AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / CodeGen / LiveDebugValues / InstrRefBasedImpl.h
blob68db65ace9a427f51175e85401d339602c4a29ff
1 //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10 #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/IndexedMap.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/UniqueVector.h"
17 #include "llvm/CodeGen/LexicalScopes.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include <optional>
24 #include "LiveDebugValues.h"
26 class TransferTracker;
28 // Forward dec of unit test class, so that we can peer into the LDV object.
29 class InstrRefLDVTest;
31 namespace LiveDebugValues {
33 class MLocTracker;
34 class DbgOpIDMap;
36 using namespace llvm;
38 using DebugVariableID = unsigned;
39 using VarAndLoc = std::pair<DebugVariable, const DILocation *>;
41 /// Mapping from DebugVariable to/from a unique identifying number. Each
42 /// DebugVariable consists of three pointers, and after a small amount of
43 /// work to identify overlapping fragments of variables we mostly only use
44 /// DebugVariables as identities of variables. It's much more compile-time
45 /// efficient to use an ID number instead, which this class provides.
46 class DebugVariableMap {
47 DenseMap<DebugVariable, unsigned> VarToIdx;
48 SmallVector<VarAndLoc> IdxToVar;
50 public:
51 DebugVariableID getDVID(const DebugVariable &Var) const {
52 auto It = VarToIdx.find(Var);
53 assert(It != VarToIdx.end());
54 return It->second;
57 DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc) {
58 unsigned Size = VarToIdx.size();
59 auto ItPair = VarToIdx.insert({Var, Size});
60 if (ItPair.second) {
61 IdxToVar.push_back({Var, Loc});
62 return Size;
65 return ItPair.first->second;
68 const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; }
70 void clear() {
71 VarToIdx.clear();
72 IdxToVar.clear();
76 /// Handle-class for a particular "location". This value-type uniquely
77 /// symbolises a register or stack location, allowing manipulation of locations
78 /// without concern for where that location is. Practically, this allows us to
79 /// treat the state of the machine at a particular point as an array of values,
80 /// rather than a map of values.
81 class LocIdx {
82 unsigned Location;
84 // Default constructor is private, initializing to an illegal location number.
85 // Use only for "not an entry" elements in IndexedMaps.
86 LocIdx() : Location(UINT_MAX) {}
88 public:
89 #define NUM_LOC_BITS 24
90 LocIdx(unsigned L) : Location(L) {
91 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
94 static LocIdx MakeIllegalLoc() { return LocIdx(); }
95 static LocIdx MakeTombstoneLoc() {
96 LocIdx L = LocIdx();
97 --L.Location;
98 return L;
101 bool isIllegal() const { return Location == UINT_MAX; }
103 uint64_t asU64() const { return Location; }
105 bool operator==(unsigned L) const { return Location == L; }
107 bool operator==(const LocIdx &L) const { return Location == L.Location; }
109 bool operator!=(unsigned L) const { return !(*this == L); }
111 bool operator!=(const LocIdx &L) const { return !(*this == L); }
113 bool operator<(const LocIdx &Other) const {
114 return Location < Other.Location;
118 // The location at which a spilled value resides. It consists of a register and
119 // an offset.
120 struct SpillLoc {
121 unsigned SpillBase;
122 StackOffset SpillOffset;
123 bool operator==(const SpillLoc &Other) const {
124 return std::make_pair(SpillBase, SpillOffset) ==
125 std::make_pair(Other.SpillBase, Other.SpillOffset);
127 bool operator<(const SpillLoc &Other) const {
128 return std::make_tuple(SpillBase, SpillOffset.getFixed(),
129 SpillOffset.getScalable()) <
130 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
131 Other.SpillOffset.getScalable());
135 /// Unique identifier for a value defined by an instruction, as a value type.
136 /// Casts back and forth to a uint64_t. Probably replacable with something less
137 /// bit-constrained. Each value identifies the instruction and machine location
138 /// where the value is defined, although there may be no corresponding machine
139 /// operand for it (ex: regmasks clobbering values). The instructions are
140 /// one-based, and definitions that are PHIs have instruction number zero.
142 /// The obvious limits of a 1M block function or 1M instruction blocks are
143 /// problematic; but by that point we should probably have bailed out of
144 /// trying to analyse the function.
145 class ValueIDNum {
146 union {
147 struct {
148 uint64_t BlockNo : 20; /// The block where the def happens.
149 uint64_t InstNo : 20; /// The Instruction where the def happens.
150 /// One based, is distance from start of block.
151 uint64_t LocNo
152 : NUM_LOC_BITS; /// The machine location where the def happens.
153 } s;
154 uint64_t Value;
155 } u;
157 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
159 public:
160 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
161 // of values to work.
162 ValueIDNum() { u.Value = EmptyValue.asU64(); }
164 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
165 u.s = {Block, Inst, Loc};
168 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
169 u.s = {Block, Inst, Loc.asU64()};
172 uint64_t getBlock() const { return u.s.BlockNo; }
173 uint64_t getInst() const { return u.s.InstNo; }
174 uint64_t getLoc() const { return u.s.LocNo; }
175 bool isPHI() const { return u.s.InstNo == 0; }
177 uint64_t asU64() const { return u.Value; }
179 static ValueIDNum fromU64(uint64_t v) {
180 ValueIDNum Val;
181 Val.u.Value = v;
182 return Val;
185 bool operator<(const ValueIDNum &Other) const {
186 return asU64() < Other.asU64();
189 bool operator==(const ValueIDNum &Other) const {
190 return u.Value == Other.u.Value;
193 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
195 std::string asString(const std::string &mlocname) const {
196 return Twine("Value{bb: ")
197 .concat(Twine(u.s.BlockNo)
198 .concat(Twine(", inst: ")
199 .concat((u.s.InstNo ? Twine(u.s.InstNo)
200 : Twine("live-in"))
201 .concat(Twine(", loc: ").concat(
202 Twine(mlocname)))
203 .concat(Twine("}")))))
204 .str();
207 static ValueIDNum EmptyValue;
208 static ValueIDNum TombstoneValue;
211 } // End namespace LiveDebugValues
213 namespace llvm {
214 using namespace LiveDebugValues;
216 template <> struct DenseMapInfo<LocIdx> {
217 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
218 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
220 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
222 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
225 template <> struct DenseMapInfo<ValueIDNum> {
226 static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
227 static inline ValueIDNum getTombstoneKey() {
228 return ValueIDNum::TombstoneValue;
231 static unsigned getHashValue(const ValueIDNum &Val) {
232 return hash_value(Val.asU64());
235 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
236 return A == B;
240 } // end namespace llvm
242 namespace LiveDebugValues {
243 using namespace llvm;
245 /// Type for a table of values in a block.
