Add gfx950 mfma instructions to ROCDL dialect (#123361)
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob743ae4895a1b1c11431d1e4e7b0f4c3f992e8b47
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
41 #include "llvm/CodeGen/SDPatternMatch.h"
42 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
45 #include "llvm/CodeGen/TargetFrameLowering.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/CodeGenTypes/MachineValueType.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/Transforms/Utils/SizeOpts.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <cstdlib>
78 #include <deque>
79 #include <limits>
80 #include <optional>
81 #include <set>
82 #include <string>
83 #include <utility>
84 #include <vector>
86 using namespace llvm;
87 using namespace llvm::SDPatternMatch;
89 /// makeVTList - Return an instance of the SDVTList struct initialized with the
90 /// specified members.
91 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
92 SDVTList Res = {VTs, NumVTs};
93 return Res;
96 // Default null implementations of the callbacks.
97 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
98 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
99 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
101 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
102 void SelectionDAG::DAGNodeInsertedListener::anchor() {}
104 #define DEBUG_TYPE "selectiondag"
106 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
107 cl::Hidden, cl::init(true),
108 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
110 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
111 cl::desc("Number limit for gluing ld/st of memcpy."),
112 cl::Hidden, cl::init(0));
114 static cl::opt<unsigned>
115 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
116 cl::desc("DAG combiner limit number of steps when searching DAG "
117 "for predecessor nodes"));
119 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
120 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
123 unsigned SelectionDAG::getHasPredecessorMaxSteps() { return MaxSteps; }
125 //===----------------------------------------------------------------------===//
126 // ConstantFPSDNode Class
127 //===----------------------------------------------------------------------===//
129 /// isExactlyValue - We don't rely on operator== working on double values, as
130 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
131 /// As such, this method can be used to do an exact bit-for-bit comparison of
132 /// two floating point values.
133 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
134 return getValueAPF().bitwiseIsEqual(V);
137 bool ConstantFPSDNode::isValueValidForType(EVT VT,
138 const APFloat& Val) {
139 assert(VT.isFloatingPoint() && "Can only convert between FP types");
141 // convert modifies in place, so make a copy.
142 APFloat Val2 = APFloat(Val);
143 bool losesInfo;
144 (void)Val2.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
145 &losesInfo);
146 return !losesInfo;
149 //===----------------------------------------------------------------------===//
150 // ISD Namespace
151 //===----------------------------------------------------------------------===//
153 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
154 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
155 unsigned EltSize =
156 N->getValueType(0).getVectorElementType().getSizeInBits();
157 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
158 SplatVal = Op0->getAPIntValue().trunc(EltSize);
159 return true;
161 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
162 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
163 return true;
167 auto *BV = dyn_cast<BuildVectorSDNode>(N);
168 if (!BV)
169 return false;
171 APInt SplatUndef;
172 unsigned SplatBitSize;
173 bool HasUndefs;
174 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
175 // Endianness does not matter here. We are checking for a splat given the
176 // element size of the vector, and if we find such a splat for little endian
177 // layout, then that should be valid also for big endian (as the full vector
178 // size is known to be a multiple of the element size).
179 const bool IsBigEndian = false;
180 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
181 EltSize, IsBigEndian) &&
182 EltSize == SplatBitSize;
185 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
186 // specializations of the more general isConstantSplatVector()?
188 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
189 // Look through a bit convert.
190 while (N->getOpcode() == ISD::BITCAST)
191 N = N->getOperand(0).getNode();
193 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
194 APInt SplatVal;
195 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
198 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
200 unsigned i = 0, e = N->getNumOperands();
202 // Skip over all of the undef values.
203 while (i != e && N->getOperand(i).isUndef())
204 ++i;
206 // Do not accept an all-undef vector.
207 if (i == e) return false;
209 // Do not accept build_vectors that aren't all constants or which have non-~0
210 // elements. We have to be a bit careful here, as the type of the constant
211 // may not be the same as the type of the vector elements due to type
212 // legalization (the elements are promoted to a legal type for the target and
213 // a vector of a type may be legal when the base element type is not).
214 // We only want to check enough bits to cover the vector elements, because
215 // we care if the resultant vector is all ones, not whether the individual
216 // constants are.
217 SDValue NotZero = N->getOperand(i);
218 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
219 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
220 if (CN->getAPIntValue().countr_one() < EltSize)
221 return false;
222 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
223 if (CFPN->getValueAPF().bitcastToAPInt().countr_one() < EltSize)
224 return false;
225 } else
226 return false;
228 // Okay, we have at least one ~0 value, check to see if the rest match or are
229 // undefs. Even with the above element type twiddling, this should be OK, as
230 // the same type legalization should have applied to all the elements.
231 for (++i; i != e; ++i)
232 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
233 return false;
234 return true;
237 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
238 // Look through a bit convert.
239 while (N->getOpcode() == ISD::BITCAST)
240 N = N->getOperand(0).getNode();
242 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
243 APInt SplatVal;
244 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
247 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
249 bool IsAllUndef = true;
250 for (const SDValue &Op : N->op_values()) {
251 if (Op.isUndef())
252 continue;
253 IsAllUndef = false;
254 // Do not accept build_vectors that aren't all constants or which have non-0
255 // elements. We have to be a bit careful here, as the type of the constant
256 // may not be the same as the type of the vector elements due to type
257 // legalization (the elements are promoted to a legal type for the target
258 // and a vector of a type may be legal when the base element type is not).
259 // We only want to check enough bits to cover the vector elements, because
260 // we care if the resultant vector is all zeros, not whether the individual
261 // constants are.
262 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
263 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
264 if (CN->getAPIntValue().countr_zero() < EltSize)
265 return false;
266 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
267 if (CFPN->getValueAPF().bitcastToAPInt().countr_zero() < EltSize)
268 return false;
269 } else
270 return false;
273 // Do not accept an all-undef vector.
274 if (IsAllUndef)
275 return false;
276 return true;
279 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
280 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
283 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
284 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
287 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
288 if (N->getOpcode() != ISD::BUILD_VECTOR)
289 return false;
291 for (const SDValue &Op : N->op_values()) {
292 if (Op.isUndef())
293 continue;
294 if (!isa<ConstantSDNode>(Op))
295 return false;
297 return true;
300 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
301 if (N->getOpcode() != ISD::BUILD_VECTOR)
302 return false;
304 for (const SDValue &Op : N->op_values()) {
305 if (Op.isUndef())
306 continue;
307 if (!isa<ConstantFPSDNode>(Op))
308 return false;
310 return true;
313 bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
314 bool Signed) {
315 assert(N->getValueType(0).isVector() && "Expected a vector!");
317 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
318 if (EltSize <= NewEltSize)
319 return false;
321 if (N->getOpcode() == ISD::ZERO_EXTEND) {
322 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
323 NewEltSize) &&
324 !Signed;
326 if (N->getOpcode() == ISD::SIGN_EXTEND) {
327 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
328 NewEltSize) &&
329 Signed;
331 if (N->getOpcode() != ISD::BUILD_VECTOR)
332 return false;
334 for (const SDValue &Op : N->op_values()) {
335 if (Op.isUndef())
336 continue;
337 if (!isa<ConstantSDNode>(Op))
338 return false;
340 APInt C = Op->getAsAPIntVal().trunc(EltSize);
341 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
342 return false;
343 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
344 return false;
347 return true;
350 bool ISD::allOperandsUndef(const SDNode *N) {
351 // Return false if the node has no operands.
352 // This is "logically inconsistent" with the definition of "all" but
353 // is probably the desired behavior.
354 if (N->getNumOperands() == 0)
355 return false;
356 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
359 bool ISD::isFreezeUndef(const SDNode *N) {
360 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
363 template <typename ConstNodeType>
364 bool ISD::matchUnaryPredicateImpl(SDValue Op,
365 std::function<bool(ConstNodeType *)> Match,
366 bool AllowUndefs) {
367 // FIXME: Add support for scalar UNDEF cases?
368 if (auto *C = dyn_cast<ConstNodeType>(Op))
369 return Match(C);
371 // FIXME: Add support for vector UNDEF cases?
372 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
373 ISD::SPLAT_VECTOR != Op.getOpcode())
374 return false;
376 EVT SVT = Op.getValueType().getScalarType();
377 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
378 if (AllowUndefs && Op.getOperand(i).isUndef()) {
379 if (!Match(nullptr))
380 return false;
381 continue;
384 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
385 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
386 return false;
388 return true;
390 // Build used template types.
391 template bool ISD::matchUnaryPredicateImpl<ConstantSDNode>(
392 SDValue, std::function<bool(ConstantSDNode *)>, bool);
393 template bool ISD::matchUnaryPredicateImpl<ConstantFPSDNode>(
394 SDValue, std::function<bool(ConstantFPSDNode *)>, bool);
396 bool ISD::matchBinaryPredicate(
397 SDValue LHS, SDValue RHS,
398 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
399 bool AllowUndefs, bool AllowTypeMismatch) {
400 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
401 return false;
403 // TODO: Add support for scalar UNDEF cases?
404 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
405 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
406 return Match(LHSCst, RHSCst);
408 // TODO: Add support for vector UNDEF cases?
409 if (LHS.getOpcode() != RHS.getOpcode() ||
410 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
411 LHS.getOpcode() != ISD::SPLAT_VECTOR))
412 return false;
414 EVT SVT = LHS.getValueType().getScalarType();
415 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
416 SDValue LHSOp = LHS.getOperand(i);
417 SDValue RHSOp = RHS.getOperand(i);
418 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
419 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
420 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
421 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
422 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
423 return false;
424 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
425 LHSOp.getValueType() != RHSOp.getValueType()))
426 return false;
427 if (!Match(LHSCst, RHSCst))
428 return false;
430 return true;
433 ISD::NodeType ISD::getInverseMinMaxOpcode(unsigned MinMaxOpc) {
434 switch (MinMaxOpc) {
435 default:
436 llvm_unreachable("unrecognized opcode");
437 case ISD::UMIN:
438 return ISD::UMAX;
439 case ISD::UMAX:
440 return ISD::UMIN;
441 case ISD::SMIN:
442 return ISD::SMAX;
443 case ISD::SMAX:
444 return ISD::SMIN;
448 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
449 switch (VecReduceOpcode) {
450 default:
451 llvm_unreachable("Expected VECREDUCE opcode");
452 case ISD::VECREDUCE_FADD:
453 case ISD::VECREDUCE_SEQ_FADD:
454 case ISD::VP_REDUCE_FADD:
455 case ISD::VP_REDUCE_SEQ_FADD:
456 return ISD::FADD;
457 case ISD::VECREDUCE_FMUL:
458 case ISD::VECREDUCE_SEQ_FMUL:
459 case ISD::VP_REDUCE_FMUL:
460 case ISD::VP_REDUCE_SEQ_FMUL:
461 return ISD::FMUL;
462 case ISD::VECREDUCE_ADD:
463 case ISD::VP_REDUCE_ADD:
464 return ISD::ADD;
465 case ISD::VECREDUCE_MUL:
466 case ISD::VP_REDUCE_MUL:
467 return ISD::MUL;
468 case ISD::VECREDUCE_AND:
469 case ISD::VP_REDUCE_AND:
470 return ISD::AND;
471 case ISD::VECREDUCE_OR:
472 case ISD::VP_REDUCE_OR:
473 return ISD::OR;
474 case ISD::VECREDUCE_XOR:
475 case ISD::VP_REDUCE_XOR:
476 return ISD::XOR;
477 case ISD::VECREDUCE_SMAX:
478 case ISD::VP_REDUCE_SMAX:
479 return ISD::SMAX;
480 case ISD::VECREDUCE_SMIN:
481 case ISD::VP_REDUCE_SMIN:
482 return ISD::SMIN;
483 case ISD::VECREDUCE_UMAX:
484 case ISD::VP_REDUCE_UMAX:
485 return ISD::UMAX;
486 case ISD::VECREDUCE_UMIN:
487 case ISD::VP_REDUCE_UMIN:
488 return ISD::UMIN;
489 case ISD::VECREDUCE_FMAX:
490 case ISD::VP_REDUCE_FMAX:
491 return ISD::FMAXNUM;
492 case ISD::VECREDUCE_FMIN:
493 case ISD::VP_REDUCE_FMIN:
494 return ISD::FMINNUM;
495 case ISD::VECREDUCE_FMAXIMUM:
496 case ISD::VP_REDUCE_FMAXIMUM:
497 return ISD::FMAXIMUM;
498 case ISD::VECREDUCE_FMINIMUM:
499 case ISD::VP_REDUCE_FMINIMUM:
500 return ISD::FMINIMUM;
504 bool ISD::isVPOpcode(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 return false;
508 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
509 case ISD::VPSD: \
510 return true;
511 #include "llvm/IR/VPIntrinsics.def"
515 bool ISD::isVPBinaryOp(unsigned Opcode) {
516 switch (Opcode) {
517 default:
518 break;
519 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
520 #define VP_PROPERTY_BINARYOP return true;
521 #define END_REGISTER_VP_SDNODE(VPSD) break;
522 #include "llvm/IR/VPIntrinsics.def"
524 return false;
527 bool ISD::isVPReduction(unsigned Opcode) {
528 switch (Opcode) {
529 default:
530 return false;
531 case ISD::VP_REDUCE_ADD:
532 case ISD::VP_REDUCE_MUL:
533 case ISD::VP_REDUCE_AND:
534 case ISD::VP_REDUCE_OR:
535 case ISD::VP_REDUCE_XOR:
536 case ISD::VP_REDUCE_SMAX:
537 case ISD::VP_REDUCE_SMIN:
538 case ISD::VP_REDUCE_UMAX:
539 case ISD::VP_REDUCE_UMIN:
540 case ISD::VP_REDUCE_FMAX:
541 case ISD::VP_REDUCE_FMIN:
542 case ISD::VP_REDUCE_FMAXIMUM:
543 case ISD::VP_REDUCE_FMINIMUM:
544 case ISD::VP_REDUCE_FADD:
545 case ISD::VP_REDUCE_FMUL:
546 case ISD::VP_REDUCE_SEQ_FADD:
547 case ISD::VP_REDUCE_SEQ_FMUL:
548 return true;
552 /// The operand position of the vector mask.
553 std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
554 switch (Opcode) {
555 default:
556 return std::nullopt;
557 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
558 case ISD::VPSD: \
559 return MASKPOS;
560 #include "llvm/IR/VPIntrinsics.def"
564 /// The operand position of the explicit vector length parameter.
565 std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
566 switch (Opcode) {
567 default:
568 return std::nullopt;
569 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
570 case ISD::VPSD: \
571 return EVLPOS;
572 #include "llvm/IR/VPIntrinsics.def"
576 std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
577 bool hasFPExcept) {
578 // FIXME: Return strict opcodes in case of fp exceptions.
579 switch (VPOpcode) {
580 default:
581 return std::nullopt;
582 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
583 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
584 #define END_REGISTER_VP_SDNODE(VPOPC) break;
585 #include "llvm/IR/VPIntrinsics.def"
587 return std::nullopt;
590 std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
591 switch (Opcode) {
592 default:
593 return std::nullopt;
594 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
595 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
596 #define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
597 #include "llvm/IR/VPIntrinsics.def"
601 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
602 switch (ExtType) {
603 case ISD::EXTLOAD:
604 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
605 case ISD::SEXTLOAD:
606 return ISD::SIGN_EXTEND;
607 case ISD::ZEXTLOAD:
608 return ISD::ZERO_EXTEND;
609 default:
610 break;
613 llvm_unreachable("Invalid LoadExtType");
616 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
617 // To perform this operation, we just need to swap the L and G bits of the
618 // operation.
619 unsigned OldL = (Operation >> 2) & 1;
620 unsigned OldG = (Operation >> 1) & 1;
621 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
622 (OldL << 1) | // New G bit
623 (OldG << 2)); // New L bit.
626 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
627 unsigned Operation = Op;
628 if (isIntegerLike)
629 Operation ^= 7; // Flip L, G, E bits, but not U.
630 else
631 Operation ^= 15; // Flip all of the condition bits.
633 if (Operation > ISD::SETTRUE2)
634 Operation &= ~8; // Don't let N and U bits get set.
636 return ISD::CondCode(Operation);
639 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
640 return getSetCCInverseImpl(Op, Type.isInteger());
643 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
644 bool isIntegerLike) {
645 return getSetCCInverseImpl(Op, isIntegerLike);
648 /// For an integer comparison, return 1 if the comparison is a signed operation
649 /// and 2 if the result is an unsigned comparison. Return zero if the operation
650 /// does not depend on the sign of the input (setne and seteq).
651 static int isSignedOp(ISD::CondCode Opcode) {
652 switch (Opcode) {
653 default: llvm_unreachable("Illegal integer setcc operation!");
654 case ISD::SETEQ:
655 case ISD::SETNE: return 0;
656 case ISD::SETLT:
657 case ISD::SETLE:
658 case ISD::SETGT:
659 case ISD::SETGE: return 1;
660 case ISD::SETULT:
661 case ISD::SETULE:
662 case ISD::SETUGT:
663 case ISD::SETUGE: return 2;
667 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
668 EVT Type) {
669 bool IsInteger = Type.isInteger();
670 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
671 // Cannot fold a signed integer setcc with an unsigned integer setcc.
672 return ISD::SETCC_INVALID;
674 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
676 // If the N and U bits get set, then the resultant comparison DOES suddenly
677 // care about orderedness, and it is true when ordered.
678 if (Op > ISD::SETTRUE2)
679 Op &= ~16; // Clear the U bit if the N bit is set.
681 // Canonicalize illegal integer setcc's.
682 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
683 Op = ISD::SETNE;
685 return ISD::CondCode(Op);
688 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
689 EVT Type) {
690 bool IsInteger = Type.isInteger();
691 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
692 // Cannot fold a signed setcc with an unsigned setcc.
693 return ISD::SETCC_INVALID;
695 // Combine all of the condition bits.
696 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
698 // Canonicalize illegal integer setcc's.
699 if (IsInteger) {
700 switch (Result) {
701 default: break;
702 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
703 case ISD::SETOEQ: // SETEQ & SETU[LG]E
704 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
705 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
706 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
710 return Result;
713 //===----------------------------------------------------------------------===//
714 // SDNode Profile Support
715 //===----------------------------------------------------------------------===//
717 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
718 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
719 ID.AddInteger(OpC);
722 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
723 /// solely with their pointer.
724 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
725 ID.AddPointer(VTList.VTs);
728 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 static void AddNodeIDOperands(FoldingSetNodeID &ID,
730 ArrayRef<SDValue> Ops) {
731 for (const auto &Op : Ops) {
732 ID.AddPointer(Op.getNode());
733 ID.AddInteger(Op.getResNo());
737 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
738 static void AddNodeIDOperands(FoldingSetNodeID &ID,
739 ArrayRef<SDUse> Ops) {
740 for (const auto &Op : Ops) {
741 ID.AddPointer(Op.getNode());
742 ID.AddInteger(Op.getResNo());
746 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
747 SDVTList VTList, ArrayRef<SDValue> OpList) {
748 AddNodeIDOpcode(ID, OpC);
749 AddNodeIDValueTypes(ID, VTList);
750 AddNodeIDOperands(ID, OpList);
753 /// If this is an SDNode with special info, add this info to the NodeID data.
754 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
755 switch (N->getOpcode()) {
756 case ISD::TargetExternalSymbol:
757 case ISD::ExternalSymbol:
758 case ISD::MCSymbol:
759 llvm_unreachable("Should only be used on nodes with operands");
760 default: break; // Normal nodes don't need extra info.
