpillsInSubTree.insert(*RIt);
1610 SubTreeCost = MBFI.getBlockFreq(Block);
1613 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1614 // save them to SpillsToIns.
1615 for (const auto &Ent : SpillsToKeep) {
1616 if (Ent.second)
1617 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1621 /// For spills with equal values, remove redundant spills and hoist those left
1622 /// to less hot spots.
1624 /// Spills with equal values will be collected into the same set in
1625 /// MergeableSpills when spill is inserted. These equal spills are originated
1626 /// from the same defining instruction and are dominated by the instruction.
1627 /// Before hoisting all the equal spills, redundant spills inside in the same
1628 /// BB are first marked to be deleted. Then starting from the spills left, walk
1629 /// up on the dominator tree towards the Root node where the define instruction
1630 /// is located, mark the dominated spills to be deleted along the way and
1631 /// collect the BB nodes on the path from non-dominated spills to the define
1632 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1633 /// where we are considering to hoist the spills. We iterate the WorkSet in
1634 /// bottom-up order, and for each node, we will decide whether to hoist spills
1635 /// inside its subtree to that node. In this way, we can get benefit locally
1636 /// even if hoisting all the equal spills to one cold place is impossible.
1637 void HoistSpillHelper::hoistAllSpills() {
1638 SmallVector<Register, 4> NewVRegs;
1639 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1641 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1642 Register Reg = Register::index2VirtReg(i);
1643 Register Original = VRM.getPreSplitReg(Reg);
1644 if (!MRI.def_empty(Reg))
1645 Virt2SiblingsMap[Original].insert(Reg);
1648 // Each entry in MergeableSpills contains a spill set with equal values.
1649 for (auto &Ent : MergeableSpills) {
1650 int Slot = Ent.first.first;
1651 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1652 VNInfo *OrigVNI = Ent.first.second;
1653 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1654 if (Ent.second.empty())
1655 continue;
1657 LLVM_DEBUG({
1658 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1659 << "Equal spills in BB: ";
1660 for (const auto spill : EqValSpills)
1661 dbgs() << spill->getParent()->getNumber() << " ";
1662 dbgs() << "\n";
1665 // SpillsToRm is the spill set to be removed from EqValSpills.
1666 SmallVector<MachineInstr *, 16> SpillsToRm;
1667 // SpillsToIns is the spill set to be newly inserted after hoisting.
1668 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1670 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1672 LLVM_DEBUG({
1673 dbgs() << "Finally inserted spills in BB: ";
1674 for (const auto &Ispill : SpillsToIns)
1675 dbgs() << Ispill.first->getNumber() << " ";
1676 dbgs() << "\nFinally removed spills in BB: ";
1677 for (const auto Rspill : SpillsToRm)
1678 dbgs() << Rspill->getParent()->getNumber() << " ";
1679 dbgs() << "\n";
1682 // Stack live range update.
1683 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1684 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1685 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1686 StackIntvl.getValNumInfo(0));
1688 // Insert hoisted spills.
1689 for (auto const &Insert : SpillsToIns) {
1690 MachineBasicBlock *BB = Insert.first;
1691 Register LiveReg = Insert.second;
1692 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1693 MachineInstrSpan MIS(MII, BB);
1694 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1695 MRI.getRegClass(LiveReg), &TRI, Register());
1696 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1697 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1698 getVDefInterval(MI, LIS);
1699 ++NumSpills;
1702 // Remove redundant spills or change them to dead instructions.
1703 NumSpills -= SpillsToRm.size();
1704 for (auto *const RMEnt : SpillsToRm) {
1705 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1706 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1707 MachineOperand &MO = RMEnt->getOperand(i - 1);
1708 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1709 RMEnt->removeOperand(i - 1);
1712 Edit.eliminateDeadDefs(SpillsToRm, {});
1716 /// For VirtReg clone, the \p New register should have the same physreg or
1717 /// stackslot as the \p old register.
1718 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1719 if (VRM.hasPhys(Old))
1720 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1721 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1722 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1723 else
1724 llvm_unreachable("VReg should be assigned either physreg or stackslot");
1725 if (VRM.hasShape(Old))
1726 VRM.assignVirt2Shape(New, VRM.getShape(Old));