246 using ValueTable = SmallVector<ValueIDNum, 0>;
248 /// A collection of ValueTables, one per BB in a function, with convenient
249 /// accessor methods.
250 struct FuncValueTable {
251 FuncValueTable(int NumBBs, int NumLocs) {
252 Storage.reserve(NumBBs);
253 for (int i = 0; i != NumBBs; ++i)
254 Storage.push_back(
255 std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue));
258 /// Returns the ValueTable associated with MBB.
259 ValueTable &operator[](const MachineBasicBlock &MBB) const {
260 return (*this)[MBB.getNumber()];
263 /// Returns the ValueTable associated with the MachineBasicBlock whose number
264 /// is MBBNum.
265 ValueTable &operator[](int MBBNum) const {
266 auto &TablePtr = Storage[MBBNum];
267 assert(TablePtr && "Trying to access a deleted table");
268 return *TablePtr;
271 /// Returns the ValueTable associated with the entry MachineBasicBlock.
272 ValueTable &tableForEntryMBB() const { return (*this)[0]; }
274 /// Returns true if the ValueTable associated with MBB has not been freed.
275 bool hasTableFor(MachineBasicBlock &MBB) const {
276 return Storage[MBB.getNumber()] != nullptr;
279 /// Frees the memory of the ValueTable associated with MBB.
280 void ejectTableForBlock(const MachineBasicBlock &MBB) {
281 Storage[MBB.getNumber()].reset();
284 private:
285 /// ValueTables are stored as unique_ptrs to allow for deallocation during
286 /// LDV; this was measured to have a significant impact on compiler memory
287 /// usage.
288 SmallVector<std::unique_ptr<ValueTable>, 0> Storage;
291 /// Thin wrapper around an integer -- designed to give more type safety to
292 /// spill location numbers.
293 class SpillLocationNo {
294 public:
295 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
296 unsigned SpillNo;
297 unsigned id() const { return SpillNo; }
299 bool operator<(const SpillLocationNo &Other) const {
300 return SpillNo < Other.SpillNo;
303 bool operator==(const SpillLocationNo &Other) const {
304 return SpillNo == Other.SpillNo;
306 bool operator!=(const SpillLocationNo &Other) const {
307 return !(*this == Other);
311 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
312 /// the value, and Boolean of whether or not it's indirect.
313 class DbgValueProperties {
314 public:
315 DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
316 : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {}
318 /// Extract properties from an existing DBG_VALUE instruction.
319 DbgValueProperties(const MachineInstr &MI) {
320 assert(MI.isDebugValue());
321 assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
322 MI.isDebugValueList() || MI.isUndefDebugValue());
323 IsVariadic = MI.isDebugValueList();
324 DIExpr = MI.getDebugExpression();
325 Indirect = MI.isDebugOffsetImm();
328 bool isJoinable(const DbgValueProperties &Other) const {
329 return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr,
330 Other.Indirect);
333 bool operator==(const DbgValueProperties &Other) const {
334 return std::tie(DIExpr, Indirect, IsVariadic) ==
335 std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
338 bool operator!=(const DbgValueProperties &Other) const {
339 return !(*this == Other);
342 unsigned getLocationOpCount() const {
343 return IsVariadic ? DIExpr->getNumLocationOperands() : 1;
346 const DIExpression *DIExpr;
347 bool Indirect;
348 bool IsVariadic;
351 /// TODO: Might pack better if we changed this to a Struct of Arrays, since
352 /// MachineOperand is width 32, making this struct width 33. We could also
353 /// potentially avoid storing the whole MachineOperand (sizeof=32), instead
354 /// choosing to store just the contents portion (sizeof=8) and a Kind enum,
355 /// since we already know it is some type of immediate value.
356 /// Stores a single debug operand, which can either be a MachineOperand for
357 /// directly storing immediate values, or a ValueIDNum representing some value
358 /// computed at some point in the program. IsConst is used as a discriminator.
359 struct DbgOp {
360 union {
361 ValueIDNum ID;
362 MachineOperand MO;
364 bool IsConst;
366 DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
367 DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {}
368 DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
370 bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
372 #ifndef NDEBUG
373 void dump(const MLocTracker *MTrack) const;
374 #endif
377 /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
378 /// when working with concrete debug values, i.e. when joining MLocs and VLocs
379 /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
380 /// the MLocTracker.
381 struct ResolvedDbgOp {
382 union {
383 LocIdx Loc;
384 MachineOperand MO;
386 bool IsConst;
388 ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {}
389 ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
391 bool operator==(const ResolvedDbgOp &Other) const {
392 if (IsConst != Other.IsConst)
393 return false;
394 if (IsConst)
395 return MO.isIdenticalTo(Other.MO);
396 return Loc == Other.Loc;
399 #ifndef NDEBUG
400 void dump(const MLocTracker *MTrack) const;
401 #endif
404 /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
405 /// in place of actual DbgOps inside of a DbgValue to reduce its size, as
406 /// DbgValue is very frequently used and passed around, and the actual DbgOp is
407 /// over 8x larger than this class, due to storing a MachineOperand. This ID
408 /// should be equal for all equal DbgOps, and also encodes whether the mapped
409 /// DbgOp is a constant, meaning that for simple equality or const-ness checks
410 /// it is not necessary to lookup this ID.
411 struct DbgOpID {
412 struct IsConstIndexPair {
413 uint32_t IsConst : 1;
414 uint32_t Index : 31;
417 union {
418 struct IsConstIndexPair ID;
419 uint32_t RawID;
422 DbgOpID() : RawID(UndefID.RawID) {
423 static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
425 DbgOpID(uint32_t RawID) : RawID(RawID) {}
426 DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
428 static DbgOpID UndefID;
430 bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
431 bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
433 uint32_t asU32() const { return RawID; }
435 bool isUndef() const { return *this == UndefID; }
436 bool isConst() const { return ID.IsConst && !isUndef(); }
437 uint32_t getIndex() const { return ID.Index; }
439 #ifndef NDEBUG
440 void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
441 #endif
444 /// Class storing the complete set of values that are observed by DbgValues
445 /// within the current function. Allows 2-way lookup, with `find` returning the
446 /// Op for a given ID and `insert` returning the ID for a given Op (creating one
447 /// if none exists).
