AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
blob9e5867c70d7b6d95ba85505009c49af828a1018a
1 //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements bottom-up and top-down register pressure reduction list
10 // schedulers, using standard algorithms. The basic approach uses a priority
11 // queue of available nodes to schedule. One at a time, nodes are taken from
12 // the priority queue (thus in priority order), checked for legality to
13 // schedule, and emitted if legal.
15 //===----------------------------------------------------------------------===//
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/Register.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
30 #include "llvm/CodeGen/SchedulerRegistry.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGenTypes/MachineValueType.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstdlib>
54 #include <iterator>
55 #include <limits>
56 #include <memory>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "pre-RA-sched"
64 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
65 STATISTIC(NumUnfolds, "Number of nodes unfolded");
66 STATISTIC(NumDups, "Number of duplicated nodes");
67 STATISTIC(NumPRCopies, "Number of physical register copies");
69 static RegisterScheduler
70 burrListDAGScheduler("list-burr",
71 "Bottom-up register reduction list scheduling",
72 createBURRListDAGScheduler);
74 static RegisterScheduler
75 sourceListDAGScheduler("source",
76 "Similar to list-burr but schedules in source "
77 "order when possible",
78 createSourceListDAGScheduler);
80 static RegisterScheduler
81 hybridListDAGScheduler("list-hybrid",
82 "Bottom-up register pressure aware list scheduling "
83 "which tries to balance latency and register pressure",
84 createHybridListDAGScheduler);
86 static RegisterScheduler
87 ILPListDAGScheduler("list-ilp",
88 "Bottom-up register pressure aware list scheduling "
89 "which tries to balance ILP and register pressure",
90 createILPListDAGScheduler);
92 static cl::opt<bool> DisableSchedCycles(
93 "disable-sched-cycles", cl::Hidden, cl::init(false),
94 cl::desc("Disable cycle-level precision during preRA scheduling"));
96 // Temporary sched=list-ilp flags until the heuristics are robust.
97 // Some options are also available under sched=list-hybrid.
98 static cl::opt<bool> DisableSchedRegPressure(
99 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
100 cl::desc("Disable regpressure priority in sched=list-ilp"));
101 static cl::opt<bool> DisableSchedLiveUses(
102 "disable-sched-live-uses", cl::Hidden, cl::init(true),
103 cl::desc("Disable live use priority in sched=list-ilp"));
104 static cl::opt<bool> DisableSchedVRegCycle(
105 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
106 cl::desc("Disable virtual register cycle interference checks"));
107 static cl::opt<bool> DisableSchedPhysRegJoin(
108 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
109 cl::desc("Disable physreg def-use affinity"));
110 static cl::opt<bool> DisableSchedStalls(
111 "disable-sched-stalls", cl::Hidden, cl::init(true),
112 cl::desc("Disable no-stall priority in sched=list-ilp"));
113 static cl::opt<bool> DisableSchedCriticalPath(
114 "disable-sched-critical-path", cl::Hidden, cl::init(false),
115 cl::desc("Disable critical path priority in sched=list-ilp"));
116 static cl::opt<bool> DisableSchedHeight(
117 "disable-sched-height", cl::Hidden, cl::init(false),
118 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119 static cl::opt<bool> Disable2AddrHack(
120 "disable-2addr-hack", cl::Hidden, cl::init(true),
121 cl::desc("Disable scheduler's two-address hack"));
123 static cl::opt<int> MaxReorderWindow(
124 "max-sched-reorder", cl::Hidden, cl::init(6),
125 cl::desc("Number of instructions to allow ahead of the critical path "
126 "in sched=list-ilp"));
128 static cl::opt<unsigned> AvgIPC(
129 "sched-avg-ipc", cl::Hidden, cl::init(1),
130 cl::desc("Average inst/cycle whan no target itinerary exists."));
132 namespace {
134 //===----------------------------------------------------------------------===//
135 /// ScheduleDAGRRList - The actual register reduction list scheduler
136 /// implementation. This supports both top-down and bottom-up scheduling.
138 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
139 private:
140 /// NeedLatency - True if the scheduler will make use of latency information.
141 bool NeedLatency;
143 /// AvailableQueue - The priority queue to use for the available SUnits.
144 SchedulingPriorityQueue *AvailableQueue;
146 /// PendingQueue - This contains all of the instructions whose operands have
147 /// been issued, but their results are not ready yet (due to the latency of
148 /// the operation). Once the operands becomes available, the instruction is
149 /// added to the AvailableQueue.
150 std::vector<SUnit *> PendingQueue;
152 /// HazardRec - The hazard recognizer to use.
153 ScheduleHazardRecognizer *HazardRec;
155 /// CurCycle - The current scheduler state corresponds to this cycle.
156 unsigned CurCycle = 0;
158 /// MinAvailableCycle - Cycle of the soonest available instruction.
159 unsigned MinAvailableCycle = ~0u;
161 /// IssueCount - Count instructions issued in this cycle
162 /// Currently valid only for bottom-up scheduling.
163 unsigned IssueCount = 0u;
165 /// LiveRegDefs - A set of physical registers and their definition
166 /// that are "live". These nodes must be scheduled before any other nodes that
167 /// modifies the registers can be scheduled.
168 unsigned NumLiveRegs = 0u;
169 std::unique_ptr<SUnit*[]> LiveRegDefs;
170 std::unique_ptr<SUnit*[]> LiveRegGens;
172 // Collect interferences between physical register use/defs.
173 // Each interference is an SUnit and set of physical registers.
174 SmallVector<SUnit*, 4> Interferences;
176 using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
178 LRegsMapT LRegsMap;
180 /// Topo - A topological ordering for SUnits which permits fast IsReachable
181 /// and similar queries.
182 ScheduleDAGTopologicalSort Topo;
184 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
185 // DAG crawling.
186 SmallDenseMap<SUnit *, SUnit *, 16> CallSeqEndForStart;
188 public:
189 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
190 SchedulingPriorityQueue *availqueue,
191 CodeGenOptLevel OptLevel)
192 : ScheduleDAGSDNodes(mf), NeedLatency(needlatency),
193 AvailableQueue(availqueue), Topo(SUnits, nullptr) {
194 const TargetSubtargetInfo &STI = mf.getSubtarget();
195 if (DisableSchedCycles || !NeedLatency)
196 HazardRec = new ScheduleHazardRecognizer();
197 else
198 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
201 ~ScheduleDAGRRList() override {
202 delete HazardRec;
203 delete AvailableQueue;
206 void Schedule() override;
208 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
210 /// IsReachable - Checks if SU is reachable from TargetSU.
211 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
212 return Topo.IsReachable(SU, TargetSU);
215 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
216 /// create a cycle.
217 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
218 return Topo.WillCreateCycle(SU, TargetSU);
221 /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
222 /// This returns true if this is a new predecessor.
223 /// Does *NOT* update the topological ordering! It just queues an update.
224 void AddPredQueued(SUnit *SU, const SDep &D) {
225 Topo.AddPredQueued(SU, D.getSUnit());
226 SU->addPred(D);
229 /// AddPred - adds a predecessor edge to SUnit SU.
230 /// This returns true if this is a new predecessor.
231 /// Updates the topological ordering if required.
232 void AddPred(SUnit *SU, const SDep &D) {
233 Topo.AddPred(SU, D.getSUnit());
234 SU->addPred(D);
237 /// RemovePred - removes a predecessor edge from SUnit SU.
238 /// This returns true if an edge was removed.
239 /// Updates the topological ordering if required.
240 void RemovePred(SUnit *SU, const SDep &D) {
241 Topo.RemovePred(SU, D.getSUnit());
242 SU->removePred(D);
245 private:
246 bool isReady(SUnit *SU) {
247 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
248 AvailableQueue->isReady(SU);
251 void ReleasePred(SUnit *SU, const SDep *PredEdge);
252 void ReleasePredecessors(SUnit *SU);
253 void ReleasePending();
254 void AdvanceToCycle(unsigned NextCycle);
255 void AdvancePastStalls(SUnit *SU);
256 void EmitNode(SUnit *SU);
257 void ScheduleNodeBottomUp(SUnit*);
258 void CapturePred(SDep *PredEdge);
259 void UnscheduleNodeBottomUp(SUnit*);
260 void RestoreHazardCheckerBottomUp();
261 void BacktrackBottomUp(SUnit*, SUnit*);
262 SUnit *TryUnfoldSU(SUnit *);
263 SUnit *CopyAndMoveSuccessors(SUnit*);
264 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
265 const TargetRegisterClass*,
266 const TargetRegisterClass*,
267 SmallVectorImpl<SUnit*>&);
268 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
270 void releaseInterferences(unsigned Reg = 0);
272 SUnit *PickNodeToScheduleBottomUp();
273 void ListScheduleBottomUp();
275 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
276 SUnit *CreateNewSUnit(SDNode *N) {
277 unsigned NumSUnits = SUnits.size();
278 SUnit *NewNode = newSUnit(N);
279 // Update the topological ordering.
280 if (NewNode->NodeNum >= NumSUnits)
281 Topo.AddSUnitWithoutPredecessors(NewNode);
282 return NewNode;
285 /// CreateClone - Creates a new SUnit from an existing one.
286 SUnit *CreateClone(SUnit *N) {
287 unsigned NumSUnits = SUnits.size();
288 SUnit *NewNode = Clone(N);
289 // Update the topological ordering.
290 if (NewNode->NodeNum >= NumSUnits)
291 Topo.AddSUnitWithoutPredecessors(NewNode);
292 return NewNode;
295 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
296 /// need actual latency information but the hybrid scheduler does.
297 bool forceUnitLatencies() const override {
298 return !NeedLatency;
302 } // end anonymous namespace
304 static constexpr unsigned RegSequenceCost = 1;
306 /// GetCostForDef - Looks up the register class and cost for a given definition.
307 /// Typically this just means looking up the representative register class,
308 /// but for untyped values (MVT::Untyped) it means inspecting the node's
309 /// opcode to determine what register class is being generated.
310 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
311 const TargetLowering *TLI,
312 const TargetInstrInfo *TII,
313 const TargetRegisterInfo *TRI,
314 unsigned &RegClass, unsigned &Cost,
315 const MachineFunction &MF) {
316 MVT VT = RegDefPos.GetValue();
318 // Special handling for untyped values. These values can only come from
319 // the expansion of custom DAG-to-DAG patterns.
320 if (VT == MVT::Untyped) {
321 const SDNode *Node = RegDefPos.GetNode();
323 // Special handling for CopyFromReg of untyped values.
324 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
325 Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
326 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
327 RegClass = RC->getID();
328 Cost = 1;
329 return;
332 unsigned Opcode = Node->getMachineOpcode();
333 if (Opcode == TargetOpcode::REG_SEQUENCE) {
334 unsigned DstRCIdx = Node->getConstantOperandVal(0);
335 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
336 RegClass = RC->getID();
337 Cost = RegSequenceCost;
338 return;
341 unsigned Idx = RegDefPos.GetIdx();
342 const MCInstrDesc &Desc = TII->get(Opcode);
343 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
344 assert(RC && "Not a valid register class");
345 RegClass = RC->getID();
346 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
347 // better way to determine it.
348 Cost = 1;
349 } else {
350 RegClass = TLI->getRepRegClassFor(VT)->getID();
351 Cost = TLI->getRepRegClassCostFor(VT);
355 /// Schedule - Schedule the DAG using list scheduling.
356 void ScheduleDAGRRList::Schedule() {
357 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
358 << " '" << BB->getName() << "' **********\n");
360 CurCycle = 0;
361 IssueCount = 0;
362 MinAvailableCycle =
363 DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
364 NumLiveRegs = 0;
365 // Allocate slots for each physical register, plus one for a special register
366 // to track the virtual resource of a calling sequence.
367 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
368 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
369 CallSeqEndForStart.clear();
370 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
372 // Build the scheduling graph.
373 BuildSchedGraph(nullptr);
375 LLVM_DEBUG(dump());
376 Topo.MarkDirty();
378 AvailableQueue->initNodes(SUnits);
380 HazardRec->Reset();
382 // Execute the actual scheduling loop.
383 ListScheduleBottomUp();
385 AvailableQueue->releaseState();
387 LLVM_DEBUG({
388 dbgs() << "*** Final schedule ***\n";
389 dumpSchedule();
390 dbgs() << '\n';
394 //===----------------------------------------------------------------------===//
395 // Bottom-Up Scheduling
396 //===----------------------------------------------------------------------===//
398 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
399 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
400 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
401 SUnit *PredSU = PredEdge->getSUnit();
403 #ifndef NDEBUG
404 if (PredSU->NumSuccsLeft == 0) {
405 dbgs() << "*** Scheduling failed! ***\n";
406 dumpNode(*PredSU);
407 dbgs() << " has been released too many times!\n";
408 llvm_unreachable(nullptr);
410 #endif
411 --PredSU->NumSuccsLeft;
413 if (!forceUnitLatencies()) {
414 // Updating predecessor's height. This is now the cycle when the
415 // predecessor can be scheduled without causing a pipeline stall.