761 case ISD::TargetConstant:
762 case ISD::Constant: {
763 const ConstantSDNode *C = cast<ConstantSDNode>(N);
764 ID.AddPointer(C->getConstantIntValue());
765 ID.AddBoolean(C->isOpaque());
766 break;
768 case ISD::TargetConstantFP:
769 case ISD::ConstantFP:
770 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
771 break;
772 case ISD::TargetGlobalAddress:
773 case ISD::GlobalAddress:
774 case ISD::TargetGlobalTLSAddress:
775 case ISD::GlobalTLSAddress: {
776 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
777 ID.AddPointer(GA->getGlobal());
778 ID.AddInteger(GA->getOffset());
779 ID.AddInteger(GA->getTargetFlags());
780 break;
782 case ISD::BasicBlock:
783 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
784 break;
785 case ISD::Register:
786 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
787 break;
788 case ISD::RegisterMask:
789 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
790 break;
791 case ISD::SRCVALUE:
792 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
793 break;
794 case ISD::FrameIndex:
795 case ISD::TargetFrameIndex:
796 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
797 break;
798 case ISD::LIFETIME_START:
799 case ISD::LIFETIME_END:
800 if (cast<LifetimeSDNode>(N)->hasOffset()) {
801 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
802 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
804 break;
805 case ISD::PSEUDO_PROBE:
806 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
807 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
808 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
809 break;
810 case ISD::JumpTable:
811 case ISD::TargetJumpTable:
812 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
813 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
814 break;
815 case ISD::ConstantPool:
816 case ISD::TargetConstantPool: {
817 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
818 ID.AddInteger(CP->getAlign().value());
819 ID.AddInteger(CP->getOffset());
820 if (CP->isMachineConstantPoolEntry())
821 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
822 else
823 ID.AddPointer(CP->getConstVal());
824 ID.AddInteger(CP->getTargetFlags());
825 break;
827 case ISD::TargetIndex: {
828 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
829 ID.AddInteger(TI->getIndex());
830 ID.AddInteger(TI->getOffset());
831 ID.AddInteger(TI->getTargetFlags());
832 break;
834 case ISD::LOAD: {
835 const LoadSDNode *LD = cast<LoadSDNode>(N);
836 ID.AddInteger(LD->getMemoryVT().getRawBits());
837 ID.AddInteger(LD->getRawSubclassData());
838 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
839 ID.AddInteger(LD->getMemOperand()->getFlags());
840 break;
842 case ISD::STORE: {
843 const StoreSDNode *ST = cast<StoreSDNode>(N);
844 ID.AddInteger(ST->getMemoryVT().getRawBits());
845 ID.AddInteger(ST->getRawSubclassData());
846 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
847 ID.AddInteger(ST->getMemOperand()->getFlags());
848 break;
850 case ISD::VP_LOAD: {
851 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
852 ID.AddInteger(ELD->getMemoryVT().getRawBits());
853 ID.AddInteger(ELD->getRawSubclassData());
854 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
855 ID.AddInteger(ELD->getMemOperand()->getFlags());
856 break;
858 case ISD::VP_STORE: {
859 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
860 ID.AddInteger(EST->getMemoryVT().getRawBits());
861 ID.AddInteger(EST->getRawSubclassData());
862 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
863 ID.AddInteger(EST->getMemOperand()->getFlags());
864 break;
866 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
867 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
868 ID.AddInteger(SLD->getMemoryVT().getRawBits());
869 ID.AddInteger(SLD->getRawSubclassData());
870 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
871 break;
873 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
874 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
875 ID.AddInteger(SST->getMemoryVT().getRawBits());
876 ID.AddInteger(SST->getRawSubclassData());
877 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
878 break;
880 case ISD::VP_GATHER: {
881 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
882 ID.AddInteger(EG->getMemoryVT().getRawBits());
883 ID.AddInteger(EG->getRawSubclassData());
884 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
885 ID.AddInteger(EG->getMemOperand()->getFlags());
886 break;
888 case ISD::VP_SCATTER: {
889 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
890 ID.AddInteger(ES->getMemoryVT().getRawBits());
891 ID.AddInteger(ES->getRawSubclassData());
892 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
893 ID.AddInteger(ES->getMemOperand()->getFlags());
894 break;
896 case ISD::MLOAD: {
897 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
898 ID.AddInteger(MLD->getMemoryVT().getRawBits());
899 ID.AddInteger(MLD->getRawSubclassData());
900 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
901 ID.AddInteger(MLD->getMemOperand()->getFlags());
902 break;
904 case ISD::MSTORE: {
905 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
906 ID.AddInteger(MST->getMemoryVT().getRawBits());
907 ID.AddInteger(MST->getRawSubclassData());
908 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
909 ID.AddInteger(MST->getMemOperand()->getFlags());
910 break;
912 case ISD::MGATHER: {
913 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
914 ID.AddInteger(MG->getMemoryVT().getRawBits());
915 ID.AddInteger(MG->getRawSubclassData());
916 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
917 ID.AddInteger(MG->getMemOperand()->getFlags());
918 break;
920 case ISD::MSCATTER: {
921 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
922 ID.AddInteger(MS->getMemoryVT().getRawBits());
923 ID.AddInteger(MS->getRawSubclassData());
924 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
925 ID.AddInteger(MS->getMemOperand()->getFlags());
926 break;
928 case ISD::ATOMIC_CMP_SWAP:
929 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
930 case ISD::ATOMIC_SWAP:
931 case ISD::ATOMIC_LOAD_ADD:
932 case ISD::ATOMIC_LOAD_SUB:
933 case ISD::ATOMIC_LOAD_AND:
934 case ISD::ATOMIC_LOAD_CLR:
935 case ISD::ATOMIC_LOAD_OR:
936 case ISD::ATOMIC_LOAD_XOR:
937 case ISD::ATOMIC_LOAD_NAND:
938 case ISD::ATOMIC_LOAD_MIN:
939 case ISD::ATOMIC_LOAD_MAX:
940 case ISD::ATOMIC_LOAD_UMIN:
941 case ISD::ATOMIC_LOAD_UMAX:
942 case ISD::ATOMIC_LOAD:
943 case ISD::ATOMIC_STORE: {
944 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
945 ID.AddInteger(AT->getMemoryVT().getRawBits());
946 ID.AddInteger(AT->getRawSubclassData());
947 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
948 ID.AddInteger(AT->getMemOperand()->getFlags());
949 break;
951 case ISD::VECTOR_SHUFFLE: {
952 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
953 for (int M : Mask)
954 ID.AddInteger(M);
955 break;
957 case ISD::ADDRSPACECAST: {
958 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(N);
959 ID.AddInteger(ASC->getSrcAddressSpace());
960 ID.AddInteger(ASC->getDestAddressSpace());
961 break;
963 case ISD::TargetBlockAddress:
964 case ISD::BlockAddress: {
965 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
966 ID.AddPointer(BA->getBlockAddress());
967 ID.AddInteger(BA->getOffset());
968 ID.AddInteger(BA->getTargetFlags());
969 break;
971 case ISD::AssertAlign:
972 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
973 break;
974 case ISD::PREFETCH:
975 case ISD::INTRINSIC_VOID:
976 case ISD::INTRINSIC_W_CHAIN:
977 // Handled by MemIntrinsicSDNode check after the switch.
978 break;
979 } // end switch (N->getOpcode())
981 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
982 // to check.
983 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
984 ID.AddInteger(MN->getRawSubclassData());
985 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
986 ID.AddInteger(MN->getMemOperand()->getFlags());
987 ID.AddInteger(MN->getMemoryVT().getRawBits());
991 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
992 /// data.
993 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
994 AddNodeIDOpcode(ID, N->getOpcode());
995 // Add the return value info.
996 AddNodeIDValueTypes(ID, N->getVTList());
997 // Add the operand info.
998 AddNodeIDOperands(ID, N->ops());
1000 // Handle SDNode leafs with special info.
1001 AddNodeIDCustom(ID, N);
1004 //===----------------------------------------------------------------------===//
1005 // SelectionDAG Class
1006 //===----------------------------------------------------------------------===//
1008 /// doNotCSE - Return true if CSE should not be performed for this node.
1009 static bool doNotCSE(SDNode *N) {
1010 if (N->getValueType(0) == MVT::Glue)
1011 return true; // Never CSE anything that produces a glue result.
1013 switch (N->getOpcode()) {
1014 default: break;
1015 case ISD::HANDLENODE:
1016 case ISD::EH_LABEL:
1017 return true; // Never CSE these nodes.
1020 // Check that remaining values produced are not flags.
1021 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1022 if (N->getValueType(i) == MVT::Glue)
1023 return true; // Never CSE anything that produces a glue result.
1025 return false;
1028 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
1029 /// SelectionDAG.
1030 void SelectionDAG::RemoveDeadNodes() {
1031 // Create a dummy node (which is not added to allnodes), that adds a reference
1032 // to the root node, preventing it from being deleted.
1033 HandleSDNode Dummy(getRoot());
1035 SmallVector<SDNode*, 128> DeadNodes;
1037 // Add all obviously-dead nodes to the DeadNodes worklist.
1038 for (SDNode &Node : allnodes())
1039 if (Node.use_empty())
1040 DeadNodes.push_back(&Node);
1042 RemoveDeadNodes(DeadNodes);
1044 // If the root changed (e.g. it was a dead load, update the root).
1045 setRoot(Dummy.getValue());
1048 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
1049 /// given list, and any nodes that become unreachable as a result.
1050 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
1052 // Process the worklist, deleting the nodes and adding their uses to the
1053 // worklist.
1054 while (!DeadNodes.empty()) {
1055 SDNode *N = DeadNodes.pop_back_val();
1056 // Skip to next node if we've already managed to delete the node. This could
1057 // happen if replacing a node causes a node previously added to the node to
1058 // be deleted.
1059 if (N->getOpcode() == ISD::DELETED_NODE)
1060 continue;
1062 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1063 DUL->NodeDeleted(N, nullptr);
1065 // Take the node out of the appropriate CSE map.
1066 RemoveNodeFromCSEMaps(N);
1068 // Next, brutally remove the operand list. This is safe to do, as there are
1069 // no cycles in the graph.
1070 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1071 SDUse &Use = *I++;
1072 SDNode *Operand = Use.getNode();
1073 Use.set(SDValue());
1075 // Now that we removed this operand, see if there are no uses of it left.
1076 if (Operand->use_empty())
1077 DeadNodes.push_back(Operand);
1080 DeallocateNode(N);
1084 void SelectionDAG::RemoveDeadNode(SDNode *N){
1085 SmallVector<SDNode*, 16> DeadNodes(1, N);
1087 // Create a dummy node that adds a reference to the root node, preventing
1088 // it from being deleted. (This matters if the root is an operand of the
1089 // dead node.)
1090 HandleSDNode Dummy(getRoot());
1092 RemoveDeadNodes(DeadNodes);
1095 void SelectionDAG::DeleteNode(SDNode *N) {
1096 // First take this out of the appropriate CSE map.
1097 RemoveNodeFromCSEMaps(N);
1099 // Finally, remove uses due to operands of this node, remove from the
1100 // AllNodes list, and delete the node.
1101 DeleteNodeNotInCSEMaps(N);
1104 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1105 assert(N->getIterator() != AllNodes.begin() &&
1106 "Cannot delete the entry node!");
1107 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1109 // Drop all of the operands and decrement used node's use counts.
1110 N->DropOperands();
1112 DeallocateNode(N);
1115 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1116 assert(!(V->isVariadic() && isParameter));
1117 if (isParameter)
1118 ByvalParmDbgValues.push_back(V);
1119 else
1120 DbgValues.push_back(V);
1121 for (const SDNode *Node : V->getSDNodes())
1122 if (Node)
1123 DbgValMap[Node].push_back(V);
1126 void SDDbgInfo::erase(const SDNode *Node) {
1127 DbgValMapType::iterator I = DbgValMap.find(Node);
1128 if (I == DbgValMap.end())
1129 return;
1130 for (auto &Val: I->second)
1131 Val->setIsInvalidated();
1132 DbgValMap.erase(I);
1135 void SelectionDAG::DeallocateNode(SDNode *N) {
1136 // If we have operands, deallocate them.
1137 removeOperands(N);
1139 NodeAllocator.Deallocate(AllNodes.remove(N));
1141 // Set the opcode to DELETED_NODE to help catch bugs when node
1142 // memory is reallocated.
1143 // FIXME: There are places in SDag that have grown a dependency on the opcode
1144 // value in the released node.
1145 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1146 N->NodeType = ISD::DELETED_NODE;
1148 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1149 // them and forget about that node.
1150 DbgInfo->erase(N);
1152 // Invalidate extra info.
1153 SDEI.erase(N);
1156 #ifndef NDEBUG
1157 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1158 static void VerifySDNode(SDNode *N, const TargetLowering *TLI) {
1159 switch (N->getOpcode()) {
1160 default:
1161 if (N->getOpcode() > ISD::BUILTIN_OP_END)
1162 TLI->verifyTargetSDNode(N);
1163 break;
1164 case ISD::BUILD_PAIR: {
1165 EVT VT = N->getValueType(0);
1166 assert(N->getNumValues() == 1 && "Too many results!");
1167 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1168 "Wrong return type!");
1169 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1170 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1171 "Mismatched operand types!");
1172 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1173 "Wrong operand type!");
1174 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1175 "Wrong return type size");
1176 break;
1178 case ISD::BUILD_VECTOR: {
1179 assert(N->getNumValues() == 1 && "Too many results!");
1180 assert(N->getValueType(0).isVector() && "Wrong return type!");
1181 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1182 "Wrong number of operands!");
1183 EVT EltVT = N->getValueType(0).getVectorElementType();
1184 for (const SDUse &Op : N->ops()) {
1185 assert((Op.getValueType() == EltVT ||
1186 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1187 EltVT.bitsLE(Op.getValueType()))) &&
1188 "Wrong operand type!");
1189 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1190 "Operands must all have the same type");
1192 break;
1196 #endif // NDEBUG
1198 /// Insert a newly allocated node into the DAG.
1200 /// Handles insertion into the all nodes list and CSE map, as well as
1201 /// verification and other common operations when a new node is allocated.
1202 void SelectionDAG::InsertNode(SDNode *N) {
1203 AllNodes.push_back(N);
1204 #ifndef NDEBUG
1205 N->PersistentId = NextPersistentId++;
1206 VerifySDNode(N, TLI);
1207 #endif
1208 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1209 DUL->NodeInserted(N);
1212 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1213 /// correspond to it. This is useful when we're about to delete or repurpose
1214 /// the node. We don't want future request for structurally identical nodes
1215 /// to return N anymore.
1216 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1217 bool Erased = false;
1218 switch (N->getOpcode()) {
1219 case ISD::HANDLENODE: return false; // noop.
1220 case ISD::CONDCODE:
1221 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1222 "Cond code doesn't exist!");
1223 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1224 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1225 break;
1226 case ISD::ExternalSymbol:
1227 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1228 break;
1229 case ISD::TargetExternalSymbol: {
1230 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1231 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1232 ESN->getSymbol(), ESN->getTargetFlags()));
1233 break;
1235 case ISD::MCSymbol: {
1236 auto *MCSN = cast<MCSymbolSDNode>(N);
1237 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1238 break;
1240 case ISD::VALUETYPE: {
1241 EVT VT = cast<VTSDNode>(N)->getVT();
1242 if (VT.isExtended()) {
1243 Erased = ExtendedValueTypeNodes.erase(VT);
1244 } else {
1245 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1246 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1248 break;
1250 default:
1251 // Remove it from the CSE Map.
1252 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1253 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1254 Erased = CSEMap.RemoveNode(N);
1255 break;
1257 #ifndef NDEBUG
1258 // Verify that the node was actually in one of the CSE maps, unless it has a
1259 // glue result (which cannot be CSE'd) or is one of the special cases that are
1260 // not subject to CSE.
1261 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1262 !N->isMachineOpcode() && !doNotCSE(N)) {
1263 N->dump(this);
1264 dbgs() << "\n";
1265 llvm_unreachable("Node is not in map!");
1267 #endif
1268 return Erased;
1271 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1272 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1273 /// node already exists, in which case transfer all its users to the existing
1274 /// node. This transfer can potentially trigger recursive merging.
1275 void
1276 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1277 // For node types that aren't CSE'd, just act as if no identical node
1278 // already exists.
1279 if (!doNotCSE(N)) {
1280 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1281 if (Existing != N) {
1282 // If there was already an existing matching node, use ReplaceAllUsesWith
1283 // to replace the dead one with the existing one. This can cause
1284 // recursive merging of other unrelated nodes down the line.
1285 Existing->intersectFlagsWith(N->getFlags());
1286 ReplaceAllUsesWith(N, Existing);
1288 // N is now dead. Inform the listeners and delete it.
1289 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1290 DUL->NodeDeleted(N, Existing);
1291 DeleteNodeNotInCSEMaps(N);
1292 return;
1296 // If the node doesn't already exist, we updated it. Inform listeners.
1297 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1298 DUL->NodeUpdated(N);
1301 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1302 /// were replaced with those specified. If this node is never memoized,
1303 /// return null, otherwise return a pointer to the slot it would take. If a
1304 /// node already exists with these operands, the slot will be non-null.
1305 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1306 void *&InsertPos) {
1307 if (doNotCSE(N))
1308 return nullptr;
1310 SDValue Ops[] = { Op };
1311 FoldingSetNodeID ID;
1312 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1313 AddNodeIDCustom(ID, N);
1314 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1315 if (Node)
1316 Node->intersectFlagsWith(N->getFlags());
1317 return Node;
1320 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1321 /// were replaced with those specified. If this node is never memoized,
1322 /// return null, otherwise return a pointer to the slot it would take. If a
1323 /// node already exists with these operands, the slot will be non-null.
1324 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1325 SDValue Op1, SDValue Op2,
1326 void *&InsertPos) {
1327 if (doNotCSE(N))
1328 return nullptr;
1330 SDValue Ops[] = { Op1, Op2 };
1331 FoldingSetNodeID ID;
1332 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1333 AddNodeIDCustom(ID, N);
1334 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1335 if (Node)
1336 Node->intersectFlagsWith(N->getFlags());
1337 return Node;
1340 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1341 /// were replaced with those specified. If this node is never memoized,
1342 /// return null, otherwise return a pointer to the slot it would take. If a
1343 /// node already exists with these operands, the slot will be non-null.
1344 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1345 void *&InsertPos) {
1346 if (doNotCSE(N))
1347 return nullptr;
1349 FoldingSetNodeID ID;
1350 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1351 AddNodeIDCustom(ID, N);
1352 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1353 if (Node)
1354 Node->intersectFlagsWith(N->getFlags());
1355 return Node;
1358 Align SelectionDAG::getEVTAlign(EVT VT) const {
1359 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1360 : VT.getTypeForEVT(*getContext());
1362 return getDataLayout().getABITypeAlign(Ty);
1365 // EntryNode could meaningfully have debug info if we can find it...
1366 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOptLevel OL)
1367 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1368 getVTList(MVT::Other, MVT::Glue)),
1369 Root(getEntryNode()) {
1370 InsertNode(&EntryNode);
1371 DbgInfo = new SDDbgInfo();
1374 void SelectionDAG::init(MachineFunction &NewMF,
1375 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1376 const TargetLibraryInfo *LibraryInfo,
1377 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1378 BlockFrequencyInfo *BFIin, MachineModuleInfo &MMIin,
1379 FunctionVarLocs const *VarLocs) {
1380 MF = &NewMF;
1381 SDAGISelPass = PassPtr;
1382 ORE = &NewORE;
1383 TLI = getSubtarget().getTargetLowering();
1384 TSI = getSubtarget().getSelectionDAGInfo();
1385 LibInfo = LibraryInfo;
1386 Context = &MF->getFunction().getContext();
1387 UA = NewUA;
1388 PSI = PSIin;
1389 BFI = BFIin;
1390 MMI = &MMIin;
1391 FnVarLocs = VarLocs;
1394 SelectionDAG::~SelectionDAG() {
1395 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1396 allnodes_clear();
1397 OperandRecycler.clear(OperandAllocator);
1398 delete DbgInfo;
1401 bool SelectionDAG::shouldOptForSize() const {
1402 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1405 void SelectionDAG::allnodes_clear() {
1406 assert(&*AllNodes.begin() == &EntryNode);
1407 AllNodes.remove(AllNodes.begin());
1408 while (!AllNodes.empty())
1409 DeallocateNode(&AllNodes.front());
1410 #ifndef NDEBUG
1411 NextPersistentId = 0;
1412 #endif
1415 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1416 void *&InsertPos) {
1417 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1418 if (N) {
1419 switch (N->getOpcode()) {
1420 default: break;
1421 case ISD::Constant:
1422 case ISD::ConstantFP:
1423 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1424 "debug location. Use another overload.");
1427 return N;
1430 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1431 const SDLoc &DL, void *&InsertPos) {
1432 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1433 if (N) {
1434 switch (N->getOpcode()) {
1435 case ISD::Constant:
1436 case ISD::ConstantFP:
1437 // Erase debug location from the node if the node is used at several
1438 // different places. Do not propagate one location to all uses as it
1439 // will cause a worse single stepping debugging experience.
1440 if (N->getDebugLoc() != DL.getDebugLoc())
1441 N->setDebugLoc(DebugLoc());
1442 break;
1443 default:
1444 // When the node's point of use is located earlier in the instruction
1445 // sequence than its prior point of use, update its debug info to the
1446 // earlier location.
1447 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1448 N->setDebugLoc(DL.getDebugLoc());
1449 break;
1452 return N;
1455 void SelectionDAG::clear() {
1456 allnodes_clear();
1457 OperandRecycler.clear(OperandAllocator);
1458 OperandAllocator.Reset();
1459 CSEMap.clear();
1461 ExtendedValueTypeNodes.clear();
1462 ExternalSymbols.clear();
1463 TargetExternalSymbols.clear();
1464 MCSymbols.clear();
1465 SDEI.clear();
1466 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), nullptr);
1467 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), nullptr);
1469 EntryNode.UseList = nullptr;
1470 InsertNode(&EntryNode);
1471 Root = getEntryNode();
1472 DbgInfo->clear();
1475 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1476 return VT.bitsGT(Op.getValueType())
1477 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1478 : getNode(ISD::FP_ROUND, DL, VT, Op,
1479 getIntPtrConstant(0, DL, /*isTarget=*/true));
1482 std::pair<SDValue, SDValue>
1483 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1484 const SDLoc &DL, EVT VT) {
1485 assert(!VT.bitsEq(Op.getValueType()) &&
1486 "Strict no-op FP extend/round not allowed.");
1487 SDValue Res =
1488 VT.bitsGT(Op.getValueType())
1489 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1490 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1491 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1493 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1496 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1497 return VT.bitsGT(Op.getValueType()) ?
