1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/CodeGenTypes/MachineValueType.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
51 #define DEBUG_TYPE "legalizevectorops"
55 class VectorLegalizer
{
57 const TargetLowering
&TLI
;
58 bool Changed
= false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap
<SDValue
, SDValue
, 64> LegalizedNodes
;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From
, SDValue To
) {
67 LegalizedNodes
.insert(std::make_pair(From
, To
));
68 // If someone requests legalization of the new node, return itself.
70 LegalizedNodes
.insert(std::make_pair(To
, To
));
73 /// Legalizes the given node.
74 SDValue
LegalizeOp(SDValue Op
);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue
TranslateLegalizeResults(SDValue Op
, SDNode
*Result
);
79 /// Make sure Results are legal and update the translation cache.
80 SDValue
RecursivelyLegalizeResults(SDValue Op
,
81 MutableArrayRef
<SDValue
> Results
);
83 /// Wrapper to interface LowerOperation with a vector of Results.
84 /// Returns false if the target wants to use default expansion. Otherwise
85 /// returns true. If return is true and the Results are empty, then the
86 /// target wants to keep the input node as is.
87 bool LowerOperationWrapper(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
);
89 /// Implements unrolling a VSETCC.
90 SDValue
UnrollVSETCC(SDNode
*Node
);
92 /// Implement expand-based legalization of vector operations.
94 /// This is just a high-level routine to dispatch to specific code paths for
95 /// operations to legalize them.
96 void Expand(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
98 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
99 /// FP_TO_SINT isn't legal.
100 void ExpandFP_TO_UINT(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
102 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
103 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
104 void ExpandUINT_TO_FLOAT(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
106 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
107 SDValue
ExpandSEXTINREG(SDNode
*Node
);
109 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
112 /// type. The contents of the bits in the extended part of each element are
114 SDValue
ExpandANY_EXTEND_VECTOR_INREG(SDNode
*Node
);
116 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
119 /// type, then shifts left and arithmetic shifts right to introduce a sign
121 SDValue
ExpandSIGN_EXTEND_VECTOR_INREG(SDNode
*Node
);
123 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125 /// Shuffles the low lanes of the operand into place and blends zeros into
126 /// the remaining lanes, finally bitcasting to the proper type.
127 SDValue
ExpandZERO_EXTEND_VECTOR_INREG(SDNode
*Node
);
129 /// Expand bswap of vectors into a shuffle if legal.
130 SDValue
ExpandBSWAP(SDNode
*Node
);
132 /// Implement vselect in terms of XOR, AND, OR when blend is not
133 /// supported by the target.
134 SDValue
ExpandVSELECT(SDNode
*Node
);
135 SDValue
ExpandVP_SELECT(SDNode
*Node
);
136 SDValue
ExpandVP_MERGE(SDNode
*Node
);
137 SDValue
ExpandVP_REM(SDNode
*Node
);
138 SDValue
ExpandVP_FNEG(SDNode
*Node
);
139 SDValue
ExpandVP_FABS(SDNode
*Node
);
140 SDValue
ExpandVP_FCOPYSIGN(SDNode
*Node
);
141 SDValue
ExpandSELECT(SDNode
*Node
);
142 std::pair
<SDValue
, SDValue
> ExpandLoad(SDNode
*N
);
143 SDValue
ExpandStore(SDNode
*N
);
144 SDValue
ExpandFNEG(SDNode
*Node
);
145 SDValue
ExpandFABS(SDNode
*Node
);
146 SDValue
ExpandFCOPYSIGN(SDNode
*Node
);
147 void ExpandFSUB(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
148 void ExpandSETCC(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
149 SDValue
ExpandBITREVERSE(SDNode
*Node
);
150 void ExpandUADDSUBO(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
151 void ExpandSADDSUBO(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
152 void ExpandMULO(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
153 void ExpandFixedPointDiv(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
154 void ExpandStrictFPOp(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
155 void ExpandREM(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
157 bool tryExpandVecMathCall(SDNode
*Node
, RTLIB::Libcall LC
,
158 SmallVectorImpl
<SDValue
> &Results
);
159 bool tryExpandVecMathCall(SDNode
*Node
, RTLIB::Libcall Call_F32
,
160 RTLIB::Libcall Call_F64
, RTLIB::Libcall Call_F80
,
161 RTLIB::Libcall Call_F128
,
162 RTLIB::Libcall Call_PPCF128
,
163 SmallVectorImpl
<SDValue
> &Results
);
165 void UnrollStrictFPOp(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
167 /// Implements vector promotion.
169 /// This is essentially just bitcasting the operands to a different type and
170 /// bitcasting the result back to the original type.
171 void Promote(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
173 /// Implements [SU]INT_TO_FP vector promotion.
175 /// This is a [zs]ext of the input operand to a larger integer type.
176 void PromoteINT_TO_FP(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
178 /// Implements FP_TO_[SU]INT vector promotion of the result type.
180 /// It is promoted to a larger integer type. The result is then
181 /// truncated back to the original type.
182 void PromoteFP_TO_INT(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
184 /// Implements vector setcc operation promotion.
186 /// All vector operands are promoted to a vector type with larger element
188 void PromoteSETCC(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
190 void PromoteSTRICT(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
193 VectorLegalizer(SelectionDAG
& dag
) :
194 DAG(dag
), TLI(dag
.getTargetLoweringInfo()) {}
196 /// Begin legalizer the vector operations in the DAG.
200 } // end anonymous namespace
202 bool VectorLegalizer::Run() {
203 // Before we start legalizing vector nodes, check if there are any vectors.
204 bool HasVectors
= false;
205 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
206 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
) {
207 // Check if the values of the nodes contain vectors. We don't need to check
208 // the operands because we are going to check their values at some point.
209 HasVectors
= llvm::any_of(I
->values(), [](EVT T
) { return T
.isVector(); });
211 // If we found a vector node we can start the legalization.
216 // If this basic block has no vectors then no need to legalize vectors.
220 // The legalize process is inherently a bottom-up recursive process (users
221 // legalize their uses before themselves). Given infinite stack space, we
222 // could just start legalizing on the root and traverse the whole graph. In
223 // practice however, this causes us to run out of stack space on large basic
224 // blocks. To avoid this problem, compute an ordering of the nodes where each
225 // node is only legalized after all of its operands are legalized.
226 DAG
.AssignTopologicalOrder();
227 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
228 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
)
229 LegalizeOp(SDValue(&*I
, 0));
231 // Finally, it's possible the root changed. Get the new root.
232 SDValue OldRoot
= DAG
.getRoot();
233 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
234 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
236 LegalizedNodes
.clear();
238 // Remove dead nodes now.
239 DAG
.RemoveDeadNodes();
244 SDValue
VectorLegalizer::TranslateLegalizeResults(SDValue Op
, SDNode
*Result
) {
245 assert(Op
->getNumValues() == Result
->getNumValues() &&
246 "Unexpected number of results");
247 // Generic legalization: just pass the operand through.
248 for (unsigned i
= 0, e
= Op
->getNumValues(); i
!= e
; ++i
)
249 AddLegalizedOperand(Op
.getValue(i
), SDValue(Result
, i
));
250 return SDValue(Result
, Op
.getResNo());
254 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op
,
255 MutableArrayRef
<SDValue
> Results
) {
256 assert(Results
.size() == Op
->getNumValues() &&
257 "Unexpected number of results");
258 // Make sure that the generated code is itself legal.
259 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
) {
260 Results
[i
] = LegalizeOp(Results
[i
]);
261 AddLegalizedOperand(Op
.getValue(i
), Results
[i
]);
264 return Results
[Op
.getResNo()];
267 SDValue
VectorLegalizer::LegalizeOp(SDValue Op
) {
268 // Note that LegalizeOp may be reentered even from single-use nodes, which
269 // means that we always must cache transformed nodes.
270 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
271 if (I
!= LegalizedNodes
.end()) return I
->second
;
273 // Legalize the operands
274 SmallVector
<SDValue
, 8> Ops
;
275 for (const SDValue
&Oper
: Op
->op_values())
276 Ops
.push_back(LegalizeOp(Oper
));
278 SDNode
*Node
= DAG
.UpdateNodeOperands(Op
.getNode(), Ops
);
280 bool HasVectorValueOrOp
=
281 llvm::any_of(Node
->values(), [](EVT T
) { return T
.isVector(); }) ||
282 llvm::any_of(Node
->op_values(),
283 [](SDValue O
) { return O
.getValueType().isVector(); });
284 if (!HasVectorValueOrOp
)
285 return TranslateLegalizeResults(Op
, Node
);
287 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
289 switch (Op
.getOpcode()) {
291 return TranslateLegalizeResults(Op
, Node
);
293 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
294 ISD::LoadExtType ExtType
= LD
->getExtensionType();
295 EVT LoadedVT
= LD
->getMemoryVT();
296 if (LoadedVT
.isVector() && ExtType
!= ISD::NON_EXTLOAD
)
297 Action
= TLI
.getLoadExtAction(ExtType
, LD
->getValueType(0), LoadedVT
);
301 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
302 EVT StVT
= ST
->getMemoryVT();
303 MVT ValVT
= ST
->getValue().getSimpleValueType();
304 if (StVT
.isVector() && ST
->isTruncatingStore())
305 Action
= TLI
.getTruncStoreAction(ValVT
, StVT
);
308 case ISD::MERGE_VALUES
:
309 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
310 // This operation lies about being legal: when it claims to be legal,
311 // it should actually be expanded.
312 if (Action
== TargetLowering::Legal
)
313 Action
= TargetLowering::Expand
;
315 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
316 case ISD::STRICT_##DAGN:
317 #include "llvm/IR/ConstrainedOps.def"
318 ValVT
= Node
->getValueType(0);
319 if (Op
.getOpcode() == ISD::STRICT_SINT_TO_FP
||
320 Op
.getOpcode() == ISD::STRICT_UINT_TO_FP
)
321 ValVT
= Node
->getOperand(1).getValueType();
322 if (Op
.getOpcode() == ISD::STRICT_FSETCC
||
323 Op
.getOpcode() == ISD::STRICT_FSETCCS
) {
324 MVT OpVT
= Node
->getOperand(1).getSimpleValueType();
325 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(Node
->getOperand(3))->get();
326 Action
= TLI
.getCondCodeAction(CCCode
, OpVT
);
327 if (Action
== TargetLowering::Legal
)
328 Action
= TLI
.getOperationAction(Node
->getOpcode(), OpVT
);
330 Action
= TLI
.getOperationAction(Node
->getOpcode(), ValVT
);
332 // If we're asked to expand a strict vector floating-point operation,
333 // by default we're going to simply unroll it. That is usually the
334 // best approach, except in the case where the resulting strict (scalar)
335 // operations would themselves use the fallback mutation to non-strict.
336 // In that specific case, just do the fallback on the vector op.
337 if (Action
== TargetLowering::Expand
&& !TLI
.isStrictFPEnabled() &&
338 TLI
.getStrictFPOperationAction(Node
->getOpcode(), ValVT
) ==
339 TargetLowering::Legal
) {
340 EVT EltVT
= ValVT
.getVectorElementType();
341 if (TLI
.getOperationAction(Node
->getOpcode(), EltVT
)
342 == TargetLowering::Expand
&&
343 TLI
.getStrictFPOperationAction(Node
->getOpcode(), EltVT
)
344 == TargetLowering::Legal
)
345 Action
= TargetLowering::Legal
;
382 case ISD::BITREVERSE
:
385 case ISD::CTLZ_ZERO_UNDEF
:
386 case ISD::CTTZ_ZERO_UNDEF
:
391 case ISD::ZERO_EXTEND
:
392 case ISD::ANY_EXTEND
:
394 case ISD::SIGN_EXTEND
:
395 case ISD::FP_TO_SINT
:
396 case ISD::FP_TO_UINT
:
401 case ISD::FMINNUM_IEEE
:
402 case ISD::FMAXNUM_IEEE
:
405 case ISD::FMINIMUMNUM
:
406 case ISD::FMAXIMUMNUM
:
431 case ISD::FNEARBYINT
:
433 case ISD::FROUNDEVEN
:
437 case ISD::FPTRUNC_ROUND
:
439 case ISD::SIGN_EXTEND_INREG
:
440 case ISD::ANY_EXTEND_VECTOR_INREG
:
441 case ISD::SIGN_EXTEND_VECTOR_INREG
:
442 case ISD::ZERO_EXTEND_VECTOR_INREG
:
455 case ISD::FCANONICALIZE
:
464 case ISD::FP_TO_SINT_SAT
:
465 case ISD::FP_TO_UINT_SAT
:
467 case ISD::VECTOR_COMPRESS
:
470 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
473 case ISD::SMULFIXSAT
:
475 case ISD::UMULFIXSAT
:
477 case ISD::SDIVFIXSAT
:
479 case ISD::UDIVFIXSAT
: {
480 unsigned Scale
= Node
->getConstantOperandVal(2);
481 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
482 Node
->getValueType(0), Scale
);
489 case ISD::SINT_TO_FP
:
490 case ISD::UINT_TO_FP
:
491 case ISD::VECREDUCE_ADD
:
492 case ISD::VECREDUCE_MUL
:
493 case ISD::VECREDUCE_AND
:
494 case ISD::VECREDUCE_OR
:
495 case ISD::VECREDUCE_XOR
:
496 case ISD::VECREDUCE_SMAX
:
497 case ISD::VECREDUCE_SMIN
:
498 case ISD::VECREDUCE_UMAX
:
499 case ISD::VECREDUCE_UMIN
:
500 case ISD::VECREDUCE_FADD
:
501 case ISD::VECREDUCE_FMUL
:
502 case ISD::VECREDUCE_FMAX
:
503 case ISD::VECREDUCE_FMIN
:
504 case ISD::VECREDUCE_FMAXIMUM
:
505 case ISD::VECREDUCE_FMINIMUM
:
506 Action
= TLI
.getOperationAction(Node
->getOpcode(),
507 Node
->getOperand(0).getValueType());
509 case ISD::VECREDUCE_SEQ_FADD
:
510 case ISD::VECREDUCE_SEQ_FMUL
:
511 Action
= TLI
.getOperationAction(Node
->getOpcode(),
512 Node
->getOperand(1).getValueType());
515 MVT OpVT
= Node
->getOperand(0).getSimpleValueType();
516 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(Node
->getOperand(2))->get();
517 Action
= TLI
.getCondCodeAction(CCCode
, OpVT
);
518 if (Action
== TargetLowering::Legal
)
519 Action
= TLI
.getOperationAction(Node
->getOpcode(), OpVT
);
523 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \
525 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \
526 : Node->getOperand(LEGALPOS).getValueType(); \
527 if (ISD::VPID == ISD::VP_SETCC) { \
528 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
529 Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \
530 if (Action != TargetLowering::Legal) \
533 /* Defer non-vector results to LegalizeDAG. */ \
534 if (!Node->getValueType(0).isVector() && \
535 Node->getValueType(0) != MVT::Other) { \
536 Action = TargetLowering::Legal; \
539 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \
541 #include "llvm/IR/VPIntrinsics.def"
544 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node
->dump(&DAG
));
546 SmallVector
<SDValue
, 8> ResultVals
;
548 default: llvm_unreachable("This action is not supported yet!");
549 case TargetLowering::Promote
:
550 assert((Op
.getOpcode() != ISD::LOAD
&& Op
.getOpcode() != ISD::STORE
) &&
551 "This action is not supported yet!");
552 LLVM_DEBUG(dbgs() << "Promoting\n");
553 Promote(Node
, ResultVals
);
554 assert(!ResultVals
.empty() && "No results for promotion?");
556 case TargetLowering::Legal
:
557 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
559 case TargetLowering::Custom
:
560 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
561 if (LowerOperationWrapper(Node
, ResultVals
))
563 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
565 case TargetLowering::Expand
:
566 LLVM_DEBUG(dbgs() << "Expanding\n");
567 Expand(Node
, ResultVals
);
571 if (ResultVals
.empty())
572 return TranslateLegalizeResults(Op
, Node
);
575 return RecursivelyLegalizeResults(Op
, ResultVals
);
578 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
579 // merge them somehow?
580 bool VectorLegalizer::LowerOperationWrapper(SDNode
*Node
,
581 SmallVectorImpl
<SDValue
> &Results
) {
582 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
587 if (Res
== SDValue(Node
, 0))
590 // If the original node has one result, take the return value from
591 // LowerOperation as is. It might not be result number 0.
592 if (Node
->getNumValues() == 1) {
593 Results
.push_back(Res
);
597 // If the original node has multiple results, then the return node should
598 // have the same number of results.
599 assert((Node
->getNumValues() == Res
->getNumValues()) &&
600 "Lowering returned the wrong number of results!");
602 // Places new result values base on N result number.
603 for (unsigned I
= 0, E
= Node
->getNumValues(); I
!= E
; ++I
)
604 Results
.push_back(Res
.getValue(I
));
609 void VectorLegalizer::PromoteSETCC(SDNode
*Node
,
610 SmallVectorImpl
<SDValue
> &Results
) {
611 MVT VecVT
= Node
->getOperand(0).getSimpleValueType();
612 MVT NewVecVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VecVT
);
614 unsigned ExtOp
= VecVT
.isFloatingPoint() ? ISD::FP_EXTEND
: ISD::ANY_EXTEND
;
617 SmallVector
<SDValue
, 5> Operands(Node
->getNumOperands());
619 Operands
[0] = DAG
.getNode(ExtOp
, DL
, NewVecVT
, Node
->getOperand(0));
620 Operands
[1] = DAG
.getNode(ExtOp
, DL
, NewVecVT
, Node
->getOperand(1));
621 Operands
[2] = Node
->getOperand(2);
623 if (Node
->getOpcode() == ISD::VP_SETCC
) {
624 Operands
[3] = Node
->getOperand(3); // mask
625 Operands
[4] = Node
->getOperand(4); // evl
628 SDValue Res
= DAG
.getNode(Node
->getOpcode(), DL
, Node
->getSimpleValueType(0),
629 Operands
, Node
->getFlags());
631 Results
.push_back(Res
);
634 void VectorLegalizer::PromoteSTRICT(SDNode
*Node
,
635 SmallVectorImpl
<SDValue
> &Results
) {
636 MVT VecVT
= Node
->getOperand(1).getSimpleValueType();
637 MVT NewVecVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VecVT
);
639 assert(VecVT
.isFloatingPoint());
642 SmallVector
<SDValue
, 5> Operands(Node
->getNumOperands());
643 SmallVector
<SDValue
, 2> Chains
;
645 for (unsigned j
= 1; j
!= Node
->getNumOperands(); ++j
)
646 if (Node
->getOperand(j
).getValueType().isVector() &&
647 !(ISD::isVPOpcode(Node
->getOpcode()) &&
648 ISD::getVPMaskIdx(Node
->getOpcode()) == j
)) // Skip mask operand.
650 // promote the vector operand.
652 DAG
.getNode(ISD::STRICT_FP_EXTEND
, DL
, {NewVecVT
, MVT::Other
},
653 {Node
->getOperand(0), Node
->getOperand(j
)});
654 Operands
[j
] = Ext
.getValue(0);
655 Chains
.push_back(Ext
.getValue(1));
657 Operands
[j
] = Node
->getOperand(j
); // Skip no vector operand.
659 SDVTList VTs
= DAG
.getVTList(NewVecVT
, Node
->getValueType(1));
661 Operands
[0] = DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
664 DAG
.getNode(Node
->getOpcode(), DL
, VTs
, Operands
, Node
->getFlags());
667 DAG
.getNode(ISD::STRICT_FP_ROUND
, DL
, {VecVT
, MVT::Other
},
668 {Res
.getValue(1), Res
.getValue(0),
669 DAG
.getIntPtrConstant(0, DL
, /*isTarget=*/true)});
671 Results
.push_back(Round
.getValue(0));
672 Results
.push_back(Round
.getValue(1));
675 void VectorLegalizer::Promote(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
) {
676 // For a few operations there is a specific concept for promotion based on
677 // the operand's type.
678 switch (Node
->getOpcode()) {
679 case ISD::SINT_TO_FP
:
680 case ISD::UINT_TO_FP
:
681 case ISD::STRICT_SINT_TO_FP
:
682 case ISD::STRICT_UINT_TO_FP
:
683 // "Promote" the operation by extending the operand.
684 PromoteINT_TO_FP(Node
, Results
);
686 case ISD::FP_TO_UINT
:
687 case ISD::FP_TO_SINT
:
688 case ISD::STRICT_FP_TO_UINT
:
689 case ISD::STRICT_FP_TO_SINT
:
690 // Promote the operation by extending the operand.
691 PromoteFP_TO_INT(Node
, Results
);
695 // Promote the operation by extending the operand.
696 PromoteSETCC(Node
, Results
);
698 case ISD::STRICT_FADD
:
699 case ISD::STRICT_FSUB
:
700 case ISD::STRICT_FMUL
:
701 case ISD::STRICT_FDIV
:
702 case ISD::STRICT_FSQRT
:
703 case ISD::STRICT_FMA
:
704 PromoteSTRICT(Node
, Results
);
708 // These operations are used to do promotion so they can't be promoted
710 llvm_unreachable("Don't know how to promote this operation!");
712 case ISD::VP_FCOPYSIGN
:
714 // Promoting fabs, fneg, and fcopysign changes their semantics.
715 llvm_unreachable("These operations should not be promoted");
718 // There are currently two cases of vector promotion:
719 // 1) Bitcasting a vector of integers to a different type to a vector of the
720 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
721 // 2) Extending a vector of floats to a vector of the same number of larger
722 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
723 assert(Node
->getNumValues() == 1 &&
724 "Can't promote a vector with multiple results!");
725 MVT VT
= Node
->getSimpleValueType(0);
726 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
728 SmallVector
<SDValue
, 4> Operands(Node
->getNumOperands());
730 for (unsigned j
= 0; j
!= Node
->getNumOperands(); ++j
) {
731 // Do not promote the mask operand of a VP OP.
732 bool SkipPromote
= ISD::isVPOpcode(Node
->getOpcode()) &&
733 ISD::getVPMaskIdx(Node
->getOpcode()) == j
;
734 if (Node
->getOperand(j
).getValueType().isVector() && !SkipPromote
)
735 if (Node
->getOperand(j
)
737 .getVectorElementType()
738 .isFloatingPoint() &&
739 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint())
740 Operands
[j
] = DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(j
));
742 Operands
[j
] = DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(j
));
744 Operands
[j
] = Node
->getOperand(j
);
748 DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Operands
, Node
->getFlags());
750 if ((VT
.isFloatingPoint() && NVT
.isFloatingPoint()) ||
751 (VT
.isVector() && VT
.getVectorElementType().isFloatingPoint() &&
752 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint()))
753 Res
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Res
,
754 DAG
.getIntPtrConstant(0, dl
, /*isTarget=*/true));
756 Res
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Res
);
758 Results
.push_back(Res
);
761 void VectorLegalizer::PromoteINT_TO_FP(SDNode
*Node
,
762 SmallVectorImpl
<SDValue
> &Results
) {
763 // INT_TO_FP operations may require the input operand be promoted even
764 // when the type is otherwise legal.
765 bool IsStrict
= Node
->isStrictFPOpcode();
766 MVT VT
= Node
->getOperand(IsStrict
? 1 : 0).getSimpleValueType();
767 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
768 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
769 "Vectors have different number of elements!");
772 SmallVector
<SDValue
, 4> Operands(Node
->getNumOperands());
774 unsigned Opc
= (Node
->getOpcode() == ISD::UINT_TO_FP
||
775 Node
->getOpcode() == ISD::STRICT_UINT_TO_FP
)
778 for (unsigned j
= 0; j
!= Node
->getNumOperands(); ++j
) {
779 if (Node
->getOperand(j
).getValueType().isVector())
780 Operands
[j
] = DAG
.getNode(Opc
, dl
, NVT
, Node
->getOperand(j
));
782 Operands
[j
] = Node
->getOperand(j
);
786 SDValue Res
= DAG
.getNode(Node
->getOpcode(), dl
,
787 {Node
->getValueType(0), MVT::Other
}, Operands
);
788 Results
.push_back(Res
);
789 Results
.push_back(Res
.getValue(1));
794 DAG
.getNode(Node
->getOpcode(), dl
, Node
->getValueType(0), Operands
);
795 Results
.push_back(Res
);
798 // For FP_TO_INT we promote the result type to a vector type with wider
799 // elements and then truncate the result. This is different from the default
800 // PromoteVector which uses bitcast to promote thus assumning that the
801 // promoted vector type has the same overall size.
802 void VectorLegalizer::PromoteFP_TO_INT(SDNode
*Node
,
803 SmallVectorImpl
<SDValue
> &Results
) {
804 MVT VT
= Node
->getSimpleValueType(0);
805 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
806 bool IsStrict
= Node
->isStrictFPOpcode();
807 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
808 "Vectors have different number of elements!");
810 unsigned NewOpc
= Node
->getOpcode();
811 // Change FP_TO_UINT to FP_TO_SINT if possible.
812 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
813 if (NewOpc
== ISD::FP_TO_UINT
&&
814 TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
))
815 NewOpc
= ISD::FP_TO_SINT
;
817 if (NewOpc
== ISD::STRICT_FP_TO_UINT
&&
818 TLI
.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT
, NVT
))
819 NewOpc
= ISD::STRICT_FP_TO_SINT
;
822 SDValue Promoted
, Chain
;
824 Promoted
= DAG
.getNode(NewOpc
, dl
, {NVT
, MVT::Other
},
825 {Node
->getOperand(0), Node
->getOperand(1)});
826 Chain
= Promoted
.getValue(1);
828 Promoted
= DAG
.getNode(NewOpc
, dl
, NVT
, Node
->getOperand(0));
830 // Assert that the converted value fits in the original type. If it doesn't
831 // (eg: because the value being converted is too big), then the result of the
832 // original operation was undefined anyway, so the assert is still correct.
833 if (Node
->getOpcode() == ISD::FP_TO_UINT
||
834 Node
->getOpcode() == ISD::STRICT_FP_TO_UINT
)
835 NewOpc
= ISD::AssertZext
;
837 NewOpc
= ISD::AssertSext
;
839 Promoted
= DAG
.getNode(NewOpc
, dl
, NVT
, Promoted
,
840 DAG
.getValueType(VT
.getScalarType()));
841 Promoted
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Promoted
);
842 Results
.push_back(Promoted
);
844 Results
.push_back(Chain
);
847 std::pair
<SDValue
, SDValue
> VectorLegalizer::ExpandLoad(SDNode
*N
) {
848 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
849 return TLI
.scalarizeVectorLoad(LD
, DAG
);
852 SDValue
VectorLegalizer::ExpandStore(SDNode
*N
) {
853 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
854 SDValue TF
= TLI
.scalarizeVectorStore(ST
, DAG
);
858 void VectorLegalizer::Expand(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
) {
859 switch (Node
->getOpcode()) {
861 std::pair
<SDValue
, SDValue
> Tmp
= ExpandLoad(Node
);
862 Results
.push_back(Tmp
.first
);
863 Results
.push_back(Tmp
.second
);
867 Results
.push_back(ExpandStore(Node
));
869 case ISD::MERGE_VALUES
:
870 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
871 Results
.push_back(Node
->getOperand(i
));
873 case ISD::SIGN_EXTEND_INREG
:
874 if (SDValue Expanded
= ExpandSEXTINREG(Node
)) {
875 Results
.push_back(Expanded
);
879 case ISD::ANY_EXTEND_VECTOR_INREG
:
880 Results
.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node
));
882 case ISD::SIGN_EXTEND_VECTOR_INREG
:
883 Results
.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node
));
885 case ISD::ZERO_EXTEND_VECTOR_INREG
:
886 Results
.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node
));
889 if (SDValue Expanded
= ExpandBSWAP(Node
)) {
890 Results
.push_back(Expanded
);
895 Results
.push_back(TLI
.expandVPBSWAP(Node
, DAG
));
898 if (SDValue Expanded
= ExpandVSELECT(Node
)) {
899 Results
.push_back(Expanded
);
904 if (SDValue Expanded
= ExpandVP_SELECT(Node
)) {
905 Results
.push_back(Expanded
);
911 if (SDValue Expanded
= ExpandVP_REM(Node
)) {
912 Results
.push_back(Expanded
);
917 if (SDValue Expanded
= ExpandVP_FNEG(Node
)) {
918 Results
.push_back(Expanded
);
923 if (SDValue Expanded
= ExpandVP_FABS(Node
)) {
924 Results
.push_back(Expanded
);
928 case ISD::VP_FCOPYSIGN
:
929 if (SDValue Expanded
= ExpandVP_FCOPYSIGN(Node
)) {
930 Results
.push_back(Expanded
);
935 if (SDValue Expanded
= ExpandSELECT(Node
)) {
936 Results
.push_back(Expanded
);
940 case ISD::SELECT_CC
: {
941 if (Node
->getValueType(0).isScalableVector()) {
942 EVT CondVT
= TLI
.getSetCCResultType(
943 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
945 DAG
.getNode(ISD::SETCC
, SDLoc(Node
), CondVT
, Node
->getOperand(0),
946 Node
->getOperand(1), Node
->getOperand(4));
947 Results
.push_back(DAG
.getSelect(SDLoc(Node
), Node
->getValueType(0), SetCC
,
949 Node
->getOperand(3)));
954 case ISD::FP_TO_UINT
:
955 ExpandFP_TO_UINT(Node
, Results
);
957 case ISD::UINT_TO_FP
:
958 ExpandUINT_TO_FLOAT(Node
, Results
);
961 if (SDValue Expanded
= ExpandFNEG(Node
)) {
962 Results
.push_back(Expanded
);
967 if (SDValue Expanded
= ExpandFABS(Node
)) {
968 Results
.push_back(Expanded
);
973 if (SDValue Expanded
= ExpandFCOPYSIGN(Node
)) {
974 Results
.push_back(Expanded
);
979 ExpandFSUB(Node
, Results
);
983 ExpandSETCC(Node
, Results
);
986 if (SDValue Expanded
= TLI
.expandABS(Node
, DAG
)) {
987 Results
.push_back(Expanded
);
993 if (SDValue Expanded
= TLI
.expandABD(Node
, DAG
)) {
994 Results
.push_back(Expanded
);
1000 case ISD::AVGFLOORS
:
1001 case ISD::AVGFLOORU
:
1002 if (SDValue Expanded
= TLI
.expandAVG(Node
, DAG
)) {
1003 Results
.push_back(Expanded
);
1007 case ISD::BITREVERSE
:
1008 if (SDValue Expanded
= ExpandBITREVERSE(Node
)) {
1009 Results
.push_back(Expanded
);
1013 case ISD::VP_BITREVERSE
:
1014 if (SDValue Expanded
= TLI
.expandVPBITREVERSE(Node
, DAG
)) {
1015 Results
.push_back(Expanded
);
1020 if (SDValue Expanded
= TLI
.expandCTPOP(Node
, DAG
)) {
1021 Results
.push_back(Expanded
);
1026 if (SDValue Expanded
= TLI
.expandVPCTPOP(Node
, DAG
)) {
1027 Results
.push_back(Expanded
);
1032 case ISD::CTLZ_ZERO_UNDEF
:
1033 if (SDValue Expanded
= TLI
.expandCTLZ(Node
, DAG
)) {
1034 Results
.push_back(Expanded
);
1039 case ISD::VP_CTLZ_ZERO_UNDEF
:
1040 if (SDValue Expanded
= TLI
.expandVPCTLZ(Node
, DAG
)) {
1041 Results
.push_back(Expanded
);
1046 case ISD::CTTZ_ZERO_UNDEF
:
1047 if (SDValue Expanded
= TLI
.expandCTTZ(Node
, DAG
)) {
1048 Results
.push_back(Expanded
);
1053 case ISD::VP_CTTZ_ZERO_UNDEF
:
1054 if (SDValue Expanded
= TLI
.expandVPCTTZ(Node
, DAG
)) {
1055 Results
.push_back(Expanded
);
1063 if (SDValue Expanded
= TLI
.expandFunnelShift(Node
, DAG
)) {
1064 Results
.push_back(Expanded
);
1070 if (SDValue Expanded
= TLI
.expandROT(Node
, false /*AllowVectorOps*/, DAG
)) {
1071 Results
.push_back(Expanded
);
1077 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Node
, DAG
)) {
1078 Results
.push_back(Expanded
);
1084 Results
.push_back(TLI
.expandFMINIMUM_FMAXIMUM(Node
, DAG
));
1086 case ISD::FMINIMUMNUM
:
1087 case ISD::FMAXIMUMNUM
:
1088 Results
.push_back(TLI
.expandFMINIMUMNUM_FMAXIMUMNUM(Node
, DAG
));
1094 if (SDValue Expanded
= TLI
.expandIntMINMAX(Node
, DAG
)) {
1095 Results
.push_back(Expanded
);
1101 ExpandUADDSUBO(Node
, Results
);
1105 ExpandSADDSUBO(Node
, Results
);
1109 ExpandMULO(Node
, Results
);
1115 if (SDValue Expanded
= TLI
.expandAddSubSat(Node
, DAG
)) {
1116 Results
.push_back(Expanded
);
1122 if (SDValue Expanded
= TLI
.expandShlSat(Node
, DAG
)) {
1123 Results
.push_back(Expanded
);
1127 case ISD::FP_TO_SINT_SAT
:
1128 case ISD::FP_TO_UINT_SAT
:
1129 // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
1130 if (Node
->getValueType(0).isScalableVector()) {
1131 if (SDValue Expanded
= TLI
.expandFP_TO_INT_SAT(Node
, DAG
)) {
1132 Results
.push_back(Expanded
);
1139 if (SDValue Expanded
= TLI
.expandFixedPointMul(Node
, DAG
)) {
1140 Results
.push_back(Expanded
);
1144 case ISD::SMULFIXSAT
:
1145 case ISD::UMULFIXSAT
:
1146 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
1147 // why. Maybe it results in worse codegen compared to the unroll for some
1148 // targets? This should probably be investigated. And if we still prefer to
1149 // unroll an explanation could be helpful.
1153 ExpandFixedPointDiv(Node
, Results
);
1155 case ISD::SDIVFIXSAT
:
1156 case ISD::UDIVFIXSAT
:
1158 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1159 case ISD::STRICT_##DAGN:
1160 #include "llvm/IR/ConstrainedOps.def"
1161 ExpandStrictFPOp(Node
, Results
);
1163 case ISD::VECREDUCE_ADD
:
1164 case ISD::VECREDUCE_MUL
:
1165 case ISD::VECREDUCE_AND
:
1166 case ISD::VECREDUCE_OR
:
1167 case ISD::VECREDUCE_XOR
:
1168 case ISD::VECREDUCE_SMAX
:
1169 case ISD::VECREDUCE_SMIN
:
1170 case ISD::VECREDUCE_UMAX
:
1171 case ISD::VECREDUCE_UMIN
:
1172 case ISD::VECREDUCE_FADD
:
1173 case ISD::VECREDUCE_FMUL
:
1174 case ISD::VECREDUCE_FMAX
:
1175 case ISD::VECREDUCE_FMIN
:
1176 case ISD::VECREDUCE_FMAXIMUM
:
1177 case ISD::VECREDUCE_FMINIMUM
:
1178 Results
.push_back(TLI
.expandVecReduce(Node
, DAG
));
1180 case ISD::VECREDUCE_SEQ_FADD
:
1181 case ISD::VECREDUCE_SEQ_FMUL
:
1182 Results
.push_back(TLI
.expandVecReduceSeq(Node
, DAG
));
1186 ExpandREM(Node
, Results
);
1189 if (SDValue Expanded
= ExpandVP_MERGE(Node
)) {
1190 Results
.push_back(Expanded
);
1195 if (tryExpandVecMathCall(Node
, RTLIB::REM_F32
, RTLIB::REM_F64
,
1196 RTLIB::REM_F80
, RTLIB::REM_F128
,
1197 RTLIB::REM_PPCF128
, Results
))
1201 case ISD::FSINCOS
: {
1203 RTLIB::getFSINCOS(Node
->getValueType(0).getVectorElementType());
1204 if (DAG
.expandMultipleResultFPLibCall(LC
, Node
, Results
))
1208 case ISD::VECTOR_COMPRESS
:
1209 Results
.push_back(TLI
.expandVECTOR_COMPRESS(Node
, DAG
));
1213 Results
.push_back(TLI
.expandCMP(Node
, DAG
));
1222 case ISD::FNEARBYINT
:
1225 case ISD::FROUNDEVEN
:
1228 if (SDValue Expanded
= TLI
.expandVectorNaryOpBySplitting(Node
, DAG
)) {
1229 Results
.push_back(Expanded
);
1235 SDValue Unrolled
= DAG
.UnrollVectorOp(Node
);
1236 if (Node
->getNumValues() == 1) {
1237 Results
.push_back(Unrolled
);
1239 assert(Node
->getNumValues() == Unrolled
->getNumValues() &&
1240 "VectorLegalizer Expand returned wrong number of results!");
1241 for (unsigned I
= 0, E
= Unrolled
->getNumValues(); I
!= E
; ++I
)
1242 Results
.push_back(Unrolled
.getValue(I
));
1246 SDValue
VectorLegalizer::ExpandSELECT(SDNode
*Node
) {
1247 // Lower a select instruction where the condition is a scalar and the
1248 // operands are vectors. Lower this select to VSELECT and implement it
1249 // using XOR AND OR. The selector bit is broadcasted.
1250 EVT VT
= Node
->getValueType(0);
1253 SDValue Mask
= Node
->getOperand(0);
1254 SDValue Op1
= Node
->getOperand(1);
1255 SDValue Op2
= Node
->getOperand(2);
1257 assert(VT
.isVector() && !Mask
.getValueType().isVector()
1258 && Op1
.getValueType() == Op2
.getValueType() && "Invalid type");
1260 // If we can't even use the basic vector operations of
1261 // AND,OR,XOR, we will have to scalarize the op.
1262 // Notice that the operation may be 'promoted' which means that it is
1263 // 'bitcasted' to another type which is handled.
1264 // Also, we need to be able to construct a splat vector using either
1265 // BUILD_VECTOR or SPLAT_VECTOR.
1266 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
1268 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
1269 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
1270 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
1271 TLI
.getOperationAction(VT
.isFixedLengthVector() ? ISD::BUILD_VECTOR
1272 : ISD::SPLAT_VECTOR
,
1273 VT
) == TargetLowering::Expand
)
1276 // Generate a mask operand.
1277 EVT MaskTy
= VT
.changeVectorElementTypeToInteger();
1279 // What is the size of each element in the vector mask.
1280 EVT BitTy
= MaskTy
.getScalarType();
1282 Mask
= DAG
.getSelect(DL
, BitTy
, Mask
, DAG
.getAllOnesConstant(DL
, BitTy
),
1283 DAG
.getConstant(0, DL
, BitTy
));
1285 // Broadcast the mask so that the entire vector is all one or all zero.
1286 Mask
= DAG
.getSplat(MaskTy
, DL
, Mask
);
1288 // Bitcast the operands to be the same type as the mask.
1289 // This is needed when we select between FP types because
1290 // the mask is a vector of integers.
1291 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op1
);
1292 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op2
);
1294 SDValue NotMask
= DAG
.getNOT(DL
, Mask
, MaskTy
);
1296 Op1
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op1
, Mask
);
1297 Op2
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op2
, NotMask
);
1298 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, MaskTy
, Op1
, Op2
);
1299 return DAG
.getNode(ISD::BITCAST
, DL
, Node
->getValueType(0), Val
);
1302 SDValue
VectorLegalizer::ExpandSEXTINREG(SDNode
*Node
) {
1303 EVT VT
= Node
->getValueType(0);
1305 // Make sure that the SRA and SHL instructions are available.
1306 if (TLI
.getOperationAction(ISD::SRA
, VT
) == TargetLowering::Expand
||
1307 TLI
.getOperationAction(ISD::SHL
, VT
) == TargetLowering::Expand
)
1311 EVT OrigTy
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
1313 unsigned BW
= VT
.getScalarSizeInBits();
1314 unsigned OrigBW
= OrigTy
.getScalarSizeInBits();
1315 SDValue ShiftSz
= DAG
.getConstant(BW
- OrigBW
, DL
, VT
);
1317 SDValue Op
= DAG
.getNode(ISD::SHL
, DL
, VT
, Node
->getOperand(0), ShiftSz
);
1318 return DAG
.getNode(ISD::SRA
, DL
, VT
, Op
, ShiftSz
);
1321 // Generically expand a vector anyext in register to a shuffle of the relevant
1322 // lanes into the appropriate locations, with other lanes left undef.
1323 SDValue
VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode
*Node
) {
1325 EVT VT
= Node
->getValueType(0);
1326 int NumElements
= VT
.getVectorNumElements();
1327 SDValue Src
= Node
->getOperand(0);
1328 EVT SrcVT
= Src
.getValueType();
1329 int NumSrcElements
= SrcVT
.getVectorNumElements();
1331 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1332 // into a larger vector type.
1333 if (SrcVT
.bitsLE(VT
)) {
1334 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
1335 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1336 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
1337 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
1339 Src
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
),
1340 Src
, DAG
.getVectorIdxConstant(0, DL
));
1343 // Build a base mask of undef shuffles.
1344 SmallVector
<int, 16> ShuffleMask
;
1345 ShuffleMask
.resize(NumSrcElements
, -1);
1347 // Place the extended lanes into the correct locations.
1348 int ExtLaneScale
= NumSrcElements
/ NumElements
;
1349 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
1350 for (int i
= 0; i
< NumElements
; ++i
)
1351 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = i
;
1354 ISD::BITCAST
, DL
, VT
,
1355 DAG
.getVectorShuffle(SrcVT
, DL
, Src
, DAG
.getUNDEF(SrcVT
), ShuffleMask
));
1358 SDValue
VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode
*Node
) {
1360 EVT VT
= Node
->getValueType(0);
1361 SDValue Src
= Node
->getOperand(0);
1362 EVT SrcVT
= Src
.getValueType();
1364 // First build an any-extend node which can be legalized above when we
1365 // recurse through it.
1366 SDValue Op
= DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
, DL
, VT
, Src
);
1368 // Now we need sign extend. Do this by shifting the elements. Even if these
1369 // aren't legal operations, they have a better chance of being legalized
1370 // without full scalarization than the sign extension does.
1371 unsigned EltWidth
= VT
.getScalarSizeInBits();
1372 unsigned SrcEltWidth
= SrcVT
.getScalarSizeInBits();
1373 SDValue ShiftAmount
= DAG
.getConstant(EltWidth
- SrcEltWidth
, DL
, VT
);
1374 return DAG
.getNode(ISD::SRA
, DL
, VT
,
1375 DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftAmount
),
1379 // Generically expand a vector zext in register to a shuffle of the relevant
1380 // lanes into the appropriate locations, a blend of zero into the high bits,
1381 // and a bitcast to the wider element type.
1382 SDValue
VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode
*Node
) {
1384 EVT VT
= Node
->getValueType(0);
1385 int NumElements
= VT
.getVectorNumElements();
1386 SDValue Src
= Node
->getOperand(0);
1387 EVT SrcVT
= Src
.getValueType();
1388 int NumSrcElements
= SrcVT
.getVectorNumElements();
1390 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1391 // into a larger vector type.
1392 if (SrcVT
.bitsLE(VT
)) {
1393 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
1394 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1395 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
1396 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
1398 Src
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
),
1399 Src
, DAG
.getVectorIdxConstant(0, DL
));
1402 // Build up a zero vector to blend into this one.
1403 SDValue Zero
= DAG
.getConstant(0, DL
, SrcVT
);
1405 // Shuffle the incoming lanes into the correct position, and pull all other
1406 // lanes from the zero vector.
1407 auto ShuffleMask
= llvm::to_vector
<16>(llvm::seq
<int>(0, NumSrcElements
));
1409 int ExtLaneScale
= NumSrcElements
/ NumElements
;
1410 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
1411 for (int i
= 0; i
< NumElements
; ++i
)
1412 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = NumSrcElements
+ i
;
1414 return DAG
.getNode(ISD::BITCAST
, DL
, VT
,
1415 DAG
.getVectorShuffle(SrcVT
, DL
, Zero
, Src
, ShuffleMask
));
1418 static void createBSWAPShuffleMask(EVT VT
, SmallVectorImpl
<int> &ShuffleMask
) {
1419 int ScalarSizeInBytes
= VT
.getScalarSizeInBits() / 8;
1420 for (int I
= 0, E
= VT
.getVectorNumElements(); I
!= E
; ++I
)
1421 for (int J
= ScalarSizeInBytes
- 1; J
>= 0; --J
)
1422 ShuffleMask
.push_back((I
* ScalarSizeInBytes
) + J
);
1425 SDValue
VectorLegalizer::ExpandBSWAP(SDNode
*Node
) {
1426 EVT VT
= Node
->getValueType(0);
1428 // Scalable vectors can't use shuffle expansion.
1429 if (VT
.isScalableVector())
1430 return TLI
.expandBSWAP(Node
, DAG
);
1432 // Generate a byte wise shuffle mask for the BSWAP.
1433 SmallVector
<int, 16> ShuffleMask
;
1434 createBSWAPShuffleMask(VT
, ShuffleMask
);
1435 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, ShuffleMask
.size());
1437 // Only emit a shuffle if the mask is legal.
1438 if (TLI
.isShuffleMaskLegal(ShuffleMask
, ByteVT
)) {
1440 SDValue Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Node
->getOperand(0));
1441 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
), ShuffleMask
);
1442 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1445 // If we have the appropriate vector bit operations, it is better to use them
1446 // than unrolling and expanding each component.
1447 if (TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) &&
1448 TLI
.isOperationLegalOrCustom(ISD::SRL
, VT
) &&
1449 TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) &&
1450 TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, VT
))
1451 return TLI
.expandBSWAP(Node
, DAG
);
1453 // Otherwise let the caller unroll.
1457 SDValue
VectorLegalizer::ExpandBITREVERSE(SDNode
*Node
) {
1458 EVT VT
= Node
->getValueType(0);
1460 // We can't unroll or use shuffles for scalable vectors.
1461 if (VT
.isScalableVector())
1462 return TLI
.expandBITREVERSE(Node
, DAG
);
1464 // If we have the scalar operation, it's probably cheaper to unroll it.
1465 if (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, VT
.getScalarType()))
1468 // If the vector element width is a whole number of bytes, test if its legal
1469 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1470 // vector. This greatly reduces the number of bit shifts necessary.
1471 unsigned ScalarSizeInBits
= VT
.getScalarSizeInBits();
1472 if (ScalarSizeInBits
> 8 && (ScalarSizeInBits
% 8) == 0) {
1473 SmallVector
<int, 16> BSWAPMask
;
1474 createBSWAPShuffleMask(VT
, BSWAPMask
);
1476 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, BSWAPMask
.size());
1477 if (TLI
.isShuffleMaskLegal(BSWAPMask
, ByteVT
) &&
1478 (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, ByteVT
) ||
1479 (TLI
.isOperationLegalOrCustom(ISD::SHL
, ByteVT
) &&
1480 TLI
.isOperationLegalOrCustom(ISD::SRL
, ByteVT
) &&
1481 TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, ByteVT
) &&
1482 TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, ByteVT
)))) {
1484 SDValue Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Node
->getOperand(0));
1485 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
),
1487 Op
= DAG
.getNode(ISD::BITREVERSE
, DL
, ByteVT
, Op
);
1488 Op
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1493 // If we have the appropriate vector bit operations, it is better to use them
1494 // than unrolling and expanding each component.
1495 if (TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) &&
1496 TLI
.isOperationLegalOrCustom(ISD::SRL
, VT
) &&
1497 TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) &&
1498 TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, VT
))
1499 return TLI
.expandBITREVERSE(Node
, DAG
);
1501 // Otherwise unroll.
1505 SDValue
VectorLegalizer::ExpandVSELECT(SDNode
*Node
) {
1506 // Implement VSELECT in terms of XOR, AND, OR
1507 // on platforms which do not support blend natively.
1510 SDValue Mask
= Node
->getOperand(0);
1511 SDValue Op1
= Node
->getOperand(1);
1512 SDValue Op2
= Node
->getOperand(2);
1514 EVT VT
= Mask
.getValueType();
1516 // If we can't even use the basic vector operations of
1517 // AND,OR,XOR, we will have to scalarize the op.
1518 // Notice that the operation may be 'promoted' which means that it is
1519 // 'bitcasted' to another type which is handled.
1520 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
1521 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
1522 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
)
1525 // This operation also isn't safe with AND, OR, XOR when the boolean type is
1526 // 0/1 and the select operands aren't also booleans, as we need an all-ones
1527 // vector constant to mask with.
1528 // FIXME: Sign extend 1 to all ones if that's legal on the target.
1529 auto BoolContents
= TLI
.getBooleanContents(Op1
.getValueType());
1530 if (BoolContents
!= TargetLowering::ZeroOrNegativeOneBooleanContent
&&
1531 !(BoolContents
== TargetLowering::ZeroOrOneBooleanContent
&&
1532 Op1
.getValueType().getVectorElementType() == MVT::i1
))
1535 // If the mask and the type are different sizes, unroll the vector op. This
1536 // can occur when getSetCCResultType returns something that is different in
1537 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1538 if (VT
.getSizeInBits() != Op1
.getValueSizeInBits())
1541 // Bitcast the operands to be the same type as the mask.
1542 // This is needed when we select between FP types because
1543 // the mask is a vector of integers.
1544 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op1
);
1545 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op2
);
1547 SDValue NotMask
= DAG
.getNOT(DL
, Mask
, VT
);
1549 Op1
= DAG
.getNode(ISD::AND
, DL
, VT
, Op1
, Mask
);
1550 Op2
= DAG
.getNode(ISD::AND
, DL
, VT
, Op2
, NotMask
);
1551 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, VT
, Op1
, Op2
);
1552 return DAG
.getNode(ISD::BITCAST
, DL
, Node
->getValueType(0), Val
);
1555 SDValue
VectorLegalizer::ExpandVP_SELECT(SDNode
*Node
) {
1556 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1557 // do not support it natively.
1560 SDValue Mask
= Node
->getOperand(0);
1561 SDValue Op1
= Node
->getOperand(1);
1562 SDValue Op2
= Node
->getOperand(2);
1563 SDValue EVL
= Node
->getOperand(3);
1565 EVT VT
= Mask
.getValueType();
1567 // If we can't even use the basic vector operations of
1568 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1569 if (TLI
.getOperationAction(ISD::VP_AND
, VT
) == TargetLowering::Expand
||
1570 TLI
.getOperationAction(ISD::VP_XOR
, VT
) == TargetLowering::Expand
||
1571 TLI
.getOperationAction(ISD::VP_OR
, VT
) == TargetLowering::Expand
)
1574 // This operation also isn't safe when the operands aren't also booleans.
1575 if (Op1
.getValueType().getVectorElementType() != MVT::i1
)
1578 SDValue Ones
= DAG
.getAllOnesConstant(DL
, VT
);
1579 SDValue NotMask
= DAG
.getNode(ISD::VP_XOR
, DL
, VT
, Mask
, Ones
, Ones
, EVL
);
1581 Op1
= DAG
.getNode(ISD::VP_AND
, DL
, VT
, Op1
, Mask
, Ones
, EVL
);
1582 Op2
= DAG
.getNode(ISD::VP_AND
, DL
, VT
, Op2
, NotMask
, Ones
, EVL
);
1583 return DAG
.getNode(ISD::VP_OR
, DL
, VT
, Op1
, Op2
, Ones
, EVL
);
1586 SDValue
VectorLegalizer::ExpandVP_MERGE(SDNode
*Node
) {
1587 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1588 // indices less than the EVL/pivot are true. Combine that with the original
1589 // mask for a full-length mask. Use a full-length VSELECT to select between
1590 // the true and false values.
1593 SDValue Mask
= Node
->getOperand(0);
1594 SDValue Op1
= Node
->getOperand(1);
1595 SDValue Op2
= Node
->getOperand(2);
1596 SDValue EVL
= Node
->getOperand(3);
1598 EVT MaskVT
= Mask
.getValueType();
1599 bool IsFixedLen
= MaskVT
.isFixedLengthVector();
1601 EVT EVLVecVT
= EVT::getVectorVT(*DAG
.getContext(), EVL
.getValueType(),
1602 MaskVT
.getVectorElementCount());
1604 // If we can't construct the EVL mask efficiently, it's better to unroll.
1606 !TLI
.isOperationLegalOrCustom(ISD::BUILD_VECTOR
, EVLVecVT
)) ||
1608 (!TLI
.isOperationLegalOrCustom(ISD::STEP_VECTOR
, EVLVecVT
) ||
1609 !TLI
.isOperationLegalOrCustom(ISD::SPLAT_VECTOR
, EVLVecVT
))))
1612 // If using a SETCC would result in a different type than the mask type,
1614 if (TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
1615 EVLVecVT
) != MaskVT
)
1618 SDValue StepVec
= DAG
.getStepVector(DL
, EVLVecVT
);
1619 SDValue SplatEVL
= DAG
.getSplat(EVLVecVT
, DL
, EVL
);
1621 DAG
.getSetCC(DL
, MaskVT
, StepVec
, SplatEVL
, ISD::CondCode::SETULT
);
1623 SDValue FullMask
= DAG
.getNode(ISD::AND
, DL
, MaskVT
, Mask
, EVLMask
);
1624 return DAG
.getSelect(DL
, Node
->getValueType(0), FullMask
, Op1
, Op2
);
1627 SDValue
VectorLegalizer::ExpandVP_REM(SDNode
*Node
) {
1628 // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1629 EVT VT
= Node
->getValueType(0);
1631 unsigned DivOpc
= Node
->getOpcode() == ISD::VP_SREM
? ISD::VP_SDIV
: ISD::VP_UDIV
;
1633 if (!TLI
.isOperationLegalOrCustom(DivOpc
, VT
) ||
1634 !TLI
.isOperationLegalOrCustom(ISD::VP_MUL
, VT
) ||
1635 !TLI
.isOperationLegalOrCustom(ISD::VP_SUB
, VT
))
1640 SDValue Dividend
= Node
->getOperand(0);
1641 SDValue Divisor
= Node
->getOperand(1);
1642 SDValue Mask
= Node
->getOperand(2);
1643 SDValue EVL
= Node
->getOperand(3);
1646 SDValue Div
= DAG
.getNode(DivOpc
, DL
, VT
, Dividend
, Divisor
, Mask
, EVL
);
1647 SDValue Mul
= DAG
.getNode(ISD::VP_MUL
, DL
, VT
, Divisor
, Div
, Mask
, EVL
);
1648 return DAG
.getNode(ISD::VP_SUB
, DL
, VT
, Dividend
, Mul
, Mask
, EVL
);
1651 SDValue
VectorLegalizer::ExpandVP_FNEG(SDNode
*Node
) {
1652 EVT VT
= Node
->getValueType(0);
1653 EVT IntVT
= VT
.changeVectorElementTypeToInteger();
1655 if (!TLI
.isOperationLegalOrCustom(ISD::VP_XOR
, IntVT
))
1658 SDValue Mask
= Node
->getOperand(1);
1659 SDValue EVL
= Node
->getOperand(2);
1662 SDValue Cast
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(0));
1663 SDValue SignMask
= DAG
.getConstant(
1664 APInt::getSignMask(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1665 SDValue Xor
= DAG
.getNode(ISD::VP_XOR
, DL
, IntVT
, Cast
, SignMask
, Mask
, EVL
);
1666 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Xor
);
1669 SDValue
VectorLegalizer::ExpandVP_FABS(SDNode
*Node
) {
1670 EVT VT
= Node
->getValueType(0);
1671 EVT IntVT
= VT
.changeVectorElementTypeToInteger();
1673 if (!TLI
.isOperationLegalOrCustom(ISD::VP_AND
, IntVT
))
1676 SDValue Mask
= Node
->getOperand(1);
1677 SDValue EVL
= Node
->getOperand(2);
1680 SDValue Cast
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(0));
1681 SDValue ClearSignMask
= DAG
.getConstant(
1682 APInt::getSignedMaxValue(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1684 DAG
.getNode(ISD::VP_AND
, DL
, IntVT
, Cast
, ClearSignMask
, Mask
, EVL
);
1685 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, ClearSign
);
1688 SDValue
VectorLegalizer::ExpandVP_FCOPYSIGN(SDNode
*Node
) {
1689 EVT VT
= Node
->getValueType(0);
1691 if (VT
!= Node
->getOperand(1).getValueType())
1694 EVT IntVT
= VT
.changeVectorElementTypeToInteger();
1695 if (!TLI
.isOperationLegalOrCustom(ISD::VP_AND
, IntVT
) ||
1696 !TLI
.isOperationLegalOrCustom(ISD::VP_XOR
, IntVT
))
1699 SDValue Mask
= Node
->getOperand(2);
1700 SDValue EVL
= Node
->getOperand(3);
1703 SDValue Mag
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(0));
1704 SDValue Sign
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(1));
1706 SDValue SignMask
= DAG
.getConstant(
1707 APInt::getSignMask(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1709 DAG
.getNode(ISD::VP_AND
, DL
, IntVT
, Sign
, SignMask
, Mask
, EVL
);
1711 SDValue ClearSignMask
= DAG
.getConstant(
1712 APInt::getSignedMaxValue(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1713 SDValue ClearedSign
=
1714 DAG
.getNode(ISD::VP_AND
, DL
, IntVT
, Mag
, ClearSignMask
, Mask
, EVL
);
1716 SDValue CopiedSign
= DAG
.getNode(ISD::VP_OR
, DL
, IntVT
, ClearedSign
, SignBit
,
1717 Mask
, EVL
, SDNodeFlags::Disjoint
);
1719 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, CopiedSign
);
1722 void VectorLegalizer::ExpandFP_TO_UINT(SDNode
*Node
,
1723 SmallVectorImpl
<SDValue
> &Results
) {
1724 // Attempt to expand using TargetLowering.
1725 SDValue Result
, Chain
;
1726 if (TLI
.expandFP_TO_UINT(Node
, Result
, Chain
, DAG
)) {
1727 Results
.push_back(Result
);
1728 if (Node
->isStrictFPOpcode())
1729 Results
.push_back(Chain
);
1733 // Otherwise go ahead and unroll.
1734 if (Node
->isStrictFPOpcode()) {
1735 UnrollStrictFPOp(Node
, Results
);
1739 Results
.push_back(DAG
.UnrollVectorOp(Node
));
1742 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode
*Node
,
1743 SmallVectorImpl
<SDValue
> &Results
) {
1744 bool IsStrict
= Node
->isStrictFPOpcode();
1745 unsigned OpNo
= IsStrict
? 1 : 0;
1746 SDValue Src
= Node
->getOperand(OpNo
);
1747 EVT SrcVT
= Src
.getValueType();
1748 EVT DstVT
= Node
->getValueType(0);
1751 // Attempt to expand using TargetLowering.
1754 if (TLI
.expandUINT_TO_FP(Node
, Result
, Chain
, DAG
)) {
1755 Results
.push_back(Result
);
1757 Results
.push_back(Chain
);
1761 // Make sure that the SINT_TO_FP and SRL instructions are available.
1762 if (((!IsStrict
&& TLI
.getOperationAction(ISD::SINT_TO_FP
, SrcVT
) ==
1763 TargetLowering::Expand
) ||
1764 (IsStrict
&& TLI
.getOperationAction(ISD::STRICT_SINT_TO_FP
, SrcVT
) ==
1765 TargetLowering::Expand
)) ||
1766 TLI
.getOperationAction(ISD::SRL
, SrcVT
) == TargetLowering::Expand
) {
1768 UnrollStrictFPOp(Node
, Results
);
1772 Results
.push_back(DAG
.UnrollVectorOp(Node
));
1776 unsigned BW
= SrcVT
.getScalarSizeInBits();
1777 assert((BW
== 64 || BW
== 32) &&
1778 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1780 SDValue HalfWord
= DAG
.getConstant(BW
/ 2, DL
, SrcVT
);
1782 // Constants to clear the upper part of the word.
1783 // Notice that we can also use SHL+SHR, but using a constant is slightly
1785 uint64_t HWMask
= (BW
== 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1786 SDValue HalfWordMask
= DAG
.getConstant(HWMask
, DL
, SrcVT
);
1788 // Two to the power of half-word-size.
1789 SDValue TWOHW
= DAG
.getConstantFP(1ULL << (BW
/ 2), DL
, DstVT
);
1791 // Clear upper part of LO, lower HI
1792 SDValue HI
= DAG
.getNode(ISD::SRL
, DL
, SrcVT
, Src
, HalfWord
);
1793 SDValue LO
= DAG
.getNode(ISD::AND
, DL
, SrcVT
, Src
, HalfWordMask
);
1796 // Convert hi and lo to floats
1797 // Convert the hi part back to the upper values
1798 // TODO: Can any fast-math-flags be set on these nodes?
1799 SDValue fHI
= DAG
.getNode(ISD::STRICT_SINT_TO_FP
, DL
, {DstVT
, MVT::Other
},
1800 {Node
->getOperand(0), HI
});
1801 fHI
= DAG
.getNode(ISD::STRICT_FMUL
, DL
, {DstVT
, MVT::Other
},
1802 {fHI
.getValue(1), fHI
, TWOHW
});
1803 SDValue fLO
= DAG
.getNode(ISD::STRICT_SINT_TO_FP
, DL
, {DstVT
, MVT::Other
},
1804 {Node
->getOperand(0), LO
});
1806 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, fHI
.getValue(1),
1809 // Add the two halves
1811 DAG
.getNode(ISD::STRICT_FADD
, DL
, {DstVT
, MVT::Other
}, {TF
, fHI
, fLO
});
1813 Results
.push_back(Result
);
1814 Results
.push_back(Result
.getValue(1));
1818 // Convert hi and lo to floats
1819 // Convert the hi part back to the upper values
1820 // TODO: Can any fast-math-flags be set on these nodes?
1821 SDValue fHI
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, DstVT
, HI
);
1822 fHI
= DAG
.getNode(ISD::FMUL
, DL
, DstVT
, fHI
, TWOHW
);
1823 SDValue fLO
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, DstVT
, LO
);
1825 // Add the two halves
1826 Results
.push_back(DAG
.getNode(ISD::FADD
, DL
, DstVT
, fHI
, fLO
));
1829 SDValue
VectorLegalizer::ExpandFNEG(SDNode
*Node
) {
1830 EVT VT
= Node
->getValueType(0);
1831 EVT IntVT
= VT
.changeVectorElementTypeToInteger();
1833 if (!TLI
.isOperationLegalOrCustom(ISD::XOR
, IntVT
))
1836 // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
1837 if (!TLI
.isOperationLegalOrCustomOrPromote(ISD::FSUB
, VT
) &&
1838 !VT
.isScalableVector())
1842 SDValue Cast
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(0));
1843 SDValue SignMask
= DAG
.getConstant(
1844 APInt::getSignMask(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1845 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, IntVT
, Cast
, SignMask
);
1846 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Xor
);
1849 SDValue
VectorLegalizer::ExpandFABS(SDNode
*Node
) {
1850 EVT VT
= Node
->getValueType(0);
1851 EVT IntVT
= VT
.changeVectorElementTypeToInteger();
1853 if (!TLI
.isOperationLegalOrCustom(ISD::AND
, IntVT
))
1856 // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
1857 if (!TLI
.isOperationLegalOrCustomOrPromote(ISD::FSUB
, VT
) &&
1858 !VT
.isScalableVector())
1862 SDValue Cast
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(0));
1863 SDValue ClearSignMask
= DAG
.getConstant(
1864 APInt::getSignedMaxValue(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1865 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Cast
, ClearSignMask
);
1866 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, ClearedSign
);
1869 SDValue
VectorLegalizer::ExpandFCOPYSIGN(SDNode
*Node
) {
1870 EVT VT
= Node
->getValueType(0);
1871 EVT IntVT
= VT
.changeVectorElementTypeToInteger();
1873 if (VT
!= Node
->getOperand(1).getValueType() ||
1874 !TLI
.isOperationLegalOrCustom(ISD::AND
, IntVT
) ||
1875 !TLI
.isOperationLegalOrCustom(ISD::OR
, IntVT
))
1878 // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
1879 if (!TLI
.isOperationLegalOrCustomOrPromote(ISD::FSUB
, VT
) &&
1880 !VT
.isScalableVector())
1884 SDValue Mag
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(0));
1885 SDValue Sign
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, Node
->getOperand(1));
1887 SDValue SignMask
= DAG
.getConstant(
1888 APInt::getSignMask(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1889 SDValue SignBit
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Sign
, SignMask
);
1891 SDValue ClearSignMask
= DAG
.getConstant(
1892 APInt::getSignedMaxValue(IntVT
.getScalarSizeInBits()), DL
, IntVT
);
1893 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Mag
, ClearSignMask
);
1895 SDValue CopiedSign
= DAG
.getNode(ISD::OR
, DL
, IntVT
, ClearedSign
, SignBit
,
1896 SDNodeFlags::Disjoint
);
1898 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, CopiedSign
);
1901 void VectorLegalizer::ExpandFSUB(SDNode
*Node
,
1902 SmallVectorImpl
<SDValue
> &Results
) {
1903 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1904 // we can defer this to operation legalization where it will be lowered as
1906 EVT VT
= Node
->getValueType(0);
1907 if (TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
) &&
1908 TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
))
1909 return; // Defer to LegalizeDAG
1911 if (SDValue Expanded
= TLI
.expandVectorNaryOpBySplitting(Node
, DAG
)) {
1912 Results
.push_back(Expanded
);
1916 SDValue Tmp
= DAG
.UnrollVectorOp(Node
);
1917 Results
.push_back(Tmp
);
1920 void VectorLegalizer::ExpandSETCC(SDNode
*Node
,
1921 SmallVectorImpl
<SDValue
> &Results
) {
1922 bool NeedInvert
= false;
1923 bool IsVP
= Node
->getOpcode() == ISD::VP_SETCC
;
1924 bool IsStrict
= Node
->getOpcode() == ISD::STRICT_FSETCC
||
1925 Node
->getOpcode() == ISD::STRICT_FSETCCS
;
1926 bool IsSignaling
= Node
->getOpcode() == ISD::STRICT_FSETCCS
;
1927 unsigned Offset
= IsStrict
? 1 : 0;
1929 SDValue Chain
= IsStrict
? Node
->getOperand(0) : SDValue();
1930 SDValue LHS
= Node
->getOperand(0 + Offset
);
1931 SDValue RHS
= Node
->getOperand(1 + Offset
);
1932 SDValue CC
= Node
->getOperand(2 + Offset
);
1934 MVT OpVT
= LHS
.getSimpleValueType();
1935 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
1937 if (TLI
.getCondCodeAction(CCCode
, OpVT
) != TargetLowering::Expand
) {
1939 UnrollStrictFPOp(Node
, Results
);
1942 Results
.push_back(UnrollVSETCC(Node
));
1948 Mask
= Node
->getOperand(3 + Offset
);
1949 EVL
= Node
->getOperand(4 + Offset
);
1954 TLI
.LegalizeSetCCCondCode(DAG
, Node
->getValueType(0), LHS
, RHS
, CC
, Mask
,
1955 EVL
, NeedInvert
, dl
, Chain
, IsSignaling
);
1958 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1959 // condition code, create a new SETCC node.
1962 LHS
= DAG
.getNode(Node
->getOpcode(), dl
, Node
->getVTList(),
1963 {Chain
, LHS
, RHS
, CC
}, Node
->getFlags());
1964 Chain
= LHS
.getValue(1);
1966 LHS
= DAG
.getNode(ISD::VP_SETCC
, dl
, Node
->getValueType(0),
1967 {LHS
, RHS
, CC
, Mask
, EVL
}, Node
->getFlags());
1969 LHS
= DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0), LHS
, RHS
, CC
,
1974 // If we expanded the SETCC by inverting the condition code, then wrap
1975 // the existing SETCC in a NOT to restore the intended condition.
1978 LHS
= DAG
.getLogicalNOT(dl
, LHS
, LHS
->getValueType(0));
1980 LHS
= DAG
.getVPLogicalNOT(dl
, LHS
, Mask
, EVL
, LHS
->getValueType(0));
1983 assert(!IsStrict
&& "Don't know how to expand for strict nodes.");
1985 // Otherwise, SETCC for the given comparison type must be completely
1986 // illegal; expand it into a SELECT_CC.
1987 EVT VT
= Node
->getValueType(0);
1989 DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, LHS
, RHS
,
1990 DAG
.getBoolConstant(true, dl
, VT
, LHS
.getValueType()),
1991 DAG
.getBoolConstant(false, dl
, VT
, LHS
.getValueType()), CC
);
1992 LHS
->setFlags(Node
->getFlags());
1995 Results
.push_back(LHS
);
1997 Results
.push_back(Chain
);
2000 void VectorLegalizer::ExpandUADDSUBO(SDNode
*Node
,
2001 SmallVectorImpl
<SDValue
> &Results
) {
2002 SDValue Result
, Overflow
;
2003 TLI
.expandUADDSUBO(Node
, Result
, Overflow
, DAG
);
2004 Results
.push_back(Result
);
2005 Results
.push_back(Overflow
);
2008 void VectorLegalizer::ExpandSADDSUBO(SDNode
*Node
,
2009 SmallVectorImpl
<SDValue
> &Results
) {
2010 SDValue Result
, Overflow
;
2011 TLI
.expandSADDSUBO(Node
, Result
, Overflow
, DAG
);
2012 Results
.push_back(Result
);
2013 Results
.push_back(Overflow
);
2016 void VectorLegalizer::ExpandMULO(SDNode
*Node
,
2017 SmallVectorImpl
<SDValue
> &Results
) {
2018 SDValue Result
, Overflow
;
2019 if (!TLI
.expandMULO(Node
, Result
, Overflow
, DAG
))
2020 std::tie(Result
, Overflow
) = DAG
.UnrollVectorOverflowOp(Node
);
2022 Results
.push_back(Result
);
2023 Results
.push_back(Overflow
);
2026 void VectorLegalizer::ExpandFixedPointDiv(SDNode
*Node
,
2027 SmallVectorImpl
<SDValue
> &Results
) {
2029 if (SDValue Expanded
= TLI
.expandFixedPointDiv(N
->getOpcode(), SDLoc(N
),
2030 N
->getOperand(0), N
->getOperand(1), N
->getConstantOperandVal(2), DAG
))
2031 Results
.push_back(Expanded
);
2034 void VectorLegalizer::ExpandStrictFPOp(SDNode
*Node
,
2035 SmallVectorImpl
<SDValue
> &Results
) {
2036 if (Node
->getOpcode() == ISD::STRICT_UINT_TO_FP
) {
2037 ExpandUINT_TO_FLOAT(Node
, Results
);
2040 if (Node
->getOpcode() == ISD::STRICT_FP_TO_UINT
) {
2041 ExpandFP_TO_UINT(Node
, Results
);
2045 if (Node
->getOpcode() == ISD::STRICT_FSETCC
||
2046 Node
->getOpcode() == ISD::STRICT_FSETCCS
) {
2047 ExpandSETCC(Node
, Results
);
2051 UnrollStrictFPOp(Node
, Results
);
2054 void VectorLegalizer::ExpandREM(SDNode
*Node
,
2055 SmallVectorImpl
<SDValue
> &Results
) {
2056 assert((Node
->getOpcode() == ISD::SREM
|| Node
->getOpcode() == ISD::UREM
) &&
2057 "Expected REM node");
2060 if (!TLI
.expandREM(Node
, Result
, DAG
))
2061 Result
= DAG
.UnrollVectorOp(Node
);
2062 Results
.push_back(Result
);
2065 // Try to expand libm nodes into vector math routine calls. Callers provide the
2066 // LibFunc equivalent of the passed in Node, which is used to lookup mappings
2067 // within TargetLibraryInfo. The only mappings considered are those where the
2068 // result and all operands are the same vector type. While predicated nodes are
2069 // not supported, we will emit calls to masked routines by passing in an all
2071 bool VectorLegalizer::tryExpandVecMathCall(SDNode
*Node
, RTLIB::Libcall LC
,
2072 SmallVectorImpl
<SDValue
> &Results
) {
2073 // Chain must be propagated but currently strict fp operations are down
2074 // converted to their none strict counterpart.
2075 assert(!Node
->isStrictFPOpcode() && "Unexpected strict fp operation!");
2077 const char *LCName
= TLI
.getLibcallName(LC
);
2080 LLVM_DEBUG(dbgs() << "Looking for vector variant of " << LCName
<< "\n");
2082 EVT VT
= Node
->getValueType(0);
2083 ElementCount VL
= VT
.getVectorElementCount();
2085 // Lookup a vector function equivalent to the specified libcall. Prefer
2086 // unmasked variants but we will generate a mask if need be.
2087 const TargetLibraryInfo
&TLibInfo
= DAG
.getLibInfo();
2088 const VecDesc
*VD
= TLibInfo
.getVectorMappingInfo(LCName
, VL
, false);
2090 VD
= TLibInfo
.getVectorMappingInfo(LCName
, VL
, /*Masked=*/true);
2094 LLVMContext
*Ctx
= DAG
.getContext();
2095 Type
*Ty
= VT
.getTypeForEVT(*Ctx
);
2096 Type
*ScalarTy
= Ty
->getScalarType();
2098 // Construct a scalar function type based on Node's operands.
2099 SmallVector
<Type
*, 8> ArgTys
;
2100 for (unsigned i
= 0; i
< Node
->getNumOperands(); ++i
) {
2101 assert(Node
->getOperand(i
).getValueType() == VT
&&
2102 "Expected matching vector types!");
2103 ArgTys
.push_back(ScalarTy
);
2105 FunctionType
*ScalarFTy
= FunctionType::get(ScalarTy
, ArgTys
, false);
2107 // Generate call information for the vector function.
2108 const std::string MangledName
= VD
->getVectorFunctionABIVariantString();
2109 auto OptVFInfo
= VFABI::tryDemangleForVFABI(MangledName
, ScalarFTy
);
2113 LLVM_DEBUG(dbgs() << "Found vector variant " << VD
->getVectorFnName()
2116 // Sanity check just in case OptVFInfo has unexpected parameters.
2117 if (OptVFInfo
->Shape
.Parameters
.size() !=
2118 Node
->getNumOperands() + VD
->isMasked())
2121 // Collect vector call operands.
2124 TargetLowering::ArgListTy Args
;
2125 TargetLowering::ArgListEntry Entry
;
2126 Entry
.IsSExt
= false;
2127 Entry
.IsZExt
= false;
2130 for (auto &VFParam
: OptVFInfo
->Shape
.Parameters
) {
2131 if (VFParam
.ParamKind
== VFParamKind::GlobalPredicate
) {
2132 EVT MaskVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(), *Ctx
, VT
);
2133 Entry
.Node
= DAG
.getBoolConstant(true, DL
, MaskVT
, VT
);
2134 Entry
.Ty
= MaskVT
.getTypeForEVT(*Ctx
);
2135 Args
.push_back(Entry
);
2139 // Only vector operands are supported.
2140 if (VFParam
.ParamKind
!= VFParamKind::Vector
)
2143 Entry
.Node
= Node
->getOperand(OpNum
++);
2145 Args
.push_back(Entry
);
2148 // Emit a call to the vector function.
2149 SDValue Callee
= DAG
.getExternalSymbol(VD
->getVectorFnName().data(),
2150 TLI
.getPointerTy(DAG
.getDataLayout()));
2151 TargetLowering::CallLoweringInfo
CLI(DAG
);
2153 .setChain(DAG
.getEntryNode())
2154 .setLibCallee(CallingConv::C
, Ty
, Callee
, std::move(Args
));
2156 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
2157 Results
.push_back(CallResult
.first
);
2161 /// Try to expand the node to a vector libcall based on the result type.
2162 bool VectorLegalizer::tryExpandVecMathCall(
2163 SDNode
*Node
, RTLIB::Libcall Call_F32
, RTLIB::Libcall Call_F64
,
2164 RTLIB::Libcall Call_F80
, RTLIB::Libcall Call_F128
,
2165 RTLIB::Libcall Call_PPCF128
, SmallVectorImpl
<SDValue
> &Results
) {
2166 RTLIB::Libcall LC
= RTLIB::getFPLibCall(
2167 Node
->getValueType(0).getVectorElementType(), Call_F32
, Call_F64
,
2168 Call_F80
, Call_F128
, Call_PPCF128
);
2170 if (LC
== RTLIB::UNKNOWN_LIBCALL
)
2173 return tryExpandVecMathCall(Node
, LC
, Results
);
2176 void VectorLegalizer::UnrollStrictFPOp(SDNode
*Node
,
2177 SmallVectorImpl
<SDValue
> &Results
) {
2178 EVT VT
= Node
->getValueType(0);
2179 EVT EltVT
= VT
.getVectorElementType();
2180 unsigned NumElems
= VT
.getVectorNumElements();
2181 unsigned NumOpers
= Node
->getNumOperands();
2182 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2184 EVT TmpEltVT
= EltVT
;
2185 if (Node
->getOpcode() == ISD::STRICT_FSETCC
||
2186 Node
->getOpcode() == ISD::STRICT_FSETCCS
)
2187 TmpEltVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(),
2188 *DAG
.getContext(), TmpEltVT
);
2190 EVT ValueVTs
[] = {TmpEltVT
, MVT::Other
};
2191 SDValue Chain
= Node
->getOperand(0);
2194 SmallVector
<SDValue
, 32> OpValues
;
2195 SmallVector
<SDValue
, 32> OpChains
;
2196 for (unsigned i
= 0; i
< NumElems
; ++i
) {
2197 SmallVector
<SDValue
, 4> Opers
;
2198 SDValue Idx
= DAG
.getVectorIdxConstant(i
, dl
);
2200 // The Chain is the first operand.
2201 Opers
.push_back(Chain
);
2203 // Now process the remaining operands.
2204 for (unsigned j
= 1; j
< NumOpers
; ++j
) {
2205 SDValue Oper
= Node
->getOperand(j
);
2206 EVT OperVT
= Oper
.getValueType();
2208 if (OperVT
.isVector())
2209 Oper
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
2210 OperVT
.getVectorElementType(), Oper
, Idx
);
2212 Opers
.push_back(Oper
);
2215 SDValue ScalarOp
= DAG
.getNode(Node
->getOpcode(), dl
, ValueVTs
, Opers
);
2216 SDValue ScalarResult
= ScalarOp
.getValue(0);
2217 SDValue ScalarChain
= ScalarOp
.getValue(1);
2219 if (Node
->getOpcode() == ISD::STRICT_FSETCC
||
2220 Node
->getOpcode() == ISD::STRICT_FSETCCS
)
2221 ScalarResult
= DAG
.getSelect(dl
, EltVT
, ScalarResult
,
2222 DAG
.getAllOnesConstant(dl
, EltVT
),
2223 DAG
.getConstant(0, dl
, EltVT
));
2225 OpValues
.push_back(ScalarResult
);
2226 OpChains
.push_back(ScalarChain
);
2229 SDValue Result
= DAG
.getBuildVector(VT
, dl
, OpValues
);
2230 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OpChains
);
2232 Results
.push_back(Result
);
2233 Results
.push_back(NewChain
);
2236 SDValue
VectorLegalizer::UnrollVSETCC(SDNode
*Node
) {
2237 EVT VT
= Node
->getValueType(0);
2238 unsigned NumElems
= VT
.getVectorNumElements();
2239 EVT EltVT
= VT
.getVectorElementType();
2240 SDValue LHS
= Node
->getOperand(0);
2241 SDValue RHS
= Node
->getOperand(1);
2242 SDValue CC
= Node
->getOperand(2);
2243 EVT TmpEltVT
= LHS
.getValueType().getVectorElementType();
2245 SmallVector
<SDValue
, 8> Ops(NumElems
);
2246 for (unsigned i
= 0; i
< NumElems
; ++i
) {
2247 SDValue LHSElem
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, LHS
,
2248 DAG
.getVectorIdxConstant(i
, dl
));
2249 SDValue RHSElem
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, RHS
,
2250 DAG
.getVectorIdxConstant(i
, dl
));
2251 // FIXME: We should use i1 setcc + boolext here, but it causes regressions.
2252 Ops
[i
] = DAG
.getNode(ISD::SETCC
, dl
,
2253 TLI
.getSetCCResultType(DAG
.getDataLayout(),
2254 *DAG
.getContext(), TmpEltVT
),
2255 LHSElem
, RHSElem
, CC
);
2256 Ops
[i
] = DAG
.getSelect(dl
, EltVT
, Ops
[i
],
2257 DAG
.getBoolConstant(true, dl
, EltVT
, VT
),
2258 DAG
.getConstant(0, dl
, EltVT
));
2260 return DAG
.getBuildVector(VT
, dl
, Ops
);
2263 bool SelectionDAG::LegalizeVectors() {
2264 return VectorLegalizer(*this).Run();