416 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
419 // If all the node's successors are scheduled, this node is ready
420 // to be scheduled. Ignore the special EntrySU node.
421 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
422 PredSU->isAvailable = true;
424 unsigned Height = PredSU->getHeight();
425 if (Height < MinAvailableCycle)
426 MinAvailableCycle = Height;
428 if (isReady(PredSU)) {
429 AvailableQueue->push(PredSU);
431 // CapturePred and others may have left the node in the pending queue, avoid
432 // adding it twice.
433 else if (!PredSU->isPending) {
434 PredSU->isPending = true;
435 PendingQueue.push_back(PredSU);
440 /// IsChainDependent - Test if Outer is reachable from Inner through
441 /// chain dependencies.
442 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
443 unsigned NestLevel,
444 const TargetInstrInfo *TII) {
445 SDNode *N = Outer;
446 while (true) {
447 if (N == Inner)
448 return true;
449 // For a TokenFactor, examine each operand. There may be multiple ways
450 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
451 // most nesting in order to ensure that we find the corresponding match.
452 if (N->getOpcode() == ISD::TokenFactor) {
453 for (const SDValue &Op : N->op_values())
454 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
455 return true;
456 return false;
458 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
459 if (N->isMachineOpcode()) {
460 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
461 ++NestLevel;
462 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
463 if (NestLevel == 0)
464 return false;
465 --NestLevel;
468 // Otherwise, find the chain and continue climbing.
469 for (const SDValue &Op : N->op_values())
470 if (Op.getValueType() == MVT::Other) {
471 N = Op.getNode();
472 goto found_chain_operand;
474 return false;
475 found_chain_operand:;
476 if (N->getOpcode() == ISD::EntryToken)
477 return false;
481 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
482 /// the corresponding (lowered) CALLSEQ_BEGIN node.
484 /// NestLevel and MaxNested are used in recursion to indcate the current level
485 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
486 /// level seen so far.
488 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
489 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
490 static SDNode *
491 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
492 const TargetInstrInfo *TII) {
493 while (true) {
494 // For a TokenFactor, examine each operand. There may be multiple ways
495 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
496 // most nesting in order to ensure that we find the corresponding match.
497 if (N->getOpcode() == ISD::TokenFactor) {
498 SDNode *Best = nullptr;
499 unsigned BestMaxNest = MaxNest;
500 for (const SDValue &Op : N->op_values()) {
501 unsigned MyNestLevel = NestLevel;
502 unsigned MyMaxNest = MaxNest;
503 if (SDNode *New = FindCallSeqStart(Op.getNode(),
504 MyNestLevel, MyMaxNest, TII))
505 if (!Best || (MyMaxNest > BestMaxNest)) {
506 Best = New;
507 BestMaxNest = MyMaxNest;
510 assert(Best);
511 MaxNest = BestMaxNest;
512 return Best;
514 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
515 if (N->isMachineOpcode()) {
516 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
517 ++NestLevel;
518 MaxNest = std::max(MaxNest, NestLevel);
519 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
520 assert(NestLevel != 0);
521 --NestLevel;
522 if (NestLevel == 0)
523 return N;
526 // Otherwise, find the chain and continue climbing.
527 for (const SDValue &Op : N->op_values())
528 if (Op.getValueType() == MVT::Other) {
529 N = Op.getNode();
530 goto found_chain_operand;
532 return nullptr;
533 found_chain_operand:;
534 if (N->getOpcode() == ISD::EntryToken)
535 return nullptr;
539 /// Call ReleasePred for each predecessor, then update register live def/gen.
540 /// Always update LiveRegDefs for a register dependence even if the current SU
541 /// also defines the register. This effectively create one large live range
542 /// across a sequence of two-address node. This is important because the
543 /// entire chain must be scheduled together. Example:
545 /// flags = (3) add
546 /// flags = (2) addc flags
547 /// flags = (1) addc flags
549 /// results in
551 /// LiveRegDefs[flags] = 3
552 /// LiveRegGens[flags] = 1
554 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
555 /// interference on flags.
556 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
557 // Bottom up: release predecessors
558 for (SDep &Pred : SU->Preds) {
559 ReleasePred(SU, &Pred);
560 if (Pred.isAssignedRegDep()) {
561 // This is a physical register dependency and it's impossible or
562 // expensive to copy the register. Make sure nothing that can
563 // clobber the register is scheduled between the predecessor and
564 // this node.
565 SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
566 assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
567 "interference on register dependence");
568 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
569 if (!LiveRegGens[Pred.getReg()]) {
570 ++NumLiveRegs;
571 LiveRegGens[Pred.getReg()] = SU;
576 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
577 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
578 // these nodes, to prevent other calls from being interscheduled with them.
579 unsigned CallResource = TRI->getNumRegs();
580 if (!LiveRegDefs[CallResource])
581 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
582 if (Node->isMachineOpcode() &&
583 Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
584 unsigned NestLevel = 0;
585 unsigned MaxNest = 0;
586 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
587 assert(N && "Must find call sequence start");
589 SUnit *Def = &SUnits[N->getNodeId()];
590 CallSeqEndForStart[Def] = SU;
592 ++NumLiveRegs;
593 LiveRegDefs[CallResource] = Def;
594 LiveRegGens[CallResource] = SU;
595 break;
599 /// Check to see if any of the pending instructions are ready to issue. If
600 /// so, add them to the available queue.
601 void ScheduleDAGRRList::ReleasePending() {
602 if (DisableSchedCycles) {
603 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
604 return;
607 // If the available queue is empty, it is safe to reset MinAvailableCycle.
608 if (AvailableQueue->empty())
609 MinAvailableCycle = std::numeric_limits<unsigned>::max();
611 // Check to see if any of the pending instructions are ready to issue. If
612 // so, add them to the available queue.
613 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
614 unsigned ReadyCycle = PendingQueue[i]->getHeight();
615 if (ReadyCycle < MinAvailableCycle)
616 MinAvailableCycle = ReadyCycle;
618 if (PendingQueue[i]->isAvailable) {
619 if (!isReady(PendingQueue[i]))
620 continue;
621 AvailableQueue->push(PendingQueue[i]);
623 PendingQueue[i]->isPending = false;
624 PendingQueue[i] = PendingQueue.back();
625 PendingQueue.pop_back();
626 --i; --e;
630 /// Move the scheduler state forward by the specified number of Cycles.
631 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
632 if (NextCycle <= CurCycle)
633 return;
635 IssueCount = 0;
636 AvailableQueue->setCurCycle(NextCycle);
637 if (!HazardRec->isEnabled()) {
638 // Bypass lots of virtual calls in case of long latency.
639 CurCycle = NextCycle;
641 else {
642 for (; CurCycle != NextCycle; ++CurCycle) {
643 HazardRec->RecedeCycle();
646 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
647 // available Q to release pending nodes at least once before popping.
648 ReleasePending();
651 /// Move the scheduler state forward until the specified node's dependents are
652 /// ready and can be scheduled with no resource conflicts.
653 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
654 if (DisableSchedCycles)
655 return;
657 // FIXME: Nodes such as CopyFromReg probably should not advance the current
658 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
659 // has predecessors the cycle will be advanced when they are scheduled.
660 // But given the crude nature of modeling latency though such nodes, we
661 // currently need to treat these nodes like real instructions.
662 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
664 unsigned ReadyCycle = SU->getHeight();
666 // Bump CurCycle to account for latency. We assume the latency of other
667 // available instructions may be hidden by the stall (not a full pipe stall).
668 // This updates the hazard recognizer's cycle before reserving resources for
669 // this instruction.
670 AdvanceToCycle(ReadyCycle);
672 // Calls are scheduled in their preceding cycle, so don't conflict with
673 // hazards from instructions after the call. EmitNode will reset the
674 // scoreboard state before emitting the call.
675 if (SU->isCall)
676 return;
678 // FIXME: For resource conflicts in very long non-pipelined stages, we
679 // should probably skip ahead here to avoid useless scoreboard checks.
680 int Stalls = 0;
681 while (true) {
682 ScheduleHazardRecognizer::HazardType HT =
683 HazardRec->getHazardType(SU, -Stalls);
685 if (HT == ScheduleHazardRecognizer::NoHazard)
686 break;
688 ++Stalls;
690 AdvanceToCycle(CurCycle + Stalls);
693 /// Record this SUnit in the HazardRecognizer.
694 /// Does not update CurCycle.
695 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
696 if (!HazardRec->isEnabled())
697 return;
699 // Check for phys reg copy.
700 if (!SU->getNode())
701 return;
703 switch (SU->getNode()->getOpcode()) {
704 default:
705 assert(SU->getNode()->isMachineOpcode() &&
706 "This target-independent node should not be scheduled.");
707 break;
708 case ISD::MERGE_VALUES:
709 case ISD::TokenFactor:
710 case ISD::LIFETIME_START:
711 case ISD::LIFETIME_END:
712 case ISD::CopyToReg:
713 case ISD::CopyFromReg:
714 case ISD::EH_LABEL:
715 // Noops don't affect the scoreboard state. Copies are likely to be
716 // removed.
717 return;
718 case ISD::INLINEASM:
719 case ISD::INLINEASM_BR:
720 // For inline asm, clear the pipeline state.
721 HazardRec->Reset();
722 return;
724 if (SU->isCall) {
725 // Calls are scheduled with their preceding instructions. For bottom-up
726 // scheduling, clear the pipeline state before emitting.
727 HazardRec->Reset();
730 HazardRec->EmitInstruction(SU);
733 static void resetVRegCycle(SUnit *SU);
735 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
736 /// count of its predecessors. If a predecessor pending count is zero, add it to
737 /// the Available queue.
738 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
739 LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
740 LLVM_DEBUG(dumpNode(*SU));
742 #ifndef NDEBUG
743 if (CurCycle < SU->getHeight())
744 LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight()
745 << "] pipeline stall!\n");
746 #endif
748 // FIXME: Do not modify node height. It may interfere with
749 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
750 // node its ready cycle can aid heuristics, and after scheduling it can
751 // indicate the scheduled cycle.
752 SU->setHeightToAtLeast(CurCycle);
754 // Reserve resources for the scheduled instruction.
755 EmitNode(SU);
757 Sequence.push_back(SU);
759 AvailableQueue->scheduledNode(SU);
761 // If HazardRec is disabled, and each inst counts as one cycle, then
762 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
763 // PendingQueue for schedulers that implement HasReadyFilter.
764 if (!HazardRec->isEnabled() && AvgIPC < 2)
765 AdvanceToCycle(CurCycle + 1);
767 // Update liveness of predecessors before successors to avoid treating a
768 // two-address node as a live range def.
769 ReleasePredecessors(SU);
771 // Release all the implicit physical register defs that are live.
772 for (SDep &Succ : SU->Succs) {
773 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
774 if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
775 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
776 --NumLiveRegs;
777 LiveRegDefs[Succ.getReg()] = nullptr;
778 LiveRegGens[Succ.getReg()] = nullptr;
779 releaseInterferences(Succ.getReg());
782 // Release the special call resource dependence, if this is the beginning
783 // of a call.
784 unsigned CallResource = TRI->getNumRegs();
785 if (LiveRegDefs[CallResource] == SU)
786 for (const SDNode *SUNode = SU->getNode(); SUNode;
787 SUNode = SUNode->getGluedNode()) {
788 if (SUNode->isMachineOpcode() &&
789 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
790 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
791 --NumLiveRegs;
792 LiveRegDefs[CallResource] = nullptr;
793 LiveRegGens[CallResource] = nullptr;
794 releaseInterferences(CallResource);
798 resetVRegCycle(SU);
800 SU->isScheduled = true;
802 // Conditions under which the scheduler should eagerly advance the cycle:
803 // (1) No available instructions
804 // (2) All pipelines full, so available instructions must have hazards.
806 // If HazardRec is disabled, the cycle was pre-advanced before calling
807 // ReleasePredecessors. In that case, IssueCount should remain 0.
809 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
810 if (HazardRec->isEnabled() || AvgIPC > 1) {
811 if (SU->getNode() && SU->getNode()->isMachineOpcode())
812 ++IssueCount;
813 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
814 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
815 AdvanceToCycle(CurCycle + 1);
819 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
820 /// unscheduled, increase the succ left count of its predecessors. Remove
821 /// them from AvailableQueue if necessary.
822 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
823 SUnit *PredSU = PredEdge->getSUnit();
824 if (PredSU->isAvailable) {
825 PredSU->isAvailable = false;
826 if (!PredSU->isPending)
827 AvailableQueue->remove(PredSU);
830 assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
831 "NumSuccsLeft will overflow!");
832 ++PredSU->NumSuccsLeft;
835 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
836 /// its predecessor states to reflect the change.
837 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
838 LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
839 LLVM_DEBUG(dumpNode(*SU));
841 for (SDep &Pred : SU->Preds) {
842 CapturePred(&Pred);
843 if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
844 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
845 assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
846 "Physical register dependency violated?");
847 --NumLiveRegs;
848 LiveRegDefs[Pred.getReg()] = nullptr;
849 LiveRegGens[Pred.getReg()] = nullptr;
850 releaseInterferences(Pred.getReg());
854 // Reclaim the special call resource dependence, if this is the beginning
855 // of a call.
856 unsigned CallResource = TRI->getNumRegs();
857 for (const SDNode *SUNode = SU->getNode(); SUNode;
858 SUNode = SUNode->getGluedNode()) {
859 if (SUNode->isMachineOpcode() &&
860 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
861 SUnit *SeqEnd = CallSeqEndForStart[SU];
862 assert(SeqEnd && "Call sequence start/end must be known");
863 assert(!LiveRegDefs[CallResource]);
864 assert(!LiveRegGens[CallResource]);
865 ++NumLiveRegs;
866 LiveRegDefs[CallResource] = SU;
867 LiveRegGens[CallResource] = SeqEnd;
871 // Release the special call resource dependence, if this is the end
872 // of a call.
873 if (LiveRegGens[CallResource] == SU)
874 for (const SDNode *SUNode = SU->getNode(); SUNode;
875 SUNode = SUNode->getGluedNode()) {
876 if (SUNode->isMachineOpcode() &&
877 SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
878 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
879 assert(LiveRegDefs[CallResource]);
880 assert(LiveRegGens[CallResource]);
881 --NumLiveRegs;
882 LiveRegDefs[CallResource] = nullptr;
883 LiveRegGens[CallResource] = nullptr;
884 releaseInterferences(CallResource);
888 for (auto &Succ : SU->Succs) {
889 if (Succ.isAssignedRegDep()) {
890 auto Reg = Succ.getReg();
891 if (!LiveRegDefs[Reg])
892 ++NumLiveRegs;
893 // This becomes the nearest def. Note that an earlier def may still be
894 // pending if this is a two-address node.
895 LiveRegDefs[Reg] = SU;
897 // Update LiveRegGen only if was empty before this unscheduling.
898 // This is to avoid incorrect updating LiveRegGen set in previous run.
899 if (!LiveRegGens[Reg]) {
900 // Find the successor with the lowest height.
901 LiveRegGens[Reg] = Succ.getSUnit();
902 for (auto &Succ2 : SU->Succs) {
903 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
904 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
905 LiveRegGens[Reg] = Succ2.getSUnit();
910 if (SU->getHeight() < MinAvailableCycle)
911 MinAvailableCycle = SU->getHeight();
913 SU->setHeightDirty();
914 SU->isScheduled = false;
915 SU->isAvailable = true;
916 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
917 // Don't make available until backtracking is complete.
918 SU->isPending = true;
919 PendingQueue.push_back(SU);
921 else {
922 AvailableQueue->push(SU);
924 AvailableQueue->unscheduledNode(SU);
927 /// After backtracking, the hazard checker needs to be restored to a state
928 /// corresponding the current cycle.
929 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
930 HazardRec->Reset();
932 unsigned LookAhead = std::min((unsigned)Sequence.size(),
933 HazardRec->getMaxLookAhead());
934 if (LookAhead == 0)
935 return;
937 std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
938 unsigned HazardCycle = (*I)->getHeight();
939 for (auto E = Sequence.end(); I != E; ++I) {
940 SUnit *SU = *I;
941 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
942 HazardRec->RecedeCycle();
944 EmitNode(SU);
948 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
949 /// BTCycle in order to schedule a specific node.
950 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
951 SUnit *OldSU = Sequence.back();
952 while (true) {
953 Sequence.pop_back();
954 // FIXME: use ready cycle instead of height
955 CurCycle = OldSU->getHeight();
956 UnscheduleNodeBottomUp(OldSU);
957 AvailableQueue->setCurCycle(CurCycle);
958 if (OldSU == BtSU)
959 break;
960 OldSU = Sequence.back();
963 assert(!SU->isSucc(OldSU) && "Something is wrong!");
965 RestoreHazardCheckerBottomUp();
967 ReleasePending();
969 ++NumBacktracks;
972 static bool isOperandOf(const SUnit *SU, SDNode *N) {
973 for (const SDNode *SUNode = SU->getNode(); SUNode;
974 SUNode = SUNode->getGluedNode()) {
975 if (SUNode->isOperandOf(N))
976 return true;
978 return false;
981 /// TryUnfold - Attempt to unfold
982 SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
983 SDNode *N = SU->getNode();
984 // Use while over if to ease fall through.
985 SmallVector<SDNode *, 2> NewNodes;
986 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
987 return nullptr;
989 assert(NewNodes.size() == 2 && "Expected a load folding node!");
991 N = NewNodes[1];
992 SDNode *LoadNode = NewNodes[0];
993 unsigned NumVals = N->getNumValues();
994 unsigned OldNumVals = SU->getNode()->getNumValues();
996 // LoadNode may already exist. This can happen when there is another
997 // load from the same location and producing the same type of value
998 // but it has different alignment or volatileness.
999 bool isNewLoad = true;
1000 SUnit *LoadSU;
1001 if (LoadNode->getNodeId() != -1) {
1002 LoadSU = &SUnits[LoadNode->getNodeId()];
1003 // If LoadSU has already been scheduled, we should clone it but
1004 // this would negate the benefit to unfolding so just return SU.
1005 if (LoadSU->isScheduled)
1006 return SU;
1007 isNewLoad = false;
1008 } else {
1009 LoadSU = CreateNewSUnit(LoadNode);
1010 LoadNode->setNodeId(LoadSU->NodeNum);
1012 InitNumRegDefsLeft(LoadSU);
1013 computeLatency(LoadSU);
1016 bool isNewN = true;
1017 SUnit *NewSU;
1018 // This can only happen when isNewLoad is false.
1019 if (N->getNodeId() != -1) {
1020 NewSU = &SUnits[N->getNodeId()];
1021 // If NewSU has already been scheduled, we need to clone it, but this
1022 // negates the benefit to unfolding so just return SU.
1023 if (NewSU->isScheduled) {
1024 return SU;
1026 isNewN = false;
1027 } else {
1028 NewSU = CreateNewSUnit(N);
1029 N->setNodeId(NewSU->NodeNum);
1031 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1032 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1033 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1034 NewSU->isTwoAddress = true;
1035 break;
1038 if (MCID.isCommutable())
1039 NewSU->isCommutable = true;
1041 InitNumRegDefsLeft(NewSU);
1042 computeLatency(NewSU);
1045 LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
1047 // Now that we are committed to unfolding replace DAG Uses.
1048 for (unsigned i = 0; i != NumVals; ++i)
1049 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1050 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1051 SDValue(LoadNode, 1));
1053 // Record all the edges to and from the old SU, by category.
1054 SmallVector<SDep, 4> ChainPreds;
1055 SmallVector<SDep, 4> ChainSuccs;
1056 SmallVector<SDep, 4> LoadPreds;
1057 SmallVector<SDep, 4> NodePreds;
1058 SmallVector<SDep, 4> NodeSuccs;
1059 for (SDep &Pred : SU->Preds) {
1060 if (Pred.isCtrl())
1061 ChainPreds.push_back(Pred);
1062 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1063 LoadPreds.push_back(Pred);
1064 else
1065 NodePreds.push_back(Pred);
1067 for (SDep &Succ : SU->Succs) {
1068 if (Succ.isCtrl())
1069 ChainSuccs.push_back(Succ);
1070 else
1071 NodeSuccs.push_back(Succ);
1074 // Now assign edges to the newly-created nodes.
1075 for (const SDep &Pred : ChainPreds) {
1076 RemovePred(SU, Pred);
1077 if (isNewLoad)
1078 AddPredQueued(LoadSU, Pred);
1080 for (const SDep &Pred : LoadPreds) {
1081 RemovePred(SU, Pred);
1082 if (isNewLoad)
1083 AddPredQueued(LoadSU, Pred);
1085 for (const SDep &Pred : NodePreds) {
1086 RemovePred(SU, Pred);
1087 AddPredQueued(NewSU, Pred);
1089 for (SDep &D : NodeSuccs) {
1090 SUnit *SuccDep = D.getSUnit();
1091 D.setSUnit(SU);
1092 RemovePred(SuccDep, D);
1093 D.setSUnit(NewSU);
1094 AddPredQueued(SuccDep, D);
1095 // Balance register pressure.
1096 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1097 !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1098 --NewSU->NumRegDefsLeft;
1100 for (SDep &D : ChainSuccs) {
1101 SUnit *SuccDep = D.getSUnit();
1102 D.setSUnit(SU);
1103 RemovePred(SuccDep, D);
1104 if (isNewLoad) {
1105 D.setSUnit(LoadSU);
1106 AddPredQueued(SuccDep, D);
1110 // Add a data dependency to reflect that NewSU reads the value defined
1111 // by LoadSU.
1112 SDep D(LoadSU, SDep::Data, 0);
1113 D.setLatency(LoadSU->Latency);
1114 AddPredQueued(NewSU, D);
1116 if (isNewLoad)
1117 AvailableQueue->addNode(LoadSU);
1118 if (isNewN)
1119 AvailableQueue->addNode(NewSU);
1121 ++NumUnfolds;
1123 if (NewSU->NumSuccsLeft == 0)
1124 NewSU->isAvailable = true;
1126 return NewSU;
1129 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1130 /// successors to the newly created node.
1131 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1132 SDNode *N = SU->getNode();
1133 if (!N)
1134 return nullptr;
1136 LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
1137 LLVM_DEBUG(dumpNode(*SU));
1139 if (N->getGluedNode() &&
1140 !TII->canCopyGluedNodeDuringSchedule(N)) {
1141 LLVM_DEBUG(
1142 dbgs()
1143 << "Giving up because it has incoming glue and the target does not "
1144 "want to copy it\n");
1145 return nullptr;
1148 SUnit *NewSU;
1149 bool TryUnfold = false;
1150 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1151 MVT VT = N->getSimpleValueType(i);
1152 if (VT == MVT::Glue) {
1153 LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
1154 return nullptr;
1155 } else if (VT == MVT::Other)
1156 TryUnfold = true;
1158 for (const SDValue &Op : N->op_values()) {
1159 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1160 if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1161 LLVM_DEBUG(
1162 dbgs() << "Giving up because it one of the operands is glue and "
1163 "the target does not want to copy it\n");
1164 return nullptr;
1168 // If possible unfold instruction.
1169 if (TryUnfold) {
1170 SUnit *UnfoldSU = TryUnfoldSU(SU);
1171 if (!UnfoldSU)
1172 return nullptr;
1173 SU = UnfoldSU;
1174 N = SU->getNode();
1175 // If this can be scheduled don't bother duplicating and just return
1176 if (SU->NumSuccsLeft == 0)
1177 return SU;
1180 LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1181 NewSU = CreateClone(SU);
1183 // New SUnit has the exact same predecessors.
1184 for (SDep &Pred : SU->Preds)
1185 if (!Pred.isArtificial())
1186 AddPredQueued(NewSU, Pred);
1188 // Make sure the clone comes after the original. (InstrEmitter assumes
1189 // this ordering.)
1190 AddPredQueued(NewSU, SDep(SU, SDep::Artificial));
1192 // Only copy scheduled successors. Cut them from old node's successor
1193 // list and move them over.
1194 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1195 for (SDep &Succ : SU->Succs) {
1196 if (Succ.isArtificial())
1197 continue;
1198 SUnit *SuccSU = Succ.getSUnit();
1199 if (SuccSU->isScheduled) {
1200 SDep D = Succ;
1201 D.setSUnit(NewSU);
1202 AddPredQueued(SuccSU, D);
1203 D.setSUnit(SU);
1204 DelDeps.emplace_back(SuccSU, D);
1207 for (const auto &[DelSU, DelD] : DelDeps)
1208 RemovePred(DelSU, DelD);
1210 AvailableQueue->updateNode(SU);
1211 AvailableQueue->addNode(NewSU);
1213 ++NumDups;
1214 return NewSU;
1217 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1218 /// scheduled successors of the given SUnit to the last copy.