1498 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1499 getNode(ISD::TRUNCATE, DL, VT, Op);
1502 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1503 return VT.bitsGT(Op.getValueType()) ?
1504 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1505 getNode(ISD::TRUNCATE, DL, VT, Op);
1508 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1509 return VT.bitsGT(Op.getValueType()) ?
1510 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1511 getNode(ISD::TRUNCATE, DL, VT, Op);
1514 SDValue SelectionDAG::getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL,
1515 EVT VT) {
1516 assert(!VT.isVector());
1517 auto Type = Op.getValueType();
1518 SDValue DestOp;
1519 if (Type == VT)
1520 return Op;
1521 auto Size = Op.getValueSizeInBits();
1522 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1523 if (DestOp.getValueType() == VT)
1524 return DestOp;
1526 return getAnyExtOrTrunc(DestOp, DL, VT);
1529 SDValue SelectionDAG::getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL,
1530 EVT VT) {
1531 assert(!VT.isVector());
1532 auto Type = Op.getValueType();
1533 SDValue DestOp;
1534 if (Type == VT)
1535 return Op;
1536 auto Size = Op.getValueSizeInBits();
1537 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1538 if (DestOp.getValueType() == VT)
1539 return DestOp;
1541 return getSExtOrTrunc(DestOp, DL, VT);
1544 SDValue SelectionDAG::getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL,
1545 EVT VT) {
1546 assert(!VT.isVector());
1547 auto Type = Op.getValueType();
1548 SDValue DestOp;
1549 if (Type == VT)
1550 return Op;
1551 auto Size = Op.getValueSizeInBits();
1552 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1553 if (DestOp.getValueType() == VT)
1554 return DestOp;
1556 return getZExtOrTrunc(DestOp, DL, VT);
1559 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1560 EVT OpVT) {
1561 if (VT.bitsLE(Op.getValueType()))
1562 return getNode(ISD::TRUNCATE, SL, VT, Op);
1564 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1565 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1568 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1569 EVT OpVT = Op.getValueType();
1570 assert(VT.isInteger() && OpVT.isInteger() &&
1571 "Cannot getZeroExtendInReg FP types");
1572 assert(VT.isVector() == OpVT.isVector() &&
1573 "getZeroExtendInReg type should be vector iff the operand "
1574 "type is vector!");
1575 assert((!VT.isVector() ||
1576 VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1577 "Vector element counts must match in getZeroExtendInReg");
1578 assert(VT.bitsLE(OpVT) && "Not extending!");
1579 if (OpVT == VT)
1580 return Op;
1581 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1582 VT.getScalarSizeInBits());
1583 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1586 SDValue SelectionDAG::getVPZeroExtendInReg(SDValue Op, SDValue Mask,
1587 SDValue EVL, const SDLoc &DL,
1588 EVT VT) {
1589 EVT OpVT = Op.getValueType();
1590 assert(VT.isInteger() && OpVT.isInteger() &&
1591 "Cannot getVPZeroExtendInReg FP types");
1592 assert(VT.isVector() && OpVT.isVector() &&
1593 "getVPZeroExtendInReg type and operand type should be vector!");
1594 assert(VT.getVectorElementCount() == OpVT.getVectorElementCount() &&
1595 "Vector element counts must match in getZeroExtendInReg");
1596 assert(VT.bitsLE(OpVT) && "Not extending!");
1597 if (OpVT == VT)
1598 return Op;
1599 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1600 VT.getScalarSizeInBits());
1601 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1602 EVL);
1605 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1606 // Only unsigned pointer semantics are supported right now. In the future this
1607 // might delegate to TLI to check pointer signedness.
1608 return getZExtOrTrunc(Op, DL, VT);
1611 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1612 // Only unsigned pointer semantics are supported right now. In the future this
1613 // might delegate to TLI to check pointer signedness.
1614 return getZeroExtendInReg(Op, DL, VT);
1617 SDValue SelectionDAG::getNegative(SDValue Val, const SDLoc &DL, EVT VT) {
1618 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1621 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1622 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1623 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1626 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1627 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1628 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1631 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1632 SDValue Mask, SDValue EVL, EVT VT) {
1633 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1634 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1637 SDValue SelectionDAG::getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1638 SDValue Mask, SDValue EVL) {
1639 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1642 SDValue SelectionDAG::getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1643 SDValue Mask, SDValue EVL) {
1644 if (VT.bitsGT(Op.getValueType()))
1645 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1646 if (VT.bitsLT(Op.getValueType()))
1647 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1648 return Op;
1651 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1652 EVT OpVT) {
1653 if (!V)
1654 return getConstant(0, DL, VT);
1656 switch (TLI->getBooleanContents(OpVT)) {
1657 case TargetLowering::ZeroOrOneBooleanContent:
1658 case TargetLowering::UndefinedBooleanContent:
1659 return getConstant(1, DL, VT);
1660 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1661 return getAllOnesConstant(DL, VT);
1663 llvm_unreachable("Unexpected boolean content enum!");
1666 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1667 bool isT, bool isO) {
1668 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1669 DL, VT, isT, isO);
1672 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1673 bool isT, bool isO) {
1674 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1677 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1678 EVT VT, bool isT, bool isO) {
1679 assert(VT.isInteger() && "Cannot create FP integer constant!");
1681 EVT EltVT = VT.getScalarType();
1682 const ConstantInt *Elt = &Val;
1684 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1685 // to-be-splatted scalar ConstantInt.
1686 if (isa<VectorType>(Elt->getType()))
1687 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1689 // In some cases the vector type is legal but the element type is illegal and
1690 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1691 // inserted value (the type does not need to match the vector element type).
1692 // Any extra bits introduced will be truncated away.
1693 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1694 TargetLowering::TypePromoteInteger) {
1695 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1696 APInt NewVal;
1697 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1698 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1699 else
1700 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1701 Elt = ConstantInt::get(*getContext(), NewVal);
1703 // In other cases the element type is illegal and needs to be expanded, for
1704 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1705 // the value into n parts and use a vector type with n-times the elements.
1706 // Then bitcast to the type requested.
1707 // Legalizing constants too early makes the DAGCombiner's job harder so we
1708 // only legalize if the DAG tells us we must produce legal types.
1709 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1710 TLI->getTypeAction(*getContext(), EltVT) ==
1711 TargetLowering::TypeExpandInteger) {
1712 const APInt &NewVal = Elt->getValue();
1713 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1714 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1716 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1717 if (VT.isScalableVector() ||
1718 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1719 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1720 "Can only handle an even split!");
1721 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1723 SmallVector<SDValue, 2> ScalarParts;
1724 for (unsigned i = 0; i != Parts; ++i)
1725 ScalarParts.push_back(getConstant(
1726 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1727 ViaEltVT, isT, isO));
1729 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1732 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1733 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1735 // Check the temporary vector is the correct size. If this fails then
1736 // getTypeToTransformTo() probably returned a type whose size (in bits)
1737 // isn't a power-of-2 factor of the requested type size.
1738 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1740 SmallVector<SDValue, 2> EltParts;
1741 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1742 EltParts.push_back(getConstant(
1743 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1744 ViaEltVT, isT, isO));
1746 // EltParts is currently in little endian order. If we actually want
1747 // big-endian order then reverse it now.
1748 if (getDataLayout().isBigEndian())
1749 std::reverse(EltParts.begin(), EltParts.end());
1751 // The elements must be reversed when the element order is different
1752 // to the endianness of the elements (because the BITCAST is itself a
1753 // vector shuffle in this situation). However, we do not need any code to
1754 // perform this reversal because getConstant() is producing a vector
1755 // splat.
1756 // This situation occurs in MIPS MSA.
1758 SmallVector<SDValue, 8> Ops;
1759 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1760 llvm::append_range(Ops, EltParts);
1762 SDValue V =
1763 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1764 return V;
1767 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1768 "APInt size does not match type size!");
1769 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1770 SDVTList VTs = getVTList(EltVT);
1771 FoldingSetNodeID ID;
1772 AddNodeIDNode(ID, Opc, VTs, {});
1773 ID.AddPointer(Elt);
1774 ID.AddBoolean(isO);
1775 void *IP = nullptr;
1776 SDNode *N = nullptr;
1777 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1778 if (!VT.isVector())
1779 return SDValue(N, 0);
1781 if (!N) {
1782 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1783 CSEMap.InsertNode(N, IP);
1784 InsertNode(N);
1785 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1788 SDValue Result(N, 0);
1789 if (VT.isVector())
1790 Result = getSplat(VT, DL, Result);
1791 return Result;
1794 SDValue SelectionDAG::getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT,
1795 bool isT, bool isO) {
1796 unsigned Size = VT.getScalarSizeInBits();
1797 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1800 SDValue SelectionDAG::getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget,
1801 bool IsOpaque) {
1802 return getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT,
1803 IsTarget, IsOpaque);
1806 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1807 bool isTarget) {
1808 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1811 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1812 const SDLoc &DL) {
1813 assert(VT.isInteger() && "Shift amount is not an integer type!");
1814 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1815 return getConstant(Val, DL, ShiftVT);
1818 SDValue SelectionDAG::getShiftAmountConstant(const APInt &Val, EVT VT,
1819 const SDLoc &DL) {
1820 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1821 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1824 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1825 bool isTarget) {
1826 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1829 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1830 bool isTarget) {
1831 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1834 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1835 EVT VT, bool isTarget) {
1836 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1838 EVT EltVT = VT.getScalarType();
1839 const ConstantFP *Elt = &V;
1841 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1842 // the to-be-splatted scalar ConstantFP.
1843 if (isa<VectorType>(Elt->getType()))
1844 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1846 // Do the map lookup using the actual bit pattern for the floating point
1847 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1848 // we don't have issues with SNANs.
1849 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1850 SDVTList VTs = getVTList(EltVT);
1851 FoldingSetNodeID ID;
1852 AddNodeIDNode(ID, Opc, VTs, {});
1853 ID.AddPointer(Elt);
1854 void *IP = nullptr;
1855 SDNode *N = nullptr;
1856 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1857 if (!VT.isVector())
1858 return SDValue(N, 0);
1860 if (!N) {
1861 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1862 CSEMap.InsertNode(N, IP);
1863 InsertNode(N);
1866 SDValue Result(N, 0);
1867 if (VT.isVector())
1868 Result = getSplat(VT, DL, Result);
1869 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1870 return Result;
1873 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1874 bool isTarget) {
1875 EVT EltVT = VT.getScalarType();
1876 if (EltVT == MVT::f32)
1877 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1878 if (EltVT == MVT::f64)
1879 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1880 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1881 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1882 bool Ignored;
1883 APFloat APF = APFloat(Val);
1884 APF.convert(EltVT.getFltSemantics(), APFloat::rmNearestTiesToEven,
1885 &Ignored);
1886 return getConstantFP(APF, DL, VT, isTarget);
1888 llvm_unreachable("Unsupported type in getConstantFP");
1891 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1892 EVT VT, int64_t Offset, bool isTargetGA,
1893 unsigned TargetFlags) {
1894 assert((TargetFlags == 0 || isTargetGA) &&
1895 "Cannot set target flags on target-independent globals");
1897 // Truncate (with sign-extension) the offset value to the pointer size.
1898 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1899 if (BitWidth < 64)
1900 Offset = SignExtend64(Offset, BitWidth);
1902 unsigned Opc;
1903 if (GV->isThreadLocal())
1904 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1905 else
1906 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1908 SDVTList VTs = getVTList(VT);
1909 FoldingSetNodeID ID;
1910 AddNodeIDNode(ID, Opc, VTs, {});
1911 ID.AddPointer(GV);
1912 ID.AddInteger(Offset);
1913 ID.AddInteger(TargetFlags);
1914 void *IP = nullptr;
1915 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1916 return SDValue(E, 0);
1918 auto *N = newSDNode<GlobalAddressSDNode>(
1919 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1920 CSEMap.InsertNode(N, IP);
1921 InsertNode(N);
1922 return SDValue(N, 0);
1925 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1926 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1927 SDVTList VTs = getVTList(VT);
1928 FoldingSetNodeID ID;
1929 AddNodeIDNode(ID, Opc, VTs, {});
1930 ID.AddInteger(FI);
1931 void *IP = nullptr;
1932 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1933 return SDValue(E, 0);
1935 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1936 CSEMap.InsertNode(N, IP);
1937 InsertNode(N);
1938 return SDValue(N, 0);
1941 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1942 unsigned TargetFlags) {
1943 assert((TargetFlags == 0 || isTarget) &&
1944 "Cannot set target flags on target-independent jump tables");
1945 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1946 SDVTList VTs = getVTList(VT);
1947 FoldingSetNodeID ID;
1948 AddNodeIDNode(ID, Opc, VTs, {});
1949 ID.AddInteger(JTI);
1950 ID.AddInteger(TargetFlags);
1951 void *IP = nullptr;
1952 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1953 return SDValue(E, 0);
1955 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1956 CSEMap.InsertNode(N, IP);
1957 InsertNode(N);
1958 return SDValue(N, 0);
1961 SDValue SelectionDAG::getJumpTableDebugInfo(int JTI, SDValue Chain,
1962 const SDLoc &DL) {
1963 EVT PTy = getTargetLoweringInfo().getPointerTy(getDataLayout());
1964 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1965 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1968 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1969 MaybeAlign Alignment, int Offset,
1970 bool isTarget, unsigned TargetFlags) {
1971 assert((TargetFlags == 0 || isTarget) &&
1972 "Cannot set target flags on target-independent globals");
1973 if (!Alignment)
1974 Alignment = shouldOptForSize()
1975 ? getDataLayout().getABITypeAlign(C->getType())
1976 : getDataLayout().getPrefTypeAlign(C->getType());
1977 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1978 SDVTList VTs = getVTList(VT);
1979 FoldingSetNodeID ID;
1980 AddNodeIDNode(ID, Opc, VTs, {});
1981 ID.AddInteger(Alignment->value());
1982 ID.AddInteger(Offset);
1983 ID.AddPointer(C);
1984 ID.AddInteger(TargetFlags);
1985 void *IP = nullptr;
1986 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1987 return SDValue(E, 0);
1989 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1990 TargetFlags);
1991 CSEMap.InsertNode(N, IP);
1992 InsertNode(N);
1993 SDValue V = SDValue(N, 0);
1994 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1995 return V;
1998 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1999 MaybeAlign Alignment, int Offset,
2000 bool isTarget, unsigned TargetFlags) {
2001 assert((TargetFlags == 0 || isTarget) &&
2002 "Cannot set target flags on target-independent globals");
2003 if (!Alignment)
2004 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2005 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2006 SDVTList VTs = getVTList(VT);
2007 FoldingSetNodeID ID;
2008 AddNodeIDNode(ID, Opc, VTs, {});
2009 ID.AddInteger(Alignment->value());
2010 ID.AddInteger(Offset);
2011 C->addSelectionDAGCSEId(ID);
2012 ID.AddInteger(TargetFlags);
2013 void *IP = nullptr;
2014 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2015 return SDValue(E, 0);
2017 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2018 TargetFlags);
2019 CSEMap.InsertNode(N, IP);
2020 InsertNode(N);
2021 return SDValue(N, 0);
2024 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
2025 FoldingSetNodeID ID;
2026 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2027 ID.AddPointer(MBB);
2028 void *IP = nullptr;
2029 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2030 return SDValue(E, 0);
2032 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2033 CSEMap.InsertNode(N, IP);
2034 InsertNode(N);
2035 return SDValue(N, 0);
2038 SDValue SelectionDAG::getValueType(EVT VT) {
2039 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2040 ValueTypeNodes.size())
2041 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2043 SDNode *&N = VT.isExtended() ?
2044 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2046 if (N) return SDValue(N, 0);
2047 N = newSDNode<VTSDNode>(VT);
2048 InsertNode(N);
2049 return SDValue(N, 0);
2052 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
2053 SDNode *&N = ExternalSymbols[Sym];
2054 if (N) return SDValue(N, 0);
2055 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2056 InsertNode(N);
2057 return SDValue(N, 0);
2060 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
2061 SDNode *&N = MCSymbols[Sym];
2062 if (N)
2063 return SDValue(N, 0);
2064 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2065 InsertNode(N);
2066 return SDValue(N, 0);
2069 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
2070 unsigned TargetFlags) {
2071 SDNode *&N =
2072 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2073 if (N) return SDValue(N, 0);
2074 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2075 InsertNode(N);
2076 return SDValue(N, 0);
2079 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
2080 if ((unsigned)Cond >= CondCodeNodes.size())
2081 CondCodeNodes.resize(Cond+1);
2083 if (!CondCodeNodes[Cond]) {
2084 auto *N = newSDNode<CondCodeSDNode>(Cond);
2085 CondCodeNodes[Cond] = N;
2086 InsertNode(N);
2089 return SDValue(CondCodeNodes[Cond], 0);
2092 SDValue SelectionDAG::getVScale(const SDLoc &DL, EVT VT, APInt MulImm,
2093 bool ConstantFold) {
2094 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2095 "APInt size does not match type size!");
2097 if (MulImm == 0)
2098 return getConstant(0, DL, VT);
2100 if (ConstantFold) {
2101 const MachineFunction &MF = getMachineFunction();
2102 const Function &F = MF.getFunction();
2103 ConstantRange CR = getVScaleRange(&F, 64);
2104 if (const APInt *C = CR.getSingleElement())
2105 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2108 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2111 SDValue SelectionDAG::getElementCount(const SDLoc &DL, EVT VT, ElementCount EC,
2112 bool ConstantFold) {
2113 if (EC.isScalable())
2114 return getVScale(DL, VT,
2115 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2117 return getConstant(EC.getKnownMinValue(), DL, VT);
2120 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
2121 APInt One(ResVT.getScalarSizeInBits(), 1);
2122 return getStepVector(DL, ResVT, One);
2125 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT,
2126 const APInt &StepVal) {
2127 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2128 if (ResVT.isScalableVector())
2129 return getNode(
2130 ISD::STEP_VECTOR, DL, ResVT,
2131 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2133 SmallVector<SDValue, 16> OpsStepConstants;
2134 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2135 OpsStepConstants.push_back(
2136 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2137 return getBuildVector(ResVT, DL, OpsStepConstants);
2140 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2141 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
2142 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
2143 std::swap(N1, N2);
2144 ShuffleVectorSDNode::commuteMask(M);
2147 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
2148 SDValue N2, ArrayRef<int> Mask) {
2149 assert(VT.getVectorNumElements() == Mask.size() &&
2150 "Must have the same number of vector elements as mask elements!");
2151 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2152 "Invalid VECTOR_SHUFFLE");
2154 // Canonicalize shuffle undef, undef -> undef
2155 if (N1.isUndef() && N2.isUndef())
2156 return getUNDEF(VT);
2158 // Validate that all indices in Mask are within the range of the elements
2159 // input to the shuffle.
2160 int NElts = Mask.size();
2161 assert(llvm::all_of(Mask,
2162 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2163 "Index out of range");
2165 // Copy the mask so we can do any needed cleanup.
2166 SmallVector<int, 8> MaskVec(Mask);
2168 // Canonicalize shuffle v, v -> v, undef
2169 if (N1 == N2) {
2170 N2 = getUNDEF(VT);
2171 for (int i = 0; i != NElts; ++i)
2172 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2175 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2176 if (N1.isUndef())
2177 commuteShuffle(N1, N2, MaskVec);
2179 if (TLI->hasVectorBlend()) {
2180 // If shuffling a splat, try to blend the splat instead. We do this here so
2181 // that even when this arises during lowering we don't have to re-handle it.
2182 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2183 BitVector UndefElements;
2184 SDValue Splat = BV->getSplatValue(&UndefElements);
2185 if (!Splat)
2186 return;
2188 for (int i = 0; i < NElts; ++i) {
2189 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2190 continue;
2192 // If this input comes from undef, mark it as such.
2193 if (UndefElements[MaskVec[i] - Offset]) {
2194 MaskVec[i] = -1;
2195 continue;
2198 // If we can blend a non-undef lane, use that instead.
