AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / CodeGen / LiveDebugValues / VarLocBasedImpl.cpp
bloba5e6bebcd29c7f99c4382508d5fc5928211091b2
1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants, and target indices) that a variable
14 /// fragment might be located, qualified by a DIExpression and indirect-ness
15 /// flag, while each variable is identified by a DebugVariable object. The
16 /// availability of an expression begins when a DBG_VALUE instruction specifies
17 /// the location of a DebugVariable, and continues until that location is
18 /// clobbered or re-specified by a different DBG_VALUE for the same
19 /// DebugVariable.
20 ///
21 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
22 /// placed to extend variable locations as far they're available. This file
23 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
24 /// locations, using the VarLoc class.
25 ///
26 /// The canonical "available expressions" problem doesn't have expression
27 /// clobbering, instead when a variable is re-assigned, any expressions using
28 /// that variable get invalidated. LiveDebugValues can map onto "available
29 /// expressions" by having every register represented by a variable, which is
30 /// used in an expression that becomes available at a DBG_VALUE instruction.
31 /// When the register is clobbered, its variable is effectively reassigned, and
32 /// expressions computed from it become unavailable. A similar construct is
33 /// needed when a DebugVariable has its location re-specified, to invalidate
34 /// all other locations for that DebugVariable.
35 ///
36 /// Using the dataflow analysis to compute the available expressions, we create
37 /// a DBG_VALUE at the beginning of each block where the expression is
38 /// live-in. This propagates variable locations into every basic block where
39 /// the location can be determined, rather than only having DBG_VALUEs in blocks
40 /// where locations are specified due to an assignment or some optimization.
41 /// Movements of values between registers and spill slots are annotated with
42 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
43 /// DbgEntityHistoryCalculator to focus on only the locations within individual
44 /// blocks, facilitating testing and improving modularity.
45 ///
46 /// We follow an optimisic dataflow approach, with this lattice:
47 ///
48 /// \verbatim
49 /// ┬ "Unknown"
50 /// |
51 /// v
52 /// True
53 /// |
54 /// v
55 /// ⊥ False
56 /// \endverbatim With "True" signifying that the expression is available (and
57 /// thus a DebugVariable's location is the corresponding register), while
58 /// "False" signifies that the expression is unavailable. "Unknown"s never
59 /// survive to the end of the analysis (see below).
60 ///
61 /// Formally, all DebugVariable locations that are live-out of a block are
62 /// initialized to \top. A blocks live-in values take the meet of the lattice
63 /// value for every predecessors live-outs, except for the entry block, where
64 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
65 /// function for a block assigns an expression for a DebugVariable to be "True"
66 /// if a DBG_VALUE in the block specifies it; "False" if the location is
67 /// clobbered; or the live-in value if it is unaffected by the block. We
68 /// visit each block in reverse post order until a fixedpoint is reached. The
69 /// solution produced is maximal.
70 ///
71 /// Intuitively, we start by assuming that every expression / variable location
72 /// is at least "True", and then propagate "False" from the entry block and any
73 /// clobbers until there are no more changes to make. This gives us an accurate
74 /// solution because all incorrect locations will have a "False" propagated into
75 /// them. It also gives us a solution that copes well with loops by assuming
76 /// that variable locations are live-through every loop, and then removing those
77 /// that are not through dataflow.
78 ///
79 /// Within LiveDebugValues: each variable location is represented by a
80 /// VarLoc object that identifies the source variable, the set of
81 /// machine-locations that currently describe it (a single location for
82 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
83 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
84 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
85 /// corresponds to one of the VarLoc's machine-locations and can be used to
86 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
87 /// locations, the dataflow analysis in this pass identifies locations by their
88 /// indices in the VarLocMap, meaning all the variable locations in a block can
89 /// be described by a sparse vector of VarLocMap indices.
90 ///
91 /// All the storage for the dataflow analysis is local to the ExtendRanges
92 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
93 /// in and out lattice values for each block. "OpenRanges" maintains a list of
94 /// variable locations and, with the "process" method, evaluates the transfer
95 /// function of each block. "flushPendingLocs" installs debug value instructions
96 /// for each live-in location at the start of blocks, while "Transfers" records
97 /// transfers of values between machine-locations.
98 ///
99 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
100 /// implementation. Instead, unvisited blocks implicitly have all lattice
101 /// values set as "Unknown". After being visited, there will be path back to
102 /// the entry block where the lattice value is "False", and as the transfer
103 /// function cannot make new "Unknown" locations, there are no scenarios where
104 /// a block can have an "Unknown" location after being visited. Similarly, we
105 /// don't enumerate all possible variable locations before exploring the
106 /// function: when a new location is discovered, all blocks previously explored
107 /// were implicitly "False" but unrecorded, and become explicitly "False" when
108 /// a new VarLoc is created with its bit not set in predecessor InLocs or
109 /// OutLocs.
111 //===----------------------------------------------------------------------===//
113 #include "LiveDebugValues.h"
115 #include "llvm/ADT/CoalescingBitVector.h"
116 #include "llvm/ADT/DenseMap.h"
117 #include "llvm/ADT/PostOrderIterator.h"
118 #include "llvm/ADT/SmallPtrSet.h"
119 #include "llvm/ADT/SmallSet.h"
120 #include "llvm/ADT/SmallVector.h"
121 #include "llvm/ADT/Statistic.h"
122 #include "llvm/BinaryFormat/Dwarf.h"
123 #include "llvm/CodeGen/LexicalScopes.h"
124 #include "llvm/CodeGen/MachineBasicBlock.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineMemOperand.h"
129 #include "llvm/CodeGen/MachineOperand.h"
130 #include "llvm/CodeGen/PseudoSourceValue.h"
131 #include "llvm/CodeGen/TargetFrameLowering.h"
132 #include "llvm/CodeGen/TargetInstrInfo.h"
133 #include "llvm/CodeGen/TargetLowering.h"
134 #include "llvm/CodeGen/TargetPassConfig.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/Config/llvm-config.h"
138 #include "llvm/IR/DebugInfoMetadata.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCRegisterInfo.h"
142 #include "llvm/Support/Casting.h"
143 #include "llvm/Support/Debug.h"
144 #include "llvm/Support/TypeSize.h"
145 #include "llvm/Support/raw_ostream.h"
146 #include "llvm/Target/TargetMachine.h"
147 #include <cassert>
148 #include <cstdint>
149 #include <functional>
150 #include <map>
151 #include <optional>
152 #include <queue>
153 #include <tuple>
154 #include <utility>
155 #include <vector>
157 using namespace llvm;
159 #define DEBUG_TYPE "livedebugvalues"
161 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
163 /// If \p Op is a stack or frame register return true, otherwise return false.
164 /// This is used to avoid basing the debug entry values on the registers, since
165 /// we do not support it at the moment.
166 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
167 const MachineInstr &MI,
168 const TargetRegisterInfo *TRI) {
169 if (!Op.isReg())
170 return false;
172 const MachineFunction *MF = MI.getParent()->getParent();
173 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
174 Register SP = TLI->getStackPointerRegisterToSaveRestore();
175 Register FP = TRI->getFrameRegister(*MF);
176 Register Reg = Op.getReg();
178 return Reg && Reg != SP && Reg != FP;
181 namespace {
183 // Max out the number of statically allocated elements in DefinedRegsSet, as
184 // this prevents fallback to std::set::count() operations.
185 using DefinedRegsSet = SmallSet<Register, 32>;
187 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
188 // that represent Entry Values; every VarLoc in the set will also appear
189 // exactly once at Location=0.
190 // As a result, each VarLoc may appear more than once in this "set", but each
191 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
192 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
193 // is the set of all VarLocs.
194 using VarLocSet = CoalescingBitVector<uint64_t>;
196 /// A type-checked pair of {Register Location (or 0), Index}, used to index
197 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
198 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
199 /// type-checker helps ensure that the conversions aren't lossy.
201 /// Why encode a location /into/ the VarLocMap index? This makes it possible
202 /// to find the open VarLocs killed by a register def very quickly. This is a
203 /// performance-critical operation for LiveDebugValues.
204 struct LocIndex {
205 using u32_location_t = uint32_t;
206 using u32_index_t = uint32_t;
208 u32_location_t Location; // Physical registers live in the range [1;2^30) (see
209 // \ref MCRegister), so we have plenty of range left
210 // here to encode non-register locations.
211 u32_index_t Index;
213 /// The location that has an entry for every VarLoc in the map.
214 static constexpr u32_location_t kUniversalLocation = 0;
216 /// The first location that is reserved for VarLocs with locations of kind
217 /// RegisterKind.
218 static constexpr u32_location_t kFirstRegLocation = 1;
220 /// The first location greater than 0 that is not reserved for VarLocs with
221 /// locations of kind RegisterKind.
222 static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
224 /// A special location reserved for VarLocs with locations of kind
225 /// SpillLocKind.
226 static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
228 /// A special location reserved for VarLocs of kind EntryValueBackupKind and
229 /// EntryValueCopyBackupKind.
230 static constexpr u32_location_t kEntryValueBackupLocation =
231 kFirstInvalidRegLocation + 1;
233 /// A special location reserved for VarLocs with locations of kind
234 /// WasmLocKind.
235 /// TODO Placing all Wasm target index locations in this single kWasmLocation
236 /// may cause slowdown in compilation time in very large functions. Consider
237 /// giving a each target index/offset pair its own u32_location_t if this
238 /// becomes a problem.
239 static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2;
241 /// The first location that is reserved for VarLocs with locations of kind
242 /// VirtualRegisterKind.
243 static constexpr u32_location_t kFirstVirtualRegLocation = 1 << 31;
245 LocIndex(u32_location_t Location, u32_index_t Index)
246 : Location(Location), Index(Index) {}
248 uint64_t getAsRawInteger() const {
249 return (static_cast<uint64_t>(Location) << 32) | Index;
252 template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
253 static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t),
254 "Cannot convert raw integer to LocIndex");
255 return {static_cast<u32_location_t>(ID >> 32),
256 static_cast<u32_index_t>(ID)};
259 /// Get the start of the interval reserved for VarLocs of kind RegisterKind
260 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
261 static uint64_t rawIndexForReg(Register Reg) {
262 return LocIndex(Reg, 0).getAsRawInteger();
265 /// Return a range covering all set indices in the interval reserved for
266 /// \p Location in \p Set.
267 static auto indexRangeForLocation(const VarLocSet &Set,
268 u32_location_t Location) {
269 uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
270 uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
271 return Set.half_open_range(Start, End);
275 // Simple Set for storing all the VarLoc Indices at a Location bucket.