1219 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1220 const TargetRegisterClass *DestRC,
1221 const TargetRegisterClass *SrcRC,
1222 SmallVectorImpl<SUnit*> &Copies) {
1223 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1224 CopyFromSU->CopySrcRC = SrcRC;
1225 CopyFromSU->CopyDstRC = DestRC;
1227 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1228 CopyToSU->CopySrcRC = DestRC;
1229 CopyToSU->CopyDstRC = SrcRC;
1231 // Only copy scheduled successors. Cut them from old node's successor
1232 // list and move them over.
1233 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1234 for (SDep &Succ : SU->Succs) {
1235 if (Succ.isArtificial())
1236 continue;
1237 SUnit *SuccSU = Succ.getSUnit();
1238 if (SuccSU->isScheduled) {
1239 SDep D = Succ;
1240 D.setSUnit(CopyToSU);
1241 AddPredQueued(SuccSU, D);
1242 DelDeps.emplace_back(SuccSU, Succ);
1244 else {
1245 // Avoid scheduling the def-side copy before other successors. Otherwise,
1246 // we could introduce another physreg interference on the copy and
1247 // continue inserting copies indefinitely.
1248 AddPredQueued(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1251 for (const auto &[DelSU, DelD] : DelDeps)
1252 RemovePred(DelSU, DelD);
1254 SDep FromDep(SU, SDep::Data, Reg);
1255 FromDep.setLatency(SU->Latency);
1256 AddPredQueued(CopyFromSU, FromDep);
1257 SDep ToDep(CopyFromSU, SDep::Data, 0);
1258 ToDep.setLatency(CopyFromSU->Latency);
1259 AddPredQueued(CopyToSU, ToDep);
1261 AvailableQueue->updateNode(SU);
1262 AvailableQueue->addNode(CopyFromSU);
1263 AvailableQueue->addNode(CopyToSU);
1264 Copies.push_back(CopyFromSU);
1265 Copies.push_back(CopyToSU);
1267 ++NumPRCopies;
1270 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1271 /// definition of the specified node.
1272 /// FIXME: Move to SelectionDAG?
1273 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1274 const TargetInstrInfo *TII) {
1275 unsigned NumRes;
1276 if (N->getOpcode() == ISD::CopyFromReg) {
1277 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1278 NumRes = 1;
1279 } else {
1280 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1281 assert(!MCID.implicit_defs().empty() &&
1282 "Physical reg def must be in implicit def list!");
1283 NumRes = MCID.getNumDefs();
1284 for (MCPhysReg ImpDef : MCID.implicit_defs()) {
1285 if (Reg == ImpDef)
1286 break;
1287 ++NumRes;
1290 return N->getSimpleValueType(NumRes);
1293 /// CheckForLiveRegDef - Return true and update live register vector if the
1294 /// specified register def of the specified SUnit clobbers any "live" registers.
1295 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg, SUnit **LiveRegDefs,
1296 SmallSet<unsigned, 4> &RegAdded,
1297 SmallVectorImpl<unsigned> &LRegs,
1298 const TargetRegisterInfo *TRI,
1299 const SDNode *Node = nullptr) {
1300 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1302 // Check if Ref is live.
1303 if (!LiveRegDefs[*AliasI]) continue;
1305 // Allow multiple uses of the same def.
1306 if (LiveRegDefs[*AliasI] == SU) continue;
1308 // Allow multiple uses of same def
1309 if (Node && LiveRegDefs[*AliasI]->getNode() == Node)
1310 continue;
1312 // Add Reg to the set of interfering live regs.
1313 if (RegAdded.insert(*AliasI).second) {
1314 LRegs.push_back(*AliasI);
1319 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1320 /// by RegMask, and add them to LRegs.
1321 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1322 ArrayRef<SUnit*> LiveRegDefs,
1323 SmallSet<unsigned, 4> &RegAdded,
1324 SmallVectorImpl<unsigned> &LRegs) {
1325 // Look at all live registers. Skip Reg0 and the special CallResource.
1326 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1327 if (!LiveRegDefs[i]) continue;
1328 if (LiveRegDefs[i] == SU) continue;
1329 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1330 if (RegAdded.insert(i).second)
1331 LRegs.push_back(i);
1335 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1336 static const uint32_t *getNodeRegMask(const SDNode *N) {
1337 for (const SDValue &Op : N->op_values())
1338 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1339 return RegOp->getRegMask();
1340 return nullptr;
1343 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1344 /// scheduling of the given node to satisfy live physical register dependencies.
1345 /// If the specific node is the last one that's available to schedule, do
1346 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1347 bool ScheduleDAGRRList::
1348 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1349 if (NumLiveRegs == 0)
1350 return false;
1352 SmallSet<unsigned, 4> RegAdded;
1353 // If this node would clobber any "live" register, then it's not ready.
1355 // If SU is the currently live definition of the same register that it uses,
1356 // then we are free to schedule it.
1357 for (SDep &Pred : SU->Preds) {
1358 if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1359 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1360 RegAdded, LRegs, TRI);
1363 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1364 if (Node->getOpcode() == ISD::INLINEASM ||
1365 Node->getOpcode() == ISD::INLINEASM_BR) {
1366 // Inline asm can clobber physical defs.
1367 unsigned NumOps = Node->getNumOperands();
1368 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1369 --NumOps; // Ignore the glue operand.
1371 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1372 unsigned Flags = Node->getConstantOperandVal(i);
1373 const InlineAsm::Flag F(Flags);
1374 unsigned NumVals = F.getNumOperandRegisters();
1376 ++i; // Skip the ID value.
1377 if (F.isRegDefKind() || F.isRegDefEarlyClobberKind() ||
1378 F.isClobberKind()) {
1379 // Check for def of register or earlyclobber register.
1380 for (; NumVals; --NumVals, ++i) {
1381 Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1382 if (Reg.isPhysical())
1383 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1385 } else
1386 i += NumVals;
1388 continue;
1391 if (Node->getOpcode() == ISD::CopyToReg) {
1392 Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1393 if (Reg.isPhysical()) {
1394 SDNode *SrcNode = Node->getOperand(2).getNode();
1395 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI,
1396 SrcNode);
1400 if (!Node->isMachineOpcode())
1401 continue;
1402 // If we're in the middle of scheduling a call, don't begin scheduling
1403 // another call. Also, don't allow any physical registers to be live across
1404 // the call.
1405 if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1406 // Check the special calling-sequence resource.
1407 unsigned CallResource = TRI->getNumRegs();
1408 if (LiveRegDefs[CallResource]) {
1409 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1410 while (SDNode *Glued = Gen->getGluedNode())
1411 Gen = Glued;
1412 if (!IsChainDependent(Gen, Node, 0, TII) &&
1413 RegAdded.insert(CallResource).second)
1414 LRegs.push_back(CallResource);
1417 if (const uint32_t *RegMask = getNodeRegMask(Node))
1418 CheckForLiveRegDefMasked(SU, RegMask,
1419 ArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1420 RegAdded, LRegs);
1422 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1423 if (MCID.hasOptionalDef()) {
1424 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1425 // This operand can be either a def of CPSR, if the S bit is set; or a use
1426 // of %noreg. When the OptionalDef is set to a valid register, we need to
1427 // handle it in the same way as an ImplicitDef.
1428 for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1429 if (MCID.operands()[i].isOptionalDef()) {
1430 const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1431 Register Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1432 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1435 for (MCPhysReg Reg : MCID.implicit_defs())
1436 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1439 return !LRegs.empty();
1442 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1443 // Add the nodes that aren't ready back onto the available list.
1444 for (unsigned i = Interferences.size(); i > 0; --i) {
1445 SUnit *SU = Interferences[i-1];
1446 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1447 if (Reg) {
1448 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1449 if (!is_contained(LRegs, Reg))
1450 continue;
1452 SU->isPending = false;
1453 // The interfering node may no longer be available due to backtracking.
1454 // Furthermore, it may have been made available again, in which case it is
1455 // now already in the AvailableQueue.
1456 if (SU->isAvailable && !SU->NodeQueueId) {
1457 LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
1458 AvailableQueue->push(SU);
1460 if (i < Interferences.size())
1461 Interferences[i-1] = Interferences.back();
1462 Interferences.pop_back();
1463 LRegsMap.erase(LRegsPos);
1467 /// Return a node that can be scheduled in this cycle. Requirements:
1468 /// (1) Ready: latency has been satisfied
1469 /// (2) No Hazards: resources are available
1470 /// (3) No Interferences: may unschedule to break register interferences.
1471 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1472 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1473 auto FindAvailableNode = [&]() {
1474 while (CurSU) {
1475 SmallVector<unsigned, 4> LRegs;
1476 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1477 break;
1478 LLVM_DEBUG(dbgs() << " Interfering reg ";
1479 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
1480 else dbgs() << printReg(LRegs[0], TRI);
1481 dbgs() << " SU #" << CurSU->NodeNum << '\n');
1482 auto [LRegsIter, LRegsInserted] = LRegsMap.try_emplace(CurSU, LRegs);
1483 if (LRegsInserted) {
1484 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1485 Interferences.push_back(CurSU);
1487 else {
1488 assert(CurSU->isPending && "Interferences are pending");
1489 // Update the interference with current live regs.
1490 LRegsIter->second = LRegs;
1492 CurSU = AvailableQueue->pop();
1495 FindAvailableNode();
1496 if (CurSU)
1497 return CurSU;
1499 // We query the topological order in the loop body, so make sure outstanding
1500 // updates are applied before entering it (we only enter the loop if there
1501 // are some interferences). If we make changes to the ordering, we exit
1502 // the loop.
1504 // All candidates are delayed due to live physical reg dependencies.
1505 // Try backtracking, code duplication, or inserting cross class copies
1506 // to resolve it.
1507 for (SUnit *TrySU : Interferences) {
1508 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1510 // Try unscheduling up to the point where it's safe to schedule
1511 // this node.
1512 SUnit *BtSU = nullptr;
1513 unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1514 for (unsigned Reg : LRegs) {
1515 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1516 BtSU = LiveRegGens[Reg];
1517 LiveCycle = BtSU->getHeight();
1520 if (!WillCreateCycle(TrySU, BtSU)) {
1521 // BacktrackBottomUp mutates Interferences!
1522 BacktrackBottomUp(TrySU, BtSU);
1524 // Force the current node to be scheduled before the node that
1525 // requires the physical reg dep.
1526 if (BtSU->isAvailable) {
1527 BtSU->isAvailable = false;
1528 if (!BtSU->isPending)
1529 AvailableQueue->remove(BtSU);
1531 LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
1532 << ") to SU(" << TrySU->NodeNum << ")\n");
1533 AddPredQueued(TrySU, SDep(BtSU, SDep::Artificial));
1535 // If one or more successors has been unscheduled, then the current
1536 // node is no longer available.
1537 if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1538 LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
1539 CurSU = AvailableQueue->pop();
1540 } else {
1541 LLVM_DEBUG(dbgs() << "TrySU available\n");
1542 // Available and in AvailableQueue
1543 AvailableQueue->remove(TrySU);
1544 CurSU = TrySU;
1546 FindAvailableNode();
1547 // Interferences has been mutated. We must break.
1548 break;
1552 if (!CurSU) {
1553 // Can't backtrack. If it's too expensive to copy the value, then try
1554 // duplicate the nodes that produces these "too expensive to copy"
1555 // values to break the dependency. In case even that doesn't work,
1556 // insert cross class copies.
1557 // If it's not too expensive, i.e. cost != -1, issue copies.
1558 SUnit *TrySU = Interferences[0];
1559 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1560 assert(LRegs.size() == 1 && "Can't handle this yet!");
1561 unsigned Reg = LRegs[0];
1562 SUnit *LRDef = LiveRegDefs[Reg];
1563 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1564 const TargetRegisterClass *RC =
1565 TRI->getMinimalPhysRegClass(Reg, VT);
1566 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1568 // If cross copy register class is the same as RC, then it must be possible
1569 // copy the value directly. Do not try duplicate the def.
1570 // If cross copy register class is not the same as RC, then it's possible to
1571 // copy the value but it require cross register class copies and it is
1572 // expensive.
1573 // If cross copy register class is null, then it's not possible to copy
1574 // the value at all.
1575 SUnit *NewDef = nullptr;
1576 if (DestRC != RC) {
1577 NewDef = CopyAndMoveSuccessors(LRDef);
1578 if (!DestRC && !NewDef)
1579 report_fatal_error("Can't handle live physical register dependency!");
1581 if (!NewDef) {
1582 // Issue copies, these can be expensive cross register class copies.
1583 SmallVector<SUnit*, 2> Copies;
1584 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1585 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1586 << " to SU #" << Copies.front()->NodeNum << "\n");
1587 AddPredQueued(TrySU, SDep(Copies.front(), SDep::Artificial));
1588 NewDef = Copies.back();
1591 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1592 << " to SU #" << TrySU->NodeNum << "\n");
1593 LiveRegDefs[Reg] = NewDef;
1594 AddPredQueued(NewDef, SDep(TrySU, SDep::Artificial));
1595 TrySU->isAvailable = false;
1596 CurSU = NewDef;
1598 assert(CurSU && "Unable to resolve live physical register dependencies!");
1599 return CurSU;
1602 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1603 /// schedulers.
1604 void ScheduleDAGRRList::ListScheduleBottomUp() {
1605 // Release any predecessors of the special Exit node.
1606 ReleasePredecessors(&ExitSU);
1608 // Add root to Available queue.
1609 if (!SUnits.empty()) {
1610 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1611 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1612 RootSU->isAvailable = true;
1613 AvailableQueue->push(RootSU);
1616 // While Available queue is not empty, grab the node with the highest
1617 // priority. If it is not ready put it back. Schedule the node.
1618 Sequence.reserve(SUnits.size());
1619 while (!AvailableQueue->empty() || !Interferences.empty()) {
1620 LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
1621 AvailableQueue->dump(this));
1623 // Pick the best node to schedule taking all constraints into
1624 // consideration.
1625 SUnit *SU = PickNodeToScheduleBottomUp();
1627 AdvancePastStalls(SU);
1629 ScheduleNodeBottomUp(SU);
1631 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1632 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1633 assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
1634 "MinAvailableCycle uninitialized");
1635 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1639 // Reverse the order if it is bottom up.
1640 std::reverse(Sequence.begin(), Sequence.end());
1642 #ifndef NDEBUG
1643 VerifyScheduledSequence(/*isBottomUp=*/true);
1644 #endif
1647 namespace {
1649 class RegReductionPQBase;
1651 struct queue_sort {
1652 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1655 #ifndef NDEBUG
1656 template<class SF>
1657 struct reverse_sort : public queue_sort {
1658 SF &SortFunc;
1660 reverse_sort(SF &sf) : SortFunc(sf) {}
1662 bool operator()(SUnit* left, SUnit* right) const {
1663 // reverse left/right rather than simply !SortFunc(left, right)
1664 // to expose different paths in the comparison logic.
1665 return SortFunc(right, left);
1668 #endif // NDEBUG
1670 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1671 // reduction scheduler.
1672 struct bu_ls_rr_sort : public queue_sort {
1673 enum {
1674 IsBottomUp = true,
1675 HasReadyFilter = false
1678 RegReductionPQBase *SPQ;
1680 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1682 bool operator()(SUnit* left, SUnit* right) const;
1685 // src_ls_rr_sort - Priority function for source order scheduler.
1686 struct src_ls_rr_sort : public queue_sort {
1687 enum {
1688 IsBottomUp = true,
1689 HasReadyFilter = false
1692 RegReductionPQBase *SPQ;
1694 src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1696 bool operator()(SUnit* left, SUnit* right) const;
1699 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1700 struct hybrid_ls_rr_sort : public queue_sort {
1701 enum {
1702 IsBottomUp = true,
1703 HasReadyFilter = false
1706 RegReductionPQBase *SPQ;
1708 hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1710 bool isReady(SUnit *SU, unsigned CurCycle) const;
1712 bool operator()(SUnit* left, SUnit* right) const;
1715 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1716 // scheduler.
1717 struct ilp_ls_rr_sort : public queue_sort {
1718 enum {
1719 IsBottomUp = true,
1720 HasReadyFilter = false
1723 RegReductionPQBase *SPQ;
1725 ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1727 bool isReady(SUnit *SU, unsigned CurCycle) const;
1729 bool operator()(SUnit* left, SUnit* right) const;
1732 class RegReductionPQBase : public SchedulingPriorityQueue {
1733 protected:
1734 std::vector<SUnit *> Queue;
1735 unsigned CurQueueId = 0;
1736 bool TracksRegPressure;
1737 bool SrcOrder;
1739 // SUnits - The SUnits for the current graph.
1740 std::vector<SUnit> *SUnits = nullptr;
1742 MachineFunction &MF;
1743 const TargetInstrInfo *TII = nullptr;
1744 const TargetRegisterInfo *TRI = nullptr;
1745 const TargetLowering *TLI = nullptr;
1746 ScheduleDAGRRList *scheduleDAG = nullptr;
1748 // SethiUllmanNumbers - The SethiUllman number for each node.
1749 std::vector<unsigned> SethiUllmanNumbers;
1751 /// RegPressure - Tracking current reg pressure per register class.
1752 std::vector<unsigned> RegPressure;
1754 /// RegLimit - Tracking the number of allocatable registers per register
1755 /// class.
1756 std::vector<unsigned> RegLimit;
1758 public:
1759 RegReductionPQBase(MachineFunction &mf,
1760 bool hasReadyFilter,
1761 bool tracksrp,
1762 bool srcorder,
1763 const TargetInstrInfo *tii,
1764 const TargetRegisterInfo *tri,
1765 const TargetLowering *tli)
1766 : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1767 SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1768 if (TracksRegPressure) {
1769 unsigned NumRC = TRI->getNumRegClasses();
1770 RegLimit.resize(NumRC);
1771 RegPressure.resize(NumRC);
1772 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1773 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1774 for (const TargetRegisterClass *RC : TRI->regclasses())
1775 RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1779 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1780 scheduleDAG = scheduleDag;
1783 ScheduleHazardRecognizer* getHazardRec() {
1784 return scheduleDAG->getHazardRec();
1787 void initNodes(std::vector<SUnit> &sunits) override;
1789 void addNode(const SUnit *SU) override;
1791 void updateNode(const SUnit *SU) override;
1793 void releaseState() override {
1794 SUnits = nullptr;
1795 SethiUllmanNumbers.clear();
1796 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1799 unsigned getNodePriority(const SUnit *SU) const;
1801 unsigned getNodeOrdering(const SUnit *SU) const {
1802 if (!SU->getNode()) return 0;
1804 return SU->getNode()->getIROrder();
1807 bool empty() const override { return Queue.empty(); }
1809 void push(SUnit *U) override {
1810 assert(!U->NodeQueueId && "Node in the queue already");
1811 U->NodeQueueId = ++CurQueueId;
1812 Queue.push_back(U);
1815 void remove(SUnit *SU) override {
1816 assert(!Queue.empty() && "Queue is empty!");
1817 assert(SU->NodeQueueId != 0 && "Not in queue!");
1818 std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1819 if (I != std::prev(Queue.end()))
1820 std::swap(*I, Queue.back());
1821 Queue.pop_back();
1822 SU->NodeQueueId = 0;
1825 bool tracksRegPressure() const override { return TracksRegPressure; }
1827 void dumpRegPressure() const;
1829 bool HighRegPressure(const SUnit *SU) const;
1831 bool MayReduceRegPressure(SUnit *SU) const;
1833 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1835 void scheduledNode(SUnit *SU) override;
1837 void unscheduledNode(SUnit *SU) override;
1839 protected:
1840 bool canClobber(const SUnit *SU, const SUnit *Op);
1841 void AddPseudoTwoAddrDeps();
1842 void PrescheduleNodesWithMultipleUses();
1843 void CalculateSethiUllmanNumbers();
1846 template<class SF>
1847 static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1848 unsigned BestIdx = 0;
1849 // Only compute the cost for the first 1000 items in the queue, to avoid
1850 // excessive compile-times for very large queues.
1851 for (unsigned I = 1, E = std::min(Q.size(), (decltype(Q.size()))1000); I != E;
1852 I++)
1853 if (Picker(Q[BestIdx], Q[I]))
1854 BestIdx = I;
1855 SUnit *V = Q[BestIdx];
1856 if (BestIdx + 1 != Q.size())
1857 std::swap(Q[BestIdx], Q.back());
1858 Q.pop_back();
1859 return V;
1862 template<class SF>
1863 SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1864 #ifndef NDEBUG
1865 if (DAG->StressSched) {
1866 reverse_sort<SF> RPicker(Picker);
1867 return popFromQueueImpl(Q, RPicker);
1869 #endif
1870 (void)DAG;
1871 return popFromQueueImpl(Q, Picker);
1874 //===----------------------------------------------------------------------===//
1875 // RegReductionPriorityQueue Definition
1876 //===----------------------------------------------------------------------===//
1878 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1879 // to reduce register pressure.
1881 template<class SF>
1882 class RegReductionPriorityQueue : public RegReductionPQBase {
1883 SF Picker;
1885 public:
1886 RegReductionPriorityQueue(MachineFunction &mf,
1887 bool tracksrp,
1888 bool srcorder,
1889 const TargetInstrInfo *tii,
1890 const TargetRegisterInfo *tri,
1891 const TargetLowering *tli)
1892 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1893 tii, tri, tli),
1894 Picker(this) {}
1896 bool isBottomUp() const override { return SF::IsBottomUp; }
1898 bool isReady(SUnit *U) const override {
1899 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1902 SUnit *pop() override {
1903 if (Queue.empty()) return nullptr;
1905 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1906 V->NodeQueueId = 0;
1907 return V;
1910 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1911 LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
1912 // Emulate pop() without clobbering NodeQueueIds.
1913 std::vector<SUnit *> DumpQueue = Queue;
1914 SF DumpPicker = Picker;
1915 while (!DumpQueue.empty()) {
1916 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1917 dbgs() << "Height " << SU->getHeight() << ": ";
1918 DAG->dumpNode(*SU);
1921 #endif
1924 using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1925 using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1926 using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1927 using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1929 } // end anonymous namespace
1931 //===----------------------------------------------------------------------===//
1932 // Static Node Priority for Register Pressure Reduction
1933 //===----------------------------------------------------------------------===//
1935 // Check for special nodes that bypass scheduling heuristics.
1936 // Currently this pushes TokenFactor nodes down, but may be used for other
1937 // pseudo-ops as well.
1939 // Return -1 to schedule right above left, 1 for left above right.
1940 // Return 0 if no bias exists.
1941 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1942 bool LSchedLow = left->isScheduleLow;
1943 bool RSchedLow = right->isScheduleLow;
1944 if (LSchedLow != RSchedLow)
1945 return LSchedLow < RSchedLow ? 1 : -1;
1946 return 0;
1949 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1950 /// Smaller number is the higher priority.
1951 static unsigned
1952 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1953 if (SUNumbers[SU->NodeNum] != 0)
1954 return SUNumbers[SU->NodeNum];
1956 // Use WorkList to avoid stack overflow on excessively large IRs.
1957 struct WorkState {
1958 WorkState(const SUnit *SU) : SU(SU) {}
1959 const SUnit *SU;
1960 unsigned PredsProcessed = 0;
1963 SmallVector<WorkState, 16> WorkList;
1964 WorkList.push_back(SU);
1965 while (!WorkList.empty()) {
1966 auto &Temp = WorkList.back();
1967 auto *TempSU = Temp.SU;
1968 bool AllPredsKnown = true;
1969 // Try to find a non-evaluated pred and push it into the processing stack.
1970 for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1971 auto &Pred = TempSU->Preds[P];
1972 if (Pred.isCtrl()) continue; // ignore chain preds
1973 SUnit *PredSU = Pred.getSUnit();
1974 if (SUNumbers[PredSU->NodeNum] == 0) {
1975 #ifndef NDEBUG
1976 // In debug mode, check that we don't have such element in the stack.
1977 for (auto It : WorkList)
1978 assert(It.SU != PredSU && "Trying to push an element twice?");
1979 #endif
1980 // Next time start processing this one starting from the next pred.
1981 Temp.PredsProcessed = P + 1;
1982 WorkList.push_back(PredSU);
1983 AllPredsKnown = false;
1984 break;
1988 if (!AllPredsKnown)
1989 continue;
1991 // Once all preds are known, we can calculate the answer for this one.
1992 unsigned SethiUllmanNumber = 0;
1993 unsigned Extra = 0;
1994 for (const SDep &Pred : TempSU->Preds) {
1995 if (Pred.isCtrl()) continue; // ignore chain preds
1996 SUnit *PredSU = Pred.getSUnit();
1997 unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
1998 assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
1999 if (PredSethiUllman > SethiUllmanNumber) {
2000 SethiUllmanNumber = PredSethiUllman;
2001 Extra = 0;
2002 } else if (PredSethiUllman == SethiUllmanNumber)
2003 ++Extra;
2006 SethiUllmanNumber += Extra;
2007 if (SethiUllmanNumber == 0)
2008 SethiUllmanNumber = 1;
2009 SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
2010 WorkList.pop_back();
2013 assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
2014 return SUNumbers[SU->NodeNum];
2017 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
2018 /// scheduling units.
2019 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
2020 SethiUllmanNumbers.assign(SUnits->size(), 0);
2022 for (const SUnit &SU : *SUnits)
2023 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
2026 void RegReductionPQBase::addNode(const SUnit *SU) {
2027 unsigned SUSize = SethiUllmanNumbers.size();
2028 if (SUnits->size() > SUSize)
2029 SethiUllmanNumbers.resize(SUSize*2, 0);
2030 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2033 void RegReductionPQBase::updateNode(const SUnit *SU) {
2034 SethiUllmanNumbers[SU->NodeNum] = 0;
2035 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2038 // Lower priority means schedule further down. For bottom-up scheduling, lower
2039 // priority SUs are scheduled before higher priority SUs.
2040 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2041 assert(SU->NodeNum < SethiUllmanNumbers.size());
2042 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2043 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2044 // CopyToReg should be close to its uses to facilitate coalescing and
2045 // avoid spilling.
2046 return 0;
2047 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2048 Opc == TargetOpcode::SUBREG_TO_REG ||
2049 Opc == TargetOpcode::INSERT_SUBREG)
2050 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2051 // close to their uses to facilitate coalescing.
2052 return 0;
2053 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2054 // If SU does not have a register use, i.e. it doesn't produce a value
2055 // that would be consumed (e.g. store), then it terminates a chain of
2056 // computation. Give it a large SethiUllman number so it will be
2057 // scheduled right before its predecessors that it doesn't lengthen
2058 // their live ranges.
2059 return 0xffff;
2060 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2061 // If SU does not have a register def, schedule it close to its uses
2062 // because it does not lengthen any live ranges.
2063 return 0;
2064 #if 1
2065 return SethiUllmanNumbers[SU->NodeNum];
2066 #else
2067 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2068 if (SU->isCallOp) {
2069 // FIXME: This assumes all of the defs are used as call operands.
2070 int NP = (int)Priority - SU->getNode()->getNumValues();
2071 return (NP > 0) ? NP : 0;
2073 return Priority;
2074 #endif
2077 //===----------------------------------------------------------------------===//
2078 // Register Pressure Tracking
2079 //===----------------------------------------------------------------------===//
2081 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2082 LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
2083 for (const TargetRegisterClass *RC : TRI->regclasses()) {
2084 unsigned Id = RC->getID();
2085 unsigned RP = RegPressure[Id];
2086 if (!RP) continue;
2087 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
2088 << RegLimit[Id] << '\n');
2091 #endif
2093 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2094 if (!TLI)
2095 return false;
2097 for (const SDep &Pred : SU->Preds) {
2098 if (Pred.isCtrl())
2099 continue;
2100 SUnit *PredSU = Pred.getSUnit();
2101 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2102 // to cover the number of registers defined (they are all live).
2103 if (PredSU->NumRegDefsLeft == 0) {
2104 continue;
2106 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2107 RegDefPos.IsValid(); RegDefPos.Advance()) {
2108 unsigned RCId, Cost;
2109 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2111 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2112 return true;
2115 return false;
2118 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2119 const SDNode *N = SU->getNode();
2121 if (!N->isMachineOpcode() || !SU->NumSuccs)
2122 return false;
2124 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2125 for (unsigned i = 0; i != NumDefs; ++i) {
2126 MVT VT = N->getSimpleValueType(i);
2127 if (!N->hasAnyUseOfValue(i))
2128 continue;
2129 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2130 if (RegPressure[RCId] >= RegLimit[RCId])
2131 return true;
2133 return false;
2136 // Compute the register pressure contribution by this instruction by count up
2137 // for uses that are not live and down for defs. Only count register classes
2138 // that are already under high pressure. As a side effect, compute the number of
2139 // uses of registers that are already live.
2141 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2142 // so could probably be factored.
2143 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2144 LiveUses = 0;
2145 int PDiff = 0;
2146 for (const SDep &Pred : SU->Preds) {
2147 if (Pred.isCtrl())
2148 continue;
2149 SUnit *PredSU = Pred.getSUnit();
2150 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2151 // to cover the number of registers defined (they are all live).
2152 if (PredSU->NumRegDefsLeft == 0) {
2153 if (PredSU->getNode()->isMachineOpcode())
2154 ++LiveUses;
2155 continue;
2157 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2158 RegDefPos.IsValid(); RegDefPos.Advance()) {
2159 MVT VT = RegDefPos.GetValue();
2160 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2161 if (RegPressure[RCId] >= RegLimit[RCId])
2162 ++PDiff;
2165 const SDNode *N = SU->getNode();
2167 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2168 return PDiff;
2170 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2171 for (unsigned i = 0; i != NumDefs; ++i) {
2172 MVT VT = N->getSimpleValueType(i);
2173 if (!N->hasAnyUseOfValue(i))
2174 continue;
2175 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2176 if (RegPressure[RCId] >= RegLimit[RCId])
2177 --PDiff;
2179 return PDiff;
2182 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2183 if (!TracksRegPressure)
2184 return;
2186 if (!SU->getNode())
2187 return;
2189 for (const SDep &Pred : SU->Preds) {
2190 if (Pred.isCtrl())
2191 continue;
2192 SUnit *PredSU = Pred.getSUnit();
2193 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2194 // to cover the number of registers defined (they are all live).
2195 if (PredSU->NumRegDefsLeft == 0) {
2196 continue;
2198 // FIXME: The ScheduleDAG currently loses information about which of a
2199 // node's values is consumed by each dependence. Consequently, if the node
2200 // defines multiple register classes, we don't know which to pressurize
2201 // here. Instead the following loop consumes the register defs in an
2202 // arbitrary order. At least it handles the common case of clustered loads
2203 // to the same class. For precise liveness, each SDep needs to indicate the
2204 // result number. But that tightly couples the ScheduleDAG with the
2205 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2206 // value type or register class to SDep.
2208 // The most important aspect of register tracking is balancing the increase
2209 // here with the reduction further below. Note that this SU may use multiple
2210 // defs in PredSU. The can't be determined here, but we've already
2211 // compensated by reducing NumRegDefsLeft in PredSU during
2212 // ScheduleDAGSDNodes::AddSchedEdges.
2213 --PredSU->NumRegDefsLeft;
2214 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2215 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2216 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2217 if (SkipRegDefs)
2218 continue;
2220 unsigned RCId, Cost;
2221 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2222 RegPressure[RCId] += Cost;
2223 break;
2227 // We should have this assert, but there may be dead SDNodes that never
2228 // materialize as SUnits, so they don't appear to generate liveness.
2229 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2230 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2231 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2232 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2233 if (SkipRegDefs > 0)
2234 continue;
2235 unsigned RCId, Cost;
2236 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2237 if (RegPressure[RCId] < Cost) {
2238 // Register pressure tracking is imprecise. This can happen. But we try
2239 // hard not to let it happen because it likely results in poor scheduling.
2240 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum
2241 << ") has too many regdefs\n");
2242 RegPressure[RCId] = 0;
2244 else {
2245 RegPressure[RCId] -= Cost;
2248 LLVM_DEBUG(dumpRegPressure());
2251 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2252 if (!TracksRegPressure)
2253 return;
2255 const SDNode *N = SU->getNode();
2256 if (!N) return;
2258 if (!N->isMachineOpcode()) {
2259 if (N->getOpcode() != ISD::CopyToReg)
2260 return;
2261 } else {
2262 unsigned Opc = N->getMachineOpcode();
2263 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2264 Opc == TargetOpcode::INSERT_SUBREG ||
2265 Opc == TargetOpcode::SUBREG_TO_REG ||
2266 Opc == TargetOpcode::REG_SEQUENCE ||
2267 Opc == TargetOpcode::IMPLICIT_DEF)
2268 return;
2271 for (const SDep &Pred : SU->Preds) {
2272 if (Pred.isCtrl())
2273 continue;
2274 SUnit *PredSU = Pred.getSUnit();
2275 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2276 // counts data deps.
2277 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2278 continue;
2279 const SDNode *PN = PredSU->getNode();
2280 if (!PN->isMachineOpcode()) {
2281 if (PN->getOpcode() == ISD::CopyFromReg) {
2282 MVT VT = PN->getSimpleValueType(0);
2283 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2284 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2286 continue;
2288 unsigned POpc = PN->getMachineOpcode();
2289 if (POpc == TargetOpcode::IMPLICIT_DEF)
2290 continue;
2291 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2292 POpc == TargetOpcode::INSERT_SUBREG ||
2293 POpc == TargetOpcode::SUBREG_TO_REG) {
2294 MVT VT = PN->getSimpleValueType(0);
2295 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2296 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2297 continue;
2299 if (POpc == TargetOpcode::REG_SEQUENCE) {
2300 unsigned DstRCIdx = PN->getConstantOperandVal(0);
2301 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
2302 unsigned RCId = RC->getID();
2303 // REG_SEQUENCE is untyped, so getRepRegClassCostFor could not be used
2304 // here. Instead use the same constant as in GetCostForDef.
2305 RegPressure[RCId] += RegSequenceCost;
2306 continue;
2308 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2309 for (unsigned i = 0; i != NumDefs; ++i) {
2310 MVT VT = PN->getSimpleValueType(i);
2311 if (!PN->hasAnyUseOfValue(i))
2312 continue;
2313 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2314 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2315 // Register pressure tracking is imprecise. This can happen.
2316 RegPressure[RCId] = 0;
2317 else
2318 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2322 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2323 // may transfer data dependencies to CopyToReg.
2324 if (SU->NumSuccs && N->isMachineOpcode()) {
2325 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2326 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2327 MVT VT = N->getSimpleValueType(i);
2328 if (VT == MVT::Glue || VT == MVT::Other)
2329 continue;
2330 if (!N->hasAnyUseOfValue(i))
2331 continue;
2332 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2333 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2337 LLVM_DEBUG(dumpRegPressure());
2340 //===----------------------------------------------------------------------===//
2341 // Dynamic Node Priority for Register Pressure Reduction
2342 //===----------------------------------------------------------------------===//
2344 /// closestSucc - Returns the scheduled cycle of the successor which is
2345 /// closest to the current cycle.
2346 static unsigned closestSucc(const SUnit *SU) {
2347 unsigned MaxHeight = 0;
2348 for (const SDep &Succ : SU->Succs) {
2349 if (Succ.isCtrl()) continue; // ignore chain succs
2350 unsigned Height = Succ.getSUnit()->getHeight();
2351 // If there are bunch of CopyToRegs stacked up, they should be considered
2352 // to be at the same position.
2353 if (Succ.getSUnit()->getNode() &&
2354 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2355 Height = closestSucc(Succ.getSUnit())+1;
2356 if (Height > MaxHeight)
2357 MaxHeight = Height;
2359 return MaxHeight;
2362 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2363 /// for scratch registers, i.e. number of data dependencies.
2364 static unsigned calcMaxScratches(const SUnit *SU) {
2365 unsigned Scratches = 0;
2366 for (const SDep &Pred : SU->Preds) {
2367 if (Pred.isCtrl()) continue; // ignore chain preds
2368 Scratches++;
2370 return Scratches;
2373 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2374 /// CopyFromReg from a virtual register.
2375 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2376 bool RetVal = false;
2377 for (const SDep &Pred : SU->Preds) {
2378 if (Pred.isCtrl()) continue;
2379 const SUnit *PredSU = Pred.getSUnit();
2380 if (PredSU->getNode() &&
2381 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2382 Register Reg =
2383 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2384 if (Reg.isVirtual()) {
2385 RetVal = true;
2386 continue;
2389 return false;
2391 return RetVal;
2394 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2395 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2396 /// it has no other use. It should be scheduled closer to the terminator.
2397 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2398 bool RetVal = false;
2399 for (const SDep &Succ : SU->Succs) {
2400 if (Succ.isCtrl()) continue;
2401 const SUnit *SuccSU = Succ.getSUnit();
2402 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2403 Register Reg =
2404 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2405 if (Reg.isVirtual()) {
2406 RetVal = true;
2407 continue;
2410 return false;
2412 return RetVal;
2415 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2416 // set isVRegCycle for its CopyFromReg operands.
2418 // This is only relevant for single-block loops, in which case the VRegCycle
2419 // node is likely an induction variable in which the operand and target virtual
2420 // registers should be coalesced (e.g. pre/post increment values). Setting the
2421 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2422 // CopyFromReg so that this node becomes the virtual register "kill". This
2423 // avoids interference between the values live in and out of the block and
2424 // eliminates a copy inside the loop.
2425 static void initVRegCycle(SUnit *SU) {
2426 if (DisableSchedVRegCycle)
2427 return;
2429 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2430 return;
2432 LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2434 SU->isVRegCycle = true;
2436 for (const SDep &Pred : SU->Preds) {
2437 if (Pred.isCtrl()) continue;
2438 Pred.getSUnit()->isVRegCycle = true;
2442 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2443 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2444 static void resetVRegCycle(SUnit *SU) {
2445 if (!SU->isVRegCycle)
2446 return;
2448 for (const SDep &Pred : SU->Preds) {
2449 if (Pred.isCtrl()) continue; // ignore chain preds
2450 SUnit *PredSU = Pred.getSUnit();
2451 if (PredSU->isVRegCycle) {
2452 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2453 "VRegCycle def must be CopyFromReg");
2454 Pred.getSUnit()->isVRegCycle = false;
2459 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2460 // means a node that defines the VRegCycle has not been scheduled yet.
2461 static bool hasVRegCycleUse(const SUnit *SU) {
2462 // If this SU also defines the VReg, don't hoist it as a "use".
2463 if (SU->isVRegCycle)
2464 return false;
2466 for (const SDep &Pred : SU->Preds) {
2467 if (Pred.isCtrl()) continue; // ignore chain preds
2468 if (Pred.getSUnit()->isVRegCycle &&
2469 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2470 LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2471 return true;
2474 return false;
2477 // Check for either a dependence (latency) or resource (hazard) stall.
2479 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2480 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2481 if ((int)SPQ->getCurCycle() < Height) return true;
2482 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2483 != ScheduleHazardRecognizer::NoHazard)
2484 return true;
2485 return false;
2488 // Return -1 if left has higher priority, 1 if right has higher priority.
2489 // Return 0 if latency-based priority is equivalent.
2490 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2491 RegReductionPQBase *SPQ) {
2492 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2493 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2494 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2495 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2496 int LHeight = (int)left->getHeight() + LPenalty;
2497 int RHeight = (int)right->getHeight() + RPenalty;
2499 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2500 BUHasStall(left, LHeight, SPQ);
2501 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2502 BUHasStall(right, RHeight, SPQ);
2504 // If scheduling one of the node will cause a pipeline stall, delay it.
2505 // If scheduling either one of the node will cause a pipeline stall, sort
2506 // them according to their height.
2507 if (LStall) {
2508 if (!RStall)
2509 return 1;
2510 if (LHeight != RHeight)
2511 return LHeight > RHeight ? 1 : -1;
2512 } else if (RStall)
2513 return -1;
2515 // If either node is scheduling for latency, sort them by height/depth
2516 // and latency.
2517 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2518 right->SchedulingPref == Sched::ILP)) {
2519 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2520 // is enabled, grouping instructions by cycle, then its height is already
2521 // covered so only its depth matters. We also reach this point if both stall
2522 // but have the same height.
2523 if (!SPQ->getHazardRec()->isEnabled()) {
2524 if (LHeight != RHeight)
2525 return LHeight > RHeight ? 1 : -1;
2527 int LDepth = left->getDepth() - LPenalty;
2528 int RDepth = right->getDepth() - RPenalty;
2529 if (LDepth != RDepth) {
2530 LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2531 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2532 << ") depth " << RDepth << "\n");
2533 return LDepth < RDepth ? 1 : -1;
2535 if (left->Latency != right->Latency)
2536 return left->Latency > right->Latency ? 1 : -1;
2538 return 0;
2541 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2542 // Schedule physical register definitions close to their use. This is
2543 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2544 // long as shortening physreg live ranges is generally good, we can defer
2545 // creating a subtarget hook.
2546 if (!DisableSchedPhysRegJoin) {
2547 bool LHasPhysReg = left->hasPhysRegDefs;
2548 bool RHasPhysReg = right->hasPhysRegDefs;
2549 if (LHasPhysReg != RHasPhysReg) {
2550 #ifndef NDEBUG
2551 static const char *const PhysRegMsg[] = { " has no physreg",
2552 " defines a physreg" };
2553 #endif
2554 LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2555 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
2556 << ") " << PhysRegMsg[RHasPhysReg] << "\n");
2557 return LHasPhysReg < RHasPhysReg;
2561 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2562 unsigned LPriority = SPQ->getNodePriority(left);
2563 unsigned RPriority = SPQ->getNodePriority(right);
2565 // Be really careful about hoisting call operands above previous calls.
2566 // Only allows it if it would reduce register pressure.
2567 if (left->isCall && right->isCallOp) {
2568 unsigned RNumVals = right->getNode()->getNumValues();
2569 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2571 if (right->isCall && left->isCallOp) {
2572 unsigned LNumVals = left->getNode()->getNumValues();
2573 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2576 if (LPriority != RPriority)
2577 return LPriority > RPriority;
2579 // One or both of the nodes are calls and their sethi-ullman numbers are the
2580 // same, then keep source order.
2581 if (left->isCall || right->isCall) {
2582 unsigned LOrder = SPQ->getNodeOrdering(left);
2583 unsigned ROrder = SPQ->getNodeOrdering(right);
2585 // Prefer an ordering where the lower the non-zero order number, the higher
2586 // the preference.
2587 if ((LOrder || ROrder) && LOrder != ROrder)
2588 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2591 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2592 // e.g.
2593 // t1 = op t2, c1
2594 // t3 = op t4, c2
2596 // and the following instructions are both ready.
2597 // t2 = op c3
2598 // t4 = op c4
2600 // Then schedule t2 = op first.
2601 // i.e.
2602 // t4 = op c4
2603 // t2 = op c3
2604 // t1 = op t2, c1
2605 // t3 = op t4, c2
2607 // This creates more short live intervals.
2608 unsigned LDist = closestSucc(left);
2609 unsigned RDist = closestSucc(right);
2610 if (LDist != RDist)
2611 return LDist < RDist;
2613 // How many registers becomes live when the node is scheduled.
2614 unsigned LScratch = calcMaxScratches(left);
2615 unsigned RScratch = calcMaxScratches(right);
2616 if (LScratch != RScratch)
2617 return LScratch > RScratch;
2619 // Comparing latency against a call makes little sense unless the node
2620 // is register pressure-neutral.
2621 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2622 return (left->NodeQueueId > right->NodeQueueId);
2624 // Do not compare latencies when one or both of the nodes are calls.
2625 if (!DisableSchedCycles &&
2626 !(left->isCall || right->isCall)) {
2627 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2628 if (result != 0)
2629 return result > 0;
2631 else {
2632 if (left->getHeight() != right->getHeight())
2633 return left->getHeight() > right->getHeight();
2635 if (left->getDepth() != right->getDepth())
2636 return left->getDepth() < right->getDepth();
2639 assert(left->NodeQueueId && right->NodeQueueId &&
2640 "NodeQueueId cannot be zero");
2641 return (left->NodeQueueId > right->NodeQueueId);
2644 // Bottom up
2645 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2646 if (int res = checkSpecialNodes(left, right))
2647 return res > 0;
2649 return BURRSort(left, right, SPQ);
2652 // Source order, otherwise bottom up.
2653 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2654 if (int res = checkSpecialNodes(left, right))
2655 return res > 0;
2657 unsigned LOrder = SPQ->getNodeOrdering(left);
2658 unsigned ROrder = SPQ->getNodeOrdering(right);
2660 // Prefer an ordering where the lower the non-zero order number, the higher
2661 // the preference.
2662 if ((LOrder || ROrder) && LOrder != ROrder)
2663 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2665 return BURRSort(left, right, SPQ);
2668 // If the time between now and when the instruction will be ready can cover
2669 // the spill code, then avoid adding it to the ready queue. This gives long
2670 // stalls highest priority and allows hoisting across calls. It should also
2671 // speed up processing the available queue.
2672 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2673 static const unsigned ReadyDelay = 3;
2675 if (SPQ->MayReduceRegPressure(SU)) return true;
2677 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2679 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2680 != ScheduleHazardRecognizer::NoHazard)
2681 return false;
2683 return true;
2686 // Return true if right should be scheduled with higher priority than left.
2687 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2688 if (int res = checkSpecialNodes(left, right))
2689 return res > 0;
2691 if (left->isCall || right->isCall)
2692 // No way to compute latency of calls.
2693 return BURRSort(left, right, SPQ);
2695 bool LHigh = SPQ->HighRegPressure(left);
2696 bool RHigh = SPQ->HighRegPressure(right);
2697 // Avoid causing spills. If register pressure is high, schedule for
2698 // register pressure reduction.
2699 if (LHigh && !RHigh) {
2700 LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2701 << right->NodeNum << ")\n");
2702 return true;
2704 else if (!LHigh && RHigh) {
2705 LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2706 << left->NodeNum << ")\n");
2707 return false;
2709 if (!LHigh && !RHigh) {
2710 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2711 if (result != 0)
2712 return result > 0;
2714 return BURRSort(left, right, SPQ);
2717 // Schedule as many instructions in each cycle as possible. So don't make an
2718 // instruction available unless it is ready in the current cycle.
2719 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2720 if (SU->getHeight() > CurCycle) return false;
2722 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2723 != ScheduleHazardRecognizer::NoHazard)
2724 return false;
2726 return true;
2729 static bool canEnableCoalescing(SUnit *SU) {
2730 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2731 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2732 // CopyToReg should be close to its uses to facilitate coalescing and
2733 // avoid spilling.
2734 return true;
2736 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2737 Opc == TargetOpcode::SUBREG_TO_REG ||
2738 Opc == TargetOpcode::INSERT_SUBREG)
2739 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2740 // close to their uses to facilitate coalescing.
2741 return true;
2743 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2744 // If SU does not have a register def, schedule it close to its uses
2745 // because it does not lengthen any live ranges.
2746 return true;
2748 return false;
2751 // list-ilp is currently an experimental scheduler that allows various
2752 // heuristics to be enabled prior to the normal register reduction logic.
2753 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2754 if (int res = checkSpecialNodes(left, right))
2755 return res > 0;
2757 if (left->isCall || right->isCall)
2758 // No way to compute latency of calls.
2759 return BURRSort(left, right, SPQ);
2761 unsigned LLiveUses = 0, RLiveUses = 0;
2762 int LPDiff = 0, RPDiff = 0;
2763 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2764 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2765 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2767 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2768 LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
2769 << "): " << LPDiff << " != SU(" << right->NodeNum
2770 << "): " << RPDiff << "\n");
2771 return LPDiff > RPDiff;
2774 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2775 bool LReduce = canEnableCoalescing(left);
2776 bool RReduce = canEnableCoalescing(right);
2777 if (LReduce && !RReduce) return false;
2778 if (RReduce && !LReduce) return true;
2781 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2782 LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2783 << " != SU(" << right->NodeNum << "): " << RLiveUses
2784 << "\n");
2785 return LLiveUses < RLiveUses;
2788 if (!DisableSchedStalls) {
2789 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2790 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2791 if (LStall != RStall)
2792 return left->getHeight() > right->getHeight();
2795 if (!DisableSchedCriticalPath) {
2796 int spread = (int)left->getDepth() - (int)right->getDepth();
2797 if (std::abs(spread) > MaxReorderWindow) {
2798 LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2799 << left->getDepth() << " != SU(" << right->NodeNum
2800 << "): " << right->getDepth() << "\n");
2801 return left->getDepth() < right->getDepth();
2805 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2806 int spread = (int)left->getHeight() - (int)right->getHeight();
2807 if (std::abs(spread) > MaxReorderWindow)
2808 return left->getHeight() > right->getHeight();
2811 return BURRSort(left, right, SPQ);
2814 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2815 SUnits = &sunits;
2816 // Add pseudo dependency edges for two-address nodes.
2817 if (!Disable2AddrHack)
2818 AddPseudoTwoAddrDeps();
2819 // Reroute edges to nodes with multiple uses.
2820 if (!TracksRegPressure && !SrcOrder)
2821 PrescheduleNodesWithMultipleUses();
2822 // Calculate node priorities.
2823 CalculateSethiUllmanNumbers();
2825 // For single block loops, mark nodes that look like canonical IV increments.
2826 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2827 for (SUnit &SU : sunits)
2828 initVRegCycle(&SU);
2831 //===----------------------------------------------------------------------===//
2832 // Preschedule for Register Pressure
2833 //===----------------------------------------------------------------------===//
2835 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2836 if (SU->isTwoAddress) {
2837 unsigned Opc = SU->getNode()->getMachineOpcode();
2838 const MCInstrDesc &MCID = TII->get(Opc);
2839 unsigned NumRes = MCID.getNumDefs();
2840 unsigned NumOps = MCID.getNumOperands() - NumRes;
2841 for (unsigned i = 0; i != NumOps; ++i) {
2842 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2843 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2844 if (DU->getNodeId() != -1 &&
2845 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2846 return true;
2850 return false;
2853 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2854 /// successor's explicit physregs whose definition can reach DepSU.
2855 /// i.e. DepSU should not be scheduled above SU.
2856 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2857 ScheduleDAGRRList *scheduleDAG,
2858 const TargetInstrInfo *TII,
2859 const TargetRegisterInfo *TRI) {
2860 ArrayRef<MCPhysReg> ImpDefs =
2861 TII->get(SU->getNode()->getMachineOpcode()).implicit_defs();
2862 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2863 if (ImpDefs.empty() && !RegMask)
2864 return false;
2866 for (const SDep &Succ : SU->Succs) {
2867 SUnit *SuccSU = Succ.getSUnit();
2868 for (const SDep &SuccPred : SuccSU->Preds) {
2869 if (!SuccPred.isAssignedRegDep())
2870 continue;
2872 if (RegMask &&
2873 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2874 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2875 return true;
2877 for (MCPhysReg ImpDef : ImpDefs) {
2878 // Return true if SU clobbers this physical register use and the
2879 // definition of the register reaches from DepSU. IsReachable queries
2880 // a topological forward sort of the DAG (following the successors).
2881 if (TRI->regsOverlap(ImpDef, SuccPred.getReg()) &&
2882 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2883 return true;
2887 return false;
2890 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2891 /// physical register defs.
2892 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2893 const TargetInstrInfo *TII,
2894 const TargetRegisterInfo *TRI) {
2895 SDNode *N = SuccSU->getNode();
2896 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2897 ArrayRef<MCPhysReg> ImpDefs = TII->get(N->getMachineOpcode()).implicit_defs();
2898 assert(!ImpDefs.empty() && "Caller should check hasPhysRegDefs");
2899 for (const SDNode *SUNode = SU->getNode(); SUNode;
2900 SUNode = SUNode->getGluedNode()) {
2901 if (!SUNode->isMachineOpcode())
2902 continue;
2903 ArrayRef<MCPhysReg> SUImpDefs =
2904 TII->get(SUNode->getMachineOpcode()).implicit_defs();
2905 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2906 if (SUImpDefs.empty() && !SURegMask)
2907 continue;
2908 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2909 MVT VT = N->getSimpleValueType(i);
2910 if (VT == MVT::Glue || VT == MVT::Other)
2911 continue;
2912 if (!N->hasAnyUseOfValue(i))
2913 continue;
2914 MCPhysReg Reg = ImpDefs[i - NumDefs];
2915 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2916 return true;
2917 for (MCPhysReg SUReg : SUImpDefs) {
2918 if (TRI->regsOverlap(Reg, SUReg))
2919 return true;
2923 return false;
2926 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2927 /// are not handled well by the general register pressure reduction
2928 /// heuristics. When presented with code like this:
2930 /// N
2931 /// / |
2932 /// / |
2933 /// U store
2934 /// |
2935 /// ...
2937 /// the heuristics tend to push the store up, but since the
2938 /// operand of the store has another use (U), this would increase
2939 /// the length of that other use (the U->N edge).
2941 /// This function transforms code like the above to route U's
2942 /// dependence through the store when possible, like this:
2944 /// N
2945 /// ||
2946 /// ||
2947 /// store
2948 /// |
2949 /// U
2950 /// |
2951 /// ...
2953 /// This results in the store being scheduled immediately
2954 /// after N, which shortens the U->N live range, reducing
2955 /// register pressure.
2956 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2957 // Visit all the nodes in topological order, working top-down.
2958 for (SUnit &SU : *SUnits) {
2959 // For now, only look at nodes with no data successors, such as stores.
2960 // These are especially important, due to the heuristics in
2961 // getNodePriority for nodes with no data successors.
2962 if (SU.NumSuccs != 0)
2963 continue;
2964 // For now, only look at nodes with exactly one data predecessor.
2965 if (SU.NumPreds != 1)
2966 continue;
2967 // Avoid prescheduling copies to virtual registers, which don't behave
2968 // like other nodes from the perspective of scheduling heuristics.
2969 if (SDNode *N = SU.getNode())
2970 if (N->getOpcode() == ISD::CopyToReg &&
2971 cast<RegisterSDNode>(N->getOperand(1))->getReg().isVirtual())
2972 continue;
2974 SDNode *PredFrameSetup = nullptr;
2975 for (const SDep &Pred : SU.Preds)
2976 if (Pred.isCtrl() && Pred.getSUnit()) {
2977 // Find the predecessor which is not data dependence.
2978 SDNode *PredND = Pred.getSUnit()->getNode();
2980 // If PredND is FrameSetup, we should not pre-scheduled the node,
2981 // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
2982 // ADJCALLSTACKUP may hold CallResource too long and make other
2983 // calls can't be scheduled. If there's no other available node
2984 // to schedule, the schedular will try to rename the register by
2985 // creating copy to avoid the conflict which will fail because
2986 // CallResource is not a real physical register.
2987 if (PredND && PredND->isMachineOpcode() &&
2988 (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
2989 PredFrameSetup = PredND;
2990 break;
2993 // Skip the node has FrameSetup parent.
2994 if (PredFrameSetup != nullptr)
2995 continue;
2997 // Locate the single data predecessor.
2998 SUnit *PredSU = nullptr;
2999 for (const SDep &Pred : SU.Preds)
3000 if (!Pred.isCtrl()) {
3001 PredSU = Pred.getSUnit();
3002 break;
3004 assert(PredSU);
3006 // Don't rewrite edges that carry physregs, because that requires additional
3007 // support infrastructure.
3008 if (PredSU->hasPhysRegDefs)
3009 continue;
3010 // Short-circuit the case where SU is PredSU's only data successor.
3011 if (PredSU->NumSuccs == 1)
3012 continue;
3013 // Avoid prescheduling to copies from virtual registers, which don't behave
3014 // like other nodes from the perspective of scheduling heuristics.
3015 if (SDNode *N = SU.getNode())
3016 if (N->getOpcode() == ISD::CopyFromReg &&
3017 cast<RegisterSDNode>(N->getOperand(1))->getReg().isVirtual())
3018 continue;
3020 // Perform checks on the successors of PredSU.
3021 for (const SDep &PredSucc : PredSU->Succs) {
3022 SUnit *PredSuccSU = PredSucc.getSUnit();
3023 if (PredSuccSU == &SU) continue;
3024 // If PredSU has another successor with no data successors, for
3025 // now don't attempt to choose either over the other.
3026 if (PredSuccSU->NumSuccs == 0)
3027 goto outer_loop_continue;
3028 // Don't break physical register dependencies.
3029 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
3030 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
3031 goto outer_loop_continue;
3032 // Don't introduce graph cycles.
3033 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
3034 goto outer_loop_continue;
3037 // Ok, the transformation is safe and the heuristics suggest it is
3038 // profitable. Update the graph.
3039 LLVM_DEBUG(
3040 dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
3041 << PredSU->NodeNum
3042 << " to guide scheduling in the presence of multiple uses\n");
3043 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
3044 SDep Edge = PredSU->Succs[i];
3045 assert(!Edge.isAssignedRegDep());
3046 SUnit *SuccSU = Edge.getSUnit();
3047 if (SuccSU != &SU) {
3048 Edge.setSUnit(PredSU);
3049 scheduleDAG->RemovePred(SuccSU, Edge);
3050 scheduleDAG->AddPredQueued(&SU, Edge);
3051 Edge.setSUnit(&SU);
3052 scheduleDAG->AddPredQueued(SuccSU, Edge);
3053 --i;
3056 outer_loop_continue:;
3060 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3061 /// it as a def&use operand. Add a pseudo control edge from it to the other
3062 /// node (if it won't create a cycle) so the two-address one will be scheduled
3063 /// first (lower in the schedule). If both nodes are two-address, favor the
3064 /// one that has a CopyToReg use (more likely to be a loop induction update).
3065 /// If both are two-address, but one is commutable while the other is not
3066 /// commutable, favor the one that's not commutable.
3067 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3068 for (SUnit &SU : *SUnits) {
3069 if (!SU.isTwoAddress)
3070 continue;
3072 SDNode *Node = SU.getNode();
3073 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3074 continue;
3076 bool isLiveOut = hasOnlyLiveOutUses(&SU);
3077 unsigned Opc = Node->getMachineOpcode();
3078 const MCInstrDesc &MCID = TII->get(Opc);
3079 unsigned NumRes = MCID.getNumDefs();
3080 unsigned NumOps = MCID.getNumOperands() - NumRes;
3081 for (unsigned j = 0; j != NumOps; ++j) {
3082 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3083 continue;
3084 SDNode *DU = SU.getNode()->getOperand(j).getNode();
3085 if (DU->getNodeId() == -1)
3086 continue;
3087 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3088 if (!DUSU)
3089 continue;
3090 for (const SDep &Succ : DUSU->Succs) {
3091 if (Succ.isCtrl())
3092 continue;
3093 SUnit *SuccSU = Succ.getSUnit();
3094 if (SuccSU == &SU)
3095 continue;
3096 // Be conservative. Ignore if nodes aren't at roughly the same
3097 // depth and height.
3098 if (SuccSU->getHeight() < SU.getHeight() &&
3099 (SU.getHeight() - SuccSU->getHeight()) > 1)
3100 continue;
3101 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3102 // constrains whatever is using the copy, instead of the copy
3103 // itself. In the case that the copy is coalesced, this
3104 // preserves the intent of the pseudo two-address heurietics.
3105 while (SuccSU->Succs.size() == 1 &&
3106 SuccSU->getNode()->isMachineOpcode() &&
3107 SuccSU->getNode()->getMachineOpcode() ==
3108 TargetOpcode::COPY_TO_REGCLASS)
3109 SuccSU = SuccSU->Succs.front().getSUnit();
3110 // Don't constrain non-instruction nodes.
3111 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3112 continue;
3113 // Don't constrain nodes with physical register defs if the
3114 // predecessor can clobber them.
3115 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3116 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3117 continue;
3119 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3120 // these may be coalesced away. We want them close to their uses.
3121 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3122 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3123 SuccOpc == TargetOpcode::INSERT_SUBREG ||
3124 SuccOpc == TargetOpcode::SUBREG_TO_REG)
3125 continue;
3126 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3127 (!canClobber(SuccSU, DUSU) ||
3128 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3129 (!SU.isCommutable && SuccSU->isCommutable)) &&
3130 !scheduleDAG->IsReachable(SuccSU, &SU)) {
3131 LLVM_DEBUG(dbgs()
3132 << " Adding a pseudo-two-addr edge from SU #"
3133 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
3134 scheduleDAG->AddPredQueued(&SU, SDep(SuccSU, SDep::Artificial));
3141 //===----------------------------------------------------------------------===//
3142 // Public Constructor Functions
3143 //===----------------------------------------------------------------------===//
3145 ScheduleDAGSDNodes *llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3146 CodeGenOptLevel OptLevel) {
3147 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3148 const TargetInstrInfo *TII = STI.getInstrInfo();
3149 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3151 BURegReductionPriorityQueue *PQ =
3152 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3153 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3154 PQ->setScheduleDAG(SD);
3155 return SD;
3158 ScheduleDAGSDNodes *
3159 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3160 CodeGenOptLevel OptLevel) {
3161 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3162 const TargetInstrInfo *TII = STI.getInstrInfo();
3163 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3165 SrcRegReductionPriorityQueue *PQ =
3166 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3167 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3168 PQ->setScheduleDAG(SD);
3169 return SD;
3172 ScheduleDAGSDNodes *
3173 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3174 CodeGenOptLevel OptLevel) {
3175 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3176 const TargetInstrInfo *TII = STI.getInstrInfo();
3177 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3178 const TargetLowering *TLI = IS->TLI;
3180 HybridBURRPriorityQueue *PQ =
3181 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3183 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3184 PQ->setScheduleDAG(SD);
3185 return SD;
3188 ScheduleDAGSDNodes *llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3189 CodeGenOptLevel OptLevel) {
3190 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3191 const TargetInstrInfo *TII = STI.getInstrInfo();
3192 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3193 const TargetLowering *TLI = IS->TLI;
3195 ILPBURRPriorityQueue *PQ =
3196 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3197 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3198 PQ->setScheduleDAG(SD);
3199 return SD;