2199 if (!UndefElements[i])
2200 MaskVec[i] = i + Offset;
2203 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2204 BlendSplat(N1BV, 0);
2205 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2206 BlendSplat(N2BV, NElts);
2209 // Canonicalize all index into lhs, -> shuffle lhs, undef
2210 // Canonicalize all index into rhs, -> shuffle rhs, undef
2211 bool AllLHS = true, AllRHS = true;
2212 bool N2Undef = N2.isUndef();
2213 for (int i = 0; i != NElts; ++i) {
2214 if (MaskVec[i] >= NElts) {
2215 if (N2Undef)
2216 MaskVec[i] = -1;
2217 else
2218 AllLHS = false;
2219 } else if (MaskVec[i] >= 0) {
2220 AllRHS = false;
2223 if (AllLHS && AllRHS)
2224 return getUNDEF(VT);
2225 if (AllLHS && !N2Undef)
2226 N2 = getUNDEF(VT);
2227 if (AllRHS) {
2228 N1 = getUNDEF(VT);
2229 commuteShuffle(N1, N2, MaskVec);
2231 // Reset our undef status after accounting for the mask.
2232 N2Undef = N2.isUndef();
2233 // Re-check whether both sides ended up undef.
2234 if (N1.isUndef() && N2Undef)
2235 return getUNDEF(VT);
2237 // If Identity shuffle return that node.
2238 bool Identity = true, AllSame = true;
2239 for (int i = 0; i != NElts; ++i) {
2240 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2241 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2243 if (Identity && NElts)
2244 return N1;
2246 // Shuffling a constant splat doesn't change the result.
2247 if (N2Undef) {
2248 SDValue V = N1;
2250 // Look through any bitcasts. We check that these don't change the number
2251 // (and size) of elements and just changes their types.
2252 while (V.getOpcode() == ISD::BITCAST)
2253 V = V->getOperand(0);
2255 // A splat should always show up as a build vector node.
2256 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2257 BitVector UndefElements;
2258 SDValue Splat = BV->getSplatValue(&UndefElements);
2259 // If this is a splat of an undef, shuffling it is also undef.
2260 if (Splat && Splat.isUndef())
2261 return getUNDEF(VT);
2263 bool SameNumElts =
2264 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2266 // We only have a splat which can skip shuffles if there is a splatted
2267 // value and no undef lanes rearranged by the shuffle.
2268 if (Splat && UndefElements.none()) {
2269 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2270 // number of elements match or the value splatted is a zero constant.
2271 if (SameNumElts || isNullConstant(Splat))
2272 return N1;
2275 // If the shuffle itself creates a splat, build the vector directly.
2276 if (AllSame && SameNumElts) {
2277 EVT BuildVT = BV->getValueType(0);
2278 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2279 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2281 // We may have jumped through bitcasts, so the type of the
2282 // BUILD_VECTOR may not match the type of the shuffle.
2283 if (BuildVT != VT)
2284 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2285 return NewBV;
2290 SDVTList VTs = getVTList(VT);
2291 FoldingSetNodeID ID;
2292 SDValue Ops[2] = { N1, N2 };
2293 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, VTs, Ops);
2294 for (int i = 0; i != NElts; ++i)
2295 ID.AddInteger(MaskVec[i]);
2297 void* IP = nullptr;
2298 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2299 return SDValue(E, 0);
2301 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2302 // SDNode doesn't have access to it. This memory will be "leaked" when
2303 // the node is deallocated, but recovered when the NodeAllocator is released.
2304 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2305 llvm::copy(MaskVec, MaskAlloc);
2307 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2308 dl.getDebugLoc(), MaskAlloc);
2309 createOperands(N, Ops);
2311 CSEMap.InsertNode(N, IP);
2312 InsertNode(N);
2313 SDValue V = SDValue(N, 0);
2314 NewSDValueDbgMsg(V, "Creating new node: ", this);
2315 return V;
2318 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2319 EVT VT = SV.getValueType(0);
2320 SmallVector<int, 8> MaskVec(SV.getMask());
2321 ShuffleVectorSDNode::commuteMask(MaskVec);
2323 SDValue Op0 = SV.getOperand(0);
2324 SDValue Op1 = SV.getOperand(1);
2325 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2328 SDValue SelectionDAG::getRegister(Register Reg, EVT VT) {
2329 SDVTList VTs = getVTList(VT);
2330 FoldingSetNodeID ID;
2331 AddNodeIDNode(ID, ISD::Register, VTs, {});
2332 ID.AddInteger(Reg.id());
2333 void *IP = nullptr;
2334 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2335 return SDValue(E, 0);
2337 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2338 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2339 CSEMap.InsertNode(N, IP);
2340 InsertNode(N);
2341 return SDValue(N, 0);
2344 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2345 FoldingSetNodeID ID;
2346 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2347 ID.AddPointer(RegMask);
2348 void *IP = nullptr;
2349 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2350 return SDValue(E, 0);
2352 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2353 CSEMap.InsertNode(N, IP);
2354 InsertNode(N);
2355 return SDValue(N, 0);
2358 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2359 MCSymbol *Label) {
2360 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2363 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2364 SDValue Root, MCSymbol *Label) {
2365 FoldingSetNodeID ID;
2366 SDValue Ops[] = { Root };
2367 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2368 ID.AddPointer(Label);
2369 void *IP = nullptr;
2370 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2371 return SDValue(E, 0);
2373 auto *N =
2374 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2375 createOperands(N, Ops);
2377 CSEMap.InsertNode(N, IP);
2378 InsertNode(N);
2379 return SDValue(N, 0);
2382 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2383 int64_t Offset, bool isTarget,
2384 unsigned TargetFlags) {
2385 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2386 SDVTList VTs = getVTList(VT);
2388 FoldingSetNodeID ID;
2389 AddNodeIDNode(ID, Opc, VTs, {});
2390 ID.AddPointer(BA);
2391 ID.AddInteger(Offset);
2392 ID.AddInteger(TargetFlags);
2393 void *IP = nullptr;
2394 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2395 return SDValue(E, 0);
2397 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2398 CSEMap.InsertNode(N, IP);
2399 InsertNode(N);
2400 return SDValue(N, 0);
2403 SDValue SelectionDAG::getSrcValue(const Value *V) {
2404 FoldingSetNodeID ID;
2405 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2406 ID.AddPointer(V);
2408 void *IP = nullptr;
2409 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2410 return SDValue(E, 0);
2412 auto *N = newSDNode<SrcValueSDNode>(V);
2413 CSEMap.InsertNode(N, IP);
2414 InsertNode(N);
2415 return SDValue(N, 0);
2418 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2419 FoldingSetNodeID ID;
2420 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2421 ID.AddPointer(MD);
2423 void *IP = nullptr;
2424 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2425 return SDValue(E, 0);
2427 auto *N = newSDNode<MDNodeSDNode>(MD);
2428 CSEMap.InsertNode(N, IP);
2429 InsertNode(N);
2430 return SDValue(N, 0);
2433 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2434 if (VT == V.getValueType())
2435 return V;
2437 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2440 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2441 unsigned SrcAS, unsigned DestAS) {
2442 SDVTList VTs = getVTList(VT);
2443 SDValue Ops[] = {Ptr};
2444 FoldingSetNodeID ID;
2445 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2446 ID.AddInteger(SrcAS);
2447 ID.AddInteger(DestAS);
2449 void *IP = nullptr;
2450 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2451 return SDValue(E, 0);
2453 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2454 VTs, SrcAS, DestAS);
2455 createOperands(N, Ops);
2457 CSEMap.InsertNode(N, IP);
2458 InsertNode(N);
2459 return SDValue(N, 0);
2462 SDValue SelectionDAG::getFreeze(SDValue V) {
2463 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2466 /// getShiftAmountOperand - Return the specified value casted to
2467 /// the target's desired shift amount type.
2468 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2469 EVT OpTy = Op.getValueType();
2470 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2471 if (OpTy == ShTy || OpTy.isVector()) return Op;
2473 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2476 SDValue SelectionDAG::getPartialReduceAdd(SDLoc DL, EVT ReducedTy, SDValue Op1,
2477 SDValue Op2) {
2478 EVT FullTy = Op2.getValueType();
2480 unsigned Stride = ReducedTy.getVectorMinNumElements();
2481 unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride;
2483 // Collect all of the subvectors
2484 std::deque<SDValue> Subvectors = {Op1};
2485 for (unsigned I = 0; I < ScaleFactor; I++) {
2486 auto SourceIndex = getVectorIdxConstant(I * Stride, DL);
2487 Subvectors.push_back(
2488 getNode(ISD::EXTRACT_SUBVECTOR, DL, ReducedTy, {Op2, SourceIndex}));
2491 // Flatten the subvector tree
2492 while (Subvectors.size() > 1) {
2493 Subvectors.push_back(
2494 getNode(ISD::ADD, DL, ReducedTy, {Subvectors[0], Subvectors[1]}));
2495 Subvectors.pop_front();
2496 Subvectors.pop_front();
2499 assert(Subvectors.size() == 1 &&
2500 "There should only be one subvector after tree flattening");
2502 return Subvectors[0];
2505 /// Given a store node \p StoreNode, return true if it is safe to fold that node
2506 /// into \p FPNode, which expands to a library call with output pointers.
2507 static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode,
2508 SDNode *FPNode) {
2509 SmallVector<const SDNode *, 8> Worklist;
2510 SmallVector<const SDNode *, 8> DeferredNodes;
2511 SmallPtrSet<const SDNode *, 16> Visited;
2513 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2514 for (SDValue Op : StoreNode->ops())
2515 if (Op.getNode() != FPNode)
2516 Worklist.push_back(Op.getNode());
2518 unsigned MaxSteps = SelectionDAG::getHasPredecessorMaxSteps();
2519 while (!Worklist.empty()) {
2520 const SDNode *Node = Worklist.pop_back_val();
2521 auto [_, Inserted] = Visited.insert(Node);
2522 if (!Inserted)
2523 continue;
2525 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2526 return false;
2528 // Reached the FPNode (would result in a cycle).
2529 // OR Reached CALLSEQ_START (would result in nested call sequences).
2530 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2531 return false;
2533 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2534 // Defer looking into call sequences (so we can check we're outside one).
2535 // We still need to look through these for the predecessor check.
2536 DeferredNodes.push_back(Node);
2537 continue;
2540 for (SDValue Op : Node->ops())
2541 Worklist.push_back(Op.getNode());
2544 // True if we're outside a call sequence and don't have the FPNode as a
2545 // predecessor. No cycles or nested call sequences possible.
2546 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2547 MaxSteps);
2550 bool SelectionDAG::expandMultipleResultFPLibCall(
2551 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2552 std::optional<unsigned> CallRetResNo) {
2553 LLVMContext &Ctx = *getContext();
2554 EVT VT = Node->getValueType(0);
2555 unsigned NumResults = Node->getNumValues();
2557 const char *LCName = TLI->getLibcallName(LC);
2558 if (!LC || !LCName)
2559 return false;
2561 auto getVecDesc = [&]() -> VecDesc const * {
2562 for (bool Masked : {false, true}) {
2563 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2564 LCName, VT.getVectorElementCount(), Masked)) {
2565 return VD;
2568 return nullptr;
2571 // For vector types, we must find a vector mapping for the libcall.
2572 VecDesc const *VD = nullptr;
2573 if (VT.isVector() && !(VD = getVecDesc()))
2574 return false;
2576 // Find users of the node that store the results (and share input chains). The
2577 // destination pointers can be used instead of creating stack allocations.
2578 SDValue StoresInChain;
2579 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2580 for (SDNode *User : Node->users()) {
2581 if (!ISD::isNormalStore(User))
2582 continue;
2583 auto *ST = cast<StoreSDNode>(User);
2584 SDValue StoreValue = ST->getValue();
2585 unsigned ResNo = StoreValue.getResNo();
2586 // Ensure the store corresponds to an output pointer.
2587 if (CallRetResNo == ResNo)
2588 continue;
2589 // Ensure the store to the default address space and not atomic or volatile.
2590 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2591 continue;
2592 // Ensure all store chains are the same (so they don't alias).
2593 if (StoresInChain && ST->getChain() != StoresInChain)
2594 continue;
2595 // Ensure the store is properly aligned.
2596 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2597 if (ST->getAlign() <
2598 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2599 continue;
2600 // Avoid:
2601 // 1. Creating cyclic dependencies.
2602 // 2. Expanding the node to a call within a call sequence.
2603 if (!canFoldStoreIntoLibCallOutputPointers(ST, Node))
2604 continue;
2605 ResultStores[ResNo] = ST;
2606 StoresInChain = ST->getChain();
2609 TargetLowering::ArgListTy Args;
2610 auto AddArgListEntry = [&](SDValue Node, Type *Ty) {
2611 TargetLowering::ArgListEntry Entry{};
2612 Entry.Ty = Ty;
2613 Entry.Node = Node;
2614 Args.push_back(Entry);
2617 // Pass the arguments.
2618 for (const SDValue &Op : Node->op_values()) {
2619 EVT ArgVT = Op.getValueType();
2620 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2621 AddArgListEntry(Op, ArgTy);
2624 // Pass the output pointers.
2625 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2626 Type *PointerTy = PointerType::getUnqual(Ctx);
2627 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2628 if (ResNo == CallRetResNo)
2629 continue;
2630 EVT ResVT = Node->getValueType(ResNo);
2631 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2632 ResultPtrs[ResNo] = ResultPtr;
2633 AddArgListEntry(ResultPtr, PointerTy);
2636 SDLoc DL(Node);
2638 // Pass the vector mask (if required).
2639 if (VD && VD->isMasked()) {
2640 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2641 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2642 AddArgListEntry(Mask, MaskVT.getTypeForEVT(Ctx));
2645 Type *RetType = CallRetResNo.has_value()
2646 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2647 : Type::getVoidTy(Ctx);
2648 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2649 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2650 TLI->getPointerTy(getDataLayout()));
2651 TargetLowering::CallLoweringInfo CLI(*this);
2652 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2653 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2655 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2657 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2658 if (ResNo == CallRetResNo) {
2659 Results.push_back(Call);
2660 continue;
2662 MachinePointerInfo PtrInfo;
2663 if (StoreSDNode *ST = ResultStores[ResNo]) {
2664 // Replace store with the library call.
2665 ReplaceAllUsesOfValueWith(SDValue(ST, 0), CallChain);
2666 PtrInfo = ST->getPointerInfo();
2667 } else {
2668 PtrInfo = MachinePointerInfo::getFixedStack(
2669 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2671 SDValue LoadResult =
2672 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2673 Results.push_back(LoadResult);
2676 if (CallRetResNo && !Node->hasAnyUseOfValue(*CallRetResNo)) {
2677 // FIXME: Find a way to avoid updating the root. This is needed for x86,
2678 // which uses a floating-point stack. If (for example) the node to be
2679 // expanded has two results one floating-point which is returned by the
2680 // call, and one integer result, returned via an output pointer. If only the
2681 // integer result is used then the `CopyFromReg` for the FP result may be
2682 // optimized out. This prevents an FP stack pop from being emitted for it.
2683 // Setting the root like this ensures there will be a use of the
2684 // `CopyFromReg` chain, and ensures the FP pop will be emitted.
2685 SDValue NewRoot =
2686 getNode(ISD::TokenFactor, DL, MVT::Other, getRoot(), CallChain);
2687 setRoot(NewRoot);
2688 // Ensure the new root is reachable from the results.
2689 Results[0] = getMergeValues({Results[0], NewRoot}, DL);
2692 return true;
2695 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2696 SDLoc dl(Node);
2697 const TargetLowering &TLI = getTargetLoweringInfo();
2698 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2699 EVT VT = Node->getValueType(0);
2700 SDValue Tmp1 = Node->getOperand(0);
2701 SDValue Tmp2 = Node->getOperand(1);
2702 const MaybeAlign MA(Node->getConstantOperandVal(3));
2704 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2705 Tmp2, MachinePointerInfo(V));
2706 SDValue VAList = VAListLoad;
2708 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2709 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2710 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2712 VAList = getNode(
2713 ISD::AND, dl, VAList.getValueType(), VAList,
2714 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2717 // Increment the pointer, VAList, to the next vaarg
2718 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2719 getConstant(getDataLayout().getTypeAllocSize(
2720 VT.getTypeForEVT(*getContext())),
2721 dl, VAList.getValueType()));
2722 // Store the incremented VAList to the legalized pointer
2723 Tmp1 =
2724 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2725 // Load the actual argument out of the pointer VAList
2726 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2729 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2730 SDLoc dl(Node);
2731 const TargetLowering &TLI = getTargetLoweringInfo();
2732 // This defaults to loading a pointer from the input and storing it to the
2733 // output, returning the chain.
2734 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2735 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2736 SDValue Tmp1 =
2737 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2738 Node->getOperand(2), MachinePointerInfo(VS));
2739 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2740 MachinePointerInfo(VD));
2743 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2744 const DataLayout &DL = getDataLayout();
2745 Type *Ty = VT.getTypeForEVT(*getContext());
2746 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2748 if (TLI->isTypeLegal(VT) || !VT.isVector())
2749 return RedAlign;
2751 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2752 const Align StackAlign = TFI->getStackAlign();
2754 // See if we can choose a smaller ABI alignment in cases where it's an
2755 // illegal vector type that will get broken down.
2756 if (RedAlign > StackAlign) {
2757 EVT IntermediateVT;
2758 MVT RegisterVT;
2759 unsigned NumIntermediates;
2760 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2761 NumIntermediates, RegisterVT);
2762 Ty = IntermediateVT.getTypeForEVT(*getContext());
2763 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2764 if (RedAlign2 < RedAlign)
2765 RedAlign = RedAlign2;
2767 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2768 // If the stack is not realignable, the alignment should be limited to the
2769 // StackAlignment
2770 RedAlign = std::min(RedAlign, StackAlign);
2773 return RedAlign;
2776 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2777 MachineFrameInfo &MFI = MF->getFrameInfo();
2778 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2779 int StackID = 0;
2780 if (Bytes.isScalable())
2781 StackID = TFI->getStackIDForScalableVectors();
2782 // The stack id gives an indication of whether the object is scalable or
2783 // not, so it's safe to pass in the minimum size here.
2784 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2785 false, nullptr, StackID);
2786 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2789 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2790 Type *Ty = VT.getTypeForEVT(*getContext());
2791 Align StackAlign =
2792 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2793 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2796 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2797 TypeSize VT1Size = VT1.getStoreSize();
2798 TypeSize VT2Size = VT2.getStoreSize();
2799 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2800 "Don't know how to choose the maximum size when creating a stack "
2801 "temporary");
2802 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2803 ? VT1Size
2804 : VT2Size;
2806 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2807 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2808 const DataLayout &DL = getDataLayout();
2809 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2810 return CreateStackTemporary(Bytes, Align);
2813 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2814 ISD::CondCode Cond, const SDLoc &dl) {
2815 EVT OpVT = N1.getValueType();
2817 auto GetUndefBooleanConstant = [&]() {
2818 if (VT.getScalarType() == MVT::i1 ||
2819 TLI->getBooleanContents(OpVT) ==
2820 TargetLowering::UndefinedBooleanContent)
2821 return getUNDEF(VT);
2822 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2823 // so we cannot use getUNDEF(). Return zero instead.
2824 return getConstant(0, dl, VT);
2827 // These setcc operations always fold.
2828 switch (Cond) {
2829 default: break;
2830 case ISD::SETFALSE:
2831 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2832 case ISD::SETTRUE:
2833 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2835 case ISD::SETOEQ:
2836 case ISD::SETOGT:
2837 case ISD::SETOGE:
2838 case ISD::SETOLT:
2839 case ISD::SETOLE:
2840 case ISD::SETONE:
2841 case ISD::SETO:
2842 case ISD::SETUO:
2843 case ISD::SETUEQ:
2844 case ISD::SETUNE:
2845 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2846 break;
2849 if (OpVT.isInteger()) {
2850 // For EQ and NE, we can always pick a value for the undef to make the
2851 // predicate pass or fail, so we can return undef.
2852 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2853 // icmp eq/ne X, undef -> undef.
2854 if ((N1.isUndef() || N2.isUndef()) &&
2855 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2856 return GetUndefBooleanConstant();
2858 // If both operands are undef, we can return undef for int comparison.
2859 // icmp undef, undef -> undef.
2860 if (N1.isUndef() && N2.isUndef())
2861 return GetUndefBooleanConstant();
2863 // icmp X, X -> true/false
2864 // icmp X, undef -> true/false because undef could be X.
