1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/IndexedMap.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/UniqueVector.h"
17 #include "llvm/CodeGen/LexicalScopes.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
24 #include "LiveDebugValues.h"
26 class TransferTracker
;
28 // Forward dec of unit test class, so that we can peer into the LDV object.
29 class InstrRefLDVTest
;
31 namespace LiveDebugValues
{
38 using DebugVariableID
= unsigned;
39 using VarAndLoc
= std::pair
<DebugVariable
, const DILocation
*>;
41 /// Mapping from DebugVariable to/from a unique identifying number. Each
42 /// DebugVariable consists of three pointers, and after a small amount of
43 /// work to identify overlapping fragments of variables we mostly only use
44 /// DebugVariables as identities of variables. It's much more compile-time
45 /// efficient to use an ID number instead, which this class provides.
46 class DebugVariableMap
{
47 DenseMap
<DebugVariable
, unsigned> VarToIdx
;
48 SmallVector
<VarAndLoc
> IdxToVar
;
51 DebugVariableID
getDVID(const DebugVariable
&Var
) const {
52 auto It
= VarToIdx
.find(Var
);
53 assert(It
!= VarToIdx
.end());
57 DebugVariableID
insertDVID(DebugVariable
&Var
, const DILocation
*Loc
) {
58 unsigned Size
= VarToIdx
.size();
59 auto ItPair
= VarToIdx
.insert({Var
, Size
});
61 IdxToVar
.push_back({Var
, Loc
});
65 return ItPair
.first
->second
;
68 const VarAndLoc
&lookupDVID(DebugVariableID ID
) const { return IdxToVar
[ID
]; }
76 /// Handle-class for a particular "location". This value-type uniquely
77 /// symbolises a register or stack location, allowing manipulation of locations
78 /// without concern for where that location is. Practically, this allows us to
79 /// treat the state of the machine at a particular point as an array of values,
80 /// rather than a map of values.
84 // Default constructor is private, initializing to an illegal location number.
85 // Use only for "not an entry" elements in IndexedMaps.
86 LocIdx() : Location(UINT_MAX
) {}
89 #define NUM_LOC_BITS 24
90 LocIdx(unsigned L
) : Location(L
) {
91 assert(L
< (1 << NUM_LOC_BITS
) && "Machine locations must fit in 24 bits");
94 static LocIdx
MakeIllegalLoc() { return LocIdx(); }
95 static LocIdx
MakeTombstoneLoc() {
101 bool isIllegal() const { return Location
== UINT_MAX
; }
103 uint64_t asU64() const { return Location
; }
105 bool operator==(unsigned L
) const { return Location
== L
; }
107 bool operator==(const LocIdx
&L
) const { return Location
== L
.Location
; }
109 bool operator!=(unsigned L
) const { return !(*this == L
); }
111 bool operator!=(const LocIdx
&L
) const { return !(*this == L
); }
113 bool operator<(const LocIdx
&Other
) const {
114 return Location
< Other
.Location
;
118 // The location at which a spilled value resides. It consists of a register and
122 StackOffset SpillOffset
;
123 bool operator==(const SpillLoc
&Other
) const {
124 return std::make_pair(SpillBase
, SpillOffset
) ==
125 std::make_pair(Other
.SpillBase
, Other
.SpillOffset
);
127 bool operator<(const SpillLoc
&Other
) const {
128 return std::make_tuple(SpillBase
, SpillOffset
.getFixed(),
129 SpillOffset
.getScalable()) <
130 std::make_tuple(Other
.SpillBase
, Other
.SpillOffset
.getFixed(),
131 Other
.SpillOffset
.getScalable());
135 /// Unique identifier for a value defined by an instruction, as a value type.
136 /// Casts back and forth to a uint64_t. Probably replacable with something less
137 /// bit-constrained. Each value identifies the instruction and machine location
138 /// where the value is defined, although there may be no corresponding machine
139 /// operand for it (ex: regmasks clobbering values). The instructions are
140 /// one-based, and definitions that are PHIs have instruction number zero.
142 /// The obvious limits of a 1M block function or 1M instruction blocks are
143 /// problematic; but by that point we should probably have bailed out of
144 /// trying to analyse the function.
148 uint64_t BlockNo
: 20; /// The block where the def happens.
149 uint64_t InstNo
: 20; /// The Instruction where the def happens.
150 /// One based, is distance from start of block.
152 : NUM_LOC_BITS
; /// The machine location where the def happens.
157 static_assert(sizeof(u
) == 8, "Badly packed ValueIDNum?");
160 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
161 // of values to work.
162 ValueIDNum() { u
.Value
= EmptyValue
.asU64(); }
164 ValueIDNum(uint64_t Block
, uint64_t Inst
, uint64_t Loc
) {
165 u
.s
= {Block
, Inst
, Loc
};
168 ValueIDNum(uint64_t Block
, uint64_t Inst
, LocIdx Loc
) {
169 u
.s
= {Block
, Inst
, Loc
.asU64()};
172 uint64_t getBlock() const { return u
.s
.BlockNo
; }
173 uint64_t getInst() const { return u
.s
.InstNo
; }
174 uint64_t getLoc() const { return u
.s
.LocNo
; }
175 bool isPHI() const { return u
.s
.InstNo
== 0; }
177 uint64_t asU64() const { return u
.Value
; }
179 static ValueIDNum
fromU64(uint64_t v
) {
185 bool operator<(const ValueIDNum
&Other
) const {
186 return asU64() < Other
.asU64();
189 bool operator==(const ValueIDNum
&Other
) const {
190 return u
.Value
== Other
.u
.Value
;
193 bool operator!=(const ValueIDNum
&Other
) const { return !(*this == Other
); }
195 std::string
asString(const std::string
&mlocname
) const {
196 return Twine("Value{bb: ")
197 .concat(Twine(u
.s
.BlockNo
)
198 .concat(Twine(", inst: ")
199 .concat((u
.s
.InstNo
? Twine(u
.s
.InstNo
)
201 .concat(Twine(", loc: ").concat(
203 .concat(Twine("}")))))
207 static ValueIDNum EmptyValue
;
208 static ValueIDNum TombstoneValue
;
211 } // End namespace LiveDebugValues
214 using namespace LiveDebugValues
;
216 template <> struct DenseMapInfo
<LocIdx
> {
217 static inline LocIdx
getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
218 static inline LocIdx
getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
220 static unsigned getHashValue(const LocIdx
&Loc
) { return Loc
.asU64(); }
222 static bool isEqual(const LocIdx
&A
, const LocIdx
&B
) { return A
== B
; }
225 template <> struct DenseMapInfo
<ValueIDNum
> {
226 static inline ValueIDNum
getEmptyKey() { return ValueIDNum::EmptyValue
; }
227 static inline ValueIDNum
getTombstoneKey() {
228 return ValueIDNum::TombstoneValue
;
231 static unsigned getHashValue(const ValueIDNum
&Val
) {
232 return hash_value(Val
.asU64());
235 static bool isEqual(const ValueIDNum
&A
, const ValueIDNum
&B
) {
240 } // end namespace llvm
242 namespace LiveDebugValues
{
243 using namespace llvm
;
245 /// Type for a table of values in a block.
246 using ValueTable
= SmallVector
<ValueIDNum
, 0>;
248 /// A collection of ValueTables, one per BB in a function, with convenient
249 /// accessor methods.
