1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file VarLocBasedImpl.cpp
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants, and target indices) that a variable
14 /// fragment might be located, qualified by a DIExpression and indirect-ness
15 /// flag, while each variable is identified by a DebugVariable object. The
16 /// availability of an expression begins when a DBG_VALUE instruction specifies
17 /// the location of a DebugVariable, and continues until that location is
18 /// clobbered or re-specified by a different DBG_VALUE for the same
21 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
22 /// placed to extend variable locations as far they're available. This file
23 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
24 /// locations, using the VarLoc class.
26 /// The canonical "available expressions" problem doesn't have expression
27 /// clobbering, instead when a variable is re-assigned, any expressions using
28 /// that variable get invalidated. LiveDebugValues can map onto "available
29 /// expressions" by having every register represented by a variable, which is
30 /// used in an expression that becomes available at a DBG_VALUE instruction.
31 /// When the register is clobbered, its variable is effectively reassigned, and
32 /// expressions computed from it become unavailable. A similar construct is
33 /// needed when a DebugVariable has its location re-specified, to invalidate
34 /// all other locations for that DebugVariable.
36 /// Using the dataflow analysis to compute the available expressions, we create
37 /// a DBG_VALUE at the beginning of each block where the expression is
38 /// live-in. This propagates variable locations into every basic block where
39 /// the location can be determined, rather than only having DBG_VALUEs in blocks
40 /// where locations are specified due to an assignment or some optimization.
41 /// Movements of values between registers and spill slots are annotated with
42 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
43 /// DbgEntityHistoryCalculator to focus on only the locations within individual
44 /// blocks, facilitating testing and improving modularity.
46 /// We follow an optimisic dataflow approach, with this lattice:
56 /// \endverbatim With "True" signifying that the expression is available (and
57 /// thus a DebugVariable's location is the corresponding register), while
58 /// "False" signifies that the expression is unavailable. "Unknown"s never
59 /// survive to the end of the analysis (see below).
61 /// Formally, all DebugVariable locations that are live-out of a block are
62 /// initialized to \top. A blocks live-in values take the meet of the lattice
63 /// value for every predecessors live-outs, except for the entry block, where
64 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
65 /// function for a block assigns an expression for a DebugVariable to be "True"
66 /// if a DBG_VALUE in the block specifies it; "False" if the location is
67 /// clobbered; or the live-in value if it is unaffected by the block. We
68 /// visit each block in reverse post order until a fixedpoint is reached. The
69 /// solution produced is maximal.
71 /// Intuitively, we start by assuming that every expression / variable location
72 /// is at least "True", and then propagate "False" from the entry block and any
73 /// clobbers until there are no more changes to make. This gives us an accurate
74 /// solution because all incorrect locations will have a "False" propagated into
75 /// them. It also gives us a solution that copes well with loops by assuming
76 /// that variable locations are live-through every loop, and then removing those
77 /// that are not through dataflow.
79 /// Within LiveDebugValues: each variable location is represented by a
80 /// VarLoc object that identifies the source variable, the set of
81 /// machine-locations that currently describe it (a single location for
82 /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
83 /// specifies the location. Each VarLoc is indexed in the (function-scope) \p
84 /// VarLocMap, giving each VarLoc a set of unique indexes, each of which
85 /// corresponds to one of the VarLoc's machine-locations and can be used to
86 /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
87 /// locations, the dataflow analysis in this pass identifies locations by their
88 /// indices in the VarLocMap, meaning all the variable locations in a block can
89 /// be described by a sparse vector of VarLocMap indices.
91 /// All the storage for the dataflow analysis is local to the ExtendRanges
92 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
93 /// in and out lattice values for each block. "OpenRanges" maintains a list of
94 /// variable locations and, with the "process" method, evaluates the transfer
95 /// function of each block. "flushPendingLocs" installs debug value instructions
96 /// for each live-in location at the start of blocks, while "Transfers" records
97 /// transfers of values between machine-locations.
99 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
100 /// implementation. Instead, unvisited blocks implicitly have all lattice
101 /// values set as "Unknown". After being visited, there will be path back to
102 /// the entry block where the lattice value is "False", and as the transfer
103 /// function cannot make new "Unknown" locations, there are no scenarios where
104 /// a block can have an "Unknown" location after being visited. Similarly, we
105 /// don't enumerate all possible variable locations before exploring the
106 /// function: when a new location is discovered, all blocks previously explored
107 /// were implicitly "False" but unrecorded, and become explicitly "False" when
108 /// a new VarLoc is created with its bit not set in predecessor InLocs or
111 //===----------------------------------------------------------------------===//
113 #include "LiveDebugValues.h"
115 #include "llvm/ADT/CoalescingBitVector.h"
116 #include "llvm/ADT/DenseMap.h"
117 #include "llvm/ADT/PostOrderIterator.h"
118 #include "llvm/ADT/SmallPtrSet.h"
119 #include "llvm/ADT/SmallSet.h"
120 #include "llvm/ADT/SmallVector.h"
121 #include "llvm/ADT/Statistic.h"
122 #include "llvm/BinaryFormat/Dwarf.h"
123 #include "llvm/CodeGen/LexicalScopes.h"
124 #include "llvm/CodeGen/MachineBasicBlock.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineMemOperand.h"
129 #include "llvm/CodeGen/MachineOperand.h"
130 #include "llvm/CodeGen/PseudoSourceValue.h"
131 #include "llvm/CodeGen/TargetFrameLowering.h"
132 #include "llvm/CodeGen/TargetInstrInfo.h"
133 #include "llvm/CodeGen/TargetLowering.h"
134 #include "llvm/CodeGen/TargetPassConfig.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/Config/llvm-config.h"
138 #include "llvm/IR/DebugInfoMetadata.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCRegisterInfo.h"
142 #include "llvm/Support/Casting.h"
143 #include "llvm/Support/Debug.h"
144 #include "llvm/Support/TypeSize.h"
145 #include "llvm/Support/raw_ostream.h"
146 #include "llvm/Target/TargetMachine.h"
149 #include <functional>
157 using namespace llvm
;
159 #define DEBUG_TYPE "livedebugvalues"
161 STATISTIC(NumInserted
, "Number of DBG_VALUE instructions inserted");
163 /// If \p Op is a stack or frame register return true, otherwise return false.
164 /// This is used to avoid basing the debug entry values on the registers, since
165 /// we do not support it at the moment.
166 static bool isRegOtherThanSPAndFP(const MachineOperand
&Op
,
167 const MachineInstr
&MI
,
168 const TargetRegisterInfo
*TRI
) {
172 const MachineFunction
*MF
= MI
.getParent()->getParent();
173 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
174 Register SP
= TLI
->getStackPointerRegisterToSaveRestore();
175 Register FP
= TRI
->getFrameRegister(*MF
);
176 Register Reg
= Op
.getReg();
178 return Reg
&& Reg
!= SP
&& Reg
!= FP
;
183 // Max out the number of statically allocated elements in DefinedRegsSet, as
184 // this prevents fallback to std::set::count() operations.
185 using DefinedRegsSet
= SmallSet
<Register
, 32>;
187 // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
188 // that represent Entry Values; every VarLoc in the set will also appear
189 // exactly once at Location=0.
190 // As a result, each VarLoc may appear more than once in this "set", but each
191 // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
192 // "true" set (i.e. each VarLoc may appear only once), and the range Location=0
193 // is the set of all VarLocs.
194 using VarLocSet
= CoalescingBitVector
<uint64_t>;
196 /// A type-checked pair of {Register Location (or 0), Index}, used to index
197 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
198 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
199 /// type-checker helps ensure that the conversions aren't lossy.
201 /// Why encode a location /into/ the VarLocMap index? This makes it possible
202 /// to find the open VarLocs killed by a register def very quickly. This is a
203 /// performance-critical operation for LiveDebugValues.
205 using u32_location_t
= uint32_t;
206 using u32_index_t
= uint32_t;
208 u32_location_t Location
; // Physical registers live in the range [1;2^30) (see
209 // \ref MCRegister), so we have plenty of range left
210 // here to encode non-register locations.
213 /// The location that has an entry for every VarLoc in the map.
214 static constexpr u32_location_t kUniversalLocation
= 0;
216 /// The first location that is reserved for VarLocs with locations of kind
218 static constexpr u32_location_t kFirstRegLocation
= 1;
220 /// The first location greater than 0 that is not reserved for VarLocs with
221 /// locations of kind RegisterKind.
222 static constexpr u32_location_t kFirstInvalidRegLocation
= 1 << 30;
224 /// A special location reserved for VarLocs with locations of kind
226 static constexpr u32_location_t kSpillLocation
= kFirstInvalidRegLocation
;
228 /// A special location reserved for VarLocs of kind EntryValueBackupKind and
229 /// EntryValueCopyBackupKind.
230 static constexpr u32_location_t kEntryValueBackupLocation
=
231 kFirstInvalidRegLocation
+ 1;
233 /// A special location reserved for VarLocs with locations of kind
235 /// TODO Placing all Wasm target index locations in this single kWasmLocation
236 /// may cause slowdown in compilation time in very large functions. Consider
237 /// giving a each target index/offset pair its own u32_location_t if this
238 /// becomes a problem.
239 static constexpr u32_location_t kWasmLocation
= kFirstInvalidRegLocation
+ 2;
241 /// The first location that is reserved for VarLocs with locations of kind
242 /// VirtualRegisterKind.
243 static constexpr u32_location_t kFirstVirtualRegLocation
= 1 << 31;
245 LocIndex(u32_location_t Location
, u32_index_t Index
)
246 : Location(Location
), Index(Index
) {}
248 uint64_t getAsRawInteger() const {
249 return (static_cast<uint64_t>(Location
) << 32) | Index
;
252 template<typename IntT
> static LocIndex
fromRawInteger(IntT ID
) {
253 static_assert(std::is_unsigned_v
<IntT
> && sizeof(ID
) == sizeof(uint64_t),
254 "Cannot convert raw integer to LocIndex");
255 return {static_cast<u32_location_t
>(ID
>> 32),
256 static_cast<u32_index_t
>(ID
)};
259 /// Get the start of the interval reserved for VarLocs of kind RegisterKind
260 /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
261 static uint64_t rawIndexForReg(Register Reg
) {
262 return LocIndex(Reg
, 0).getAsRawInteger();
265 /// Return a range covering all set indices in the interval reserved for
266 /// \p Location in \p Set.
267 static auto indexRangeForLocation(const VarLocSet
&Set
,
268 u32_location_t Location
) {
269 uint64_t Start
= LocIndex(Location
, 0).getAsRawInteger();
270 uint64_t End
= LocIndex(Location
+ 1, 0).getAsRawInteger();
271 return Set
.half_open_range(Start
, End
);
275 // Simple Set for storing all the VarLoc Indices at a Location bucket.
276 using VarLocsInRange
= SmallSet
<LocIndex::u32_index_t
, 32>;
277 // Vector of all `LocIndex`s for a given VarLoc; the same Location should not
278 // appear in any two of these, as each VarLoc appears at most once in any
280 using LocIndices
= SmallVector
<LocIndex
, 2>;
282 class VarLocBasedLDV
: public LDVImpl
{
284 const TargetRegisterInfo
*TRI
;
285 const TargetInstrInfo
*TII
;
286 const TargetFrameLowering
*TFI
;
287 TargetPassConfig
*TPC
;
288 BitVector CalleeSavedRegs
;
290 VarLocSet::Allocator Alloc
;
292 const MachineInstr
*LastNonDbgMI
;
294 enum struct TransferKind
{ TransferCopy
, TransferSpill
, TransferRestore
};
296 using FragmentInfo
= DIExpression::FragmentInfo
;
297 using OptFragmentInfo
= std::optional
<DIExpression::FragmentInfo
>;
299 /// A pair of debug variable and value location.
301 // The location at which a spilled variable resides. It consists of a
302 // register and an offset.
305 StackOffset SpillOffset
;
306 bool operator==(const SpillLoc
&Other
) const {
307 return SpillBase
== Other
.SpillBase
&& SpillOffset
== Other
.SpillOffset
;
309 bool operator!=(const SpillLoc
&Other
) const {
310 return !(*this == Other
);
314 // Target indices used for wasm-specific locations.
316 // One of TargetIndex values defined in WebAssembly.h. We deal with
317 // local-related TargetIndex in this analysis (TI_LOCAL and
318 // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled
319 // separately WebAssemblyDebugFixup pass, and we don't associate debug
320 // info with values in global operands (TI_GLOBAL_RELOC) at the moment.
323 bool operator==(const WasmLoc
&Other
) const {
324 return Index
== Other
.Index
&& Offset
== Other
.Offset
;
326 bool operator!=(const WasmLoc
&Other
) const { return !(*this == Other
); }
329 /// Identity of the variable at this location.
330 const DebugVariable Var
;
332 /// The expression applied to this location.
333 const DIExpression
*Expr
;
335 /// DBG_VALUE to clone var/expr information from if this location
337 const MachineInstr
&MI
;
339 enum class MachineLocKind
{
347 enum class EntryValueLocKind
{
348 NonEntryValueKind
= 0,
350 EntryValueBackupKind
,
351 EntryValueCopyBackupKind
352 } EVKind
= EntryValueLocKind::NonEntryValueKind
;
354 /// The value location. Stored separately to avoid repeatedly
355 /// extracting it from MI.
356 union MachineLocValue
{
358 SpillLoc SpillLocation
;
361 const ConstantFP
*FPImm
;
362 const ConstantInt
*CImm
;
363 WasmLoc WasmLocation
;
364 MachineLocValue() : Hash(0) {}
367 /// A single machine location; its Kind is either a register, spill
368 /// location, or immediate value.
369 /// If the VarLoc is not a NonEntryValueKind, then it will use only a
370 /// single MachineLoc of RegisterKind.
373 MachineLocValue Value
;
374 bool operator==(const MachineLoc
&Other
) const {
375 if (Kind
!= Other
.Kind
)
378 case MachineLocKind::SpillLocKind
:
379 return Value
.SpillLocation
== Other
.Value
.SpillLocation
;
380 case MachineLocKind::WasmLocKind
:
381 return Value
.WasmLocation
== Other
.Value
.WasmLocation
;
382 case MachineLocKind::RegisterKind
:
383 case MachineLocKind::ImmediateKind
:
384 return Value
.Hash
== Other
.Value
.Hash
;
386 llvm_unreachable("Invalid kind");
389 bool operator<(const MachineLoc
&Other
) const {
391 case MachineLocKind::SpillLocKind
:
392 return std::make_tuple(
393 Kind
, Value
.SpillLocation
.SpillBase
,
394 Value
.SpillLocation
.SpillOffset
.getFixed(),
395 Value
.SpillLocation
.SpillOffset
.getScalable()) <
397 Other
.Kind
, Other
.Value
.SpillLocation
.SpillBase
,
398 Other
.Value
.SpillLocation
.SpillOffset
.getFixed(),
399 Other
.Value
.SpillLocation
.SpillOffset
.getScalable());
400 case MachineLocKind::WasmLocKind
:
401 return std::make_tuple(Kind
, Value
.WasmLocation
.Index
,
402 Value
.WasmLocation
.Offset
) <
403 std::make_tuple(Other
.Kind
, Other
.Value
.WasmLocation
.Index
,
404 Other
.Value
.WasmLocation
.Offset
);
405 case MachineLocKind::RegisterKind
:
406 case MachineLocKind::ImmediateKind
:
407 return std::tie(Kind
, Value
.Hash
) <
408 std::tie(Other
.Kind
, Other
.Value
.Hash
);
410 llvm_unreachable("Invalid kind");
415 /// The set of machine locations used to determine the variable's value, in
416 /// conjunction with Expr. Initially populated with MI's debug operands,
417 /// but may be transformed independently afterwards.
418 SmallVector
<MachineLoc
, 8> Locs
;
419 /// Used to map the index of each location in Locs back to the index of its
420 /// original debug operand in MI. Used when multiple location operands are
421 /// coalesced and the original MI's operands need to be accessed while
422 /// emitting a debug value.
423 SmallVector
<unsigned, 8> OrigLocMap
;
425 VarLoc(const MachineInstr
&MI
)
426 : Var(MI
.getDebugVariable(), MI
.getDebugExpression(),
427 MI
.getDebugLoc()->getInlinedAt()),
428 Expr(MI
.getDebugExpression()), MI(MI
) {
429 assert(MI
.isDebugValue() && "not a DBG_VALUE");
430 assert((MI
.isDebugValueList() || MI
.getNumOperands() == 4) &&
431 "malformed DBG_VALUE");
432 for (const MachineOperand
&Op
: MI
.debug_operands()) {
433 MachineLoc ML
= GetLocForOp(Op
);
434 auto It
= find(Locs
, ML
);
435 if (It
== Locs
.end()) {
437 OrigLocMap
.push_back(MI
.getDebugOperandIndex(&Op
));
439 // ML duplicates an element in Locs; replace references to Op
440 // with references to the duplicating element.
441 unsigned OpIdx
= Locs
.size();
442 unsigned DuplicatingIdx
= std::distance(Locs
.begin(), It
);
443 Expr
= DIExpression::replaceArg(Expr
, OpIdx
, DuplicatingIdx
);
447 // We create the debug entry values from the factory functions rather
448 // than from this ctor.
449 assert(EVKind
!= EntryValueLocKind::EntryValueKind
&&
450 !isEntryBackupLoc());
453 static MachineLoc
GetLocForOp(const MachineOperand
&Op
) {
457 Kind
= MachineLocKind::RegisterKind
;
458 Loc
.RegNo
= Op
.getReg();
459 } else if (Op
.isImm()) {
460 Kind
= MachineLocKind::ImmediateKind
;
461 Loc
.Immediate
= Op
.getImm();
462 } else if (Op
.isFPImm()) {
463 Kind
= MachineLocKind::ImmediateKind
;
464 Loc
.FPImm
= Op
.getFPImm();
465 } else if (Op
.isCImm()) {
466 Kind
= MachineLocKind::ImmediateKind
;
467 Loc
.CImm
= Op
.getCImm();
468 } else if (Op
.isTargetIndex()) {
469 Kind
= MachineLocKind::WasmLocKind
;
470 Loc
.WasmLocation
= {Op
.getIndex(), Op
.getOffset()};
472 llvm_unreachable("Invalid Op kind for MachineLoc.");
476 /// Take the variable and machine-location in DBG_VALUE MI, and build an
477 /// entry location using the given expression.
478 static VarLoc
CreateEntryLoc(const MachineInstr
&MI
,
479 const DIExpression
*EntryExpr
, Register Reg
) {
481 assert(VL
.Locs
.size() == 1 &&
482 VL
.Locs
[0].Kind
== MachineLocKind::RegisterKind
);
483 VL
.EVKind
= EntryValueLocKind::EntryValueKind
;
485 VL
.Locs
[0].Value
.RegNo
= Reg
;
489 /// Take the variable and machine-location from the DBG_VALUE (from the
490 /// function entry), and build an entry value backup location. The backup
491 /// location will turn into the normal location if the backup is valid at
492 /// the time of the primary location clobbering.
493 static VarLoc
CreateEntryBackupLoc(const MachineInstr
&MI
,
494 const DIExpression
*EntryExpr
) {
496 assert(VL
.Locs
.size() == 1 &&
497 VL
.Locs
[0].Kind
== MachineLocKind::RegisterKind
);
498 VL
.EVKind
= EntryValueLocKind::EntryValueBackupKind
;
503 /// Take the variable and machine-location from the DBG_VALUE (from the
504 /// function entry), and build a copy of an entry value backup location by
505 /// setting the register location to NewReg.
506 static VarLoc
CreateEntryCopyBackupLoc(const MachineInstr
&MI
,
507 const DIExpression
*EntryExpr
,
510 assert(VL
.Locs
.size() == 1 &&
511 VL
.Locs
[0].Kind
== MachineLocKind::RegisterKind
);
512 VL
.EVKind
= EntryValueLocKind::EntryValueCopyBackupKind
;
514 VL
.Locs
[0].Value
.RegNo
= NewReg
;
518 /// Copy the register location in DBG_VALUE MI, updating the register to
520 static VarLoc
CreateCopyLoc(const VarLoc
&OldVL
, const MachineLoc
&OldML
,
523 for (MachineLoc
&ML
: VL
.Locs
)
525 ML
.Kind
= MachineLocKind::RegisterKind
;
526 ML
.Value
.RegNo
= NewReg
;
529 llvm_unreachable("Should have found OldML in new VarLoc.");
532 /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
533 /// locating it in the specified spill location.
534 static VarLoc
CreateSpillLoc(const VarLoc
&OldVL
, const MachineLoc
&OldML
,
535 unsigned SpillBase
, StackOffset SpillOffset
) {
537 for (MachineLoc
&ML
: VL
.Locs
)
539 ML
.Kind
= MachineLocKind::SpillLocKind
;
540 ML
.Value
.SpillLocation
= {SpillBase
, SpillOffset
};
543 llvm_unreachable("Should have found OldML in new VarLoc.");
546 /// Create a DBG_VALUE representing this VarLoc in the given function.
547 /// Copies variable-specific information such as DILocalVariable and
548 /// inlining information from the original DBG_VALUE instruction, which may
549 /// have been several transfers ago.
550 MachineInstr
*BuildDbgValue(MachineFunction
&MF
) const {
551 assert(!isEntryBackupLoc() &&
552 "Tried to produce DBG_VALUE for backup VarLoc");
553 const DebugLoc
&DbgLoc
= MI
.getDebugLoc();
554 bool Indirect
= MI
.isIndirectDebugValue();
555 const auto &IID
= MI
.getDesc();
556 const DILocalVariable
*Var
= MI
.getDebugVariable();
559 const DIExpression
*DIExpr
= Expr
;
560 SmallVector
<MachineOperand
, 8> MOs
;
561 for (unsigned I
= 0, E
= Locs
.size(); I
< E
; ++I
) {
562 MachineLocKind LocKind
= Locs
[I
].Kind
;
563 MachineLocValue Loc
= Locs
[I
].Value
;
564 const MachineOperand
&Orig
= MI
.getDebugOperand(OrigLocMap
[I
]);
566 case MachineLocKind::RegisterKind
:
567 // An entry value is a register location -- but with an updated
568 // expression. The register location of such DBG_VALUE is always the
569 // one from the entry DBG_VALUE, it does not matter if the entry value
570 // was copied in to another register due to some optimizations.
571 // Non-entry value register locations are like the source
572 // DBG_VALUE, but with the register number from this VarLoc.
573 MOs
.push_back(MachineOperand::CreateReg(
574 EVKind
== EntryValueLocKind::EntryValueKind
? Orig
.getReg()
575 : Register(Loc
.RegNo
),
578 case MachineLocKind::SpillLocKind
: {
579 // Spills are indirect DBG_VALUEs, with a base register and offset.
580 // Use the original DBG_VALUEs expression to build the spilt location
581 // on top of. FIXME: spill locations created before this pass runs
582 // are not recognized, and not handled here.
583 unsigned Base
= Loc
.SpillLocation
.SpillBase
;
584 auto *TRI
= MF
.getSubtarget().getRegisterInfo();
585 if (MI
.isNonListDebugValue()) {
586 auto Deref
= Indirect
? DIExpression::DerefAfter
: 0;
587 DIExpr
= TRI
->prependOffsetExpression(
588 DIExpr
, DIExpression::ApplyOffset
| Deref
,
589 Loc
.SpillLocation
.SpillOffset
);
592 SmallVector
<uint64_t, 4> Ops
;
593 TRI
->getOffsetOpcodes(Loc
.SpillLocation
.SpillOffset
, Ops
);
594 Ops
.push_back(dwarf::DW_OP_deref
);
595 DIExpr
= DIExpression::appendOpsToArg(DIExpr
, Ops
, I
);
597 MOs
.push_back(MachineOperand::CreateReg(Base
, false));
600 case MachineLocKind::ImmediateKind
: {
604 case MachineLocKind::WasmLocKind
: {
608 case MachineLocKind::InvalidKind
:
609 llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
612 return BuildMI(MF
, DbgLoc
, IID
, Indirect
, MOs
, Var
, DIExpr
);
615 /// Is the Loc field a constant or constant object?
616 bool isConstant(MachineLocKind Kind
) const {
617 return Kind
== MachineLocKind::ImmediateKind
;
620 /// Check if the Loc field is an entry backup location.
621 bool isEntryBackupLoc() const {
622 return EVKind
== EntryValueLocKind::EntryValueBackupKind
||
623 EVKind
== EntryValueLocKind::EntryValueCopyBackupKind
;
626 /// If this variable is described by register \p Reg holding the entry
627 /// value, return true.
628 bool isEntryValueBackupReg(Register Reg
) const {
629 return EVKind
== EntryValueLocKind::EntryValueBackupKind
&& usesReg(Reg
);
632 /// If this variable is described by register \p Reg holding a copy of the
633 /// entry value, return true.
634 bool isEntryValueCopyBackupReg(Register Reg
) const {
635 return EVKind
== EntryValueLocKind::EntryValueCopyBackupKind
&&
639 /// If this variable is described in whole or part by \p Reg, return true.
640 bool usesReg(Register Reg
) const {
642 RegML
.Kind
= MachineLocKind::RegisterKind
;
643 RegML
.Value
.RegNo
= Reg
;
644 return is_contained(Locs
, RegML
);
647 /// If this variable is described in whole or part by \p Reg, return true.
648 unsigned getRegIdx(Register Reg
) const {
649 for (unsigned Idx
= 0; Idx
< Locs
.size(); ++Idx
)
650 if (Locs
[Idx
].Kind
== MachineLocKind::RegisterKind
&&
651 Register
{static_cast<unsigned>(Locs
[Idx
].Value
.RegNo
)} == Reg
)
653 llvm_unreachable("Could not find given Reg in Locs");
656 /// If this variable is described in whole or part by 1 or more registers,
657 /// add each of them to \p Regs and return true.
658 bool getDescribingRegs(SmallVectorImpl
<uint32_t> &Regs
) const {
659 bool AnyRegs
= false;
660 for (const auto &Loc
: Locs
)
661 if (Loc
.Kind
== MachineLocKind::RegisterKind
) {
662 Regs
.push_back(Loc
.Value
.RegNo
);
668 bool containsSpillLocs() const {
669 return any_of(Locs
, [](VarLoc::MachineLoc ML
) {
670 return ML
.Kind
== VarLoc::MachineLocKind::SpillLocKind
;
674 /// If this variable is described in whole or part by \p SpillLocation,
676 bool usesSpillLoc(SpillLoc SpillLocation
) const {
678 SpillML
.Kind
= MachineLocKind::SpillLocKind
;
679 SpillML
.Value
.SpillLocation
= SpillLocation
;
680 return is_contained(Locs
, SpillML
);
683 /// If this variable is described in whole or part by \p SpillLocation,
684 /// return the index .
685 unsigned getSpillLocIdx(SpillLoc SpillLocation
) const {
686 for (unsigned Idx
= 0; Idx
< Locs
.size(); ++Idx
)
687 if (Locs
[Idx
].Kind
== MachineLocKind::SpillLocKind
&&
688 Locs
[Idx
].Value
.SpillLocation
== SpillLocation
)
690 llvm_unreachable("Could not find given SpillLoc in Locs");
693 bool containsWasmLocs() const {
694 return any_of(Locs
, [](VarLoc::MachineLoc ML
) {
695 return ML
.Kind
== VarLoc::MachineLocKind::WasmLocKind
;
699 /// If this variable is described in whole or part by \p WasmLocation,
701 bool usesWasmLoc(WasmLoc WasmLocation
) const {
703 WasmML
.Kind
= MachineLocKind::WasmLocKind
;
704 WasmML
.Value
.WasmLocation
= WasmLocation
;
705 return is_contained(Locs
, WasmML
);
708 /// Determine whether the lexical scope of this value's debug location
710 bool dominates(LexicalScopes
&LS
, MachineBasicBlock
&MBB
) const {
711 return LS
.dominates(MI
.getDebugLoc().get(), &MBB
);
714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
715 // TRI and TII can be null.
716 void dump(const TargetRegisterInfo
*TRI
, const TargetInstrInfo
*TII
,
717 raw_ostream
&Out
= dbgs()) const {
719 for (const MachineLoc
&MLoc
: Locs
) {
720 if (Locs
.begin() != &MLoc
)
723 case MachineLocKind::RegisterKind
:
724 Out
<< printReg(MLoc
.Value
.RegNo
, TRI
);
726 case MachineLocKind::SpillLocKind
:
727 Out
<< printReg(MLoc
.Value
.SpillLocation
.SpillBase
, TRI
);
728 Out
<< "[" << MLoc
.Value
.SpillLocation
.SpillOffset
.getFixed() << " + "
729 << MLoc
.Value
.SpillLocation
.SpillOffset
.getScalable()
733 case MachineLocKind::ImmediateKind
:
734 Out
<< MLoc
.Value
.Immediate
;
736 case MachineLocKind::WasmLocKind
: {
738 auto Indices
= TII
->getSerializableTargetIndices();
740 find_if(Indices
, [&](const std::pair
<int, const char *> &I
) {
741 return I
.first
== MLoc
.Value
.WasmLocation
.Index
;
743 assert(Found
!= Indices
.end());
744 Out
<< Found
->second
;
745 if (MLoc
.Value
.WasmLocation
.Offset
> 0)
746 Out
<< " + " << MLoc
.Value
.WasmLocation
.Offset
;
752 case MachineLocKind::InvalidKind
:
753 llvm_unreachable("Invalid VarLoc in dump method");
757 Out
<< ", \"" << Var
.getVariable()->getName() << "\", " << *Expr
<< ", ";
758 if (Var
.getInlinedAt())
759 Out
<< "!" << Var
.getInlinedAt()->getMetadataID() << ")\n";
763 if (isEntryBackupLoc())
764 Out
<< " (backup loc)\n";
770 bool operator==(const VarLoc
&Other
) const {
771 return std::tie(EVKind
, Var
, Expr
, Locs
) ==
772 std::tie(Other
.EVKind
, Other
.Var
, Other
.Expr
, Other
.Locs
);
775 /// This operator guarantees that VarLocs are sorted by Variable first.
776 bool operator<(const VarLoc
&Other
) const {
777 return std::tie(Var
, EVKind
, Locs
, Expr
) <
778 std::tie(Other
.Var
, Other
.EVKind
, Other
.Locs
, Other
.Expr
);
783 using VarVec
= SmallVector
<VarLoc
, 32>;
786 /// VarLocMap is used for two things:
787 /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
788 /// virtually insert a VarLoc into a VarLocSet.
789 /// 2) Given a LocIndex, look up the unique associated VarLoc.
791 /// Map a VarLoc to an index within the vector reserved for its location
793 std::map
<VarLoc
, LocIndices
> Var2Indices
;
795 /// Map a location to a vector which holds VarLocs which live in that
797 SmallDenseMap
<LocIndex::u32_location_t
, std::vector
<VarLoc
>> Loc2Vars
;
800 /// Retrieve LocIndices for \p VL.
801 LocIndices
insert(const VarLoc
&VL
) {
802 LocIndices
&Indices
= Var2Indices
[VL
];
803 // If Indices is not empty, VL is already in the map.
804 if (!Indices
.empty())
806 SmallVector
<LocIndex::u32_location_t
, 4> Locations
;
807 // LocIndices are determined by EVKind and MLs; each Register has a
808 // unique location, while all SpillLocs use a single bucket, and any EV
809 // VarLocs use only the Backup bucket or none at all (except the
810 // compulsory entry at the universal location index). LocIndices will
811 // always have an index at the universal location index as the last index.
812 if (VL
.EVKind
== VarLoc::EntryValueLocKind::NonEntryValueKind
) {
813 VL
.getDescribingRegs(Locations
);
814 assert(all_of(Locations
,
816 return (RegNo
< LocIndex::kFirstInvalidRegLocation
) ||
817 (LocIndex::kFirstVirtualRegLocation
<= RegNo
);
819 "Physical or virtual register out of range?");
820 if (VL
.containsSpillLocs())
821 Locations
.push_back(LocIndex::kSpillLocation
);
822 if (VL
.containsWasmLocs())
823 Locations
.push_back(LocIndex::kWasmLocation
);
824 } else if (VL
.EVKind
!= VarLoc::EntryValueLocKind::EntryValueKind
) {
825 LocIndex::u32_location_t Loc
= LocIndex::kEntryValueBackupLocation
;
826 Locations
.push_back(Loc
);
828 Locations
.push_back(LocIndex::kUniversalLocation
);
829 for (LocIndex::u32_location_t Location
: Locations
) {
830 auto &Vars
= Loc2Vars
[Location
];
832 {Location
, static_cast<LocIndex::u32_index_t
>(Vars
.size())});
838 LocIndices
getAllIndices(const VarLoc
&VL
) const {
839 auto IndIt
= Var2Indices
.find(VL
);
840 assert(IndIt
!= Var2Indices
.end() && "VarLoc not tracked");
841 return IndIt
->second
;
844 /// Retrieve the unique VarLoc associated with \p ID.
845 const VarLoc
&operator[](LocIndex ID
) const {
846 auto LocIt
= Loc2Vars
.find(ID
.Location
);
847 assert(LocIt
!= Loc2Vars
.end() && "Location not tracked");
848 return LocIt
->second
[ID
.Index
];
853 SmallDenseMap
<const MachineBasicBlock
*, std::unique_ptr
<VarLocSet
>>;
854 struct TransferDebugPair
{
855 MachineInstr
*TransferInst
; ///< Instruction where this transfer occurs.
856 LocIndex LocationID
; ///< Location number for the transfer dest.
858 using TransferMap
= SmallVector
<TransferDebugPair
, 4>;
859 // Types for recording Entry Var Locations emitted by a single MachineInstr,
860 // as well as recording MachineInstr which last defined a register.
861 using InstToEntryLocMap
= std::multimap
<const MachineInstr
*, LocIndex
>;
862 using RegDefToInstMap
= DenseMap
<Register
, MachineInstr
*>;
864 // Types for recording sets of variable fragments that overlap. For a given
865 // local variable, we record all other fragments of that variable that could
866 // overlap it, to reduce search time.
867 using FragmentOfVar
=
868 std::pair
<const DILocalVariable
*, DIExpression::FragmentInfo
>;
870 DenseMap
<FragmentOfVar
, SmallVector
<DIExpression::FragmentInfo
, 1>>;
872 // Helper while building OverlapMap, a map of all fragments seen for a given
874 using VarToFragments
=
875 DenseMap
<const DILocalVariable
*, SmallSet
<FragmentInfo
, 4>>;
877 /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
878 /// to \p Collected once, in order of insertion into \p VarLocIDs.
879 static void collectAllVarLocs(SmallVectorImpl
<VarLoc
> &Collected
,
880 const VarLocSet
&CollectFrom
,
881 const VarLocMap
&VarLocIDs
);
883 /// Get the registers which are used by VarLocs of kind RegisterKind tracked
884 /// by \p CollectFrom.
885 void getUsedRegs(const VarLocSet
&CollectFrom
,
886 SmallVectorImpl
<Register
> &UsedRegs
) const;
888 /// This holds the working set of currently open ranges. For fast
889 /// access, this is done both as a set of VarLocIDs, and a map of
890 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
891 /// previous open ranges for the same variable. In addition, we keep
892 /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
893 /// methods act differently depending on whether a VarLoc is primary
894 /// location or backup one. In the case the VarLoc is backup location
895 /// we will erase/insert from the EntryValuesBackupVars map, otherwise
896 /// we perform the operation on the Vars.
897 class OpenRangesSet
{
898 VarLocSet::Allocator
&Alloc
;
900 // Map the DebugVariable to recent primary location ID.
901 SmallDenseMap
<DebugVariable
, LocIndices
, 8> Vars
;
902 // Map the DebugVariable to recent backup location ID.
903 SmallDenseMap
<DebugVariable
, LocIndices
, 8> EntryValuesBackupVars
;
904 OverlapMap
&OverlappingFragments
;
907 OpenRangesSet(VarLocSet::Allocator
&Alloc
, OverlapMap
&_OLapMap
)
908 : Alloc(Alloc
), VarLocs(Alloc
), OverlappingFragments(_OLapMap
) {}
910 const VarLocSet
&getVarLocs() const { return VarLocs
; }
912 // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
913 // This method is needed to get every VarLoc once, as each VarLoc may have
914 // multiple indices in a VarLocMap (corresponding to each applicable
915 // location), but all VarLocs appear exactly once at the universal location
917 void getUniqueVarLocs(SmallVectorImpl
<VarLoc
> &Collected
,
918 const VarLocMap
&VarLocIDs
) const {
919 collectAllVarLocs(Collected
, VarLocs
, VarLocIDs
);
922 /// Terminate all open ranges for VL.Var by removing it from the set.
923 void erase(const VarLoc
&VL
);
925 /// Terminate all open ranges listed as indices in \c KillSet with
926 /// \c Location by removing them from the set.
927 void erase(const VarLocsInRange
&KillSet
, const VarLocMap
&VarLocIDs
,
928 LocIndex::u32_location_t Location
);
930 /// Insert a new range into the set.
931 void insert(LocIndices VarLocIDs
, const VarLoc
&VL
);
933 /// Insert a set of ranges.
934 void insertFromLocSet(const VarLocSet
&ToLoad
, const VarLocMap
&Map
);
936 std::optional
<LocIndices
> getEntryValueBackup(DebugVariable Var
);
942 EntryValuesBackupVars
.clear();
945 /// Return whether the set is empty or not.
947 assert(Vars
.empty() == EntryValuesBackupVars
.empty() &&
948 Vars
.empty() == VarLocs
.empty() &&
949 "open ranges are inconsistent");
950 return VarLocs
.empty();
953 /// Get an empty range of VarLoc IDs.
954 auto getEmptyVarLocRange() const {
955 return iterator_range
<VarLocSet::const_iterator
>(getVarLocs().end(),
959 /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
960 auto getRegisterVarLocs(Register Reg
) const {
961 return LocIndex::indexRangeForLocation(getVarLocs(), Reg
);
964 /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
965 auto getSpillVarLocs() const {
966 return LocIndex::indexRangeForLocation(getVarLocs(),
967 LocIndex::kSpillLocation
);
970 /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
971 /// EntryValueCopyBackupKind.
972 auto getEntryValueBackupVarLocs() const {
973 return LocIndex::indexRangeForLocation(
974 getVarLocs(), LocIndex::kEntryValueBackupLocation
);
977 /// Get all set IDs for VarLocs with MLs of kind WasmLocKind.
978 auto getWasmVarLocs() const {
979 return LocIndex::indexRangeForLocation(getVarLocs(),
980 LocIndex::kWasmLocation
);
984 /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
985 /// RegisterKind which are located in any reg in \p Regs. The IDs for each
986 /// VarLoc correspond to entries in the universal location bucket, which every
987 /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
988 static void collectIDsForRegs(VarLocsInRange
&Collected
,
989 const DefinedRegsSet
&Regs
,
990 const VarLocSet
&CollectFrom
,
991 const VarLocMap
&VarLocIDs
);
993 VarLocSet
&getVarLocsInMBB(const MachineBasicBlock
*MBB
, VarLocInMBB
&Locs
) {
994 std::unique_ptr
<VarLocSet
> &VLS
= Locs
[MBB
];
996 VLS
= std::make_unique
<VarLocSet
>(Alloc
);
1000 const VarLocSet
&getVarLocsInMBB(const MachineBasicBlock
*MBB
,
1001 const VarLocInMBB
&Locs
) const {
1002 auto It
= Locs
.find(MBB
);
1003 assert(It
!= Locs
.end() && "MBB not in map");
1007 /// Tests whether this instruction is a spill to a stack location.
1008 bool isSpillInstruction(const MachineInstr
&MI
, MachineFunction
*MF
);
1010 /// Decide if @MI is a spill instruction and return true if it is. We use 2
1011 /// criteria to make this decision:
1012 /// - Is this instruction a store to a spill slot?
1013 /// - Is there a register operand that is both used and killed?
1014 /// TODO: Store optimization can fold spills into other stores (including
1015 /// other spills). We do not handle this yet (more than one memory operand).
1016 bool isLocationSpill(const MachineInstr
&MI
, MachineFunction
*MF
,
1019 /// Returns true if the given machine instruction is a debug value which we
1020 /// can emit entry values for.
1022 /// Currently, we generate debug entry values only for parameters that are
1023 /// unmodified throughout the function and located in a register.
1024 bool isEntryValueCandidate(const MachineInstr
&MI
,
1025 const DefinedRegsSet
&Regs
) const;
1027 /// If a given instruction is identified as a spill, return the spill location
1028 /// and set \p Reg to the spilled register.
1029 std::optional
<VarLoc::SpillLoc
> isRestoreInstruction(const MachineInstr
&MI
,
1030 MachineFunction
*MF
,
1032 /// Given a spill instruction, extract the register and offset used to
1033 /// address the spill location in a target independent way.
1034 VarLoc::SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr
&MI
);
1035 void insertTransferDebugPair(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1036 TransferMap
&Transfers
, VarLocMap
&VarLocIDs
,
1037 LocIndex OldVarID
, TransferKind Kind
,
1038 const VarLoc::MachineLoc
&OldLoc
,
1039 Register NewReg
= Register());
1041 void transferDebugValue(const MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1042 VarLocMap
&VarLocIDs
,
1043 InstToEntryLocMap
&EntryValTransfers
,
1044 RegDefToInstMap
&RegSetInstrs
);
1045 void transferSpillOrRestoreInst(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1046 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
);
1047 void cleanupEntryValueTransfers(const MachineInstr
*MI
,
1048 OpenRangesSet
&OpenRanges
,
1049 VarLocMap
&VarLocIDs
, const VarLoc
&EntryVL
,
1050 InstToEntryLocMap
&EntryValTransfers
);
1051 void removeEntryValue(const MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1052 VarLocMap
&VarLocIDs
, const VarLoc
&EntryVL
,
1053 InstToEntryLocMap
&EntryValTransfers
,
1054 RegDefToInstMap
&RegSetInstrs
);
1055 void emitEntryValues(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1056 VarLocMap
&VarLocIDs
,
1057 InstToEntryLocMap
&EntryValTransfers
,
1058 VarLocsInRange
&KillSet
);
1059 void recordEntryValue(const MachineInstr
&MI
,
1060 const DefinedRegsSet
&DefinedRegs
,
1061 OpenRangesSet
&OpenRanges
, VarLocMap
&VarLocIDs
);
1062 void transferRegisterCopy(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1063 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
);
1064 void transferRegisterDef(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1065 VarLocMap
&VarLocIDs
,
1066 InstToEntryLocMap
&EntryValTransfers
,
1067 RegDefToInstMap
&RegSetInstrs
);
1068 void transferWasmDef(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1069 VarLocMap
&VarLocIDs
);
1070 bool transferTerminator(MachineBasicBlock
*MBB
, OpenRangesSet
&OpenRanges
,
1071 VarLocInMBB
&OutLocs
, const VarLocMap
&VarLocIDs
);
1073 void process(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
1074 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
,
1075 InstToEntryLocMap
&EntryValTransfers
,
1076 RegDefToInstMap
&RegSetInstrs
);
1078 void accumulateFragmentMap(MachineInstr
&MI
, VarToFragments
&SeenFragments
,
1079 OverlapMap
&OLapMap
);
1081 bool join(MachineBasicBlock
&MBB
, VarLocInMBB
&OutLocs
, VarLocInMBB
&InLocs
,
1082 const VarLocMap
&VarLocIDs
,
1083 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
1084 SmallPtrSetImpl
<const MachineBasicBlock
*> &ArtificialBlocks
);
1086 /// Create DBG_VALUE insts for inlocs that have been propagated but
1087 /// had their instruction creation deferred.
1088 void flushPendingLocs(VarLocInMBB
&PendingInLocs
, VarLocMap
&VarLocIDs
);
1090 bool ExtendRanges(MachineFunction
&MF
, MachineDominatorTree
*DomTree
,
1091 TargetPassConfig
*TPC
, unsigned InputBBLimit
,
1092 unsigned InputDbgValLimit
) override
;
1095 /// Default construct and initialize the pass.
1100 /// Print to ostream with a message.
1101 void printVarLocInMBB(const MachineFunction
&MF
, const VarLocInMBB
&V
,
1102 const VarLocMap
&VarLocIDs
, const char *msg
,
1103 raw_ostream
&Out
) const;
1106 } // end anonymous namespace
1108 //===----------------------------------------------------------------------===//
1110 //===----------------------------------------------------------------------===//
1112 VarLocBasedLDV::VarLocBasedLDV() = default;
1114 VarLocBasedLDV::~VarLocBasedLDV() = default;
1116 /// Erase a variable from the set of open ranges, and additionally erase any
1117 /// fragments that may overlap it. If the VarLoc is a backup location, erase
1118 /// the variable from the EntryValuesBackupVars set, indicating we should stop
1119 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
1120 /// location, erase the variable from the Vars set.
1121 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc
&VL
) {
1123 auto DoErase
= [&VL
, this](DebugVariable VarToErase
) {
1124 auto *EraseFrom
= VL
.isEntryBackupLoc() ? &EntryValuesBackupVars
: &Vars
;
1125 auto It
= EraseFrom
->find(VarToErase
);
1126 if (It
!= EraseFrom
->end()) {
1127 LocIndices IDs
= It
->second
;
1128 for (LocIndex ID
: IDs
)
1129 VarLocs
.reset(ID
.getAsRawInteger());
1130 EraseFrom
->erase(It
);
1134 DebugVariable Var
= VL
.Var
;
1136 // Erase the variable/fragment that ends here.
1139 // Extract the fragment. Interpret an empty fragment as one that covers all
1141 FragmentInfo ThisFragment
= Var
.getFragmentOrDefault();
1143 // There may be fragments that overlap the designated fragment. Look them up
1144 // in the pre-computed overlap map, and erase them too.
1145 auto MapIt
= OverlappingFragments
.find({Var
.getVariable(), ThisFragment
});
1146 if (MapIt
!= OverlappingFragments
.end()) {
1147 for (auto Fragment
: MapIt
->second
) {
1148 VarLocBasedLDV::OptFragmentInfo FragmentHolder
;
1149 if (!DebugVariable::isDefaultFragment(Fragment
))
1150 FragmentHolder
= VarLocBasedLDV::OptFragmentInfo(Fragment
);
1151 DoErase({Var
.getVariable(), FragmentHolder
, Var
.getInlinedAt()});
1156 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange
&KillSet
,
1157 const VarLocMap
&VarLocIDs
,
1158 LocIndex::u32_location_t Location
) {
1159 VarLocSet
RemoveSet(Alloc
);
1160 for (LocIndex::u32_index_t ID
: KillSet
) {
1161 const VarLoc
&VL
= VarLocIDs
[LocIndex(Location
, ID
)];
1162 auto *EraseFrom
= VL
.isEntryBackupLoc() ? &EntryValuesBackupVars
: &Vars
;
1163 EraseFrom
->erase(VL
.Var
);
1164 LocIndices VLI
= VarLocIDs
.getAllIndices(VL
);
1165 for (LocIndex ID
: VLI
)
1166 RemoveSet
.set(ID
.getAsRawInteger());
1168 VarLocs
.intersectWithComplement(RemoveSet
);
1171 void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet
&ToLoad
,
1172 const VarLocMap
&Map
) {
1173 VarLocsInRange UniqueVarLocIDs
;
1174 DefinedRegsSet Regs
;
1175 Regs
.insert(LocIndex::kUniversalLocation
);
1176 collectIDsForRegs(UniqueVarLocIDs
, Regs
, ToLoad
, Map
);
1177 for (uint64_t ID
: UniqueVarLocIDs
) {
1178 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
1179 const VarLoc
&VarL
= Map
[Idx
];
1180 const LocIndices Indices
= Map
.getAllIndices(VarL
);
1181 insert(Indices
, VarL
);
1185 void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs
,
1187 auto *InsertInto
= VL
.isEntryBackupLoc() ? &EntryValuesBackupVars
: &Vars
;
1188 for (LocIndex ID
: VarLocIDs
)
1189 VarLocs
.set(ID
.getAsRawInteger());
1190 InsertInto
->insert({VL
.Var
, VarLocIDs
});
1193 /// Return the Loc ID of an entry value backup location, if it exists for the
1195 std::optional
<LocIndices
>
1196 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var
) {
1197 auto It
= EntryValuesBackupVars
.find(Var
);
1198 if (It
!= EntryValuesBackupVars
.end())
1201 return std::nullopt
;
1204 void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange
&Collected
,
1205 const DefinedRegsSet
&Regs
,
1206 const VarLocSet
&CollectFrom
,
1207 const VarLocMap
&VarLocIDs
) {
1208 assert(!Regs
.empty() && "Nothing to collect");
1209 SmallVector
<Register
, 32> SortedRegs
;
1210 append_range(SortedRegs
, Regs
);
1211 array_pod_sort(SortedRegs
.begin(), SortedRegs
.end());
1212 auto It
= CollectFrom
.find(LocIndex::rawIndexForReg(SortedRegs
.front()));
1213 auto End
= CollectFrom
.end();
1214 for (Register Reg
: SortedRegs
) {
1215 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
1216 // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
1218 uint64_t FirstIndexForReg
= LocIndex::rawIndexForReg(Reg
);
1219 uint64_t FirstInvalidIndex
= LocIndex::rawIndexForReg(Reg
+ 1);
1220 It
.advanceToLowerBound(FirstIndexForReg
);
1222 // Iterate through that half-open interval and collect all the set IDs.
1223 for (; It
!= End
&& *It
< FirstInvalidIndex
; ++It
) {
1224 LocIndex ItIdx
= LocIndex::fromRawInteger(*It
);
1225 const VarLoc
&VL
= VarLocIDs
[ItIdx
];
1226 LocIndices LI
= VarLocIDs
.getAllIndices(VL
);
1227 // For now, the back index is always the universal location index.
1228 assert(LI
.back().Location
== LocIndex::kUniversalLocation
&&
1229 "Unexpected order of LocIndices for VarLoc; was it inserted into "
1230 "the VarLocMap correctly?");
1231 Collected
.insert(LI
.back().Index
);
1239 void VarLocBasedLDV::getUsedRegs(const VarLocSet
&CollectFrom
,
1240 SmallVectorImpl
<Register
> &UsedRegs
) const {
1241 // All register-based VarLocs are assigned indices greater than or equal to
1243 uint64_t FirstRegIndex
=
1244 LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation
);
1245 uint64_t FirstInvalidIndex
=
1246 LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation
);
1247 uint64_t FirstVirtualRegIndex
=
1248 LocIndex::rawIndexForReg(LocIndex::kFirstVirtualRegLocation
);
1249 auto doGetUsedRegs
= [&](VarLocSet::const_iterator
&It
) {
1250 // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
1251 // which register and add it to UsedRegs.
1252 uint32_t FoundReg
= LocIndex::fromRawInteger(*It
).Location
;
1253 assert((UsedRegs
.empty() || FoundReg
!= UsedRegs
.back()) &&
1254 "Duplicate used reg");
1255 UsedRegs
.push_back(FoundReg
);
1257 // Skip to the next /set/ register. Note that this finds a lower bound, so
1258 // even if there aren't any VarLocs living in `FoundReg+1`, we're still
1259 // guaranteed to move on to the next register (or to end()).
1260 uint64_t NextRegIndex
= LocIndex::rawIndexForReg(FoundReg
+ 1);
1261 It
.advanceToLowerBound(NextRegIndex
);
1263 for (auto It
= CollectFrom
.find(FirstRegIndex
),
1264 End
= CollectFrom
.find(FirstInvalidIndex
);
1268 for (auto It
= CollectFrom
.find(FirstVirtualRegIndex
),
1269 End
= CollectFrom
.end();
1275 //===----------------------------------------------------------------------===//
1276 // Debug Range Extension Implementation
1277 //===----------------------------------------------------------------------===//
1280 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction
&MF
,
1281 const VarLocInMBB
&V
,
1282 const VarLocMap
&VarLocIDs
,
1284 raw_ostream
&Out
) const {
1285 Out
<< '\n' << msg
<< '\n';
1286 for (const MachineBasicBlock
&BB
: MF
) {
1289 const VarLocSet
&L
= getVarLocsInMBB(&BB
, V
);
1292 SmallVector
<VarLoc
, 32> VarLocs
;
1293 collectAllVarLocs(VarLocs
, L
, VarLocIDs
);
1294 Out
<< "MBB: " << BB
.getNumber() << ":\n";
1295 for (const VarLoc
&VL
: VarLocs
) {
1296 Out
<< " Var: " << VL
.Var
.getVariable()->getName();
1298 VL
.dump(TRI
, TII
, Out
);
1305 VarLocBasedLDV::VarLoc::SpillLoc
1306 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr
&MI
) {
1307 assert(MI
.hasOneMemOperand() &&
1308 "Spill instruction does not have exactly one memory operand?");
1309 auto MMOI
= MI
.memoperands_begin();
1310 const PseudoSourceValue
*PVal
= (*MMOI
)->getPseudoValue();
1311 assert(PVal
->kind() == PseudoSourceValue::FixedStack
&&
1312 "Inconsistent memory operand in spill instruction");
1313 int FI
= cast
<FixedStackPseudoSourceValue
>(PVal
)->getFrameIndex();
1314 const MachineBasicBlock
*MBB
= MI
.getParent();
1316 StackOffset Offset
= TFI
->getFrameIndexReference(*MBB
->getParent(), FI
, Reg
);
1317 return {Reg
, Offset
};
1320 /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
1321 /// Transfer, which uses the to-be-deleted \p EntryVL.
1322 void VarLocBasedLDV::cleanupEntryValueTransfers(
1323 const MachineInstr
*TRInst
, OpenRangesSet
&OpenRanges
, VarLocMap
&VarLocIDs
,
1324 const VarLoc
&EntryVL
, InstToEntryLocMap
&EntryValTransfers
) {
1325 if (EntryValTransfers
.empty() || TRInst
== nullptr)
1328 auto TransRange
= EntryValTransfers
.equal_range(TRInst
);
1329 for (auto &TDPair
: llvm::make_range(TransRange
)) {
1330 const VarLoc
&EmittedEV
= VarLocIDs
[TDPair
.second
];
1331 if (std::tie(EntryVL
.Var
, EntryVL
.Locs
[0].Value
.RegNo
, EntryVL
.Expr
) ==
1332 std::tie(EmittedEV
.Var
, EmittedEV
.Locs
[0].Value
.RegNo
,
1334 OpenRanges
.erase(EmittedEV
);
1335 EntryValTransfers
.erase(TRInst
);
1341 /// Try to salvage the debug entry value if we encounter a new debug value
1342 /// describing the same parameter, otherwise stop tracking the value. Return
1343 /// true if we should stop tracking the entry value and do the cleanup of
1344 /// emitted Entry Value Transfers, otherwise return false.
1345 void VarLocBasedLDV::removeEntryValue(const MachineInstr
&MI
,
1346 OpenRangesSet
&OpenRanges
,
1347 VarLocMap
&VarLocIDs
,
1348 const VarLoc
&EntryVL
,
1349 InstToEntryLocMap
&EntryValTransfers
,
1350 RegDefToInstMap
&RegSetInstrs
) {
1351 // Skip the DBG_VALUE which is the debug entry value itself.
1352 if (&MI
== &EntryVL
.MI
)
1355 // If the parameter's location is not register location, we can not track
1356 // the entry value any more. It doesn't have the TransferInst which defines
1357 // register, so no Entry Value Transfers have been emitted already.
1358 if (!MI
.getDebugOperand(0).isReg())
1361 // Try to get non-debug instruction responsible for the DBG_VALUE.
1362 const MachineInstr
*TransferInst
= nullptr;
1363 Register Reg
= MI
.getDebugOperand(0).getReg();
1364 if (Reg
.isValid() && RegSetInstrs
.contains(Reg
))
1365 TransferInst
= RegSetInstrs
.find(Reg
)->second
;
1367 // Case of the parameter's DBG_VALUE at the start of entry MBB.
1368 if (!TransferInst
&& !LastNonDbgMI
&& MI
.getParent()->isEntryBlock())
1371 // If the debug expression from the DBG_VALUE is not empty, we can assume the
1372 // parameter's value has changed indicating that we should stop tracking its
1373 // entry value as well.
1374 if (MI
.getDebugExpression()->getNumElements() == 0 && TransferInst
) {
1375 // If the DBG_VALUE comes from a copy instruction that copies the entry
1376 // value, it means the parameter's value has not changed and we should be
1377 // able to use its entry value.
1378 // TODO: Try to keep tracking of an entry value if we encounter a propagated
1379 // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1380 // does not indicate the parameter modification.)
1381 auto DestSrc
= TII
->isCopyLikeInstr(*TransferInst
);
1383 const MachineOperand
*SrcRegOp
, *DestRegOp
;
1384 SrcRegOp
= DestSrc
->Source
;
1385 DestRegOp
= DestSrc
->Destination
;
1386 if (Reg
== DestRegOp
->getReg()) {
1387 for (uint64_t ID
: OpenRanges
.getEntryValueBackupVarLocs()) {
1388 const VarLoc
&VL
= VarLocIDs
[LocIndex::fromRawInteger(ID
)];
1389 if (VL
.isEntryValueCopyBackupReg(Reg
) &&
1390 // Entry Values should not be variadic.
1391 VL
.MI
.getDebugOperand(0).getReg() == SrcRegOp
->getReg())
1398 LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1399 MI
.print(dbgs(), /*IsStandalone*/ false,
1400 /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1401 /*AddNewLine*/ true, TII
));
1402 cleanupEntryValueTransfers(TransferInst
, OpenRanges
, VarLocIDs
, EntryVL
,
1404 OpenRanges
.erase(EntryVL
);
1407 /// End all previous ranges related to @MI and start a new range from @MI
1408 /// if it is a DBG_VALUE instr.
1409 void VarLocBasedLDV::transferDebugValue(const MachineInstr
&MI
,
1410 OpenRangesSet
&OpenRanges
,
1411 VarLocMap
&VarLocIDs
,
1412 InstToEntryLocMap
&EntryValTransfers
,
1413 RegDefToInstMap
&RegSetInstrs
) {
1414 if (!MI
.isDebugValue())
1416 const DILocalVariable
*Var
= MI
.getDebugVariable();
1417 const DIExpression
*Expr
= MI
.getDebugExpression();
1418 const DILocation
*DebugLoc
= MI
.getDebugLoc();
1419 const DILocation
*InlinedAt
= DebugLoc
->getInlinedAt();
1420 assert(Var
->isValidLocationForIntrinsic(DebugLoc
) &&
1421 "Expected inlined-at fields to agree");
1423 DebugVariable
V(Var
, Expr
, InlinedAt
);
1425 // Check if this DBG_VALUE indicates a parameter's value changing.
1426 // If that is the case, we should stop tracking its entry value.
1427 auto EntryValBackupID
= OpenRanges
.getEntryValueBackup(V
);
1428 if (Var
->isParameter() && EntryValBackupID
) {
1429 const VarLoc
&EntryVL
= VarLocIDs
[EntryValBackupID
->back()];
1430 removeEntryValue(MI
, OpenRanges
, VarLocIDs
, EntryVL
, EntryValTransfers
,
1434 if (all_of(MI
.debug_operands(), [](const MachineOperand
&MO
) {
1435 return (MO
.isReg() && MO
.getReg()) || MO
.isImm() || MO
.isFPImm() ||
1436 MO
.isCImm() || MO
.isTargetIndex();
1438 // Use normal VarLoc constructor for registers and immediates.
1440 // End all previous ranges of VL.Var.
1441 OpenRanges
.erase(VL
);
1443 LocIndices IDs
= VarLocIDs
.insert(VL
);
1444 // Add the VarLoc to OpenRanges from this DBG_VALUE.
1445 OpenRanges
.insert(IDs
, VL
);
1446 } else if (MI
.memoperands().size() > 0) {
1447 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1449 // This must be an undefined location. If it has an open range, erase it.
1450 assert(MI
.isUndefDebugValue() &&
1451 "Unexpected non-undef DBG_VALUE encountered");
1453 OpenRanges
.erase(VL
);
1457 // This should be removed later, doesn't fit the new design.
1458 void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl
<VarLoc
> &Collected
,
1459 const VarLocSet
&CollectFrom
,
1460 const VarLocMap
&VarLocIDs
) {
1461 // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
1462 // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
1464 uint64_t FirstIndex
= LocIndex::rawIndexForReg(LocIndex::kUniversalLocation
);
1465 uint64_t FirstInvalidIndex
=
1466 LocIndex::rawIndexForReg(LocIndex::kUniversalLocation
+ 1);
1467 // Iterate through that half-open interval and collect all the set IDs.
1468 for (auto It
= CollectFrom
.find(FirstIndex
), End
= CollectFrom
.end();
1469 It
!= End
&& *It
< FirstInvalidIndex
; ++It
) {
1470 LocIndex RegIdx
= LocIndex::fromRawInteger(*It
);
1471 Collected
.push_back(VarLocIDs
[RegIdx
]);
1475 /// Turn the entry value backup locations into primary locations.
1476 void VarLocBasedLDV::emitEntryValues(MachineInstr
&MI
,
1477 OpenRangesSet
&OpenRanges
,
1478 VarLocMap
&VarLocIDs
,
1479 InstToEntryLocMap
&EntryValTransfers
,
1480 VarLocsInRange
&KillSet
) {
1481 // Do not insert entry value locations after a terminator.
1482 if (MI
.isTerminator())
1485 for (uint32_t ID
: KillSet
) {
1486 // The KillSet IDs are indices for the universal location bucket.
1487 LocIndex Idx
= LocIndex(LocIndex::kUniversalLocation
, ID
);
1488 const VarLoc
&VL
= VarLocIDs
[Idx
];
1489 if (!VL
.Var
.getVariable()->isParameter())
1492 auto DebugVar
= VL
.Var
;
1493 std::optional
<LocIndices
> EntryValBackupIDs
=
1494 OpenRanges
.getEntryValueBackup(DebugVar
);
1496 // If the parameter has the entry value backup, it means we should
1497 // be able to use its entry value.
1498 if (!EntryValBackupIDs
)
1501 const VarLoc
&EntryVL
= VarLocIDs
[EntryValBackupIDs
->back()];
1502 VarLoc EntryLoc
= VarLoc::CreateEntryLoc(EntryVL
.MI
, EntryVL
.Expr
,
1503 EntryVL
.Locs
[0].Value
.RegNo
);
1504 LocIndices EntryValueIDs
= VarLocIDs
.insert(EntryLoc
);
1505 assert(EntryValueIDs
.size() == 1 &&
1506 "EntryValue loc should not be variadic");
1507 EntryValTransfers
.insert({&MI
, EntryValueIDs
.back()});
1508 OpenRanges
.insert(EntryValueIDs
, EntryLoc
);
1512 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1513 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1514 /// new VarLoc. If \p NewReg is different than default zero value then the
1515 /// new location will be register location created by the copy like instruction,
1516 /// otherwise it is variable's location on the stack.
1517 void VarLocBasedLDV::insertTransferDebugPair(
1518 MachineInstr
&MI
, OpenRangesSet
&OpenRanges
, TransferMap
&Transfers
,
1519 VarLocMap
&VarLocIDs
, LocIndex OldVarID
, TransferKind Kind
,
1520 const VarLoc::MachineLoc
&OldLoc
, Register NewReg
) {
1521 const VarLoc
&OldVarLoc
= VarLocIDs
[OldVarID
];
1523 auto ProcessVarLoc
= [&MI
, &OpenRanges
, &Transfers
, &VarLocIDs
](VarLoc
&VL
) {
1524 LocIndices LocIds
= VarLocIDs
.insert(VL
);
1526 // Close this variable's previous location range.
1527 OpenRanges
.erase(VL
);
1529 // Record the new location as an open range, and a postponed transfer
1530 // inserting a DBG_VALUE for this location.
1531 OpenRanges
.insert(LocIds
, VL
);
1532 assert(!MI
.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1533 TransferDebugPair MIP
= {&MI
, LocIds
.back()};
1534 Transfers
.push_back(MIP
);
1537 // End all previous ranges of VL.Var.
1538 OpenRanges
.erase(VarLocIDs
[OldVarID
]);
1540 case TransferKind::TransferCopy
: {
1542 "No register supplied when handling a copy of a debug value");
1543 // Create a DBG_VALUE instruction to describe the Var in its new
1544 // register location.
1545 VarLoc VL
= VarLoc::CreateCopyLoc(OldVarLoc
, OldLoc
, NewReg
);
1548 dbgs() << "Creating VarLoc for register copy:";
1553 case TransferKind::TransferSpill
: {
1554 // Create a DBG_VALUE instruction to describe the Var in its spilled
1556 VarLoc::SpillLoc SpillLocation
= extractSpillBaseRegAndOffset(MI
);
1557 VarLoc VL
= VarLoc::CreateSpillLoc(
1558 OldVarLoc
, OldLoc
, SpillLocation
.SpillBase
, SpillLocation
.SpillOffset
);
1561 dbgs() << "Creating VarLoc for spill:";
1566 case TransferKind::TransferRestore
: {
1568 "No register supplied when handling a restore of a debug value");
1569 // DebugInstr refers to the pre-spill location, therefore we can reuse
1571 VarLoc VL
= VarLoc::CreateCopyLoc(OldVarLoc
, OldLoc
, NewReg
);
1574 dbgs() << "Creating VarLoc for restore:";
1580 llvm_unreachable("Invalid transfer kind");
1583 /// A definition of a register may mark the end of a range.
1584 void VarLocBasedLDV::transferRegisterDef(MachineInstr
&MI
,
1585 OpenRangesSet
&OpenRanges
,
1586 VarLocMap
&VarLocIDs
,
1587 InstToEntryLocMap
&EntryValTransfers
,
1588 RegDefToInstMap
&RegSetInstrs
) {
1590 // Meta Instructions do not affect the debug liveness of any register they
1592 if (MI
.isMetaInstruction())
1595 MachineFunction
*MF
= MI
.getMF();
1596 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1597 Register SP
= TLI
->getStackPointerRegisterToSaveRestore();
1599 // Find the regs killed by MI, and find regmasks of preserved regs.
1600 DefinedRegsSet DeadRegs
;
1601 SmallVector
<const uint32_t *, 4> RegMasks
;
1602 for (const MachineOperand
&MO
: MI
.operands()) {
1603 // Determine whether the operand is a register def.
1604 if (MO
.isReg() && MO
.isDef() && MO
.getReg() && MO
.getReg().isPhysical() &&
1605 !(MI
.isCall() && MO
.getReg() == SP
)) {
1606 // Remove ranges of all aliased registers.
1607 for (MCRegAliasIterator
RAI(MO
.getReg(), TRI
, true); RAI
.isValid(); ++RAI
)
1608 // FIXME: Can we break out of this loop early if no insertion occurs?
1609 DeadRegs
.insert(*RAI
);
1610 RegSetInstrs
.erase(MO
.getReg());
1611 RegSetInstrs
.insert({MO
.getReg(), &MI
});
1612 } else if (MO
.isRegMask()) {
1613 RegMasks
.push_back(MO
.getRegMask());
1617 // Erase VarLocs which reside in one of the dead registers. For performance
1618 // reasons, it's critical to not iterate over the full set of open VarLocs.
1619 // Iterate over the set of dying/used regs instead.
1620 if (!RegMasks
.empty()) {
1621 SmallVector
<Register
, 32> UsedRegs
;
1622 getUsedRegs(OpenRanges
.getVarLocs(), UsedRegs
);
1623 for (Register Reg
: UsedRegs
) {
1624 // Remove ranges of all clobbered registers. Register masks don't usually
1625 // list SP as preserved. Assume that call instructions never clobber SP,
1626 // because some backends (e.g., AArch64) never list SP in the regmask.
1627 // While the debug info may be off for an instruction or two around
1628 // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1629 // still a better user experience.
1632 bool AnyRegMaskKillsReg
=
1633 any_of(RegMasks
, [Reg
](const uint32_t *RegMask
) {
1634 return MachineOperand::clobbersPhysReg(RegMask
, Reg
);
1636 if (AnyRegMaskKillsReg
)
1637 DeadRegs
.insert(Reg
);
1638 if (AnyRegMaskKillsReg
) {
1639 RegSetInstrs
.erase(Reg
);
1640 RegSetInstrs
.insert({Reg
, &MI
});
1645 if (DeadRegs
.empty())
1648 VarLocsInRange KillSet
;
1649 collectIDsForRegs(KillSet
, DeadRegs
, OpenRanges
.getVarLocs(), VarLocIDs
);
1650 OpenRanges
.erase(KillSet
, VarLocIDs
, LocIndex::kUniversalLocation
);
1653 auto &TM
= TPC
->getTM
<TargetMachine
>();
1654 if (TM
.Options
.ShouldEmitDebugEntryValues())
1655 emitEntryValues(MI
, OpenRanges
, VarLocIDs
, EntryValTransfers
, KillSet
);
1659 void VarLocBasedLDV::transferWasmDef(MachineInstr
&MI
,
1660 OpenRangesSet
&OpenRanges
,
1661 VarLocMap
&VarLocIDs
) {
1662 // If this is not a Wasm local.set or local.tee, which sets local values,
1666 if (!TII
->isExplicitTargetIndexDef(MI
, Index
, Offset
))
1669 // Find the target indices killed by MI, and delete those variable locations
1670 // from the open range.
1671 VarLocsInRange KillSet
;
1672 VarLoc::WasmLoc Loc
{Index
, Offset
};
1673 for (uint64_t ID
: OpenRanges
.getWasmVarLocs()) {
1674 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
1675 const VarLoc
&VL
= VarLocIDs
[Idx
];
1676 assert(VL
.containsWasmLocs() && "Broken VarLocSet?");
1677 if (VL
.usesWasmLoc(Loc
))
1680 OpenRanges
.erase(KillSet
, VarLocIDs
, LocIndex::kWasmLocation
);
1683 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr
&MI
,
1684 MachineFunction
*MF
) {
1685 // TODO: Handle multiple stores folded into one.
1686 if (!MI
.hasOneMemOperand())
1689 if (!MI
.getSpillSize(TII
) && !MI
.getFoldedSpillSize(TII
))
1690 return false; // This is not a spill instruction, since no valid size was
1691 // returned from either function.
1696 bool VarLocBasedLDV::isLocationSpill(const MachineInstr
&MI
,
1697 MachineFunction
*MF
, Register
&Reg
) {
1698 if (!isSpillInstruction(MI
, MF
))
1701 auto isKilledReg
= [&](const MachineOperand MO
, Register
&Reg
) {
1702 if (!MO
.isReg() || !MO
.isUse()) {
1710 for (const MachineOperand
&MO
: MI
.operands()) {
1711 // In a spill instruction generated by the InlineSpiller the spilled
1712 // register has its kill flag set.
1713 if (isKilledReg(MO
, Reg
))
1716 // Check whether next instruction kills the spilled register.
1717 // FIXME: Current solution does not cover search for killed register in
1718 // bundles and instructions further down the chain.
1719 auto NextI
= std::next(MI
.getIterator());
1720 // Skip next instruction that points to basic block end iterator.
1721 if (MI
.getParent()->end() == NextI
)
1724 for (const MachineOperand
&MONext
: NextI
->operands()) {
1725 // Return true if we came across the register from the
1726 // previous spill instruction that is killed in NextI.
1727 if (isKilledReg(MONext
, RegNext
) && RegNext
== Reg
)
1732 // Return false if we didn't find spilled register.
1736 std::optional
<VarLocBasedLDV::VarLoc::SpillLoc
>
1737 VarLocBasedLDV::isRestoreInstruction(const MachineInstr
&MI
,
1738 MachineFunction
*MF
, Register
&Reg
) {
1739 if (!MI
.hasOneMemOperand())
1740 return std::nullopt
;
1742 // FIXME: Handle folded restore instructions with more than one memory
1744 if (MI
.getRestoreSize(TII
)) {
1745 Reg
= MI
.getOperand(0).getReg();
1746 return extractSpillBaseRegAndOffset(MI
);
1748 return std::nullopt
;
1751 /// A spilled register may indicate that we have to end the current range of
1752 /// a variable and create a new one for the spill location.
1753 /// A restored register may indicate the reverse situation.
1754 /// We don't want to insert any instructions in process(), so we just create
1755 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1756 /// It will be inserted into the BB when we're done iterating over the
1758 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr
&MI
,
1759 OpenRangesSet
&OpenRanges
,
1760 VarLocMap
&VarLocIDs
,
1761 TransferMap
&Transfers
) {
1762 MachineFunction
*MF
= MI
.getMF();
1765 std::optional
<VarLoc::SpillLoc
> Loc
;
1767 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI
.dump(););
1769 // First, if there are any DBG_VALUEs pointing at a spill slot that is
1770 // written to, then close the variable location. The value in memory
1771 // will have changed.
1772 VarLocsInRange KillSet
;
1773 if (isSpillInstruction(MI
, MF
)) {
1774 Loc
= extractSpillBaseRegAndOffset(MI
);
1775 for (uint64_t ID
: OpenRanges
.getSpillVarLocs()) {
1776 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
1777 const VarLoc
&VL
= VarLocIDs
[Idx
];
1778 assert(VL
.containsSpillLocs() && "Broken VarLocSet?");
1779 if (VL
.usesSpillLoc(*Loc
)) {
1780 // This location is overwritten by the current instruction -- terminate
1781 // the open range, and insert an explicit DBG_VALUE $noreg.
1783 // Doing this at a later stage would require re-interpreting all
1784 // DBG_VALUes and DIExpressions to identify whether they point at
1785 // memory, and then analysing all memory writes to see if they
1786 // overwrite that memory, which is expensive.
1788 // At this stage, we already know which DBG_VALUEs are for spills and
1789 // where they are located; it's best to fix handle overwrites now.
1791 unsigned SpillLocIdx
= VL
.getSpillLocIdx(*Loc
);
1792 VarLoc::MachineLoc OldLoc
= VL
.Locs
[SpillLocIdx
];
1793 VarLoc UndefVL
= VarLoc::CreateCopyLoc(VL
, OldLoc
, 0);
1794 LocIndices UndefLocIDs
= VarLocIDs
.insert(UndefVL
);
1795 Transfers
.push_back({&MI
, UndefLocIDs
.back()});
1798 OpenRanges
.erase(KillSet
, VarLocIDs
, LocIndex::kSpillLocation
);
1801 // Try to recognise spill and restore instructions that may create a new
1802 // variable location.
1803 if (isLocationSpill(MI
, MF
, Reg
)) {
1804 TKind
= TransferKind::TransferSpill
;
1805 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI
.dump(););
1806 LLVM_DEBUG(dbgs() << "Register: " << Reg
.id() << " " << printReg(Reg
, TRI
)
1809 if (!(Loc
= isRestoreInstruction(MI
, MF
, Reg
)))
1811 TKind
= TransferKind::TransferRestore
;
1812 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI
.dump(););
1813 LLVM_DEBUG(dbgs() << "Register: " << Reg
.id() << " " << printReg(Reg
, TRI
)
1816 // Check if the register or spill location is the location of a debug value.
1817 auto TransferCandidates
= OpenRanges
.getEmptyVarLocRange();
1818 if (TKind
== TransferKind::TransferSpill
)
1819 TransferCandidates
= OpenRanges
.getRegisterVarLocs(Reg
);
1820 else if (TKind
== TransferKind::TransferRestore
)
1821 TransferCandidates
= OpenRanges
.getSpillVarLocs();
1822 for (uint64_t ID
: TransferCandidates
) {
1823 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
1824 const VarLoc
&VL
= VarLocIDs
[Idx
];
1826 if (TKind
== TransferKind::TransferSpill
) {
1827 assert(VL
.usesReg(Reg
) && "Broken VarLocSet?");
1828 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg
, TRI
) << '('
1829 << VL
.Var
.getVariable()->getName() << ")\n");
1830 LocIdx
= VL
.getRegIdx(Reg
);
1832 assert(TKind
== TransferKind::TransferRestore
&& VL
.containsSpillLocs() &&
1833 "Broken VarLocSet?");
1834 if (!VL
.usesSpillLoc(*Loc
))
1835 // The spill location is not the location of a debug value.
1837 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg
, TRI
) << '('
1838 << VL
.Var
.getVariable()->getName() << ")\n");
1839 LocIdx
= VL
.getSpillLocIdx(*Loc
);
1841 VarLoc::MachineLoc MLoc
= VL
.Locs
[LocIdx
];
1842 insertTransferDebugPair(MI
, OpenRanges
, Transfers
, VarLocIDs
, Idx
, TKind
,
1844 // FIXME: A comment should explain why it's correct to return early here,
1845 // if that is in fact correct.
1850 /// If \p MI is a register copy instruction, that copies a previously tracked
1851 /// value from one register to another register that is callee saved, we
1852 /// create new DBG_VALUE instruction described with copy destination register.
1853 void VarLocBasedLDV::transferRegisterCopy(MachineInstr
&MI
,
1854 OpenRangesSet
&OpenRanges
,
1855 VarLocMap
&VarLocIDs
,
1856 TransferMap
&Transfers
) {
1857 auto DestSrc
= TII
->isCopyLikeInstr(MI
);
1861 const MachineOperand
*DestRegOp
= DestSrc
->Destination
;
1862 const MachineOperand
*SrcRegOp
= DestSrc
->Source
;
1864 if (!DestRegOp
->isDef())
1867 auto isCalleeSavedReg
= [&](Register Reg
) {
1868 for (MCRegAliasIterator
RAI(Reg
, TRI
, true); RAI
.isValid(); ++RAI
)
1869 if (CalleeSavedRegs
.test(*RAI
))
1874 Register SrcReg
= SrcRegOp
->getReg();
1875 Register DestReg
= DestRegOp
->getReg();
1877 // We want to recognize instructions where destination register is callee
1878 // saved register. If register that could be clobbered by the call is
1879 // included, there would be a great chance that it is going to be clobbered
1880 // soon. It is more likely that previous register location, which is callee
1881 // saved, is going to stay unclobbered longer, even if it is killed.
1882 if (!isCalleeSavedReg(DestReg
))
1885 // Remember an entry value movement. If we encounter a new debug value of
1886 // a parameter describing only a moving of the value around, rather then
1887 // modifying it, we are still able to use the entry value if needed.
1888 if (isRegOtherThanSPAndFP(*DestRegOp
, MI
, TRI
)) {
1889 for (uint64_t ID
: OpenRanges
.getEntryValueBackupVarLocs()) {
1890 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
1891 const VarLoc
&VL
= VarLocIDs
[Idx
];
1892 if (VL
.isEntryValueBackupReg(SrcReg
)) {
1893 LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI
.dump(););
1894 VarLoc EntryValLocCopyBackup
=
1895 VarLoc::CreateEntryCopyBackupLoc(VL
.MI
, VL
.Expr
, DestReg
);
1896 // Stop tracking the original entry value.
1897 OpenRanges
.erase(VL
);
1899 // Start tracking the entry value copy.
1900 LocIndices EntryValCopyLocIDs
= VarLocIDs
.insert(EntryValLocCopyBackup
);
1901 OpenRanges
.insert(EntryValCopyLocIDs
, EntryValLocCopyBackup
);
1907 if (!SrcRegOp
->isKill())
1910 for (uint64_t ID
: OpenRanges
.getRegisterVarLocs(SrcReg
)) {
1911 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
1912 assert(VarLocIDs
[Idx
].usesReg(SrcReg
) && "Broken VarLocSet?");
1913 VarLoc::MachineLocValue Loc
;
1915 VarLoc::MachineLoc MLoc
{VarLoc::MachineLocKind::RegisterKind
, Loc
};
1916 insertTransferDebugPair(MI
, OpenRanges
, Transfers
, VarLocIDs
, Idx
,
1917 TransferKind::TransferCopy
, MLoc
, DestReg
);
1918 // FIXME: A comment should explain why it's correct to return early here,
1919 // if that is in fact correct.
1924 /// Terminate all open ranges at the end of the current basic block.
1925 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock
*CurMBB
,
1926 OpenRangesSet
&OpenRanges
,
1927 VarLocInMBB
&OutLocs
,
1928 const VarLocMap
&VarLocIDs
) {
1929 bool Changed
= false;
1932 OpenRanges
.getUniqueVarLocs(VarLocs
, VarLocIDs
);
1933 for (VarLoc
&VL
: VarLocs
) {
1934 // Copy OpenRanges to OutLocs, if not already present.
1935 dbgs() << "Add to OutLocs in MBB #" << CurMBB
->getNumber() << ": ";
1939 VarLocSet
&VLS
= getVarLocsInMBB(CurMBB
, OutLocs
);
1940 Changed
= VLS
!= OpenRanges
.getVarLocs();
1941 // New OutLocs set may be different due to spill, restore or register
1942 // copy instruction processing.
1944 VLS
= OpenRanges
.getVarLocs();
1949 /// Accumulate a mapping between each DILocalVariable fragment and other
1950 /// fragments of that DILocalVariable which overlap. This reduces work during
1951 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1952 /// known-to-overlap fragments are present".
1953 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1955 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1956 /// Variable which are known to exist.
1957 /// \param OverlappingFragments The overlap map being constructed, from one
1958 /// Var/Fragment pair to a vector of fragments known to overlap.
1959 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr
&MI
,
1960 VarToFragments
&SeenFragments
,
1961 OverlapMap
&OverlappingFragments
) {
1962 DebugVariable
MIVar(MI
.getDebugVariable(), MI
.getDebugExpression(),
1963 MI
.getDebugLoc()->getInlinedAt());
1964 FragmentInfo ThisFragment
= MIVar
.getFragmentOrDefault();
1966 // If this is the first sighting of this variable, then we are guaranteed
1967 // there are currently no overlapping fragments either. Initialize the set
1968 // of seen fragments, record no overlaps for the current one, and return.
1969 auto [SeenIt
, Inserted
] = SeenFragments
.try_emplace(MIVar
.getVariable());
1971 SeenIt
->second
.insert(ThisFragment
);
1973 OverlappingFragments
.insert({{MIVar
.getVariable(), ThisFragment
}, {}});
1977 // If this particular Variable/Fragment pair already exists in the overlap
1978 // map, it has already been accounted for.
1980 OverlappingFragments
.insert({{MIVar
.getVariable(), ThisFragment
}, {}});
1981 if (!IsInOLapMap
.second
)
1984 auto &ThisFragmentsOverlaps
= IsInOLapMap
.first
->second
;
1985 auto &AllSeenFragments
= SeenIt
->second
;
1987 // Otherwise, examine all other seen fragments for this variable, with "this"
1988 // fragment being a previously unseen fragment. Record any pair of
1989 // overlapping fragments.
1990 for (const auto &ASeenFragment
: AllSeenFragments
) {
1991 // Does this previously seen fragment overlap?
1992 if (DIExpression::fragmentsOverlap(ThisFragment
, ASeenFragment
)) {
1993 // Yes: Mark the current fragment as being overlapped.
1994 ThisFragmentsOverlaps
.push_back(ASeenFragment
);
1995 // Mark the previously seen fragment as being overlapped by the current
1997 auto ASeenFragmentsOverlaps
=
1998 OverlappingFragments
.find({MIVar
.getVariable(), ASeenFragment
});
1999 assert(ASeenFragmentsOverlaps
!= OverlappingFragments
.end() &&
2000 "Previously seen var fragment has no vector of overlaps");
2001 ASeenFragmentsOverlaps
->second
.push_back(ThisFragment
);
2005 AllSeenFragments
.insert(ThisFragment
);
2008 /// This routine creates OpenRanges.
2009 void VarLocBasedLDV::process(MachineInstr
&MI
, OpenRangesSet
&OpenRanges
,
2010 VarLocMap
&VarLocIDs
, TransferMap
&Transfers
,
2011 InstToEntryLocMap
&EntryValTransfers
,
2012 RegDefToInstMap
&RegSetInstrs
) {
2013 if (!MI
.isDebugInstr())
2015 transferDebugValue(MI
, OpenRanges
, VarLocIDs
, EntryValTransfers
,
2017 transferRegisterDef(MI
, OpenRanges
, VarLocIDs
, EntryValTransfers
,
2019 transferWasmDef(MI
, OpenRanges
, VarLocIDs
);
2020 transferRegisterCopy(MI
, OpenRanges
, VarLocIDs
, Transfers
);
2021 transferSpillOrRestoreInst(MI
, OpenRanges
, VarLocIDs
, Transfers
);
2024 /// This routine joins the analysis results of all incoming edges in @MBB by
2025 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
2026 /// source variable in all the predecessors of @MBB reside in the same location.
2027 bool VarLocBasedLDV::join(
2028 MachineBasicBlock
&MBB
, VarLocInMBB
&OutLocs
, VarLocInMBB
&InLocs
,
2029 const VarLocMap
&VarLocIDs
,
2030 SmallPtrSet
<const MachineBasicBlock
*, 16> &Visited
,
2031 SmallPtrSetImpl
<const MachineBasicBlock
*> &ArtificialBlocks
) {
2032 LLVM_DEBUG(dbgs() << "join MBB: " << MBB
.getNumber() << "\n");
2034 VarLocSet
InLocsT(Alloc
); // Temporary incoming locations.
2036 // For all predecessors of this MBB, find the set of VarLocs that
2039 for (auto *p
: MBB
.predecessors()) {
2040 // Ignore backedges if we have not visited the predecessor yet. As the
2041 // predecessor hasn't yet had locations propagated into it, most locations
2042 // will not yet be valid, so treat them as all being uninitialized and
2043 // potentially valid. If a location guessed to be correct here is
2044 // invalidated later, we will remove it when we revisit this block.
2045 if (!Visited
.count(p
)) {
2046 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p
->getNumber()
2050 auto OL
= OutLocs
.find(p
);
2051 // Join is null in case of empty OutLocs from any of the pred.
2052 if (OL
== OutLocs
.end())
2055 // Just copy over the Out locs to incoming locs for the first visited
2056 // predecessor, and for all other predecessors join the Out locs.
2057 VarLocSet
&OutLocVLS
= *OL
->second
;
2059 InLocsT
= OutLocVLS
;
2061 InLocsT
&= OutLocVLS
;
2064 if (!InLocsT
.empty()) {
2066 collectAllVarLocs(VarLocs
, InLocsT
, VarLocIDs
);
2067 for (const VarLoc
&VL
: VarLocs
)
2068 dbgs() << " gathered candidate incoming var: "
2069 << VL
.Var
.getVariable()->getName() << "\n";
2076 // Filter out DBG_VALUES that are out of scope.
2077 VarLocSet
KillSet(Alloc
);
2078 bool IsArtificial
= ArtificialBlocks
.count(&MBB
);
2079 if (!IsArtificial
) {
2080 for (uint64_t ID
: InLocsT
) {
2081 LocIndex Idx
= LocIndex::fromRawInteger(ID
);
2082 if (!VarLocIDs
[Idx
].dominates(LS
, MBB
)) {
2085 auto Name
= VarLocIDs
[Idx
].Var
.getVariable()->getName();
2086 dbgs() << " killing " << Name
<< ", it doesn't dominate MBB\n";
2091 InLocsT
.intersectWithComplement(KillSet
);
2093 // As we are processing blocks in reverse post-order we
2094 // should have processed at least one predecessor, unless it
2095 // is the entry block which has no predecessor.
2096 assert((NumVisited
|| MBB
.pred_empty()) &&
2097 "Should have processed at least one predecessor");
2099 VarLocSet
&ILS
= getVarLocsInMBB(&MBB
, InLocs
);
2100 bool Changed
= false;
2101 if (ILS
!= InLocsT
) {
2109 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB
&PendingInLocs
,
2110 VarLocMap
&VarLocIDs
) {
2111 // PendingInLocs records all locations propagated into blocks, which have
2112 // not had DBG_VALUE insts created. Go through and create those insts now.
2113 for (auto &Iter
: PendingInLocs
) {
2114 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
2115 auto &MBB
= const_cast<MachineBasicBlock
&>(*Iter
.first
);
2116 VarLocSet
&Pending
= *Iter
.second
;
2118 SmallVector
<VarLoc
, 32> VarLocs
;
2119 collectAllVarLocs(VarLocs
, Pending
, VarLocIDs
);
2121 for (VarLoc DiffIt
: VarLocs
) {
2122 // The ID location is live-in to MBB -- work out what kind of machine
2123 // location it is and create a DBG_VALUE.
2124 if (DiffIt
.isEntryBackupLoc())
2126 MachineInstr
*MI
= DiffIt
.BuildDbgValue(*MBB
.getParent());
2127 MBB
.insert(MBB
.instr_begin(), MI
);
2130 LLVM_DEBUG(dbgs() << "Inserted: "; MI
->dump(););
2135 bool VarLocBasedLDV::isEntryValueCandidate(
2136 const MachineInstr
&MI
, const DefinedRegsSet
&DefinedRegs
) const {
2137 assert(MI
.isDebugValue() && "This must be DBG_VALUE.");
2139 // TODO: Add support for local variables that are expressed in terms of
2140 // parameters entry values.
2141 // TODO: Add support for modified arguments that can be expressed
2142 // by using its entry value.
2143 auto *DIVar
= MI
.getDebugVariable();
2144 if (!DIVar
->isParameter())
2147 // Do not consider parameters that belong to an inlined function.
2148 if (MI
.getDebugLoc()->getInlinedAt())
2151 // Only consider parameters that are described using registers. Parameters
2152 // that are passed on the stack are not yet supported, so ignore debug
2153 // values that are described by the frame or stack pointer.
2154 if (!isRegOtherThanSPAndFP(MI
.getDebugOperand(0), MI
, TRI
))
2157 // If a parameter's value has been propagated from the caller, then the
2158 // parameter's DBG_VALUE may be described using a register defined by some
2159 // instruction in the entry block, in which case we shouldn't create an
2161 if (DefinedRegs
.count(MI
.getDebugOperand(0).getReg()))
2164 // TODO: Add support for parameters that have a pre-existing debug expressions
2165 // (e.g. fragments).
2166 // A simple deref expression is equivalent to an indirect debug value.
2167 const DIExpression
*Expr
= MI
.getDebugExpression();
2168 if (Expr
->getNumElements() > 0 && !Expr
->isDeref())
2174 /// Collect all register defines (including aliases) for the given instruction.
2175 static void collectRegDefs(const MachineInstr
&MI
, DefinedRegsSet
&Regs
,
2176 const TargetRegisterInfo
*TRI
) {
2177 for (const MachineOperand
&MO
: MI
.all_defs()) {
2178 if (MO
.getReg() && MO
.getReg().isPhysical()) {
2179 Regs
.insert(MO
.getReg());
2180 for (MCRegAliasIterator
AI(MO
.getReg(), TRI
, true); AI
.isValid(); ++AI
)
2186 /// This routine records the entry values of function parameters. The values
2187 /// could be used as backup values. If we loose the track of some unmodified
2188 /// parameters, the backup values will be used as a primary locations.
2189 void VarLocBasedLDV::recordEntryValue(const MachineInstr
&MI
,
2190 const DefinedRegsSet
&DefinedRegs
,
2191 OpenRangesSet
&OpenRanges
,
2192 VarLocMap
&VarLocIDs
) {
2194 auto &TM
= TPC
->getTM
<TargetMachine
>();
2195 if (!TM
.Options
.ShouldEmitDebugEntryValues())
2199 DebugVariable
V(MI
.getDebugVariable(), MI
.getDebugExpression(),
2200 MI
.getDebugLoc()->getInlinedAt());
2202 if (!isEntryValueCandidate(MI
, DefinedRegs
) ||
2203 OpenRanges
.getEntryValueBackup(V
))
2206 LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI
.dump(););
2208 // Create the entry value and use it as a backup location until it is
2209 // valid. It is valid until a parameter is not changed.
2210 DIExpression
*NewExpr
=
2211 DIExpression::prepend(MI
.getDebugExpression(), DIExpression::EntryValue
);
2212 VarLoc EntryValLocAsBackup
= VarLoc::CreateEntryBackupLoc(MI
, NewExpr
);
2213 LocIndices EntryValLocIDs
= VarLocIDs
.insert(EntryValLocAsBackup
);
2214 OpenRanges
.insert(EntryValLocIDs
, EntryValLocAsBackup
);
2217 /// Calculate the liveness information for the given machine function and
2218 /// extend ranges across basic blocks.
2219 bool VarLocBasedLDV::ExtendRanges(MachineFunction
&MF
,
2220 MachineDominatorTree
*DomTree
,
2221 TargetPassConfig
*TPC
, unsigned InputBBLimit
,
2222 unsigned InputDbgValLimit
) {
2224 LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF
.getName() << "\n");
2226 if (!MF
.getFunction().getSubprogram())
2227 // VarLocBaseLDV will already have removed all DBG_VALUEs.
2230 // Skip functions from NoDebug compilation units.
2231 if (MF
.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
2232 DICompileUnit::NoDebug
)
2235 TRI
= MF
.getSubtarget().getRegisterInfo();
2236 TII
= MF
.getSubtarget().getInstrInfo();
2237 TFI
= MF
.getSubtarget().getFrameLowering();
2238 TFI
->getCalleeSaves(MF
, CalleeSavedRegs
);
2242 bool Changed
= false;
2243 bool OLChanged
= false;
2244 bool MBBJoined
= false;
2246 VarLocMap VarLocIDs
; // Map VarLoc<>unique ID for use in bitvectors.
2247 OverlapMap OverlapFragments
; // Map of overlapping variable fragments.
2248 OpenRangesSet
OpenRanges(Alloc
, OverlapFragments
);
2249 // Ranges that are open until end of bb.
2250 VarLocInMBB OutLocs
; // Ranges that exist beyond bb.
2251 VarLocInMBB InLocs
; // Ranges that are incoming after joining.
2252 TransferMap Transfers
; // DBG_VALUEs associated with transfers (such as
2253 // spills, copies and restores).
2254 // Map responsible MI to attached Transfer emitted from Backup Entry Value.
2255 InstToEntryLocMap EntryValTransfers
;
2256 // Map a Register to the last MI which clobbered it.
2257 RegDefToInstMap RegSetInstrs
;
2259 VarToFragments SeenFragments
;
2261 // Blocks which are artificial, i.e. blocks which exclusively contain
2262 // instructions without locations, or with line 0 locations.
2263 SmallPtrSet
<const MachineBasicBlock
*, 16> ArtificialBlocks
;
2265 DenseMap
<unsigned int, MachineBasicBlock
*> OrderToBB
;
2266 DenseMap
<MachineBasicBlock
*, unsigned int> BBToOrder
;
2267 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
2268 std::greater
<unsigned int>>
2270 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
2271 std::greater
<unsigned int>>
2274 // Set of register defines that are seen when traversing the entry block
2275 // looking for debug entry value candidates.
2276 DefinedRegsSet DefinedRegs
;
2278 // Only in the case of entry MBB collect DBG_VALUEs representing
2279 // function parameters in order to generate debug entry values for them.
2280 MachineBasicBlock
&First_MBB
= *(MF
.begin());
2281 for (auto &MI
: First_MBB
) {
2282 collectRegDefs(MI
, DefinedRegs
, TRI
);
2283 if (MI
.isDebugValue())
2284 recordEntryValue(MI
, DefinedRegs
, OpenRanges
, VarLocIDs
);
2287 // Initialize per-block structures and scan for fragment overlaps.
2288 for (auto &MBB
: MF
)
2289 for (auto &MI
: MBB
)
2290 if (MI
.isDebugValue())
2291 accumulateFragmentMap(MI
, SeenFragments
, OverlapFragments
);
2293 auto hasNonArtificialLocation
= [](const MachineInstr
&MI
) -> bool {
2294 if (const DebugLoc
&DL
= MI
.getDebugLoc())
2295 return DL
.getLine() != 0;
2298 for (auto &MBB
: MF
)
2299 if (none_of(MBB
.instrs(), hasNonArtificialLocation
))
2300 ArtificialBlocks
.insert(&MBB
);
2302 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
,
2303 "OutLocs after initialization", dbgs()));
2305 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
2306 unsigned int RPONumber
= 0;
2307 for (MachineBasicBlock
*MBB
: RPOT
) {
2308 OrderToBB
[RPONumber
] = MBB
;
2309 BBToOrder
[MBB
] = RPONumber
;
2310 Worklist
.push(RPONumber
);
2314 if (RPONumber
> InputBBLimit
) {
2315 unsigned NumInputDbgValues
= 0;
2316 for (auto &MBB
: MF
)
2317 for (auto &MI
: MBB
)
2318 if (MI
.isDebugValue())
2319 ++NumInputDbgValues
;
2320 if (NumInputDbgValues
> InputDbgValLimit
) {
2321 LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF
.getName()
2322 << " has " << RPONumber
<< " basic blocks and "
2323 << NumInputDbgValues
2324 << " input DBG_VALUEs, exceeding limits.\n");
2329 // This is a standard "union of predecessor outs" dataflow problem.
2330 // To solve it, we perform join() and process() using the two worklist method
2331 // until the ranges converge.
2332 // Ranges have converged when both worklists are empty.
2333 SmallPtrSet
<const MachineBasicBlock
*, 16> Visited
;
2334 while (!Worklist
.empty() || !Pending
.empty()) {
2335 // We track what is on the pending worklist to avoid inserting the same
2336 // thing twice. We could avoid this with a custom priority queue, but this
2337 // is probably not worth it.
2338 SmallPtrSet
<MachineBasicBlock
*, 16> OnPending
;
2339 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2340 while (!Worklist
.empty()) {
2341 MachineBasicBlock
*MBB
= OrderToBB
[Worklist
.top()];
2343 MBBJoined
= join(*MBB
, OutLocs
, InLocs
, VarLocIDs
, Visited
,
2345 MBBJoined
|= Visited
.insert(MBB
).second
;
2349 // Now that we have started to extend ranges across BBs we need to
2350 // examine spill, copy and restore instructions to see whether they
2351 // operate with registers that correspond to user variables.
2352 // First load any pending inlocs.
2353 OpenRanges
.insertFromLocSet(getVarLocsInMBB(MBB
, InLocs
), VarLocIDs
);
2354 LastNonDbgMI
= nullptr;
2355 RegSetInstrs
.clear();
2356 for (auto &MI
: *MBB
)
2357 process(MI
, OpenRanges
, VarLocIDs
, Transfers
, EntryValTransfers
,
2359 OLChanged
|= transferTerminator(MBB
, OpenRanges
, OutLocs
, VarLocIDs
);
2361 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
,
2362 "OutLocs after propagating", dbgs()));
2363 LLVM_DEBUG(printVarLocInMBB(MF
, InLocs
, VarLocIDs
,
2364 "InLocs after propagating", dbgs()));
2368 for (auto *s
: MBB
->successors())
2369 if (OnPending
.insert(s
).second
) {
2370 Pending
.push(BBToOrder
[s
]);
2375 Worklist
.swap(Pending
);
2376 // At this point, pending must be empty, since it was just the empty
2378 assert(Pending
.empty() && "Pending should be empty");
2381 // Add any DBG_VALUE instructions created by location transfers.
2382 for (auto &TR
: Transfers
) {
2383 assert(!TR
.TransferInst
->isTerminator() &&
2384 "Cannot insert DBG_VALUE after terminator");
2385 MachineBasicBlock
*MBB
= TR
.TransferInst
->getParent();
2386 const VarLoc
&VL
= VarLocIDs
[TR
.LocationID
];
2387 MachineInstr
*MI
= VL
.BuildDbgValue(MF
);
2388 MBB
->insertAfterBundle(TR
.TransferInst
->getIterator(), MI
);
2392 // Add DBG_VALUEs created using Backup Entry Value location.
2393 for (auto &TR
: EntryValTransfers
) {
2394 MachineInstr
*TRInst
= const_cast<MachineInstr
*>(TR
.first
);
2395 assert(!TRInst
->isTerminator() &&
2396 "Cannot insert DBG_VALUE after terminator");
2397 MachineBasicBlock
*MBB
= TRInst
->getParent();
2398 const VarLoc
&VL
= VarLocIDs
[TR
.second
];
2399 MachineInstr
*MI
= VL
.BuildDbgValue(MF
);
2400 MBB
->insertAfterBundle(TRInst
->getIterator(), MI
);
2402 EntryValTransfers
.clear();
2404 // Deferred inlocs will not have had any DBG_VALUE insts created; do
2406 flushPendingLocs(InLocs
, VarLocIDs
);
2408 LLVM_DEBUG(printVarLocInMBB(MF
, OutLocs
, VarLocIDs
, "Final OutLocs", dbgs()));
2409 LLVM_DEBUG(printVarLocInMBB(MF
, InLocs
, VarLocIDs
, "Final InLocs", dbgs()));
2414 llvm::makeVarLocBasedLiveDebugValues()
2416 return new VarLocBasedLDV();