2865 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2866 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2869 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2870 const APInt &C2 = N2C->getAPIntValue();
2871 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2872 const APInt &C1 = N1C->getAPIntValue();
2874 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2875 dl, VT, OpVT);
2879 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2880 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2882 if (N1CFP && N2CFP) {
2883 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2884 switch (Cond) {
2885 default: break;
2886 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2887 return GetUndefBooleanConstant();
2888 [[fallthrough]];
2889 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2890 OpVT);
2891 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2892 return GetUndefBooleanConstant();
2893 [[fallthrough]];
2894 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2895 R==APFloat::cmpLessThan, dl, VT,
2896 OpVT);
2897 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2898 return GetUndefBooleanConstant();
2899 [[fallthrough]];
2900 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2901 OpVT);
2902 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2903 return GetUndefBooleanConstant();
2904 [[fallthrough]];
2905 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2906 VT, OpVT);
2907 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2908 return GetUndefBooleanConstant();
2909 [[fallthrough]];
2910 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2911 R==APFloat::cmpEqual, dl, VT,
2912 OpVT);
2913 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2914 return GetUndefBooleanConstant();
2915 [[fallthrough]];
2916 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2917 R==APFloat::cmpEqual, dl, VT, OpVT);
2918 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2919 OpVT);
2920 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2921 OpVT);
2922 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2923 R==APFloat::cmpEqual, dl, VT,
2924 OpVT);
2925 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2926 OpVT);
2927 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2928 R==APFloat::cmpLessThan, dl, VT,
2929 OpVT);
2930 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2931 R==APFloat::cmpUnordered, dl, VT,
2932 OpVT);
2933 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2934 VT, OpVT);
2935 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2936 OpVT);
2938 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2939 // Ensure that the constant occurs on the RHS.
2940 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2941 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2942 return SDValue();
2943 return getSetCC(dl, VT, N2, N1, SwappedCond);
2944 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2945 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2946 // If an operand is known to be a nan (or undef that could be a nan), we can
2947 // fold it.
2948 // Choosing NaN for the undef will always make unordered comparison succeed
2949 // and ordered comparison fails.
2950 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2951 switch (ISD::getUnorderedFlavor(Cond)) {
2952 default:
2953 llvm_unreachable("Unknown flavor!");
2954 case 0: // Known false.
2955 return getBoolConstant(false, dl, VT, OpVT);
2956 case 1: // Known true.
2957 return getBoolConstant(true, dl, VT, OpVT);
2958 case 2: // Undefined.
2959 return GetUndefBooleanConstant();
2963 // Could not fold it.
2964 return SDValue();
2967 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2968 /// use this predicate to simplify operations downstream.
2969 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2970 unsigned BitWidth = Op.getScalarValueSizeInBits();
2971 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2974 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2975 /// this predicate to simplify operations downstream. Mask is known to be zero
2976 /// for bits that V cannot have.
2977 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2978 unsigned Depth) const {
2979 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2982 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2983 /// DemandedElts. We use this predicate to simplify operations downstream.
2984 /// Mask is known to be zero for bits that V cannot have.
2985 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2986 const APInt &DemandedElts,
2987 unsigned Depth) const {
2988 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2991 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2992 /// DemandedElts. We use this predicate to simplify operations downstream.
2993 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2994 unsigned Depth /* = 0 */) const {
2995 return computeKnownBits(V, DemandedElts, Depth).isZero();
2998 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2999 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
3000 unsigned Depth) const {
3001 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
3004 APInt SelectionDAG::computeVectorKnownZeroElements(SDValue Op,
3005 const APInt &DemandedElts,
3006 unsigned Depth) const {
3007 EVT VT = Op.getValueType();
3008 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
3010 unsigned NumElts = VT.getVectorNumElements();
3011 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
3013 APInt KnownZeroElements = APInt::getZero(NumElts);
3014 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
3015 if (!DemandedElts[EltIdx])
3016 continue; // Don't query elements that are not demanded.
3017 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
3018 if (MaskedVectorIsZero(Op, Mask, Depth))
3019 KnownZeroElements.setBit(EltIdx);
3021 return KnownZeroElements;
3024 /// isSplatValue - Return true if the vector V has the same value
3025 /// across all DemandedElts. For scalable vectors, we don't know the
3026 /// number of lanes at compile time. Instead, we use a 1 bit APInt
3027 /// to represent a conservative value for all lanes; that is, that
3028 /// one bit value is implicitly splatted across all lanes.
3029 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
3030 APInt &UndefElts, unsigned Depth) const {
3031 unsigned Opcode = V.getOpcode();
3032 EVT VT = V.getValueType();
3033 assert(VT.isVector() && "Vector type expected");
3034 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
3035 "scalable demanded bits are ignored");
3037 if (!DemandedElts)
3038 return false; // No demanded elts, better to assume we don't know anything.
3040 if (Depth >= MaxRecursionDepth)
3041 return false; // Limit search depth.
3043 // Deal with some common cases here that work for both fixed and scalable
3044 // vector types.
3045 switch (Opcode) {
3046 case ISD::SPLAT_VECTOR:
3047 UndefElts = V.getOperand(0).isUndef()
3048 ? APInt::getAllOnes(DemandedElts.getBitWidth())
3049 : APInt(DemandedElts.getBitWidth(), 0);
3050 return true;
3051 case ISD::ADD:
3052 case ISD::SUB:
3053 case ISD::AND:
3054 case ISD::XOR:
3055 case ISD::OR: {
3056 APInt UndefLHS, UndefRHS;
3057 SDValue LHS = V.getOperand(0);
3058 SDValue RHS = V.getOperand(1);
3059 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3060 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
3061 UndefElts = UndefLHS | UndefRHS;
3062 return true;
3064 return false;
3066 case ISD::ABS:
3067 case ISD::TRUNCATE:
3068 case ISD::SIGN_EXTEND:
3069 case ISD::ZERO_EXTEND:
3070 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3071 default:
3072 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3073 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3074 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3075 Depth);
3076 break;
3079 // We don't support other cases than those above for scalable vectors at
3080 // the moment.
3081 if (VT.isScalableVector())
3082 return false;
3084 unsigned NumElts = VT.getVectorNumElements();
3085 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3086 UndefElts = APInt::getZero(NumElts);
3088 switch (Opcode) {
3089 case ISD::BUILD_VECTOR: {
3090 SDValue Scl;
3091 for (unsigned i = 0; i != NumElts; ++i) {
3092 SDValue Op = V.getOperand(i);
3093 if (Op.isUndef()) {
3094 UndefElts.setBit(i);
3095 continue;
3097 if (!DemandedElts[i])
3098 continue;
3099 if (Scl && Scl != Op)
3100 return false;
3101 Scl = Op;
3103 return true;
3105 case ISD::VECTOR_SHUFFLE: {
3106 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3107 APInt DemandedLHS = APInt::getZero(NumElts);
3108 APInt DemandedRHS = APInt::getZero(NumElts);
3109 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3110 for (int i = 0; i != (int)NumElts; ++i) {
3111 int M = Mask[i];
3112 if (M < 0) {
3113 UndefElts.setBit(i);
3114 continue;
3116 if (!DemandedElts[i])
3117 continue;
3118 if (M < (int)NumElts)
3119 DemandedLHS.setBit(M);
3120 else
3121 DemandedRHS.setBit(M - NumElts);
3124 // If we aren't demanding either op, assume there's no splat.
3125 // If we are demanding both ops, assume there's no splat.
3126 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3127 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3128 return false;
3130 // See if the demanded elts of the source op is a splat or we only demand
3131 // one element, which should always be a splat.
3132 // TODO: Handle source ops splats with undefs.
3133 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3134 APInt SrcUndefs;
3135 return (SrcElts.popcount() == 1) ||
3136 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3137 (SrcElts & SrcUndefs).isZero());
3139 if (!DemandedLHS.isZero())
3140 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3141 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3143 case ISD::EXTRACT_SUBVECTOR: {
3144 // Offset the demanded elts by the subvector index.
3145 SDValue Src = V.getOperand(0);
3146 // We don't support scalable vectors at the moment.
3147 if (Src.getValueType().isScalableVector())
3148 return false;
3149 uint64_t Idx = V.getConstantOperandVal(1);
3150 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3151 APInt UndefSrcElts;
3152 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3153 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3154 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3155 return true;
3157 break;
3159 case ISD::ANY_EXTEND_VECTOR_INREG:
3160 case ISD::SIGN_EXTEND_VECTOR_INREG:
3161 case ISD::ZERO_EXTEND_VECTOR_INREG: {
3162 // Widen the demanded elts by the src element count.
3163 SDValue Src = V.getOperand(0);
3164 // We don't support scalable vectors at the moment.
3165 if (Src.getValueType().isScalableVector())
3166 return false;
3167 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3168 APInt UndefSrcElts;
3169 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3170 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3171 UndefElts = UndefSrcElts.trunc(NumElts);
3172 return true;
3174 break;
3176 case ISD::BITCAST: {
3177 SDValue Src = V.getOperand(0);
3178 EVT SrcVT = Src.getValueType();
3179 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3180 unsigned BitWidth = VT.getScalarSizeInBits();
3182 // Ignore bitcasts from unsupported types.
3183 // TODO: Add fp support?
3184 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3185 break;
3187 // Bitcast 'small element' vector to 'large element' vector.
3188 if ((BitWidth % SrcBitWidth) == 0) {
3189 // See if each sub element is a splat.
3190 unsigned Scale = BitWidth / SrcBitWidth;
3191 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3192 APInt ScaledDemandedElts =
3193 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3194 for (unsigned I = 0; I != Scale; ++I) {
3195 APInt SubUndefElts;
3196 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3197 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3198 SubDemandedElts &= ScaledDemandedElts;
3199 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3200 return false;
3201 // TODO: Add support for merging sub undef elements.
3202 if (!SubUndefElts.isZero())
3203 return false;
3205 return true;
3207 break;
3211 return false;
3214 /// Helper wrapper to main isSplatValue function.
3215 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3216 EVT VT = V.getValueType();
3217 assert(VT.isVector() && "Vector type expected");
3219 APInt UndefElts;
3220 // Since the number of lanes in a scalable vector is unknown at compile time,
3221 // we track one bit which is implicitly broadcast to all lanes. This means
3222 // that all lanes in a scalable vector are considered demanded.
3223 APInt DemandedElts
3224 = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
3225 return isSplatValue(V, DemandedElts, UndefElts) &&
3226 (AllowUndefs || !UndefElts);
3229 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
3230 V = peekThroughExtractSubvectors(V);
3232 EVT VT = V.getValueType();
3233 unsigned Opcode = V.getOpcode();
3234 switch (Opcode) {
3235 default: {
3236 APInt UndefElts;
3237 // Since the number of lanes in a scalable vector is unknown at compile time,
3238 // we track one bit which is implicitly broadcast to all lanes. This means
3239 // that all lanes in a scalable vector are considered demanded.
3240 APInt DemandedElts
3241 = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
3243 if (isSplatValue(V, DemandedElts, UndefElts)) {
3244 if (VT.isScalableVector()) {
3245 // DemandedElts and UndefElts are ignored for scalable vectors, since
3246 // the only supported cases are SPLAT_VECTOR nodes.
3247 SplatIdx = 0;
3248 } else {
3249 // Handle case where all demanded elements are UNDEF.
3250 if (DemandedElts.isSubsetOf(UndefElts)) {
3251 SplatIdx = 0;
3252 return getUNDEF(VT);
3254 SplatIdx = (UndefElts & DemandedElts).countr_one();
3256 return V;
3258 break;
3260 case ISD::SPLAT_VECTOR:
3261 SplatIdx = 0;
3262 return V;
3263 case ISD::VECTOR_SHUFFLE: {
3264 assert(!VT.isScalableVector());
3265 // Check if this is a shuffle node doing a splat.
3266 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3267 // getTargetVShiftNode currently struggles without the splat source.
3268 auto *SVN = cast<ShuffleVectorSDNode>(V);
3269 if (!SVN->isSplat())
3270 break;
3271 int Idx = SVN->getSplatIndex();
3272 int NumElts = V.getValueType().getVectorNumElements();
3273 SplatIdx = Idx % NumElts;
3274 return V.getOperand(Idx / NumElts);
3278 return SDValue();
3281 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
3282 int SplatIdx;
3283 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3284 EVT SVT = SrcVector.getValueType().getScalarType();
3285 EVT LegalSVT = SVT;
3286 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3287 if (!SVT.isInteger())
3288 return SDValue();
3289 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3290 if (LegalSVT.bitsLT(SVT))
3291 return SDValue();
3293 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
3294 getVectorIdxConstant(SplatIdx, SDLoc(V)));
3296 return SDValue();
3299 std::optional<ConstantRange>
3300 SelectionDAG::getValidShiftAmountRange(SDValue V, const APInt &DemandedElts,
3301 unsigned Depth) const {
3302 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3303 V.getOpcode() == ISD::SRA) &&
3304 "Unknown shift node");
3305 // Shifting more than the bitwidth is not valid.
3306 unsigned BitWidth = V.getScalarValueSizeInBits();
3308 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3309 const APInt &ShAmt = Cst->getAPIntValue();
3310 if (ShAmt.uge(BitWidth))
3311 return std::nullopt;
3312 return ConstantRange(ShAmt);
3315 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3316 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3317 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3318 if (!DemandedElts[i])
3319 continue;
3320 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3321 if (!SA) {
3322 MinAmt = MaxAmt = nullptr;
3323 break;
3325 const APInt &ShAmt = SA->getAPIntValue();
3326 if (ShAmt.uge(BitWidth))
3327 return std::nullopt;
3328 if (!MinAmt || MinAmt->ugt(ShAmt))
3329 MinAmt = &ShAmt;
3330 if (!MaxAmt || MaxAmt->ult(ShAmt))
3331 MaxAmt = &ShAmt;
3333 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3334 "Failed to find matching min/max shift amounts");
3335 if (MinAmt && MaxAmt)
3336 return ConstantRange(*MinAmt, *MaxAmt + 1);
3339 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3340 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3341 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3342 if (KnownAmt.getMaxValue().ult(BitWidth))
3343 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3345 return std::nullopt;
3348 std::optional<uint64_t>
3349 SelectionDAG::getValidShiftAmount(SDValue V, const APInt &DemandedElts,
3350 unsigned Depth) const {
3351 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3352 V.getOpcode() == ISD::SRA) &&
3353 "Unknown shift node");
3354 if (std::optional<ConstantRange> AmtRange =
3355 getValidShiftAmountRange(V, DemandedElts, Depth))
3356 if (const APInt *ShAmt = AmtRange->getSingleElement())
3357 return ShAmt->getZExtValue();
3358 return std::nullopt;
3361 std::optional<uint64_t>
3362 SelectionDAG::getValidShiftAmount(SDValue V, unsigned Depth) const {
3363 EVT VT = V.getValueType();
3364 APInt DemandedElts = VT.isFixedLengthVector()
3365 ? APInt::getAllOnes(VT.getVectorNumElements())
3366 : APInt(1, 1);
3367 return getValidShiftAmount(V, DemandedElts, Depth);
3370 std::optional<uint64_t>
3371 SelectionDAG::getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts,
3372 unsigned Depth) const {
3373 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3374 V.getOpcode() == ISD::SRA) &&
3375 "Unknown shift node");
3376 if (std::optional<ConstantRange> AmtRange =
3377 getValidShiftAmountRange(V, DemandedElts, Depth))
3378 return AmtRange->getUnsignedMin().getZExtValue();
3379 return std::nullopt;
3382 std::optional<uint64_t>
3383 SelectionDAG::getValidMinimumShiftAmount(SDValue V, unsigned Depth) const {
3384 EVT VT = V.getValueType();
3385 APInt DemandedElts = VT.isFixedLengthVector()
3386 ? APInt::getAllOnes(VT.getVectorNumElements())
3387 : APInt(1, 1);
3388 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3391 std::optional<uint64_t>
3392 SelectionDAG::getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts,
3393 unsigned Depth) const {
3394 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3395 V.getOpcode() == ISD::SRA) &&
3396 "Unknown shift node");
3397 if (std::optional<ConstantRange> AmtRange =
3398 getValidShiftAmountRange(V, DemandedElts, Depth))
3399 return AmtRange->getUnsignedMax().getZExtValue();
3400 return std::nullopt;
3403 std::optional<uint64_t>
3404 SelectionDAG::getValidMaximumShiftAmount(SDValue V, unsigned Depth) const {
3405 EVT VT = V.getValueType();
3406 APInt DemandedElts = VT.isFixedLengthVector()
3407 ? APInt::getAllOnes(VT.getVectorNumElements())
3408 : APInt(1, 1);
3409 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3412 /// Determine which bits of Op are known to be either zero or one and return
3413 /// them in Known. For vectors, the known bits are those that are shared by
3414 /// every vector element.
3415 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
3416 EVT VT = Op.getValueType();
3418 // Since the number of lanes in a scalable vector is unknown at compile time,
3419 // we track one bit which is implicitly broadcast to all lanes. This means
3420 // that all lanes in a scalable vector are considered demanded.
3421 APInt DemandedElts = VT.isFixedLengthVector()
3422 ? APInt::getAllOnes(VT.getVectorNumElements())
3423 : APInt(1, 1);
3424 return computeKnownBits(Op, DemandedElts, Depth);
3427 /// Determine which bits of Op are known to be either zero or one and return
3428 /// them in Known. The DemandedElts argument allows us to only collect the known
3429 /// bits that are shared by the requested vector elements.
3430 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
3431 unsigned Depth) const {
3432 unsigned BitWidth = Op.getScalarValueSizeInBits();
3434 KnownBits Known(BitWidth); // Don't know anything.
3436 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3437 // We know all of the bits for a constant!
3438 return KnownBits::makeConstant(C->getAPIntValue());
3440 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
3441 // We know all of the bits for a constant fp!
3442 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
3445 if (Depth >= MaxRecursionDepth)
3446 return Known; // Limit search depth.
3448 KnownBits Known2;
3449 unsigned NumElts = DemandedElts.getBitWidth();
3450 assert((!Op.getValueType().isFixedLengthVector() ||
3451 NumElts == Op.getValueType().getVectorNumElements()) &&
3452 "Unexpected vector size");
3454 if (!DemandedElts)
3455 return Known; // No demanded elts, better to assume we don't know anything.
3457 unsigned Opcode = Op.getOpcode();
3458 switch (Opcode) {
3459 case ISD::MERGE_VALUES:
3460 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3461 Depth + 1);
3462 case ISD::SPLAT_VECTOR: {
3463 SDValue SrcOp = Op.getOperand(0);
3464 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3465 "Expected SPLAT_VECTOR implicit truncation");
3466 // Implicitly truncate the bits to match the official semantics of
3467 // SPLAT_VECTOR.
3468 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3469 break;
3471 case ISD::SPLAT_VECTOR_PARTS: {
3472 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3473 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3474 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3475 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3476 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3478 break;
3480 case ISD::STEP_VECTOR: {
3481 const APInt &Step = Op.getConstantOperandAPInt(0);
3483 if (Step.isPowerOf2())
3484 Known.Zero.setLowBits(Step.logBase2());
3486 const Function &F = getMachineFunction().getFunction();
3488 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3489 break;
3490 const APInt MinNumElts =
3491 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3493 bool Overflow;
3494 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3495 .getUnsignedMax()
3496 .umul_ov(MinNumElts, Overflow);
3497 if (Overflow)
3498 break;
3500 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3501 if (Overflow)
3502 break;
3504 Known.Zero.setHighBits(MaxValue.countl_zero());
3505 break;
3507 case ISD::BUILD_VECTOR:
3508 assert(!Op.getValueType().isScalableVector());
3509 // Collect the known bits that are shared by every demanded vector element.
3510 Known.Zero.setAllBits(); Known.One.setAllBits();
3511 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3512 if (!DemandedElts[i])
3513 continue;
3515 SDValue SrcOp = Op.getOperand(i);
3516 Known2 = computeKnownBits(SrcOp, Depth + 1);
3518 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3519 if (SrcOp.getValueSizeInBits() != BitWidth) {
3520 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3521 "Expected BUILD_VECTOR implicit truncation");
3522 Known2 = Known2.trunc(BitWidth);
3525 // Known bits are the values that are shared by every demanded element.
3526 Known = Known.intersectWith(Known2);
3528 // If we don't know any bits, early out.
3529 if (Known.isUnknown())
3530 break;
3532 break;
3533 case ISD::VECTOR_SHUFFLE: {
3534 assert(!Op.getValueType().isScalableVector());
3535 // Collect the known bits that are shared by every vector element referenced
3536 // by the shuffle.
3537 APInt DemandedLHS, DemandedRHS;
3538 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3539 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3540 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3541 DemandedLHS, DemandedRHS))
3542 break;
3544 // Known bits are the values that are shared by every demanded element.
3545 Known.Zero.setAllBits(); Known.One.setAllBits();
3546 if (!!DemandedLHS) {
3547 SDValue LHS = Op.getOperand(0);
3548 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3549 Known = Known.intersectWith(Known2);
3551 // If we don't know any bits, early out.
3552 if (Known.isUnknown())
3553 break;
3554 if (!!DemandedRHS) {
3555 SDValue RHS = Op.getOperand(1);
3556 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3557 Known = Known.intersectWith(Known2);
3559 break;
3561 case ISD::VSCALE: {
3562 const Function &F = getMachineFunction().getFunction();
3563 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3564 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3565 break;
3567 case ISD::CONCAT_VECTORS: {
3568 if (Op.getValueType().isScalableVector())
3569 break;
3570 // Split DemandedElts and test each of the demanded subvectors.
