1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineInstrBundle.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/Register.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/CodeGenTypes/LowLevelType.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/ModuleSlotTracker.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/FormattedStream.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
65 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
66 if (const MachineBasicBlock
*MBB
= MI
.getParent())
67 if (const MachineFunction
*MF
= MBB
->getParent())
72 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
74 static void tryToGetTargetInfo(const MachineInstr
&MI
,
75 const TargetRegisterInfo
*&TRI
,
76 const MachineRegisterInfo
*&MRI
,
77 const TargetIntrinsicInfo
*&IntrinsicInfo
,
78 const TargetInstrInfo
*&TII
) {
80 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
81 TRI
= MF
->getSubtarget().getRegisterInfo();
82 MRI
= &MF
->getRegInfo();
83 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
84 TII
= MF
->getSubtarget().getInstrInfo();
88 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
89 for (MCPhysReg ImpDef
: MCID
->implicit_defs())
90 addOperand(MF
, MachineOperand::CreateReg(ImpDef
, true, true));
91 for (MCPhysReg ImpUse
: MCID
->implicit_uses())
92 addOperand(MF
, MachineOperand::CreateReg(ImpUse
, false, true));
95 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
96 /// implicit operands. It reserves space for the number of operands specified by
98 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&TID
,
99 DebugLoc DL
, bool NoImp
)
100 : MCID(&TID
), NumOperands(0), Flags(0), AsmPrinterFlags(0),
101 DbgLoc(std::move(DL
)), DebugInstrNum(0), Opcode(TID
.Opcode
) {
102 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
104 // Reserve space for the expected number of operands.
105 if (unsigned NumOps
= MCID
->getNumOperands() + MCID
->implicit_defs().size() +
106 MCID
->implicit_uses().size()) {
107 CapOperands
= OperandCapacity::get(NumOps
);
108 Operands
= MF
.allocateOperandArray(CapOperands
);
112 addImplicitDefUseOperands(MF
);
115 /// MachineInstr ctor - Copies MachineInstr arg exactly.
116 /// Does not copy the number from debug instruction numbering, to preserve
118 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
119 : MCID(&MI
.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
120 Info(MI
.Info
), DbgLoc(MI
.getDebugLoc()), DebugInstrNum(0),
121 Opcode(MI
.getOpcode()) {
122 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
124 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
125 Operands
= MF
.allocateOperandArray(CapOperands
);
128 for (const MachineOperand
&MO
: MI
.operands())
131 // Replicate ties between the operands, which addOperand was not
132 // able to do reliably.
133 for (unsigned i
= 0, e
= getNumOperands(); i
< e
; ++i
) {
134 MachineOperand
&NewMO
= getOperand(i
);
135 const MachineOperand
&OrigMO
= MI
.getOperand(i
);
136 NewMO
.TiedTo
= OrigMO
.TiedTo
;
139 // Copy all the sensible flags.
143 void MachineInstr::setDesc(const MCInstrDesc
&TID
) {
145 getMF()->handleChangeDesc(*this, TID
);
150 void MachineInstr::moveBefore(MachineInstr
*MovePos
) {
151 MovePos
->getParent()->splice(MovePos
, getParent(), getIterator());
154 /// getRegInfo - If this instruction is embedded into a MachineFunction,
155 /// return the MachineRegisterInfo object for the current function, otherwise
157 MachineRegisterInfo
*MachineInstr::getRegInfo() {
158 if (MachineBasicBlock
*MBB
= getParent())
159 return &MBB
->getParent()->getRegInfo();
163 const MachineRegisterInfo
*MachineInstr::getRegInfo() const {
164 if (const MachineBasicBlock
*MBB
= getParent())
165 return &MBB
->getParent()->getRegInfo();
169 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
170 for (MachineOperand
&MO
: operands())
172 MRI
.removeRegOperandFromUseList(&MO
);
175 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
176 for (MachineOperand
&MO
: operands())
178 MRI
.addRegOperandToUseList(&MO
);
181 void MachineInstr::addOperand(const MachineOperand
&Op
) {
182 MachineBasicBlock
*MBB
= getParent();
183 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
184 MachineFunction
*MF
= MBB
->getParent();
185 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
189 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
190 /// ranges. If MRI is non-null also update use-def chains.
191 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
192 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
194 return MRI
->moveOperands(Dst
, Src
, NumOps
);
195 // MachineOperand is a trivially copyable type so we can just use memmove.
196 assert(Dst
&& Src
&& "Unknown operands");
197 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
200 /// addOperand - Add the specified operand to the instruction. If it is an
201 /// implicit operand, it is added to the end of the operand list. If it is
202 /// an explicit operand it is added at the end of the explicit operand list
203 /// (before the first implicit operand).
204 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
205 assert(isUInt
<LLVM_MI_NUMOPERANDS_BITS
>(NumOperands
+ 1) &&
206 "Cannot add more operands.");
207 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
209 // Check if we're adding one of our existing operands.
210 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
211 // This is unusual: MI->addOperand(MI->getOperand(i)).
212 // If adding Op requires reallocating or moving existing operands around,
213 // the Op reference could go stale. Support it by copying Op.
214 MachineOperand
CopyOp(Op
);
215 return addOperand(MF
, CopyOp
);
218 // Find the insert location for the new operand. Implicit registers go at
219 // the end, everything else goes before the implicit regs.
221 // FIXME: Allow mixed explicit and implicit operands on inline asm.
222 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
223 // implicit-defs, but they must not be moved around. See the FIXME in
225 unsigned OpNo
= getNumOperands();
226 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
227 if (!isImpReg
&& !isInlineAsm()) {
228 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
230 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
234 // OpNo now points as the desired insertion point. Unless this is a variadic
235 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
236 // RegMask operands go between the explicit and implicit operands.
237 MachineRegisterInfo
*MRI
= getRegInfo();
239 // Determine if the Operands array needs to be reallocated.
240 // Save the old capacity and operand array.
241 OperandCapacity OldCap
= CapOperands
;
242 MachineOperand
*OldOperands
= Operands
;
243 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
244 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
245 Operands
= MF
.allocateOperandArray(CapOperands
);
246 // Move the operands before the insertion point.
248 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
251 // Move the operands following the insertion point.
252 if (OpNo
!= NumOperands
)
253 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
257 // Deallocate the old operand array.
258 if (OldOperands
!= Operands
&& OldOperands
)
259 MF
.deallocateOperandArray(OldCap
, OldOperands
);
261 // Copy Op into place. It still needs to be inserted into the MRI use lists.
262 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
263 NewMO
->ParentMI
= this;
265 // When adding a register operand, tell MRI about it.
266 if (NewMO
->isReg()) {
267 // Ensure isOnRegUseList() returns false, regardless of Op's status.
268 NewMO
->Contents
.Reg
.Prev
= nullptr;
269 // Ignore existing ties. This is not a property that can be copied.
271 // Add the new operand to MRI, but only for instructions in an MBB.
273 MRI
->addRegOperandToUseList(NewMO
);
274 // The MCID operand information isn't accurate until we start adding
275 // explicit operands. The implicit operands are added first, then the
276 // explicits are inserted before them.
278 // Tie uses to defs as indicated in MCInstrDesc.
279 if (NewMO
->isUse()) {
280 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
282 tieOperands(DefIdx
, OpNo
);
284 // If the register operand is flagged as early, mark the operand as such.
285 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
286 NewMO
->setIsEarlyClobber(true);
288 // Ensure debug instructions set debug flag on register uses.
289 if (NewMO
->isUse() && isDebugInstr())
294 void MachineInstr::removeOperand(unsigned OpNo
) {
295 assert(OpNo
< getNumOperands() && "Invalid operand number");
296 untieRegOperand(OpNo
);
299 // Moving tied operands would break the ties.
300 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
301 if (Operands
[i
].isReg())
302 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
305 MachineRegisterInfo
*MRI
= getRegInfo();
306 if (MRI
&& Operands
[OpNo
].isReg())
307 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
309 // Don't call the MachineOperand destructor. A lot of this code depends on
310 // MachineOperand having a trivial destructor anyway, and adding a call here
311 // wouldn't make it 'destructor-correct'.
313 if (unsigned N
= NumOperands
- 1 - OpNo
)
314 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
318 void MachineInstr::setExtraInfo(MachineFunction
&MF
,
319 ArrayRef
<MachineMemOperand
*> MMOs
,
320 MCSymbol
*PreInstrSymbol
,
321 MCSymbol
*PostInstrSymbol
,
322 MDNode
*HeapAllocMarker
, MDNode
*PCSections
,
323 uint32_t CFIType
, MDNode
*MMRAs
) {
324 bool HasPreInstrSymbol
= PreInstrSymbol
!= nullptr;
325 bool HasPostInstrSymbol
= PostInstrSymbol
!= nullptr;
326 bool HasHeapAllocMarker
= HeapAllocMarker
!= nullptr;
327 bool HasPCSections
= PCSections
!= nullptr;
328 bool HasCFIType
= CFIType
!= 0;
329 bool HasMMRAs
= MMRAs
!= nullptr;
330 int NumPointers
= MMOs
.size() + HasPreInstrSymbol
+ HasPostInstrSymbol
+
331 HasHeapAllocMarker
+ HasPCSections
+ HasCFIType
+ HasMMRAs
;
333 // Drop all extra info if there is none.
334 if (NumPointers
<= 0) {
339 // If more than one pointer, then store out of line. Store heap alloc markers
340 // out of line because PointerSumType cannot hold more than 4 tag types with
342 // FIXME: Maybe we should make the symbols in the extra info mutable?
343 else if (NumPointers
> 1 || HasMMRAs
|| HasHeapAllocMarker
|| HasPCSections
||
345 Info
.set
<EIIK_OutOfLine
>(
346 MF
.createMIExtraInfo(MMOs
, PreInstrSymbol
, PostInstrSymbol
,
347 HeapAllocMarker
, PCSections
, CFIType
, MMRAs
));
351 // Otherwise store the single pointer inline.
352 if (HasPreInstrSymbol
)
353 Info
.set
<EIIK_PreInstrSymbol
>(PreInstrSymbol
);
354 else if (HasPostInstrSymbol
)
355 Info
.set
<EIIK_PostInstrSymbol
>(PostInstrSymbol
);
357 Info
.set
<EIIK_MMO
>(MMOs
[0]);
360 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
361 if (memoperands_empty())
364 setExtraInfo(MF
, {}, getPreInstrSymbol(), getPostInstrSymbol(),
365 getHeapAllocMarker(), getPCSections(), getCFIType(),
369 void MachineInstr::setMemRefs(MachineFunction
&MF
,
370 ArrayRef
<MachineMemOperand
*> MMOs
) {
376 setExtraInfo(MF
, MMOs
, getPreInstrSymbol(), getPostInstrSymbol(),
377 getHeapAllocMarker(), getPCSections(), getCFIType(),
381 void MachineInstr::addMemOperand(MachineFunction
&MF
,
382 MachineMemOperand
*MO
) {
383 SmallVector
<MachineMemOperand
*, 2> MMOs
;
384 MMOs
.append(memoperands_begin(), memoperands_end());
386 setMemRefs(MF
, MMOs
);
389 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
391 // Nothing to do for a self-clone!
394 assert(&MF
== MI
.getMF() &&
395 "Invalid machine functions when cloning memory refrences!");
396 // See if we can just steal the extra info already allocated for the
397 // instruction. We can do this whenever the pre- and post-instruction symbols
398 // are the same (including null).
399 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
400 getPostInstrSymbol() == MI
.getPostInstrSymbol() &&
401 getHeapAllocMarker() == MI
.getHeapAllocMarker() &&
402 getPCSections() == MI
.getPCSections() && getMMRAMetadata() &&
403 MI
.getMMRAMetadata()) {
408 // Otherwise, fall back on a copy-based clone.
409 setMemRefs(MF
, MI
.memoperands());
412 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
414 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
415 ArrayRef
<MachineMemOperand
*> RHS
) {
416 if (LHS
.size() != RHS
.size())
419 auto LHSPointees
= make_pointee_range(LHS
);
420 auto RHSPointees
= make_pointee_range(RHS
);
421 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
422 RHSPointees
.begin());
425 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
426 ArrayRef
<const MachineInstr
*> MIs
) {
427 // Try handling easy numbers of MIs with simpler mechanisms.
432 if (MIs
.size() == 1) {
433 cloneMemRefs(MF
, *MIs
[0]);
436 // Because an empty memoperands list provides *no* information and must be
437 // handled conservatively (assuming the instruction can do anything), the only
438 // way to merge with it is to drop all other memoperands.
439 if (MIs
[0]->memoperands_empty()) {
444 // Handle the general case.
445 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
446 // Start with the first instruction.
447 assert(&MF
== MIs
[0]->getMF() &&
448 "Invalid machine functions when cloning memory references!");
449 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
450 // Now walk all the other instructions and accumulate any different MMOs.
451 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
452 assert(&MF
== MI
.getMF() &&
453 "Invalid machine functions when cloning memory references!");
455 // Skip MIs with identical operands to the first. This is a somewhat
456 // arbitrary hack but will catch common cases without being quadratic.
457 // TODO: We could fully implement merge semantics here if needed.
458 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
461 // Because an empty memoperands list provides *no* information and must be
462 // handled conservatively (assuming the instruction can do anything), the
463 // only way to merge with it is to drop all other memoperands.
464 if (MI
.memoperands_empty()) {
469 // Otherwise accumulate these into our temporary buffer of the merged state.
470 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
473 setMemRefs(MF
, MergedMMOs
);
476 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
477 // Do nothing if old and new symbols are the same.
478 if (Symbol
== getPreInstrSymbol())
481 // If there was only one symbol and we're removing it, just clear info.
482 if (!Symbol
&& Info
.is
<EIIK_PreInstrSymbol
>()) {
487 setExtraInfo(MF
, memoperands(), Symbol
, getPostInstrSymbol(),
488 getHeapAllocMarker(), getPCSections(), getCFIType(),
492 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
493 // Do nothing if old and new symbols are the same.
494 if (Symbol
== getPostInstrSymbol())
497 // If there was only one symbol and we're removing it, just clear info.
498 if (!Symbol
&& Info
.is
<EIIK_PostInstrSymbol
>()) {
503 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), Symbol
,
504 getHeapAllocMarker(), getPCSections(), getCFIType(),
508 void MachineInstr::setHeapAllocMarker(MachineFunction
&MF
, MDNode
*Marker
) {
509 // Do nothing if old and new symbols are the same.
510 if (Marker
== getHeapAllocMarker())
513 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514 Marker
, getPCSections(), getCFIType(), getMMRAMetadata());
517 void MachineInstr::setPCSections(MachineFunction
&MF
, MDNode
*PCSections
) {
518 // Do nothing if old and new symbols are the same.
519 if (PCSections
== getPCSections())
522 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
523 getHeapAllocMarker(), PCSections
, getCFIType(),
527 void MachineInstr::setCFIType(MachineFunction
&MF
, uint32_t Type
) {
528 // Do nothing if old and new types are the same.
529 if (Type
== getCFIType())
532 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
533 getHeapAllocMarker(), getPCSections(), Type
, getMMRAMetadata());
536 void MachineInstr::setMMRAMetadata(MachineFunction
&MF
, MDNode
*MMRAs
) {
537 // Do nothing if old and new symbols are the same.
538 if (MMRAs
== getMMRAMetadata())
541 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
542 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs
);
545 void MachineInstr::cloneInstrSymbols(MachineFunction
&MF
,
546 const MachineInstr
&MI
) {
548 // Nothing to do for a self-clone!
551 assert(&MF
== MI
.getMF() &&
552 "Invalid machine functions when cloning instruction symbols!");
554 setPreInstrSymbol(MF
, MI
.getPreInstrSymbol());
555 setPostInstrSymbol(MF
, MI
.getPostInstrSymbol());
556 setHeapAllocMarker(MF
, MI
.getHeapAllocMarker());
557 setPCSections(MF
, MI
.getPCSections());
558 setMMRAMetadata(MF
, MI
.getMMRAMetadata());
561 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
562 // For now, the just return the union of the flags. If the flags get more
563 // complicated over time, we might need more logic here.
564 return getFlags() | Other
.getFlags();
567 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction
&I
) {
568 uint32_t MIFlags
= 0;
569 // Copy the wrapping flags.
570 if (const OverflowingBinaryOperator
*OB
=
571 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
572 if (OB
->hasNoSignedWrap())
573 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
574 if (OB
->hasNoUnsignedWrap())
575 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
576 } else if (const TruncInst
*TI
= dyn_cast
<TruncInst
>(&I
)) {
577 if (TI
->hasNoSignedWrap())
578 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
579 if (TI
->hasNoUnsignedWrap())
580 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
581 } else if (const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
582 if (GEP
->hasNoUnsignedSignedWrap())
583 MIFlags
|= MachineInstr::MIFlag::NoUSWrap
;
584 if (GEP
->hasNoUnsignedWrap())
585 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
588 // Copy the nonneg flag.
589 if (const PossiblyNonNegInst
*PNI
= dyn_cast
<PossiblyNonNegInst
>(&I
)) {
590 if (PNI
->hasNonNeg())
591 MIFlags
|= MachineInstr::MIFlag::NonNeg
;
592 // Copy the disjoint flag.
593 } else if (const PossiblyDisjointInst
*PD
=
594 dyn_cast
<PossiblyDisjointInst
>(&I
)) {
595 if (PD
->isDisjoint())
596 MIFlags
|= MachineInstr::MIFlag::Disjoint
;
599 // Copy the samesign flag.
600 if (const ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(&I
))
601 if (ICmp
->hasSameSign())
602 MIFlags
|= MachineInstr::MIFlag::SameSign
;
604 // Copy the exact flag.
605 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
607 MIFlags
|= MachineInstr::MIFlag::IsExact
;
609 // Copy the fast-math flags.
610 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
611 const FastMathFlags Flags
= FP
->getFastMathFlags();
613 MIFlags
|= MachineInstr::MIFlag::FmNoNans
;
615 MIFlags
|= MachineInstr::MIFlag::FmNoInfs
;
616 if (Flags
.noSignedZeros())
617 MIFlags
|= MachineInstr::MIFlag::FmNsz
;
618 if (Flags
.allowReciprocal())
619 MIFlags
|= MachineInstr::MIFlag::FmArcp
;
620 if (Flags
.allowContract())
621 MIFlags
|= MachineInstr::MIFlag::FmContract
;
622 if (Flags
.approxFunc())
623 MIFlags
|= MachineInstr::MIFlag::FmAfn
;
624 if (Flags
.allowReassoc())
625 MIFlags
|= MachineInstr::MIFlag::FmReassoc
;
628 if (I
.getMetadata(LLVMContext::MD_unpredictable
))
629 MIFlags
|= MachineInstr::MIFlag::Unpredictable
;
634 void MachineInstr::copyIRFlags(const Instruction
&I
) {
635 Flags
= copyFlagsFromInstruction(I
);
638 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
639 assert(!isBundledWithPred() && "Must be called on bundle header");
640 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
641 if (MII
->getDesc().getFlags() & Mask
) {
642 if (Type
== AnyInBundle
)
645 if (Type
== AllInBundle
&& !MII
->isBundle())
648 // This was the last instruction in the bundle.
649 if (!MII
->isBundledWithSucc())
650 return Type
== AllInBundle
;
654 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
655 MICheckType Check
) const {
656 // If opcodes or number of operands are not the same then the two
657 // instructions are obviously not identical.
658 if (Other
.getOpcode() != getOpcode() ||
659 Other
.getNumOperands() != getNumOperands())
663 // We have passed the test above that both instructions have the same
664 // opcode, so we know that both instructions are bundles here. Let's compare
665 // MIs inside the bundle.
666 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
667 MachineBasicBlock::const_instr_iterator I1
= getIterator();
668 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
669 // Loop until we analysed the last intruction inside at least one of the
671 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
674 if (!I1
->isIdenticalTo(*I2
, Check
))
677 // If we've reached the end of just one of the two bundles, but not both,
678 // the instructions are not identical.
679 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
683 // Check operands to make sure they match.
684 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
685 const MachineOperand
&MO
= getOperand(i
);
686 const MachineOperand
&OMO
= Other
.getOperand(i
);
688 if (!MO
.isIdenticalTo(OMO
))
693 // Clients may or may not want to ignore defs when testing for equality.
694 // For example, machine CSE pass only cares about finding common
695 // subexpressions, so it's safe to ignore virtual register defs.
697 if (Check
== IgnoreDefs
)
699 else if (Check
== IgnoreVRegDefs
) {
700 if (!MO
.getReg().isVirtual() || !OMO
.getReg().isVirtual())
701 if (!MO
.isIdenticalTo(OMO
))
704 if (!MO
.isIdenticalTo(OMO
))
706 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
710 if (!MO
.isIdenticalTo(OMO
))
712 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
716 // If DebugLoc does not match then two debug instructions are not identical.
718 if (getDebugLoc() && Other
.getDebugLoc() &&
719 getDebugLoc() != Other
.getDebugLoc())
721 // If pre- or post-instruction symbols do not match then the two instructions
722 // are not identical.
723 if (getPreInstrSymbol() != Other
.getPreInstrSymbol() ||
724 getPostInstrSymbol() != Other
.getPostInstrSymbol())
726 // Call instructions with different CFI types are not identical.
727 if (isCall() && getCFIType() != Other
.getCFIType())
733 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr
&Other
) const {
734 if (!isDebugValueLike() || !Other
.isDebugValueLike())
736 if (getDebugLoc() != Other
.getDebugLoc())
738 if (getDebugVariable() != Other
.getDebugVariable())
740 if (getNumDebugOperands() != Other
.getNumDebugOperands())
742 for (unsigned OpIdx
= 0; OpIdx
< getNumDebugOperands(); ++OpIdx
)
743 if (!getDebugOperand(OpIdx
).isIdenticalTo(Other
.getDebugOperand(OpIdx
)))
745 if (!DIExpression::isEqualExpression(
746 getDebugExpression(), isIndirectDebugValue(),
747 Other
.getDebugExpression(), Other
.isIndirectDebugValue()))
752 const MachineFunction
*MachineInstr::getMF() const {
753 return getParent()->getParent();
756 MachineInstr
*MachineInstr::removeFromParent() {
757 assert(getParent() && "Not embedded in a basic block!");
758 return getParent()->remove(this);
761 MachineInstr
*MachineInstr::removeFromBundle() {
762 assert(getParent() && "Not embedded in a basic block!");
763 return getParent()->remove_instr(this);
766 void MachineInstr::eraseFromParent() {
767 assert(getParent() && "Not embedded in a basic block!");
768 getParent()->erase(this);
771 void MachineInstr::eraseFromBundle() {
772 assert(getParent() && "Not embedded in a basic block!");
773 getParent()->erase_instr(this);
776 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type
) const {
779 switch (getOpcode()) {
780 case TargetOpcode::PATCHPOINT
:
781 case TargetOpcode::STACKMAP
:
782 case TargetOpcode::STATEPOINT
:
783 case TargetOpcode::FENTRY_CALL
:
789 bool MachineInstr::shouldUpdateCallSiteInfo() const {
791 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle
);
792 return isCandidateForCallSiteEntry();
795 unsigned MachineInstr::getNumExplicitOperands() const {
796 unsigned NumOperands
= MCID
->getNumOperands();
797 if (!MCID
->isVariadic())
800 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
801 const MachineOperand
&MO
= getOperand(I
);
802 // The operands must always be in the following order:
803 // - explicit reg defs,
804 // - other explicit operands (reg uses, immediates, etc.),
805 // - implicit reg defs
806 // - implicit reg uses
807 if (MO
.isReg() && MO
.isImplicit())
814 unsigned MachineInstr::getNumExplicitDefs() const {
815 unsigned NumDefs
= MCID
->getNumDefs();
816 if (!MCID
->isVariadic())
819 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
820 const MachineOperand
&MO
= getOperand(I
);
821 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
828 void MachineInstr::bundleWithPred() {
829 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
830 setFlag(BundledPred
);
831 MachineBasicBlock::instr_iterator Pred
= getIterator();
833 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
834 Pred
->setFlag(BundledSucc
);
837 void MachineInstr::bundleWithSucc() {
838 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
839 setFlag(BundledSucc
);
840 MachineBasicBlock::instr_iterator Succ
= getIterator();
842 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
843 Succ
->setFlag(BundledPred
);
846 void MachineInstr::unbundleFromPred() {
847 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
848 clearFlag(BundledPred
);
849 MachineBasicBlock::instr_iterator Pred
= getIterator();
851 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
852 Pred
->clearFlag(BundledSucc
);
855 void MachineInstr::unbundleFromSucc() {
856 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
857 clearFlag(BundledSucc
);
858 MachineBasicBlock::instr_iterator Succ
= getIterator();
860 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
861 Succ
->clearFlag(BundledPred
);
864 bool MachineInstr::isStackAligningInlineAsm() const {
866 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
867 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
873 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
874 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
875 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
876 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
879 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
880 unsigned *GroupNo
) const {
881 assert(isInlineAsm() && "Expected an inline asm instruction");
882 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
884 // Ignore queries about the initial operands.
885 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
890 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
892 const MachineOperand
&FlagMO
= getOperand(i
);
893 // If we reach the implicit register operands, stop looking.
896 const InlineAsm::Flag
F(FlagMO
.getImm());
897 NumOps
= 1 + F
.getNumOperandRegisters();
898 if (i
+ NumOps
> OpIdx
) {
908 const DILabel
*MachineInstr::getDebugLabel() const {
909 assert(isDebugLabel() && "not a DBG_LABEL");
910 return cast
<DILabel
>(getOperand(0).getMetadata());
913 const MachineOperand
&MachineInstr::getDebugVariableOp() const {
914 assert((isDebugValueLike()) && "not a DBG_VALUE*");
915 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
916 return getOperand(VariableOp
);
919 MachineOperand
&MachineInstr::getDebugVariableOp() {
920 assert((isDebugValueLike()) && "not a DBG_VALUE*");
921 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
922 return getOperand(VariableOp
);
925 const DILocalVariable
*MachineInstr::getDebugVariable() const {
926 return cast
<DILocalVariable
>(getDebugVariableOp().getMetadata());
929 const MachineOperand
&MachineInstr::getDebugExpressionOp() const {
930 assert((isDebugValueLike()) && "not a DBG_VALUE*");
931 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
932 return getOperand(ExpressionOp
);
935 MachineOperand
&MachineInstr::getDebugExpressionOp() {
936 assert((isDebugValueLike()) && "not a DBG_VALUE*");
937 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
938 return getOperand(ExpressionOp
);
941 const DIExpression
*MachineInstr::getDebugExpression() const {
942 return cast
<DIExpression
>(getDebugExpressionOp().getMetadata());
945 bool MachineInstr::isDebugEntryValue() const {
946 return isDebugValue() && getDebugExpression()->isEntryValue();
949 const TargetRegisterClass
*
950 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
951 const TargetInstrInfo
*TII
,
952 const TargetRegisterInfo
*TRI
) const {
953 assert(getParent() && "Can't have an MBB reference here!");
954 assert(getMF() && "Can't have an MF reference here!");
955 const MachineFunction
&MF
= *getMF();
957 // Most opcodes have fixed constraints in their MCInstrDesc.
959 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
961 if (!getOperand(OpIdx
).isReg())
964 // For tied uses on inline asm, get the constraint from the def.
966 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
969 // Inline asm stores register class constraints in the flag word.
970 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
974 const InlineAsm::Flag
F(getOperand(FlagIdx
).getImm());
976 if ((F
.isRegUseKind() || F
.isRegDefKind() || F
.isRegDefEarlyClobberKind()) &&
977 F
.hasRegClassConstraint(RCID
))
978 return TRI
->getRegClass(RCID
);
980 // Assume that all registers in a memory operand are pointers.
982 return TRI
->getPointerRegClass(MF
);
987 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
988 Register Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
989 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
990 // Check every operands inside the bundle if we have
993 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
995 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
996 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
998 // Otherwise, just check the current operands.
999 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
1000 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
1004 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
1005 unsigned OpIdx
, Register Reg
, const TargetRegisterClass
*CurRC
,
1006 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
1007 assert(CurRC
&& "Invalid initial register class");
1008 // Check if Reg is constrained by some of its use/def from MI.
1009 const MachineOperand
&MO
= getOperand(OpIdx
);
1010 if (!MO
.isReg() || MO
.getReg() != Reg
)
1012 // If yes, accumulate the constraints through the operand.
1013 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
1016 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
1017 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
1018 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
1019 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
1020 const MachineOperand
&MO
= getOperand(OpIdx
);
1021 assert(MO
.isReg() &&
1022 "Cannot get register constraints for non-register operand");
1023 assert(CurRC
&& "Invalid initial register class");
1024 if (unsigned SubIdx
= MO
.getSubReg()) {
1026 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
1028 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
1030 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
1034 /// Return the number of instructions inside the MI bundle, not counting the
1035 /// header instruction.
1036 unsigned MachineInstr::getBundleSize() const {
1037 MachineBasicBlock::const_instr_iterator I
= getIterator();
1039 while (I
->isBundledWithSucc()) {
1046 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1047 /// the given register (not considering sub/super-registers).
1048 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg
) const {
1049 for (const MachineOperand
&MO
: implicit_operands()) {
1050 if (MO
.isReg() && MO
.isUse() && MO
.getReg() == Reg
)
1056 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1057 /// the specific register or -1 if it is not found. It further tightens
1058 /// the search criteria to a use that kills the register if isKill is true.
1059 int MachineInstr::findRegisterUseOperandIdx(Register Reg
,
1060 const TargetRegisterInfo
*TRI
,
1061 bool isKill
) const {
1062 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1063 const MachineOperand
&MO
= getOperand(i
);
1064 if (!MO
.isReg() || !MO
.isUse())
1066 Register MOReg
= MO
.getReg();
1069 if (MOReg
== Reg
|| (TRI
&& Reg
&& MOReg
&& TRI
->regsOverlap(MOReg
, Reg
)))
1070 if (!isKill
|| MO
.isKill())
1076 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1077 /// indicating if this instruction reads or writes Reg. This also considers
1078 /// partial defines.
1079 std::pair
<bool,bool>
1080 MachineInstr::readsWritesVirtualRegister(Register Reg
,
1081 SmallVectorImpl
<unsigned> *Ops
) const {
1082 bool PartDef
= false; // Partial redefine.
1083 bool FullDef
= false; // Full define.
1086 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1087 const MachineOperand
&MO
= getOperand(i
);
1088 if (!MO
.isReg() || MO
.getReg() != Reg
)
1093 Use
|= !MO
.isUndef();
1094 else if (MO
.getSubReg() && !MO
.isUndef())
1095 // A partial def undef doesn't count as reading the register.
1100 // A partial redefine uses Reg unless there is also a full define.
1101 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
1104 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1105 /// the specified register or -1 if it is not found. If isDead is true, defs
1106 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1107 /// also checks if there is a def of a super-register.
1108 int MachineInstr::findRegisterDefOperandIdx(Register Reg
,
1109 const TargetRegisterInfo
*TRI
,
1110 bool isDead
, bool Overlap
) const {
1111 bool isPhys
= Reg
.isPhysical();
1112 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1113 const MachineOperand
&MO
= getOperand(i
);
1114 // Accept regmask operands when Overlap is set.
1115 // Ignore them when looking for a specific def operand (Overlap == false).
1116 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
1118 if (!MO
.isReg() || !MO
.isDef())
1120 Register MOReg
= MO
.getReg();
1121 bool Found
= (MOReg
== Reg
);
1122 if (!Found
&& TRI
&& isPhys
&& MOReg
.isPhysical()) {
1124 Found
= TRI
->regsOverlap(MOReg
, Reg
);
1126 Found
= TRI
->isSubRegister(MOReg
, Reg
);
1128 if (Found
&& (!isDead
|| MO
.isDead()))
1134 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1135 /// operand list that is used to represent the predicate. It returns -1 if
1137 int MachineInstr::findFirstPredOperandIdx() const {
1138 // Don't call MCID.findFirstPredOperandIdx() because this variant
1139 // is sometimes called on an instruction that's not yet complete, and
1140 // so the number of operands is less than the MCID indicates. In
1141 // particular, the PTX target does this.
1142 const MCInstrDesc
&MCID
= getDesc();
1143 if (MCID
.isPredicable()) {
1144 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1145 if (MCID
.operands()[i
].isPredicate())
1152 // MachineOperand::TiedTo is 4 bits wide.
1153 const unsigned TiedMax
= 15;
1155 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1157 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1158 /// field. TiedTo can have these values:
1160 /// 0: Operand is not tied to anything.
1161 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1162 /// TiedMax: Tied to an operand >= TiedMax-1.
1164 /// The tied def must be one of the first TiedMax operands on a normal
1165 /// instruction. INLINEASM instructions allow more tied defs.
1167 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1168 MachineOperand
&DefMO
= getOperand(DefIdx
);
1169 MachineOperand
&UseMO
= getOperand(UseIdx
);
1170 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1171 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1172 assert(!DefMO
.isTied() && "Def is already tied to another use");
1173 assert(!UseMO
.isTied() && "Use is already tied to another def");
1175 if (DefIdx
< TiedMax
)
1176 UseMO
.TiedTo
= DefIdx
+ 1;
1178 // Inline asm can use the group descriptors to find tied operands,
1179 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1180 // but on normal instruction, the tied def must be within the first TiedMax
1182 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT
) &&
1183 "DefIdx out of range");
1184 UseMO
.TiedTo
= TiedMax
;
1187 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1188 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1191 /// Given the index of a tied register operand, find the operand it is tied to.
1192 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1193 /// which must exist.
1194 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1195 const MachineOperand
&MO
= getOperand(OpIdx
);
1196 assert(MO
.isTied() && "Operand isn't tied");
1198 // Normally TiedTo is in range.
1199 if (MO
.TiedTo
< TiedMax
)
1200 return MO
.TiedTo
- 1;
1202 // Uses on normal instructions can be out of range.
1203 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT
) {
1204 // Normal tied defs must be in the 0..TiedMax-1 range.
1207 // MO is a def. Search for the tied use.
1208 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1209 const MachineOperand
&UseMO
= getOperand(i
);
1210 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1213 llvm_unreachable("Can't find tied use");
1216 if (getOpcode() == TargetOpcode::STATEPOINT
) {
1217 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1219 StatepointOpers
SO(this);
1220 unsigned CurUseIdx
= SO
.getFirstGCPtrIdx();
1221 assert(CurUseIdx
!= -1U && "only gc pointer statepoint operands can be tied");
1222 unsigned NumDefs
= getNumDefs();
1223 for (unsigned CurDefIdx
= 0; CurDefIdx
< NumDefs
; ++CurDefIdx
) {
1224 while (!getOperand(CurUseIdx
).isReg())
1225 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1226 if (OpIdx
== CurDefIdx
)
1228 if (OpIdx
== CurUseIdx
)
1230 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1232 llvm_unreachable("Can't find tied use");
1235 // Now deal with inline asm by parsing the operand group descriptor flags.
1236 // Find the beginning of each operand group.
1237 SmallVector
<unsigned, 8> GroupIdx
;
1238 unsigned OpIdxGroup
= ~0u;
1240 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1242 const MachineOperand
&FlagMO
= getOperand(i
);
1243 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1244 unsigned CurGroup
= GroupIdx
.size();
1245 GroupIdx
.push_back(i
);
1246 const InlineAsm::Flag
F(FlagMO
.getImm());
1247 NumOps
= 1 + F
.getNumOperandRegisters();
1248 // OpIdx belongs to this operand group.
1249 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1250 OpIdxGroup
= CurGroup
;
1252 if (!F
.isUseOperandTiedToDef(TiedGroup
))
1254 // Operands in this group are tied to operands in TiedGroup which must be
1255 // earlier. Find the number of operands between the two groups.
1256 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1258 // OpIdx is a use tied to TiedGroup.
1259 if (OpIdxGroup
== CurGroup
)
1260 return OpIdx
- Delta
;
1262 // OpIdx is a def tied to this use group.
1263 if (OpIdxGroup
== TiedGroup
)
1264 return OpIdx
+ Delta
;
1266 llvm_unreachable("Invalid tied operand on inline asm");
1269 /// clearKillInfo - Clears kill flags on all operands.
1271 void MachineInstr::clearKillInfo() {
1272 for (MachineOperand
&MO
: operands()) {
1273 if (MO
.isReg() && MO
.isUse())
1274 MO
.setIsKill(false);
1278 void MachineInstr::substituteRegister(Register FromReg
, Register ToReg
,
1280 const TargetRegisterInfo
&RegInfo
) {
1281 if (ToReg
.isPhysical()) {
1283 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1284 for (MachineOperand
&MO
: operands()) {
1285 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1287 MO
.substPhysReg(ToReg
, RegInfo
);
1290 for (MachineOperand
&MO
: operands()) {
1291 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1293 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1298 /// isSafeToMove - Return true if it is safe to move this instruction. If
1299 /// SawStore is set to true, it means that there is a store (or call) between
1300 /// the instruction's location and its intended destination.
1301 bool MachineInstr::isSafeToMove(bool &SawStore
) const {
1302 // Ignore stuff that we obviously can't move.
1304 // Treat volatile loads as stores. This is not strictly necessary for
1305 // volatiles, but it is required for atomic loads. It is not allowed to move
1306 // a load across an atomic load with Ordering > Monotonic.
1307 if (mayStore() || isCall() || isPHI() ||
1308 (mayLoad() && hasOrderedMemoryRef())) {
1313 if (isPosition() || isDebugInstr() || isTerminator() ||
1314 mayRaiseFPException() || hasUnmodeledSideEffects() ||
1315 isJumpTableDebugInfo())
1318 // See if this instruction does a load. If so, we have to guarantee that the
1319 // loaded value doesn't change between the load and the its intended
1320 // destination. The check for isInvariantLoad gives the target the chance to
1321 // classify the load as always returning a constant, e.g. a constant pool
1323 if (mayLoad() && !isDereferenceableInvariantLoad())
1324 // Otherwise, this is a real load. If there is a store between the load and
1325 // end of block, we can't move it.
1331 bool MachineInstr::wouldBeTriviallyDead() const {
1332 // Don't delete frame allocation labels.
1333 // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel?
1334 if (getOpcode() == TargetOpcode::LOCAL_ESCAPE
)
1337 // Don't delete FAKE_USE.
1338 // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition?
1342 // LIFETIME markers should be preserved.
1343 // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition?
1344 if (isLifetimeMarker())
1347 // If we can move an instruction, we can remove it. Otherwise, it has
1348 // a side-effect of some sort.
1349 bool SawStore
= false;
1350 return isPHI() || isSafeToMove(SawStore
);
1353 static bool MemOperandsHaveAlias(const MachineFrameInfo
&MFI
, AAResults
*AA
,
1354 bool UseTBAA
, const MachineMemOperand
*MMOa
,
1355 const MachineMemOperand
*MMOb
) {
1356 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1357 // operates with MachineMemOperand offset with some important assumptions:
1358 // - LLVM fundamentally assumes flat address spaces.
1359 // - MachineOperand offset can *only* result from legalization and cannot
1360 // affect queries other than the trivial case of overlap checking.
1361 // - These offsets never wrap and never step outside of allocated objects.
1362 // - There should never be any negative offsets here.
1364 // FIXME: Modify API to hide this math from "user"
1365 // Even before we go to AA we can reason locally about some memory objects. It
1366 // can save compile time, and possibly catch some corner cases not currently
1369 int64_t OffsetA
= MMOa
->getOffset();
1370 int64_t OffsetB
= MMOb
->getOffset();
1371 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1373 LocationSize WidthA
= MMOa
->getSize();
1374 LocationSize WidthB
= MMOb
->getSize();
1375 bool KnownWidthA
= WidthA
.hasValue();
1376 bool KnownWidthB
= WidthB
.hasValue();
1377 bool BothMMONonScalable
= !WidthA
.isScalable() && !WidthB
.isScalable();
1379 const Value
*ValA
= MMOa
->getValue();
1380 const Value
*ValB
= MMOb
->getValue();
1381 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1383 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1384 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1385 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1387 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1389 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1393 if (SameVal
&& BothMMONonScalable
) {
1394 if (!KnownWidthA
|| !KnownWidthB
)
1396 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1397 int64_t LowWidth
= (MinOffset
== OffsetA
)
1398 ? WidthA
.getValue().getKnownMinValue()
1399 : WidthB
.getValue().getKnownMinValue();
1400 return (MinOffset
+ LowWidth
> MaxOffset
);
1409 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1410 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1412 // If Scalable Location Size has non-zero offset, Width + Offset does not work
1414 if ((WidthA
.isScalable() && OffsetA
> 0) ||
1415 (WidthB
.isScalable() && OffsetB
> 0))
1419 KnownWidthA
? WidthA
.getValue().getKnownMinValue() + OffsetA
- MinOffset
1420 : MemoryLocation::UnknownSize
;
1422 KnownWidthB
? WidthB
.getValue().getKnownMinValue() + OffsetB
- MinOffset
1423 : MemoryLocation::UnknownSize
;
1425 LocationSize LocA
= (WidthA
.isScalable() || !KnownWidthA
)
1427 : LocationSize::precise(OverlapA
);
1428 LocationSize LocB
= (WidthB
.isScalable() || !KnownWidthB
)
1430 : LocationSize::precise(OverlapB
);
1432 return !AA
->isNoAlias(
1433 MemoryLocation(ValA
, LocA
, UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1434 MemoryLocation(ValB
, LocB
, UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1437 bool MachineInstr::mayAlias(AAResults
*AA
, const MachineInstr
&Other
,
1438 bool UseTBAA
) const {
1439 const MachineFunction
*MF
= getMF();
1440 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1441 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1443 // Exclude call instruction which may alter the memory but can not be handled
1444 // by this function.
1445 if (isCall() || Other
.isCall())
1448 // If neither instruction stores to memory, they can't alias in any
1449 // meaningful way, even if they read from the same address.
1450 if (!mayStore() && !Other
.mayStore())
1453 // Both instructions must be memory operations to be able to alias.
1454 if (!mayLoadOrStore() || !Other
.mayLoadOrStore())
1457 // Let the target decide if memory accesses cannot possibly overlap.
1458 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
))
1461 // Memory operations without memory operands may access anything. Be
1462 // conservative and assume `MayAlias`.
1463 if (memoperands_empty() || Other
.memoperands_empty())
1466 // Skip if there are too many memory operands.
1467 auto NumChecks
= getNumMemOperands() * Other
.getNumMemOperands();
1468 if (NumChecks
> TII
->getMemOperandAACheckLimit())
1471 // Check each pair of memory operands from both instructions, which can't
1472 // alias only if all pairs won't alias.
1473 for (auto *MMOa
: memoperands())
1474 for (auto *MMOb
: Other
.memoperands())
1475 if (MemOperandsHaveAlias(MFI
, AA
, UseTBAA
, MMOa
, MMOb
))
1481 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1482 /// or volatile memory reference, or if the information describing the memory
1483 /// reference is not available. Return false if it is known to have no ordered
1484 /// memory references.
1485 bool MachineInstr::hasOrderedMemoryRef() const {
1486 // An instruction known never to access memory won't have a volatile access.
1490 !hasUnmodeledSideEffects())
1493 // Otherwise, if the instruction has no memory reference information,
1494 // conservatively assume it wasn't preserved.
1495 if (memoperands_empty())
1498 // Check if any of our memory operands are ordered.
1499 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1500 return !MMO
->isUnordered();
1504 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1505 /// trap and is loading from a location whose value is invariant across a run of
1507 bool MachineInstr::isDereferenceableInvariantLoad() const {
1508 // If the instruction doesn't load at all, it isn't an invariant load.
1512 // If the instruction has lost its memoperands, conservatively assume that
1513 // it may not be an invariant load.
1514 if (memoperands_empty())
1517 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1519 for (MachineMemOperand
*MMO
: memoperands()) {
1520 if (!MMO
->isUnordered())
1521 // If the memory operand has ordering side effects, we can't move the
1522 // instruction. Such an instruction is technically an invariant load,
1523 // but the caller code would need updated to expect that.
1525 if (MMO
->isStore()) return false;
1526 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1529 // A load from a constant PseudoSourceValue is invariant.
1530 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
1531 if (PSV
->isConstant(&MFI
))
1535 // Otherwise assume conservatively.
1539 // Everything checks out.
1543 Register
MachineInstr::isConstantValuePHI() const {
1546 assert(getNumOperands() >= 3 &&
1547 "It's illegal to have a PHI without source operands");
1549 Register Reg
= getOperand(1).getReg();
1550 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1551 if (getOperand(i
).getReg() != Reg
)
1556 bool MachineInstr::hasUnmodeledSideEffects() const {
1557 if (hasProperty(MCID::UnmodeledSideEffects
))
1559 if (isInlineAsm()) {
1560 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1561 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1568 bool MachineInstr::isLoadFoldBarrier() const {
1569 return mayStore() || isCall() ||
1570 (hasUnmodeledSideEffects() && !isPseudoProbe());
1573 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1575 bool MachineInstr::allDefsAreDead() const {
1576 for (const MachineOperand
&MO
: operands()) {
1577 if (!MO
.isReg() || MO
.isUse())
1585 bool MachineInstr::allImplicitDefsAreDead() const {
1586 for (const MachineOperand
&MO
: implicit_operands()) {
1587 if (!MO
.isReg() || MO
.isUse())
1595 /// copyImplicitOps - Copy implicit register operands from specified
1596 /// instruction to this instruction.
1597 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1598 const MachineInstr
&MI
) {
1599 for (const MachineOperand
&MO
:
1600 llvm::drop_begin(MI
.operands(), MI
.getDesc().getNumOperands()))
1601 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1605 bool MachineInstr::hasComplexRegisterTies() const {
1606 const MCInstrDesc
&MCID
= getDesc();
1607 if (MCID
.Opcode
== TargetOpcode::STATEPOINT
)
1609 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1610 const auto &Operand
= getOperand(I
);
1611 if (!Operand
.isReg() || Operand
.isDef())
1612 // Ignore the defined registers as MCID marks only the uses as tied.
1614 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1615 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1616 if (ExpectedTiedIdx
!= TiedIdx
)
1622 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1623 const MachineRegisterInfo
&MRI
) const {
1624 const MachineOperand
&Op
= getOperand(OpIdx
);
1628 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1629 return MRI
.getType(Op
.getReg());
1631 auto &OpInfo
= getDesc().operands()[OpIdx
];
1632 if (!OpInfo
.isGenericType())
1633 return MRI
.getType(Op
.getReg());
1635 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1638 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1639 // Don't mark the type index printed if it wasn't actually printed: maybe
1640 // another operand with the same type index has an actual type attached:
1641 if (TypeToPrint
.isValid())
1642 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1647 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1652 LLVM_DUMP_METHOD
void MachineInstr::dumprImpl(
1653 const MachineRegisterInfo
&MRI
, unsigned Depth
, unsigned MaxDepth
,
1654 SmallPtrSetImpl
<const MachineInstr
*> &AlreadySeenInstrs
) const {
1655 if (Depth
>= MaxDepth
)
1657 if (!AlreadySeenInstrs
.insert(this).second
)
1659 // PadToColumn always inserts at least one space.
1660 // Don't mess up the alignment if we don't want any space.
1662 fdbgs().PadToColumn(Depth
* 2);
1664 for (const MachineOperand
&MO
: operands()) {
1665 if (!MO
.isReg() || MO
.isDef())
1667 Register Reg
= MO
.getReg();
1668 if (Reg
.isPhysical())
1670 const MachineInstr
*NewMI
= MRI
.getUniqueVRegDef(Reg
);
1671 if (NewMI
== nullptr)
1673 NewMI
->dumprImpl(MRI
, Depth
+ 1, MaxDepth
, AlreadySeenInstrs
);
1677 LLVM_DUMP_METHOD
void MachineInstr::dumpr(const MachineRegisterInfo
&MRI
,
1678 unsigned MaxDepth
) const {
1679 SmallPtrSet
<const MachineInstr
*, 16> AlreadySeenInstrs
;
1680 dumprImpl(MRI
, 0, MaxDepth
, AlreadySeenInstrs
);
1684 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1685 bool SkipDebugLoc
, bool AddNewLine
,
1686 const TargetInstrInfo
*TII
) const {
1687 const Module
*M
= nullptr;
1688 const Function
*F
= nullptr;
1689 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1690 F
= &MF
->getFunction();
1693 TII
= MF
->getSubtarget().getInstrInfo();
1696 ModuleSlotTracker
MST(M
);
1698 MST
.incorporateFunction(*F
);
1699 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, AddNewLine
, TII
);
1702 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1703 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1704 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1705 // We can be a bit tidier if we know the MachineFunction.
1706 const TargetRegisterInfo
*TRI
= nullptr;
1707 const MachineRegisterInfo
*MRI
= nullptr;
1708 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1709 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1711 if (isCFIInstruction())
1712 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1714 SmallBitVector
PrintedTypes(8);
1715 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1716 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1717 if (!ShouldPrintRegisterTies
)
1719 const MachineOperand
&MO
= getOperand(OpIdx
);
1720 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1721 return findTiedOperandIdx(OpIdx
);
1724 unsigned StartOp
= 0;
1725 unsigned e
= getNumOperands();
1727 // Print explicitly defined operands on the left of an assignment syntax.
1728 while (StartOp
< e
) {
1729 const MachineOperand
&MO
= getOperand(StartOp
);
1730 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1736 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1737 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1738 MO
.print(OS
, MST
, TypeToPrint
, StartOp
, /*PrintDef=*/false, IsStandalone
,
1739 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1746 if (getFlag(MachineInstr::FrameSetup
))
1747 OS
<< "frame-setup ";
1748 if (getFlag(MachineInstr::FrameDestroy
))
1749 OS
<< "frame-destroy ";
1750 if (getFlag(MachineInstr::FmNoNans
))
1752 if (getFlag(MachineInstr::FmNoInfs
))
1754 if (getFlag(MachineInstr::FmNsz
))
1756 if (getFlag(MachineInstr::FmArcp
))
1758 if (getFlag(MachineInstr::FmContract
))
1760 if (getFlag(MachineInstr::FmAfn
))
1762 if (getFlag(MachineInstr::FmReassoc
))
1764 if (getFlag(MachineInstr::NoUWrap
))
1766 if (getFlag(MachineInstr::NoSWrap
))
1768 if (getFlag(MachineInstr::IsExact
))
1770 if (getFlag(MachineInstr::NoFPExcept
))
1771 OS
<< "nofpexcept ";
1772 if (getFlag(MachineInstr::NoMerge
))
1774 if (getFlag(MachineInstr::NonNeg
))
1776 if (getFlag(MachineInstr::Disjoint
))
1778 if (getFlag(MachineInstr::SameSign
))
1781 // Print the opcode name.
1783 OS
<< TII
->getName(getOpcode());
1790 // Print the rest of the operands.
1791 bool FirstOp
= true;
1792 unsigned AsmDescOp
= ~0u;
1793 unsigned AsmOpCount
= 0;
1795 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1796 // Print asm string.
1798 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1799 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1800 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1801 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, OpIdx
, /*PrintDef=*/true, IsStandalone
,
1802 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1805 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1806 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1807 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1808 OS
<< " [sideeffect]";
1809 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1811 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1812 OS
<< " [maystore]";
1813 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1814 OS
<< " [isconvergent]";
1815 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1816 OS
<< " [alignstack]";
1817 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1818 OS
<< " [attdialect]";
1819 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1820 OS
<< " [inteldialect]";
1822 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1826 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1827 const MachineOperand
&MO
= getOperand(i
);
1829 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1832 if (isDebugValueLike() && MO
.isMetadata()) {
1833 // Pretty print DBG_VALUE* instructions.
1834 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1835 if (DIV
&& !DIV
->getName().empty())
1836 OS
<< "!\"" << DIV
->getName() << '\"';
1838 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1839 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1840 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1841 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1843 } else if (isDebugLabel() && MO
.isMetadata()) {
1844 // Pretty print DBG_LABEL instructions.
1845 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1846 if (DIL
&& !DIL
->getName().empty())
1847 OS
<< "\"" << DIL
->getName() << '\"';
1849 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1850 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1851 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1852 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1854 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1855 // Pretty print the inline asm operand descriptor.
1856 OS
<< '$' << AsmOpCount
++;
1857 unsigned Flag
= MO
.getImm();
1858 const InlineAsm::Flag
F(Flag
);
1860 OS
<< F
.getKindName();
1863 if (!F
.isImmKind() && !F
.isMemKind() && F
.hasRegClassConstraint(RCID
)) {
1865 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1867 OS
<< ":RC" << RCID
;
1870 if (F
.isMemKind()) {
1871 const InlineAsm::ConstraintCode MCID
= F
.getMemoryConstraintID();
1872 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1876 if (F
.isUseOperandTiedToDef(TiedTo
))
1877 OS
<< " tiedto:$" << TiedTo
;
1879 if ((F
.isRegDefKind() || F
.isRegDefEarlyClobberKind() ||
1880 F
.isRegUseKind()) &&
1881 F
.getRegMayBeFolded()) {
1887 // Compute the index of the next operand descriptor.
1888 AsmDescOp
+= 1 + F
.getNumOperandRegisters();
1890 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1891 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1892 if (MO
.isImm() && isOperandSubregIdx(i
))
1893 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1895 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1896 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1900 // Print any optional symbols attached to this instruction as-if they were
1902 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1907 OS
<< " pre-instr-symbol ";
1908 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1910 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1915 OS
<< " post-instr-symbol ";
1916 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1918 if (MDNode
*HeapAllocMarker
= getHeapAllocMarker()) {
1923 OS
<< " heap-alloc-marker ";
1924 HeapAllocMarker
->printAsOperand(OS
, MST
);
1926 if (MDNode
*PCSections
= getPCSections()) {
1931 OS
<< " pcsections ";
1932 PCSections
->printAsOperand(OS
, MST
);
1934 if (MDNode
*MMRA
= getMMRAMetadata()) {
1940 MMRA
->printAsOperand(OS
, MST
);
1942 if (uint32_t CFIType
= getCFIType()) {
1945 OS
<< " cfi-type " << CFIType
;
1948 if (DebugInstrNum
) {
1951 OS
<< " debug-instr-number " << DebugInstrNum
;
1954 if (!SkipDebugLoc
) {
1955 if (const DebugLoc
&DL
= getDebugLoc()) {
1958 OS
<< " debug-location ";
1959 DL
->printAsOperand(OS
, MST
);
1963 if (!memoperands_empty()) {
1964 SmallVector
<StringRef
, 0> SSNs
;
1965 const LLVMContext
*Context
= nullptr;
1966 std::unique_ptr
<LLVMContext
> CtxPtr
;
1967 const MachineFrameInfo
*MFI
= nullptr;
1968 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1969 MFI
= &MF
->getFrameInfo();
1970 Context
= &MF
->getFunction().getContext();
1972 CtxPtr
= std::make_unique
<LLVMContext
>();
1973 Context
= CtxPtr
.get();
1977 bool NeedComma
= false;
1978 for (const MachineMemOperand
*Op
: memoperands()) {
1981 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
1989 bool HaveSemi
= false;
1991 // Print debug location information.
1992 if (const DebugLoc
&DL
= getDebugLoc()) {
2001 // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
2002 if ((isNonListDebugValue() && getNumOperands() >= 4) ||
2003 (isDebugValueList() && getNumOperands() >= 2) ||
2004 (isDebugRef() && getNumOperands() >= 3)) {
2005 if (getDebugVariableOp().isMetadata()) {
2010 auto *DV
= getDebugVariable();
2011 OS
<< " line no:" << DV
->getLine();
2012 if (isIndirectDebugValue())
2022 bool MachineInstr::addRegisterKilled(Register IncomingReg
,
2023 const TargetRegisterInfo
*RegInfo
,
2024 bool AddIfNotFound
) {
2025 bool isPhysReg
= IncomingReg
.isPhysical();
2026 bool hasAliases
= isPhysReg
&&
2027 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
2029 SmallVector
<unsigned,4> DeadOps
;
2030 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2031 MachineOperand
&MO
= getOperand(i
);
2032 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
2035 // DEBUG_VALUE nodes do not contribute to code generation and should
2036 // always be ignored. Failure to do so may result in trying to modify
2037 // KILL flags on DEBUG_VALUE nodes.
2041 Register Reg
= MO
.getReg();
2045 if (Reg
== IncomingReg
) {
2048 // The register is already marked kill.
2050 if (isPhysReg
&& isRegTiedToDefOperand(i
))
2051 // Two-address uses of physregs must not be marked kill.
2056 } else if (hasAliases
&& MO
.isKill() && Reg
.isPhysical()) {
2057 // A super-register kill already exists.
2058 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
2060 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
2061 DeadOps
.push_back(i
);
2065 // Trim unneeded kill operands.
2066 while (!DeadOps
.empty()) {
2067 unsigned OpIdx
= DeadOps
.back();
2068 if (getOperand(OpIdx
).isImplicit() &&
2069 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
2070 removeOperand(OpIdx
);
2072 getOperand(OpIdx
).setIsKill(false);
2076 // If not found, this means an alias of one of the operands is killed. Add a
2077 // new implicit operand if required.
2078 if (!Found
&& AddIfNotFound
) {
2079 addOperand(MachineOperand::CreateReg(IncomingReg
,
2088 void MachineInstr::clearRegisterKills(Register Reg
,
2089 const TargetRegisterInfo
*RegInfo
) {
2090 if (!Reg
.isPhysical())
2092 for (MachineOperand
&MO
: operands()) {
2093 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
2095 Register OpReg
= MO
.getReg();
2096 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
2097 MO
.setIsKill(false);
2101 bool MachineInstr::addRegisterDead(Register Reg
,
2102 const TargetRegisterInfo
*RegInfo
,
2103 bool AddIfNotFound
) {
2104 bool isPhysReg
= Reg
.isPhysical();
2105 bool hasAliases
= isPhysReg
&&
2106 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
2108 SmallVector
<unsigned,4> DeadOps
;
2109 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2110 MachineOperand
&MO
= getOperand(i
);
2111 if (!MO
.isReg() || !MO
.isDef())
2113 Register MOReg
= MO
.getReg();
2120 } else if (hasAliases
&& MO
.isDead() && MOReg
.isPhysical()) {
2121 // There exists a super-register that's marked dead.
2122 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
2124 if (RegInfo
->isSubRegister(Reg
, MOReg
))
2125 DeadOps
.push_back(i
);
2129 // Trim unneeded dead operands.
2130 while (!DeadOps
.empty()) {
2131 unsigned OpIdx
= DeadOps
.back();
2132 if (getOperand(OpIdx
).isImplicit() &&
2133 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
2134 removeOperand(OpIdx
);
2136 getOperand(OpIdx
).setIsDead(false);
2140 // If not found, this means an alias of one of the operands is dead. Add a
2141 // new implicit operand if required.
2142 if (Found
|| !AddIfNotFound
)
2145 addOperand(MachineOperand::CreateReg(Reg
,
2153 void MachineInstr::clearRegisterDeads(Register Reg
) {
2154 for (MachineOperand
&MO
: all_defs())
2155 if (MO
.getReg() == Reg
)
2156 MO
.setIsDead(false);
2159 void MachineInstr::setRegisterDefReadUndef(Register Reg
, bool IsUndef
) {
2160 for (MachineOperand
&MO
: all_defs())
2161 if (MO
.getReg() == Reg
&& MO
.getSubReg() != 0)
2162 MO
.setIsUndef(IsUndef
);
2165 void MachineInstr::addRegisterDefined(Register Reg
,
2166 const TargetRegisterInfo
*RegInfo
) {
2167 if (Reg
.isPhysical()) {
2168 MachineOperand
*MO
= findRegisterDefOperand(Reg
, RegInfo
, false, false);
2172 for (const MachineOperand
&MO
: all_defs()) {
2173 if (MO
.getReg() == Reg
&& MO
.getSubReg() == 0)
2177 addOperand(MachineOperand::CreateReg(Reg
,
2182 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<Register
> UsedRegs
,
2183 const TargetRegisterInfo
&TRI
) {
2184 bool HasRegMask
= false;
2185 for (MachineOperand
&MO
: operands()) {
2186 if (MO
.isRegMask()) {
2190 if (!MO
.isReg() || !MO
.isDef()) continue;
2191 Register Reg
= MO
.getReg();
2192 if (!Reg
.isPhysical())
2194 // If there are no uses, including partial uses, the def is dead.
2195 if (llvm::none_of(UsedRegs
,
2196 [&](MCRegister Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
2200 // This is a call with a register mask operand.
2201 // Mask clobbers are always dead, so add defs for the non-dead defines.
2203 for (const Register
&UsedReg
: UsedRegs
)
2204 addRegisterDefined(UsedReg
, &TRI
);
2208 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
2209 // Build up a buffer of hash code components.
2210 SmallVector
<size_t, 16> HashComponents
;
2211 HashComponents
.reserve(MI
->getNumOperands() + 1);
2212 HashComponents
.push_back(MI
->getOpcode());
2213 for (const MachineOperand
&MO
: MI
->operands()) {
2214 if (MO
.isReg() && MO
.isDef() && MO
.getReg().isVirtual())
2215 continue; // Skip virtual register defs.
2217 HashComponents
.push_back(hash_value(MO
));
2219 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
2222 void MachineInstr::emitError(StringRef Msg
) const {
2223 // Find the source location cookie.
2224 uint64_t LocCookie
= 0;
2225 const MDNode
*LocMD
= nullptr;
2226 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
2227 if (getOperand(i
-1).isMetadata() &&
2228 (LocMD
= getOperand(i
-1).getMetadata()) &&
2229 LocMD
->getNumOperands() != 0) {
2230 if (const ConstantInt
*CI
=
2231 mdconst::dyn_extract
<ConstantInt
>(LocMD
->getOperand(0))) {
2232 LocCookie
= CI
->getZExtValue();
2238 if (const MachineBasicBlock
*MBB
= getParent())
2239 if (const MachineFunction
*MF
= MBB
->getParent())
2240 return MF
->getFunction().getContext().emitError(LocCookie
, Msg
);
2241 report_fatal_error(Msg
);
2244 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2245 const MCInstrDesc
&MCID
, bool IsIndirect
,
2246 Register Reg
, const MDNode
*Variable
,
2247 const MDNode
*Expr
) {
2248 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2249 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2250 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2251 "Expected inlined-at fields to agree");
2252 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
);
2257 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2260 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2261 const MCInstrDesc
&MCID
, bool IsIndirect
,
2262 ArrayRef
<MachineOperand
> DebugOps
,
2263 const MDNode
*Variable
, const MDNode
*Expr
) {
2264 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2265 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2266 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2267 "Expected inlined-at fields to agree");
2268 if (MCID
.Opcode
== TargetOpcode::DBG_VALUE
) {
2269 assert(DebugOps
.size() == 1 &&
2270 "DBG_VALUE must contain exactly one debug operand");
2271 MachineOperand DebugOp
= DebugOps
[0];
2272 if (DebugOp
.isReg())
2273 return BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOp
.getReg(), Variable
,
2276 auto MIB
= BuildMI(MF
, DL
, MCID
).add(DebugOp
);
2281 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2284 auto MIB
= BuildMI(MF
, DL
, MCID
);
2285 MIB
.addMetadata(Variable
).addMetadata(Expr
);
2286 for (const MachineOperand
&DebugOp
: DebugOps
)
2287 if (DebugOp
.isReg())
2288 MIB
.addReg(DebugOp
.getReg());
2294 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2295 MachineBasicBlock::iterator I
,
2296 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2297 bool IsIndirect
, Register Reg
,
2298 const MDNode
*Variable
, const MDNode
*Expr
) {
2299 MachineFunction
&MF
= *BB
.getParent();
2300 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2302 return MachineInstrBuilder(MF
, MI
);
2305 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2306 MachineBasicBlock::iterator I
,
2307 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2309 ArrayRef
<MachineOperand
> DebugOps
,
2310 const MDNode
*Variable
, const MDNode
*Expr
) {
2311 MachineFunction
&MF
= *BB
.getParent();
2313 BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOps
, Variable
, Expr
);
2315 return MachineInstrBuilder(MF
, *MI
);
2318 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2319 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2320 static const DIExpression
*computeExprForSpill(
2321 const MachineInstr
&MI
,
2322 const SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2323 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2324 "Expected inlined-at fields to agree");
2326 const DIExpression
*Expr
= MI
.getDebugExpression();
2327 if (MI
.isIndirectDebugValue()) {
2328 assert(MI
.getDebugOffset().getImm() == 0 &&
2329 "DBG_VALUE with nonzero offset");
2330 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefBefore
);
2331 } else if (MI
.isDebugValueList()) {
2332 // We will replace the spilled register with a frame index, so
2333 // immediately deref all references to the spilled register.
2334 std::array
<uint64_t, 1> Ops
{{dwarf::DW_OP_deref
}};
2335 for (const MachineOperand
*Op
: SpilledOperands
) {
2336 unsigned OpIdx
= MI
.getDebugOperandIndex(Op
);
2337 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, OpIdx
);
2342 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
,
2343 Register SpillReg
) {
2344 assert(MI
.hasDebugOperandForReg(SpillReg
) && "Spill Reg is not used in MI.");
2345 SmallVector
<const MachineOperand
*> SpillOperands
;
2346 for (const MachineOperand
&Op
: MI
.getDebugOperandsForReg(SpillReg
))
2347 SpillOperands
.push_back(&Op
);
2348 return computeExprForSpill(MI
, SpillOperands
);
2351 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2352 MachineBasicBlock::iterator I
,
2353 const MachineInstr
&Orig
,
2354 int FrameIndex
, Register SpillReg
) {
2355 assert(!Orig
.isDebugRef() &&
2356 "DBG_INSTR_REF should not reference a virtual register.");
2357 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpillReg
);
2358 MachineInstrBuilder NewMI
=
2359 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2360 // Non-Variadic Operands: Location, Offset, Variable, Expression
2361 // Variadic Operands: Variable, Expression, Locations...
2362 if (Orig
.isNonListDebugValue())
2363 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2364 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2365 if (Orig
.isDebugValueList()) {
2366 for (const MachineOperand
&Op
: Orig
.debug_operands())
2367 if (Op
.isReg() && Op
.getReg() == SpillReg
)
2368 NewMI
.addFrameIndex(FrameIndex
);
2370 NewMI
.add(MachineOperand(Op
));
2374 MachineInstr
*llvm::buildDbgValueForSpill(
2375 MachineBasicBlock
&BB
, MachineBasicBlock::iterator I
,
2376 const MachineInstr
&Orig
, int FrameIndex
,
2377 const SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2378 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpilledOperands
);
2379 MachineInstrBuilder NewMI
=
2380 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2381 // Non-Variadic Operands: Location, Offset, Variable, Expression
2382 // Variadic Operands: Variable, Expression, Locations...
2383 if (Orig
.isNonListDebugValue())
2384 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2385 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2386 if (Orig
.isDebugValueList()) {
2387 for (const MachineOperand
&Op
: Orig
.debug_operands())
2388 if (is_contained(SpilledOperands
, &Op
))
2389 NewMI
.addFrameIndex(FrameIndex
);
2391 NewMI
.add(MachineOperand(Op
));
2396 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
,
2398 const DIExpression
*Expr
= computeExprForSpill(Orig
, Reg
);
2399 if (Orig
.isNonListDebugValue())
2400 Orig
.getDebugOffset().ChangeToImmediate(0U);
2401 for (MachineOperand
&Op
: Orig
.getDebugOperandsForReg(Reg
))
2402 Op
.ChangeToFrameIndex(FrameIndex
);
2403 Orig
.getDebugExpressionOp().setMetadata(Expr
);
2406 void MachineInstr::collectDebugValues(
2407 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2408 MachineInstr
&MI
= *this;
2409 if (!MI
.getOperand(0).isReg())
2412 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2413 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2415 if (!DI
->isDebugValue())
2417 if (DI
->hasDebugOperandForReg(MI
.getOperand(0).getReg()))
2418 DbgValues
.push_back(&*DI
);
2422 void MachineInstr::changeDebugValuesDefReg(Register Reg
) {
2423 // Collect matching debug values.
2424 SmallVector
<MachineInstr
*, 2> DbgValues
;
2426 if (!getOperand(0).isReg())
2429 Register DefReg
= getOperand(0).getReg();
2430 auto *MRI
= getRegInfo();
2431 for (auto &MO
: MRI
->use_operands(DefReg
)) {
2432 auto *DI
= MO
.getParent();
2433 if (!DI
->isDebugValue())
2435 if (DI
->hasDebugOperandForReg(DefReg
)) {
2436 DbgValues
.push_back(DI
);
2440 // Propagate Reg to debug value instructions.
2441 for (auto *DBI
: DbgValues
)
2442 for (MachineOperand
&Op
: DBI
->getDebugOperandsForReg(DefReg
))
2446 using MMOList
= SmallVector
<const MachineMemOperand
*, 2>;
2448 static LocationSize
getSpillSlotSize(const MMOList
&Accesses
,
2449 const MachineFrameInfo
&MFI
) {
2451 for (const auto *A
: Accesses
) {
2452 if (MFI
.isSpillSlotObjectIndex(
2453 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
2454 ->getFrameIndex())) {
2455 LocationSize S
= A
->getSize();
2457 return LocationSize::beforeOrAfterPointer();
2458 Size
+= S
.getValue();
2464 std::optional
<LocationSize
>
2465 MachineInstr::getSpillSize(const TargetInstrInfo
*TII
) const {
2467 if (TII
->isStoreToStackSlotPostFE(*this, FI
)) {
2468 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2469 if (MFI
.isSpillSlotObjectIndex(FI
))
2470 return (*memoperands_begin())->getSize();
2472 return std::nullopt
;
2475 std::optional
<LocationSize
>
2476 MachineInstr::getFoldedSpillSize(const TargetInstrInfo
*TII
) const {
2478 if (TII
->hasStoreToStackSlot(*this, Accesses
))
2479 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2480 return std::nullopt
;
2483 std::optional
<LocationSize
>
2484 MachineInstr::getRestoreSize(const TargetInstrInfo
*TII
) const {
2486 if (TII
->isLoadFromStackSlotPostFE(*this, FI
)) {
2487 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2488 if (MFI
.isSpillSlotObjectIndex(FI
))
2489 return (*memoperands_begin())->getSize();
2491 return std::nullopt
;
2494 std::optional
<LocationSize
>
2495 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo
*TII
) const {
2497 if (TII
->hasLoadFromStackSlot(*this, Accesses
))
2498 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2499 return std::nullopt
;
2502 unsigned MachineInstr::getDebugInstrNum() {
2503 if (DebugInstrNum
== 0)
2504 DebugInstrNum
= getParent()->getParent()->getNewDebugInstrNum();
2505 return DebugInstrNum
;
2508 unsigned MachineInstr::getDebugInstrNum(MachineFunction
&MF
) {
2509 if (DebugInstrNum
== 0)
2510 DebugInstrNum
= MF
.getNewDebugInstrNum();
2511 return DebugInstrNum
;
2514 std::tuple
<LLT
, LLT
> MachineInstr::getFirst2LLTs() const {
2515 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2516 getRegInfo()->getType(getOperand(1).getReg()));
2519 std::tuple
<LLT
, LLT
, LLT
> MachineInstr::getFirst3LLTs() const {
2520 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2521 getRegInfo()->getType(getOperand(1).getReg()),
2522 getRegInfo()->getType(getOperand(2).getReg()));
2525 std::tuple
<LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst4LLTs() const {
2526 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2527 getRegInfo()->getType(getOperand(1).getReg()),
2528 getRegInfo()->getType(getOperand(2).getReg()),
2529 getRegInfo()->getType(getOperand(3).getReg()));
2532 std::tuple
<LLT
, LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst5LLTs() const {
2533 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2534 getRegInfo()->getType(getOperand(1).getReg()),
2535 getRegInfo()->getType(getOperand(2).getReg()),
2536 getRegInfo()->getType(getOperand(3).getReg()),
2537 getRegInfo()->getType(getOperand(4).getReg()));
2540 std::tuple
<Register
, LLT
, Register
, LLT
>
2541 MachineInstr::getFirst2RegLLTs() const {
2542 Register Reg0
= getOperand(0).getReg();
2543 Register Reg1
= getOperand(1).getReg();
2544 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2545 getRegInfo()->getType(Reg1
));
2548 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
>
2549 MachineInstr::getFirst3RegLLTs() const {
2550 Register Reg0
= getOperand(0).getReg();
2551 Register Reg1
= getOperand(1).getReg();
2552 Register Reg2
= getOperand(2).getReg();
2553 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2554 getRegInfo()->getType(Reg1
), Reg2
,
2555 getRegInfo()->getType(Reg2
));
2558 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
>
2559 MachineInstr::getFirst4RegLLTs() const {
2560 Register Reg0
= getOperand(0).getReg();
2561 Register Reg1
= getOperand(1).getReg();
2562 Register Reg2
= getOperand(2).getReg();
2563 Register Reg3
= getOperand(3).getReg();
2565 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2566 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
));
2569 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
,
2571 MachineInstr::getFirst5RegLLTs() const {
2572 Register Reg0
= getOperand(0).getReg();
2573 Register Reg1
= getOperand(1).getReg();
2574 Register Reg2
= getOperand(2).getReg();
2575 Register Reg3
= getOperand(3).getReg();
2576 Register Reg4
= getOperand(4).getReg();
2578 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2579 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
),
2580 Reg4
, getRegInfo()->getType(Reg4
));
2583 void MachineInstr::insert(mop_iterator InsertBefore
,
2584 ArrayRef
<MachineOperand
> Ops
) {
2585 assert(InsertBefore
!= nullptr && "invalid iterator");
2586 assert(InsertBefore
->getParent() == this &&
2587 "iterator points to operand of other inst");
2591 // Do one pass to untie operands.
2592 SmallDenseMap
<unsigned, unsigned> TiedOpIndices
;
2593 for (const MachineOperand
&MO
: operands()) {
2594 if (MO
.isReg() && MO
.isTied()) {
2595 unsigned OpNo
= getOperandNo(&MO
);
2596 unsigned TiedTo
= findTiedOperandIdx(OpNo
);
2597 TiedOpIndices
[OpNo
] = TiedTo
;
2598 untieRegOperand(OpNo
);
2602 unsigned OpIdx
= getOperandNo(InsertBefore
);
2603 unsigned NumOperands
= getNumOperands();
2604 unsigned OpsToMove
= NumOperands
- OpIdx
;
2606 SmallVector
<MachineOperand
> MovingOps
;
2607 MovingOps
.reserve(OpsToMove
);
2609 for (unsigned I
= 0; I
< OpsToMove
; ++I
) {
2610 MovingOps
.emplace_back(getOperand(OpIdx
));
2611 removeOperand(OpIdx
);
2613 for (const MachineOperand
&MO
: Ops
)
2615 for (const MachineOperand
&OpMoved
: MovingOps
)
2616 addOperand(OpMoved
);
2619 for (auto [Tie1
, Tie2
] : TiedOpIndices
) {
2624 tieOperands(Tie1
, Tie2
);
2628 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId
) const {
2629 assert(OpId
&& "expected non-zero operand id");
2630 assert(isInlineAsm() && "should only be used on inline asm");
2632 if (!getOperand(OpId
).isReg())
2635 const MachineOperand
&MD
= getOperand(OpId
- 1);
2639 InlineAsm::Flag
F(MD
.getImm());
2640 if (F
.isRegUseKind() || F
.isRegDefKind() || F
.isRegDefEarlyClobberKind())
2641 return F
.getRegMayBeFolded();