276 using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
277 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
278 // appear in any two of these, as each VarLoc appears at most once in any
279 // Location bucket.
280 using LocIndices = SmallVector<LocIndex, 2>;
282 class VarLocBasedLDV : public LDVImpl {
283 private:
284 const TargetRegisterInfo *TRI;
285 const TargetInstrInfo *TII;
286 const TargetFrameLowering *TFI;
287 TargetPassConfig *TPC;
288 BitVector CalleeSavedRegs;
289 LexicalScopes LS;
290 VarLocSet::Allocator Alloc;
292 const MachineInstr *LastNonDbgMI;
294 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
296 using FragmentInfo = DIExpression::FragmentInfo;
297 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
299 /// A pair of debug variable and value location.
300 struct VarLoc {
301 // The location at which a spilled variable resides. It consists of a
302 // register and an offset.
303 struct SpillLoc {
304 unsigned SpillBase;
305 StackOffset SpillOffset;
306 bool operator==(const SpillLoc &Other) const {
307 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
309 bool operator!=(const SpillLoc &Other) const {
310 return !(*this == Other);
314 // Target indices used for wasm-specific locations.
315 struct WasmLoc {
316 // One of TargetIndex values defined in WebAssembly.h. We deal with
317 // local-related TargetIndex in this analysis (TI_LOCAL and
318 // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled
319 // separately WebAssemblyDebugFixup pass, and we don't associate debug
320 // info with values in global operands (TI_GLOBAL_RELOC) at the moment.
321 int Index;
322 int64_t Offset;
323 bool operator==(const WasmLoc &Other) const {
324 return Index == Other.Index && Offset == Other.Offset;
326 bool operator!=(const WasmLoc &Other) const { return !(*this == Other); }
329 /// Identity of the variable at this location.
330 const DebugVariable Var;
332 /// The expression applied to this location.
333 const DIExpression *Expr;
335 /// DBG_VALUE to clone var/expr information from if this location
336 /// is moved.
337 const MachineInstr &MI;
339 enum class MachineLocKind {
340 InvalidKind = 0,
341 RegisterKind,
342 SpillLocKind,
343 ImmediateKind,
344 WasmLocKind
347 enum class EntryValueLocKind {
348 NonEntryValueKind = 0,
349 EntryValueKind,
350 EntryValueBackupKind,
351 EntryValueCopyBackupKind
352 } EVKind = EntryValueLocKind::NonEntryValueKind;
354 /// The value location. Stored separately to avoid repeatedly
355 /// extracting it from MI.
356 union MachineLocValue {
357 uint64_t RegNo;
358 SpillLoc SpillLocation;
359 uint64_t Hash;
360 int64_t Immediate;
361 const ConstantFP *FPImm;
362 const ConstantInt *CImm;
363 WasmLoc WasmLocation;
364 MachineLocValue() : Hash(0) {}
367 /// A single machine location; its Kind is either a register, spill
368 /// location, or immediate value.
369 /// If the VarLoc is not a NonEntryValueKind, then it will use only a
370 /// single MachineLoc of RegisterKind.
371 struct MachineLoc {
372 MachineLocKind Kind;
373 MachineLocValue Value;
374 bool operator==(const MachineLoc &Other) const {
375 if (Kind != Other.Kind)
376 return false;
377 switch (Kind) {
378 case MachineLocKind::SpillLocKind:
379 return Value.SpillLocation == Other.Value.SpillLocation;
380 case MachineLocKind::WasmLocKind:
381 return Value.WasmLocation == Other.Value.WasmLocation;
382 case MachineLocKind::RegisterKind:
383 case MachineLocKind::ImmediateKind:
384 return Value.Hash == Other.Value.Hash;
385 default:
386 llvm_unreachable("Invalid kind");
389 bool operator<(const MachineLoc &Other) const {
390 switch (Kind) {
391 case MachineLocKind::SpillLocKind:
392 return std::make_tuple(
393 Kind, Value.SpillLocation.SpillBase,
394 Value.SpillLocation.SpillOffset.getFixed(),
395 Value.SpillLocation.SpillOffset.getScalable()) <
396 std::make_tuple(
397 Other.Kind, Other.Value.SpillLocation.SpillBase,
398 Other.Value.SpillLocation.SpillOffset.getFixed(),
399 Other.Value.SpillLocation.SpillOffset.getScalable());
400 case MachineLocKind::WasmLocKind:
401 return std::make_tuple(Kind, Value.WasmLocation.Index,
402 Value.WasmLocation.Offset) <
403 std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index,
404 Other.Value.WasmLocation.Offset);
405 case MachineLocKind::RegisterKind:
406 case MachineLocKind::ImmediateKind:
407 return std::tie(Kind, Value.Hash) <
408 std::tie(Other.Kind, Other.Value.Hash);
409 default:
410 llvm_unreachable("Invalid kind");
415 /// The set of machine locations used to determine the variable's value, in
416 /// conjunction with Expr. Initially populated with MI's debug operands,
417 /// but may be transformed independently afterwards.
418 SmallVector<MachineLoc, 8> Locs;
419 /// Used to map the index of each location in Locs back to the index of its
420 /// original debug operand in MI. Used when multiple location operands are
421 /// coalesced and the original MI's operands need to be accessed while
422 /// emitting a debug value.
423 SmallVector<unsigned, 8> OrigLocMap;
425 VarLoc(const MachineInstr &MI)
426 : Var(MI.getDebugVariable(), MI.getDebugExpression(),
427 MI.getDebugLoc()->getInlinedAt()),
428 Expr(MI.getDebugExpression()), MI(MI) {
429 assert(MI.isDebugValue() && "not a DBG_VALUE");
430 assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
431 "malformed DBG_VALUE");
432 for (const MachineOperand &Op : MI.debug_operands()) {
433 MachineLoc ML = GetLocForOp(Op);
434 auto It = find(Locs, ML);
435 if (It == Locs.end()) {
436 Locs.push_back(ML);
437 OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
438 } else {
439 // ML duplicates an element in Locs; replace references to Op
440 // with references to the duplicating element.
441 unsigned OpIdx = Locs.size();
442 unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
443 Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
447 // We create the debug entry values from the factory functions rather
448 // than from this ctor.
449 assert(EVKind != EntryValueLocKind::EntryValueKind &&
450 !isEntryBackupLoc());
453 static MachineLoc GetLocForOp(const MachineOperand &Op) {
454 MachineLocKind Kind;
455 MachineLocValue Loc;
456 if (Op.isReg()) {
457 Kind = MachineLocKind::RegisterKind;
458 Loc.RegNo = Op.getReg();
459 } else if (Op.isImm()) {
460 Kind = MachineLocKind::ImmediateKind;
461 Loc.Immediate = Op.getImm();
462 } else if (Op.isFPImm()) {
463 Kind = MachineLocKind::ImmediateKind;
464 Loc.FPImm = Op.getFPImm();
465 } else if (Op.isCImm()) {
466 Kind = MachineLocKind::ImmediateKind;
467 Loc.CImm = Op.getCImm();
468 } else if (Op.isTargetIndex()) {
469 Kind = MachineLocKind::WasmLocKind;
470 Loc.WasmLocation = {Op.getIndex(), Op.getOffset()};
471 } else
472 llvm_unreachable("Invalid Op kind for MachineLoc.");
473 return {Kind, Loc};
476 /// Take the variable and machine-location in DBG_VALUE MI, and build an
477 /// entry location using the given expression.
478 static VarLoc CreateEntryLoc(const MachineInstr &MI,
479 const DIExpression *EntryExpr, Register Reg) {
480 VarLoc VL(MI);
481 assert(VL.Locs.size() == 1 &&
482 VL.Locs[0].Kind == MachineLocKind::RegisterKind);
483 VL.EVKind = EntryValueLocKind::EntryValueKind;
484 VL.Expr = EntryExpr;
485 VL.Locs[0].Value.RegNo = Reg;
486 return VL;
489 /// Take the variable and machine-location from the DBG_VALUE (from the
490 /// function entry), and build an entry value backup location. The backup
491 /// location will turn into the normal location if the backup is valid at
492 /// the time of the primary location clobbering.
493 static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
494 const DIExpression *EntryExpr) {
495 VarLoc VL(MI);
496 assert(VL.Locs.size() == 1 &&
497 VL.Locs[0].Kind == MachineLocKind::RegisterKind);
498 VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
499 VL.Expr = EntryExpr;
500 return VL;
503 /// Take the variable and machine-location from the DBG_VALUE (from the
504 /// function entry), and build a copy of an entry value backup location by
505 /// setting the register location to NewReg.
506 static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
507 const DIExpression *EntryExpr,
508 Register NewReg) {
509 VarLoc VL(MI);
510 assert(VL.Locs.size() == 1 &&
511 VL.Locs[0].Kind == MachineLocKind::RegisterKind);
512 VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
513 VL.Expr = EntryExpr;
514 VL.Locs[0].Value.RegNo = NewReg;
515 return VL;
518 /// Copy the register location in DBG_VALUE MI, updating the register to
519 /// be NewReg.
520 static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
521 Register NewReg) {
522 VarLoc VL = OldVL;
523 for (MachineLoc &ML : VL.Locs)
524 if (ML == OldML) {
525 ML.Kind = MachineLocKind::RegisterKind;
526 ML.Value.RegNo = NewReg;
527 return VL;
529 llvm_unreachable("Should have found OldML in new VarLoc.");
532 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
533 /// locating it in the specified spill location.
534 static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
535 unsigned SpillBase, StackOffset SpillOffset) {
536 VarLoc VL = OldVL;
537 for (MachineLoc &ML : VL.Locs)
538 if (ML == OldML) {
539 ML.Kind = MachineLocKind::SpillLocKind;
540 ML.Value.SpillLocation = {SpillBase, SpillOffset};
541 return VL;
543 llvm_unreachable("Should have found OldML in new VarLoc.");
546 /// Create a DBG_VALUE representing this VarLoc in the given function.
547 /// Copies variable-specific information such as DILocalVariable and
548 /// inlining information from the original DBG_VALUE instruction, which may
549 /// have been several transfers ago.
550 MachineInstr *BuildDbgValue(MachineFunction &MF) const {
551 assert(!isEntryBackupLoc() &&
552 "Tried to produce DBG_VALUE for backup VarLoc");
553 const DebugLoc &DbgLoc = MI.getDebugLoc();
554 bool Indirect = MI.isIndirectDebugValue();
555 const auto &IID = MI.getDesc();
556 const DILocalVariable *Var = MI.getDebugVariable();
557 NumInserted++;
559 const DIExpression *DIExpr = Expr;
560 SmallVector<MachineOperand, 8> MOs;
561 for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
562 MachineLocKind LocKind = Locs[I].Kind;
563 MachineLocValue Loc = Locs[I].Value;
564 const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
565 switch (LocKind) {
566 case MachineLocKind::RegisterKind:
567 // An entry value is a register location -- but with an updated
568 // expression. The register location of such DBG_VALUE is always the
569 // one from the entry DBG_VALUE, it does not matter if the entry value
570 // was copied in to another register due to some optimizations.
571 // Non-entry value register locations are like the source
572 // DBG_VALUE, but with the register number from this VarLoc.
573 MOs.push_back(MachineOperand::CreateReg(
574 EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
575 : Register(Loc.RegNo),
576 false));
577 break;
578 case MachineLocKind::SpillLocKind: {
579 // Spills are indirect DBG_VALUEs, with a base register and offset.
580 // Use the original DBG_VALUEs expression to build the spilt location
581 // on top of. FIXME: spill locations created before this pass runs
582 // are not recognized, and not handled here.
583 unsigned Base = Loc.SpillLocation.SpillBase;
584 auto *TRI = MF.getSubtarget().getRegisterInfo();
585 if (MI.isNonListDebugValue()) {
586 auto Deref = Indirect ? DIExpression::DerefAfter : 0;
587 DIExpr = TRI->prependOffsetExpression(
588 DIExpr, DIExpression::ApplyOffset | Deref,
589 Loc.SpillLocation.SpillOffset);
590 Indirect = true;
591 } else {
592 SmallVector<uint64_t, 4> Ops;
593 TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
594 Ops.push_back(dwarf::DW_OP_deref);
595 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
597 MOs.push_back(MachineOperand::CreateReg(Base, false));
598 break;
600 case MachineLocKind::ImmediateKind: {
601 MOs.push_back(Orig);
602 break;
604 case MachineLocKind::WasmLocKind: {
605 MOs.push_back(Orig);
606 break;
608 case MachineLocKind::InvalidKind:
609 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
612 return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
615 /// Is the Loc field a constant or constant object?
616 bool isConstant(MachineLocKind Kind) const {
617 return Kind == MachineLocKind::ImmediateKind;
620 /// Check if the Loc field is an entry backup location.
621 bool isEntryBackupLoc() const {
622 return EVKind == EntryValueLocKind::EntryValueBackupKind ||
623 EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
626 /// If this variable is described by register \p Reg holding the entry
627 /// value, return true.
628 bool isEntryValueBackupReg(Register Reg) const {
629 return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
632 /// If this variable is described by register \p Reg holding a copy of the
633 /// entry value, return true.
634 bool isEntryValueCopyBackupReg(Register Reg) const {
635 return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
636 usesReg(Reg);
639 /// If this variable is described in whole or part by \p Reg, return true.
640 bool usesReg(Register Reg) const {
641 MachineLoc RegML;
642 RegML.Kind = MachineLocKind::RegisterKind;
643 RegML.Value.RegNo = Reg;
644 return is_contained(Locs, RegML);
647 /// If this variable is described in whole or part by \p Reg, return true.
648 unsigned getRegIdx(Register Reg) const {
649 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
650 if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
651 Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg)
652 return Idx;
653 llvm_unreachable("Could not find given Reg in Locs");
656 /// If this variable is described in whole or part by 1 or more registers,
657 /// add each of them to \p Regs and return true.
658 bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
659 bool AnyRegs = false;
660 for (const auto &Loc : Locs)
661 if (Loc.Kind == MachineLocKind::RegisterKind) {
662 Regs.push_back(Loc.Value.RegNo);
663 AnyRegs = true;
665 return AnyRegs;
668 bool containsSpillLocs() const {
669 return any_of(Locs, [](VarLoc::MachineLoc ML) {
670 return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
674 /// If this variable is described in whole or part by \p SpillLocation,
675 /// return true.
676 bool usesSpillLoc(SpillLoc SpillLocation) const {
677 MachineLoc SpillML;
678 SpillML.Kind = MachineLocKind::SpillLocKind;
679 SpillML.Value.SpillLocation = SpillLocation;
680 return is_contained(Locs, SpillML);
683 /// If this variable is described in whole or part by \p SpillLocation,
684 /// return the index .
685 unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
686 for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
687 if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
688 Locs[Idx].Value.SpillLocation == SpillLocation)
689 return Idx;
690 llvm_unreachable("Could not find given SpillLoc in Locs");
693 bool containsWasmLocs() const {
694 return any_of(Locs, [](VarLoc::MachineLoc ML) {
695 return ML.Kind == VarLoc::MachineLocKind::WasmLocKind;
699 /// If this variable is described in whole or part by \p WasmLocation,
700 /// return true.
701 bool usesWasmLoc(WasmLoc WasmLocation) const {
702 MachineLoc WasmML;
703 WasmML.Kind = MachineLocKind::WasmLocKind;
704 WasmML.Value.WasmLocation = WasmLocation;
705 return is_contained(Locs, WasmML);
708 /// Determine whether the lexical scope of this value's debug location
709 /// dominates MBB.
710 bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
711 return LS.dominates(MI.getDebugLoc().get(), &MBB);
714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
715 // TRI and TII can be null.
716 void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII,
717 raw_ostream &Out = dbgs()) const {
718 Out << "VarLoc(";
719 for (const MachineLoc &MLoc : Locs) {
720 if (Locs.begin() != &MLoc)
721 Out << ", ";
722 switch (MLoc.Kind) {
723 case MachineLocKind::RegisterKind:
724 Out << printReg(MLoc.Value.RegNo, TRI);
725 break;
726 case MachineLocKind::SpillLocKind:
727 Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
728 Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
729 << MLoc.Value.SpillLocation.SpillOffset.getScalable()
730 << "x vscale"
731 << "]";
732 break;
733 case MachineLocKind::ImmediateKind:
734 Out << MLoc.Value.Immediate;
735 break;
736 case MachineLocKind::WasmLocKind: {
737 if (TII) {
738 auto Indices = TII->getSerializableTargetIndices();
739 auto Found =
740 find_if(Indices, [&](const std::pair<int, const char *> &I) {
741 return I.first == MLoc.Value.WasmLocation.Index;
743 assert(Found != Indices.end());
744 Out << Found->second;
745 if (MLoc.Value.WasmLocation.Offset > 0)
746 Out << " + " << MLoc.Value.WasmLocation.Offset;
747 } else {
748 Out << "WasmLoc";
750 break;
752 case MachineLocKind::InvalidKind:
753 llvm_unreachable("Invalid VarLoc in dump method");
757 Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
758 if (Var.getInlinedAt())
759 Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
760 else
761 Out << "(null))";
763 if (isEntryBackupLoc())
764 Out << " (backup loc)\n";
765 else
766 Out << "\n";
768 #endif
770 bool operator==(const VarLoc &Other) const {
771 return std::tie(EVKind, Var, Expr, Locs) ==
772 std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
775 /// This operator guarantees that VarLocs are sorted by Variable first.
776 bool operator<(const VarLoc &Other) const {
777 return std::tie(Var, EVKind, Locs, Expr) <
778 std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
782 #ifndef NDEBUG
783 using VarVec = SmallVector<VarLoc, 32>;
784 #endif
786 /// VarLocMap is used for two things:
787 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
788 /// virtually insert a VarLoc into a VarLocSet.
789 /// 2) Given a LocIndex, look up the unique associated VarLoc.
790 class VarLocMap {
791 /// Map a VarLoc to an index within the vector reserved for its location
792 /// within Loc2Vars.
793 std::map<VarLoc, LocIndices> Var2Indices;
795 /// Map a location to a vector which holds VarLocs which live in that
796 /// location.
797 SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
799 public:
800 /// Retrieve LocIndices for \p VL.
801 LocIndices insert(const VarLoc &VL) {
802 LocIndices &Indices = Var2Indices[VL];
803 // If Indices is not empty, VL is already in the map.
804 if (!Indices.empty())
805 return Indices;
806 SmallVector<LocIndex::u32_location_t, 4> Locations;
807 // LocIndices are determined by EVKind and MLs; each Register has a
808 // unique location, while all SpillLocs use a single bucket, and any EV
809 // VarLocs use only the Backup bucket or none at all (except the
810 // compulsory entry at the universal location index). LocIndices will
811 // always have an index at the universal location index as the last index.
812 if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
813 VL.getDescribingRegs(Locations);
814 assert(all_of(Locations,
815 [](auto RegNo) {
816 return (RegNo < LocIndex::kFirstInvalidRegLocation) ||
817 (LocIndex::kFirstVirtualRegLocation <= RegNo);
818 }) &&
819 "Physical or virtual register out of range?");
820 if (VL.containsSpillLocs())
821 Locations.push_back(LocIndex::kSpillLocation);
822 if (VL.containsWasmLocs())
823 Locations.push_back(LocIndex::kWasmLocation);
824 } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
825 LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
826 Locations.push_back(Loc);
828 Locations.push_back(LocIndex::kUniversalLocation);
829 for (LocIndex::u32_location_t Location : Locations) {
830 auto &Vars = Loc2Vars[Location];
831 Indices.push_back(
832 {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
833 Vars.push_back(VL);
835 return Indices;
838 LocIndices getAllIndices(const VarLoc &VL) const {
839 auto IndIt = Var2Indices.find(VL);
840 assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
841 return IndIt->second;
844 /// Retrieve the unique VarLoc associated with \p ID.
845 const VarLoc &operator[](LocIndex ID) const {
846 auto LocIt = Loc2Vars.find(ID.Location);
847 assert(LocIt != Loc2Vars.end() && "Location not tracked");
848 return LocIt->second[ID.Index];
852 using VarLocInMBB =
853 SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
854 struct TransferDebugPair {
855 MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
856 LocIndex LocationID; ///< Location number for the transfer dest.
858 using TransferMap = SmallVector<TransferDebugPair, 4>;
859 // Types for recording Entry Var Locations emitted by a single MachineInstr,
860 // as well as recording MachineInstr which last defined a register.
861 using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>;
862 using RegDefToInstMap = DenseMap<Register, MachineInstr *>;
864 // Types for recording sets of variable fragments that overlap. For a given
865 // local variable, we record all other fragments of that variable that could
866 // overlap it, to reduce search time.
867 using FragmentOfVar =
868 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
869 using OverlapMap =
870 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
872 // Helper while building OverlapMap, a map of all fragments seen for a given
873 // DILocalVariable.
874 using VarToFragments =
875 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
877 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
878 /// to \p Collected once, in order of insertion into \p VarLocIDs.
879 static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
880 const VarLocSet &CollectFrom,
881 const VarLocMap &VarLocIDs);
883 /// Get the registers which are used by VarLocs of kind RegisterKind tracked
884 /// by \p CollectFrom.
885 void getUsedRegs(const VarLocSet &CollectFrom,
886 SmallVectorImpl<Register> &UsedRegs) const;
888 /// This holds the working set of currently open ranges. For fast
889 /// access, this is done both as a set of VarLocIDs, and a map of
890 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
891 /// previous open ranges for the same variable. In addition, we keep
892 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
893 /// methods act differently depending on whether a VarLoc is primary
894 /// location or backup one. In the case the VarLoc is backup location
895 /// we will erase/insert from the EntryValuesBackupVars map, otherwise
896 /// we perform the operation on the Vars.
897 class OpenRangesSet {
898 VarLocSet::Allocator &Alloc;
899 VarLocSet VarLocs;
900 // Map the DebugVariable to recent primary location ID.
901 SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
902 // Map the DebugVariable to recent backup location ID.
903 SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
904 OverlapMap &OverlappingFragments;
906 public:
907 OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
908 : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
910 const VarLocSet &getVarLocs() const { return VarLocs; }
912 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
913 // This method is needed to get every VarLoc once, as each VarLoc may have
914 // multiple indices in a VarLocMap (corresponding to each applicable
915 // location), but all VarLocs appear exactly once at the universal location
916 // index.
917 void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
918 const VarLocMap &VarLocIDs) const {
919 collectAllVarLocs(Collected, VarLocs, VarLocIDs);
922 /// Terminate all open ranges for VL.Var by removing it from the set.
923 void erase(const VarLoc &VL);
925 /// Terminate all open ranges listed as indices in \c KillSet with
926 /// \c Location by removing them from the set.
927 void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
928 LocIndex::u32_location_t Location);
930 /// Insert a new range into the set.
931 void insert(LocIndices VarLocIDs, const VarLoc &VL);
933 /// Insert a set of ranges.
934 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
936 std::optional<LocIndices> getEntryValueBackup(DebugVariable Var);
938 /// Empty the set.
939 void clear() {
940 VarLocs.clear();
941 Vars.clear();
942 EntryValuesBackupVars.clear();
945 /// Return whether the set is empty or not.
946 bool empty() const {
947 assert(Vars.empty() == EntryValuesBackupVars.empty() &&
948 Vars.empty() == VarLocs.empty() &&
949 "open ranges are inconsistent");
950 return VarLocs.empty();
953 /// Get an empty range of VarLoc IDs.
954 auto getEmptyVarLocRange() const {
955 return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
956 getVarLocs().end());
959 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
960 auto getRegisterVarLocs(Register Reg) const {
961 return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
964 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
965 auto getSpillVarLocs() const {
966 return LocIndex::indexRangeForLocation(getVarLocs(),
967 LocIndex::kSpillLocation);
970 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
971 /// EntryValueCopyBackupKind.
972 auto getEntryValueBackupVarLocs() const {
973 return LocIndex::indexRangeForLocation(
974 getVarLocs(), LocIndex::kEntryValueBackupLocation);
977 /// Get all set IDs for VarLocs with MLs of kind WasmLocKind.
978 auto getWasmVarLocs() const {
979 return LocIndex::indexRangeForLocation(getVarLocs(),
980 LocIndex::kWasmLocation);
984 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
985 /// RegisterKind which are located in any reg in \p Regs. The IDs for each
986 /// VarLoc correspond to entries in the universal location bucket, which every
987 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
988 static void collectIDsForRegs(VarLocsInRange &Collected,
989 const DefinedRegsSet &Regs,
990 const VarLocSet &CollectFrom,
991 const VarLocMap &VarLocIDs);
993 VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
994 std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
995 if (!VLS)
996 VLS = std::make_unique<VarLocSet>(Alloc);
997 return *VLS;
1000 const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
1001 const VarLocInMBB &Locs) const {
1002 auto It = Locs.find(MBB);
1003 assert(It != Locs.end() && "MBB not in map");
1004 return *It->second;
1007 /// Tests whether this instruction is a spill to a stack location.
1008 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1010 /// Decide if @MI is a spill instruction and return true if it is. We use 2
1011 /// criteria to make this decision:
1012 /// - Is this instruction a store to a spill slot?
1013 /// - Is there a register operand that is both used and killed?
1014 /// TODO: Store optimization can fold spills into other stores (including
1015 /// other spills). We do not handle this yet (more than one memory operand).
1016 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1017 Register &Reg);
1019 /// Returns true if the given machine instruction is a debug value which we
1020 /// can emit entry values for.
1022 /// Currently, we generate debug entry values only for parameters that are
1023 /// unmodified throughout the function and located in a register.
1024 bool isEntryValueCandidate(const MachineInstr &MI,
1025 const DefinedRegsSet &Regs) const;
1027 /// If a given instruction is identified as a spill, return the spill location
1028 /// and set \p Reg to the spilled register.
1029 std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1030 MachineFunction *MF,
1031 Register &Reg);
1032 /// Given a spill instruction, extract the register and offset used to
1033 /// address the spill location in a target independent way.
1034 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1035 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
1036 TransferMap &Transfers, VarLocMap &VarLocIDs,
1037 LocIndex OldVarID, TransferKind Kind,
1038 const VarLoc::MachineLoc &OldLoc,
1039 Register NewReg = Register());
1041 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
1042 VarLocMap &VarLocIDs,
1043 InstToEntryLocMap &EntryValTransfers,
1044 RegDefToInstMap &RegSetInstrs);
1045 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
1046 VarLocMap &VarLocIDs, TransferMap &Transfers);
1047 void cleanupEntryValueTransfers(const MachineInstr *MI,
1048 OpenRangesSet &OpenRanges,
1049 VarLocMap &VarLocIDs, const VarLoc &EntryVL,
1050 InstToEntryLocMap &EntryValTransfers);
1051 void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
1052 VarLocMap &VarLocIDs, const VarLoc &EntryVL,
1053 InstToEntryLocMap &EntryValTransfers,
1054 RegDefToInstMap &RegSetInstrs);
1055 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
1056 VarLocMap &VarLocIDs,
1057 InstToEntryLocMap &EntryValTransfers,
1058 VarLocsInRange &KillSet);
1059 void recordEntryValue(const MachineInstr &MI,
1060 const DefinedRegsSet &DefinedRegs,
1061 OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
1062 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
1063 VarLocMap &VarLocIDs, TransferMap &Transfers);
1064 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
1065 VarLocMap &VarLocIDs,
1066 InstToEntryLocMap &EntryValTransfers,
1067 RegDefToInstMap &RegSetInstrs);
1068 void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
1069 VarLocMap &VarLocIDs);
1070 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
1071 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
1073 void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1074 VarLocMap &VarLocIDs, TransferMap &Transfers,
1075 InstToEntryLocMap &EntryValTransfers,
1076 RegDefToInstMap &RegSetInstrs);
1078 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
1079 OverlapMap &OLapMap);
1081 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1082 const VarLocMap &VarLocIDs,
1083 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1084 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
1086 /// Create DBG_VALUE insts for inlocs that have been propagated but
1087 /// had their instruction creation deferred.
1088 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
1090 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1091 TargetPassConfig *TPC, unsigned InputBBLimit,
1092 unsigned InputDbgValLimit) override;
1094 public:
1095 /// Default construct and initialize the pass.
1096 VarLocBasedLDV();
1098 ~VarLocBasedLDV();
1100 /// Print to ostream with a message.
1101 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
1102 const VarLocMap &VarLocIDs, const char *msg,
1103 raw_ostream &Out) const;
1106 } // end anonymous namespace
1108 //===----------------------------------------------------------------------===//
1109 // Implementation
1110 //===----------------------------------------------------------------------===//
1112 VarLocBasedLDV::VarLocBasedLDV() = default;
1114 VarLocBasedLDV::~VarLocBasedLDV() = default;
1116 /// Erase a variable from the set of open ranges, and additionally erase any
1117 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1118 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1119 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1120 /// location, erase the variable from the Vars set.
1121 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
1122 // Erasure helper.
1123 auto DoErase = [&VL, this](DebugVariable VarToErase) {
1124 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1125 auto It = EraseFrom->find(VarToErase);
1126 if (It != EraseFrom->end()) {
1127 LocIndices IDs = It->second;
1128 for (LocIndex ID : IDs)
1129 VarLocs.reset(ID.getAsRawInteger());
1130 EraseFrom->erase(It);
1134 DebugVariable Var = VL.Var;
1136 // Erase the variable/fragment that ends here.
1137 DoErase(Var);
1139 // Extract the fragment. Interpret an empty fragment as one that covers all
1140 // possible bits.
1141 FragmentInfo ThisFragment = Var.getFragmentOrDefault();
1143 // There may be fragments that overlap the designated fragment. Look them up
1144 // in the pre-computed overlap map, and erase them too.
1145 auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
1146 if (MapIt != OverlappingFragments.end()) {
1147 for (auto Fragment : MapIt->second) {
1148 VarLocBasedLDV::OptFragmentInfo FragmentHolder;
1149 if (!DebugVariable::isDefaultFragment(Fragment))
1150 FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
1151 DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
1156 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
1157 const VarLocMap &VarLocIDs,
1158 LocIndex::u32_location_t Location) {
1159 VarLocSet RemoveSet(Alloc);
1160 for (LocIndex::u32_index_t ID : KillSet) {
1161 const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
1162 auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1163 EraseFrom->erase(VL.Var);
1164 LocIndices VLI = VarLocIDs.getAllIndices(VL);
1165 for (LocIndex ID : VLI)
1166 RemoveSet.set(ID.getAsRawInteger());
1168 VarLocs.intersectWithComplement(RemoveSet);
1171 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
1172 const VarLocMap &Map) {
1173 VarLocsInRange UniqueVarLocIDs;
1174 DefinedRegsSet Regs;
1175 Regs.insert(LocIndex::kUniversalLocation);
1176 collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
1177 for (uint64_t ID : UniqueVarLocIDs) {
1178 LocIndex Idx = LocIndex::fromRawInteger(ID);
1179 const VarLoc &VarL = Map[Idx];
1180 const LocIndices Indices = Map.getAllIndices(VarL);
1181 insert(Indices, VarL);
1185 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
1186 const VarLoc &VL) {
1187 auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
1188 for (LocIndex ID : VarLocIDs)
1189 VarLocs.set(ID.getAsRawInteger());
1190 InsertInto->insert({VL.Var, VarLocIDs});
1193 /// Return the Loc ID of an entry value backup location, if it exists for the
1194 /// variable.
1195 std::optional<LocIndices>
1196 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
1197 auto It = EntryValuesBackupVars.find(Var);
1198 if (It != EntryValuesBackupVars.end())
1199 return It->second;
1201 return std::nullopt;
1204 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
1205 const DefinedRegsSet &Regs,
1206 const VarLocSet &CollectFrom,
1207 const VarLocMap &VarLocIDs) {
1208 assert(!Regs.empty() && "Nothing to collect");
1209 SmallVector<Register, 32> SortedRegs;
1210 append_range(SortedRegs, Regs);
1211 array_pod_sort(SortedRegs.begin(), SortedRegs.end());
1212 auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
1213 auto End = CollectFrom.end();
1214 for (Register Reg : SortedRegs) {
1215 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1216 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1217 // live in Reg.
1218 uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
1219 uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
1220 It.advanceToLowerBound(FirstIndexForReg);
1222 // Iterate through that half-open interval and collect all the set IDs.
1223 for (; It != End && *It < FirstInvalidIndex; ++It) {
1224 LocIndex ItIdx = LocIndex::fromRawInteger(*It);
1225 const VarLoc &VL = VarLocIDs[ItIdx];
1226 LocIndices LI = VarLocIDs.getAllIndices(VL);
1227 // For now, the back index is always the universal location index.
1228 assert(LI.back().Location == LocIndex::kUniversalLocation &&
1229 "Unexpected order of LocIndices for VarLoc; was it inserted into "
1230 "the VarLocMap correctly?");
1231 Collected.insert(LI.back().Index);
1234 if (It == End)
1235 return;
1239 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
1240 SmallVectorImpl<Register> &UsedRegs) const {
1241 // All register-based VarLocs are assigned indices greater than or equal to
1242 // FirstRegIndex.
1243 uint64_t FirstRegIndex =
1244 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
1245 uint64_t FirstInvalidIndex =
1246 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
1247 uint64_t FirstVirtualRegIndex =
1248 LocIndex::rawIndexForReg(LocIndex::kFirstVirtualRegLocation);
1249 auto doGetUsedRegs = [&](VarLocSet::const_iterator &It) {
1250 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1251 // which register and add it to UsedRegs.
1252 uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
1253 assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
1254 "Duplicate used reg");
1255 UsedRegs.push_back(FoundReg);
1257 // Skip to the next /set/ register. Note that this finds a lower bound, so
1258 // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1259 // guaranteed to move on to the next register (or to end()).
1260 uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
1261 It.advanceToLowerBound(NextRegIndex);
1263 for (auto It = CollectFrom.find(FirstRegIndex),
1264 End = CollectFrom.find(FirstInvalidIndex);
1265 It != End;) {
1266 doGetUsedRegs(It);
1268 for (auto It = CollectFrom.find(FirstVirtualRegIndex),
1269 End = CollectFrom.end();
1270 It != End;) {
1271 doGetUsedRegs(It);
1275 //===----------------------------------------------------------------------===//
1276 // Debug Range Extension Implementation
1277 //===----------------------------------------------------------------------===//
1279 #ifndef NDEBUG
1280 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
1281 const VarLocInMBB &V,
1282 const VarLocMap &VarLocIDs,
1283 const char *msg,
1284 raw_ostream &Out) const {
1285 Out << '\n' << msg << '\n';
1286 for (const MachineBasicBlock &BB : MF) {
1287 if (!V.count(&BB))
1288 continue;
1289 const VarLocSet &L = getVarLocsInMBB(&BB, V);
1290 if (L.empty())
1291 continue;
1292 SmallVector<VarLoc, 32> VarLocs;
1293 collectAllVarLocs(VarLocs, L, VarLocIDs);
1294 Out << "MBB: " << BB.getNumber() << ":\n";
1295 for (const VarLoc &VL : VarLocs) {
1296 Out << " Var: " << VL.Var.getVariable()->getName();
1297 Out << " MI: ";
1298 VL.dump(TRI, TII, Out);
1301 Out << "\n";
1303 #endif
1305 VarLocBasedLDV::VarLoc::SpillLoc
1306 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1307 assert(MI.hasOneMemOperand() &&
1308 "Spill instruction does not have exactly one memory operand?");
1309 auto MMOI = MI.memoperands_begin();
1310 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1311 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1312 "Inconsistent memory operand in spill instruction");
1313 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1314 const MachineBasicBlock *MBB = MI.getParent();
1315 Register Reg;
1316 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1317 return {Reg, Offset};
1320 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
1321 /// Transfer, which uses the to-be-deleted \p EntryVL.
1322 void VarLocBasedLDV::cleanupEntryValueTransfers(
1323 const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1324 const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) {
1325 if (EntryValTransfers.empty() || TRInst == nullptr)
1326 return;
1328 auto TransRange = EntryValTransfers.equal_range(TRInst);
1329 for (auto &TDPair : llvm::make_range(TransRange)) {
1330 const VarLoc &EmittedEV = VarLocIDs[TDPair.second];
1331 if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) ==
1332 std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo,
1333 EmittedEV.Expr)) {
1334 OpenRanges.erase(EmittedEV);
1335 EntryValTransfers.erase(TRInst);
1336 break;
1341 /// Try to salvage the debug entry value if we encounter a new debug value
1342 /// describing the same parameter, otherwise stop tracking the value. Return
1343 /// true if we should stop tracking the entry value and do the cleanup of
1344 /// emitted Entry Value Transfers, otherwise return false.
1345 void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
1346 OpenRangesSet &OpenRanges,
1347 VarLocMap &VarLocIDs,
1348 const VarLoc &EntryVL,
1349 InstToEntryLocMap &EntryValTransfers,
1350 RegDefToInstMap &RegSetInstrs) {
1351 // Skip the DBG_VALUE which is the debug entry value itself.
1352 if (&MI == &EntryVL.MI)
1353 return;
1355 // If the parameter's location is not register location, we can not track
1356 // the entry value any more. It doesn't have the TransferInst which defines
1357 // register, so no Entry Value Transfers have been emitted already.
1358 if (!MI.getDebugOperand(0).isReg())
1359 return;
1361 // Try to get non-debug instruction responsible for the DBG_VALUE.
1362 const MachineInstr *TransferInst = nullptr;
1363 Register Reg = MI.getDebugOperand(0).getReg();
1364 if (Reg.isValid() && RegSetInstrs.contains(Reg))
1365 TransferInst = RegSetInstrs.find(Reg)->second;
1367 // Case of the parameter's DBG_VALUE at the start of entry MBB.
1368 if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock())
1369 return;
1371 // If the debug expression from the DBG_VALUE is not empty, we can assume the
1372 // parameter's value has changed indicating that we should stop tracking its
1373 // entry value as well.
1374 if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) {
1375 // If the DBG_VALUE comes from a copy instruction that copies the entry
1376 // value, it means the parameter's value has not changed and we should be
1377 // able to use its entry value.
1378 // TODO: Try to keep tracking of an entry value if we encounter a propagated
1379 // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1380 // does not indicate the parameter modification.)
1381 auto DestSrc = TII->isCopyLikeInstr(*TransferInst);
1382 if (DestSrc) {
1383 const MachineOperand *SrcRegOp, *DestRegOp;
1384 SrcRegOp = DestSrc->Source;
1385 DestRegOp = DestSrc->Destination;
1386 if (Reg == DestRegOp->getReg()) {
1387 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1388 const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1389 if (VL.isEntryValueCopyBackupReg(Reg) &&
1390 // Entry Values should not be variadic.
1391 VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1392 return;
1398 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1399 MI.print(dbgs(), /*IsStandalone*/ false,
1400 /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1401 /*AddNewLine*/ true, TII));
1402 cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL,
1403 EntryValTransfers);
1404 OpenRanges.erase(EntryVL);
1407 /// End all previous ranges related to @MI and start a new range from @MI
1408 /// if it is a DBG_VALUE instr.
1409 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1410 OpenRangesSet &OpenRanges,
1411 VarLocMap &VarLocIDs,
1412 InstToEntryLocMap &EntryValTransfers,
1413 RegDefToInstMap &RegSetInstrs) {
1414 if (!MI.isDebugValue())
1415 return;
1416 const DILocalVariable *Var = MI.getDebugVariable();
1417 const DIExpression *Expr = MI.getDebugExpression();
1418 const DILocation *DebugLoc = MI.getDebugLoc();
1419 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1420 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1421 "Expected inlined-at fields to agree");
1423 DebugVariable V(Var, Expr, InlinedAt);
1425 // Check if this DBG_VALUE indicates a parameter's value changing.
1426 // If that is the case, we should stop tracking its entry value.
1427 auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1428 if (Var->isParameter() && EntryValBackupID) {
1429 const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
1430 removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers,
1431 RegSetInstrs);
1434 if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
1435 return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
1436 MO.isCImm() || MO.isTargetIndex();
1437 })) {
1438 // Use normal VarLoc constructor for registers and immediates.
1439 VarLoc VL(MI);
1440 // End all previous ranges of VL.Var.
1441 OpenRanges.erase(VL);
1443 LocIndices IDs = VarLocIDs.insert(VL);
1444 // Add the VarLoc to OpenRanges from this DBG_VALUE.
1445 OpenRanges.insert(IDs, VL);
1446 } else if (MI.memoperands().size() > 0) {
1447 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1448 } else {
1449 // This must be an undefined location. If it has an open range, erase it.
1450 assert(MI.isUndefDebugValue() &&
1451 "Unexpected non-undef DBG_VALUE encountered");
1452 VarLoc VL(MI);
1453 OpenRanges.erase(VL);
1457 // This should be removed later, doesn't fit the new design.
1458 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
1459 const VarLocSet &CollectFrom,
1460 const VarLocMap &VarLocIDs) {
1461 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1462 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1463 // in Reg.
1464 uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
1465 uint64_t FirstInvalidIndex =
1466 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
1467 // Iterate through that half-open interval and collect all the set IDs.
1468 for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
1469 It != End && *It < FirstInvalidIndex; ++It) {
1470 LocIndex RegIdx = LocIndex::fromRawInteger(*It);
1471 Collected.push_back(VarLocIDs[RegIdx]);
1475 /// Turn the entry value backup locations into primary locations.
1476 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1477 OpenRangesSet &OpenRanges,
1478 VarLocMap &VarLocIDs,
1479 InstToEntryLocMap &EntryValTransfers,
1480 VarLocsInRange &KillSet) {
1481 // Do not insert entry value locations after a terminator.
1482 if (MI.isTerminator())
1483 return;
1485 for (uint32_t ID : KillSet) {
1486 // The KillSet IDs are indices for the universal location bucket.
1487 LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
1488 const VarLoc &VL = VarLocIDs[Idx];
1489 if (!VL.Var.getVariable()->isParameter())
1490 continue;
1492 auto DebugVar = VL.Var;
1493 std::optional<LocIndices> EntryValBackupIDs =
1494 OpenRanges.getEntryValueBackup(DebugVar);
1496 // If the parameter has the entry value backup, it means we should
1497 // be able to use its entry value.
1498 if (!EntryValBackupIDs)
1499 continue;
1501 const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
1502 VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr,
1503 EntryVL.Locs[0].Value.RegNo);
1504 LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
1505 assert(EntryValueIDs.size() == 1 &&
1506 "EntryValue loc should not be variadic");
1507 EntryValTransfers.insert({&MI, EntryValueIDs.back()});
1508 OpenRanges.insert(EntryValueIDs, EntryLoc);
1512 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1513 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1514 /// new VarLoc. If \p NewReg is different than default zero value then the
1515 /// new location will be register location created by the copy like instruction,
1516 /// otherwise it is variable's location on the stack.
1517 void VarLocBasedLDV::insertTransferDebugPair(
1518 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1519 VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1520 const VarLoc::MachineLoc &OldLoc, Register NewReg) {
1521 const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
1523 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1524 LocIndices LocIds = VarLocIDs.insert(VL);
1526 // Close this variable's previous location range.
1527 OpenRanges.erase(VL);
1529 // Record the new location as an open range, and a postponed transfer
1530 // inserting a DBG_VALUE for this location.
1531 OpenRanges.insert(LocIds, VL);
1532 assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1533 TransferDebugPair MIP = {&MI, LocIds.back()};
1534 Transfers.push_back(MIP);
1537 // End all previous ranges of VL.Var.
1538 OpenRanges.erase(VarLocIDs[OldVarID]);
1539 switch (Kind) {
1540 case TransferKind::TransferCopy: {
1541 assert(NewReg &&
1542 "No register supplied when handling a copy of a debug value");
1543 // Create a DBG_VALUE instruction to describe the Var in its new
1544 // register location.
1545 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1546 ProcessVarLoc(VL);
1547 LLVM_DEBUG({
1548 dbgs() << "Creating VarLoc for register copy:";
1549 VL.dump(TRI, TII);
1551 return;
1553 case TransferKind::TransferSpill: {
1554 // Create a DBG_VALUE instruction to describe the Var in its spilled
1555 // location.
1556 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1557 VarLoc VL = VarLoc::CreateSpillLoc(
1558 OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
1559 ProcessVarLoc(VL);
1560 LLVM_DEBUG({
1561 dbgs() << "Creating VarLoc for spill:";
1562 VL.dump(TRI, TII);
1564 return;
1566 case TransferKind::TransferRestore: {
1567 assert(NewReg &&
1568 "No register supplied when handling a restore of a debug value");
1569 // DebugInstr refers to the pre-spill location, therefore we can reuse
1570 // its expression.
1571 VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
1572 ProcessVarLoc(VL);
1573 LLVM_DEBUG({
1574 dbgs() << "Creating VarLoc for restore:";
1575 VL.dump(TRI, TII);
1577 return;
1580 llvm_unreachable("Invalid transfer kind");
1583 /// A definition of a register may mark the end of a range.
1584 void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI,
1585 OpenRangesSet &OpenRanges,
1586 VarLocMap &VarLocIDs,
1587 InstToEntryLocMap &EntryValTransfers,
1588 RegDefToInstMap &RegSetInstrs) {
1590 // Meta Instructions do not affect the debug liveness of any register they
1591 // define.
1592 if (MI.isMetaInstruction())
1593 return;
1595 MachineFunction *MF = MI.getMF();
1596 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1597 Register SP = TLI->getStackPointerRegisterToSaveRestore();
1599 // Find the regs killed by MI, and find regmasks of preserved regs.
1600 DefinedRegsSet DeadRegs;
1601 SmallVector<const uint32_t *, 4> RegMasks;
1602 for (const MachineOperand &MO : MI.operands()) {
1603 // Determine whether the operand is a register def.
1604 if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1605 !(MI.isCall() && MO.getReg() == SP)) {
1606 // Remove ranges of all aliased registers.
1607 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1608 // FIXME: Can we break out of this loop early if no insertion occurs?
1609 DeadRegs.insert(*RAI);
1610 RegSetInstrs.erase(MO.getReg());
1611 RegSetInstrs.insert({MO.getReg(), &MI});
1612 } else if (MO.isRegMask()) {
1613 RegMasks.push_back(MO.getRegMask());
1617 // Erase VarLocs which reside in one of the dead registers. For performance
1618 // reasons, it's critical to not iterate over the full set of open VarLocs.
1619 // Iterate over the set of dying/used regs instead.
1620 if (!RegMasks.empty()) {
1621 SmallVector<Register, 32> UsedRegs;
1622 getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1623 for (Register Reg : UsedRegs) {
1624 // Remove ranges of all clobbered registers. Register masks don't usually
1625 // list SP as preserved. Assume that call instructions never clobber SP,
1626 // because some backends (e.g., AArch64) never list SP in the regmask.
1627 // While the debug info may be off for an instruction or two around
1628 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1629 // still a better user experience.
1630 if (Reg == SP)
1631 continue;
1632 bool AnyRegMaskKillsReg =
1633 any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1634 return MachineOperand::clobbersPhysReg(RegMask, Reg);
1636 if (AnyRegMaskKillsReg)
1637 DeadRegs.insert(Reg);
1638 if (AnyRegMaskKillsReg) {
1639 RegSetInstrs.erase(Reg);
1640 RegSetInstrs.insert({Reg, &MI});
1645 if (DeadRegs.empty())
1646 return;
1648 VarLocsInRange KillSet;
1649 collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
1650 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
1652 if (TPC) {
1653 auto &TM = TPC->getTM<TargetMachine>();
1654 if (TM.Options.ShouldEmitDebugEntryValues())
1655 emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet);
1659 void VarLocBasedLDV::transferWasmDef(MachineInstr &MI,
1660 OpenRangesSet &OpenRanges,
1661 VarLocMap &VarLocIDs) {
1662 // If this is not a Wasm local.set or local.tee, which sets local values,
1663 // return.
1664 int Index;
1665 int64_t Offset;
1666 if (!TII->isExplicitTargetIndexDef(MI, Index, Offset))
1667 return;
1669 // Find the target indices killed by MI, and delete those variable locations
1670 // from the open range.
1671 VarLocsInRange KillSet;
1672 VarLoc::WasmLoc Loc{Index, Offset};
1673 for (uint64_t ID : OpenRanges.getWasmVarLocs()) {
1674 LocIndex Idx = LocIndex::fromRawInteger(ID);
1675 const VarLoc &VL = VarLocIDs[Idx];
1676 assert(VL.containsWasmLocs() && "Broken VarLocSet?");
1677 if (VL.usesWasmLoc(Loc))
1678 KillSet.insert(ID);
1680 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation);
1683 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1684 MachineFunction *MF) {
1685 // TODO: Handle multiple stores folded into one.
1686 if (!MI.hasOneMemOperand())
1687 return false;
1689 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1690 return false; // This is not a spill instruction, since no valid size was
1691 // returned from either function.
1693 return true;
1696 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1697 MachineFunction *MF, Register &Reg) {
1698 if (!isSpillInstruction(MI, MF))
1699 return false;
1701 auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1702 if (!MO.isReg() || !MO.isUse()) {
1703 Reg = 0;
1704 return false;
1706 Reg = MO.getReg();
1707 return MO.isKill();
1710 for (const MachineOperand &MO : MI.operands()) {
1711 // In a spill instruction generated by the InlineSpiller the spilled
1712 // register has its kill flag set.
1713 if (isKilledReg(MO, Reg))
1714 return true;
1715 if (Reg != 0) {
1716 // Check whether next instruction kills the spilled register.
1717 // FIXME: Current solution does not cover search for killed register in
1718 // bundles and instructions further down the chain.
1719 auto NextI = std::next(MI.getIterator());
1720 // Skip next instruction that points to basic block end iterator.
1721 if (MI.getParent()->end() == NextI)
1722 continue;
1723 Register RegNext;
1724 for (const MachineOperand &MONext : NextI->operands()) {
1725 // Return true if we came across the register from the
1726 // previous spill instruction that is killed in NextI.
1727 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1728 return true;
1732 // Return false if we didn't find spilled register.
1733 return false;
1736 std::optional<VarLocBasedLDV::VarLoc::SpillLoc>
1737 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1738 MachineFunction *MF, Register &Reg) {
1739 if (!MI.hasOneMemOperand())
1740 return std::nullopt;
1742 // FIXME: Handle folded restore instructions with more than one memory
1743 // operand.
1744 if (MI.getRestoreSize(TII)) {
1745 Reg = MI.getOperand(0).getReg();
1746 return extractSpillBaseRegAndOffset(MI);
1748 return std::nullopt;
1751 /// A spilled register may indicate that we have to end the current range of
1752 /// a variable and create a new one for the spill location.
1753 /// A restored register may indicate the reverse situation.
1754 /// We don't want to insert any instructions in process(), so we just create
1755 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1756 /// It will be inserted into the BB when we're done iterating over the
1757 /// instructions.
1758 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1759 OpenRangesSet &OpenRanges,
1760 VarLocMap &VarLocIDs,
1761 TransferMap &Transfers) {
1762 MachineFunction *MF = MI.getMF();
1763 TransferKind TKind;
1764 Register Reg;
1765 std::optional<VarLoc::SpillLoc> Loc;
1767 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1769 // First, if there are any DBG_VALUEs pointing at a spill slot that is
1770 // written to, then close the variable location. The value in memory
1771 // will have changed.
1772 VarLocsInRange KillSet;
1773 if (isSpillInstruction(MI, MF)) {
1774 Loc = extractSpillBaseRegAndOffset(MI);
1775 for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1776 LocIndex Idx = LocIndex::fromRawInteger(ID);
1777 const VarLoc &VL = VarLocIDs[Idx];
1778 assert(VL.containsSpillLocs() && "Broken VarLocSet?");
1779 if (VL.usesSpillLoc(*Loc)) {
1780 // This location is overwritten by the current instruction -- terminate
1781 // the open range, and insert an explicit DBG_VALUE $noreg.
1783 // Doing this at a later stage would require re-interpreting all
1784 // DBG_VALUes and DIExpressions to identify whether they point at
1785 // memory, and then analysing all memory writes to see if they
1786 // overwrite that memory, which is expensive.
1788 // At this stage, we already know which DBG_VALUEs are for spills and
1789 // where they are located; it's best to fix handle overwrites now.
1790 KillSet.insert(ID);
1791 unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
1792 VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
1793 VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
1794 LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
1795 Transfers.push_back({&MI, UndefLocIDs.back()});
1798 OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
1801 // Try to recognise spill and restore instructions that may create a new
1802 // variable location.
1803 if (isLocationSpill(MI, MF, Reg)) {
1804 TKind = TransferKind::TransferSpill;
1805 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1806 LLVM_DEBUG(dbgs() << "Register: " << Reg.id() << " " << printReg(Reg, TRI)
1807 << "\n");
1808 } else {
1809 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1810 return;
1811 TKind = TransferKind::TransferRestore;
1812 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1813 LLVM_DEBUG(dbgs() << "Register: " << Reg.id() << " " << printReg(Reg, TRI)
1814 << "\n");
1816 // Check if the register or spill location is the location of a debug value.
1817 auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1818 if (TKind == TransferKind::TransferSpill)
1819 TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1820 else if (TKind == TransferKind::TransferRestore)
1821 TransferCandidates = OpenRanges.getSpillVarLocs();
1822 for (uint64_t ID : TransferCandidates) {
1823 LocIndex Idx = LocIndex::fromRawInteger(ID);
1824 const VarLoc &VL = VarLocIDs[Idx];
1825 unsigned LocIdx;
1826 if (TKind == TransferKind::TransferSpill) {
1827 assert(VL.usesReg(Reg) && "Broken VarLocSet?");
1828 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1829 << VL.Var.getVariable()->getName() << ")\n");
1830 LocIdx = VL.getRegIdx(Reg);
1831 } else {
1832 assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
1833 "Broken VarLocSet?");
1834 if (!VL.usesSpillLoc(*Loc))
1835 // The spill location is not the location of a debug value.
1836 continue;
1837 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1838 << VL.Var.getVariable()->getName() << ")\n");
1839 LocIdx = VL.getSpillLocIdx(*Loc);
1841 VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
1842 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1843 MLoc, Reg);
1844 // FIXME: A comment should explain why it's correct to return early here,
1845 // if that is in fact correct.
1846 return;
1850 /// If \p MI is a register copy instruction, that copies a previously tracked
1851 /// value from one register to another register that is callee saved, we
1852 /// create new DBG_VALUE instruction described with copy destination register.
1853 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1854 OpenRangesSet &OpenRanges,
1855 VarLocMap &VarLocIDs,
1856 TransferMap &Transfers) {
1857 auto DestSrc = TII->isCopyLikeInstr(MI);
1858 if (!DestSrc)
1859 return;
1861 const MachineOperand *DestRegOp = DestSrc->Destination;
1862 const MachineOperand *SrcRegOp = DestSrc->Source;
1864 if (!DestRegOp->isDef())
1865 return;
1867 auto isCalleeSavedReg = [&](Register Reg) {
1868 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1869 if (CalleeSavedRegs.test(*RAI))
1870 return true;
1871 return false;
1874 Register SrcReg = SrcRegOp->getReg();
1875 Register DestReg = DestRegOp->getReg();
1877 // We want to recognize instructions where destination register is callee
1878 // saved register. If register that could be clobbered by the call is
1879 // included, there would be a great chance that it is going to be clobbered
1880 // soon. It is more likely that previous register location, which is callee
1881 // saved, is going to stay unclobbered longer, even if it is killed.
1882 if (!isCalleeSavedReg(DestReg))
1883 return;
1885 // Remember an entry value movement. If we encounter a new debug value of
1886 // a parameter describing only a moving of the value around, rather then
1887 // modifying it, we are still able to use the entry value if needed.
1888 if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1889 for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1890 LocIndex Idx = LocIndex::fromRawInteger(ID);
1891 const VarLoc &VL = VarLocIDs[Idx];
1892 if (VL.isEntryValueBackupReg(SrcReg)) {
1893 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1894 VarLoc EntryValLocCopyBackup =
1895 VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg);
1896 // Stop tracking the original entry value.
1897 OpenRanges.erase(VL);
1899 // Start tracking the entry value copy.
1900 LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
1901 OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
1902 break;
1907 if (!SrcRegOp->isKill())
1908 return;
1910 for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1911 LocIndex Idx = LocIndex::fromRawInteger(ID);
1912 assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
1913 VarLoc::MachineLocValue Loc;
1914 Loc.RegNo = SrcReg;
1915 VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
1916 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1917 TransferKind::TransferCopy, MLoc, DestReg);
1918 // FIXME: A comment should explain why it's correct to return early here,
1919 // if that is in fact correct.
1920 return;
1924 /// Terminate all open ranges at the end of the current basic block.
1925 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1926 OpenRangesSet &OpenRanges,
1927 VarLocInMBB &OutLocs,
1928 const VarLocMap &VarLocIDs) {
1929 bool Changed = false;
1930 LLVM_DEBUG({
1931 VarVec VarLocs;
1932 OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
1933 for (VarLoc &VL : VarLocs) {
1934 // Copy OpenRanges to OutLocs, if not already present.
1935 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
1936 VL.dump(TRI, TII);
1939 VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1940 Changed = VLS != OpenRanges.getVarLocs();
1941 // New OutLocs set may be different due to spill, restore or register
1942 // copy instruction processing.
1943 if (Changed)
1944 VLS = OpenRanges.getVarLocs();
1945 OpenRanges.clear();
1946 return Changed;
1949 /// Accumulate a mapping between each DILocalVariable fragment and other
1950 /// fragments of that DILocalVariable which overlap. This reduces work during
1951 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1952 /// known-to-overlap fragments are present".
1953 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1954 /// fragment usage.
1955 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1956 /// Variable which are known to exist.
1957 /// \param OverlappingFragments The overlap map being constructed, from one
1958 /// Var/Fragment pair to a vector of fragments known to overlap.
1959 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1960 VarToFragments &SeenFragments,
1961 OverlapMap &OverlappingFragments) {
1962 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1963 MI.getDebugLoc()->getInlinedAt());
1964 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1966 // If this is the first sighting of this variable, then we are guaranteed
1967 // there are currently no overlapping fragments either. Initialize the set
1968 // of seen fragments, record no overlaps for the current one, and return.
1969 auto [SeenIt, Inserted] = SeenFragments.try_emplace(MIVar.getVariable());
1970 if (Inserted) {
1971 SeenIt->second.insert(ThisFragment);
1973 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1974 return;
1977 // If this particular Variable/Fragment pair already exists in the overlap
1978 // map, it has already been accounted for.
1979 auto IsInOLapMap =
1980 OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1981 if (!IsInOLapMap.second)
1982 return;
1984 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1985 auto &AllSeenFragments = SeenIt->second;
1987 // Otherwise, examine all other seen fragments for this variable, with "this"
1988 // fragment being a previously unseen fragment. Record any pair of
1989 // overlapping fragments.
1990 for (const auto &ASeenFragment : AllSeenFragments) {
1991 // Does this previously seen fragment overlap?
1992 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1993 // Yes: Mark the current fragment as being overlapped.
1994 ThisFragmentsOverlaps.push_back(ASeenFragment);
1995 // Mark the previously seen fragment as being overlapped by the current
1996 // one.
1997 auto ASeenFragmentsOverlaps =
1998 OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1999 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
2000 "Previously seen var fragment has no vector of overlaps");
2001 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2005 AllSeenFragments.insert(ThisFragment);
2008 /// This routine creates OpenRanges.
2009 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
2010 VarLocMap &VarLocIDs, TransferMap &Transfers,
2011 InstToEntryLocMap &EntryValTransfers,
2012 RegDefToInstMap &RegSetInstrs) {
2013 if (!MI.isDebugInstr())
2014 LastNonDbgMI = &MI;
2015 transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers,
2016 RegSetInstrs);
2017 transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers,
2018 RegSetInstrs);
2019 transferWasmDef(MI, OpenRanges, VarLocIDs);
2020 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
2021 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
2024 /// This routine joins the analysis results of all incoming edges in @MBB by
2025 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
2026 /// source variable in all the predecessors of @MBB reside in the same location.
2027 bool VarLocBasedLDV::join(
2028 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
2029 const VarLocMap &VarLocIDs,
2030 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2031 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
2032 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2034 VarLocSet InLocsT(Alloc); // Temporary incoming locations.
2036 // For all predecessors of this MBB, find the set of VarLocs that
2037 // can be joined.
2038 int NumVisited = 0;
2039 for (auto *p : MBB.predecessors()) {
2040 // Ignore backedges if we have not visited the predecessor yet. As the
2041 // predecessor hasn't yet had locations propagated into it, most locations
2042 // will not yet be valid, so treat them as all being uninitialized and
2043 // potentially valid. If a location guessed to be correct here is
2044 // invalidated later, we will remove it when we revisit this block.
2045 if (!Visited.count(p)) {
2046 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
2047 << "\n");
2048 continue;
2050 auto OL = OutLocs.find(p);
2051 // Join is null in case of empty OutLocs from any of the pred.
2052 if (OL == OutLocs.end())
2053 return false;
2055 // Just copy over the Out locs to incoming locs for the first visited
2056 // predecessor, and for all other predecessors join the Out locs.
2057 VarLocSet &OutLocVLS = *OL->second;
2058 if (!NumVisited)
2059 InLocsT = OutLocVLS;
2060 else
2061 InLocsT &= OutLocVLS;
2063 LLVM_DEBUG({
2064 if (!InLocsT.empty()) {
2065 VarVec VarLocs;
2066 collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
2067 for (const VarLoc &VL : VarLocs)
2068 dbgs() << " gathered candidate incoming var: "
2069 << VL.Var.getVariable()->getName() << "\n";
2073 NumVisited++;
2076 // Filter out DBG_VALUES that are out of scope.
2077 VarLocSet KillSet(Alloc);
2078 bool IsArtificial = ArtificialBlocks.count(&MBB);
2079 if (!IsArtificial) {
2080 for (uint64_t ID : InLocsT) {
2081 LocIndex Idx = LocIndex::fromRawInteger(ID);
2082 if (!VarLocIDs[Idx].dominates(LS, MBB)) {
2083 KillSet.set(ID);
2084 LLVM_DEBUG({
2085 auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
2086 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
2091 InLocsT.intersectWithComplement(KillSet);
2093 // As we are processing blocks in reverse post-order we
2094 // should have processed at least one predecessor, unless it
2095 // is the entry block which has no predecessor.
2096 assert((NumVisited || MBB.pred_empty()) &&
2097 "Should have processed at least one predecessor");
2099 VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
2100 bool Changed = false;
2101 if (ILS != InLocsT) {
2102 ILS = InLocsT;
2103 Changed = true;
2106 return Changed;
2109 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
2110 VarLocMap &VarLocIDs) {
2111 // PendingInLocs records all locations propagated into blocks, which have
2112 // not had DBG_VALUE insts created. Go through and create those insts now.
2113 for (auto &Iter : PendingInLocs) {
2114 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
2115 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
2116 VarLocSet &Pending = *Iter.second;
2118 SmallVector<VarLoc, 32> VarLocs;
2119 collectAllVarLocs(VarLocs, Pending, VarLocIDs);
2121 for (VarLoc DiffIt : VarLocs) {
2122 // The ID location is live-in to MBB -- work out what kind of machine
2123 // location it is and create a DBG_VALUE.
2124 if (DiffIt.isEntryBackupLoc())
2125 continue;
2126 MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
2127 MBB.insert(MBB.instr_begin(), MI);
2129 (void)MI;
2130 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
2135 bool VarLocBasedLDV::isEntryValueCandidate(
2136 const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
2137 assert(MI.isDebugValue() && "This must be DBG_VALUE.");
2139 // TODO: Add support for local variables that are expressed in terms of
2140 // parameters entry values.
2141 // TODO: Add support for modified arguments that can be expressed
2142 // by using its entry value.
2143 auto *DIVar = MI.getDebugVariable();
2144 if (!DIVar->isParameter())
2145 return false;
2147 // Do not consider parameters that belong to an inlined function.
2148 if (MI.getDebugLoc()->getInlinedAt())
2149 return false;
2151 // Only consider parameters that are described using registers. Parameters
2152 // that are passed on the stack are not yet supported, so ignore debug
2153 // values that are described by the frame or stack pointer.
2154 if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
2155 return false;
2157 // If a parameter's value has been propagated from the caller, then the
2158 // parameter's DBG_VALUE may be described using a register defined by some
2159 // instruction in the entry block, in which case we shouldn't create an
2160 // entry value.
2161 if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
2162 return false;
2164 // TODO: Add support for parameters that have a pre-existing debug expressions
2165 // (e.g. fragments).
2166 // A simple deref expression is equivalent to an indirect debug value.
2167 const DIExpression *Expr = MI.getDebugExpression();
2168 if (Expr->getNumElements() > 0 && !Expr->isDeref())
2169 return false;
2171 return true;
2174 /// Collect all register defines (including aliases) for the given instruction.
2175 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
2176 const TargetRegisterInfo *TRI) {
2177 for (const MachineOperand &MO : MI.all_defs()) {
2178 if (MO.getReg() && MO.getReg().isPhysical()) {
2179 Regs.insert(MO.getReg());
2180 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
2181 Regs.insert(*AI);
2186 /// This routine records the entry values of function parameters. The values
2187 /// could be used as backup values. If we loose the track of some unmodified
2188 /// parameters, the backup values will be used as a primary locations.
2189 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
2190 const DefinedRegsSet &DefinedRegs,
2191 OpenRangesSet &OpenRanges,
2192 VarLocMap &VarLocIDs) {
2193 if (TPC) {
2194 auto &TM = TPC->getTM<TargetMachine>();
2195 if (!TM.Options.ShouldEmitDebugEntryValues())
2196 return;
2199 DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
2200 MI.getDebugLoc()->getInlinedAt());
2202 if (!isEntryValueCandidate(MI, DefinedRegs) ||
2203 OpenRanges.getEntryValueBackup(V))
2204 return;
2206 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
2208 // Create the entry value and use it as a backup location until it is
2209 // valid. It is valid until a parameter is not changed.
2210 DIExpression *NewExpr =
2211 DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
2212 VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr);
2213 LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
2214 OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
2217 /// Calculate the liveness information for the given machine function and
2218 /// extend ranges across basic blocks.
2219 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF,
2220 MachineDominatorTree *DomTree,
2221 TargetPassConfig *TPC, unsigned InputBBLimit,
2222 unsigned InputDbgValLimit) {
2223 (void)DomTree;
2224 LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n");
2226 if (!MF.getFunction().getSubprogram())
2227 // VarLocBaseLDV will already have removed all DBG_VALUEs.
2228 return false;
2230 // Skip functions from NoDebug compilation units.
2231 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2232 DICompileUnit::NoDebug)
2233 return false;
2235 TRI = MF.getSubtarget().getRegisterInfo();
2236 TII = MF.getSubtarget().getInstrInfo();
2237 TFI = MF.getSubtarget().getFrameLowering();
2238 TFI->getCalleeSaves(MF, CalleeSavedRegs);
2239 this->TPC = TPC;
2240 LS.initialize(MF);
2242 bool Changed = false;
2243 bool OLChanged = false;
2244 bool MBBJoined = false;
2246 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
2247 OverlapMap OverlapFragments; // Map of overlapping variable fragments.
2248 OpenRangesSet OpenRanges(Alloc, OverlapFragments);
2249 // Ranges that are open until end of bb.
2250 VarLocInMBB OutLocs; // Ranges that exist beyond bb.
2251 VarLocInMBB InLocs; // Ranges that are incoming after joining.
2252 TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
2253 // spills, copies and restores).
2254 // Map responsible MI to attached Transfer emitted from Backup Entry Value.
2255 InstToEntryLocMap EntryValTransfers;
2256 // Map a Register to the last MI which clobbered it.
2257 RegDefToInstMap RegSetInstrs;
2259 VarToFragments SeenFragments;
2261 // Blocks which are artificial, i.e. blocks which exclusively contain
2262 // instructions without locations, or with line 0 locations.
2263 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
2265 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
2266 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
2267 std::priority_queue<unsigned int, std::vector<unsigned int>,
2268 std::greater<unsigned int>>
2269 Worklist;
2270 std::priority_queue<unsigned int, std::vector<unsigned int>,
2271 std::greater<unsigned int>>
2272 Pending;
2274 // Set of register defines that are seen when traversing the entry block
2275 // looking for debug entry value candidates.
2276 DefinedRegsSet DefinedRegs;
2278 // Only in the case of entry MBB collect DBG_VALUEs representing
2279 // function parameters in order to generate debug entry values for them.
2280 MachineBasicBlock &First_MBB = *(MF.begin());
2281 for (auto &MI : First_MBB) {
2282 collectRegDefs(MI, DefinedRegs, TRI);
2283 if (MI.isDebugValue())
2284 recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
2287 // Initialize per-block structures and scan for fragment overlaps.
2288 for (auto &MBB : MF)
2289 for (auto &MI : MBB)
2290 if (MI.isDebugValue())
2291 accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
2293 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2294 if (const DebugLoc &DL = MI.getDebugLoc())
2295 return DL.getLine() != 0;
2296 return false;
2298 for (auto &MBB : MF)
2299 if (none_of(MBB.instrs(), hasNonArtificialLocation))
2300 ArtificialBlocks.insert(&MBB);
2302 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2303 "OutLocs after initialization", dbgs()));
2305 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2306 unsigned int RPONumber = 0;
2307 for (MachineBasicBlock *MBB : RPOT) {
2308 OrderToBB[RPONumber] = MBB;
2309 BBToOrder[MBB] = RPONumber;
2310 Worklist.push(RPONumber);
2311 ++RPONumber;
2314 if (RPONumber > InputBBLimit) {
2315 unsigned NumInputDbgValues = 0;
2316 for (auto &MBB : MF)
2317 for (auto &MI : MBB)
2318 if (MI.isDebugValue())
2319 ++NumInputDbgValues;
2320 if (NumInputDbgValues > InputDbgValLimit) {
2321 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
2322 << " has " << RPONumber << " basic blocks and "
2323 << NumInputDbgValues
2324 << " input DBG_VALUEs, exceeding limits.\n");
2325 return false;
2329 // This is a standard "union of predecessor outs" dataflow problem.
2330 // To solve it, we perform join() and process() using the two worklist method
2331 // until the ranges converge.
2332 // Ranges have converged when both worklists are empty.
2333 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2334 while (!Worklist.empty() || !Pending.empty()) {
2335 // We track what is on the pending worklist to avoid inserting the same
2336 // thing twice. We could avoid this with a custom priority queue, but this
2337 // is probably not worth it.
2338 SmallPtrSet<MachineBasicBlock *, 16> OnPending;
2339 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2340 while (!Worklist.empty()) {
2341 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2342 Worklist.pop();
2343 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
2344 ArtificialBlocks);
2345 MBBJoined |= Visited.insert(MBB).second;
2346 if (MBBJoined) {
2347 MBBJoined = false;
2348 Changed = true;
2349 // Now that we have started to extend ranges across BBs we need to
2350 // examine spill, copy and restore instructions to see whether they
2351 // operate with registers that correspond to user variables.
2352 // First load any pending inlocs.
2353 OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
2354 LastNonDbgMI = nullptr;
2355 RegSetInstrs.clear();
2356 for (auto &MI : *MBB)
2357 process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers,
2358 RegSetInstrs);
2359 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
2361 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
2362 "OutLocs after propagating", dbgs()));
2363 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
2364 "InLocs after propagating", dbgs()));
2366 if (OLChanged) {
2367 OLChanged = false;
2368 for (auto *s : MBB->successors())
2369 if (OnPending.insert(s).second) {
2370 Pending.push(BBToOrder[s]);
2375 Worklist.swap(Pending);
2376 // At this point, pending must be empty, since it was just the empty
2377 // worklist
2378 assert(Pending.empty() && "Pending should be empty");
2381 // Add any DBG_VALUE instructions created by location transfers.
2382 for (auto &TR : Transfers) {
2383 assert(!TR.TransferInst->isTerminator() &&
2384 "Cannot insert DBG_VALUE after terminator");
2385 MachineBasicBlock *MBB = TR.TransferInst->getParent();
2386 const VarLoc &VL = VarLocIDs[TR.LocationID];
2387 MachineInstr *MI = VL.BuildDbgValue(MF);
2388 MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
2390 Transfers.clear();
2392 // Add DBG_VALUEs created using Backup Entry Value location.
2393 for (auto &TR : EntryValTransfers) {
2394 MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first);
2395 assert(!TRInst->isTerminator() &&
2396 "Cannot insert DBG_VALUE after terminator");
2397 MachineBasicBlock *MBB = TRInst->getParent();
2398 const VarLoc &VL = VarLocIDs[TR.second];
2399 MachineInstr *MI = VL.BuildDbgValue(MF);
2400 MBB->insertAfterBundle(TRInst->getIterator(), MI);
2402 EntryValTransfers.clear();
2404 // Deferred inlocs will not have had any DBG_VALUE insts created; do
2405 // that now.
2406 flushPendingLocs(InLocs, VarLocIDs);
2408 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
2409 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
2410 return Changed;
2413 LDVImpl *
2414 llvm::makeVarLocBasedLiveDebugValues()
2416 return new VarLocBasedLDV();