448 class DbgOpIDMap {
450 SmallVector<ValueIDNum, 0> ValueOps;
451 SmallVector<MachineOperand, 0> ConstOps;
453 DenseMap<ValueIDNum, DbgOpID> ValueOpToID;
454 DenseMap<MachineOperand, DbgOpID> ConstOpToID;
456 public:
457 /// If \p Op does not already exist in this map, it is inserted and the
458 /// corresponding DbgOpID is returned. If Op already exists in this map, then
459 /// no change is made and the existing ID for Op is returned.
460 /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
461 DbgOpID insert(DbgOp Op) {
462 if (Op.isUndef())
463 return DbgOpID::UndefID;
464 if (Op.IsConst)
465 return insertConstOp(Op.MO);
466 return insertValueOp(Op.ID);
468 /// Returns the DbgOp associated with \p ID. Should only be used for IDs
469 /// returned from calling `insert` from this map or DbgOpID::UndefID.
470 DbgOp find(DbgOpID ID) const {
471 if (ID == DbgOpID::UndefID)
472 return DbgOp();
473 if (ID.isConst())
474 return DbgOp(ConstOps[ID.getIndex()]);
475 return DbgOp(ValueOps[ID.getIndex()]);
478 void clear() {
479 ValueOps.clear();
480 ConstOps.clear();
481 ValueOpToID.clear();
482 ConstOpToID.clear();
485 private:
486 DbgOpID insertConstOp(MachineOperand &MO) {
487 auto [It, Inserted] = ConstOpToID.try_emplace(MO, true, ConstOps.size());
488 if (Inserted)
489 ConstOps.push_back(MO);
490 return It->second;
492 DbgOpID insertValueOp(ValueIDNum VID) {
493 auto [It, Inserted] = ValueOpToID.try_emplace(VID, false, ValueOps.size());
494 if (Inserted)
495 ValueOps.push_back(VID);
496 return It->second;
500 // We set the maximum number of operands that we will handle to keep DbgValue
501 // within a reasonable size (64 bytes), as we store and pass a lot of them
502 // around.
503 #define MAX_DBG_OPS 8
505 /// Class recording the (high level) _value_ of a variable. Identifies the value
506 /// of the variable as a list of ValueIDNums and constant MachineOperands, or as
507 /// an empty list for undef debug values or VPHI values which we have not found
508 /// valid locations for.
509 /// This class also stores meta-information about how the value is qualified.
510 /// Used to reason about variable values when performing the second
511 /// (DebugVariable specific) dataflow analysis.
512 class DbgValue {
513 private:
514 /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
515 /// are used. VPHIs set every ID to EmptyID when we have not found a valid
516 /// machine-value for every operand, and sets them to the corresponding
517 /// machine-values when we have found all of them.
518 DbgOpID DbgOps[MAX_DBG_OPS];
519 unsigned OpCount;
521 public:
522 /// For a NoVal or VPHI DbgValue, which block it was generated in.
523 int BlockNo;
525 /// Qualifiers for the ValueIDNum above.
526 DbgValueProperties Properties;
528 typedef enum {
529 Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
530 Def, // This value is defined by some combination of constants,
531 // instructions, or PHI values.
532 VPHI, // Incoming values to BlockNo differ, those values must be joined by
533 // a PHI in this block.
534 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
535 // before dominating blocks values are propagated in.
536 } KindT;
537 /// Discriminator for whether this is a constant or an in-program value.
538 KindT Kind;
540 DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop)
541 : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
542 static_assert(sizeof(DbgValue) <= 64,
543 "DbgValue should fit within 64 bytes.");
544 assert(DbgOps.size() == Prop.getLocationOpCount());
545 if (DbgOps.size() > MAX_DBG_OPS ||
546 any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
547 Kind = Undef;
548 OpCount = 0;
549 #define DEBUG_TYPE "LiveDebugValues"
550 if (DbgOps.size() > MAX_DBG_OPS) {
551 LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
552 "operands.\n");
554 #undef DEBUG_TYPE
555 } else {
556 for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
557 this->DbgOps[Idx] = DbgOps[Idx];
561 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
562 : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
563 assert(Kind == NoVal || Kind == VPHI);
566 DbgValue(const DbgValueProperties &Prop, KindT Kind)
567 : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
568 assert(Kind == Undef &&
569 "Empty DbgValue constructor must pass in Undef kind");
572 #ifndef NDEBUG
573 void dump(const MLocTracker *MTrack = nullptr,
574 const DbgOpIDMap *OpStore = nullptr) const;
575 #endif
577 bool operator==(const DbgValue &Other) const {
578 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
579 return false;
580 else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
581 return false;
582 else if (Kind == NoVal && BlockNo != Other.BlockNo)
583 return false;
584 else if (Kind == VPHI && BlockNo != Other.BlockNo)
585 return false;
586 else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
587 return false;
589 return true;
592 bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
594 // Returns an array of all the machine values used to calculate this variable
595 // value, or an empty list for an Undef or unjoined VPHI.
596 ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
598 // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
599 // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
600 // NoVal, or an unjoined VPHI).
601 DbgOpID getDbgOpID(unsigned Index) const {
602 if (!OpCount)
603 return DbgOpID::UndefID;
604 assert(Index < OpCount);
605 return DbgOps[Index];
607 // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
608 // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
609 // arguments expected by this DbgValue's properties (the return value of
610 // `getLocationOpCount()`).
611 void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) {
612 // We can go from no ops to some ops, but not from some ops to no ops.
613 assert(NewIDs.size() == getLocationOpCount() &&
614 "Incorrect number of Debug Operands for this DbgValue.");
615 OpCount = NewIDs.size();
616 for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
617 DbgOps[Idx] = NewIDs[Idx];
620 // The number of debug operands expected by this DbgValue's expression.
621 // getDbgOpIDs() should return an array of this length, unless this is an
622 // Undef or an unjoined VPHI.
623 unsigned getLocationOpCount() const {
624 return Properties.getLocationOpCount();
627 // Returns true if this or Other are unjoined PHIs, which do not have defined
628 // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
629 // `n`th Loc Op for Other.
630 bool hasJoinableLocOps(const DbgValue &Other) const {
631 if (isUnjoinedPHI() || Other.isUnjoinedPHI())
632 return true;
633 for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
634 if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
635 return false;
637 return true;
640 bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
642 bool hasIdenticalValidLocOps(const DbgValue &Other) const {
643 if (!OpCount)
644 return false;
645 return equal(getDbgOpIDs(), Other.getDbgOpIDs());
649 class LocIdxToIndexFunctor {
650 public:
651 using argument_type = LocIdx;
652 unsigned operator()(const LocIdx &L) const { return L.asU64(); }
655 /// Tracker for what values are in machine locations. Listens to the Things
656 /// being Done by various instructions, and maintains a table of what machine
657 /// locations have what values (as defined by a ValueIDNum).
659 /// There are potentially a much larger number of machine locations on the
660 /// target machine than the actual working-set size of the function. On x86 for
661 /// example, we're extremely unlikely to want to track values through control
662 /// or debug registers. To avoid doing so, MLocTracker has several layers of
663 /// indirection going on, described below, to avoid unnecessarily tracking
664 /// any location.
666 /// Here's a sort of diagram of the indexes, read from the bottom up:
668 /// Size on stack Offset on stack
669 /// \ /
670 /// Stack Idx (Where in slot is this?)
671 /// /
672 /// /
673 /// Slot Num (%stack.0) /
674 /// FrameIdx => SpillNum /
675 /// \ /
676 /// SpillID (int) Register number (int)
677 /// \ /
678 /// LocationID => LocIdx
679 /// |
680 /// LocIdx => ValueIDNum
682 /// The aim here is that the LocIdx => ValueIDNum vector is just an array of
683 /// values in numbered locations, so that later analyses can ignore whether the
684 /// location is a register or otherwise. To map a register / spill location to
685 /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
686 /// build a LocationID for a stack slot, you need to combine identifiers for
687 /// which stack slot it is and where within that slot is being described.
689 /// Register mask operands cause trouble by technically defining every register;
690 /// various hacks are used to avoid tracking registers that are never read and
691 /// only written by regmasks.
692 class MLocTracker {
693 public:
694 MachineFunction &MF;
695 const TargetInstrInfo &TII;
696 const TargetRegisterInfo &TRI;
697 const TargetLowering &TLI;
699 /// IndexedMap type, mapping from LocIdx to ValueIDNum.
700 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
702 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
703 /// packed, entries only exist for locations that are being tracked.
704 LocToValueType LocIdxToIDNum;
706 /// "Map" of machine location IDs (i.e., raw register or spill number) to the
707 /// LocIdx key / number for that location. There are always at least as many
708 /// as the number of registers on the target -- if the value in the register
709 /// is not being tracked, then the LocIdx value will be zero. New entries are
710 /// appended if a new spill slot begins being tracked.
711 /// This, and the corresponding reverse map persist for the analysis of the
712 /// whole function, and is necessarying for decoding various vectors of
713 /// values.
714 std::vector<LocIdx> LocIDToLocIdx;
716 /// Inverse map of LocIDToLocIdx.
717 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
719 /// When clobbering register masks, we chose to not believe the machine model
720 /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
721 /// keep a set of them here.
722 SmallSet<Register, 8> SPAliases;
724 /// Unique-ification of spill. Used to number them -- their LocID number is
725 /// the index in SpillLocs minus one plus NumRegs.
726 UniqueVector<SpillLoc> SpillLocs;
728 // If we discover a new machine location, assign it an mphi with this
729 // block number.
730 unsigned CurBB = -1;
732 /// Cached local copy of the number of registers the target has.
733 unsigned NumRegs;
735 /// Number of slot indexes the target has -- distinct segments of a stack
736 /// slot that can take on the value of a subregister, when a super-register
737 /// is written to the stack.
738 unsigned NumSlotIdxes;
740 /// Collection of register mask operands that have been observed. Second part
741 /// of pair indicates the instruction that they happened in. Used to
742 /// reconstruct where defs happened if we start tracking a location later
743 /// on.
744 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
746 /// Pair for describing a position within a stack slot -- first the size in
747 /// bits, then the offset.
748 typedef std::pair<unsigned short, unsigned short> StackSlotPos;
750 /// Map from a size/offset pair describing a position in a stack slot, to a
751 /// numeric identifier for that position. Allows easier identification of
752 /// individual positions.
753 DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
755 /// Inverse of StackSlotIdxes.
756 DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
758 /// Iterator for locations and the values they contain. Dereferencing
759 /// produces a struct/pair containing the LocIdx key for this location,
760 /// and a reference to the value currently stored. Simplifies the process
761 /// of seeking a particular location.
762 class MLocIterator {
763 LocToValueType &ValueMap;
764 LocIdx Idx;
766 public:
767 class value_type {
768 public:
769 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
770 const LocIdx Idx; /// Read-only index of this location.
771 ValueIDNum &Value; /// Reference to the stored value at this location.
774 MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
775 : ValueMap(ValueMap), Idx(Idx) {}
777 bool operator==(const MLocIterator &Other) const {
778 assert(&ValueMap == &Other.ValueMap);
779 return Idx == Other.Idx;
782 bool operator!=(const MLocIterator &Other) const {
783 return !(*this == Other);
786 void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
788 value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
791 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
792 const TargetRegisterInfo &TRI, const TargetLowering &TLI);
794 /// Produce location ID number for a Register. Provides some small amount of
795 /// type safety.
796 /// \param Reg The register we're looking up.
797 unsigned getLocID(Register Reg) { return Reg.id(); }
799 /// Produce location ID number for a spill position.
800 /// \param Spill The number of the spill we're fetching the location for.
801 /// \param SpillSubReg Subregister within the spill we're addressing.
802 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
803 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
804 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
805 return getLocID(Spill, {Size, Offs});
808 /// Produce location ID number for a spill position.
809 /// \param Spill The number of the spill we're fetching the location for.
810 /// \apram SpillIdx size/offset within the spill slot to be addressed.
811 unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
812 unsigned SlotNo = Spill.id() - 1;
813 SlotNo *= NumSlotIdxes;
814 assert(StackSlotIdxes.contains(Idx));
815 SlotNo += StackSlotIdxes[Idx];
816 SlotNo += NumRegs;
817 return SlotNo;
820 /// Given a spill number, and a slot within the spill, calculate the ID number
821 /// for that location.
822 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
823 unsigned SlotNo = Spill.id() - 1;
824 SlotNo *= NumSlotIdxes;
825 SlotNo += Idx;
826 SlotNo += NumRegs;
827 return SlotNo;
830 /// Return the spill number that a location ID corresponds to.