250 struct FuncValueTable
{
251 FuncValueTable(int NumBBs
, int NumLocs
) {
252 Storage
.reserve(NumBBs
);
253 for (int i
= 0; i
!= NumBBs
; ++i
)
255 std::make_unique
<ValueTable
>(NumLocs
, ValueIDNum::EmptyValue
));
258 /// Returns the ValueTable associated with MBB.
259 ValueTable
&operator[](const MachineBasicBlock
&MBB
) const {
260 return (*this)[MBB
.getNumber()];
263 /// Returns the ValueTable associated with the MachineBasicBlock whose number
265 ValueTable
&operator[](int MBBNum
) const {
266 auto &TablePtr
= Storage
[MBBNum
];
267 assert(TablePtr
&& "Trying to access a deleted table");
271 /// Returns the ValueTable associated with the entry MachineBasicBlock.
272 ValueTable
&tableForEntryMBB() const { return (*this)[0]; }
274 /// Returns true if the ValueTable associated with MBB has not been freed.
275 bool hasTableFor(MachineBasicBlock
&MBB
) const {
276 return Storage
[MBB
.getNumber()] != nullptr;
279 /// Frees the memory of the ValueTable associated with MBB.
280 void ejectTableForBlock(const MachineBasicBlock
&MBB
) {
281 Storage
[MBB
.getNumber()].reset();
285 /// ValueTables are stored as unique_ptrs to allow for deallocation during
286 /// LDV; this was measured to have a significant impact on compiler memory
288 SmallVector
<std::unique_ptr
<ValueTable
>, 0> Storage
;
291 /// Thin wrapper around an integer -- designed to give more type safety to
292 /// spill location numbers.
293 class SpillLocationNo
{
295 explicit SpillLocationNo(unsigned SpillNo
) : SpillNo(SpillNo
) {}
297 unsigned id() const { return SpillNo
; }
299 bool operator<(const SpillLocationNo
&Other
) const {
300 return SpillNo
< Other
.SpillNo
;
303 bool operator==(const SpillLocationNo
&Other
) const {
304 return SpillNo
== Other
.SpillNo
;
306 bool operator!=(const SpillLocationNo
&Other
) const {
307 return !(*this == Other
);
311 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
312 /// the value, and Boolean of whether or not it's indirect.
313 class DbgValueProperties
{
315 DbgValueProperties(const DIExpression
*DIExpr
, bool Indirect
, bool IsVariadic
)
316 : DIExpr(DIExpr
), Indirect(Indirect
), IsVariadic(IsVariadic
) {}
318 /// Extract properties from an existing DBG_VALUE instruction.
319 DbgValueProperties(const MachineInstr
&MI
) {
320 assert(MI
.isDebugValue());
321 assert(MI
.getDebugExpression()->getNumLocationOperands() == 0 ||
322 MI
.isDebugValueList() || MI
.isUndefDebugValue());
323 IsVariadic
= MI
.isDebugValueList();
324 DIExpr
= MI
.getDebugExpression();
325 Indirect
= MI
.isDebugOffsetImm();
328 bool isJoinable(const DbgValueProperties
&Other
) const {
329 return DIExpression::isEqualExpression(DIExpr
, Indirect
, Other
.DIExpr
,
333 bool operator==(const DbgValueProperties
&Other
) const {
334 return std::tie(DIExpr
, Indirect
, IsVariadic
) ==
335 std::tie(Other
.DIExpr
, Other
.Indirect
, Other
.IsVariadic
);
338 bool operator!=(const DbgValueProperties
&Other
) const {
339 return !(*this == Other
);
342 unsigned getLocationOpCount() const {
343 return IsVariadic
? DIExpr
->getNumLocationOperands() : 1;
346 const DIExpression
*DIExpr
;
351 /// TODO: Might pack better if we changed this to a Struct of Arrays, since
352 /// MachineOperand is width 32, making this struct width 33. We could also
353 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead
354 /// choosing to store just the contents portion (sizeof=8) and a Kind enum,
355 /// since we already know it is some type of immediate value.
356 /// Stores a single debug operand, which can either be a MachineOperand for
357 /// directly storing immediate values, or a ValueIDNum representing some value
358 /// computed at some point in the program. IsConst is used as a discriminator.
366 DbgOp() : ID(ValueIDNum::EmptyValue
), IsConst(false) {}
367 DbgOp(ValueIDNum ID
) : ID(ID
), IsConst(false) {}
368 DbgOp(MachineOperand MO
) : MO(MO
), IsConst(true) {}
370 bool isUndef() const { return !IsConst
&& ID
== ValueIDNum::EmptyValue
; }
373 void dump(const MLocTracker
*MTrack
) const;
377 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
378 /// when working with concrete debug values, i.e. when joining MLocs and VLocs
379 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
381 struct ResolvedDbgOp
{
388 ResolvedDbgOp(LocIdx Loc
) : Loc(Loc
), IsConst(false) {}
389 ResolvedDbgOp(MachineOperand MO
) : MO(MO
), IsConst(true) {}
391 bool operator==(const ResolvedDbgOp
&Other
) const {
392 if (IsConst
!= Other
.IsConst
)
395 return MO
.isIdenticalTo(Other
.MO
);
396 return Loc
== Other
.Loc
;
400 void dump(const MLocTracker
*MTrack
) const;
404 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
405 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as
406 /// DbgValue is very frequently used and passed around, and the actual DbgOp is
407 /// over 8x larger than this class, due to storing a MachineOperand. This ID
408 /// should be equal for all equal DbgOps, and also encodes whether the mapped
409 /// DbgOp is a constant, meaning that for simple equality or const-ness checks
410 /// it is not necessary to lookup this ID.
412 struct IsConstIndexPair
{
413 uint32_t IsConst
: 1;
418 struct IsConstIndexPair ID
;
422 DbgOpID() : RawID(UndefID
.RawID
) {
423 static_assert(sizeof(DbgOpID
) == 4, "DbgOpID should fit within 4 bytes.");
425 DbgOpID(uint32_t RawID
) : RawID(RawID
) {}
426 DbgOpID(bool IsConst
, uint32_t Index
) : ID({IsConst
, Index
}) {}
428 static DbgOpID UndefID
;
430 bool operator==(const DbgOpID
&Other
) const { return RawID
== Other
.RawID
; }
431 bool operator!=(const DbgOpID
&Other
) const { return !(*this == Other
); }
433 uint32_t asU32() const { return RawID
; }
435 bool isUndef() const { return *this == UndefID
; }
436 bool isConst() const { return ID
.IsConst
&& !isUndef(); }
437 uint32_t getIndex() const { return ID
.Index
; }
440 void dump(const MLocTracker
*MTrack
, const DbgOpIDMap
*OpStore
) const;
444 /// Class storing the complete set of values that are observed by DbgValues
445 /// within the current function. Allows 2-way lookup, with `find` returning the
446 /// Op for a given ID and `insert` returning the ID for a given Op (creating one
450 SmallVector
<ValueIDNum
, 0> ValueOps
;
451 SmallVector
<MachineOperand
, 0> ConstOps
;
453 DenseMap
<ValueIDNum
, DbgOpID
> ValueOpToID
;
454 DenseMap
<MachineOperand
, DbgOpID
> ConstOpToID
;
457 /// If \p Op does not already exist in this map, it is inserted and the
458 /// corresponding DbgOpID is returned. If Op already exists in this map, then
459 /// no change is made and the existing ID for Op is returned.
460 /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
461 DbgOpID
insert(DbgOp Op
) {
463 return DbgOpID::UndefID
;
465 return insertConstOp(Op
.MO
);
466 return insertValueOp(Op
.ID
);
468 /// Returns the DbgOp associated with \p ID. Should only be used for IDs
469 /// returned from calling `insert` from this map or DbgOpID::UndefID.
470 DbgOp
find(DbgOpID ID
) const {
471 if (ID
== DbgOpID::UndefID
)
474 return DbgOp(ConstOps
[ID
.getIndex()]);
475 return DbgOp(ValueOps
[ID
.getIndex()]);
486 DbgOpID
insertConstOp(MachineOperand
&MO
) {
487 auto [It
, Inserted
] = ConstOpToID
.try_emplace(MO
, true, ConstOps
.size());
489 ConstOps
.push_back(MO
);
492 DbgOpID
insertValueOp(ValueIDNum VID
) {
493 auto [It
, Inserted
] = ValueOpToID
.try_emplace(VID
, false, ValueOps
.size());
495 ValueOps
.push_back(VID
);
500 // We set the maximum number of operands that we will handle to keep DbgValue
501 // within a reasonable size (64 bytes), as we store and pass a lot of them
503 #define MAX_DBG_OPS 8
505 /// Class recording the (high level) _value_ of a variable. Identifies the value
506 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as
507 /// an empty list for undef debug values or VPHI values which we have not found
508 /// valid locations for.
509 /// This class also stores meta-information about how the value is qualified.
510 /// Used to reason about variable values when performing the second
511 /// (DebugVariable specific) dataflow analysis.
514 /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
515 /// are used. VPHIs set every ID to EmptyID when we have not found a valid
516 /// machine-value for every operand, and sets them to the corresponding
517 /// machine-values when we have found all of them.
518 DbgOpID DbgOps
[MAX_DBG_OPS
];
522 /// For a NoVal or VPHI DbgValue, which block it was generated in.
525 /// Qualifiers for the ValueIDNum above.
526 DbgValueProperties Properties
;
529 Undef
, // Represents a DBG_VALUE $noreg in the transfer function only.
530 Def
, // This value is defined by some combination of constants,
531 // instructions, or PHI values.
532 VPHI
, // Incoming values to BlockNo differ, those values must be joined by
533 // a PHI in this block.
534 NoVal
, // Empty DbgValue indicating an unknown value. Used as initializer,
535 // before dominating blocks values are propagated in.
537 /// Discriminator for whether this is a constant or an in-program value.
540 DbgValue(ArrayRef
<DbgOpID
> DbgOps
, const DbgValueProperties
&Prop
)
541 : OpCount(DbgOps
.size()), BlockNo(0), Properties(Prop
), Kind(Def
) {
542 static_assert(sizeof(DbgValue
) <= 64,
543 "DbgValue should fit within 64 bytes.");
544 assert(DbgOps
.size() == Prop
.getLocationOpCount());
545 if (DbgOps
.size() > MAX_DBG_OPS
||
546 any_of(DbgOps
, [](DbgOpID ID
) { return ID
.isUndef(); })) {
549 #define DEBUG_TYPE "LiveDebugValues"
550 if (DbgOps
.size() > MAX_DBG_OPS
) {
551 LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
556 for (unsigned Idx
= 0; Idx
< DbgOps
.size(); ++Idx
)
557 this->DbgOps
[Idx
] = DbgOps
[Idx
];
561 DbgValue(unsigned BlockNo
, const DbgValueProperties
&Prop
, KindT Kind
)
562 : OpCount(0), BlockNo(BlockNo
), Properties(Prop
), Kind(Kind
) {
563 assert(Kind
== NoVal
|| Kind
== VPHI
);
566 DbgValue(const DbgValueProperties
&Prop
, KindT Kind
)
567 : OpCount(0), BlockNo(0), Properties(Prop
), Kind(Kind
) {
568 assert(Kind
== Undef
&&
569 "Empty DbgValue constructor must pass in Undef kind");
573 void dump(const MLocTracker
*MTrack
= nullptr,
574 const DbgOpIDMap
*OpStore
= nullptr) const;
577 bool operator==(const DbgValue
&Other
) const {
578 if (std::tie(Kind
, Properties
) != std::tie(Other
.Kind
, Other
.Properties
))
580 else if (Kind
== Def
&& !equal(getDbgOpIDs(), Other
.getDbgOpIDs()))
582 else if (Kind
== NoVal
&& BlockNo
!= Other
.BlockNo
)
584 else if (Kind
== VPHI
&& BlockNo
!= Other
.BlockNo
)
586 else if (Kind
== VPHI
&& !equal(getDbgOpIDs(), Other
.getDbgOpIDs()))
592 bool operator!=(const DbgValue
&Other
) const { return !(*this == Other
); }
594 // Returns an array of all the machine values used to calculate this variable
595 // value, or an empty list for an Undef or unjoined VPHI.
596 ArrayRef
<DbgOpID
> getDbgOpIDs() const { return {DbgOps
, OpCount
}; }
598 // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
599 // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
600 // NoVal, or an unjoined VPHI).
601 DbgOpID
getDbgOpID(unsigned Index
) const {
603 return DbgOpID::UndefID
;
604 assert(Index
< OpCount
);
605 return DbgOps
[Index
];
607 // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
608 // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
609 // arguments expected by this DbgValue's properties (the return value of
610 // `getLocationOpCount()`).
611 void setDbgOpIDs(ArrayRef
<DbgOpID
> NewIDs
) {
612 // We can go from no ops to some ops, but not from some ops to no ops.
613 assert(NewIDs
.size() == getLocationOpCount() &&
614 "Incorrect number of Debug Operands for this DbgValue.");
615 OpCount
= NewIDs
.size();
616 for (unsigned Idx
= 0; Idx
< NewIDs
.size(); ++Idx
)
617 DbgOps
[Idx
] = NewIDs
[Idx
];
620 // The number of debug operands expected by this DbgValue's expression.
621 // getDbgOpIDs() should return an array of this length, unless this is an
622 // Undef or an unjoined VPHI.
623 unsigned getLocationOpCount() const {
624 return Properties
.getLocationOpCount();
627 // Returns true if this or Other are unjoined PHIs, which do not have defined
628 // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
629 // `n`th Loc Op for Other.
630 bool hasJoinableLocOps(const DbgValue
&Other
) const {
631 if (isUnjoinedPHI() || Other
.isUnjoinedPHI())
633 for (unsigned Idx
= 0; Idx
< getLocationOpCount(); ++Idx
) {
634 if (getDbgOpID(Idx
).isConst() != Other
.getDbgOpID(Idx
).isConst())
640 bool isUnjoinedPHI() const { return Kind
== VPHI
&& OpCount
== 0; }
642 bool hasIdenticalValidLocOps(const DbgValue
&Other
) const {
645 return equal(getDbgOpIDs(), Other
.getDbgOpIDs());
649 class LocIdxToIndexFunctor
{
651 using argument_type
= LocIdx
;
652 unsigned operator()(const LocIdx
&L
) const { return L
.asU64(); }
655 /// Tracker for what values are in machine locations. Listens to the Things
656 /// being Done by various instructions, and maintains a table of what machine
657 /// locations have what values (as defined by a ValueIDNum).
659 /// There are potentially a much larger number of machine locations on the
660 /// target machine than the actual working-set size of the function. On x86 for
661 /// example, we're extremely unlikely to want to track values through control
662 /// or debug registers. To avoid doing so, MLocTracker has several layers of
663 /// indirection going on, described below, to avoid unnecessarily tracking
666 /// Here's a sort of diagram of the indexes, read from the bottom up:
668 /// Size on stack Offset on stack
670 /// Stack Idx (Where in slot is this?)
673 /// Slot Num (%stack.0) /
674 /// FrameIdx => SpillNum /
676 /// SpillID (int) Register number (int)
678 /// LocationID => LocIdx
680 /// LocIdx => ValueIDNum
682 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of
683 /// values in numbered locations, so that later analyses can ignore whether the
684 /// location is a register or otherwise. To map a register / spill location to
685 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
686 /// build a LocationID for a stack slot, you need to combine identifiers for
687 /// which stack slot it is and where within that slot is being described.
689 /// Register mask operands cause trouble by technically defining every register;
690 /// various hacks are used to avoid tracking registers that are never read and
691 /// only written by regmasks.
695 const TargetInstrInfo
&TII
;
696 const TargetRegisterInfo
&TRI
;
697 const TargetLowering
&TLI
;
699 /// IndexedMap type, mapping from LocIdx to ValueIDNum.
700 using LocToValueType
= IndexedMap
<ValueIDNum
, LocIdxToIndexFunctor
>;
702 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
703 /// packed, entries only exist for locations that are being tracked.
704 LocToValueType LocIdxToIDNum
;
706 /// "Map" of machine location IDs (i.e., raw register or spill number) to the
707 /// LocIdx key / number for that location. There are always at least as many
708 /// as the number of registers on the target -- if the value in the register
709 /// is not being tracked, then the LocIdx value will be zero. New entries are
710 /// appended if a new spill slot begins being tracked.
711 /// This, and the corresponding reverse map persist for the analysis of the
712 /// whole function, and is necessarying for decoding various vectors of
714 std::vector
<LocIdx
> LocIDToLocIdx
;
716 /// Inverse map of LocIDToLocIdx.
717 IndexedMap
<unsigned, LocIdxToIndexFunctor
> LocIdxToLocID
;
719 /// When clobbering register masks, we chose to not believe the machine model
720 /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
721 /// keep a set of them here.
722 SmallSet
<Register
, 8> SPAliases
;
724 /// Unique-ification of spill. Used to number them -- their LocID number is
725 /// the index in SpillLocs minus one plus NumRegs.
726 UniqueVector
<SpillLoc
> SpillLocs
;
728 // If we discover a new machine location, assign it an mphi with this
732 /// Cached local copy of the number of registers the target has.
735 /// Number of slot indexes the target has -- distinct segments of a stack
736 /// slot that can take on the value of a subregister, when a super-register
737 /// is written to the stack.
738 unsigned NumSlotIdxes
;
740 /// Collection of register mask operands that have been observed. Second part
741 /// of pair indicates the instruction that they happened in. Used to
742 /// reconstruct where defs happened if we start tracking a location later
744 SmallVector
<std::pair
<const MachineOperand
*, unsigned>, 32> Masks
;
746 /// Pair for describing a position within a stack slot -- first the size in
747 /// bits, then the offset.
748 typedef std::pair
<unsigned short, unsigned short> StackSlotPos
;
750 /// Map from a size/offset pair describing a position in a stack slot, to a
751 /// numeric identifier for that position. Allows easier identification of
752 /// individual positions.
753 DenseMap
<StackSlotPos
, unsigned> StackSlotIdxes
;
755 /// Inverse of StackSlotIdxes.
756 DenseMap
<unsigned, StackSlotPos
> StackIdxesToPos
;
758 /// Iterator for locations and the values they contain. Dereferencing
759 /// produces a struct/pair containing the LocIdx key for this location,
760 /// and a reference to the value currently stored. Simplifies the process
761 /// of seeking a particular location.
763 LocToValueType
&ValueMap
;
769 value_type(LocIdx Idx
, ValueIDNum
&Value
) : Idx(Idx
), Value(Value
) {}
770 const LocIdx Idx
; /// Read-only index of this location.
771 ValueIDNum
&Value
; /// Reference to the stored value at this location.
774 MLocIterator(LocToValueType
&ValueMap
, LocIdx Idx
)
775 : ValueMap(ValueMap
), Idx(Idx
) {}
777 bool operator==(const MLocIterator
&Other
) const {
778 assert(&ValueMap
== &Other
.ValueMap
);
779 return Idx
== Other
.Idx
;
782 bool operator!=(const MLocIterator
&Other
) const {
783 return !(*this == Other
);
786 void operator++() { Idx
= LocIdx(Idx
.asU64() + 1); }
788 value_type
operator*() { return value_type(Idx
, ValueMap
[LocIdx(Idx
)]); }
791 MLocTracker(MachineFunction
&MF
, const TargetInstrInfo
&TII
,
792 const TargetRegisterInfo
&TRI
, const TargetLowering
&TLI
);
794 /// Produce location ID number for a Register. Provides some small amount of
796 /// \param Reg The register we're looking up.
797 unsigned getLocID(Register Reg
) { return Reg
.id(); }
799 /// Produce location ID number for a spill position.
800 /// \param Spill The number of the spill we're fetching the location for.
801 /// \param SpillSubReg Subregister within the spill we're addressing.
802 unsigned getLocID(SpillLocationNo Spill
, unsigned SpillSubReg
) {
803 unsigned short Size
= TRI
.getSubRegIdxSize(SpillSubReg
);
804 unsigned short Offs
= TRI
.getSubRegIdxOffset(SpillSubReg
);
805 return getLocID(Spill
, {Size
, Offs
});
808 /// Produce location ID number for a spill position.
809 /// \param Spill The number of the spill we're fetching the location for.
810 /// \apram SpillIdx size/offset within the spill slot to be addressed.
811 unsigned getLocID(SpillLocationNo Spill
, StackSlotPos Idx
) {
812 unsigned SlotNo
= Spill
.id() - 1;
813 SlotNo
*= NumSlotIdxes
;
814 assert(StackSlotIdxes
.contains(Idx
));
815 SlotNo
+= StackSlotIdxes
[Idx
];
820 /// Given a spill number, and a slot within the spill, calculate the ID number
821 /// for that location.
822 unsigned getSpillIDWithIdx(SpillLocationNo Spill
, unsigned Idx
) {
823 unsigned SlotNo
= Spill
.id() - 1;
824 SlotNo
*= NumSlotIdxes
;
830 /// Return the spill number that a location ID corresponds to.
831 SpillLocationNo
locIDToSpill(unsigned ID
) const {
832 assert(ID
>= NumRegs
);
834 // Truncate away the index part, leaving only the spill number.
836 return SpillLocationNo(ID
+ 1); // The UniqueVector is one-based.
839 /// Returns the spill-slot size/offs that a location ID corresponds to.
840 StackSlotPos
locIDToSpillIdx(unsigned ID
) const {
841 assert(ID
>= NumRegs
);
843 unsigned Idx
= ID
% NumSlotIdxes
;
844 return StackIdxesToPos
.find(Idx
)->second
;
847 unsigned getNumLocs() const { return LocIdxToIDNum
.size(); }
849 /// Reset all locations to contain a PHI value at the designated block. Used
850 /// sometimes for actual PHI values, othertimes to indicate the block entry
851 /// value (before any more information is known).
852 void setMPhis(unsigned NewCurBB
) {
854 for (auto Location
: locations())
855 Location
.Value
= {CurBB
, 0, Location
.Idx
};
858 /// Load values for each location from array of ValueIDNums. Take current
859 /// bbnum just in case we read a value from a hitherto untouched register.
860 void loadFromArray(ValueTable
&Locs
, unsigned NewCurBB
) {
862 // Iterate over all tracked locations, and load each locations live-in
863 // value into our local index.
864 for (auto Location
: locations())
865 Location
.Value
= Locs
[Location
.Idx
.asU64()];
868 /// Wipe any un-necessary location records after traversing a block.
870 // We could reset all the location values too; however either loadFromArray
871 // or setMPhis should be called before this object is re-used. Just
872 // clear Masks, they're definitely not needed.
876 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
877 /// the information in this pass uninterpretable.
880 LocIDToLocIdx
.clear();
881 LocIdxToLocID
.clear();
882 LocIdxToIDNum
.clear();
883 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
885 SpillLocs
= decltype(SpillLocs
)();
886 StackSlotIdxes
.clear();
887 StackIdxesToPos
.clear();
889 LocIDToLocIdx
.resize(NumRegs
, LocIdx::MakeIllegalLoc());
892 /// Set a locaiton to a certain value.
893 void setMLoc(LocIdx L
, ValueIDNum Num
) {
894 assert(L
.asU64() < LocIdxToIDNum
.size());
895 LocIdxToIDNum
[L
] = Num
;
898 /// Read the value of a particular location
899 ValueIDNum
readMLoc(LocIdx L
) {
900 assert(L
.asU64() < LocIdxToIDNum
.size());
901 return LocIdxToIDNum
[L
];
904 /// Create a LocIdx for an untracked register ID. Initialize it to either an
905 /// mphi value representing a live-in, or a recent register mask clobber.
906 LocIdx
trackRegister(unsigned ID
);
908 LocIdx
lookupOrTrackRegister(unsigned ID
) {
909 LocIdx
&Index
= LocIDToLocIdx
[ID
];
910 if (Index
.isIllegal())
911 Index
= trackRegister(ID
);
915 /// Is register R currently tracked by MLocTracker?
916 bool isRegisterTracked(Register R
) {
917 LocIdx
&Index
= LocIDToLocIdx
[R
];
918 return !Index
.isIllegal();
921 /// Record a definition of the specified register at the given block / inst.
922 /// This doesn't take a ValueIDNum, because the definition and its location
924 void defReg(Register R
, unsigned BB
, unsigned Inst
) {
925 unsigned ID
= getLocID(R
);
926 LocIdx Idx
= lookupOrTrackRegister(ID
);
927 ValueIDNum ValueID
= {BB
, Inst
, Idx
};
928 LocIdxToIDNum
[Idx
] = ValueID
;
931 /// Set a register to a value number. To be used if the value number is
932 /// known in advance.
933 void setReg(Register R
, ValueIDNum ValueID
) {
934 unsigned ID
= getLocID(R
);
935 LocIdx Idx
= lookupOrTrackRegister(ID
);
936 LocIdxToIDNum
[Idx
] = ValueID
;
939 ValueIDNum
readReg(Register R
) {
940 unsigned ID
= getLocID(R
);
941 LocIdx Idx
= lookupOrTrackRegister(ID
);
942 return LocIdxToIDNum
[Idx
];
945 /// Reset a register value to zero / empty. Needed to replicate the
946 /// VarLoc implementation where a copy to/from a register effectively
947 /// clears the contents of the source register. (Values can only have one
948 /// machine location in VarLocBasedImpl).
949 void wipeRegister(Register R
) {
950 unsigned ID
= getLocID(R
);
951 LocIdx Idx
= LocIDToLocIdx
[ID
];
952 LocIdxToIDNum
[Idx
] = ValueIDNum::EmptyValue
;
955 /// Determine the LocIdx of an existing register.
956 LocIdx
getRegMLoc(Register R
) {
957 unsigned ID
= getLocID(R
);
958 assert(ID
< LocIDToLocIdx
.size());
959 assert(LocIDToLocIdx
[ID
] != UINT_MAX
); // Sentinel for IndexedMap.
960 return LocIDToLocIdx
[ID
];
963 /// Record a RegMask operand being executed. Defs any register we currently
964 /// track, stores a pointer to the mask in case we have to account for it
966 void writeRegMask(const MachineOperand
*MO
, unsigned CurBB
, unsigned InstID
);
968 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
969 /// Returns std::nullopt when in scenarios where a spill slot could be
970 /// tracked, but we would likely run into resource limitations.
971 std::optional
<SpillLocationNo
> getOrTrackSpillLoc(SpillLoc L
);
973 // Get LocIdx of a spill ID.
974 LocIdx
getSpillMLoc(unsigned SpillID
) {
975 assert(LocIDToLocIdx
[SpillID
] != UINT_MAX
); // Sentinel for IndexedMap.
976 return LocIDToLocIdx
[SpillID
];
979 /// Return true if Idx is a spill machine location.
980 bool isSpill(LocIdx Idx
) const { return LocIdxToLocID
[Idx
] >= NumRegs
; }
982 /// How large is this location (aka, how wide is a value defined there?).
983 unsigned getLocSizeInBits(LocIdx L
) const {
984 unsigned ID
= LocIdxToLocID
[L
];
986 return TRI
.getRegSizeInBits(Register(ID
), MF
.getRegInfo());
988 // The slot location on the stack is uninteresting, we care about the
989 // position of the value within the slot (which comes with a size).
990 StackSlotPos Pos
= locIDToSpillIdx(ID
);
995 MLocIterator
begin() { return MLocIterator(LocIdxToIDNum
, 0); }
998 return MLocIterator(LocIdxToIDNum
, LocIdxToIDNum
.size());
1001 /// Return a range over all locations currently tracked.
1002 iterator_range
<MLocIterator
> locations() {
1003 return llvm::make_range(begin(), end());
1006 std::string
LocIdxToName(LocIdx Idx
) const;
1008 std::string
IDAsString(const ValueIDNum
&Num
) const;
1011 LLVM_DUMP_METHOD
void dump();
1013 LLVM_DUMP_METHOD
void dump_mloc_map();
1016 /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
1017 /// information in \pProperties, for variable Var. Don't insert it anywhere,
1018 /// just return the builder for it.
1019 MachineInstrBuilder
emitLoc(const SmallVectorImpl
<ResolvedDbgOp
> &DbgOps
,
1020 const DebugVariable
&Var
, const DILocation
*DILoc
,
1021 const DbgValueProperties
&Properties
);
1024 /// Types for recording sets of variable fragments that overlap. For a given
1025 /// local variable, we record all other fragments of that variable that could
1026 /// overlap it, to reduce search time.
1027 using FragmentOfVar
=
1028 std::pair
<const DILocalVariable
*, DIExpression::FragmentInfo
>;
1030 DenseMap
<FragmentOfVar
, SmallVector
<DIExpression::FragmentInfo
, 1>>;
1032 /// Collection of DBG_VALUEs observed when traversing a block. Records each
1033 /// variable and the value the DBG_VALUE refers to. Requires the machine value
1034 /// location dataflow algorithm to have run already, so that values can be
1038 /// Ref to function-wide map of DebugVariable <=> ID-numbers.
1039 DebugVariableMap
&DVMap
;
1040 /// Map DebugVariable to the latest Value it's defined to have.
1041 /// Needs to be a MapVector because we determine order-in-the-input-MIR from
1042 /// the order in this container. (FIXME: likely no longer true as the ordering
1043 /// is now provided by DebugVariableMap).
1044 /// We only retain the last DbgValue in each block for each variable, to
1045 /// determine the blocks live-out variable value. The Vars container forms the
1046 /// transfer function for this block, as part of the dataflow analysis. The
1047 /// movement of values between locations inside of a block is handled at a
1048 /// much later stage, in the TransferTracker class.
1049 SmallMapVector
<DebugVariableID
, DbgValue
, 8> Vars
;
1050 SmallDenseMap
<DebugVariableID
, const DILocation
*, 8> Scopes
;
1051 MachineBasicBlock
*MBB
= nullptr;
1052 const OverlapMap
&OverlappingFragments
;
1053 DbgValueProperties EmptyProperties
;
1056 VLocTracker(DebugVariableMap
&DVMap
, const OverlapMap
&O
,
1057 const DIExpression
*EmptyExpr
)
1058 : DVMap(DVMap
), OverlappingFragments(O
),
1059 EmptyProperties(EmptyExpr
, false, false) {}
1061 void defVar(const MachineInstr
&MI
, const DbgValueProperties
&Properties
,
1062 const SmallVectorImpl
<DbgOpID
> &DebugOps
) {
1063 assert(MI
.isDebugValueLike());
1064 DebugVariable
Var(MI
.getDebugVariable(), MI
.getDebugExpression(),
1065 MI
.getDebugLoc()->getInlinedAt());
1066 // Either insert or fetch an ID number for this variable.
1067 DebugVariableID VarID
= DVMap
.insertDVID(Var
, MI
.getDebugLoc().get());
1068 DbgValue Rec
= (DebugOps
.size() > 0)
1069 ? DbgValue(DebugOps
, Properties
)
1070 : DbgValue(Properties
, DbgValue::Undef
);
1072 // Attempt insertion; overwrite if it's already mapped.
1073 Vars
.insert_or_assign(VarID
, Rec
);
1074 Scopes
[VarID
] = MI
.getDebugLoc().get();
1076 considerOverlaps(Var
, MI
.getDebugLoc().get());
1079 void considerOverlaps(const DebugVariable
&Var
, const DILocation
*Loc
) {
1080 auto Overlaps
= OverlappingFragments
.find(
1081 {Var
.getVariable(), Var
.getFragmentOrDefault()});
1082 if (Overlaps
== OverlappingFragments
.end())
1085 // Otherwise: terminate any overlapped variable locations.
1086 for (auto FragmentInfo
: Overlaps
->second
) {
1087 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
1088 // that it overlaps with everything, however its cannonical representation
1089 // in a DebugVariable is as "None".
1090 std::optional
<DIExpression::FragmentInfo
> OptFragmentInfo
= FragmentInfo
;
1091 if (DebugVariable::isDefaultFragment(FragmentInfo
))
1092 OptFragmentInfo
= std::nullopt
;
1094 DebugVariable
Overlapped(Var
.getVariable(), OptFragmentInfo
,
1095 Var
.getInlinedAt());
1096 // Produce an ID number for this overlapping fragment of a variable.
1097 DebugVariableID OverlappedID
= DVMap
.insertDVID(Overlapped
, Loc
);
1098 DbgValue Rec
= DbgValue(EmptyProperties
, DbgValue::Undef
);
1100 // Attempt insertion; overwrite if it's already mapped.
1101 Vars
.insert_or_assign(OverlappedID
, Rec
);
1102 Scopes
[OverlappedID
] = Loc
;
1113 class InstrRefBasedLDV
: public LDVImpl
{
1115 friend class ::InstrRefLDVTest
;
1117 using FragmentInfo
= DIExpression::FragmentInfo
;
1118 using OptFragmentInfo
= std::optional
<DIExpression::FragmentInfo
>;
1120 // Helper while building OverlapMap, a map of all fragments seen for a given
1122 using VarToFragments
=
1123 DenseMap
<const DILocalVariable
*, SmallSet
<FragmentInfo
, 4>>;
1125 /// Machine location/value transfer function, a mapping of which locations
1126 /// are assigned which new values.
1127 using MLocTransferMap
= SmallDenseMap
<LocIdx
, ValueIDNum
>;
1129 /// Live in/out structure for the variable values: a per-block map of
1130 /// variables to their values.
1131 using LiveIdxT
= SmallDenseMap
<const MachineBasicBlock
*, DbgValue
*, 16>;
1133 using VarAndLoc
= std::pair
<DebugVariableID
, DbgValue
>;
1135 /// Type for a live-in value: the predecessor block, and its value.
1136 using InValueT
= std::pair
<MachineBasicBlock
*, DbgValue
*>;
1138 /// Vector (per block) of a collection (inner smallvector) of live-ins.
1139 /// Used as the result type for the variable value dataflow problem.
1140 using LiveInsT
= SmallVector
<SmallVector
<VarAndLoc
, 8>, 8>;
1142 /// Mapping from lexical scopes to a DILocation in that scope.
1143 using ScopeToDILocT
= DenseMap
<const LexicalScope
*, const DILocation
*>;
1145 /// Mapping from lexical scopes to variables in that scope.
1146 using ScopeToVarsT
=
1147 DenseMap
<const LexicalScope
*, SmallSet
<DebugVariableID
, 4>>;
1149 /// Mapping from lexical scopes to blocks where variables in that scope are
1150 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
1151 /// just a block where an assignment happens.
1152 using ScopeToAssignBlocksT
= DenseMap
<const LexicalScope
*, SmallPtrSet
<MachineBasicBlock
*, 4>>;
1155 MachineDominatorTree
*DomTree
;
1156 const TargetRegisterInfo
*TRI
;
1157 const MachineRegisterInfo
*MRI
;
1158 const TargetInstrInfo
*TII
;
1159 const TargetFrameLowering
*TFI
;
1160 const MachineFrameInfo
*MFI
;
1161 BitVector CalleeSavedRegs
;
1163 TargetPassConfig
*TPC
;
1165 // An empty DIExpression. Used default / placeholder DbgValueProperties
1166 // objects, as we can't have null expressions.
1167 const DIExpression
*EmptyExpr
;
1169 /// Object to track machine locations as we step through a block. Could
1170 /// probably be a field rather than a pointer, as it's always used.
1171 MLocTracker
*MTracker
= nullptr;
1173 /// Number of the current block LiveDebugValues is stepping through.
1174 unsigned CurBB
= -1;
1176 /// Number of the current instruction LiveDebugValues is evaluating.
1179 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1180 /// steps through a block. Reads the values at each location from the
1181 /// MLocTracker object.
1182 VLocTracker
*VTracker
= nullptr;
1184 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1185 /// between locations during stepping, creates new DBG_VALUEs when values move
1187 TransferTracker
*TTracker
= nullptr;
1189 /// Blocks which are artificial, i.e. blocks which exclusively contain
1190 /// instructions without DebugLocs, or with line 0 locations.
1191 SmallPtrSet
<MachineBasicBlock
*, 16> ArtificialBlocks
;
1193 // Mapping of blocks to and from their RPOT order.
1194 SmallVector
<MachineBasicBlock
*> OrderToBB
;
1195 DenseMap
<const MachineBasicBlock
*, unsigned int> BBToOrder
;
1196 DenseMap
<unsigned, unsigned> BBNumToRPO
;
1198 /// Pair of MachineInstr, and its 1-based offset into the containing block.
1199 using InstAndNum
= std::pair
<const MachineInstr
*, unsigned>;
1200 /// Map from debug instruction number to the MachineInstr labelled with that
1201 /// number, and its location within the function. Used to transform
1202 /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1203 std::map
<uint64_t, InstAndNum
> DebugInstrNumToInstr
;
1205 /// Record of where we observed a DBG_PHI instruction.
1206 class DebugPHIRecord
{
1208 /// Instruction number of this DBG_PHI.
1210 /// Block where DBG_PHI occurred.
1211 MachineBasicBlock
*MBB
;
1212 /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
1213 /// refer to a value.
1214 std::optional
<ValueIDNum
> ValueRead
;
1215 /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
1216 /// referred to something unexpected.
1217 std::optional
<LocIdx
> ReadLoc
;
1219 operator unsigned() const { return InstrNum
; }
1222 /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1223 /// DBG_PHI read and where. Populated and edited during the machine value
1224 /// location problem -- we use LLVMs SSA Updater to fix changes by
1225 /// optimizations that destroy PHI instructions.
1226 SmallVector
<DebugPHIRecord
, 32> DebugPHINumToValue
;
1228 // Map of overlapping variable fragments.
1229 OverlapMap OverlapFragments
;
1230 VarToFragments SeenFragments
;
1232 /// Mapping of DBG_INSTR_REF instructions to their values, for those
1233 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
1234 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
1236 DenseMap
<std::pair
<MachineInstr
*, unsigned>, std::optional
<ValueIDNum
>>
1239 DbgOpIDMap DbgOpStore
;
1241 /// Mapping between DebugVariables and unique ID numbers. This is a more
1242 /// efficient way to represent the identity of a variable, versus a plain
1244 DebugVariableMap DVMap
;
1246 /// True if we need to examine call instructions for stack clobbers. We
1247 /// normally assume that they don't clobber SP, but stack probes on Windows
1249 bool AdjustsStackInCalls
= false;
1251 /// If AdjustsStackInCalls is true, this holds the name of the target's stack
1252 /// probe function, which is the function we expect will alter the stack
1254 StringRef StackProbeSymbolName
;
1256 /// Tests whether this instruction is a spill to a stack slot.
1257 std::optional
<SpillLocationNo
> isSpillInstruction(const MachineInstr
&MI
,
1258 MachineFunction
*MF
);
1260 /// Decide if @MI is a spill instruction and return true if it is. We use 2
1261 /// criteria to make this decision:
1262 /// - Is this instruction a store to a spill slot?
1263 /// - Is there a register operand that is both used and killed?
1264 /// TODO: Store optimization can fold spills into other stores (including
1265 /// other spills). We do not handle this yet (more than one memory operand).
1266 bool isLocationSpill(const MachineInstr
&MI
, MachineFunction
*MF
,
1269 /// If a given instruction is identified as a spill, return the spill slot
1270 /// and set \p Reg to the spilled register.
1271 std::optional
<SpillLocationNo
> isRestoreInstruction(const MachineInstr
&MI
,
1272 MachineFunction
*MF
,
1275 /// Given a spill instruction, extract the spill slot information, ensure it's
1276 /// tracked, and return the spill number.
1277 std::optional
<SpillLocationNo
>
1278 extractSpillBaseRegAndOffset(const MachineInstr
&MI
);
1280 /// For an instruction reference given by \p InstNo and \p OpNo in instruction
1281 /// \p MI returns the Value pointed to by that instruction reference if any
1282 /// exists, otherwise returns std::nullopt.
1283 std::optional
<ValueIDNum
> getValueForInstrRef(unsigned InstNo
, unsigned OpNo
,
1285 const FuncValueTable
*MLiveOuts
,
1286 const FuncValueTable
*MLiveIns
);
1288 /// Observe a single instruction while stepping through a block.
1289 void process(MachineInstr
&MI
, const FuncValueTable
*MLiveOuts
,
1290 const FuncValueTable
*MLiveIns
);
1292 /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1293 /// \returns true if MI was recognized and processed.
1294 bool transferDebugValue(const MachineInstr
&MI
);
1296 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1297 /// \returns true if MI was recognized and processed.
1298 bool transferDebugInstrRef(MachineInstr
&MI
, const FuncValueTable
*MLiveOuts
,
1299 const FuncValueTable
*MLiveIns
);
1301 /// Stores value-information about where this PHI occurred, and what
1302 /// instruction number is associated with it.
1303 /// \returns true if MI was recognized and processed.
1304 bool transferDebugPHI(MachineInstr
&MI
);
1306 /// Examines whether \p MI is copy instruction, and notifies trackers.
1307 /// \returns true if MI was recognized and processed.
1308 bool transferRegisterCopy(MachineInstr
&MI
);
1310 /// Examines whether \p MI is stack spill or restore instruction, and
1311 /// notifies trackers. \returns true if MI was recognized and processed.
1312 bool transferSpillOrRestoreInst(MachineInstr
&MI
);
1314 /// Examines \p MI for any registers that it defines, and notifies trackers.
1315 void transferRegisterDef(MachineInstr
&MI
);
1317 /// Copy one location to the other, accounting for movement of subregisters
1319 void performCopy(Register Src
, Register Dst
);
1321 void accumulateFragmentMap(MachineInstr
&MI
);
1323 /// Determine the machine value number referred to by (potentially several)
1324 /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1325 /// DBG_PHIs, shifting the position where values in registers merge, and
1326 /// forming another mini-ssa problem to solve.
1327 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1328 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1329 /// \returns The machine value number at position Here, or std::nullopt.
1330 std::optional
<ValueIDNum
> resolveDbgPHIs(MachineFunction
&MF
,
1331 const FuncValueTable
&MLiveOuts
,
1332 const FuncValueTable
&MLiveIns
,
1336 std::optional
<ValueIDNum
> resolveDbgPHIsImpl(MachineFunction
&MF
,
1337 const FuncValueTable
&MLiveOuts
,
1338 const FuncValueTable
&MLiveIns
,
1342 /// Step through the function, recording register definitions and movements
1343 /// in an MLocTracker. Convert the observations into a per-block transfer
1344 /// function in \p MLocTransfer, suitable for using with the machine value
1345 /// location dataflow problem.
1347 produceMLocTransferFunction(MachineFunction
&MF
,
1348 SmallVectorImpl
<MLocTransferMap
> &MLocTransfer
,
1349 unsigned MaxNumBlocks
);
1351 /// Solve the machine value location dataflow problem. Takes as input the
1352 /// transfer functions in \p MLocTransfer. Writes the output live-in and
1353 /// live-out arrays to the (initialized to zero) multidimensional arrays in
1354 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1355 /// number, the inner by LocIdx.
1356 void buildMLocValueMap(MachineFunction
&MF
, FuncValueTable
&MInLocs
,
1357 FuncValueTable
&MOutLocs
,
1358 SmallVectorImpl
<MLocTransferMap
> &MLocTransfer
);
1360 /// Examine the stack indexes (i.e. offsets within the stack) to find the
1361 /// basic units of interference -- like reg units, but for the stack.
1362 void findStackIndexInterference(SmallVectorImpl
<unsigned> &Slots
);
1364 /// Install PHI values into the live-in array for each block, according to
1365 /// the IDF of each register.
1366 void placeMLocPHIs(MachineFunction
&MF
,
1367 SmallPtrSetImpl
<MachineBasicBlock
*> &AllBlocks
,
1368 FuncValueTable
&MInLocs
,
1369 SmallVectorImpl
<MLocTransferMap
> &MLocTransfer
);
1371 /// Propagate variable values to blocks in the common case where there's
1372 /// only one value assigned to the variable. This function has better
1373 /// performance as it doesn't have to find the dominance frontier between
1374 /// different assignments.
1375 void placePHIsForSingleVarDefinition(
1376 const SmallPtrSetImpl
<MachineBasicBlock
*> &InScopeBlocks
,
1377 MachineBasicBlock
*MBB
, SmallVectorImpl
<VLocTracker
> &AllTheVLocs
,
1378 DebugVariableID Var
, LiveInsT
&Output
);
1380 /// Calculate the iterated-dominance-frontier for a set of defs, using the
1381 /// existing LLVM facilities for this. Works for a single "value" or
1382 /// machine/variable location.
1383 /// \p AllBlocks Set of blocks where we might consume the value.
1384 /// \p DefBlocks Set of blocks where the value/location is defined.
1385 /// \p PHIBlocks Output set of blocks where PHIs must be placed.
1386 void BlockPHIPlacement(const SmallPtrSetImpl
<MachineBasicBlock
*> &AllBlocks
,
1387 const SmallPtrSetImpl
<MachineBasicBlock
*> &DefBlocks
,
1388 SmallVectorImpl
<MachineBasicBlock
*> &PHIBlocks
);
1390 /// Perform a control flow join (lattice value meet) of the values in machine
1391 /// locations at \p MBB. Follows the algorithm described in the file-comment,
1392 /// reading live-outs of predecessors from \p OutLocs, the current live ins
1393 /// from \p InLocs, and assigning the newly computed live ins back into
1394 /// \p InLocs. \returns two bools -- the first indicates whether a change
1395 /// was made, the second whether a lattice downgrade occurred. If the latter
1396 /// is true, revisiting this block is necessary.
1397 bool mlocJoin(MachineBasicBlock
&MBB
,
1398 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
1399 FuncValueTable
&OutLocs
, ValueTable
&InLocs
);
1401 /// Produce a set of blocks that are in the current lexical scope. This means
1402 /// those blocks that contain instructions "in" the scope, blocks where
1403 /// assignments to variables in scope occur, and artificial blocks that are
1404 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
1405 /// more commentry on what "in scope" means.
1406 /// \p DILoc A location in the scope that we're fetching blocks for.
1407 /// \p Output Set to put in-scope-blocks into.
1408 /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
1410 getBlocksForScope(const DILocation
*DILoc
,
1411 SmallPtrSetImpl
<const MachineBasicBlock
*> &Output
,
1412 const SmallPtrSetImpl
<MachineBasicBlock
*> &AssignBlocks
);
1414 /// Solve the variable value dataflow problem, for a single lexical scope.
1415 /// Uses the algorithm from the file comment to resolve control flow joins
1416 /// using PHI placement and value propagation. Reads the locations of machine
1417 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1418 /// and reads the variable values transfer function from \p AllTheVlocs.
1419 /// Live-in and Live-out variable values are stored locally, with the live-ins
1420 /// permanently stored to \p Output once a fixedpoint is reached.
1421 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1422 /// that we should be tracking.
1423 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1424 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1425 /// locations through.
1426 void buildVLocValueMap(const DILocation
*DILoc
,
1427 const SmallSet
<DebugVariableID
, 4> &VarsWeCareAbout
,
1428 SmallPtrSetImpl
<MachineBasicBlock
*> &AssignBlocks
,
1429 LiveInsT
&Output
, FuncValueTable
&MOutLocs
,
1430 FuncValueTable
&MInLocs
,
1431 SmallVectorImpl
<VLocTracker
> &AllTheVLocs
);
1433 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1434 /// live-in values coming from predecessors live-outs, and replaces any PHIs
1435 /// already present in this blocks live-ins with a live-through value if the
1436 /// PHI isn't needed.
1437 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1438 /// \returns true if any live-ins change value, either from value propagation
1439 /// or PHI elimination.
1440 bool vlocJoin(MachineBasicBlock
&MBB
, LiveIdxT
&VLOCOutLocs
,
1441 SmallPtrSet
<const MachineBasicBlock
*, 8> &BlocksToExplore
,
1444 /// For the given block and live-outs feeding into it, try to find
1445 /// machine locations for each debug operand where all the values feeding
1446 /// into that operand join together.
1447 /// \returns true if a joined location was found for every value that needed
1450 pickVPHILoc(SmallVectorImpl
<DbgOpID
> &OutValues
, const MachineBasicBlock
&MBB
,
1451 const LiveIdxT
&LiveOuts
, FuncValueTable
&MOutLocs
,
1452 const SmallVectorImpl
<const MachineBasicBlock
*> &BlockOrders
);
1454 std::optional
<ValueIDNum
> pickOperandPHILoc(
1455 unsigned DbgOpIdx
, const MachineBasicBlock
&MBB
, const LiveIdxT
&LiveOuts
,
1456 FuncValueTable
&MOutLocs
,
1457 const SmallVectorImpl
<const MachineBasicBlock
*> &BlockOrders
);
1459 /// Take collections of DBG_VALUE instructions stored in TTracker, and
1460 /// install them into their output blocks.
1461 bool emitTransfers();
1463 /// Boilerplate computation of some initial sets, artifical blocks and
1464 /// RPOT block ordering.
1465 void initialSetup(MachineFunction
&MF
);
1467 /// Produce a map of the last lexical scope that uses a block, using the
1468 /// scopes DFSOut number. Mapping is block-number to DFSOut.
1469 /// \p EjectionMap Pre-allocated vector in which to install the built ma.
1470 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
1471 /// \p AssignBlocks Map of blocks where assignments happen for a scope.
1472 void makeDepthFirstEjectionMap(SmallVectorImpl
<unsigned> &EjectionMap
,
1473 const ScopeToDILocT
&ScopeToDILocation
,
1474 ScopeToAssignBlocksT
&AssignBlocks
);
1476 /// When determining per-block variable values and emitting to DBG_VALUEs,
1477 /// this function explores by lexical scope depth. Doing so means that per
1478 /// block information can be fully computed before exploration finishes,
1479 /// allowing us to emit it and free data structures earlier than otherwise.
1480 /// It's also good for locality.
1481 bool depthFirstVLocAndEmit(unsigned MaxNumBlocks
,
1482 const ScopeToDILocT
&ScopeToDILocation
,
1483 const ScopeToVarsT
&ScopeToVars
,
1484 ScopeToAssignBlocksT
&ScopeToBlocks
,
1485 LiveInsT
&Output
, FuncValueTable
&MOutLocs
,
1486 FuncValueTable
&MInLocs
,
1487 SmallVectorImpl
<VLocTracker
> &AllTheVLocs
,
1488 MachineFunction
&MF
, const TargetPassConfig
&TPC
);
1490 bool ExtendRanges(MachineFunction
&MF
, MachineDominatorTree
*DomTree
,
1491 TargetPassConfig
*TPC
, unsigned InputBBLimit
,
1492 unsigned InputDbgValLimit
) override
;
1495 /// Default construct and initialize the pass.
1499 void dump_mloc_transfer(const MLocTransferMap
&mloc_transfer
) const;
1501 bool isCalleeSaved(LocIdx L
) const;
1502 bool isCalleeSavedReg(Register R
) const;
1504 bool hasFoldedStackStore(const MachineInstr
&MI
) {
1505 // Instruction must have a memory operand that's a stack slot, and isn't
1506 // aliased, meaning it's a spill from regalloc instead of a variable.
1507 // If it's aliased, we can't guarantee its value.
1508 if (!MI
.hasOneMemOperand())
1510 auto *MemOperand
= *MI
.memoperands_begin();
1511 return MemOperand
->isStore() &&
1512 MemOperand
->getPseudoValue() &&
1513 MemOperand
->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1514 && !MemOperand
->getPseudoValue()->isAliased(MFI
);
1517 std::optional
<LocIdx
> findLocationForMemOperand(const MachineInstr
&MI
);
1519 // Utility for unit testing, don't use directly.
1520 DebugVariableMap
&getDVMap() {
1525 } // namespace LiveDebugValues
1527 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */