[clang][NFC] simplify the unset check in `ParseLabeledStatement` (#117430)
[llvm-project.git] / llvm / lib / CodeGen / MachineInstr.cpp
blob941861da5c569373f42215b206783fbbc2232114
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineInstrBundle.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/Register.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/CodeGenTypes/LowLevelType.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/ModuleSlotTracker.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/FormattedStream.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <utility>
63 using namespace llvm;
65 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
66 if (const MachineBasicBlock *MBB = MI.getParent())
67 if (const MachineFunction *MF = MBB->getParent())
68 return MF;
69 return nullptr;
72 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
73 // it.
74 static void tryToGetTargetInfo(const MachineInstr &MI,
75 const TargetRegisterInfo *&TRI,
76 const MachineRegisterInfo *&MRI,
77 const TargetIntrinsicInfo *&IntrinsicInfo,
78 const TargetInstrInfo *&TII) {
80 if (const MachineFunction *MF = getMFIfAvailable(MI)) {
81 TRI = MF->getSubtarget().getRegisterInfo();
82 MRI = &MF->getRegInfo();
83 IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
84 TII = MF->getSubtarget().getInstrInfo();
88 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
89 for (MCPhysReg ImpDef : MCID->implicit_defs())
90 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
91 for (MCPhysReg ImpUse : MCID->implicit_uses())
92 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
95 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
96 /// implicit operands. It reserves space for the number of operands specified by
97 /// the MCInstrDesc.
98 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
99 DebugLoc DL, bool NoImp)
100 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
101 DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) {
102 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
104 // Reserve space for the expected number of operands.
105 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
106 MCID->implicit_uses().size()) {
107 CapOperands = OperandCapacity::get(NumOps);
108 Operands = MF.allocateOperandArray(CapOperands);
111 if (!NoImp)
112 addImplicitDefUseOperands(MF);
115 /// MachineInstr ctor - Copies MachineInstr arg exactly.
116 /// Does not copy the number from debug instruction numbering, to preserve
117 /// uniqueness.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
119 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
120 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0),
121 Opcode(MI.getOpcode()) {
122 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124 CapOperands = OperandCapacity::get(MI.getNumOperands());
125 Operands = MF.allocateOperandArray(CapOperands);
127 // Copy operands.
128 for (const MachineOperand &MO : MI.operands())
129 addOperand(MF, MO);
131 // Replicate ties between the operands, which addOperand was not
132 // able to do reliably.
133 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
134 MachineOperand &NewMO = getOperand(i);
135 const MachineOperand &OrigMO = MI.getOperand(i);
136 NewMO.TiedTo = OrigMO.TiedTo;
139 // Copy all the sensible flags.
140 setFlags(MI.Flags);
143 void MachineInstr::setDesc(const MCInstrDesc &TID) {
144 if (getParent())
145 getMF()->handleChangeDesc(*this, TID);
146 MCID = &TID;
147 Opcode = TID.Opcode;
150 void MachineInstr::moveBefore(MachineInstr *MovePos) {
151 MovePos->getParent()->splice(MovePos, getParent(), getIterator());
154 /// getRegInfo - If this instruction is embedded into a MachineFunction,
155 /// return the MachineRegisterInfo object for the current function, otherwise
156 /// return null.
157 MachineRegisterInfo *MachineInstr::getRegInfo() {
158 if (MachineBasicBlock *MBB = getParent())
159 return &MBB->getParent()->getRegInfo();
160 return nullptr;
163 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
164 if (const MachineBasicBlock *MBB = getParent())
165 return &MBB->getParent()->getRegInfo();
166 return nullptr;
169 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170 for (MachineOperand &MO : operands())
171 if (MO.isReg())
172 MRI.removeRegOperandFromUseList(&MO);
175 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
176 for (MachineOperand &MO : operands())
177 if (MO.isReg())
178 MRI.addRegOperandToUseList(&MO);
181 void MachineInstr::addOperand(const MachineOperand &Op) {
182 MachineBasicBlock *MBB = getParent();
183 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
184 MachineFunction *MF = MBB->getParent();
185 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
186 addOperand(*MF, Op);
189 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
190 /// ranges. If MRI is non-null also update use-def chains.
191 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
192 unsigned NumOps, MachineRegisterInfo *MRI) {
193 if (MRI)
194 return MRI->moveOperands(Dst, Src, NumOps);
195 // MachineOperand is a trivially copyable type so we can just use memmove.
196 assert(Dst && Src && "Unknown operands");
197 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
200 /// addOperand - Add the specified operand to the instruction. If it is an
201 /// implicit operand, it is added to the end of the operand list. If it is
202 /// an explicit operand it is added at the end of the explicit operand list
203 /// (before the first implicit operand).
204 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
205 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
206 "Cannot add more operands.");
207 assert(MCID && "Cannot add operands before providing an instr descriptor");
209 // Check if we're adding one of our existing operands.
210 if (&Op >= Operands && &Op < Operands + NumOperands) {
211 // This is unusual: MI->addOperand(MI->getOperand(i)).
212 // If adding Op requires reallocating or moving existing operands around,
213 // the Op reference could go stale. Support it by copying Op.
214 MachineOperand CopyOp(Op);
215 return addOperand(MF, CopyOp);
218 // Find the insert location for the new operand. Implicit registers go at
219 // the end, everything else goes before the implicit regs.
221 // FIXME: Allow mixed explicit and implicit operands on inline asm.
222 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
223 // implicit-defs, but they must not be moved around. See the FIXME in
224 // InstrEmitter.cpp.
225 unsigned OpNo = getNumOperands();
226 bool isImpReg = Op.isReg() && Op.isImplicit();
227 if (!isImpReg && !isInlineAsm()) {
228 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
229 --OpNo;
230 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
234 // OpNo now points as the desired insertion point. Unless this is a variadic
235 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
236 // RegMask operands go between the explicit and implicit operands.
237 MachineRegisterInfo *MRI = getRegInfo();
239 // Determine if the Operands array needs to be reallocated.
240 // Save the old capacity and operand array.
241 OperandCapacity OldCap = CapOperands;
242 MachineOperand *OldOperands = Operands;
243 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
244 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
245 Operands = MF.allocateOperandArray(CapOperands);
246 // Move the operands before the insertion point.
247 if (OpNo)
248 moveOperands(Operands, OldOperands, OpNo, MRI);
251 // Move the operands following the insertion point.
252 if (OpNo != NumOperands)
253 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
254 MRI);
255 ++NumOperands;
257 // Deallocate the old operand array.
258 if (OldOperands != Operands && OldOperands)
259 MF.deallocateOperandArray(OldCap, OldOperands);
261 // Copy Op into place. It still needs to be inserted into the MRI use lists.
262 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
263 NewMO->ParentMI = this;
265 // When adding a register operand, tell MRI about it.
266 if (NewMO->isReg()) {
267 // Ensure isOnRegUseList() returns false, regardless of Op's status.
268 NewMO->Contents.Reg.Prev = nullptr;
269 // Ignore existing ties. This is not a property that can be copied.
270 NewMO->TiedTo = 0;
271 // Add the new operand to MRI, but only for instructions in an MBB.
272 if (MRI)
273 MRI->addRegOperandToUseList(NewMO);
274 // The MCID operand information isn't accurate until we start adding
275 // explicit operands. The implicit operands are added first, then the
276 // explicits are inserted before them.
277 if (!isImpReg) {
278 // Tie uses to defs as indicated in MCInstrDesc.
279 if (NewMO->isUse()) {
280 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
281 if (DefIdx != -1)
282 tieOperands(DefIdx, OpNo);
284 // If the register operand is flagged as early, mark the operand as such.
285 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
286 NewMO->setIsEarlyClobber(true);
288 // Ensure debug instructions set debug flag on register uses.
289 if (NewMO->isUse() && isDebugInstr())
290 NewMO->setIsDebug();
294 void MachineInstr::removeOperand(unsigned OpNo) {
295 assert(OpNo < getNumOperands() && "Invalid operand number");
296 untieRegOperand(OpNo);
298 #ifndef NDEBUG
299 // Moving tied operands would break the ties.
300 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
301 if (Operands[i].isReg())
302 assert(!Operands[i].isTied() && "Cannot move tied operands");
303 #endif
305 MachineRegisterInfo *MRI = getRegInfo();
306 if (MRI && Operands[OpNo].isReg())
307 MRI->removeRegOperandFromUseList(Operands + OpNo);
309 // Don't call the MachineOperand destructor. A lot of this code depends on
310 // MachineOperand having a trivial destructor anyway, and adding a call here
311 // wouldn't make it 'destructor-correct'.
313 if (unsigned N = NumOperands - 1 - OpNo)
314 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
315 --NumOperands;
318 void MachineInstr::setExtraInfo(MachineFunction &MF,
319 ArrayRef<MachineMemOperand *> MMOs,
320 MCSymbol *PreInstrSymbol,
321 MCSymbol *PostInstrSymbol,
322 MDNode *HeapAllocMarker, MDNode *PCSections,
323 uint32_t CFIType, MDNode *MMRAs) {
324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
327 bool HasPCSections = PCSections != nullptr;
328 bool HasCFIType = CFIType != 0;
329 bool HasMMRAs = MMRAs != nullptr;
330 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
331 HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs;
333 // Drop all extra info if there is none.
334 if (NumPointers <= 0) {
335 Info.clear();
336 return;
339 // If more than one pointer, then store out of line. Store heap alloc markers
340 // out of line because PointerSumType cannot hold more than 4 tag types with
341 // 32-bit pointers.
342 // FIXME: Maybe we should make the symbols in the extra info mutable?
343 else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections ||
344 HasCFIType) {
345 Info.set<EIIK_OutOfLine>(
346 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
347 HeapAllocMarker, PCSections, CFIType, MMRAs));
348 return;
351 // Otherwise store the single pointer inline.
352 if (HasPreInstrSymbol)
353 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
354 else if (HasPostInstrSymbol)
355 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
356 else
357 Info.set<EIIK_MMO>(MMOs[0]);
360 void MachineInstr::dropMemRefs(MachineFunction &MF) {
361 if (memoperands_empty())
362 return;
364 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
365 getHeapAllocMarker(), getPCSections(), getCFIType(),
366 getMMRAMetadata());
369 void MachineInstr::setMemRefs(MachineFunction &MF,
370 ArrayRef<MachineMemOperand *> MMOs) {
371 if (MMOs.empty()) {
372 dropMemRefs(MF);
373 return;
376 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
377 getHeapAllocMarker(), getPCSections(), getCFIType(),
378 getMMRAMetadata());
381 void MachineInstr::addMemOperand(MachineFunction &MF,
382 MachineMemOperand *MO) {
383 SmallVector<MachineMemOperand *, 2> MMOs;
384 MMOs.append(memoperands_begin(), memoperands_end());
385 MMOs.push_back(MO);
386 setMemRefs(MF, MMOs);
389 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
390 if (this == &MI)
391 // Nothing to do for a self-clone!
392 return;
394 assert(&MF == MI.getMF() &&
395 "Invalid machine functions when cloning memory refrences!");
396 // See if we can just steal the extra info already allocated for the
397 // instruction. We can do this whenever the pre- and post-instruction symbols
398 // are the same (including null).
399 if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
400 getPostInstrSymbol() == MI.getPostInstrSymbol() &&
401 getHeapAllocMarker() == MI.getHeapAllocMarker() &&
402 getPCSections() == MI.getPCSections() && getMMRAMetadata() &&
403 MI.getMMRAMetadata()) {
404 Info = MI.Info;
405 return;
408 // Otherwise, fall back on a copy-based clone.
409 setMemRefs(MF, MI.memoperands());
412 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
413 /// identical.
414 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
415 ArrayRef<MachineMemOperand *> RHS) {
416 if (LHS.size() != RHS.size())
417 return false;
419 auto LHSPointees = make_pointee_range(LHS);
420 auto RHSPointees = make_pointee_range(RHS);
421 return std::equal(LHSPointees.begin(), LHSPointees.end(),
422 RHSPointees.begin());
425 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
426 ArrayRef<const MachineInstr *> MIs) {
427 // Try handling easy numbers of MIs with simpler mechanisms.
428 if (MIs.empty()) {
429 dropMemRefs(MF);
430 return;
432 if (MIs.size() == 1) {
433 cloneMemRefs(MF, *MIs[0]);
434 return;
436 // Because an empty memoperands list provides *no* information and must be
437 // handled conservatively (assuming the instruction can do anything), the only
438 // way to merge with it is to drop all other memoperands.
439 if (MIs[0]->memoperands_empty()) {
440 dropMemRefs(MF);
441 return;
444 // Handle the general case.
445 SmallVector<MachineMemOperand *, 2> MergedMMOs;
446 // Start with the first instruction.
447 assert(&MF == MIs[0]->getMF() &&
448 "Invalid machine functions when cloning memory references!");
449 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
450 // Now walk all the other instructions and accumulate any different MMOs.
451 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
452 assert(&MF == MI.getMF() &&
453 "Invalid machine functions when cloning memory references!");
455 // Skip MIs with identical operands to the first. This is a somewhat
456 // arbitrary hack but will catch common cases without being quadratic.
457 // TODO: We could fully implement merge semantics here if needed.
458 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
459 continue;
461 // Because an empty memoperands list provides *no* information and must be
462 // handled conservatively (assuming the instruction can do anything), the
463 // only way to merge with it is to drop all other memoperands.
464 if (MI.memoperands_empty()) {
465 dropMemRefs(MF);
466 return;
469 // Otherwise accumulate these into our temporary buffer of the merged state.
470 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
473 setMemRefs(MF, MergedMMOs);
476 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
477 // Do nothing if old and new symbols are the same.
478 if (Symbol == getPreInstrSymbol())
479 return;
481 // If there was only one symbol and we're removing it, just clear info.
482 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
483 Info.clear();
484 return;
487 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
488 getHeapAllocMarker(), getPCSections(), getCFIType(),
489 getMMRAMetadata());
492 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
493 // Do nothing if old and new symbols are the same.
494 if (Symbol == getPostInstrSymbol())
495 return;
497 // If there was only one symbol and we're removing it, just clear info.
498 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
499 Info.clear();
500 return;
503 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
504 getHeapAllocMarker(), getPCSections(), getCFIType(),
505 getMMRAMetadata());
508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
509 // Do nothing if old and new symbols are the same.
510 if (Marker == getHeapAllocMarker())
511 return;
513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514 Marker, getPCSections(), getCFIType(), getMMRAMetadata());
517 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
518 // Do nothing if old and new symbols are the same.
519 if (PCSections == getPCSections())
520 return;
522 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
523 getHeapAllocMarker(), PCSections, getCFIType(),
524 getMMRAMetadata());
527 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
528 // Do nothing if old and new types are the same.
529 if (Type == getCFIType())
530 return;
532 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
533 getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata());
536 void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) {
537 // Do nothing if old and new symbols are the same.
538 if (MMRAs == getMMRAMetadata())
539 return;
541 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
542 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs);
545 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
546 const MachineInstr &MI) {
547 if (this == &MI)
548 // Nothing to do for a self-clone!
549 return;
551 assert(&MF == MI.getMF() &&
552 "Invalid machine functions when cloning instruction symbols!");
554 setPreInstrSymbol(MF, MI.getPreInstrSymbol());
555 setPostInstrSymbol(MF, MI.getPostInstrSymbol());
556 setHeapAllocMarker(MF, MI.getHeapAllocMarker());
557 setPCSections(MF, MI.getPCSections());
558 setMMRAMetadata(MF, MI.getMMRAMetadata());
561 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
562 // For now, the just return the union of the flags. If the flags get more
563 // complicated over time, we might need more logic here.
564 return getFlags() | Other.getFlags();
567 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
568 uint32_t MIFlags = 0;
569 // Copy the wrapping flags.
570 if (const OverflowingBinaryOperator *OB =
571 dyn_cast<OverflowingBinaryOperator>(&I)) {
572 if (OB->hasNoSignedWrap())
573 MIFlags |= MachineInstr::MIFlag::NoSWrap;
574 if (OB->hasNoUnsignedWrap())
575 MIFlags |= MachineInstr::MIFlag::NoUWrap;
576 } else if (const TruncInst *TI = dyn_cast<TruncInst>(&I)) {
577 if (TI->hasNoSignedWrap())
578 MIFlags |= MachineInstr::MIFlag::NoSWrap;
579 if (TI->hasNoUnsignedWrap())
580 MIFlags |= MachineInstr::MIFlag::NoUWrap;
581 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
582 if (GEP->hasNoUnsignedSignedWrap())
583 MIFlags |= MachineInstr::MIFlag::NoUSWrap;
584 if (GEP->hasNoUnsignedWrap())
585 MIFlags |= MachineInstr::MIFlag::NoUWrap;
588 // Copy the nonneg flag.
589 if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(&I)) {
590 if (PNI->hasNonNeg())
591 MIFlags |= MachineInstr::MIFlag::NonNeg;
592 // Copy the disjoint flag.
593 } else if (const PossiblyDisjointInst *PD =
594 dyn_cast<PossiblyDisjointInst>(&I)) {
595 if (PD->isDisjoint())
596 MIFlags |= MachineInstr::MIFlag::Disjoint;
599 // Copy the samesign flag.
600 if (const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I))
601 if (ICmp->hasSameSign())
602 MIFlags |= MachineInstr::MIFlag::SameSign;
604 // Copy the exact flag.
605 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
606 if (PE->isExact())
607 MIFlags |= MachineInstr::MIFlag::IsExact;
609 // Copy the fast-math flags.
610 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
611 const FastMathFlags Flags = FP->getFastMathFlags();
612 if (Flags.noNaNs())
613 MIFlags |= MachineInstr::MIFlag::FmNoNans;
614 if (Flags.noInfs())
615 MIFlags |= MachineInstr::MIFlag::FmNoInfs;
616 if (Flags.noSignedZeros())
617 MIFlags |= MachineInstr::MIFlag::FmNsz;
618 if (Flags.allowReciprocal())
619 MIFlags |= MachineInstr::MIFlag::FmArcp;
620 if (Flags.allowContract())
621 MIFlags |= MachineInstr::MIFlag::FmContract;
622 if (Flags.approxFunc())
623 MIFlags |= MachineInstr::MIFlag::FmAfn;
624 if (Flags.allowReassoc())
625 MIFlags |= MachineInstr::MIFlag::FmReassoc;
628 if (I.getMetadata(LLVMContext::MD_unpredictable))
629 MIFlags |= MachineInstr::MIFlag::Unpredictable;
631 return MIFlags;
634 void MachineInstr::copyIRFlags(const Instruction &I) {
635 Flags = copyFlagsFromInstruction(I);
638 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
639 assert(!isBundledWithPred() && "Must be called on bundle header");
640 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
641 if (MII->getDesc().getFlags() & Mask) {
642 if (Type == AnyInBundle)
643 return true;
644 } else {
645 if (Type == AllInBundle && !MII->isBundle())
646 return false;
648 // This was the last instruction in the bundle.
649 if (!MII->isBundledWithSucc())
650 return Type == AllInBundle;
654 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
655 MICheckType Check) const {
656 // If opcodes or number of operands are not the same then the two
657 // instructions are obviously not identical.
658 if (Other.getOpcode() != getOpcode() ||
659 Other.getNumOperands() != getNumOperands())
660 return false;
662 if (isBundle()) {
663 // We have passed the test above that both instructions have the same
664 // opcode, so we know that both instructions are bundles here. Let's compare
665 // MIs inside the bundle.
666 assert(Other.isBundle() && "Expected that both instructions are bundles.");
667 MachineBasicBlock::const_instr_iterator I1 = getIterator();
668 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
669 // Loop until we analysed the last intruction inside at least one of the
670 // bundles.
671 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
672 ++I1;
673 ++I2;
674 if (!I1->isIdenticalTo(*I2, Check))
675 return false;
677 // If we've reached the end of just one of the two bundles, but not both,
678 // the instructions are not identical.
679 if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
680 return false;
683 // Check operands to make sure they match.
684 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
685 const MachineOperand &MO = getOperand(i);
686 const MachineOperand &OMO = Other.getOperand(i);
687 if (!MO.isReg()) {
688 if (!MO.isIdenticalTo(OMO))
689 return false;
690 continue;
693 // Clients may or may not want to ignore defs when testing for equality.
694 // For example, machine CSE pass only cares about finding common
695 // subexpressions, so it's safe to ignore virtual register defs.
696 if (MO.isDef()) {
697 if (Check == IgnoreDefs)
698 continue;
699 else if (Check == IgnoreVRegDefs) {
700 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
701 if (!MO.isIdenticalTo(OMO))
702 return false;
703 } else {
704 if (!MO.isIdenticalTo(OMO))
705 return false;
706 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
707 return false;
709 } else {
710 if (!MO.isIdenticalTo(OMO))
711 return false;
712 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
713 return false;
716 // If DebugLoc does not match then two debug instructions are not identical.
717 if (isDebugInstr())
718 if (getDebugLoc() && Other.getDebugLoc() &&
719 getDebugLoc() != Other.getDebugLoc())
720 return false;
721 // If pre- or post-instruction symbols do not match then the two instructions
722 // are not identical.
723 if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
724 getPostInstrSymbol() != Other.getPostInstrSymbol())
725 return false;
726 // Call instructions with different CFI types are not identical.
727 if (isCall() && getCFIType() != Other.getCFIType())
728 return false;
730 return true;
733 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
734 if (!isDebugValueLike() || !Other.isDebugValueLike())
735 return false;
736 if (getDebugLoc() != Other.getDebugLoc())
737 return false;
738 if (getDebugVariable() != Other.getDebugVariable())
739 return false;
740 if (getNumDebugOperands() != Other.getNumDebugOperands())
741 return false;
742 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
743 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
744 return false;
745 if (!DIExpression::isEqualExpression(
746 getDebugExpression(), isIndirectDebugValue(),
747 Other.getDebugExpression(), Other.isIndirectDebugValue()))
748 return false;
749 return true;
752 const MachineFunction *MachineInstr::getMF() const {
753 return getParent()->getParent();
756 MachineInstr *MachineInstr::removeFromParent() {
757 assert(getParent() && "Not embedded in a basic block!");
758 return getParent()->remove(this);
761 MachineInstr *MachineInstr::removeFromBundle() {
762 assert(getParent() && "Not embedded in a basic block!");
763 return getParent()->remove_instr(this);
766 void MachineInstr::eraseFromParent() {
767 assert(getParent() && "Not embedded in a basic block!");
768 getParent()->erase(this);
771 void MachineInstr::eraseFromBundle() {
772 assert(getParent() && "Not embedded in a basic block!");
773 getParent()->erase_instr(this);
776 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
777 if (!isCall(Type))
778 return false;
779 switch (getOpcode()) {
780 case TargetOpcode::PATCHPOINT:
781 case TargetOpcode::STACKMAP:
782 case TargetOpcode::STATEPOINT:
783 case TargetOpcode::FENTRY_CALL:
784 return false;
786 return true;
789 bool MachineInstr::shouldUpdateCallSiteInfo() const {
790 if (isBundle())
791 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
792 return isCandidateForCallSiteEntry();
795 unsigned MachineInstr::getNumExplicitOperands() const {
796 unsigned NumOperands = MCID->getNumOperands();
797 if (!MCID->isVariadic())
798 return NumOperands;
800 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
801 const MachineOperand &MO = getOperand(I);
802 // The operands must always be in the following order:
803 // - explicit reg defs,
804 // - other explicit operands (reg uses, immediates, etc.),
805 // - implicit reg defs
806 // - implicit reg uses
807 if (MO.isReg() && MO.isImplicit())
808 break;
809 ++NumOperands;
811 return NumOperands;
814 unsigned MachineInstr::getNumExplicitDefs() const {
815 unsigned NumDefs = MCID->getNumDefs();
816 if (!MCID->isVariadic())
817 return NumDefs;
819 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
820 const MachineOperand &MO = getOperand(I);
821 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
822 break;
823 ++NumDefs;
825 return NumDefs;
828 void MachineInstr::bundleWithPred() {
829 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
830 setFlag(BundledPred);
831 MachineBasicBlock::instr_iterator Pred = getIterator();
832 --Pred;
833 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
834 Pred->setFlag(BundledSucc);
837 void MachineInstr::bundleWithSucc() {
838 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
839 setFlag(BundledSucc);
840 MachineBasicBlock::instr_iterator Succ = getIterator();
841 ++Succ;
842 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
843 Succ->setFlag(BundledPred);
846 void MachineInstr::unbundleFromPred() {
847 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
848 clearFlag(BundledPred);
849 MachineBasicBlock::instr_iterator Pred = getIterator();
850 --Pred;
851 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
852 Pred->clearFlag(BundledSucc);
855 void MachineInstr::unbundleFromSucc() {
856 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
857 clearFlag(BundledSucc);
858 MachineBasicBlock::instr_iterator Succ = getIterator();
859 ++Succ;
860 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
861 Succ->clearFlag(BundledPred);
864 bool MachineInstr::isStackAligningInlineAsm() const {
865 if (isInlineAsm()) {
866 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
867 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
868 return true;
870 return false;
873 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
874 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
875 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
876 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
879 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
880 unsigned *GroupNo) const {
881 assert(isInlineAsm() && "Expected an inline asm instruction");
882 assert(OpIdx < getNumOperands() && "OpIdx out of range");
884 // Ignore queries about the initial operands.
885 if (OpIdx < InlineAsm::MIOp_FirstOperand)
886 return -1;
888 unsigned Group = 0;
889 unsigned NumOps;
890 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
891 i += NumOps) {
892 const MachineOperand &FlagMO = getOperand(i);
893 // If we reach the implicit register operands, stop looking.
894 if (!FlagMO.isImm())
895 return -1;
896 const InlineAsm::Flag F(FlagMO.getImm());
897 NumOps = 1 + F.getNumOperandRegisters();
898 if (i + NumOps > OpIdx) {
899 if (GroupNo)
900 *GroupNo = Group;
901 return i;
903 ++Group;
905 return -1;
908 const DILabel *MachineInstr::getDebugLabel() const {
909 assert(isDebugLabel() && "not a DBG_LABEL");
910 return cast<DILabel>(getOperand(0).getMetadata());
913 const MachineOperand &MachineInstr::getDebugVariableOp() const {
914 assert((isDebugValueLike()) && "not a DBG_VALUE*");
915 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
916 return getOperand(VariableOp);
919 MachineOperand &MachineInstr::getDebugVariableOp() {
920 assert((isDebugValueLike()) && "not a DBG_VALUE*");
921 unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
922 return getOperand(VariableOp);
925 const DILocalVariable *MachineInstr::getDebugVariable() const {
926 return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
929 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
930 assert((isDebugValueLike()) && "not a DBG_VALUE*");
931 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
932 return getOperand(ExpressionOp);
935 MachineOperand &MachineInstr::getDebugExpressionOp() {
936 assert((isDebugValueLike()) && "not a DBG_VALUE*");
937 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
938 return getOperand(ExpressionOp);
941 const DIExpression *MachineInstr::getDebugExpression() const {
942 return cast<DIExpression>(getDebugExpressionOp().getMetadata());
945 bool MachineInstr::isDebugEntryValue() const {
946 return isDebugValue() && getDebugExpression()->isEntryValue();
949 const TargetRegisterClass*
950 MachineInstr::getRegClassConstraint(unsigned OpIdx,
951 const TargetInstrInfo *TII,
952 const TargetRegisterInfo *TRI) const {
953 assert(getParent() && "Can't have an MBB reference here!");
954 assert(getMF() && "Can't have an MF reference here!");
955 const MachineFunction &MF = *getMF();
957 // Most opcodes have fixed constraints in their MCInstrDesc.
958 if (!isInlineAsm())
959 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
961 if (!getOperand(OpIdx).isReg())
962 return nullptr;
964 // For tied uses on inline asm, get the constraint from the def.
965 unsigned DefIdx;
966 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
967 OpIdx = DefIdx;
969 // Inline asm stores register class constraints in the flag word.
970 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
971 if (FlagIdx < 0)
972 return nullptr;
974 const InlineAsm::Flag F(getOperand(FlagIdx).getImm());
975 unsigned RCID;
976 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) &&
977 F.hasRegClassConstraint(RCID))
978 return TRI->getRegClass(RCID);
980 // Assume that all registers in a memory operand are pointers.
981 if (F.isMemKind())
982 return TRI->getPointerRegClass(MF);
984 return nullptr;
987 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
988 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
989 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
990 // Check every operands inside the bundle if we have
991 // been asked to.
992 if (ExploreBundle)
993 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
994 ++OpndIt)
995 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
996 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
997 else
998 // Otherwise, just check the current operands.
999 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1000 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1001 return CurRC;
1004 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1005 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1006 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1007 assert(CurRC && "Invalid initial register class");
1008 // Check if Reg is constrained by some of its use/def from MI.
1009 const MachineOperand &MO = getOperand(OpIdx);
1010 if (!MO.isReg() || MO.getReg() != Reg)
1011 return CurRC;
1012 // If yes, accumulate the constraints through the operand.
1013 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1016 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1017 unsigned OpIdx, const TargetRegisterClass *CurRC,
1018 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1019 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1020 const MachineOperand &MO = getOperand(OpIdx);
1021 assert(MO.isReg() &&
1022 "Cannot get register constraints for non-register operand");
1023 assert(CurRC && "Invalid initial register class");
1024 if (unsigned SubIdx = MO.getSubReg()) {
1025 if (OpRC)
1026 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1027 else
1028 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1029 } else if (OpRC)
1030 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1031 return CurRC;
1034 /// Return the number of instructions inside the MI bundle, not counting the
1035 /// header instruction.
1036 unsigned MachineInstr::getBundleSize() const {
1037 MachineBasicBlock::const_instr_iterator I = getIterator();
1038 unsigned Size = 0;
1039 while (I->isBundledWithSucc()) {
1040 ++Size;
1041 ++I;
1043 return Size;
1046 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1047 /// the given register (not considering sub/super-registers).
1048 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1049 for (const MachineOperand &MO : implicit_operands()) {
1050 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
1051 return true;
1053 return false;
1056 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1057 /// the specific register or -1 if it is not found. It further tightens
1058 /// the search criteria to a use that kills the register if isKill is true.
1059 int MachineInstr::findRegisterUseOperandIdx(Register Reg,
1060 const TargetRegisterInfo *TRI,
1061 bool isKill) const {
1062 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1063 const MachineOperand &MO = getOperand(i);
1064 if (!MO.isReg() || !MO.isUse())
1065 continue;
1066 Register MOReg = MO.getReg();
1067 if (!MOReg)
1068 continue;
1069 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1070 if (!isKill || MO.isKill())
1071 return i;
1073 return -1;
1076 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1077 /// indicating if this instruction reads or writes Reg. This also considers
1078 /// partial defines.
1079 std::pair<bool,bool>
1080 MachineInstr::readsWritesVirtualRegister(Register Reg,
1081 SmallVectorImpl<unsigned> *Ops) const {
1082 bool PartDef = false; // Partial redefine.
1083 bool FullDef = false; // Full define.
1084 bool Use = false;
1086 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1087 const MachineOperand &MO = getOperand(i);
1088 if (!MO.isReg() || MO.getReg() != Reg)
1089 continue;
1090 if (Ops)
1091 Ops->push_back(i);
1092 if (MO.isUse())
1093 Use |= !MO.isUndef();
1094 else if (MO.getSubReg() && !MO.isUndef())
1095 // A partial def undef doesn't count as reading the register.
1096 PartDef = true;
1097 else
1098 FullDef = true;
1100 // A partial redefine uses Reg unless there is also a full define.
1101 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1104 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1105 /// the specified register or -1 if it is not found. If isDead is true, defs
1106 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1107 /// also checks if there is a def of a super-register.
1108 int MachineInstr::findRegisterDefOperandIdx(Register Reg,
1109 const TargetRegisterInfo *TRI,
1110 bool isDead, bool Overlap) const {
1111 bool isPhys = Reg.isPhysical();
1112 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1113 const MachineOperand &MO = getOperand(i);
1114 // Accept regmask operands when Overlap is set.
1115 // Ignore them when looking for a specific def operand (Overlap == false).
1116 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1117 return i;
1118 if (!MO.isReg() || !MO.isDef())
1119 continue;
1120 Register MOReg = MO.getReg();
1121 bool Found = (MOReg == Reg);
1122 if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1123 if (Overlap)
1124 Found = TRI->regsOverlap(MOReg, Reg);
1125 else
1126 Found = TRI->isSubRegister(MOReg, Reg);
1128 if (Found && (!isDead || MO.isDead()))
1129 return i;
1131 return -1;
1134 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1135 /// operand list that is used to represent the predicate. It returns -1 if
1136 /// none is found.
1137 int MachineInstr::findFirstPredOperandIdx() const {
1138 // Don't call MCID.findFirstPredOperandIdx() because this variant
1139 // is sometimes called on an instruction that's not yet complete, and
1140 // so the number of operands is less than the MCID indicates. In
1141 // particular, the PTX target does this.
1142 const MCInstrDesc &MCID = getDesc();
1143 if (MCID.isPredicable()) {
1144 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1145 if (MCID.operands()[i].isPredicate())
1146 return i;
1149 return -1;
1152 // MachineOperand::TiedTo is 4 bits wide.
1153 const unsigned TiedMax = 15;
1155 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1157 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1158 /// field. TiedTo can have these values:
1160 /// 0: Operand is not tied to anything.
1161 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1162 /// TiedMax: Tied to an operand >= TiedMax-1.
1164 /// The tied def must be one of the first TiedMax operands on a normal
1165 /// instruction. INLINEASM instructions allow more tied defs.
1167 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1168 MachineOperand &DefMO = getOperand(DefIdx);
1169 MachineOperand &UseMO = getOperand(UseIdx);
1170 assert(DefMO.isDef() && "DefIdx must be a def operand");
1171 assert(UseMO.isUse() && "UseIdx must be a use operand");
1172 assert(!DefMO.isTied() && "Def is already tied to another use");
1173 assert(!UseMO.isTied() && "Use is already tied to another def");
1175 if (DefIdx < TiedMax)
1176 UseMO.TiedTo = DefIdx + 1;
1177 else {
1178 // Inline asm can use the group descriptors to find tied operands,
1179 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1180 // but on normal instruction, the tied def must be within the first TiedMax
1181 // operands.
1182 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1183 "DefIdx out of range");
1184 UseMO.TiedTo = TiedMax;
1187 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1188 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1191 /// Given the index of a tied register operand, find the operand it is tied to.
1192 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1193 /// which must exist.
1194 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1195 const MachineOperand &MO = getOperand(OpIdx);
1196 assert(MO.isTied() && "Operand isn't tied");
1198 // Normally TiedTo is in range.
1199 if (MO.TiedTo < TiedMax)
1200 return MO.TiedTo - 1;
1202 // Uses on normal instructions can be out of range.
1203 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1204 // Normal tied defs must be in the 0..TiedMax-1 range.
1205 if (MO.isUse())
1206 return TiedMax - 1;
1207 // MO is a def. Search for the tied use.
1208 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1209 const MachineOperand &UseMO = getOperand(i);
1210 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1211 return i;
1213 llvm_unreachable("Can't find tied use");
1216 if (getOpcode() == TargetOpcode::STATEPOINT) {
1217 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1218 // on registers.
1219 StatepointOpers SO(this);
1220 unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1221 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1222 unsigned NumDefs = getNumDefs();
1223 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1224 while (!getOperand(CurUseIdx).isReg())
1225 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1226 if (OpIdx == CurDefIdx)
1227 return CurUseIdx;
1228 if (OpIdx == CurUseIdx)
1229 return CurDefIdx;
1230 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1232 llvm_unreachable("Can't find tied use");
1235 // Now deal with inline asm by parsing the operand group descriptor flags.
1236 // Find the beginning of each operand group.
1237 SmallVector<unsigned, 8> GroupIdx;
1238 unsigned OpIdxGroup = ~0u;
1239 unsigned NumOps;
1240 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1241 i += NumOps) {
1242 const MachineOperand &FlagMO = getOperand(i);
1243 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1244 unsigned CurGroup = GroupIdx.size();
1245 GroupIdx.push_back(i);
1246 const InlineAsm::Flag F(FlagMO.getImm());
1247 NumOps = 1 + F.getNumOperandRegisters();
1248 // OpIdx belongs to this operand group.
1249 if (OpIdx > i && OpIdx < i + NumOps)
1250 OpIdxGroup = CurGroup;
1251 unsigned TiedGroup;
1252 if (!F.isUseOperandTiedToDef(TiedGroup))
1253 continue;
1254 // Operands in this group are tied to operands in TiedGroup which must be
1255 // earlier. Find the number of operands between the two groups.
1256 unsigned Delta = i - GroupIdx[TiedGroup];
1258 // OpIdx is a use tied to TiedGroup.
1259 if (OpIdxGroup == CurGroup)
1260 return OpIdx - Delta;
1262 // OpIdx is a def tied to this use group.
1263 if (OpIdxGroup == TiedGroup)
1264 return OpIdx + Delta;
1266 llvm_unreachable("Invalid tied operand on inline asm");
1269 /// clearKillInfo - Clears kill flags on all operands.
1271 void MachineInstr::clearKillInfo() {
1272 for (MachineOperand &MO : operands()) {
1273 if (MO.isReg() && MO.isUse())
1274 MO.setIsKill(false);
1278 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1279 unsigned SubIdx,
1280 const TargetRegisterInfo &RegInfo) {
1281 if (ToReg.isPhysical()) {
1282 if (SubIdx)
1283 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1284 for (MachineOperand &MO : operands()) {
1285 if (!MO.isReg() || MO.getReg() != FromReg)
1286 continue;
1287 MO.substPhysReg(ToReg, RegInfo);
1289 } else {
1290 for (MachineOperand &MO : operands()) {
1291 if (!MO.isReg() || MO.getReg() != FromReg)
1292 continue;
1293 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1298 /// isSafeToMove - Return true if it is safe to move this instruction. If
1299 /// SawStore is set to true, it means that there is a store (or call) between
1300 /// the instruction's location and its intended destination.
1301 bool MachineInstr::isSafeToMove(bool &SawStore) const {
1302 // Ignore stuff that we obviously can't move.
1304 // Treat volatile loads as stores. This is not strictly necessary for
1305 // volatiles, but it is required for atomic loads. It is not allowed to move
1306 // a load across an atomic load with Ordering > Monotonic.
1307 if (mayStore() || isCall() || isPHI() ||
1308 (mayLoad() && hasOrderedMemoryRef())) {
1309 SawStore = true;
1310 return false;
1313 if (isPosition() || isDebugInstr() || isTerminator() ||
1314 mayRaiseFPException() || hasUnmodeledSideEffects() ||
1315 isJumpTableDebugInfo())
1316 return false;
1318 // See if this instruction does a load. If so, we have to guarantee that the
1319 // loaded value doesn't change between the load and the its intended
1320 // destination. The check for isInvariantLoad gives the target the chance to
1321 // classify the load as always returning a constant, e.g. a constant pool
1322 // load.
1323 if (mayLoad() && !isDereferenceableInvariantLoad())
1324 // Otherwise, this is a real load. If there is a store between the load and
1325 // end of block, we can't move it.
1326 return !SawStore;
1328 return true;
1331 bool MachineInstr::wouldBeTriviallyDead() const {
1332 // Don't delete frame allocation labels.
1333 // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel?
1334 if (getOpcode() == TargetOpcode::LOCAL_ESCAPE)
1335 return false;
1337 // Don't delete FAKE_USE.
1338 // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition?
1339 if (isFakeUse())
1340 return false;
1342 // LIFETIME markers should be preserved.
1343 // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition?
1344 if (isLifetimeMarker())
1345 return false;
1347 // If we can move an instruction, we can remove it. Otherwise, it has
1348 // a side-effect of some sort.
1349 bool SawStore = false;
1350 return isPHI() || isSafeToMove(SawStore);
1353 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1354 bool UseTBAA, const MachineMemOperand *MMOa,
1355 const MachineMemOperand *MMOb) {
1356 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1357 // operates with MachineMemOperand offset with some important assumptions:
1358 // - LLVM fundamentally assumes flat address spaces.
1359 // - MachineOperand offset can *only* result from legalization and cannot
1360 // affect queries other than the trivial case of overlap checking.
1361 // - These offsets never wrap and never step outside of allocated objects.
1362 // - There should never be any negative offsets here.
1364 // FIXME: Modify API to hide this math from "user"
1365 // Even before we go to AA we can reason locally about some memory objects. It
1366 // can save compile time, and possibly catch some corner cases not currently
1367 // covered.
1369 int64_t OffsetA = MMOa->getOffset();
1370 int64_t OffsetB = MMOb->getOffset();
1371 int64_t MinOffset = std::min(OffsetA, OffsetB);
1373 LocationSize WidthA = MMOa->getSize();
1374 LocationSize WidthB = MMOb->getSize();
1375 bool KnownWidthA = WidthA.hasValue();
1376 bool KnownWidthB = WidthB.hasValue();
1377 bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable();
1379 const Value *ValA = MMOa->getValue();
1380 const Value *ValB = MMOb->getValue();
1381 bool SameVal = (ValA && ValB && (ValA == ValB));
1382 if (!SameVal) {
1383 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1384 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1385 if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1386 return false;
1387 if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1388 return false;
1389 if (PSVa && PSVb && (PSVa == PSVb))
1390 SameVal = true;
1393 if (SameVal && BothMMONonScalable) {
1394 if (!KnownWidthA || !KnownWidthB)
1395 return true;
1396 int64_t MaxOffset = std::max(OffsetA, OffsetB);
1397 int64_t LowWidth = (MinOffset == OffsetA)
1398 ? WidthA.getValue().getKnownMinValue()
1399 : WidthB.getValue().getKnownMinValue();
1400 return (MinOffset + LowWidth > MaxOffset);
1403 if (!AA)
1404 return true;
1406 if (!ValA || !ValB)
1407 return true;
1409 assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1410 assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1412 // If Scalable Location Size has non-zero offset, Width + Offset does not work
1413 // at the moment
1414 if ((WidthA.isScalable() && OffsetA > 0) ||
1415 (WidthB.isScalable() && OffsetB > 0))
1416 return true;
1418 int64_t OverlapA =
1419 KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset
1420 : MemoryLocation::UnknownSize;
1421 int64_t OverlapB =
1422 KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset
1423 : MemoryLocation::UnknownSize;
1425 LocationSize LocA = (WidthA.isScalable() || !KnownWidthA)
1426 ? WidthA
1427 : LocationSize::precise(OverlapA);
1428 LocationSize LocB = (WidthB.isScalable() || !KnownWidthB)
1429 ? WidthB
1430 : LocationSize::precise(OverlapB);
1432 return !AA->isNoAlias(
1433 MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1434 MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1437 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1438 bool UseTBAA) const {
1439 const MachineFunction *MF = getMF();
1440 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1441 const MachineFrameInfo &MFI = MF->getFrameInfo();
1443 // Exclude call instruction which may alter the memory but can not be handled
1444 // by this function.
1445 if (isCall() || Other.isCall())
1446 return true;
1448 // If neither instruction stores to memory, they can't alias in any
1449 // meaningful way, even if they read from the same address.
1450 if (!mayStore() && !Other.mayStore())
1451 return false;
1453 // Both instructions must be memory operations to be able to alias.
1454 if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1455 return false;
1457 // Let the target decide if memory accesses cannot possibly overlap.
1458 if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1459 return false;
1461 // Memory operations without memory operands may access anything. Be
1462 // conservative and assume `MayAlias`.
1463 if (memoperands_empty() || Other.memoperands_empty())
1464 return true;
1466 // Skip if there are too many memory operands.
1467 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1468 if (NumChecks > TII->getMemOperandAACheckLimit())
1469 return true;
1471 // Check each pair of memory operands from both instructions, which can't
1472 // alias only if all pairs won't alias.
1473 for (auto *MMOa : memoperands())
1474 for (auto *MMOb : Other.memoperands())
1475 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1476 return true;
1478 return false;
1481 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1482 /// or volatile memory reference, or if the information describing the memory
1483 /// reference is not available. Return false if it is known to have no ordered
1484 /// memory references.
1485 bool MachineInstr::hasOrderedMemoryRef() const {
1486 // An instruction known never to access memory won't have a volatile access.
1487 if (!mayStore() &&
1488 !mayLoad() &&
1489 !isCall() &&
1490 !hasUnmodeledSideEffects())
1491 return false;
1493 // Otherwise, if the instruction has no memory reference information,
1494 // conservatively assume it wasn't preserved.
1495 if (memoperands_empty())
1496 return true;
1498 // Check if any of our memory operands are ordered.
1499 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1500 return !MMO->isUnordered();
1504 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1505 /// trap and is loading from a location whose value is invariant across a run of
1506 /// this function.
1507 bool MachineInstr::isDereferenceableInvariantLoad() const {
1508 // If the instruction doesn't load at all, it isn't an invariant load.
1509 if (!mayLoad())
1510 return false;
1512 // If the instruction has lost its memoperands, conservatively assume that
1513 // it may not be an invariant load.
1514 if (memoperands_empty())
1515 return false;
1517 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1519 for (MachineMemOperand *MMO : memoperands()) {
1520 if (!MMO->isUnordered())
1521 // If the memory operand has ordering side effects, we can't move the
1522 // instruction. Such an instruction is technically an invariant load,
1523 // but the caller code would need updated to expect that.
1524 return false;
1525 if (MMO->isStore()) return false;
1526 if (MMO->isInvariant() && MMO->isDereferenceable())
1527 continue;
1529 // A load from a constant PseudoSourceValue is invariant.
1530 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1531 if (PSV->isConstant(&MFI))
1532 continue;
1535 // Otherwise assume conservatively.
1536 return false;
1539 // Everything checks out.
1540 return true;
1543 Register MachineInstr::isConstantValuePHI() const {
1544 if (!isPHI())
1545 return {};
1546 assert(getNumOperands() >= 3 &&
1547 "It's illegal to have a PHI without source operands");
1549 Register Reg = getOperand(1).getReg();
1550 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1551 if (getOperand(i).getReg() != Reg)
1552 return {};
1553 return Reg;
1556 bool MachineInstr::hasUnmodeledSideEffects() const {
1557 if (hasProperty(MCID::UnmodeledSideEffects))
1558 return true;
1559 if (isInlineAsm()) {
1560 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1561 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1562 return true;
1565 return false;
1568 bool MachineInstr::isLoadFoldBarrier() const {
1569 return mayStore() || isCall() ||
1570 (hasUnmodeledSideEffects() && !isPseudoProbe());
1573 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1575 bool MachineInstr::allDefsAreDead() const {
1576 for (const MachineOperand &MO : operands()) {
1577 if (!MO.isReg() || MO.isUse())
1578 continue;
1579 if (!MO.isDead())
1580 return false;
1582 return true;
1585 bool MachineInstr::allImplicitDefsAreDead() const {
1586 for (const MachineOperand &MO : implicit_operands()) {
1587 if (!MO.isReg() || MO.isUse())
1588 continue;
1589 if (!MO.isDead())
1590 return false;
1592 return true;
1595 /// copyImplicitOps - Copy implicit register operands from specified
1596 /// instruction to this instruction.
1597 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1598 const MachineInstr &MI) {
1599 for (const MachineOperand &MO :
1600 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1601 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1602 addOperand(MF, MO);
1605 bool MachineInstr::hasComplexRegisterTies() const {
1606 const MCInstrDesc &MCID = getDesc();
1607 if (MCID.Opcode == TargetOpcode::STATEPOINT)
1608 return true;
1609 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1610 const auto &Operand = getOperand(I);
1611 if (!Operand.isReg() || Operand.isDef())
1612 // Ignore the defined registers as MCID marks only the uses as tied.
1613 continue;
1614 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1615 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1616 if (ExpectedTiedIdx != TiedIdx)
1617 return true;
1619 return false;
1622 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1623 const MachineRegisterInfo &MRI) const {
1624 const MachineOperand &Op = getOperand(OpIdx);
1625 if (!Op.isReg())
1626 return LLT{};
1628 if (isVariadic() || OpIdx >= getNumExplicitOperands())
1629 return MRI.getType(Op.getReg());
1631 auto &OpInfo = getDesc().operands()[OpIdx];
1632 if (!OpInfo.isGenericType())
1633 return MRI.getType(Op.getReg());
1635 if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1636 return LLT{};
1638 LLT TypeToPrint = MRI.getType(Op.getReg());
1639 // Don't mark the type index printed if it wasn't actually printed: maybe
1640 // another operand with the same type index has an actual type attached:
1641 if (TypeToPrint.isValid())
1642 PrintedTypes.set(OpInfo.getGenericTypeIndex());
1643 return TypeToPrint;
1646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1647 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1648 dbgs() << " ";
1649 print(dbgs());
1652 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1653 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1654 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1655 if (Depth >= MaxDepth)
1656 return;
1657 if (!AlreadySeenInstrs.insert(this).second)
1658 return;
1659 // PadToColumn always inserts at least one space.
1660 // Don't mess up the alignment if we don't want any space.
1661 if (Depth)
1662 fdbgs().PadToColumn(Depth * 2);
1663 print(fdbgs());
1664 for (const MachineOperand &MO : operands()) {
1665 if (!MO.isReg() || MO.isDef())
1666 continue;
1667 Register Reg = MO.getReg();
1668 if (Reg.isPhysical())
1669 continue;
1670 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1671 if (NewMI == nullptr)
1672 continue;
1673 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1677 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1678 unsigned MaxDepth) const {
1679 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1680 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1682 #endif
1684 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1685 bool SkipDebugLoc, bool AddNewLine,
1686 const TargetInstrInfo *TII) const {
1687 const Module *M = nullptr;
1688 const Function *F = nullptr;
1689 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1690 F = &MF->getFunction();
1691 M = F->getParent();
1692 if (!TII)
1693 TII = MF->getSubtarget().getInstrInfo();
1696 ModuleSlotTracker MST(M);
1697 if (F)
1698 MST.incorporateFunction(*F);
1699 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1702 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1703 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1704 bool AddNewLine, const TargetInstrInfo *TII) const {
1705 // We can be a bit tidier if we know the MachineFunction.
1706 const TargetRegisterInfo *TRI = nullptr;
1707 const MachineRegisterInfo *MRI = nullptr;
1708 const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1709 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1711 if (isCFIInstruction())
1712 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1714 SmallBitVector PrintedTypes(8);
1715 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1716 auto getTiedOperandIdx = [&](unsigned OpIdx) {
1717 if (!ShouldPrintRegisterTies)
1718 return 0U;
1719 const MachineOperand &MO = getOperand(OpIdx);
1720 if (MO.isReg() && MO.isTied() && !MO.isDef())
1721 return findTiedOperandIdx(OpIdx);
1722 return 0U;
1724 unsigned StartOp = 0;
1725 unsigned e = getNumOperands();
1727 // Print explicitly defined operands on the left of an assignment syntax.
1728 while (StartOp < e) {
1729 const MachineOperand &MO = getOperand(StartOp);
1730 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1731 break;
1733 if (StartOp != 0)
1734 OS << ", ";
1736 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1737 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1738 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1739 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1740 ++StartOp;
1743 if (StartOp != 0)
1744 OS << " = ";
1746 if (getFlag(MachineInstr::FrameSetup))
1747 OS << "frame-setup ";
1748 if (getFlag(MachineInstr::FrameDestroy))
1749 OS << "frame-destroy ";
1750 if (getFlag(MachineInstr::FmNoNans))
1751 OS << "nnan ";
1752 if (getFlag(MachineInstr::FmNoInfs))
1753 OS << "ninf ";
1754 if (getFlag(MachineInstr::FmNsz))
1755 OS << "nsz ";
1756 if (getFlag(MachineInstr::FmArcp))
1757 OS << "arcp ";
1758 if (getFlag(MachineInstr::FmContract))
1759 OS << "contract ";
1760 if (getFlag(MachineInstr::FmAfn))
1761 OS << "afn ";
1762 if (getFlag(MachineInstr::FmReassoc))
1763 OS << "reassoc ";
1764 if (getFlag(MachineInstr::NoUWrap))
1765 OS << "nuw ";
1766 if (getFlag(MachineInstr::NoSWrap))
1767 OS << "nsw ";
1768 if (getFlag(MachineInstr::IsExact))
1769 OS << "exact ";
1770 if (getFlag(MachineInstr::NoFPExcept))
1771 OS << "nofpexcept ";
1772 if (getFlag(MachineInstr::NoMerge))
1773 OS << "nomerge ";
1774 if (getFlag(MachineInstr::NonNeg))
1775 OS << "nneg ";
1776 if (getFlag(MachineInstr::Disjoint))
1777 OS << "disjoint ";
1778 if (getFlag(MachineInstr::SameSign))
1779 OS << "samesign ";
1781 // Print the opcode name.
1782 if (TII)
1783 OS << TII->getName(getOpcode());
1784 else
1785 OS << "UNKNOWN";
1787 if (SkipOpers)
1788 return;
1790 // Print the rest of the operands.
1791 bool FirstOp = true;
1792 unsigned AsmDescOp = ~0u;
1793 unsigned AsmOpCount = 0;
1795 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1796 // Print asm string.
1797 OS << " ";
1798 const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1799 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1800 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1801 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1802 ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1803 IntrinsicInfo);
1805 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1806 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1807 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1808 OS << " [sideeffect]";
1809 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1810 OS << " [mayload]";
1811 if (ExtraInfo & InlineAsm::Extra_MayStore)
1812 OS << " [maystore]";
1813 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1814 OS << " [isconvergent]";
1815 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1816 OS << " [alignstack]";
1817 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1818 OS << " [attdialect]";
1819 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1820 OS << " [inteldialect]";
1822 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1823 FirstOp = false;
1826 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1827 const MachineOperand &MO = getOperand(i);
1829 if (FirstOp) FirstOp = false; else OS << ",";
1830 OS << " ";
1832 if (isDebugValueLike() && MO.isMetadata()) {
1833 // Pretty print DBG_VALUE* instructions.
1834 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1835 if (DIV && !DIV->getName().empty())
1836 OS << "!\"" << DIV->getName() << '\"';
1837 else {
1838 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1839 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1840 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1841 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1843 } else if (isDebugLabel() && MO.isMetadata()) {
1844 // Pretty print DBG_LABEL instructions.
1845 auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1846 if (DIL && !DIL->getName().empty())
1847 OS << "\"" << DIL->getName() << '\"';
1848 else {
1849 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1850 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1851 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1852 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1854 } else if (i == AsmDescOp && MO.isImm()) {
1855 // Pretty print the inline asm operand descriptor.
1856 OS << '$' << AsmOpCount++;
1857 unsigned Flag = MO.getImm();
1858 const InlineAsm::Flag F(Flag);
1859 OS << ":[";
1860 OS << F.getKindName();
1862 unsigned RCID;
1863 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1864 if (TRI) {
1865 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1866 } else
1867 OS << ":RC" << RCID;
1870 if (F.isMemKind()) {
1871 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1872 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1875 unsigned TiedTo;
1876 if (F.isUseOperandTiedToDef(TiedTo))
1877 OS << " tiedto:$" << TiedTo;
1879 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() ||
1880 F.isRegUseKind()) &&
1881 F.getRegMayBeFolded()) {
1882 OS << " foldable";
1885 OS << ']';
1887 // Compute the index of the next operand descriptor.
1888 AsmDescOp += 1 + F.getNumOperandRegisters();
1889 } else {
1890 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1891 unsigned TiedOperandIdx = getTiedOperandIdx(i);
1892 if (MO.isImm() && isOperandSubregIdx(i))
1893 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1894 else
1895 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1896 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1900 // Print any optional symbols attached to this instruction as-if they were
1901 // operands.
1902 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1903 if (!FirstOp) {
1904 FirstOp = false;
1905 OS << ',';
1907 OS << " pre-instr-symbol ";
1908 MachineOperand::printSymbol(OS, *PreInstrSymbol);
1910 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1911 if (!FirstOp) {
1912 FirstOp = false;
1913 OS << ',';
1915 OS << " post-instr-symbol ";
1916 MachineOperand::printSymbol(OS, *PostInstrSymbol);
1918 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1919 if (!FirstOp) {
1920 FirstOp = false;
1921 OS << ',';
1923 OS << " heap-alloc-marker ";
1924 HeapAllocMarker->printAsOperand(OS, MST);
1926 if (MDNode *PCSections = getPCSections()) {
1927 if (!FirstOp) {
1928 FirstOp = false;
1929 OS << ',';
1931 OS << " pcsections ";
1932 PCSections->printAsOperand(OS, MST);
1934 if (MDNode *MMRA = getMMRAMetadata()) {
1935 if (!FirstOp) {
1936 FirstOp = false;
1937 OS << ',';
1939 OS << " mmra ";
1940 MMRA->printAsOperand(OS, MST);
1942 if (uint32_t CFIType = getCFIType()) {
1943 if (!FirstOp)
1944 OS << ',';
1945 OS << " cfi-type " << CFIType;
1948 if (DebugInstrNum) {
1949 if (!FirstOp)
1950 OS << ",";
1951 OS << " debug-instr-number " << DebugInstrNum;
1954 if (!SkipDebugLoc) {
1955 if (const DebugLoc &DL = getDebugLoc()) {
1956 if (!FirstOp)
1957 OS << ',';
1958 OS << " debug-location ";
1959 DL->printAsOperand(OS, MST);
1963 if (!memoperands_empty()) {
1964 SmallVector<StringRef, 0> SSNs;
1965 const LLVMContext *Context = nullptr;
1966 std::unique_ptr<LLVMContext> CtxPtr;
1967 const MachineFrameInfo *MFI = nullptr;
1968 if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1969 MFI = &MF->getFrameInfo();
1970 Context = &MF->getFunction().getContext();
1971 } else {
1972 CtxPtr = std::make_unique<LLVMContext>();
1973 Context = CtxPtr.get();
1976 OS << " :: ";
1977 bool NeedComma = false;
1978 for (const MachineMemOperand *Op : memoperands()) {
1979 if (NeedComma)
1980 OS << ", ";
1981 Op->print(OS, MST, SSNs, *Context, MFI, TII);
1982 NeedComma = true;
1986 if (SkipDebugLoc)
1987 return;
1989 bool HaveSemi = false;
1991 // Print debug location information.
1992 if (const DebugLoc &DL = getDebugLoc()) {
1993 if (!HaveSemi) {
1994 OS << ';';
1995 HaveSemi = true;
1997 OS << ' ';
1998 DL.print(OS);
2001 // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
2002 if ((isNonListDebugValue() && getNumOperands() >= 4) ||
2003 (isDebugValueList() && getNumOperands() >= 2) ||
2004 (isDebugRef() && getNumOperands() >= 3)) {
2005 if (getDebugVariableOp().isMetadata()) {
2006 if (!HaveSemi) {
2007 OS << ";";
2008 HaveSemi = true;
2010 auto *DV = getDebugVariable();
2011 OS << " line no:" << DV->getLine();
2012 if (isIndirectDebugValue())
2013 OS << " indirect";
2016 // TODO: DBG_LABEL
2018 if (AddNewLine)
2019 OS << '\n';
2022 bool MachineInstr::addRegisterKilled(Register IncomingReg,
2023 const TargetRegisterInfo *RegInfo,
2024 bool AddIfNotFound) {
2025 bool isPhysReg = IncomingReg.isPhysical();
2026 bool hasAliases = isPhysReg &&
2027 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
2028 bool Found = false;
2029 SmallVector<unsigned,4> DeadOps;
2030 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2031 MachineOperand &MO = getOperand(i);
2032 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
2033 continue;
2035 // DEBUG_VALUE nodes do not contribute to code generation and should
2036 // always be ignored. Failure to do so may result in trying to modify
2037 // KILL flags on DEBUG_VALUE nodes.
2038 if (MO.isDebug())
2039 continue;
2041 Register Reg = MO.getReg();
2042 if (!Reg)
2043 continue;
2045 if (Reg == IncomingReg) {
2046 if (!Found) {
2047 if (MO.isKill())
2048 // The register is already marked kill.
2049 return true;
2050 if (isPhysReg && isRegTiedToDefOperand(i))
2051 // Two-address uses of physregs must not be marked kill.
2052 return true;
2053 MO.setIsKill();
2054 Found = true;
2056 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
2057 // A super-register kill already exists.
2058 if (RegInfo->isSuperRegister(IncomingReg, Reg))
2059 return true;
2060 if (RegInfo->isSubRegister(IncomingReg, Reg))
2061 DeadOps.push_back(i);
2065 // Trim unneeded kill operands.
2066 while (!DeadOps.empty()) {
2067 unsigned OpIdx = DeadOps.back();
2068 if (getOperand(OpIdx).isImplicit() &&
2069 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2070 removeOperand(OpIdx);
2071 else
2072 getOperand(OpIdx).setIsKill(false);
2073 DeadOps.pop_back();
2076 // If not found, this means an alias of one of the operands is killed. Add a
2077 // new implicit operand if required.
2078 if (!Found && AddIfNotFound) {
2079 addOperand(MachineOperand::CreateReg(IncomingReg,
2080 false /*IsDef*/,
2081 true /*IsImp*/,
2082 true /*IsKill*/));
2083 return true;
2085 return Found;
2088 void MachineInstr::clearRegisterKills(Register Reg,
2089 const TargetRegisterInfo *RegInfo) {
2090 if (!Reg.isPhysical())
2091 RegInfo = nullptr;
2092 for (MachineOperand &MO : operands()) {
2093 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2094 continue;
2095 Register OpReg = MO.getReg();
2096 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2097 MO.setIsKill(false);
2101 bool MachineInstr::addRegisterDead(Register Reg,
2102 const TargetRegisterInfo *RegInfo,
2103 bool AddIfNotFound) {
2104 bool isPhysReg = Reg.isPhysical();
2105 bool hasAliases = isPhysReg &&
2106 MCRegAliasIterator(Reg, RegInfo, false).isValid();
2107 bool Found = false;
2108 SmallVector<unsigned,4> DeadOps;
2109 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2110 MachineOperand &MO = getOperand(i);
2111 if (!MO.isReg() || !MO.isDef())
2112 continue;
2113 Register MOReg = MO.getReg();
2114 if (!MOReg)
2115 continue;
2117 if (MOReg == Reg) {
2118 MO.setIsDead();
2119 Found = true;
2120 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2121 // There exists a super-register that's marked dead.
2122 if (RegInfo->isSuperRegister(Reg, MOReg))
2123 return true;
2124 if (RegInfo->isSubRegister(Reg, MOReg))
2125 DeadOps.push_back(i);
2129 // Trim unneeded dead operands.
2130 while (!DeadOps.empty()) {
2131 unsigned OpIdx = DeadOps.back();
2132 if (getOperand(OpIdx).isImplicit() &&
2133 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2134 removeOperand(OpIdx);
2135 else
2136 getOperand(OpIdx).setIsDead(false);
2137 DeadOps.pop_back();
2140 // If not found, this means an alias of one of the operands is dead. Add a
2141 // new implicit operand if required.
2142 if (Found || !AddIfNotFound)
2143 return Found;
2145 addOperand(MachineOperand::CreateReg(Reg,
2146 true /*IsDef*/,
2147 true /*IsImp*/,
2148 false /*IsKill*/,
2149 true /*IsDead*/));
2150 return true;
2153 void MachineInstr::clearRegisterDeads(Register Reg) {
2154 for (MachineOperand &MO : all_defs())
2155 if (MO.getReg() == Reg)
2156 MO.setIsDead(false);
2159 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2160 for (MachineOperand &MO : all_defs())
2161 if (MO.getReg() == Reg && MO.getSubReg() != 0)
2162 MO.setIsUndef(IsUndef);
2165 void MachineInstr::addRegisterDefined(Register Reg,
2166 const TargetRegisterInfo *RegInfo) {
2167 if (Reg.isPhysical()) {
2168 MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false);
2169 if (MO)
2170 return;
2171 } else {
2172 for (const MachineOperand &MO : all_defs()) {
2173 if (MO.getReg() == Reg && MO.getSubReg() == 0)
2174 return;
2177 addOperand(MachineOperand::CreateReg(Reg,
2178 true /*IsDef*/,
2179 true /*IsImp*/));
2182 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2183 const TargetRegisterInfo &TRI) {
2184 bool HasRegMask = false;
2185 for (MachineOperand &MO : operands()) {
2186 if (MO.isRegMask()) {
2187 HasRegMask = true;
2188 continue;
2190 if (!MO.isReg() || !MO.isDef()) continue;
2191 Register Reg = MO.getReg();
2192 if (!Reg.isPhysical())
2193 continue;
2194 // If there are no uses, including partial uses, the def is dead.
2195 if (llvm::none_of(UsedRegs,
2196 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2197 MO.setIsDead();
2200 // This is a call with a register mask operand.
2201 // Mask clobbers are always dead, so add defs for the non-dead defines.
2202 if (HasRegMask)
2203 for (const Register &UsedReg : UsedRegs)
2204 addRegisterDefined(UsedReg, &TRI);
2207 unsigned
2208 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2209 // Build up a buffer of hash code components.
2210 SmallVector<size_t, 16> HashComponents;
2211 HashComponents.reserve(MI->getNumOperands() + 1);
2212 HashComponents.push_back(MI->getOpcode());
2213 for (const MachineOperand &MO : MI->operands()) {
2214 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2215 continue; // Skip virtual register defs.
2217 HashComponents.push_back(hash_value(MO));
2219 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2222 void MachineInstr::emitError(StringRef Msg) const {
2223 // Find the source location cookie.
2224 uint64_t LocCookie = 0;
2225 const MDNode *LocMD = nullptr;
2226 for (unsigned i = getNumOperands(); i != 0; --i) {
2227 if (getOperand(i-1).isMetadata() &&
2228 (LocMD = getOperand(i-1).getMetadata()) &&
2229 LocMD->getNumOperands() != 0) {
2230 if (const ConstantInt *CI =
2231 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2232 LocCookie = CI->getZExtValue();
2233 break;
2238 if (const MachineBasicBlock *MBB = getParent())
2239 if (const MachineFunction *MF = MBB->getParent())
2240 return MF->getFunction().getContext().emitError(LocCookie, Msg);
2241 report_fatal_error(Msg);
2244 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2245 const MCInstrDesc &MCID, bool IsIndirect,
2246 Register Reg, const MDNode *Variable,
2247 const MDNode *Expr) {
2248 assert(isa<DILocalVariable>(Variable) && "not a variable");
2249 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2250 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2251 "Expected inlined-at fields to agree");
2252 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2253 if (IsIndirect)
2254 MIB.addImm(0U);
2255 else
2256 MIB.addReg(0U);
2257 return MIB.addMetadata(Variable).addMetadata(Expr);
2260 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2261 const MCInstrDesc &MCID, bool IsIndirect,
2262 ArrayRef<MachineOperand> DebugOps,
2263 const MDNode *Variable, const MDNode *Expr) {
2264 assert(isa<DILocalVariable>(Variable) && "not a variable");
2265 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2266 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2267 "Expected inlined-at fields to agree");
2268 if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2269 assert(DebugOps.size() == 1 &&
2270 "DBG_VALUE must contain exactly one debug operand");
2271 MachineOperand DebugOp = DebugOps[0];
2272 if (DebugOp.isReg())
2273 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2274 Expr);
2276 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2277 if (IsIndirect)
2278 MIB.addImm(0U);
2279 else
2280 MIB.addReg(0U);
2281 return MIB.addMetadata(Variable).addMetadata(Expr);
2284 auto MIB = BuildMI(MF, DL, MCID);
2285 MIB.addMetadata(Variable).addMetadata(Expr);
2286 for (const MachineOperand &DebugOp : DebugOps)
2287 if (DebugOp.isReg())
2288 MIB.addReg(DebugOp.getReg());
2289 else
2290 MIB.add(DebugOp);
2291 return MIB;
2294 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2295 MachineBasicBlock::iterator I,
2296 const DebugLoc &DL, const MCInstrDesc &MCID,
2297 bool IsIndirect, Register Reg,
2298 const MDNode *Variable, const MDNode *Expr) {
2299 MachineFunction &MF = *BB.getParent();
2300 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2301 BB.insert(I, MI);
2302 return MachineInstrBuilder(MF, MI);
2305 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2306 MachineBasicBlock::iterator I,
2307 const DebugLoc &DL, const MCInstrDesc &MCID,
2308 bool IsIndirect,
2309 ArrayRef<MachineOperand> DebugOps,
2310 const MDNode *Variable, const MDNode *Expr) {
2311 MachineFunction &MF = *BB.getParent();
2312 MachineInstr *MI =
2313 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2314 BB.insert(I, MI);
2315 return MachineInstrBuilder(MF, *MI);
2318 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2319 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2320 static const DIExpression *computeExprForSpill(
2321 const MachineInstr &MI,
2322 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2323 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2324 "Expected inlined-at fields to agree");
2326 const DIExpression *Expr = MI.getDebugExpression();
2327 if (MI.isIndirectDebugValue()) {
2328 assert(MI.getDebugOffset().getImm() == 0 &&
2329 "DBG_VALUE with nonzero offset");
2330 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2331 } else if (MI.isDebugValueList()) {
2332 // We will replace the spilled register with a frame index, so
2333 // immediately deref all references to the spilled register.
2334 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2335 for (const MachineOperand *Op : SpilledOperands) {
2336 unsigned OpIdx = MI.getDebugOperandIndex(Op);
2337 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2340 return Expr;
2342 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2343 Register SpillReg) {
2344 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2345 SmallVector<const MachineOperand *> SpillOperands;
2346 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2347 SpillOperands.push_back(&Op);
2348 return computeExprForSpill(MI, SpillOperands);
2351 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2352 MachineBasicBlock::iterator I,
2353 const MachineInstr &Orig,
2354 int FrameIndex, Register SpillReg) {
2355 assert(!Orig.isDebugRef() &&
2356 "DBG_INSTR_REF should not reference a virtual register.");
2357 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2358 MachineInstrBuilder NewMI =
2359 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2360 // Non-Variadic Operands: Location, Offset, Variable, Expression
2361 // Variadic Operands: Variable, Expression, Locations...
2362 if (Orig.isNonListDebugValue())
2363 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2364 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2365 if (Orig.isDebugValueList()) {
2366 for (const MachineOperand &Op : Orig.debug_operands())
2367 if (Op.isReg() && Op.getReg() == SpillReg)
2368 NewMI.addFrameIndex(FrameIndex);
2369 else
2370 NewMI.add(MachineOperand(Op));
2372 return NewMI;
2374 MachineInstr *llvm::buildDbgValueForSpill(
2375 MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2376 const MachineInstr &Orig, int FrameIndex,
2377 const SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2378 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2379 MachineInstrBuilder NewMI =
2380 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2381 // Non-Variadic Operands: Location, Offset, Variable, Expression
2382 // Variadic Operands: Variable, Expression, Locations...
2383 if (Orig.isNonListDebugValue())
2384 NewMI.addFrameIndex(FrameIndex).addImm(0U);
2385 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2386 if (Orig.isDebugValueList()) {
2387 for (const MachineOperand &Op : Orig.debug_operands())
2388 if (is_contained(SpilledOperands, &Op))
2389 NewMI.addFrameIndex(FrameIndex);
2390 else
2391 NewMI.add(MachineOperand(Op));
2393 return NewMI;
2396 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2397 Register Reg) {
2398 const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2399 if (Orig.isNonListDebugValue())
2400 Orig.getDebugOffset().ChangeToImmediate(0U);
2401 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2402 Op.ChangeToFrameIndex(FrameIndex);
2403 Orig.getDebugExpressionOp().setMetadata(Expr);
2406 void MachineInstr::collectDebugValues(
2407 SmallVectorImpl<MachineInstr *> &DbgValues) {
2408 MachineInstr &MI = *this;
2409 if (!MI.getOperand(0).isReg())
2410 return;
2412 MachineBasicBlock::iterator DI = MI; ++DI;
2413 for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2414 DI != DE; ++DI) {
2415 if (!DI->isDebugValue())
2416 return;
2417 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2418 DbgValues.push_back(&*DI);
2422 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2423 // Collect matching debug values.
2424 SmallVector<MachineInstr *, 2> DbgValues;
2426 if (!getOperand(0).isReg())
2427 return;
2429 Register DefReg = getOperand(0).getReg();
2430 auto *MRI = getRegInfo();
2431 for (auto &MO : MRI->use_operands(DefReg)) {
2432 auto *DI = MO.getParent();
2433 if (!DI->isDebugValue())
2434 continue;
2435 if (DI->hasDebugOperandForReg(DefReg)) {
2436 DbgValues.push_back(DI);
2440 // Propagate Reg to debug value instructions.
2441 for (auto *DBI : DbgValues)
2442 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2443 Op.setReg(Reg);
2446 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2448 static LocationSize getSpillSlotSize(const MMOList &Accesses,
2449 const MachineFrameInfo &MFI) {
2450 uint64_t Size = 0;
2451 for (const auto *A : Accesses) {
2452 if (MFI.isSpillSlotObjectIndex(
2453 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2454 ->getFrameIndex())) {
2455 LocationSize S = A->getSize();
2456 if (!S.hasValue())
2457 return LocationSize::beforeOrAfterPointer();
2458 Size += S.getValue();
2461 return Size;
2464 std::optional<LocationSize>
2465 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2466 int FI;
2467 if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2468 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2469 if (MFI.isSpillSlotObjectIndex(FI))
2470 return (*memoperands_begin())->getSize();
2472 return std::nullopt;
2475 std::optional<LocationSize>
2476 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2477 MMOList Accesses;
2478 if (TII->hasStoreToStackSlot(*this, Accesses))
2479 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2480 return std::nullopt;
2483 std::optional<LocationSize>
2484 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2485 int FI;
2486 if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2487 const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2488 if (MFI.isSpillSlotObjectIndex(FI))
2489 return (*memoperands_begin())->getSize();
2491 return std::nullopt;
2494 std::optional<LocationSize>
2495 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2496 MMOList Accesses;
2497 if (TII->hasLoadFromStackSlot(*this, Accesses))
2498 return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2499 return std::nullopt;
2502 unsigned MachineInstr::getDebugInstrNum() {
2503 if (DebugInstrNum == 0)
2504 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2505 return DebugInstrNum;
2508 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2509 if (DebugInstrNum == 0)
2510 DebugInstrNum = MF.getNewDebugInstrNum();
2511 return DebugInstrNum;
2514 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2515 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2516 getRegInfo()->getType(getOperand(1).getReg()));
2519 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2520 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2521 getRegInfo()->getType(getOperand(1).getReg()),
2522 getRegInfo()->getType(getOperand(2).getReg()));
2525 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2526 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2527 getRegInfo()->getType(getOperand(1).getReg()),
2528 getRegInfo()->getType(getOperand(2).getReg()),
2529 getRegInfo()->getType(getOperand(3).getReg()));
2532 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2533 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2534 getRegInfo()->getType(getOperand(1).getReg()),
2535 getRegInfo()->getType(getOperand(2).getReg()),
2536 getRegInfo()->getType(getOperand(3).getReg()),
2537 getRegInfo()->getType(getOperand(4).getReg()));
2540 std::tuple<Register, LLT, Register, LLT>
2541 MachineInstr::getFirst2RegLLTs() const {
2542 Register Reg0 = getOperand(0).getReg();
2543 Register Reg1 = getOperand(1).getReg();
2544 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2545 getRegInfo()->getType(Reg1));
2548 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2549 MachineInstr::getFirst3RegLLTs() const {
2550 Register Reg0 = getOperand(0).getReg();
2551 Register Reg1 = getOperand(1).getReg();
2552 Register Reg2 = getOperand(2).getReg();
2553 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2554 getRegInfo()->getType(Reg1), Reg2,
2555 getRegInfo()->getType(Reg2));
2558 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2559 MachineInstr::getFirst4RegLLTs() const {
2560 Register Reg0 = getOperand(0).getReg();
2561 Register Reg1 = getOperand(1).getReg();
2562 Register Reg2 = getOperand(2).getReg();
2563 Register Reg3 = getOperand(3).getReg();
2564 return std::tuple(
2565 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2566 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2569 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2570 LLT>
2571 MachineInstr::getFirst5RegLLTs() const {
2572 Register Reg0 = getOperand(0).getReg();
2573 Register Reg1 = getOperand(1).getReg();
2574 Register Reg2 = getOperand(2).getReg();
2575 Register Reg3 = getOperand(3).getReg();
2576 Register Reg4 = getOperand(4).getReg();
2577 return std::tuple(
2578 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2579 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2580 Reg4, getRegInfo()->getType(Reg4));
2583 void MachineInstr::insert(mop_iterator InsertBefore,
2584 ArrayRef<MachineOperand> Ops) {
2585 assert(InsertBefore != nullptr && "invalid iterator");
2586 assert(InsertBefore->getParent() == this &&
2587 "iterator points to operand of other inst");
2588 if (Ops.empty())
2589 return;
2591 // Do one pass to untie operands.
2592 SmallDenseMap<unsigned, unsigned> TiedOpIndices;
2593 for (const MachineOperand &MO : operands()) {
2594 if (MO.isReg() && MO.isTied()) {
2595 unsigned OpNo = getOperandNo(&MO);
2596 unsigned TiedTo = findTiedOperandIdx(OpNo);
2597 TiedOpIndices[OpNo] = TiedTo;
2598 untieRegOperand(OpNo);
2602 unsigned OpIdx = getOperandNo(InsertBefore);
2603 unsigned NumOperands = getNumOperands();
2604 unsigned OpsToMove = NumOperands - OpIdx;
2606 SmallVector<MachineOperand> MovingOps;
2607 MovingOps.reserve(OpsToMove);
2609 for (unsigned I = 0; I < OpsToMove; ++I) {
2610 MovingOps.emplace_back(getOperand(OpIdx));
2611 removeOperand(OpIdx);
2613 for (const MachineOperand &MO : Ops)
2614 addOperand(MO);
2615 for (const MachineOperand &OpMoved : MovingOps)
2616 addOperand(OpMoved);
2618 // Re-tie operands.
2619 for (auto [Tie1, Tie2] : TiedOpIndices) {
2620 if (Tie1 >= OpIdx)
2621 Tie1 += Ops.size();
2622 if (Tie2 >= OpIdx)
2623 Tie2 += Ops.size();
2624 tieOperands(Tie1, Tie2);
2628 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const {
2629 assert(OpId && "expected non-zero operand id");
2630 assert(isInlineAsm() && "should only be used on inline asm");
2632 if (!getOperand(OpId).isReg())
2633 return false;
2635 const MachineOperand &MD = getOperand(OpId - 1);
2636 if (!MD.isImm())
2637 return false;
2639 InlineAsm::Flag F(MD.getImm());
2640 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind())
2641 return F.getRegMayBeFolded();
2642 return false;