831 SpillLocationNo locIDToSpill(unsigned ID) const {
832 assert(ID >= NumRegs);
833 ID -= NumRegs;
834 // Truncate away the index part, leaving only the spill number.
835 ID /= NumSlotIdxes;
836 return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
839 /// Returns the spill-slot size/offs that a location ID corresponds to.
840 StackSlotPos locIDToSpillIdx(unsigned ID) const {
841 assert(ID >= NumRegs);
842 ID -= NumRegs;
843 unsigned Idx = ID % NumSlotIdxes;
844 return StackIdxesToPos.find(Idx)->second;
847 unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
849 /// Reset all locations to contain a PHI value at the designated block. Used
850 /// sometimes for actual PHI values, othertimes to indicate the block entry
851 /// value (before any more information is known).
852 void setMPhis(unsigned NewCurBB) {
853 CurBB = NewCurBB;
854 for (auto Location : locations())
855 Location.Value = {CurBB, 0, Location.Idx};
858 /// Load values for each location from array of ValueIDNums. Take current
859 /// bbnum just in case we read a value from a hitherto untouched register.
860 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
861 CurBB = NewCurBB;
862 // Iterate over all tracked locations, and load each locations live-in
863 // value into our local index.
864 for (auto Location : locations())
865 Location.Value = Locs[Location.Idx.asU64()];
868 /// Wipe any un-necessary location records after traversing a block.
869 void reset() {
870 // We could reset all the location values too; however either loadFromArray
871 // or setMPhis should be called before this object is re-used. Just
872 // clear Masks, they're definitely not needed.
873 Masks.clear();
876 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
877 /// the information in this pass uninterpretable.
878 void clear() {
879 reset();
880 LocIDToLocIdx.clear();
881 LocIdxToLocID.clear();
882 LocIdxToIDNum.clear();
883 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
884 // 0
885 SpillLocs = decltype(SpillLocs)();
886 StackSlotIdxes.clear();
887 StackIdxesToPos.clear();
889 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
892 /// Set a locaiton to a certain value.
893 void setMLoc(LocIdx L, ValueIDNum Num) {
894 assert(L.asU64() < LocIdxToIDNum.size());
895 LocIdxToIDNum[L] = Num;
898 /// Read the value of a particular location
899 ValueIDNum readMLoc(LocIdx L) {
900 assert(L.asU64() < LocIdxToIDNum.size());
901 return LocIdxToIDNum[L];
904 /// Create a LocIdx for an untracked register ID. Initialize it to either an
905 /// mphi value representing a live-in, or a recent register mask clobber.
906 LocIdx trackRegister(unsigned ID);
908 LocIdx lookupOrTrackRegister(unsigned ID) {
909 LocIdx &Index = LocIDToLocIdx[ID];
910 if (Index.isIllegal())
911 Index = trackRegister(ID);
912 return Index;
915 /// Is register R currently tracked by MLocTracker?
916 bool isRegisterTracked(Register R) {
917 LocIdx &Index = LocIDToLocIdx[R];
918 return !Index.isIllegal();
921 /// Record a definition of the specified register at the given block / inst.
922 /// This doesn't take a ValueIDNum, because the definition and its location
923 /// are synonymous.
924 void defReg(Register R, unsigned BB, unsigned Inst) {
925 unsigned ID = getLocID(R);
926 LocIdx Idx = lookupOrTrackRegister(ID);
927 ValueIDNum ValueID = {BB, Inst, Idx};
928 LocIdxToIDNum[Idx] = ValueID;
931 /// Set a register to a value number. To be used if the value number is
932 /// known in advance.
933 void setReg(Register R, ValueIDNum ValueID) {
934 unsigned ID = getLocID(R);
935 LocIdx Idx = lookupOrTrackRegister(ID);
936 LocIdxToIDNum[Idx] = ValueID;
939 ValueIDNum readReg(Register R) {
940 unsigned ID = getLocID(R);
941 LocIdx Idx = lookupOrTrackRegister(ID);
942 return LocIdxToIDNum[Idx];
945 /// Reset a register value to zero / empty. Needed to replicate the
946 /// VarLoc implementation where a copy to/from a register effectively
947 /// clears the contents of the source register. (Values can only have one
948 /// machine location in VarLocBasedImpl).
949 void wipeRegister(Register R) {
950 unsigned ID = getLocID(R);
951 LocIdx Idx = LocIDToLocIdx[ID];
952 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
955 /// Determine the LocIdx of an existing register.
956 LocIdx getRegMLoc(Register R) {
957 unsigned ID = getLocID(R);
958 assert(ID < LocIDToLocIdx.size());
959 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap.
960 return LocIDToLocIdx[ID];
963 /// Record a RegMask operand being executed. Defs any register we currently
964 /// track, stores a pointer to the mask in case we have to account for it
965 /// later.
966 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
968 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
969 /// Returns std::nullopt when in scenarios where a spill slot could be
970 /// tracked, but we would likely run into resource limitations.
971 std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
973 // Get LocIdx of a spill ID.
974 LocIdx getSpillMLoc(unsigned SpillID) {
975 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap.
976 return LocIDToLocIdx[SpillID];
979 /// Return true if Idx is a spill machine location.
980 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
982 /// How large is this location (aka, how wide is a value defined there?).
983 unsigned getLocSizeInBits(LocIdx L) const {
984 unsigned ID = LocIdxToLocID[L];
985 if (!isSpill(L)) {
986 return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
987 } else {
988 // The slot location on the stack is uninteresting, we care about the
989 // position of the value within the slot (which comes with a size).
990 StackSlotPos Pos = locIDToSpillIdx(ID);
991 return Pos.first;
995 MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
997 MLocIterator end() {
998 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
1001 /// Return a range over all locations currently tracked.
1002 iterator_range<MLocIterator> locations() {
1003 return llvm::make_range(begin(), end());
1006 std::string LocIdxToName(LocIdx Idx) const;
1008 std::string IDAsString(const ValueIDNum &Num) const;
1010 #ifndef NDEBUG
1011 LLVM_DUMP_METHOD void dump();
1013 LLVM_DUMP_METHOD void dump_mloc_map();
1014 #endif
1016 /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
1017 /// information in \pProperties, for variable Var. Don't insert it anywhere,
1018 /// just return the builder for it.
1019 MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1020 const DebugVariable &Var, const DILocation *DILoc,
1021 const DbgValueProperties &Properties);
1024 /// Types for recording sets of variable fragments that overlap. For a given
1025 /// local variable, we record all other fragments of that variable that could
1026 /// overlap it, to reduce search time.
1027 using FragmentOfVar =
1028 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
1029 using OverlapMap =
1030 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
1032 /// Collection of DBG_VALUEs observed when traversing a block. Records each
1033 /// variable and the value the DBG_VALUE refers to. Requires the machine value
1034 /// location dataflow algorithm to have run already, so that values can be
1035 /// identified.
1036 class VLocTracker {
1037 public:
1038 /// Ref to function-wide map of DebugVariable <=> ID-numbers.
1039 DebugVariableMap &DVMap;
1040 /// Map DebugVariable to the latest Value it's defined to have.
1041 /// Needs to be a MapVector because we determine order-in-the-input-MIR from
1042 /// the order in this container. (FIXME: likely no longer true as the ordering
1043 /// is now provided by DebugVariableMap).
1044 /// We only retain the last DbgValue in each block for each variable, to
1045 /// determine the blocks live-out variable value. The Vars container forms the
1046 /// transfer function for this block, as part of the dataflow analysis. The
1047 /// movement of values between locations inside of a block is handled at a
1048 /// much later stage, in the TransferTracker class.
1049 SmallMapVector<DebugVariableID, DbgValue, 8> Vars;
1050 SmallDenseMap<DebugVariableID, const DILocation *, 8> Scopes;
1051 MachineBasicBlock *MBB = nullptr;
1052 const OverlapMap &OverlappingFragments;
1053 DbgValueProperties EmptyProperties;
1055 public:
1056 VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O,
1057 const DIExpression *EmptyExpr)
1058 : DVMap(DVMap), OverlappingFragments(O),
1059 EmptyProperties(EmptyExpr, false, false) {}
1061 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1062 const SmallVectorImpl<DbgOpID> &DebugOps) {
1063 assert(MI.isDebugValueLike());
1064 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1065 MI.getDebugLoc()->getInlinedAt());
1066 // Either insert or fetch an ID number for this variable.
1067 DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get());
1068 DbgValue Rec = (DebugOps.size() > 0)
1069 ? DbgValue(DebugOps, Properties)
1070 : DbgValue(Properties, DbgValue::Undef);
1072 // Attempt insertion; overwrite if it's already mapped.
1073 Vars.insert_or_assign(VarID, Rec);
1074 Scopes[VarID] = MI.getDebugLoc().get();
1076 considerOverlaps(Var, MI.getDebugLoc().get());
1079 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
1080 auto Overlaps = OverlappingFragments.find(
1081 {Var.getVariable(), Var.getFragmentOrDefault()});
1082 if (Overlaps == OverlappingFragments.end())
1083 return;
1085 // Otherwise: terminate any overlapped variable locations.
1086 for (auto FragmentInfo : Overlaps->second) {
1087 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
1088 // that it overlaps with everything, however its cannonical representation
1089 // in a DebugVariable is as "None".
1090 std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
1091 if (DebugVariable::isDefaultFragment(FragmentInfo))
1092 OptFragmentInfo = std::nullopt;
1094 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
1095 Var.getInlinedAt());
1096 // Produce an ID number for this overlapping fragment of a variable.
1097 DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc);
1098 DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
1100 // Attempt insertion; overwrite if it's already mapped.
1101 Vars.insert_or_assign(OverlappedID, Rec);
1102 Scopes[OverlappedID] = Loc;
1106 void clear() {
1107 Vars.clear();
1108 Scopes.clear();
1112 // XXX XXX docs
1113 class InstrRefBasedLDV : public LDVImpl {
1114 public:
1115 friend class ::InstrRefLDVTest;
1117 using FragmentInfo = DIExpression::FragmentInfo;
1118 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
1120 // Helper while building OverlapMap, a map of all fragments seen for a given
1121 // DILocalVariable.
1122 using VarToFragments =
1123 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1125 /// Machine location/value transfer function, a mapping of which locations
1126 /// are assigned which new values.
1127 using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
1129 /// Live in/out structure for the variable values: a per-block map of
1130 /// variables to their values.
1131 using LiveIdxT = SmallDenseMap<const MachineBasicBlock *, DbgValue *, 16>;
1133 using VarAndLoc = std::pair<DebugVariableID, DbgValue>;
1135 /// Type for a live-in value: the predecessor block, and its value.
1136 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1138 /// Vector (per block) of a collection (inner smallvector) of live-ins.
1139 /// Used as the result type for the variable value dataflow problem.
1140 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1142 /// Mapping from lexical scopes to a DILocation in that scope.
1143 using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
1145 /// Mapping from lexical scopes to variables in that scope.
1146 using ScopeToVarsT =
1147 DenseMap<const LexicalScope *, SmallSet<DebugVariableID, 4>>;
1149 /// Mapping from lexical scopes to blocks where variables in that scope are
1150 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
1151 /// just a block where an assignment happens.
1152 using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
1154 private:
1155 MachineDominatorTree *DomTree;
1156 const TargetRegisterInfo *TRI;
1157 const MachineRegisterInfo *MRI;
1158 const TargetInstrInfo *TII;
1159 const TargetFrameLowering *TFI;
1160 const MachineFrameInfo *MFI;
1161 BitVector CalleeSavedRegs;
1162 LexicalScopes LS;
1163 TargetPassConfig *TPC;
1165 // An empty DIExpression. Used default / placeholder DbgValueProperties
1166 // objects, as we can't have null expressions.
1167 const DIExpression *EmptyExpr;
1169 /// Object to track machine locations as we step through a block. Could
1170 /// probably be a field rather than a pointer, as it's always used.
1171 MLocTracker *MTracker = nullptr;
1173 /// Number of the current block LiveDebugValues is stepping through.
1174 unsigned CurBB = -1;
1176 /// Number of the current instruction LiveDebugValues is evaluating.
1177 unsigned CurInst;
1179 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1180 /// steps through a block. Reads the values at each location from the
1181 /// MLocTracker object.
1182 VLocTracker *VTracker = nullptr;
1184 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1185 /// between locations during stepping, creates new DBG_VALUEs when values move
1186 /// location.
1187 TransferTracker *TTracker = nullptr;
1189 /// Blocks which are artificial, i.e. blocks which exclusively contain
1190 /// instructions without DebugLocs, or with line 0 locations.
1191 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
1193 // Mapping of blocks to and from their RPOT order.
1194 SmallVector<MachineBasicBlock *> OrderToBB;
1195 DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
1196 DenseMap<unsigned, unsigned> BBNumToRPO;
1198 /// Pair of MachineInstr, and its 1-based offset into the containing block.
1199 using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1200 /// Map from debug instruction number to the MachineInstr labelled with that
1201 /// number, and its location within the function. Used to transform
1202 /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1203 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1205 /// Record of where we observed a DBG_PHI instruction.
1206 class DebugPHIRecord {
1207 public:
1208 /// Instruction number of this DBG_PHI.
1209 uint64_t InstrNum;
1210 /// Block where DBG_PHI occurred.
1211 MachineBasicBlock *MBB;
1212 /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
1213 /// refer to a value.
1214 std::optional<ValueIDNum> ValueRead;
1215 /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
1216 /// referred to something unexpected.
1217 std::optional<LocIdx> ReadLoc;
1219 operator unsigned() const { return InstrNum; }
1222 /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1223 /// DBG_PHI read and where. Populated and edited during the machine value
1224 /// location problem -- we use LLVMs SSA Updater to fix changes by
1225 /// optimizations that destroy PHI instructions.
1226 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1228 // Map of overlapping variable fragments.
1229 OverlapMap OverlapFragments;
1230 VarToFragments SeenFragments;
1232 /// Mapping of DBG_INSTR_REF instructions to their values, for those
1233 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
1234 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
1235 /// the result.
1236 DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>>
1237 SeenDbgPHIs;
1239 DbgOpIDMap DbgOpStore;
1241 /// Mapping between DebugVariables and unique ID numbers. This is a more
1242 /// efficient way to represent the identity of a variable, versus a plain
1243 /// DebugVariable.
1244 DebugVariableMap DVMap;
1246 /// True if we need to examine call instructions for stack clobbers. We
1247 /// normally assume that they don't clobber SP, but stack probes on Windows
1248 /// do.
1249 bool AdjustsStackInCalls = false;
1251 /// If AdjustsStackInCalls is true, this holds the name of the target's stack
1252 /// probe function, which is the function we expect will alter the stack
1253 /// pointer.
1254 StringRef StackProbeSymbolName;
1256 /// Tests whether this instruction is a spill to a stack slot.
1257 std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
1258 MachineFunction *MF);
1260 /// Decide if @MI is a spill instruction and return true if it is. We use 2
1261 /// criteria to make this decision:
1262 /// - Is this instruction a store to a spill slot?
1263 /// - Is there a register operand that is both used and killed?
1264 /// TODO: Store optimization can fold spills into other stores (including
1265 /// other spills). We do not handle this yet (more than one memory operand).
1266 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1267 unsigned &Reg);
1269 /// If a given instruction is identified as a spill, return the spill slot
1270 /// and set \p Reg to the spilled register.
1271 std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
1272 MachineFunction *MF,
1273 unsigned &Reg);
1275 /// Given a spill instruction, extract the spill slot information, ensure it's
1276 /// tracked, and return the spill number.
1277 std::optional<SpillLocationNo>
1278 extractSpillBaseRegAndOffset(const MachineInstr &MI);
1280 /// For an instruction reference given by \p InstNo and \p OpNo in instruction
1281 /// \p MI returns the Value pointed to by that instruction reference if any
1282 /// exists, otherwise returns std::nullopt.
1283 std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo,
1284 MachineInstr &MI,
1285 const FuncValueTable *MLiveOuts,
1286 const FuncValueTable *MLiveIns);
1288 /// Observe a single instruction while stepping through a block.
1289 void process(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1290 const FuncValueTable *MLiveIns);
1292 /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1293 /// \returns true if MI was recognized and processed.
1294 bool transferDebugValue(const MachineInstr &MI);
1296 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1297 /// \returns true if MI was recognized and processed.
1298 bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1299 const FuncValueTable *MLiveIns);
1301 /// Stores value-information about where this PHI occurred, and what
1302 /// instruction number is associated with it.
1303 /// \returns true if MI was recognized and processed.
1304 bool transferDebugPHI(MachineInstr &MI);
1306 /// Examines whether \p MI is copy instruction, and notifies trackers.
1307 /// \returns true if MI was recognized and processed.
1308 bool transferRegisterCopy(MachineInstr &MI);
1310 /// Examines whether \p MI is stack spill or restore instruction, and
1311 /// notifies trackers. \returns true if MI was recognized and processed.
1312 bool transferSpillOrRestoreInst(MachineInstr &MI);
1314 /// Examines \p MI for any registers that it defines, and notifies trackers.
1315 void transferRegisterDef(MachineInstr &MI);
1317 /// Copy one location to the other, accounting for movement of subregisters
1318 /// too.
1319 void performCopy(Register Src, Register Dst);
1321 void accumulateFragmentMap(MachineInstr &MI);
1323 /// Determine the machine value number referred to by (potentially several)
1324 /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1325 /// DBG_PHIs, shifting the position where values in registers merge, and
1326 /// forming another mini-ssa problem to solve.
1327 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1328 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1329 /// \returns The machine value number at position Here, or std::nullopt.
1330 std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1331 const FuncValueTable &MLiveOuts,
1332 const FuncValueTable &MLiveIns,
1333 MachineInstr &Here,
1334 uint64_t InstrNum);
1336 std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
1337 const FuncValueTable &MLiveOuts,
1338 const FuncValueTable &MLiveIns,
1339 MachineInstr &Here,
1340 uint64_t InstrNum);
1342 /// Step through the function, recording register definitions and movements
1343 /// in an MLocTracker. Convert the observations into a per-block transfer
1344 /// function in \p MLocTransfer, suitable for using with the machine value
1345 /// location dataflow problem.
1346 void
1347 produceMLocTransferFunction(MachineFunction &MF,
1348 SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1349 unsigned MaxNumBlocks);
1351 /// Solve the machine value location dataflow problem. Takes as input the
1352 /// transfer functions in \p MLocTransfer. Writes the output live-in and
1353 /// live-out arrays to the (initialized to zero) multidimensional arrays in
1354 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1355 /// number, the inner by LocIdx.
1356 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
1357 FuncValueTable &MOutLocs,
1358 SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1360 /// Examine the stack indexes (i.e. offsets within the stack) to find the
1361 /// basic units of interference -- like reg units, but for the stack.
1362 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
1364 /// Install PHI values into the live-in array for each block, according to
1365 /// the IDF of each register.
1366 void placeMLocPHIs(MachineFunction &MF,
1367 SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1368 FuncValueTable &MInLocs,
1369 SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1371 /// Propagate variable values to blocks in the common case where there's
1372 /// only one value assigned to the variable. This function has better
1373 /// performance as it doesn't have to find the dominance frontier between
1374 /// different assignments.
1375 void placePHIsForSingleVarDefinition(
1376 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
1377 MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
1378 DebugVariableID Var, LiveInsT &Output);
1380 /// Calculate the iterated-dominance-frontier for a set of defs, using the
1381 /// existing LLVM facilities for this. Works for a single "value" or
1382 /// machine/variable location.
1383 /// \p AllBlocks Set of blocks where we might consume the value.
1384 /// \p DefBlocks Set of blocks where the value/location is defined.
1385 /// \p PHIBlocks Output set of blocks where PHIs must be placed.
1386 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1387 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
1388 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
1390 /// Perform a control flow join (lattice value meet) of the values in machine
1391 /// locations at \p MBB. Follows the algorithm described in the file-comment,
1392 /// reading live-outs of predecessors from \p OutLocs, the current live ins
1393 /// from \p InLocs, and assigning the newly computed live ins back into
1394 /// \p InLocs. \returns two bools -- the first indicates whether a change
1395 /// was made, the second whether a lattice downgrade occurred. If the latter
1396 /// is true, revisiting this block is necessary.
1397 bool mlocJoin(MachineBasicBlock &MBB,
1398 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1399 FuncValueTable &OutLocs, ValueTable &InLocs);
1401 /// Produce a set of blocks that are in the current lexical scope. This means
1402 /// those blocks that contain instructions "in" the scope, blocks where
1403 /// assignments to variables in scope occur, and artificial blocks that are
1404 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
1405 /// more commentry on what "in scope" means.
1406 /// \p DILoc A location in the scope that we're fetching blocks for.
1407 /// \p Output Set to put in-scope-blocks into.
1408 /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
1409 void
1410 getBlocksForScope(const DILocation *DILoc,
1411 SmallPtrSetImpl<const MachineBasicBlock *> &Output,
1412 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
1414 /// Solve the variable value dataflow problem, for a single lexical scope.
1415 /// Uses the algorithm from the file comment to resolve control flow joins
1416 /// using PHI placement and value propagation. Reads the locations of machine
1417 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1418 /// and reads the variable values transfer function from \p AllTheVlocs.
1419 /// Live-in and Live-out variable values are stored locally, with the live-ins
1420 /// permanently stored to \p Output once a fixedpoint is reached.
1421 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1422 /// that we should be tracking.
1423 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1424 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1425 /// locations through.
1426 void buildVLocValueMap(const DILocation *DILoc,
1427 const SmallSet<DebugVariableID, 4> &VarsWeCareAbout,
1428 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1429 LiveInsT &Output, FuncValueTable &MOutLocs,
1430 FuncValueTable &MInLocs,
1431 SmallVectorImpl<VLocTracker> &AllTheVLocs);
1433 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1434 /// live-in values coming from predecessors live-outs, and replaces any PHIs
1435 /// already present in this blocks live-ins with a live-through value if the
1436 /// PHI isn't needed.
1437 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1438 /// \returns true if any live-ins change value, either from value propagation
1439 /// or PHI elimination.
1440 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
1441 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1442 DbgValue &LiveIn);
1444 /// For the given block and live-outs feeding into it, try to find
1445 /// machine locations for each debug operand where all the values feeding
1446 /// into that operand join together.
1447 /// \returns true if a joined location was found for every value that needed
1448 /// to be joined.
1449 bool
1450 pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
1451 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
1452 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1454 std::optional<ValueIDNum> pickOperandPHILoc(
1455 unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
1456 FuncValueTable &MOutLocs,
1457 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
1459 /// Take collections of DBG_VALUE instructions stored in TTracker, and
1460 /// install them into their output blocks.
1461 bool emitTransfers();
1463 /// Boilerplate computation of some initial sets, artifical blocks and
1464 /// RPOT block ordering.
1465 void initialSetup(MachineFunction &MF);
1467 /// Produce a map of the last lexical scope that uses a block, using the
1468 /// scopes DFSOut number. Mapping is block-number to DFSOut.
1469 /// \p EjectionMap Pre-allocated vector in which to install the built ma.
1470 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
1471 /// \p AssignBlocks Map of blocks where assignments happen for a scope.
1472 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
1473 const ScopeToDILocT &ScopeToDILocation,
1474 ScopeToAssignBlocksT &AssignBlocks);
1476 /// When determining per-block variable values and emitting to DBG_VALUEs,
1477 /// this function explores by lexical scope depth. Doing so means that per
1478 /// block information can be fully computed before exploration finishes,
1479 /// allowing us to emit it and free data structures earlier than otherwise.
1480 /// It's also good for locality.
1481 bool depthFirstVLocAndEmit(unsigned MaxNumBlocks,
1482 const ScopeToDILocT &ScopeToDILocation,
1483 const ScopeToVarsT &ScopeToVars,
1484 ScopeToAssignBlocksT &ScopeToBlocks,
1485 LiveInsT &Output, FuncValueTable &MOutLocs,
1486 FuncValueTable &MInLocs,
1487 SmallVectorImpl<VLocTracker> &AllTheVLocs,
1488 MachineFunction &MF, const TargetPassConfig &TPC);
1490 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1491 TargetPassConfig *TPC, unsigned InputBBLimit,
1492 unsigned InputDbgValLimit) override;
1494 public:
1495 /// Default construct and initialize the pass.
1496 InstrRefBasedLDV();
1498 LLVM_DUMP_METHOD
1499 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1501 bool isCalleeSaved(LocIdx L) const;
1502 bool isCalleeSavedReg(Register R) const;
1504 bool hasFoldedStackStore(const MachineInstr &MI) {
1505 // Instruction must have a memory operand that's a stack slot, and isn't
1506 // aliased, meaning it's a spill from regalloc instead of a variable.
1507 // If it's aliased, we can't guarantee its value.
1508 if (!MI.hasOneMemOperand())
1509 return false;
1510 auto *MemOperand = *MI.memoperands_begin();
1511 return MemOperand->isStore() &&
1512 MemOperand->getPseudoValue() &&
1513 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1514 && !MemOperand->getPseudoValue()->isAliased(MFI);
1517 std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
1519 // Utility for unit testing, don't use directly.
1520 DebugVariableMap &getDVMap() {
1521 return DVMap;
1525 } // namespace LiveDebugValues
1527 #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */