AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / FastISel.cpp
blobec5b058da29710b2e8cdcfbb4c2320410a13eb29
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time. For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support. In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated. Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time. Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators. More complicated operations currently require
37 // target-specific code.
39 //===----------------------------------------------------------------------===//
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/CodeGen/Analysis.h"
52 #include "llvm/CodeGen/FunctionLoweringInfo.h"
53 #include "llvm/CodeGen/ISDOpcodes.h"
54 #include "llvm/CodeGen/MachineBasicBlock.h"
55 #include "llvm/CodeGen/MachineFrameInfo.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineMemOperand.h"
59 #include "llvm/CodeGen/MachineModuleInfo.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/StackMaps.h"
63 #include "llvm/CodeGen/TargetInstrInfo.h"
64 #include "llvm/CodeGen/TargetLowering.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGenTypes/MachineValueType.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/Support/Casting.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <cassert>
105 #include <cstdint>
106 #include <iterator>
107 #include <optional>
108 #include <utility>
110 using namespace llvm;
111 using namespace PatternMatch;
113 #define DEBUG_TYPE "isel"
115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
116 "target-independent selector");
117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
118 "target-specific selector");
119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
121 /// Set the current block to which generated machine instructions will be
122 /// appended.
123 void FastISel::startNewBlock() {
124 assert(LocalValueMap.empty() &&
125 "local values should be cleared after finishing a BB");
127 // Instructions are appended to FuncInfo.MBB. If the basic block already
128 // contains labels or copies, use the last instruction as the last local
129 // value.
130 EmitStartPt = nullptr;
131 if (!FuncInfo.MBB->empty())
132 EmitStartPt = &FuncInfo.MBB->back();
133 LastLocalValue = EmitStartPt;
136 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
138 bool FastISel::lowerArguments() {
139 if (!FuncInfo.CanLowerReturn)
140 // Fallback to SDISel argument lowering code to deal with sret pointer
141 // parameter.
142 return false;
144 if (!fastLowerArguments())
145 return false;
147 // Enter arguments into ValueMap for uses in non-entry BBs.
148 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
149 E = FuncInfo.Fn->arg_end();
150 I != E; ++I) {
151 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
152 assert(VI != LocalValueMap.end() && "Missed an argument?");
153 FuncInfo.ValueMap[&*I] = VI->second;
155 return true;
158 /// Return the defined register if this instruction defines exactly one
159 /// virtual register and uses no other virtual registers. Otherwise return 0.
160 static Register findLocalRegDef(MachineInstr &MI) {
161 Register RegDef;
162 for (const MachineOperand &MO : MI.operands()) {
163 if (!MO.isReg())
164 continue;
165 if (MO.isDef()) {
166 if (RegDef)
167 return Register();
168 RegDef = MO.getReg();
169 } else if (MO.getReg().isVirtual()) {
170 // This is another use of a vreg. Don't delete it.
171 return Register();
174 return RegDef;
177 static bool isRegUsedByPhiNodes(Register DefReg,
178 FunctionLoweringInfo &FuncInfo) {
179 for (auto &P : FuncInfo.PHINodesToUpdate)
180 if (P.second == DefReg)
181 return true;
182 return false;
185 void FastISel::flushLocalValueMap() {
186 // If FastISel bails out, it could leave local value instructions behind
187 // that aren't used for anything. Detect and erase those.
188 if (LastLocalValue != EmitStartPt) {
189 // Save the first instruction after local values, for later.
190 MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
191 ++FirstNonValue;
193 MachineBasicBlock::reverse_iterator RE =
194 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195 : FuncInfo.MBB->rend();
196 MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197 for (MachineInstr &LocalMI :
198 llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
199 Register DefReg = findLocalRegDef(LocalMI);
200 if (!DefReg)
201 continue;
202 if (FuncInfo.RegsWithFixups.count(DefReg))
203 continue;
204 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
205 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
206 if (EmitStartPt == &LocalMI)
207 EmitStartPt = EmitStartPt->getPrevNode();
208 LLVM_DEBUG(dbgs() << "removing dead local value materialization"
209 << LocalMI);
210 LocalMI.eraseFromParent();
214 if (FirstNonValue != FuncInfo.MBB->end()) {
215 // See if there are any local value instructions left. If so, we want to
216 // make sure the first one has a debug location; if it doesn't, use the
217 // first non-value instruction's debug location.
219 // If EmitStartPt is non-null, this block had copies at the top before
220 // FastISel started doing anything; it points to the last one, so the
221 // first local value instruction is the one after EmitStartPt.
222 // If EmitStartPt is null, the first local value instruction is at the
223 // top of the block.
224 MachineBasicBlock::iterator FirstLocalValue =
225 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
226 : FuncInfo.MBB->begin();
227 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
228 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
232 LocalValueMap.clear();
233 LastLocalValue = EmitStartPt;
234 recomputeInsertPt();
235 SavedInsertPt = FuncInfo.InsertPt;
238 Register FastISel::getRegForValue(const Value *V) {
239 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
240 // Don't handle non-simple values in FastISel.
241 if (!RealVT.isSimple())
242 return Register();
244 // Ignore illegal types. We must do this before looking up the value
245 // in ValueMap because Arguments are given virtual registers regardless
246 // of whether FastISel can handle them.
247 MVT VT = RealVT.getSimpleVT();
248 if (!TLI.isTypeLegal(VT)) {
249 // Handle integer promotions, though, because they're common and easy.
250 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
251 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
252 else
253 return Register();
256 // Look up the value to see if we already have a register for it.
257 Register Reg = lookUpRegForValue(V);
258 if (Reg)
259 return Reg;
261 // In bottom-up mode, just create the virtual register which will be used
262 // to hold the value. It will be materialized later.
263 if (isa<Instruction>(V) &&
264 (!isa<AllocaInst>(V) ||
265 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
266 return FuncInfo.InitializeRegForValue(V);
268 SavePoint SaveInsertPt = enterLocalValueArea();
270 // Materialize the value in a register. Emit any instructions in the
271 // local value area.
272 Reg = materializeRegForValue(V, VT);
274 leaveLocalValueArea(SaveInsertPt);
276 return Reg;
279 Register FastISel::materializeConstant(const Value *V, MVT VT) {
280 Register Reg;
281 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
282 if (CI->getValue().getActiveBits() <= 64)
283 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
284 } else if (isa<AllocaInst>(V))
285 Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
286 else if (isa<ConstantPointerNull>(V))
287 // Translate this as an integer zero so that it can be
288 // local-CSE'd with actual integer zeros.
289 Reg =
290 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
291 else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
292 if (CF->isNullValue())
293 Reg = fastMaterializeFloatZero(CF);
294 else
295 // Try to emit the constant directly.
296 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
298 if (!Reg) {
299 // Try to emit the constant by using an integer constant with a cast.
300 const APFloat &Flt = CF->getValueAPF();
301 EVT IntVT = TLI.getPointerTy(DL);
302 uint32_t IntBitWidth = IntVT.getSizeInBits();
303 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
304 bool isExact;
305 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
306 if (isExact) {
307 Register IntegerReg =
308 getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
309 if (IntegerReg)
310 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
311 IntegerReg);
314 } else if (const auto *Op = dyn_cast<Operator>(V)) {
315 if (!selectOperator(Op, Op->getOpcode()))
316 if (!isa<Instruction>(Op) ||
317 !fastSelectInstruction(cast<Instruction>(Op)))
318 return 0;
319 Reg = lookUpRegForValue(Op);
320 } else if (isa<UndefValue>(V)) {
321 Reg = createResultReg(TLI.getRegClassFor(VT));
322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
323 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
325 return Reg;
328 /// Helper for getRegForValue. This function is called when the value isn't
329 /// already available in a register and must be materialized with new
330 /// instructions.
331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
332 Register Reg;
333 // Give the target-specific code a try first.
334 if (isa<Constant>(V))
335 Reg = fastMaterializeConstant(cast<Constant>(V));
337 // If target-specific code couldn't or didn't want to handle the value, then
338 // give target-independent code a try.
339 if (!Reg)
340 Reg = materializeConstant(V, VT);
342 // Don't cache constant materializations in the general ValueMap.
343 // To do so would require tracking what uses they dominate.
344 if (Reg) {
345 LocalValueMap[V] = Reg;
346 LastLocalValue = MRI.getVRegDef(Reg);
348 return Reg;
351 Register FastISel::lookUpRegForValue(const Value *V) {
352 // Look up the value to see if we already have a register for it. We
353 // cache values defined by Instructions across blocks, and other values
354 // only locally. This is because Instructions already have the SSA
355 // def-dominates-use requirement enforced.
356 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
357 if (I != FuncInfo.ValueMap.end())
358 return I->second;
359 return LocalValueMap[V];
362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
363 if (!isa<Instruction>(I)) {
364 LocalValueMap[I] = Reg;
365 return;
368 Register &AssignedReg = FuncInfo.ValueMap[I];
369 if (!AssignedReg)
370 // Use the new register.
371 AssignedReg = Reg;
372 else if (Reg != AssignedReg) {
373 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
374 for (unsigned i = 0; i < NumRegs; i++) {
375 FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
376 FuncInfo.RegsWithFixups.insert(Reg + i);
379 AssignedReg = Reg;
383 Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) {
384 Register IdxN = getRegForValue(Idx);
385 if (!IdxN)
386 // Unhandled operand. Halt "fast" selection and bail.
387 return Register();
389 // If the index is smaller or larger than intptr_t, truncate or extend it.
390 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
391 if (IdxVT.bitsLT(PtrVT)) {
392 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
393 } else if (IdxVT.bitsGT(PtrVT)) {
394 IdxN =
395 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
397 return IdxN;
400 void FastISel::recomputeInsertPt() {
401 if (getLastLocalValue()) {
402 FuncInfo.InsertPt = getLastLocalValue();
403 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
404 ++FuncInfo.InsertPt;
405 } else
406 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
409 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
410 MachineBasicBlock::iterator E) {
411 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
412 "Invalid iterator!");
413 while (I != E) {
414 if (SavedInsertPt == I)
415 SavedInsertPt = E;
416 if (EmitStartPt == I)
417 EmitStartPt = E.isValid() ? &*E : nullptr;
418 if (LastLocalValue == I)
419 LastLocalValue = E.isValid() ? &*E : nullptr;
421 MachineInstr *Dead = &*I;
422 ++I;
423 Dead->eraseFromParent();
424 ++NumFastIselDead;
426 recomputeInsertPt();
429 FastISel::SavePoint FastISel::enterLocalValueArea() {
430 SavePoint OldInsertPt = FuncInfo.InsertPt;
431 recomputeInsertPt();
432 return OldInsertPt;
435 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
436 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
437 LastLocalValue = &*std::prev(FuncInfo.InsertPt);
439 // Restore the previous insert position.
440 FuncInfo.InsertPt = OldInsertPt;
443 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
444 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
445 if (VT == MVT::Other || !VT.isSimple())
446 // Unhandled type. Halt "fast" selection and bail.
447 return false;
449 // We only handle legal types. For example, on x86-32 the instruction
450 // selector contains all of the 64-bit instructions from x86-64,
451 // under the assumption that i64 won't be used if the target doesn't
452 // support it.
453 if (!TLI.isTypeLegal(VT)) {
454 // MVT::i1 is special. Allow AND, OR, or XOR because they
455 // don't require additional zeroing, which makes them easy.
456 if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode))
457 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
458 else
459 return false;
462 // Check if the first operand is a constant, and handle it as "ri". At -O0,
463 // we don't have anything that canonicalizes operand order.
464 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
465 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
466 Register Op1 = getRegForValue(I->getOperand(1));
467 if (!Op1)
468 return false;
470 Register ResultReg =
471 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
472 VT.getSimpleVT());
473 if (!ResultReg)
474 return false;
476 // We successfully emitted code for the given LLVM Instruction.
477 updateValueMap(I, ResultReg);
478 return true;
481 Register Op0 = getRegForValue(I->getOperand(0));
482 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
483 return false;
485 // Check if the second operand is a constant and handle it appropriately.
486 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 uint64_t Imm = CI->getSExtValue();
489 // Transform "sdiv exact X, 8" -> "sra X, 3".
490 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
491 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
492 Imm = Log2_64(Imm);
493 ISDOpcode = ISD::SRA;
496 // Transform "urem x, pow2" -> "and x, pow2-1".
497 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
498 isPowerOf2_64(Imm)) {
499 --Imm;
500 ISDOpcode = ISD::AND;
503 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
504 VT.getSimpleVT());
505 if (!ResultReg)
506 return false;
508 // We successfully emitted code for the given LLVM Instruction.
509 updateValueMap(I, ResultReg);
510 return true;
513 Register Op1 = getRegForValue(I->getOperand(1));
514 if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
515 return false;
517 // Now we have both operands in registers. Emit the instruction.
518 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
519 ISDOpcode, Op0, Op1);
520 if (!ResultReg)
521 // Target-specific code wasn't able to find a machine opcode for
522 // the given ISD opcode and type. Halt "fast" selection and bail.
523 return false;
525 // We successfully emitted code for the given LLVM Instruction.
526 updateValueMap(I, ResultReg);
527 return true;
530 bool FastISel::selectGetElementPtr(const User *I) {
531 Register N = getRegForValue(I->getOperand(0));
532 if (!N) // Unhandled operand. Halt "fast" selection and bail.
533 return false;
535 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
536 // and bail.
537 if (isa<VectorType>(I->getType()))
538 return false;
540 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
541 // into a single N = N + TotalOffset.
542 uint64_t TotalOffs = 0;
543 // FIXME: What's a good SWAG number for MaxOffs?
544 uint64_t MaxOffs = 2048;
545 MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT();
547 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
548 GTI != E; ++GTI) {
549 const Value *Idx = GTI.getOperand();
550 if (StructType *StTy = GTI.getStructTypeOrNull()) {
551 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
552 if (Field) {
553 // N = N + Offset
554 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
555 if (TotalOffs >= MaxOffs) {
556 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
557 if (!N) // Unhandled operand. Halt "fast" selection and bail.
558 return false;
559 TotalOffs = 0;
562 } else {
563 // If this is a constant subscript, handle it quickly.
564 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
565 if (CI->isZero())
566 continue;
567 // N = N + Offset
568 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
569 TotalOffs += GTI.getSequentialElementStride(DL) * IdxN;
570 if (TotalOffs >= MaxOffs) {
571 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
572 if (!N) // Unhandled operand. Halt "fast" selection and bail.
573 return false;
574 TotalOffs = 0;
576 continue;
578 if (TotalOffs) {
579 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
580 if (!N) // Unhandled operand. Halt "fast" selection and bail.
581 return false;
582 TotalOffs = 0;
585 // N = N + Idx * ElementSize;
586 uint64_t ElementSize = GTI.getSequentialElementStride(DL);
587 Register IdxN = getRegForGEPIndex(VT, Idx);
588 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
589 return false;
591 if (ElementSize != 1) {
592 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
593 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
594 return false;
596 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
597 if (!N) // Unhandled operand. Halt "fast" selection and bail.
598 return false;
601 if (TotalOffs) {
602 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
603 if (!N) // Unhandled operand. Halt "fast" selection and bail.
604 return false;
607 // We successfully emitted code for the given LLVM Instruction.
608 updateValueMap(I, N);
609 return true;
612 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
613 const CallInst *CI, unsigned StartIdx) {
614 for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
615 Value *Val = CI->getArgOperand(i);
616 // Check for constants and encode them with a StackMaps::ConstantOp prefix.
617 if (const auto *C = dyn_cast<ConstantInt>(Val)) {
618 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
619 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
620 } else if (isa<ConstantPointerNull>(Val)) {
621 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
622 Ops.push_back(MachineOperand::CreateImm(0));
623 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
624 // Values coming from a stack location also require a special encoding,
625 // but that is added later on by the target specific frame index
626 // elimination implementation.
627 auto SI = FuncInfo.StaticAllocaMap.find(AI);
628 if (SI != FuncInfo.StaticAllocaMap.end())
629 Ops.push_back(MachineOperand::CreateFI(SI->second));
630 else
631 return false;
632 } else {
633 Register Reg = getRegForValue(Val);
634 if (!Reg)
635 return false;
636 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
639 return true;
642 bool FastISel::selectStackmap(const CallInst *I) {
643 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
644 // [live variables...])
645 assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
646 "Stackmap cannot return a value.");
648 // The stackmap intrinsic only records the live variables (the arguments
649 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
650 // intrinsic, this won't be lowered to a function call. This means we don't
651 // have to worry about calling conventions and target-specific lowering code.
652 // Instead we perform the call lowering right here.
654 // CALLSEQ_START(0, 0...)
655 // STACKMAP(id, nbytes, ...)
656 // CALLSEQ_END(0, 0)
658 SmallVector<MachineOperand, 32> Ops;
660 // Add the <id> and <numBytes> constants.
661 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
662 "Expected a constant integer.");
663 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
664 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
666 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
667 "Expected a constant integer.");
668 const auto *NumBytes =
669 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
670 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
672 // Push live variables for the stack map (skipping the first two arguments
673 // <id> and <numBytes>).
674 if (!addStackMapLiveVars(Ops, I, 2))
675 return false;
677 // We are not adding any register mask info here, because the stackmap doesn't
678 // clobber anything.
680 // Add scratch registers as implicit def and early clobber.
681 CallingConv::ID CC = I->getCallingConv();
682 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
683 for (unsigned i = 0; ScratchRegs[i]; ++i)
684 Ops.push_back(MachineOperand::CreateReg(
685 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
686 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
688 // Issue CALLSEQ_START
689 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
690 auto Builder =
691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown));
692 const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
693 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
694 Builder.addImm(0);
696 // Issue STACKMAP.
697 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
698 TII.get(TargetOpcode::STACKMAP));
699 for (auto const &MO : Ops)
700 MIB.add(MO);
702 // Issue CALLSEQ_END
703 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
705 .addImm(0)
706 .addImm(0);
708 // Inform the Frame Information that we have a stackmap in this function.
709 FuncInfo.MF->getFrameInfo().setHasStackMap();
711 return true;
714 /// Lower an argument list according to the target calling convention.
716 /// This is a helper for lowering intrinsics that follow a target calling
717 /// convention or require stack pointer adjustment. Only a subset of the
718 /// intrinsic's operands need to participate in the calling convention.
719 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
720 unsigned NumArgs, const Value *Callee,
721 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
722 ArgListTy Args;
723 Args.reserve(NumArgs);
725 // Populate the argument list.
726 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
727 Value *V = CI->getOperand(ArgI);
729 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
731 ArgListEntry Entry;
732 Entry.Val = V;
733 Entry.Ty = V->getType();
734 Entry.setAttributes(CI, ArgI);
735 Args.push_back(Entry);
738 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
739 : CI->getType();
740 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
742 return lowerCallTo(CLI);
745 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
746 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
747 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
748 SmallString<32> MangledName;
749 Mangler::getNameWithPrefix(MangledName, Target, DL);
750 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
751 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
754 bool FastISel::selectPatchpoint(const CallInst *I) {
755 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
756 // i32 <numBytes>,
757 // i8* <target>,
758 // i32 <numArgs>,
759 // [Args...],
760 // [live variables...])
761 CallingConv::ID CC = I->getCallingConv();
762 bool IsAnyRegCC = CC == CallingConv::AnyReg;
763 bool HasDef = !I->getType()->isVoidTy();
764 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
766 // Check if we can lower the return type when using anyregcc.
767 MVT ValueType;
768 if (IsAnyRegCC && HasDef) {
769 ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true);
770 if (ValueType == MVT::Other)
771 return false;
774 // Get the real number of arguments participating in the call <numArgs>
775 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
776 "Expected a constant integer.");
777 const auto *NumArgsVal =
778 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
779 unsigned NumArgs = NumArgsVal->getZExtValue();
781 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
782 // This includes all meta-operands up to but not including CC.
783 unsigned NumMetaOpers = PatchPointOpers::CCPos;
784 assert(I->arg_size() >= NumMetaOpers + NumArgs &&
785 "Not enough arguments provided to the patchpoint intrinsic");
787 // For AnyRegCC the arguments are lowered later on manually.
788 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
789 CallLoweringInfo CLI;
790 CLI.setIsPatchPoint();
791 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
792 return false;
794 assert(CLI.Call && "No call instruction specified.");
796 SmallVector<MachineOperand, 32> Ops;
798 // Add an explicit result reg if we use the anyreg calling convention.
799 if (IsAnyRegCC && HasDef) {
800 assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
801 assert(ValueType.isValid());
802 CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType));
803 CLI.NumResultRegs = 1;
804 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
807 // Add the <id> and <numBytes> constants.
808 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
809 "Expected a constant integer.");
810 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
811 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
813 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
814 "Expected a constant integer.");
815 const auto *NumBytes =
816 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
817 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
819 // Add the call target.
820 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
821 uint64_t CalleeConstAddr =
822 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
823 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
824 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
825 if (C->getOpcode() == Instruction::IntToPtr) {
826 uint64_t CalleeConstAddr =
827 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
828 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
829 } else
830 llvm_unreachable("Unsupported ConstantExpr.");
831 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
832 Ops.push_back(MachineOperand::CreateGA(GV, 0));
833 } else if (isa<ConstantPointerNull>(Callee))
834 Ops.push_back(MachineOperand::CreateImm(0));
835 else
836 llvm_unreachable("Unsupported callee address.");
838 // Adjust <numArgs> to account for any arguments that have been passed on
839 // the stack instead.
840 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
841 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
843 // Add the calling convention
844 Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
846 // Add the arguments we omitted previously. The register allocator should
847 // place these in any free register.
848 if (IsAnyRegCC) {
849 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
850 Register Reg = getRegForValue(I->getArgOperand(i));
851 if (!Reg)
852 return false;
853 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
857 // Push the arguments from the call instruction.
858 for (auto Reg : CLI.OutRegs)
859 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
861 // Push live variables for the stack map.
862 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
863 return false;
865 // Push the register mask info.
866 Ops.push_back(MachineOperand::CreateRegMask(
867 TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
869 // Add scratch registers as implicit def and early clobber.
870 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
871 for (unsigned i = 0; ScratchRegs[i]; ++i)
872 Ops.push_back(MachineOperand::CreateReg(
873 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
874 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
876 // Add implicit defs (return values).
877 for (auto Reg : CLI.InRegs)
878 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
879 /*isImp=*/true));
881 // Insert the patchpoint instruction before the call generated by the target.
882 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD,
883 TII.get(TargetOpcode::PATCHPOINT));
885 for (auto &MO : Ops)
886 MIB.add(MO);
888 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
890 // Delete the original call instruction.
891 CLI.Call->eraseFromParent();
893 // Inform the Frame Information that we have a patchpoint in this function.
894 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
896 if (CLI.NumResultRegs)
897 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
898 return true;
901 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
902 const auto &Triple = TM.getTargetTriple();
903 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
904 return true; // don't do anything to this instruction.
905 SmallVector<MachineOperand, 8> Ops;
906 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
907 /*isDef=*/false));
908 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
909 /*isDef=*/false));
910 MachineInstrBuilder MIB =
911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
912 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
913 for (auto &MO : Ops)
914 MIB.add(MO);
916 // Insert the Patchable Event Call instruction, that gets lowered properly.
917 return true;
920 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
921 const auto &Triple = TM.getTargetTriple();
922 if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
923 return true; // don't do anything to this instruction.
924 SmallVector<MachineOperand, 8> Ops;
925 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
926 /*isDef=*/false));
927 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
928 /*isDef=*/false));
929 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
930 /*isDef=*/false));
931 MachineInstrBuilder MIB =
932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
933 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
934 for (auto &MO : Ops)
935 MIB.add(MO);
937 // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
938 return true;
941 /// Returns an AttributeList representing the attributes applied to the return
942 /// value of the given call.
943 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
944 SmallVector<Attribute::AttrKind, 2> Attrs;
945 if (CLI.RetSExt)
946 Attrs.push_back(Attribute::SExt);
947 if (CLI.RetZExt)
948 Attrs.push_back(Attribute::ZExt);
949 if (CLI.IsInReg)
950 Attrs.push_back(Attribute::InReg);
952 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
953 Attrs);
956 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
957 unsigned NumArgs) {
958 MCContext &Ctx = MF->getContext();
959 SmallString<32> MangledName;
960 Mangler::getNameWithPrefix(MangledName, SymName, DL);
961 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
962 return lowerCallTo(CI, Sym, NumArgs);
965 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
966 unsigned NumArgs) {
967 FunctionType *FTy = CI->getFunctionType();
968 Type *RetTy = CI->getType();
970 ArgListTy Args;
971 Args.reserve(NumArgs);
973 // Populate the argument list.
974 // Attributes for args start at offset 1, after the return attribute.
975 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
976 Value *V = CI->getOperand(ArgI);
978 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
980 ArgListEntry Entry;
981 Entry.Val = V;
982 Entry.Ty = V->getType();
983 Entry.setAttributes(CI, ArgI);
984 Args.push_back(Entry);
986 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
988 CallLoweringInfo CLI;
989 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
991 return lowerCallTo(CLI);
994 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
995 // Handle the incoming return values from the call.
996 CLI.clearIns();
997 SmallVector<EVT, 4> RetTys;
998 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1000 SmallVector<ISD::OutputArg, 4> Outs;
1001 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1003 bool CanLowerReturn = TLI.CanLowerReturn(
1004 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1006 // FIXME: sret demotion isn't supported yet - bail out.
1007 if (!CanLowerReturn)
1008 return false;
1010 for (EVT VT : RetTys) {
1011 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1012 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1013 for (unsigned i = 0; i != NumRegs; ++i) {
1014 ISD::InputArg MyFlags;
1015 MyFlags.VT = RegisterVT;
1016 MyFlags.ArgVT = VT;
1017 MyFlags.Used = CLI.IsReturnValueUsed;
1018 if (CLI.RetSExt)
1019 MyFlags.Flags.setSExt();
1020 if (CLI.RetZExt)
1021 MyFlags.Flags.setZExt();
1022 if (CLI.IsInReg)
1023 MyFlags.Flags.setInReg();
1024 CLI.Ins.push_back(MyFlags);
1028 // Handle all of the outgoing arguments.
1029 CLI.clearOuts();
1030 for (auto &Arg : CLI.getArgs()) {
1031 Type *FinalType = Arg.Ty;
1032 if (Arg.IsByVal)
1033 FinalType = Arg.IndirectType;
1034 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1035 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1037 ISD::ArgFlagsTy Flags;
1038 if (Arg.IsZExt)
1039 Flags.setZExt();
1040 if (Arg.IsSExt)
1041 Flags.setSExt();
1042 if (Arg.IsInReg)
1043 Flags.setInReg();
1044 if (Arg.IsSRet)
1045 Flags.setSRet();
1046 if (Arg.IsSwiftSelf)
1047 Flags.setSwiftSelf();
1048 if (Arg.IsSwiftAsync)
1049 Flags.setSwiftAsync();
1050 if (Arg.IsSwiftError)
1051 Flags.setSwiftError();
1052 if (Arg.IsCFGuardTarget)
1053 Flags.setCFGuardTarget();
1054 if (Arg.IsByVal)
1055 Flags.setByVal();
1056 if (Arg.IsInAlloca) {
1057 Flags.setInAlloca();
1058 // Set the byval flag for CCAssignFn callbacks that don't know about
1059 // inalloca. This way we can know how many bytes we should've allocated
1060 // and how many bytes a callee cleanup function will pop. If we port
1061 // inalloca to more targets, we'll have to add custom inalloca handling in
1062 // the various CC lowering callbacks.
1063 Flags.setByVal();
1065 if (Arg.IsPreallocated) {
1066 Flags.setPreallocated();
1067 // Set the byval flag for CCAssignFn callbacks that don't know about
1068 // preallocated. This way we can know how many bytes we should've
1069 // allocated and how many bytes a callee cleanup function will pop. If we
1070 // port preallocated to more targets, we'll have to add custom
1071 // preallocated handling in the various CC lowering callbacks.
1072 Flags.setByVal();
1074 MaybeAlign MemAlign = Arg.Alignment;
1075 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1076 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1078 // For ByVal, alignment should come from FE. BE will guess if this info
1079 // is not there, but there are cases it cannot get right.
1080 if (!MemAlign)
1081 MemAlign = TLI.getByValTypeAlignment(Arg.IndirectType, DL);
1082 Flags.setByValSize(FrameSize);
1083 } else if (!MemAlign) {
1084 MemAlign = DL.getABITypeAlign(Arg.Ty);
1086 Flags.setMemAlign(*MemAlign);
1087 if (Arg.IsNest)
1088 Flags.setNest();
1089 if (NeedsRegBlock)
1090 Flags.setInConsecutiveRegs();
1091 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1092 CLI.OutVals.push_back(Arg.Val);
1093 CLI.OutFlags.push_back(Flags);
1096 if (!fastLowerCall(CLI))
1097 return false;
1099 // Set all unused physreg defs as dead.
1100 assert(CLI.Call && "No call instruction specified.");
1101 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1103 if (CLI.NumResultRegs && CLI.CB)
1104 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1106 // Set labels for heapallocsite call.
1107 if (CLI.CB)
1108 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1109 CLI.Call->setHeapAllocMarker(*MF, MD);
1111 return true;
1114 bool FastISel::lowerCall(const CallInst *CI) {
1115 FunctionType *FuncTy = CI->getFunctionType();
1116 Type *RetTy = CI->getType();
1118 ArgListTy Args;
1119 ArgListEntry Entry;
1120 Args.reserve(CI->arg_size());
1122 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1123 Value *V = *i;
1125 // Skip empty types
1126 if (V->getType()->isEmptyTy())
1127 continue;
1129 Entry.Val = V;
1130 Entry.Ty = V->getType();
1132 // Skip the first return-type Attribute to get to params.
1133 Entry.setAttributes(CI, i - CI->arg_begin());
1134 Args.push_back(Entry);
1137 // Check if target-independent constraints permit a tail call here.
1138 // Target-dependent constraints are checked within fastLowerCall.
1139 bool IsTailCall = CI->isTailCall();
1140 if (IsTailCall && !isInTailCallPosition(*CI, TM))
1141 IsTailCall = false;
1142 if (IsTailCall && !CI->isMustTailCall() &&
1143 MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool())
1144 IsTailCall = false;
1146 CallLoweringInfo CLI;
1147 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1148 .setTailCall(IsTailCall);
1150 diagnoseDontCall(*CI);
1152 return lowerCallTo(CLI);
1155 bool FastISel::selectCall(const User *I) {
1156 const CallInst *Call = cast<CallInst>(I);
1158 // Handle simple inline asms.
1159 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1160 // Don't attempt to handle constraints.
1161 if (!IA->getConstraintString().empty())
1162 return false;
1164 unsigned ExtraInfo = 0;
1165 if (IA->hasSideEffects())
1166 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1167 if (IA->isAlignStack())
1168 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1169 if (Call->isConvergent())
1170 ExtraInfo |= InlineAsm::Extra_IsConvergent;
1171 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1173 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1174 TII.get(TargetOpcode::INLINEASM));
1175 MIB.addExternalSymbol(IA->getAsmString().c_str());
1176 MIB.addImm(ExtraInfo);
1178 const MDNode *SrcLoc = Call->getMetadata("srcloc");
1179 if (SrcLoc)
1180 MIB.addMetadata(SrcLoc);
1182 return true;
1185 // Handle intrinsic function calls.
1186 if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1187 return selectIntrinsicCall(II);
1189 return lowerCall(Call);
1192 void FastISel::handleDbgInfo(const Instruction *II) {
1193 if (!II->hasDbgRecords())
1194 return;
1196 // Clear any metadata.
1197 MIMD = MIMetadata();
1199 // Reverse order of debug records, because fast-isel walks through backwards.
1200 for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) {
1201 flushLocalValueMap();
1202 recomputeInsertPt();
1204 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1205 assert(DLR->getLabel() && "Missing label");
1206 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(),
1207 TII.get(TargetOpcode::DBG_LABEL))
1208 .addMetadata(DLR->getLabel());
1209 continue;
1212 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1214 Value *V = nullptr;
1215 if (!DVR.hasArgList())
1216 V = DVR.getVariableLocationOp(0);
1218 bool Res = false;
1219 if (DVR.getType() == DbgVariableRecord::LocationType::Value ||
1220 DVR.getType() == DbgVariableRecord::LocationType::Assign) {
1221 Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(),
1222 DVR.getDebugLoc());
1223 } else {
1224 assert(DVR.getType() == DbgVariableRecord::LocationType::Declare);
1225 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1226 continue;
1227 Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(),
1228 DVR.getDebugLoc());
1231 if (!Res)
1232 LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n");
1236 bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr,
1237 DILocalVariable *Var, const DebugLoc &DL) {
1238 // This form of DBG_VALUE is target-independent.
1239 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1240 if (!V || isa<UndefValue>(V)) {
1241 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1242 // undef DBG_VALUE to terminate any prior location.
1243 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr);
1244 return true;
1246 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1247 // See if there's an expression to constant-fold.
1248 if (Expr)
1249 std::tie(Expr, CI) = Expr->constantFold(CI);
1250 if (CI->getBitWidth() > 64)
1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1252 .addCImm(CI)
1253 .addImm(0U)
1254 .addMetadata(Var)
1255 .addMetadata(Expr);
1256 else
1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1258 .addImm(CI->getZExtValue())
1259 .addImm(0U)
1260 .addMetadata(Var)
1261 .addMetadata(Expr);
1262 return true;
1264 if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1266 .addFPImm(CF)
1267 .addImm(0U)
1268 .addMetadata(Var)
1269 .addMetadata(Expr);
1270 return true;
1272 if (const auto *Arg = dyn_cast<Argument>(V);
1273 Arg && Expr && Expr->isEntryValue()) {
1274 // As per the Verifier, this case is only valid for swift async Args.
1275 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
1277 Register Reg = getRegForValue(Arg);
1278 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1279 if (Reg == VirtReg || Reg == PhysReg) {
1280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/,
1281 PhysReg, Var, Expr);
1282 return true;
1285 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1286 "couldn't find a physical register\n");
1287 return false;
1289 if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V));
1290 SI != FuncInfo.StaticAllocaMap.end()) {
1291 MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second);
1292 bool IsIndirect = false;
1293 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp,
1294 Var, Expr);
1295 return true;
1297 if (Register Reg = lookUpRegForValue(V)) {
1298 // FIXME: This does not handle register-indirect values at offset 0.
1299 if (!FuncInfo.MF->useDebugInstrRef()) {
1300 bool IsIndirect = false;
1301 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var,
1302 Expr);
1303 return true;
1305 // If using instruction referencing, produce this as a DBG_INSTR_REF,
1306 // to be later patched up by finalizeDebugInstrRefs.
1307 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
1308 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1309 /* isKill */ false, /* isDead */ false,
1310 /* isUndef */ false, /* isEarlyClobber */ false,
1311 /* SubReg */ 0, /* isDebug */ true)});
1312 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
1313 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1315 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs,
1316 Var, NewExpr);
1317 return true;
1319 return false;
1322 bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr,
1323 DILocalVariable *Var, const DebugLoc &DL) {
1324 if (!Address || isa<UndefValue>(Address)) {
1325 LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n");
1326 return false;
1329 std::optional<MachineOperand> Op;
1330 if (Register Reg = lookUpRegForValue(Address))
1331 Op = MachineOperand::CreateReg(Reg, false);
1333 // If we have a VLA that has a "use" in a metadata node that's then used
1334 // here but it has no other uses, then we have a problem. E.g.,
1336 // int foo (const int *x) {
1337 // char a[*x];
1338 // return 0;
1339 // }
1341 // If we assign 'a' a vreg and fast isel later on has to use the selection
1342 // DAG isel, it will want to copy the value to the vreg. However, there are
1343 // no uses, which goes counter to what selection DAG isel expects.
1344 if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1345 (!isa<AllocaInst>(Address) ||
1346 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1347 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1348 false);
1350 if (Op) {
1351 assert(Var->isValidLocationForIntrinsic(DL) &&
1352 "Expected inlined-at fields to agree");
1353 if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1354 // If using instruction referencing, produce this as a DBG_INSTR_REF,
1355 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1356 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1357 SmallVector<uint64_t, 3> Ops(
1358 {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref});
1359 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1360 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1361 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op,
1362 Var, NewExpr);
1363 return true;
1366 // A dbg.declare describes the address of a source variable, so lower it
1367 // into an indirect DBG_VALUE.
1368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1369 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var,
1370 Expr);
1371 return true;
1374 // We can't yet handle anything else here because it would require
1375 // generating code, thus altering codegen because of debug info.
1376 LLVM_DEBUG(
1377 dbgs() << "Dropping debug info (no materialized reg for address)\n");
1378 return false;
1381 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1382 switch (II->getIntrinsicID()) {
1383 default:
1384 break;
1385 // At -O0 we don't care about the lifetime intrinsics.
1386 case Intrinsic::lifetime_start:
1387 case Intrinsic::lifetime_end:
1388 // The donothing intrinsic does, well, nothing.
1389 case Intrinsic::donothing:
1390 // Neither does the sideeffect intrinsic.
1391 case Intrinsic::sideeffect:
1392 // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1393 case Intrinsic::assume:
1394 // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1395 case Intrinsic::experimental_noalias_scope_decl:
1396 return true;
1397 case Intrinsic::dbg_declare: {
1398 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1399 assert(DI->getVariable() && "Missing variable");
1400 if (FuncInfo.PreprocessedDbgDeclares.contains(DI))
1401 return true;
1403 const Value *Address = DI->getAddress();
1404 if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(),
1405 MIMD.getDL()))
1406 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI);
1408 return true;
1410 case Intrinsic::dbg_assign:
1411 // A dbg.assign is a dbg.value with more information, typically produced
1412 // during optimisation. If one reaches fastisel then something odd has
1413 // happened (such as an optimised function being always-inlined into an
1414 // optnone function). We will not be using the extra information in the
1415 // dbg.assign in that case, just use its dbg.value fields.
1416 [[fallthrough]];
1417 case Intrinsic::dbg_value: {
1418 // This form of DBG_VALUE is target-independent.
1419 const DbgValueInst *DI = cast<DbgValueInst>(II);
1420 const Value *V = DI->getValue();
1421 DIExpression *Expr = DI->getExpression();
1422 DILocalVariable *Var = DI->getVariable();
1423 if (DI->hasArgList())
1424 // Signal that we don't have a location for this.
1425 V = nullptr;
1427 assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) &&
1428 "Expected inlined-at fields to agree");
1430 if (!lowerDbgValue(V, Expr, Var, MIMD.getDL()))
1431 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1433 return true;
1435 case Intrinsic::dbg_label: {
1436 const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1437 assert(DI->getLabel() && "Missing label");
1438 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1439 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1440 return true;
1442 case Intrinsic::objectsize:
1443 llvm_unreachable("llvm.objectsize.* should have been lowered already");
1445 case Intrinsic::is_constant:
1446 llvm_unreachable("llvm.is.constant.* should have been lowered already");
1448 case Intrinsic::allow_runtime_check:
1449 case Intrinsic::allow_ubsan_check: {
1450 Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType()));
1451 if (!ResultReg)
1452 return false;
1453 updateValueMap(II, ResultReg);
1454 return true;
1457 case Intrinsic::launder_invariant_group:
1458 case Intrinsic::strip_invariant_group:
1459 case Intrinsic::expect:
1460 case Intrinsic::expect_with_probability: {
1461 Register ResultReg = getRegForValue(II->getArgOperand(0));
1462 if (!ResultReg)
1463 return false;
1464 updateValueMap(II, ResultReg);
1465 return true;
1467 case Intrinsic::fake_use:
1468 // At -O0, we don't need fake use, so just ignore it.
1469 return true;
1470 case Intrinsic::experimental_stackmap:
1471 return selectStackmap(II);
1472 case Intrinsic::experimental_patchpoint_void:
1473 case Intrinsic::experimental_patchpoint:
1474 return selectPatchpoint(II);
1476 case Intrinsic::xray_customevent:
1477 return selectXRayCustomEvent(II);
1478 case Intrinsic::xray_typedevent:
1479 return selectXRayTypedEvent(II);
1482 return fastLowerIntrinsicCall(II);
1485 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1486 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1487 EVT DstVT = TLI.getValueType(DL, I->getType());
1489 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1490 !DstVT.isSimple())
1491 // Unhandled type. Halt "fast" selection and bail.
1492 return false;
1494 // Check if the destination type is legal.
1495 if (!TLI.isTypeLegal(DstVT))
1496 return false;
1498 // Check if the source operand is legal.
1499 if (!TLI.isTypeLegal(SrcVT))
1500 return false;
1502 Register InputReg = getRegForValue(I->getOperand(0));
1503 if (!InputReg)
1504 // Unhandled operand. Halt "fast" selection and bail.
1505 return false;
1507 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1508 Opcode, InputReg);
1509 if (!ResultReg)
1510 return false;
1512 updateValueMap(I, ResultReg);
1513 return true;
1516 bool FastISel::selectBitCast(const User *I) {
1517 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1518 EVT DstEVT = TLI.getValueType(DL, I->getType());
1519 if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1520 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1521 // Unhandled type. Halt "fast" selection and bail.
1522 return false;
1524 MVT SrcVT = SrcEVT.getSimpleVT();
1525 MVT DstVT = DstEVT.getSimpleVT();
1526 Register Op0 = getRegForValue(I->getOperand(0));
1527 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1528 return false;
1530 // If the bitcast doesn't change the type, just use the operand value.
1531 if (SrcVT == DstVT) {
1532 updateValueMap(I, Op0);
1533 return true;
1536 // Otherwise, select a BITCAST opcode.
1537 Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1538 if (!ResultReg)
1539 return false;
1541 updateValueMap(I, ResultReg);
1542 return true;
1545 bool FastISel::selectFreeze(const User *I) {
1546 Register Reg = getRegForValue(I->getOperand(0));
1547 if (!Reg)
1548 // Unhandled operand.
1549 return false;
1551 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1552 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1553 // Unhandled type, bail out.
1554 return false;
1556 MVT Ty = ETy.getSimpleVT();
1557 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1558 Register ResultReg = createResultReg(TyRegClass);
1559 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1560 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1562 updateValueMap(I, ResultReg);
1563 return true;
1566 // Remove local value instructions starting from the instruction after
1567 // SavedLastLocalValue to the current function insert point.
1568 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1570 MachineInstr *CurLastLocalValue = getLastLocalValue();
1571 if (CurLastLocalValue != SavedLastLocalValue) {
1572 // Find the first local value instruction to be deleted.
1573 // This is the instruction after SavedLastLocalValue if it is non-NULL.
1574 // Otherwise it's the first instruction in the block.
1575 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1576 if (SavedLastLocalValue)
1577 ++FirstDeadInst;
1578 else
1579 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1580 setLastLocalValue(SavedLastLocalValue);
1581 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1585 bool FastISel::selectInstruction(const Instruction *I) {
1586 // Flush the local value map before starting each instruction.
1587 // This improves locality and debugging, and can reduce spills.
1588 // Reuse of values across IR instructions is relatively uncommon.
1589 flushLocalValueMap();
1591 MachineInstr *SavedLastLocalValue = getLastLocalValue();
1592 // Just before the terminator instruction, insert instructions to
1593 // feed PHI nodes in successor blocks.
1594 if (I->isTerminator()) {
1595 if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1596 // PHI node handling may have generated local value instructions,
1597 // even though it failed to handle all PHI nodes.
1598 // We remove these instructions because SelectionDAGISel will generate
1599 // them again.
1600 removeDeadLocalValueCode(SavedLastLocalValue);
1601 return false;
1605 // FastISel does not handle any operand bundles except OB_funclet.
1606 if (auto *Call = dyn_cast<CallBase>(I))
1607 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1608 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1609 return false;
1611 MIMD = MIMetadata(*I);
1613 SavedInsertPt = FuncInfo.InsertPt;
1615 if (const auto *Call = dyn_cast<CallInst>(I)) {
1616 const Function *F = Call->getCalledFunction();
1617 LibFunc Func;
1619 // As a special case, don't handle calls to builtin library functions that
1620 // may be translated directly to target instructions.
1621 if (F && !F->hasLocalLinkage() && F->hasName() &&
1622 LibInfo->getLibFunc(F->getName(), Func) &&
1623 LibInfo->hasOptimizedCodeGen(Func))
1624 return false;
1626 // Don't handle Intrinsic::trap if a trap function is specified.
1627 if (F && F->getIntrinsicID() == Intrinsic::trap &&
1628 Call->hasFnAttr("trap-func-name"))
1629 return false;
1632 // First, try doing target-independent selection.
1633 if (!SkipTargetIndependentISel) {
1634 if (selectOperator(I, I->getOpcode())) {
1635 ++NumFastIselSuccessIndependent;
1636 MIMD = {};
1637 return true;
1639 // Remove dead code.
1640 recomputeInsertPt();
1641 if (SavedInsertPt != FuncInfo.InsertPt)
1642 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1643 SavedInsertPt = FuncInfo.InsertPt;
1645 // Next, try calling the target to attempt to handle the instruction.
1646 if (fastSelectInstruction(I)) {
1647 ++NumFastIselSuccessTarget;
1648 MIMD = {};
1649 return true;
1651 // Remove dead code.
1652 recomputeInsertPt();
1653 if (SavedInsertPt != FuncInfo.InsertPt)
1654 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1656 MIMD = {};
1657 // Undo phi node updates, because they will be added again by SelectionDAG.
1658 if (I->isTerminator()) {
1659 // PHI node handling may have generated local value instructions.
1660 // We remove them because SelectionDAGISel will generate them again.
1661 removeDeadLocalValueCode(SavedLastLocalValue);
1662 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1664 return false;
1667 /// Emit an unconditional branch to the given block, unless it is the immediate
1668 /// (fall-through) successor, and update the CFG.
1669 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1670 const DebugLoc &DbgLoc) {
1671 const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
1672 bool BlockHasMultipleInstrs = &BB->front() != &BB->back();
1673 // Handle legacy case of debug intrinsics
1674 if (BlockHasMultipleInstrs && !BB->getModule()->IsNewDbgInfoFormat)
1675 BlockHasMultipleInstrs = BB->sizeWithoutDebug() > 1;
1676 if (BlockHasMultipleInstrs && FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1677 // For more accurate line information if this is the only non-debug
1678 // instruction in the block then emit it, otherwise we have the
1679 // unconditional fall-through case, which needs no instructions.
1680 } else {
1681 // The unconditional branch case.
1682 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1683 SmallVector<MachineOperand, 0>(), DbgLoc);
1685 if (FuncInfo.BPI) {
1686 auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1687 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1688 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1689 } else
1690 FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1693 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1694 MachineBasicBlock *TrueMBB,
1695 MachineBasicBlock *FalseMBB) {
1696 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1697 // happen in degenerate IR and MachineIR forbids to have a block twice in the
1698 // successor/predecessor lists.
1699 if (TrueMBB != FalseMBB) {
1700 if (FuncInfo.BPI) {
1701 auto BranchProbability =
1702 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1703 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1704 } else
1705 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1708 fastEmitBranch(FalseMBB, MIMD.getDL());
1711 /// Emit an FNeg operation.
1712 bool FastISel::selectFNeg(const User *I, const Value *In) {
1713 Register OpReg = getRegForValue(In);
1714 if (!OpReg)
1715 return false;
1717 // If the target has ISD::FNEG, use it.
1718 EVT VT = TLI.getValueType(DL, I->getType());
1719 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1720 OpReg);
1721 if (ResultReg) {
1722 updateValueMap(I, ResultReg);
1723 return true;
1726 // Bitcast the value to integer, twiddle the sign bit with xor,
1727 // and then bitcast it back to floating-point.
1728 if (VT.getSizeInBits() > 64)
1729 return false;
1730 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1731 if (!TLI.isTypeLegal(IntVT))
1732 return false;
1734 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1735 ISD::BITCAST, OpReg);
1736 if (!IntReg)
1737 return false;
1739 Register IntResultReg = fastEmit_ri_(
1740 IntVT.getSimpleVT(), ISD::XOR, IntReg,
1741 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1742 if (!IntResultReg)
1743 return false;
1745 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1746 IntResultReg);
1747 if (!ResultReg)
1748 return false;
1750 updateValueMap(I, ResultReg);
1751 return true;
1754 bool FastISel::selectExtractValue(const User *U) {
1755 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1756 if (!EVI)
1757 return false;
1759 // Make sure we only try to handle extracts with a legal result. But also
1760 // allow i1 because it's easy.
1761 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1762 if (!RealVT.isSimple())
1763 return false;
1764 MVT VT = RealVT.getSimpleVT();
1765 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1766 return false;
1768 const Value *Op0 = EVI->getOperand(0);
1769 Type *AggTy = Op0->getType();
1771 // Get the base result register.
1772 unsigned ResultReg;
1773 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1774 if (I != FuncInfo.ValueMap.end())
1775 ResultReg = I->second;
1776 else if (isa<Instruction>(Op0))
1777 ResultReg = FuncInfo.InitializeRegForValue(Op0);
1778 else
1779 return false; // fast-isel can't handle aggregate constants at the moment
1781 // Get the actual result register, which is an offset from the base register.
1782 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1784 SmallVector<EVT, 4> AggValueVTs;
1785 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1787 for (unsigned i = 0; i < VTIndex; i++)
1788 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1790 updateValueMap(EVI, ResultReg);
1791 return true;
1794 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1795 switch (Opcode) {
1796 case Instruction::Add:
1797 return selectBinaryOp(I, ISD::ADD);
1798 case Instruction::FAdd:
1799 return selectBinaryOp(I, ISD::FADD);
1800 case Instruction::Sub:
1801 return selectBinaryOp(I, ISD::SUB);
1802 case Instruction::FSub:
1803 return selectBinaryOp(I, ISD::FSUB);
1804 case Instruction::Mul:
1805 return selectBinaryOp(I, ISD::MUL);
1806 case Instruction::FMul:
1807 return selectBinaryOp(I, ISD::FMUL);
1808 case Instruction::SDiv:
1809 return selectBinaryOp(I, ISD::SDIV);
1810 case Instruction::UDiv:
1811 return selectBinaryOp(I, ISD::UDIV);
1812 case Instruction::FDiv:
1813 return selectBinaryOp(I, ISD::FDIV);
1814 case Instruction::SRem:
1815 return selectBinaryOp(I, ISD::SREM);
1816 case Instruction::URem:
1817 return selectBinaryOp(I, ISD::UREM);
1818 case Instruction::FRem:
1819 return selectBinaryOp(I, ISD::FREM);
1820 case Instruction::Shl:
1821 return selectBinaryOp(I, ISD::SHL);
1822 case Instruction::LShr:
1823 return selectBinaryOp(I, ISD::SRL);
1824 case Instruction::AShr:
1825 return selectBinaryOp(I, ISD::SRA);
1826 case Instruction::And:
1827 return selectBinaryOp(I, ISD::AND);
1828 case Instruction::Or:
1829 return selectBinaryOp(I, ISD::OR);
1830 case Instruction::Xor:
1831 return selectBinaryOp(I, ISD::XOR);
1833 case Instruction::FNeg:
1834 return selectFNeg(I, I->getOperand(0));
1836 case Instruction::GetElementPtr:
1837 return selectGetElementPtr(I);
1839 case Instruction::Br: {
1840 const BranchInst *BI = cast<BranchInst>(I);
1842 if (BI->isUnconditional()) {
1843 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1844 MachineBasicBlock *MSucc = FuncInfo.getMBB(LLVMSucc);
1845 fastEmitBranch(MSucc, BI->getDebugLoc());
1846 return true;
1849 // Conditional branches are not handed yet.
1850 // Halt "fast" selection and bail.
1851 return false;
1854 case Instruction::Unreachable: {
1855 if (TM.Options.TrapUnreachable) {
1856 if (TM.Options.NoTrapAfterNoreturn) {
1857 const auto *Call =
1858 dyn_cast_or_null<CallInst>(cast<Instruction>(I)->getPrevNode());
1859 if (Call && Call->doesNotReturn())
1860 return true;
1863 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1865 return true;
1868 case Instruction::Alloca:
1869 // FunctionLowering has the static-sized case covered.
1870 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1871 return true;
1873 // Dynamic-sized alloca is not handled yet.
1874 return false;
1876 case Instruction::Call:
1877 // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1878 // callee of the direct function call instruction will be mapped to the
1879 // symbol for the function's entry point, which is distinct from the
1880 // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1881 // name is the C-linkage name of the source level function.
1882 // But fast isel still has the ability to do selection for intrinsics.
1883 if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1884 return false;
1885 return selectCall(I);
1887 case Instruction::BitCast:
1888 return selectBitCast(I);
1890 case Instruction::FPToSI:
1891 return selectCast(I, ISD::FP_TO_SINT);
1892 case Instruction::ZExt:
1893 return selectCast(I, ISD::ZERO_EXTEND);
1894 case Instruction::SExt:
1895 return selectCast(I, ISD::SIGN_EXTEND);
1896 case Instruction::Trunc:
1897 return selectCast(I, ISD::TRUNCATE);
1898 case Instruction::SIToFP:
1899 return selectCast(I, ISD::SINT_TO_FP);
1901 case Instruction::IntToPtr: // Deliberate fall-through.
1902 case Instruction::PtrToInt: {
1903 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1904 EVT DstVT = TLI.getValueType(DL, I->getType());
1905 if (DstVT.bitsGT(SrcVT))
1906 return selectCast(I, ISD::ZERO_EXTEND);
1907 if (DstVT.bitsLT(SrcVT))
1908 return selectCast(I, ISD::TRUNCATE);
1909 Register Reg = getRegForValue(I->getOperand(0));
1910 if (!Reg)
1911 return false;
1912 updateValueMap(I, Reg);
1913 return true;
1916 case Instruction::ExtractValue:
1917 return selectExtractValue(I);
1919 case Instruction::Freeze:
1920 return selectFreeze(I);
1922 case Instruction::PHI:
1923 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1925 default:
1926 // Unhandled instruction. Halt "fast" selection and bail.
1927 return false;
1931 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1932 const TargetLibraryInfo *LibInfo,
1933 bool SkipTargetIndependentISel)
1934 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1935 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1936 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1937 TII(*MF->getSubtarget().getInstrInfo()),
1938 TLI(*MF->getSubtarget().getTargetLowering()),
1939 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1940 SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1942 FastISel::~FastISel() = default;
1944 bool FastISel::fastLowerArguments() { return false; }
1946 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1948 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1949 return false;
1952 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1954 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1955 return 0;
1958 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1959 unsigned /*Op1*/) {
1960 return 0;
1963 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1964 return 0;
1967 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1968 const ConstantFP * /*FPImm*/) {
1969 return 0;
1972 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1973 uint64_t /*Imm*/) {
1974 return 0;
1977 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1978 /// instruction with an immediate operand using fastEmit_ri.
1979 /// If that fails, it materializes the immediate into a register and try
1980 /// fastEmit_rr instead.
1981 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1982 uint64_t Imm, MVT ImmType) {
1983 // If this is a multiply by a power of two, emit this as a shift left.
1984 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1985 Opcode = ISD::SHL;
1986 Imm = Log2_64(Imm);
1987 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1988 // div x, 8 -> srl x, 3
1989 Opcode = ISD::SRL;
1990 Imm = Log2_64(Imm);
1993 // Horrible hack (to be removed), check to make sure shift amounts are
1994 // in-range.
1995 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1996 Imm >= VT.getSizeInBits())
1997 return 0;
1999 // First check if immediate type is legal. If not, we can't use the ri form.
2000 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
2001 if (ResultReg)
2002 return ResultReg;
2003 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
2004 if (!MaterialReg) {
2005 // This is a bit ugly/slow, but failing here means falling out of
2006 // fast-isel, which would be very slow.
2007 IntegerType *ITy =
2008 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2009 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2010 if (!MaterialReg)
2011 return 0;
2013 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
2016 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
2017 return MRI.createVirtualRegister(RC);
2020 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
2021 unsigned OpNum) {
2022 if (Op.isVirtual()) {
2023 const TargetRegisterClass *RegClass =
2024 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2025 if (!MRI.constrainRegClass(Op, RegClass)) {
2026 // If it's not legal to COPY between the register classes, something
2027 // has gone very wrong before we got here.
2028 Register NewOp = createResultReg(RegClass);
2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2030 TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2031 return NewOp;
2034 return Op;
2037 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2038 const TargetRegisterClass *RC) {
2039 Register ResultReg = createResultReg(RC);
2040 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg);
2043 return ResultReg;
2046 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2047 const TargetRegisterClass *RC, unsigned Op0) {
2048 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2050 Register ResultReg = createResultReg(RC);
2051 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2053 if (II.getNumDefs() >= 1)
2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2055 .addReg(Op0);
2056 else {
2057 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2058 .addReg(Op0);
2059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2060 ResultReg)
2061 .addReg(II.implicit_defs()[0]);
2064 return ResultReg;
2067 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2068 const TargetRegisterClass *RC, unsigned Op0,
2069 unsigned Op1) {
2070 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2072 Register ResultReg = createResultReg(RC);
2073 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2074 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2076 if (II.getNumDefs() >= 1)
2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2078 .addReg(Op0)
2079 .addReg(Op1);
2080 else {
2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2082 .addReg(Op0)
2083 .addReg(Op1);
2084 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2085 ResultReg)
2086 .addReg(II.implicit_defs()[0]);
2088 return ResultReg;
2091 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2092 const TargetRegisterClass *RC, unsigned Op0,
2093 unsigned Op1, unsigned Op2) {
2094 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2096 Register ResultReg = createResultReg(RC);
2097 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2098 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2099 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2101 if (II.getNumDefs() >= 1)
2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2103 .addReg(Op0)
2104 .addReg(Op1)
2105 .addReg(Op2);
2106 else {
2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2108 .addReg(Op0)
2109 .addReg(Op1)
2110 .addReg(Op2);
2111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2112 ResultReg)
2113 .addReg(II.implicit_defs()[0]);
2115 return ResultReg;
2118 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2119 const TargetRegisterClass *RC, unsigned Op0,
2120 uint64_t Imm) {
2121 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2123 Register ResultReg = createResultReg(RC);
2124 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2126 if (II.getNumDefs() >= 1)
2127 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2128 .addReg(Op0)
2129 .addImm(Imm);
2130 else {
2131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2132 .addReg(Op0)
2133 .addImm(Imm);
2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2135 ResultReg)
2136 .addReg(II.implicit_defs()[0]);
2138 return ResultReg;
2141 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2142 const TargetRegisterClass *RC, unsigned Op0,
2143 uint64_t Imm1, uint64_t Imm2) {
2144 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2146 Register ResultReg = createResultReg(RC);
2147 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2149 if (II.getNumDefs() >= 1)
2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2151 .addReg(Op0)
2152 .addImm(Imm1)
2153 .addImm(Imm2);
2154 else {
2155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2156 .addReg(Op0)
2157 .addImm(Imm1)
2158 .addImm(Imm2);
2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2160 ResultReg)
2161 .addReg(II.implicit_defs()[0]);
2163 return ResultReg;
2166 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2167 const TargetRegisterClass *RC,
2168 const ConstantFP *FPImm) {
2169 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2171 Register ResultReg = createResultReg(RC);
2173 if (II.getNumDefs() >= 1)
2174 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2175 .addFPImm(FPImm);
2176 else {
2177 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2178 .addFPImm(FPImm);
2179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2180 ResultReg)
2181 .addReg(II.implicit_defs()[0]);
2183 return ResultReg;
2186 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2187 const TargetRegisterClass *RC, unsigned Op0,
2188 unsigned Op1, uint64_t Imm) {
2189 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2191 Register ResultReg = createResultReg(RC);
2192 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2193 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2195 if (II.getNumDefs() >= 1)
2196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2197 .addReg(Op0)
2198 .addReg(Op1)
2199 .addImm(Imm);
2200 else {
2201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2202 .addReg(Op0)
2203 .addReg(Op1)
2204 .addImm(Imm);
2205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2206 ResultReg)
2207 .addReg(II.implicit_defs()[0]);
2209 return ResultReg;
2212 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2213 const TargetRegisterClass *RC, uint64_t Imm) {
2214 Register ResultReg = createResultReg(RC);
2215 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2217 if (II.getNumDefs() >= 1)
2218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2219 .addImm(Imm);
2220 else {
2221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm);
2222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2223 ResultReg)
2224 .addReg(II.implicit_defs()[0]);
2226 return ResultReg;
2229 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2230 uint32_t Idx) {
2231 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2232 assert(Register::isVirtualRegister(Op0) &&
2233 "Cannot yet extract from physregs");
2234 const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2235 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2237 ResultReg).addReg(Op0, 0, Idx);
2238 return ResultReg;
2241 /// Emit MachineInstrs to compute the value of Op with all but the least
2242 /// significant bit set to zero.
2243 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2244 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2247 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2248 /// Emit code to ensure constants are copied into registers when needed.
2249 /// Remember the virtual registers that need to be added to the Machine PHI
2250 /// nodes as input. We cannot just directly add them, because expansion
2251 /// might result in multiple MBB's for one BB. As such, the start of the
2252 /// BB might correspond to a different MBB than the end.
2253 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2254 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2255 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2257 // Check successor nodes' PHI nodes that expect a constant to be available
2258 // from this block.
2259 for (const BasicBlock *SuccBB : successors(LLVMBB)) {
2260 if (!isa<PHINode>(SuccBB->begin()))
2261 continue;
2262 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
2264 // If this terminator has multiple identical successors (common for
2265 // switches), only handle each succ once.
2266 if (!SuccsHandled.insert(SuccMBB).second)
2267 continue;
2269 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2271 // At this point we know that there is a 1-1 correspondence between LLVM PHI
2272 // nodes and Machine PHI nodes, but the incoming operands have not been
2273 // emitted yet.
2274 for (const PHINode &PN : SuccBB->phis()) {
2275 // Ignore dead phi's.
2276 if (PN.use_empty())
2277 continue;
2279 // Only handle legal types. Two interesting things to note here. First,
2280 // by bailing out early, we may leave behind some dead instructions,
2281 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2282 // own moves. Second, this check is necessary because FastISel doesn't
2283 // use CreateRegs to create registers, so it always creates
2284 // exactly one register for each non-void instruction.
2285 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2286 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2287 // Handle integer promotions, though, because they're common and easy.
2288 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2289 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2290 return false;
2294 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2296 // Set the DebugLoc for the copy. Use the location of the operand if
2297 // there is one; otherwise no location, flushLocalValueMap will fix it.
2298 MIMD = {};
2299 if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2300 MIMD = MIMetadata(*Inst);
2302 Register Reg = getRegForValue(PHIOp);
2303 if (!Reg) {
2304 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2305 return false;
2307 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2308 MIMD = {};
2312 return true;
2315 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2316 assert(LI->hasOneUse() &&
2317 "tryToFoldLoad expected a LoadInst with a single use");
2318 // We know that the load has a single use, but don't know what it is. If it
2319 // isn't one of the folded instructions, then we can't succeed here. Handle
2320 // this by scanning the single-use users of the load until we get to FoldInst.
2321 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2323 const Instruction *TheUser = LI->user_back();
2324 while (TheUser != FoldInst && // Scan up until we find FoldInst.
2325 // Stay in the right block.
2326 TheUser->getParent() == FoldInst->getParent() &&
2327 --MaxUsers) { // Don't scan too far.
2328 // If there are multiple or no uses of this instruction, then bail out.
2329 if (!TheUser->hasOneUse())
2330 return false;
2332 TheUser = TheUser->user_back();
2335 // If we didn't find the fold instruction, then we failed to collapse the
2336 // sequence.
2337 if (TheUser != FoldInst)
2338 return false;
2340 // Don't try to fold volatile loads. Target has to deal with alignment
2341 // constraints.
2342 if (LI->isVolatile())
2343 return false;
2345 // Figure out which vreg this is going into. If there is no assigned vreg yet
2346 // then there actually was no reference to it. Perhaps the load is referenced
2347 // by a dead instruction.
2348 Register LoadReg = getRegForValue(LI);
2349 if (!LoadReg)
2350 return false;
2352 // We can't fold if this vreg has no uses or more than one use. Multiple uses
2353 // may mean that the instruction got lowered to multiple MIs, or the use of
2354 // the loaded value ended up being multiple operands of the result.
2355 if (!MRI.hasOneUse(LoadReg))
2356 return false;
2358 // If the register has fixups, there may be additional uses through a
2359 // different alias of the register.
2360 if (FuncInfo.RegsWithFixups.contains(LoadReg))
2361 return false;
2363 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2364 MachineInstr *User = RI->getParent();
2366 // Set the insertion point properly. Folding the load can cause generation of
2367 // other random instructions (like sign extends) for addressing modes; make
2368 // sure they get inserted in a logical place before the new instruction.
2369 FuncInfo.InsertPt = User;
2370 FuncInfo.MBB = User->getParent();
2372 // Ask the target to try folding the load.
2373 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2376 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2377 // Must be an add.
2378 if (!isa<AddOperator>(Add))
2379 return false;
2380 // Type size needs to match.
2381 if (DL.getTypeSizeInBits(GEP->getType()) !=
2382 DL.getTypeSizeInBits(Add->getType()))
2383 return false;
2384 // Must be in the same basic block.
2385 if (isa<Instruction>(Add) &&
2386 FuncInfo.getMBB(cast<Instruction>(Add)->getParent()) != FuncInfo.MBB)
2387 return false;
2388 // Must have a constant operand.
2389 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2392 MachineMemOperand *
2393 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2394 const Value *Ptr;
2395 Type *ValTy;
2396 MaybeAlign Alignment;
2397 MachineMemOperand::Flags Flags;
2398 bool IsVolatile;
2400 if (const auto *LI = dyn_cast<LoadInst>(I)) {
2401 Alignment = LI->getAlign();
2402 IsVolatile = LI->isVolatile();
2403 Flags = MachineMemOperand::MOLoad;
2404 Ptr = LI->getPointerOperand();
2405 ValTy = LI->getType();
2406 } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2407 Alignment = SI->getAlign();
2408 IsVolatile = SI->isVolatile();
2409 Flags = MachineMemOperand::MOStore;
2410 Ptr = SI->getPointerOperand();
2411 ValTy = SI->getValueOperand()->getType();
2412 } else
2413 return nullptr;
2415 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2416 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2417 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2418 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2420 AAMDNodes AAInfo = I->getAAMetadata();
2422 if (!Alignment) // Ensure that codegen never sees alignment 0.
2423 Alignment = DL.getABITypeAlign(ValTy);
2425 unsigned Size = DL.getTypeStoreSize(ValTy);
2427 if (IsVolatile)
2428 Flags |= MachineMemOperand::MOVolatile;
2429 if (IsNonTemporal)
2430 Flags |= MachineMemOperand::MONonTemporal;
2431 if (IsDereferenceable)
2432 Flags |= MachineMemOperand::MODereferenceable;
2433 if (IsInvariant)
2434 Flags |= MachineMemOperand::MOInvariant;
2436 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2437 *Alignment, AAInfo, Ranges);
2440 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2441 // If both operands are the same, then try to optimize or fold the cmp.
2442 CmpInst::Predicate Predicate = CI->getPredicate();
2443 if (CI->getOperand(0) != CI->getOperand(1))
2444 return Predicate;
2446 switch (Predicate) {
2447 default: llvm_unreachable("Invalid predicate!");
2448 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2449 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
2450 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
2451 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
2452 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
2453 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
2454 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
2455 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
2456 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
2457 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
2458 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
2459 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2460 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
2461 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2462 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
2463 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
2465 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
2466 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
2467 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
2468 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2469 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
2470 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2471 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
2472 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
2473 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
2474 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
2477 return Predicate;