3571 Known.Zero.setAllBits(); Known.One.setAllBits();
3572 EVT SubVectorVT = Op.getOperand(0).getValueType();
3573 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3574 unsigned NumSubVectors = Op.getNumOperands();
3575 for (unsigned i = 0; i != NumSubVectors; ++i) {
3576 APInt DemandedSub =
3577 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3578 if (!!DemandedSub) {
3579 SDValue Sub = Op.getOperand(i);
3580 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3581 Known = Known.intersectWith(Known2);
3583 // If we don't know any bits, early out.
3584 if (Known.isUnknown())
3585 break;
3587 break;
3589 case ISD::INSERT_SUBVECTOR: {
3590 if (Op.getValueType().isScalableVector())
3591 break;
3592 // Demand any elements from the subvector and the remainder from the src its
3593 // inserted into.
3594 SDValue Src = Op.getOperand(0);
3595 SDValue Sub = Op.getOperand(1);
3596 uint64_t Idx = Op.getConstantOperandVal(2);
3597 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3598 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3599 APInt DemandedSrcElts = DemandedElts;
3600 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3602 Known.One.setAllBits();
3603 Known.Zero.setAllBits();
3604 if (!!DemandedSubElts) {
3605 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3606 if (Known.isUnknown())
3607 break; // early-out.
3609 if (!!DemandedSrcElts) {
3610 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3611 Known = Known.intersectWith(Known2);
3613 break;
3615 case ISD::EXTRACT_SUBVECTOR: {
3616 // Offset the demanded elts by the subvector index.
3617 SDValue Src = Op.getOperand(0);
3618 // Bail until we can represent demanded elements for scalable vectors.
3619 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3620 break;
3621 uint64_t Idx = Op.getConstantOperandVal(1);
3622 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3623 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3624 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3625 break;
3627 case ISD::SCALAR_TO_VECTOR: {
3628 if (Op.getValueType().isScalableVector())
3629 break;
3630 // We know about scalar_to_vector as much as we know about it source,
3631 // which becomes the first element of otherwise unknown vector.
3632 if (DemandedElts != 1)
3633 break;
3635 SDValue N0 = Op.getOperand(0);
3636 Known = computeKnownBits(N0, Depth + 1);
3637 if (N0.getValueSizeInBits() != BitWidth)
3638 Known = Known.trunc(BitWidth);
3640 break;
3642 case ISD::BITCAST: {
3643 if (Op.getValueType().isScalableVector())
3644 break;
3646 SDValue N0 = Op.getOperand(0);
3647 EVT SubVT = N0.getValueType();
3648 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3650 // Ignore bitcasts from unsupported types.
3651 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3652 break;
3654 // Fast handling of 'identity' bitcasts.
3655 if (BitWidth == SubBitWidth) {
3656 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3657 break;
3660 bool IsLE = getDataLayout().isLittleEndian();
3662 // Bitcast 'small element' vector to 'large element' scalar/vector.
3663 if ((BitWidth % SubBitWidth) == 0) {
3664 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3666 // Collect known bits for the (larger) output by collecting the known
3667 // bits from each set of sub elements and shift these into place.
3668 // We need to separately call computeKnownBits for each set of
3669 // sub elements as the knownbits for each is likely to be different.
3670 unsigned SubScale = BitWidth / SubBitWidth;
3671 APInt SubDemandedElts(NumElts * SubScale, 0);
3672 for (unsigned i = 0; i != NumElts; ++i)
3673 if (DemandedElts[i])
3674 SubDemandedElts.setBit(i * SubScale);
3676 for (unsigned i = 0; i != SubScale; ++i) {
3677 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3678 Depth + 1);
3679 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3680 Known.insertBits(Known2, SubBitWidth * Shifts);
3684 // Bitcast 'large element' scalar/vector to 'small element' vector.
3685 if ((SubBitWidth % BitWidth) == 0) {
3686 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3688 // Collect known bits for the (smaller) output by collecting the known
3689 // bits from the overlapping larger input elements and extracting the
3690 // sub sections we actually care about.
3691 unsigned SubScale = SubBitWidth / BitWidth;
3692 APInt SubDemandedElts =
3693 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3694 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3696 Known.Zero.setAllBits(); Known.One.setAllBits();
3697 for (unsigned i = 0; i != NumElts; ++i)
3698 if (DemandedElts[i]) {
3699 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3700 unsigned Offset = (Shifts % SubScale) * BitWidth;
3701 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3702 // If we don't know any bits, early out.
3703 if (Known.isUnknown())
3704 break;
3707 break;
3709 case ISD::AND:
3710 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3711 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3713 Known &= Known2;
3714 break;
3715 case ISD::OR:
3716 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3717 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3719 Known |= Known2;
3720 break;
3721 case ISD::XOR:
3722 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3723 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3725 Known ^= Known2;
3726 break;
3727 case ISD::MUL: {
3728 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3729 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3730 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3731 // TODO: SelfMultiply can be poison, but not undef.
3732 if (SelfMultiply)
3733 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3734 Op.getOperand(0), DemandedElts, false, Depth + 1);
3735 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3737 // If the multiplication is known not to overflow, the product of a number
3738 // with itself is non-negative. Only do this if we didn't already computed
3739 // the opposite value for the sign bit.
3740 if (Op->getFlags().hasNoSignedWrap() &&
3741 Op.getOperand(0) == Op.getOperand(1) &&
3742 !Known.isNegative())
3743 Known.makeNonNegative();
3744 break;
3746 case ISD::MULHU: {
3747 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3748 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3749 Known = KnownBits::mulhu(Known, Known2);
3750 break;
3752 case ISD::MULHS: {
3753 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3754 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3755 Known = KnownBits::mulhs(Known, Known2);
3756 break;
3758 case ISD::ABDU: {
3759 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3760 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761 Known = KnownBits::abdu(Known, Known2);
3762 break;
3764 case ISD::ABDS: {
3765 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3766 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767 Known = KnownBits::abds(Known, Known2);
3768 unsigned SignBits1 =
3769 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3770 if (SignBits1 == 1)
3771 break;
3772 unsigned SignBits0 =
3773 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3774 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3775 break;
3777 case ISD::UMUL_LOHI: {
3778 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3779 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3780 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3781 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3782 if (Op.getResNo() == 0)
3783 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3784 else
3785 Known = KnownBits::mulhu(Known, Known2);
3786 break;
3788 case ISD::SMUL_LOHI: {
3789 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3790 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3791 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3792 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3793 if (Op.getResNo() == 0)
3794 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3795 else
3796 Known = KnownBits::mulhs(Known, Known2);
3797 break;
3799 case ISD::AVGFLOORU: {
3800 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3801 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3802 Known = KnownBits::avgFloorU(Known, Known2);
3803 break;
3805 case ISD::AVGCEILU: {
3806 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3807 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3808 Known = KnownBits::avgCeilU(Known, Known2);
3809 break;
3811 case ISD::AVGFLOORS: {
3812 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3813 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3814 Known = KnownBits::avgFloorS(Known, Known2);
3815 break;
3817 case ISD::AVGCEILS: {
3818 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3819 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3820 Known = KnownBits::avgCeilS(Known, Known2);
3821 break;
3823 case ISD::SELECT:
3824 case ISD::VSELECT:
3825 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3826 // If we don't know any bits, early out.
3827 if (Known.isUnknown())
3828 break;
3829 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3831 // Only known if known in both the LHS and RHS.
3832 Known = Known.intersectWith(Known2);
3833 break;
3834 case ISD::SELECT_CC:
3835 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3836 // If we don't know any bits, early out.
3837 if (Known.isUnknown())
3838 break;
3839 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3841 // Only known if known in both the LHS and RHS.
3842 Known = Known.intersectWith(Known2);
3843 break;
3844 case ISD::SMULO:
3845 case ISD::UMULO:
3846 if (Op.getResNo() != 1)
3847 break;
3848 // The boolean result conforms to getBooleanContents.
3849 // If we know the result of a setcc has the top bits zero, use this info.
3850 // We know that we have an integer-based boolean since these operations
3851 // are only available for integer.
3852 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3853 TargetLowering::ZeroOrOneBooleanContent &&
3854 BitWidth > 1)
3855 Known.Zero.setBitsFrom(1);
3856 break;
3857 case ISD::SETCC:
3858 case ISD::SETCCCARRY:
3859 case ISD::STRICT_FSETCC:
3860 case ISD::STRICT_FSETCCS: {
3861 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3862 // If we know the result of a setcc has the top bits zero, use this info.
3863 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3864 TargetLowering::ZeroOrOneBooleanContent &&
3865 BitWidth > 1)
3866 Known.Zero.setBitsFrom(1);
3867 break;
3869 case ISD::SHL: {
3870 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3871 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3873 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3874 bool NSW = Op->getFlags().hasNoSignedWrap();
3876 bool ShAmtNonZero = Known2.isNonZero();
3878 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3880 // Minimum shift low bits are known zero.
3881 if (std::optional<uint64_t> ShMinAmt =
3882 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3883 Known.Zero.setLowBits(*ShMinAmt);
3884 break;
3886 case ISD::SRL:
3887 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3888 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3889 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3890 Op->getFlags().hasExact());
3892 // Minimum shift high bits are known zero.
3893 if (std::optional<uint64_t> ShMinAmt =
3894 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3895 Known.Zero.setHighBits(*ShMinAmt);
3896 break;
3897 case ISD::SRA:
3898 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3899 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3900 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3901 Op->getFlags().hasExact());
3902 break;
3903 case ISD::FSHL:
3904 case ISD::FSHR:
3905 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3906 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3908 // For fshl, 0-shift returns the 1st arg.
3909 // For fshr, 0-shift returns the 2nd arg.
3910 if (Amt == 0) {
3911 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3912 DemandedElts, Depth + 1);
3913 break;
3916 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3917 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3918 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3919 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3920 if (Opcode == ISD::FSHL) {
3921 Known.One <<= Amt;
3922 Known.Zero <<= Amt;
3923 Known2.One.lshrInPlace(BitWidth - Amt);
3924 Known2.Zero.lshrInPlace(BitWidth - Amt);
3925 } else {
3926 Known.One <<= BitWidth - Amt;
3927 Known.Zero <<= BitWidth - Amt;
3928 Known2.One.lshrInPlace(Amt);
3929 Known2.Zero.lshrInPlace(Amt);
3931 Known = Known.unionWith(Known2);
3933 break;
3934 case ISD::SHL_PARTS:
3935 case ISD::SRA_PARTS:
3936 case ISD::SRL_PARTS: {
3937 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3939 // Collect lo/hi source values and concatenate.
3940 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3941 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3942 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3943 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3944 Known = Known2.concat(Known);
3946 // Collect shift amount.
3947 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3949 if (Opcode == ISD::SHL_PARTS)
3950 Known = KnownBits::shl(Known, Known2);
3951 else if (Opcode == ISD::SRA_PARTS)
3952 Known = KnownBits::ashr(Known, Known2);
3953 else // if (Opcode == ISD::SRL_PARTS)
3954 Known = KnownBits::lshr(Known, Known2);
3956 // TODO: Minimum shift low/high bits are known zero.
3958 if (Op.getResNo() == 0)
3959 Known = Known.extractBits(LoBits, 0);
3960 else
3961 Known = Known.extractBits(HiBits, LoBits);
3962 break;
3964 case ISD::SIGN_EXTEND_INREG: {
3965 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3966 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3967 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3968 break;
3970 case ISD::CTTZ:
3971 case ISD::CTTZ_ZERO_UNDEF: {
3972 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3973 // If we have a known 1, its position is our upper bound.
3974 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3975 unsigned LowBits = llvm::bit_width(PossibleTZ);
3976 Known.Zero.setBitsFrom(LowBits);
3977 break;
3979 case ISD::CTLZ:
3980 case ISD::CTLZ_ZERO_UNDEF: {
3981 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3982 // If we have a known 1, its position is our upper bound.
3983 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3984 unsigned LowBits = llvm::bit_width(PossibleLZ);
3985 Known.Zero.setBitsFrom(LowBits);
3986 break;
3988 case ISD::CTPOP: {
3989 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3990 // If we know some of the bits are zero, they can't be one.
3991 unsigned PossibleOnes = Known2.countMaxPopulation();
3992 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3993 break;
3995 case ISD::PARITY: {
3996 // Parity returns 0 everywhere but the LSB.
3997 Known.Zero.setBitsFrom(1);
3998 break;
4000 case ISD::MGATHER:
4001 case ISD::MLOAD: {
4002 ISD::LoadExtType ETy =
4003 (Opcode == ISD::MGATHER)
4004 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
4005 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
4006 if (ETy == ISD::ZEXTLOAD) {
4007 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
4008 KnownBits Known0(MemVT.getScalarSizeInBits());
4009 return Known0.zext(BitWidth);
4011 break;
4013 case ISD::LOAD: {
4014 LoadSDNode *LD = cast<LoadSDNode>(Op);
4015 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
4016 if (ISD::isNON_EXTLoad(LD) && Cst) {
4017 // Determine any common known bits from the loaded constant pool value.
4018 Type *CstTy = Cst->getType();
4019 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
4020 !Op.getValueType().isScalableVector()) {
4021 // If its a vector splat, then we can (quickly) reuse the scalar path.
4022 // NOTE: We assume all elements match and none are UNDEF.
4023 if (CstTy->isVectorTy()) {
4024 if (const Constant *Splat = Cst->getSplatValue()) {
4025 Cst = Splat;
4026 CstTy = Cst->getType();
4029 // TODO - do we need to handle different bitwidths?
4030 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
4031 // Iterate across all vector elements finding common known bits.
4032 Known.One.setAllBits();
4033 Known.Zero.setAllBits();
4034 for (unsigned i = 0; i != NumElts; ++i) {
4035 if (!DemandedElts[i])
4036 continue;
4037 if (Constant *Elt = Cst->getAggregateElement(i)) {
4038 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4039 const APInt &Value = CInt->getValue();
4040 Known.One &= Value;
4041 Known.Zero &= ~Value;
4042 continue;
4044 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4045 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4046 Known.One &= Value;
4047 Known.Zero &= ~Value;
4048 continue;
4051 Known.One.clearAllBits();
4052 Known.Zero.clearAllBits();
4053 break;
4055 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4056 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4057 Known = KnownBits::makeConstant(CInt->getValue());
4058 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4059 Known =
4060 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4064 } else if (Op.getResNo() == 0) {
4065 KnownBits Known0(!LD->getMemoryVT().isScalableVT()
4066 ? LD->getMemoryVT().getFixedSizeInBits()
4067 : BitWidth);
4068 EVT VT = Op.getValueType();
4069 // Fill in any known bits from range information. There are 3 types being
4070 // used. The results VT (same vector elt size as BitWidth), the loaded
4071 // MemoryVT (which may or may not be vector) and the range VTs original
4072 // type. The range matadata needs the full range (i.e
4073 // MemoryVT().getSizeInBits()), which is truncated to the correct elt size
4074 // if it is know. These are then extended to the original VT sizes below.
4075 if (const MDNode *MD = LD->getRanges()) {
4076 computeKnownBitsFromRangeMetadata(*MD, Known0);
4077 if (VT.isVector()) {
4078 // Handle truncation to the first demanded element.
4079 // TODO: Figure out which demanded elements are covered
4080 if (DemandedElts != 1 || !getDataLayout().isLittleEndian())
4081 break;
4082 Known0 = Known0.trunc(BitWidth);
4086 if (LD->getMemoryVT().isVector())
4087 Known0 = Known0.trunc(LD->getMemoryVT().getScalarSizeInBits());
4089 // Extend the Known bits from memory to the size of the result.
4090 if (ISD::isZEXTLoad(Op.getNode()))
4091 Known = Known0.zext(BitWidth);
4092 else if (ISD::isSEXTLoad(Op.getNode()))
4093 Known = Known0.sext(BitWidth);
4094 else if (ISD::isEXTLoad(Op.getNode()))
4095 Known = Known0.anyext(BitWidth);
4096 else
4097 Known = Known0;
4098 assert(Known.getBitWidth() == BitWidth);
4099 return Known;
4101 break;
4103 case ISD::ZERO_EXTEND_VECTOR_INREG: {
4104 if (Op.getValueType().isScalableVector())
4105 break;
4106 EVT InVT = Op.getOperand(0).getValueType();
4107 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4108 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4109 Known = Known.zext(BitWidth);
4110 break;
4112 case ISD::ZERO_EXTEND: {
4113 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4114 Known = Known.zext(BitWidth);
4115 break;
4117 case ISD::SIGN_EXTEND_VECTOR_INREG: {
4118 if (Op.getValueType().isScalableVector())
4119 break;
4120 EVT InVT = Op.getOperand(0).getValueType();
4121 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4122 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4123 // If the sign bit is known to be zero or one, then sext will extend
4124 // it to the top bits, else it will just zext.
4125 Known = Known.sext(BitWidth);
4126 break;
4128 case ISD::SIGN_EXTEND: {
4129 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4130 // If the sign bit is known to be zero or one, then sext will extend
4131 // it to the top bits, else it will just zext.
4132 Known = Known.sext(BitWidth);
4133 break;
4135 case ISD::ANY_EXTEND_VECTOR_INREG: {
4136 if (Op.getValueType().isScalableVector())
4137 break;
4138 EVT InVT = Op.getOperand(0).getValueType();
4139 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4140 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4141 Known = Known.anyext(BitWidth);
4142 break;
4144 case ISD::ANY_EXTEND: {
4145 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4146 Known = Known.anyext(BitWidth);
4147 break;
4149 case ISD::TRUNCATE: {
4150 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4151 Known = Known.trunc(BitWidth);
4152 break;
4154 case ISD::AssertZext: {
4155 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4156 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
4157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4158 Known.Zero |= (~InMask);
4159 Known.One &= (~Known.Zero);
4160 break;
4162 case ISD::AssertAlign: {
4163 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4164 assert(LogOfAlign != 0);
4166 // TODO: Should use maximum with source
4167 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4168 // well as clearing one bits.
4169 Known.Zero.setLowBits(LogOfAlign);
4170 Known.One.clearLowBits(LogOfAlign);
4171 break;
4173 case ISD::FGETSIGN:
4174 // All bits are zero except the low bit.
4175 Known.Zero.setBitsFrom(1);
4176 break;
4177 case ISD::ADD:
4178 case ISD::SUB: {
4179 SDNodeFlags Flags = Op.getNode()->getFlags();
4180 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4181 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4182 Known = KnownBits::computeForAddSub(
4183 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4184 Flags.hasNoUnsignedWrap(), Known, Known2);
4185 break;
4187 case ISD::USUBO:
4188 case ISD::SSUBO:
4189 case ISD::USUBO_CARRY:
4190 case ISD::SSUBO_CARRY:
4191 if (Op.getResNo() == 1) {
4192 // If we know the result of a setcc has the top bits zero, use this info.
4193 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4194 TargetLowering::ZeroOrOneBooleanContent &&
4195 BitWidth > 1)
4196 Known.Zero.setBitsFrom(1);
4197 break;
4199 [[fallthrough]];
4200 case ISD::SUBC: {
4201 assert(Op.getResNo() == 0 &&
4202 "We only compute knownbits for the difference here.");
4204 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4205 KnownBits Borrow(1);
4206 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4207 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4208 // Borrow has bit width 1
4209 Borrow = Borrow.trunc(1);
4210 } else {
4211 Borrow.setAllZero();
4214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4215 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4216 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4217 break;
4219 case ISD::UADDO:
4220 case ISD::SADDO:
4221 case ISD::UADDO_CARRY:
4222 case ISD::SADDO_CARRY:
4223 if (Op.getResNo() == 1) {
4224 // If we know the result of a setcc has the top bits zero, use this info.
4225 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4226 TargetLowering::ZeroOrOneBooleanContent &&
4227 BitWidth > 1)
4228 Known.Zero.setBitsFrom(1);
4229 break;
4231 [[fallthrough]];
4232 case ISD::ADDC:
4233 case ISD::ADDE: {
4234 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4236 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4237 KnownBits Carry(1);
4238 if (Opcode == ISD::ADDE)
4239 // Can't track carry from glue, set carry to unknown.
4240 Carry.resetAll();
4241 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4242 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4243 // Carry has bit width 1
4244 Carry = Carry.trunc(1);
4245 } else {
4246 Carry.setAllZero();
4249 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4250 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4251 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4252 break;
4254 case ISD::UDIV: {
4255 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4256 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4257 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4258 break;
4260 case ISD::SDIV: {
4261 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4262 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4263 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4264 break;
4266 case ISD::SREM: {
4267 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4268 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4269 Known = KnownBits::srem(Known, Known2);
4270 break;
4272 case ISD::UREM: {
4273 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4274 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4275 Known = KnownBits::urem(Known, Known2);
4276 break;
4278 case ISD::EXTRACT_ELEMENT: {
4279 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4280 const unsigned Index = Op.getConstantOperandVal(1);
4281 const unsigned EltBitWidth = Op.getValueSizeInBits();
4283 // Remove low part of known bits mask
4284 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4285 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4287 // Remove high part of known bit mask
4288 Known = Known.trunc(EltBitWidth);
4289 break;
4291 case ISD::EXTRACT_VECTOR_ELT: {
4292 SDValue InVec = Op.getOperand(0);
4293 SDValue EltNo = Op.getOperand(1);
4294 EVT VecVT = InVec.getValueType();
4295 // computeKnownBits not yet implemented for scalable vectors.
4296 if (VecVT.isScalableVector())
4297 break;
4298 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4299 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4301 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4302 // anything about the extended bits.
4303 if (BitWidth > EltBitWidth)
4304 Known = Known.trunc(EltBitWidth);
4306 // If we know the element index, just demand that vector element, else for
4307 // an unknown element index, ignore DemandedElts and demand them all.
4308 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4309 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4310 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4311 DemandedSrcElts =
4312 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4314 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4315 if (BitWidth > EltBitWidth)
4316 Known = Known.anyext(BitWidth);
4317 break;
4319 case ISD::INSERT_VECTOR_ELT: {
4320 if (Op.getValueType().isScalableVector())
4321 break;
4323 // If we know the element index, split the demand between the
4324 // source vector and the inserted element, otherwise assume we need
4325 // the original demanded vector elements and the value.
4326 SDValue InVec = Op.getOperand(0);
4327 SDValue InVal = Op.getOperand(1);
4328 SDValue EltNo = Op.getOperand(2);
4329 bool DemandedVal = true;
4330 APInt DemandedVecElts = DemandedElts;
4331 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4332 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4333 unsigned EltIdx = CEltNo->getZExtValue();
4334 DemandedVal = !!DemandedElts[EltIdx];
4335 DemandedVecElts.clearBit(EltIdx);
4337 Known.One.setAllBits();
4338 Known.Zero.setAllBits();
4339 if (DemandedVal) {
4340 Known2 = computeKnownBits(InVal, Depth + 1);
4341 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4343 if (!!DemandedVecElts) {
4344 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4345 Known = Known.intersectWith(Known2);
4347 break;
4349 case ISD::BITREVERSE: {
4350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4351 Known = Known2.reverseBits();
4352 break;
4354 case ISD::BSWAP: {
4355 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4356 Known = Known2.byteSwap();
4357 break;
4359 case ISD::ABS: {
4360 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4361 Known = Known2.abs();
4362 Known.Zero.setHighBits(
4363 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4364 break;
4366 case ISD::USUBSAT: {
4367 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4368 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4369 Known = KnownBits::usub_sat(Known, Known2);
4370 break;
4372 case ISD::UMIN: {
4373 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4374 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4375 Known = KnownBits::umin(Known, Known2);
4376 break;
4378 case ISD::UMAX: {
4379 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4380 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4381 Known = KnownBits::umax(Known, Known2);
4382 break;
4384 case ISD::SMIN:
4385 case ISD::SMAX: {
4386 // If we have a clamp pattern, we know that the number of sign bits will be
4387 // the minimum of the clamp min/max range.
4388 bool IsMax = (Opcode == ISD::SMAX);
4389 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4390 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4391 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4392 CstHigh =
4393 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4394 if (CstLow && CstHigh) {
4395 if (!IsMax)
4396 std::swap(CstLow, CstHigh);
4398 const APInt &ValueLow = CstLow->getAPIntValue();
4399 const APInt &ValueHigh = CstHigh->getAPIntValue();
4400 if (ValueLow.sle(ValueHigh)) {
4401 unsigned LowSignBits = ValueLow.getNumSignBits();
4402 unsigned HighSignBits = ValueHigh.getNumSignBits();
4403 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4404 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4405 Known.One.setHighBits(MinSignBits);
4406 break;
4408 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4409 Known.Zero.setHighBits(MinSignBits);
4410 break;
4415 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4416 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4417 if (IsMax)
4418 Known = KnownBits::smax(Known, Known2);
4419 else
4420 Known = KnownBits::smin(Known, Known2);
4422 // For SMAX, if CstLow is non-negative we know the result will be
4423 // non-negative and thus all sign bits are 0.
4424 // TODO: There's an equivalent of this for smin with negative constant for
4425 // known ones.
4426 if (IsMax && CstLow) {
4427 const APInt &ValueLow = CstLow->getAPIntValue();
4428 if (ValueLow.isNonNegative()) {
4429 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4430 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4434 break;
4436 case ISD::UINT_TO_FP: {
4437 Known.makeNonNegative();
4438 break;
4440 case ISD::SINT_TO_FP: {
4441 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4442 if (Known2.isNonNegative())
4443 Known.makeNonNegative();
4444 else if (Known2.isNegative())
4445 Known.makeNegative();
4446 break;
4448 case ISD::FP_TO_UINT_SAT: {
4449 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4450 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4451 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
4452 break;
4454 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4455 if (Op.getResNo() == 1) {
4456 // The boolean result conforms to getBooleanContents.
4457 // If we know the result of a setcc has the top bits zero, use this info.
4458 // We know that we have an integer-based boolean since these operations
4459 // are only available for integer.
4460 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4461 TargetLowering::ZeroOrOneBooleanContent &&
4462 BitWidth > 1)
4463 Known.Zero.setBitsFrom(1);
4464 break;
4466 [[fallthrough]];
4467 case ISD::ATOMIC_CMP_SWAP:
4468 case ISD::ATOMIC_SWAP:
4469 case ISD::ATOMIC_LOAD_ADD:
4470 case ISD::ATOMIC_LOAD_SUB:
4471 case ISD::ATOMIC_LOAD_AND:
4472 case ISD::ATOMIC_LOAD_CLR:
4473 case ISD::ATOMIC_LOAD_OR:
4474 case ISD::ATOMIC_LOAD_XOR:
4475 case ISD::ATOMIC_LOAD_NAND:
4476 case ISD::ATOMIC_LOAD_MIN:
4477 case ISD::ATOMIC_LOAD_MAX:
4478 case ISD::ATOMIC_LOAD_UMIN:
4479 case ISD::ATOMIC_LOAD_UMAX:
4480 case ISD::ATOMIC_LOAD: {
4481 unsigned MemBits =
4482 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4483 // If we are looking at the loaded value.
4484 if (Op.getResNo() == 0) {
4485 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4486 Known.Zero.setBitsFrom(MemBits);
4487 else if (Op->getOpcode() == ISD::ATOMIC_LOAD &&
4488 cast<AtomicSDNode>(Op)->getExtensionType() == ISD::ZEXTLOAD)
4489 Known.Zero.setBitsFrom(MemBits);
4491 break;
4493 case ISD::FrameIndex:
4494 case ISD::TargetFrameIndex:
4495 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4496 Known, getMachineFunction());
4497 break;
4499 default:
4500 if (Opcode < ISD::BUILTIN_OP_END)
4501 break;
4502 [[fallthrough]];
4503 case ISD::INTRINSIC_WO_CHAIN:
4504 case ISD::INTRINSIC_W_CHAIN:
4505 case ISD::INTRINSIC_VOID:
4506 // TODO: Probably okay to remove after audit; here to reduce change size
4507 // in initial enablement patch for scalable vectors
4508 if (Op.getValueType().isScalableVector())
4509 break;
4511 // Allow the target to implement this method for its nodes.
4512 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4513 break;
4516 return Known;
4519 /// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4520 static SelectionDAG::OverflowKind mapOverflowResult(ConstantRange::OverflowResult OR) {
4521 switch (OR) {
4522 case ConstantRange::OverflowResult::MayOverflow:
4523 return SelectionDAG::OFK_Sometime;
4524 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4525 case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4526 return SelectionDAG::OFK_Always;
4527 case ConstantRange::OverflowResult::NeverOverflows:
4528 return SelectionDAG::OFK_Never;
4530 llvm_unreachable("Unknown OverflowResult");
4533 SelectionDAG::OverflowKind
4534 SelectionDAG::computeOverflowForSignedAdd(SDValue N0, SDValue N1) const {
4535 // X + 0 never overflow
4536 if (isNullConstant(N1))
4537 return OFK_Never;
4539 // If both operands each have at least two sign bits, the addition
4540 // cannot overflow.
4541 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4542 return OFK_Never;
4544 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4545 return OFK_Sometime;
4548 SelectionDAG::OverflowKind
4549 SelectionDAG::computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const {
4550 // X + 0 never overflow
4551 if (isNullConstant(N1))
4552 return OFK_Never;
4554 // mulhi + 1 never overflow
4555 KnownBits N1Known = computeKnownBits(N1);
4556 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4557 N1Known.getMaxValue().ult(2))
4558 return OFK_Never;
4560 KnownBits N0Known = computeKnownBits(N0);
4561 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4562 N0Known.getMaxValue().ult(2))
4563 return OFK_Never;
4565 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4566 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4567 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4568 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4571 SelectionDAG::OverflowKind
4572 SelectionDAG::computeOverflowForSignedSub(SDValue N0, SDValue N1) const {
4573 // X - 0 never overflow
4574 if (isNullConstant(N1))
4575 return OFK_Never;
4577 // If both operands each have at least two sign bits, the subtraction
4578 // cannot overflow.
4579 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4580 return OFK_Never;
4582 KnownBits N0Known = computeKnownBits(N0);
4583 KnownBits N1Known = computeKnownBits(N1);
4584 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4585 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4586 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4589 SelectionDAG::OverflowKind
4590 SelectionDAG::computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const {
4591 // X - 0 never overflow
4592 if (isNullConstant(N1))
4593 return OFK_Never;
4595 KnownBits N0Known = computeKnownBits(N0);
4596 KnownBits N1Known = computeKnownBits(N1);
4597 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4598 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4599 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4602 SelectionDAG::OverflowKind
4603 SelectionDAG::computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const {
4604 // X * 0 and X * 1 never overflow.
4605 if (isNullConstant(N1) || isOneConstant(N1))
4606 return OFK_Never;
4608 KnownBits N0Known = computeKnownBits(N0);
4609 KnownBits N1Known = computeKnownBits(N1);
4610 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4611 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4612 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4615 SelectionDAG::OverflowKind
4616 SelectionDAG::computeOverflowForSignedMul(SDValue N0, SDValue N1) const {
4617 // X * 0 and X * 1 never overflow.
4618 if (isNullConstant(N1) || isOneConstant(N1))
4619 return OFK_Never;
4621 // Get the size of the result.
4622 unsigned BitWidth = N0.getScalarValueSizeInBits();
4624 // Sum of the sign bits.
4625 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4627 // If we have enough sign bits, then there's no overflow.
4628 if (SignBits > BitWidth + 1)
4629 return OFK_Never;
4631 if (SignBits == BitWidth + 1) {
4632 // The overflow occurs when the true multiplication of the
4633 // the operands is the minimum negative number.
4634 KnownBits N0Known = computeKnownBits(N0);
4635 KnownBits N1Known = computeKnownBits(N1);
4636 // If one of the operands is non-negative, then there's no
4637 // overflow.
4638 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4639 return OFK_Never;
4642 return OFK_Sometime;
4645 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth) const {
4646 if (Depth >= MaxRecursionDepth)
4647 return false; // Limit search depth.
4649 EVT OpVT = Val.getValueType();
4650 unsigned BitWidth = OpVT.getScalarSizeInBits();
4652 // Is the constant a known power of 2?
4653 if (ISD::matchUnaryPredicate(Val, [BitWidth](ConstantSDNode *C) {
4654 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4656 return true;
4658 // A left-shift of a constant one will have exactly one bit set because
4659 // shifting the bit off the end is undefined.
4660 if (Val.getOpcode() == ISD::SHL) {
4661 auto *C = isConstOrConstSplat(Val.getOperand(0));
4662 if (C && C->getAPIntValue() == 1)
4663 return true;
4664 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4665 isKnownNeverZero(Val, Depth);
4668 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4669 // one bit set.
4670 if (Val.getOpcode() == ISD::SRL) {
4671 auto *C = isConstOrConstSplat(Val.getOperand(0));
4672 if (C && C->getAPIntValue().isSignMask())
4673 return true;
4674 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4675 isKnownNeverZero(Val, Depth);
4678 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4679 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4681 // Are all operands of a build vector constant powers of two?
4682 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4683 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4684 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4685 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4686 return false;
4688 return true;
4690 // Is the operand of a splat vector a constant power of two?
4691 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4692 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
4693 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4694 return true;
4696 // vscale(power-of-two) is a power-of-two for some targets
4697 if (Val.getOpcode() == ISD::VSCALE &&
4698 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4699 isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1))
4700 return true;
4702 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4703 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4704 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4705 isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4707 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4708 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4709 isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1);
4711 // Looking for `x & -x` pattern:
4712 // If x == 0:
4713 // x & -x -> 0
4714 // If x != 0:
4715 // x & -x -> non-zero pow2
4716 // so if we find the pattern return whether we know `x` is non-zero.
4717 SDValue X;
4718 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4719 return isKnownNeverZero(X, Depth);
4721 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4722 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4724 // More could be done here, though the above checks are enough
4725 // to handle some common cases.
4726 return false;
4729 bool SelectionDAG::isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth) const {
4730 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4731 return C1->getValueAPF().getExactLog2Abs() >= 0;
4733 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4734 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4736 return false;
4739 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
4740 EVT VT = Op.getValueType();
4742 // Since the number of lanes in a scalable vector is unknown at compile time,
4743 // we track one bit which is implicitly broadcast to all lanes. This means
4744 // that all lanes in a scalable vector are considered demanded.
4745 APInt DemandedElts = VT.isFixedLengthVector()
4746 ? APInt::getAllOnes(VT.getVectorNumElements())
4747 : APInt(1, 1);
4748 return ComputeNumSignBits(Op, DemandedElts, Depth);
4751 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4752 unsigned Depth) const {
4753 EVT VT = Op.getValueType();
4754 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4755 unsigned VTBits = VT.getScalarSizeInBits();
4756 unsigned NumElts = DemandedElts.getBitWidth();
4757 unsigned Tmp, Tmp2;
4758 unsigned FirstAnswer = 1;
4760 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4761 const APInt &Val = C->getAPIntValue();
4762 return Val.getNumSignBits();
4765 if (Depth >= MaxRecursionDepth)
4766 return 1; // Limit search depth.
4768 if (!DemandedElts)
4769 return 1; // No demanded elts, better to assume we don't know anything.
4771 unsigned Opcode = Op.getOpcode();
4772 switch (Opcode) {
4773 default: break;
4774 case ISD::AssertSext:
4775 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4776 return VTBits-Tmp+1;
4777 case ISD::AssertZext:
4778 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4779 return VTBits-Tmp;
4780 case ISD::MERGE_VALUES:
4781 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4782 Depth + 1);
4783 case ISD::SPLAT_VECTOR: {
4784 // Check if the sign bits of source go down as far as the truncated value.
4785 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4786 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4787 if (NumSrcSignBits > (NumSrcBits - VTBits))
4788 return NumSrcSignBits - (NumSrcBits - VTBits);
4789 break;
4791 case ISD::BUILD_VECTOR:
4792 assert(!VT.isScalableVector());
4793 Tmp = VTBits;
4794 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4795 if (!DemandedElts[i])
4796 continue;
4798 SDValue SrcOp = Op.getOperand(i);
4799 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4800 // for constant nodes to ensure we only look at the sign bits.
4801 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SrcOp)) {
4802 APInt T = C->getAPIntValue().trunc(VTBits);
4803 Tmp2 = T.getNumSignBits();
4804 } else {
4805 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4807 if (SrcOp.getValueSizeInBits() != VTBits) {
4808 assert(SrcOp.getValueSizeInBits() > VTBits &&
4809 "Expected BUILD_VECTOR implicit truncation");
4810 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4811 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4814 Tmp = std::min(Tmp, Tmp2);
4816 return Tmp;
4818 case ISD::VECTOR_SHUFFLE: {
4819 // Collect the minimum number of sign bits that are shared by every vector
4820 // element referenced by the shuffle.
4821 APInt DemandedLHS, DemandedRHS;
4822 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4823 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4824 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4825 DemandedLHS, DemandedRHS))
4826 return 1;
4828 Tmp = std::numeric_limits<unsigned>::max();
4829 if (!!DemandedLHS)
4830 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4831 if (!!DemandedRHS) {
4832 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4833 Tmp = std::min(Tmp, Tmp2);
4835 // If we don't know anything, early out and try computeKnownBits fall-back.
4836 if (Tmp == 1)
4837 break;
4838 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4839 return Tmp;
4842 case ISD::BITCAST: {
4843 if (VT.isScalableVector())
4844 break;
4845 SDValue N0 = Op.getOperand(0);
4846 EVT SrcVT = N0.getValueType();
4847 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4849 // Ignore bitcasts from unsupported types..
4850 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4851 break;
4853 // Fast handling of 'identity' bitcasts.
4854 if (VTBits == SrcBits)
4855 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4857 bool IsLE = getDataLayout().isLittleEndian();
4859 // Bitcast 'large element' scalar/vector to 'small element' vector.
4860 if ((SrcBits % VTBits) == 0) {
4861 assert(VT.isVector() && "Expected bitcast to vector");
4863 unsigned Scale = SrcBits / VTBits;
4864 APInt SrcDemandedElts =
4865 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4867 // Fast case - sign splat can be simply split across the small elements.
4868 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4869 if (Tmp == SrcBits)
4870 return VTBits;
4872 // Slow case - determine how far the sign extends into each sub-element.
4873 Tmp2 = VTBits;
4874 for (unsigned i = 0; i != NumElts; ++i)
4875 if (DemandedElts[i]) {
4876 unsigned SubOffset = i % Scale;
4877 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4878 SubOffset = SubOffset * VTBits;
4879 if (Tmp <= SubOffset)
4880 return 1;
4881 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4883 return Tmp2;
4885 break;
4888 case ISD::FP_TO_SINT_SAT:
4889 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4890 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4891 return VTBits - Tmp + 1;
4892 case ISD::SIGN_EXTEND:
4893 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4894 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4895 case ISD::SIGN_EXTEND_INREG:
4896 // Max of the input and what this extends.
4897 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4898 Tmp = VTBits-Tmp+1;
4899 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4900 return std::max(Tmp, Tmp2);
4901 case ISD::SIGN_EXTEND_VECTOR_INREG: {
4902 if (VT.isScalableVector())
4903 break;
4904 SDValue Src = Op.getOperand(0);
4905 EVT SrcVT = Src.getValueType();
4906 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4907 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4908 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4910 case ISD::SRA:
4911 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4912 // SRA X, C -> adds C sign bits.
4913 if (std::optional<uint64_t> ShAmt =
4914 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4915 Tmp = std::min<uint64_t>(Tmp + *ShAmt, VTBits);
4916 return Tmp;
4917 case ISD::SHL:
4918 if (std::optional<ConstantRange> ShAmtRange =
4919 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4920 uint64_t MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4921 uint64_t MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4922 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4923 // shifted out, then we can compute the number of sign bits for the
4924 // operand being extended. A future improvement could be to pass along the
4925 // "shifted left by" information in the recursive calls to
4926 // ComputeKnownSignBits. Allowing us to handle this more generically.
4927 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4928 SDValue Ext = Op.getOperand(0);
4929 EVT ExtVT = Ext.getValueType();
4930 SDValue Extendee = Ext.getOperand(0);
4931 EVT ExtendeeVT = Extendee.getValueType();
4932 uint64_t SizeDifference =
4933 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4934 if (SizeDifference <= MinShAmt) {
4935 Tmp = SizeDifference +
4936 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4937 if (MaxShAmt < Tmp)
4938 return Tmp - MaxShAmt;
4941 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4942 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4943 if (MaxShAmt < Tmp)
4944 return Tmp - MaxShAmt;
4946 break;
4947 case ISD::AND:
4948 case ISD::OR:
4949 case ISD::XOR: // NOT is handled here.
4950 // Logical binary ops preserve the number of sign bits at the worst.
4951 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4952 if (Tmp != 1) {
4953 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4954 FirstAnswer = std::min(Tmp, Tmp2);
4955 // We computed what we know about the sign bits as our first
4956 // answer. Now proceed to the generic code that uses
4957 // computeKnownBits, and pick whichever answer is better.
4959 break;
4961 case ISD::SELECT:
4962 case ISD::VSELECT:
4963 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4964 if (Tmp == 1) return 1; // Early out.
4965 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4966 return std::min(Tmp, Tmp2);
4967 case ISD::SELECT_CC:
4968 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4969 if (Tmp == 1) return 1; // Early out.
4970 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4971 return std::min(Tmp, Tmp2);
4973 case ISD::SMIN:
4974 case ISD::SMAX: {
4975 // If we have a clamp pattern, we know that the number of sign bits will be
4976 // the minimum of the clamp min/max range.
4977 bool IsMax = (Opcode == ISD::SMAX);
4978 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4979 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4980 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4981 CstHigh =
4982 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4983 if (CstLow && CstHigh) {
4984 if (!IsMax)
4985 std::swap(CstLow, CstHigh);
4986 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4987 Tmp = CstLow->getAPIntValue().getNumSignBits();
4988 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4989 return std::min(Tmp, Tmp2);
4993 // Fallback - just get the minimum number of sign bits of the operands.
4994 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4995 if (Tmp == 1)
4996 return 1; // Early out.
4997 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4998 return std::min(Tmp, Tmp2);
5000 case ISD::UMIN:
5001 case ISD::UMAX:
5002 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5003 if (Tmp == 1)
5004 return 1; // Early out.
5005 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5006 return std::min(Tmp, Tmp2);
5007 case ISD::SSUBO_CARRY:
5008 case ISD::USUBO_CARRY:
5009 // sub_carry(x,x,c) -> 0/-1 (sext carry)
5010 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
5011 return VTBits;
5012 [[fallthrough]];
5013 case ISD::SADDO:
5014 case ISD::UADDO:
5015 case ISD::SADDO_CARRY:
5016 case ISD::UADDO_CARRY:
5017 case ISD::SSUBO:
5018 case ISD::USUBO:
5019 case ISD::SMULO:
5020 case ISD::UMULO:
5021 if (Op.getResNo() != 1)
5022 break;
5023 // The boolean result conforms to getBooleanContents. Fall through.
5024 // If setcc returns 0/-1, all bits are sign bits.
5025 // We know that we have an integer-based boolean since these operations
5026 // are only available for integer.
5027 if (TLI->getBooleanContents(VT.isVector(), false) ==
5028 TargetLowering::ZeroOrNegativeOneBooleanContent)
5029 return VTBits;
5030 break;
5031 case ISD::SETCC:
5032 case ISD::SETCCCARRY:
5033 case ISD::STRICT_FSETCC:
5034 case ISD::STRICT_FSETCCS: {
5035 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5036 // If setcc returns 0/-1, all bits are sign bits.
5037 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5038 TargetLowering::ZeroOrNegativeOneBooleanContent)
5039 return VTBits;
5040 break;
5042 case ISD::ROTL:
5043 case ISD::ROTR:
5044 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5046 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5047 if (Tmp == VTBits)
5048 return VTBits;
5050 if (ConstantSDNode *C =
5051 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5052 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5054 // Handle rotate right by N like a rotate left by 32-N.
5055 if (Opcode == ISD::ROTR)
5056 RotAmt = (VTBits - RotAmt) % VTBits;
5058 // If we aren't rotating out all of the known-in sign bits, return the
5059 // number that are left. This handles rotl(sext(x), 1) for example.
5060 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5062 break;
5063 case ISD::ADD:
5064 case ISD::ADDC:
5065 // Add can have at most one carry bit. Thus we know that the output
5066 // is, at worst, one more bit than the inputs.
5067 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5068 if (Tmp == 1) return 1; // Early out.
5070 // Special case decrementing a value (ADD X, -1):
5071 if (ConstantSDNode *CRHS =
5072 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5073 if (CRHS->isAllOnes()) {
5074 KnownBits Known =
5075 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5077 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5078 // sign bits set.
5079 if ((Known.Zero | 1).isAllOnes())
5080 return VTBits;
5082 // If we are subtracting one from a positive number, there is no carry
5083 // out of the result.
5084 if (Known.isNonNegative())
5085 return Tmp;
5088 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5089 if (Tmp2 == 1) return 1; // Early out.
5090 return std::min(Tmp, Tmp2) - 1;
5091 case ISD::SUB:
5092 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5093 if (Tmp2 == 1) return 1; // Early out.
5095 // Handle NEG.
5096 if (ConstantSDNode *CLHS =
5097 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5098 if (CLHS->isZero()) {
5099 KnownBits Known =
5100 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5101 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5102 // sign bits set.
5103 if ((Known.Zero | 1).isAllOnes())
5104 return VTBits;
5106 // If the input is known to be positive (the sign bit is known clear),
5107 // the output of the NEG has the same number of sign bits as the input.
5108 if (Known.isNonNegative())
5109 return Tmp2;
5111 // Otherwise, we treat this like a SUB.
5114 // Sub can have at most one carry bit. Thus we know that the output
5115 // is, at worst, one more bit than the inputs.
5116 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5117 if (Tmp == 1) return 1; // Early out.
5118 return std::min(Tmp, Tmp2) - 1;
5119 case ISD::MUL: {
5120 // The output of the Mul can be at most twice the valid bits in the inputs.
5121 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5122 if (SignBitsOp0 == 1)
5123 break;
5124 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5125 if (SignBitsOp1 == 1)
5126 break;
5127 unsigned OutValidBits =
5128 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5129 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5131 case ISD::AVGCEILS:
5132 case ISD::AVGFLOORS:
5133 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5134 if (Tmp == 1)
5135 return 1; // Early out.
5136 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5137 return std::min(Tmp, Tmp2);
5138 case ISD::SREM:
5139 // The sign bit is the LHS's sign bit, except when the result of the
5140 // remainder is zero. The magnitude of the result should be less than or
5141 // equal to the magnitude of the LHS. Therefore, the result should have
5142 // at least as many sign bits as the left hand side.
5143 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5144 case ISD::TRUNCATE: {
5145 // Check if the sign bits of source go down as far as the truncated value.
5146 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5147 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5148 if (NumSrcSignBits > (NumSrcBits - VTBits))
5149 return NumSrcSignBits - (NumSrcBits - VTBits);
5150 break;
5152 case ISD::EXTRACT_ELEMENT: {
5153 if (VT.isScalableVector())
5154 break;
5155 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5156 const int BitWidth = Op.getValueSizeInBits();
5157 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5159 // Get reverse index (starting from 1), Op1 value indexes elements from
5160 // little end. Sign starts at big end.
5161 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5163 // If the sign portion ends in our element the subtraction gives correct
5164 // result. Otherwise it gives either negative or > bitwidth result
5165 return std::clamp(KnownSign - rIndex * BitWidth, 0, BitWidth);
5167 case ISD::INSERT_VECTOR_ELT: {
5168 if (VT.isScalableVector())
5169 break;
5170 // If we know the element index, split the demand between the
5171 // source vector and the inserted element, otherwise assume we need
5172 // the original demanded vector elements and the value.
5173 SDValue InVec = Op.getOperand(0);
5174 SDValue InVal = Op.getOperand(1);
5175 SDValue EltNo = Op.getOperand(2);
5176 bool DemandedVal = true;
5177 APInt DemandedVecElts = DemandedElts;
5178 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5179 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5180 unsigned EltIdx = CEltNo->getZExtValue();
5181 DemandedVal = !!DemandedElts[EltIdx];
5182 DemandedVecElts.clearBit(EltIdx);
5184 Tmp = std::numeric_limits<unsigned>::max();
5185 if (DemandedVal) {
5186 // TODO - handle implicit truncation of inserted elements.
5187 if (InVal.getScalarValueSizeInBits() != VTBits)
5188 break;
5189 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5190 Tmp = std::min(Tmp, Tmp2);
5192 if (!!DemandedVecElts) {
5193 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5194 Tmp = std::min(Tmp, Tmp2);
5196 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5197 return Tmp;
5199 case ISD::EXTRACT_VECTOR_ELT: {
5200 assert(!VT.isScalableVector());
5201 SDValue InVec = Op.getOperand(0);
5202 SDValue EltNo = Op.getOperand(1);
5203 EVT VecVT = InVec.getValueType();
5204 // ComputeNumSignBits not yet implemented for scalable vectors.
5205 if (VecVT.isScalableVector())
5206 break;
5207 const unsigned BitWidth = Op.getValueSizeInBits();
5208 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5209 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5211 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5212 // anything about sign bits. But if the sizes match we can derive knowledge
5213 // about sign bits from the vector operand.
5214 if (BitWidth != EltBitWidth)
5215 break;
5217 // If we know the element index, just demand that vector element, else for
5218 // an unknown element index, ignore DemandedElts and demand them all.
5219 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5220 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5221 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5222 DemandedSrcElts =
5223 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5225 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5227 case ISD::EXTRACT_SUBVECTOR: {
5228 // Offset the demanded elts by the subvector index.
5229 SDValue Src = Op.getOperand(0);
5230 // Bail until we can represent demanded elements for scalable vectors.
5231 if (Src.getValueType().isScalableVector())
5232 break;
5233 uint64_t Idx = Op.getConstantOperandVal(1);
5234 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5235 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5236 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5238 case ISD::CONCAT_VECTORS: {
5239 if (VT.isScalableVector())
5240 break;
5241 // Determine the minimum number of sign bits across all demanded
5242 // elts of the input vectors. Early out if the result is already 1.
5243 Tmp = std::numeric_limits<unsigned>::max();
5244 EVT SubVectorVT = Op.getOperand(0).getValueType();
5245 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5246 unsigned NumSubVectors = Op.getNumOperands();
5247 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5248 APInt DemandedSub =
5249 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5250 if (!DemandedSub)
5251 continue;
5252 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5253 Tmp = std::min(Tmp, Tmp2);
5255 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5256 return Tmp;
5258 case ISD::INSERT_SUBVECTOR: {
5259 if (VT.isScalableVector())
5260 break;
5261 // Demand any elements from the subvector and the remainder from the src its
5262 // inserted into.
5263 SDValue Src = Op.getOperand(0);
5264 SDValue Sub = Op.getOperand(1);
5265 uint64_t Idx = Op.getConstantOperandVal(2);
5266 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5267 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5268 APInt DemandedSrcElts = DemandedElts;
5269 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
5271 Tmp = std::numeric_limits<unsigned>::max();
5272 if (!!DemandedSubElts) {
5273 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5274 if (Tmp == 1)
5275 return 1; // early-out
5277 if (!!DemandedSrcElts) {
5278 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5279 Tmp = std::min(Tmp, Tmp2);
5281 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5282 return Tmp;
5284 case ISD::LOAD: {
5285 LoadSDNode *LD = cast<LoadSDNode>(Op);
5286 if (const MDNode *Ranges = LD->getRanges()) {
5287 if (DemandedElts != 1)
5288 break;
5290 ConstantRange CR = getConstantRangeFromMetadata(*Ranges);
5291 if (VTBits > CR.getBitWidth()) {
5292 switch (LD->getExtensionType()) {
5293 case ISD::SEXTLOAD:
5294 CR = CR.signExtend(VTBits);
5295 break;
5296 case ISD::ZEXTLOAD:
5297 CR = CR.zeroExtend(VTBits);
5298 break;
5299 default:
5300 break;
5304 if (VTBits != CR.getBitWidth())
5305 break;
5306 return std::min(CR.getSignedMin().getNumSignBits(),
5307 CR.getSignedMax().getNumSignBits());
5310 break;
5312 case ISD::ATOMIC_CMP_SWAP:
5313 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5314 case ISD::ATOMIC_SWAP:
5315 case ISD::ATOMIC_LOAD_ADD:
5316 case ISD::ATOMIC_LOAD_SUB:
5317 case ISD::ATOMIC_LOAD_AND:
5318 case ISD::ATOMIC_LOAD_CLR:
5319 case ISD::ATOMIC_LOAD_OR:
5320 case ISD::ATOMIC_LOAD_XOR:
5321 case ISD::ATOMIC_LOAD_NAND:
5322 case ISD::ATOMIC_LOAD_MIN:
5323 case ISD::ATOMIC_LOAD_MAX:
5324 case ISD::ATOMIC_LOAD_UMIN:
5325 case ISD::ATOMIC_LOAD_UMAX:
5326 case ISD::ATOMIC_LOAD: {
5327 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
5328 // If we are looking at the loaded value.
5329 if (Op.getResNo() == 0) {
5330 if (Tmp == VTBits)
5331 return 1; // early-out
5332 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5333 return VTBits - Tmp + 1;
5334 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5335 return VTBits - Tmp;
5336 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5337 ISD::LoadExtType ETy = cast<AtomicSDNode>(Op)->getExtensionType();
5338 if (ETy == ISD::SEXTLOAD)
5339 return VTBits - Tmp + 1;
5340 if (ETy == ISD::ZEXTLOAD)
5341 return VTBits - Tmp;
5344 break;
5348 // If we are looking at the loaded value of the SDNode.
5349 if (Op.getResNo() == 0) {
5350 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5351 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5352 unsigned ExtType = LD->getExtensionType();
5353 switch (ExtType) {
5354 default: break;
5355 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5356 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5357 return VTBits - Tmp + 1;
5358 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5359 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5360 return VTBits - Tmp;
5361 case ISD::NON_EXTLOAD:
5362 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5363 // We only need to handle vectors - computeKnownBits should handle
5364 // scalar cases.
5365 Type *CstTy = Cst->getType();
5366 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5367 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5368 VTBits == CstTy->getScalarSizeInBits()) {
5369 Tmp = VTBits;
5370 for (unsigned i = 0; i != NumElts; ++i) {
5371 if (!DemandedElts[i])
5372 continue;
5373 if (Constant *Elt = Cst->getAggregateElement(i)) {
5374 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5375 const APInt &Value = CInt->getValue();
5376 Tmp = std::min(Tmp, Value.getNumSignBits());
5377 continue;
5379 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5380 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5381 Tmp = std::min(Tmp, Value.getNumSignBits());
5382 continue;
5385 // Unknown type. Conservatively assume no bits match sign bit.
5386 return 1;
5388 return Tmp;
5391 break;
5396 // Allow the target to implement this method for its nodes.
5397 if (Opcode >= ISD::BUILTIN_OP_END ||
5398 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5399 Opcode == ISD::INTRINSIC_W_CHAIN ||
5400 Opcode == ISD::INTRINSIC_VOID) {
5401 // TODO: This can probably be removed once target code is audited. This
5402 // is here purely to reduce patch size and review complexity.
5403 if (!VT.isScalableVector()) {
5404 unsigned NumBits =
5405 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5406 if (NumBits > 1)
5407 FirstAnswer = std::max(FirstAnswer, NumBits);
5411 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5412 // use this information.
5413 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5414 return std::max(FirstAnswer, Known.countMinSignBits());
5417 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
5418 unsigned Depth) const {
5419 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5420 return Op.getScalarValueSizeInBits() - SignBits + 1;
5423 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
5424 const APInt &DemandedElts,
5425 unsigned Depth) const {
5426 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5427 return Op.getScalarValueSizeInBits() - SignBits + 1;
5430 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
5431 unsigned Depth) const {
5432 // Early out for FREEZE.
5433 if (Op.getOpcode() == ISD::FREEZE)
5434 return true;
5436 EVT VT = Op.getValueType();
5437 APInt DemandedElts = VT.isFixedLengthVector()
5438 ? APInt::getAllOnes(VT.getVectorNumElements())
5439 : APInt(1, 1);
5440 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5443 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
5444 const APInt &DemandedElts,
5445 bool PoisonOnly,
5446 unsigned Depth) const {
5447 unsigned Opcode = Op.getOpcode();
5449 // Early out for FREEZE.
5450 if (Opcode == ISD::FREEZE)
5451 return true;
5453 if (Depth >= MaxRecursionDepth)
5454 return false; // Limit search depth.
5456 if (isIntOrFPConstant(Op))
5457 return true;
5459 switch (Opcode) {
5460 case ISD::CONDCODE:
5461 case ISD::VALUETYPE:
5462 case ISD::FrameIndex:
5463 case ISD::TargetFrameIndex:
5464 case ISD::CopyFromReg:
5465 return true;
5467 case ISD::UNDEF:
5468 return PoisonOnly;
5470 case ISD::BUILD_VECTOR:
5471 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5472 // this shouldn't affect the result.
5473 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5474 if (!DemandedElts[i])
5475 continue;
5476 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
5477 Depth + 1))
5478 return false;
5480 return true;
5482 case ISD::SPLAT_VECTOR:
5483 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5484 Depth + 1);
5486 case ISD::VECTOR_SHUFFLE: {
5487 APInt DemandedLHS, DemandedRHS;
5488 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5489 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5490 DemandedElts, DemandedLHS, DemandedRHS,
5491 /*AllowUndefElts=*/false))
5492 return false;
5493 if (!DemandedLHS.isZero() &&
5494 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5495 PoisonOnly, Depth + 1))
5496 return false;
5497 if (!DemandedRHS.isZero() &&
5498 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5499 PoisonOnly, Depth + 1))
5500 return false;
5501 return true;
5504 // TODO: Search for noundef attributes from library functions.
5506 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5508 default:
5509 // Allow the target to implement this method for its nodes.
5510 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5511 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5512 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5513 Op, DemandedElts, *this, PoisonOnly, Depth);
5514 break;
5517 // If Op can't create undef/poison and none of its operands are undef/poison
5518 // then Op is never undef/poison.
5519 // NOTE: TargetNodes can handle this in themselves in
5520 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5521 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5522 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5523 Depth) &&
5524 all_of(Op->ops(), [&](SDValue V) {
5525 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5529 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, bool PoisonOnly,
5530 bool ConsiderFlags,
5531 unsigned Depth) const {
5532 EVT VT = Op.getValueType();
5533 APInt DemandedElts = VT.isFixedLengthVector()
5534 ? APInt::getAllOnes(VT.getVectorNumElements())
5535 : APInt(1, 1);
5536 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5537 Depth);
5540 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
5541 bool PoisonOnly, bool ConsiderFlags,
5542 unsigned Depth) const {
5543 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5544 return true;
5546 unsigned Opcode = Op.getOpcode();
5547 switch (Opcode) {
5548 case ISD::FREEZE:
5549 case ISD::CONCAT_VECTORS:
5550 case ISD::INSERT_SUBVECTOR:
5551 case ISD::SADDSAT:
5552 case ISD::UADDSAT:
5553 case ISD::SSUBSAT:
5554 case ISD::USUBSAT:
5555 case ISD::MULHU:
5556 case ISD::MULHS:
5557 case ISD::SMIN:
5558 case ISD::SMAX:
5559 case ISD::UMIN:
5560 case ISD::UMAX:
5561 case ISD::AND:
5562 case ISD::XOR:
5563 case ISD::ROTL:
5564 case ISD::ROTR:
5565 case ISD::FSHL:
5566 case ISD::FSHR:
5567 case ISD::BSWAP:
5568 case ISD::CTPOP:
5569 case ISD::BITREVERSE:
5570 case ISD::PARITY:
5571 case ISD::SIGN_EXTEND:
5572 case ISD::TRUNCATE:
5573 case ISD::SIGN_EXTEND_INREG:
5574 case ISD::SIGN_EXTEND_VECTOR_INREG:
5575 case ISD::ZERO_EXTEND_VECTOR_INREG:
5576 case ISD::BITCAST:
5577 case ISD::BUILD_VECTOR:
5578 case ISD::BUILD_PAIR:
5579 case ISD::SPLAT_VECTOR:
5580 return false;
5582 case ISD::SELECT_CC:
5583 case ISD::SETCC: {
5584 // Integer setcc cannot create undef or poison.
5585 if (Op.getOperand(0).getValueType().isInteger())
5586 return false;
5588 // FP compares are more complicated. They can create poison for nan/infinity
5589 // based on options and flags. The options and flags also cause special
5590 // nonan condition codes to be used. Those condition codes may be preserved
5591 // even if the nonan flag is dropped somewhere.
5592 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5593 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5594 if (((unsigned)CCCode & 0x10U))
5595 return true;
5597 const TargetOptions &Options = getTarget().Options;
5598 return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5601 case ISD::OR:
5602 case ISD::ZERO_EXTEND:
5603 case ISD::ADD:
5604 case ISD::SUB:
5605 case ISD::MUL:
5606 // No poison except from flags (which is handled above)
5607 return false;
5609 case ISD::SHL:
5610 case ISD::SRL:
5611 case ISD::SRA:
5612 // If the max shift amount isn't in range, then the shift can
5613 // create poison.
5614 return !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedElts,
5615 PoisonOnly, Depth + 1) ||
5616 !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5618 case ISD::SCALAR_TO_VECTOR:
5619 // Check if we demand any upper (undef) elements.
5620 return !PoisonOnly && DemandedElts.ugt(1);
5622 case ISD::INSERT_VECTOR_ELT:
5623 case ISD::EXTRACT_VECTOR_ELT: {
5624 // Ensure that the element index is in bounds.
5625 EVT VecVT = Op.getOperand(0).getValueType();
5626 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5627 if (isGuaranteedNotToBeUndefOrPoison(Idx, DemandedElts, PoisonOnly,
5628 Depth + 1)) {
5629 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5630 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5632 return true;
5635 case ISD::VECTOR_SHUFFLE: {
5636 // Check for any demanded shuffle element that is undef.
5637 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5638 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5639 if (Elt < 0 && DemandedElts[Idx])
5640 return true;
5641 return false;
5644 default:
5645 // Allow the target to implement this method for its nodes.
5646 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5647 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5648 return TLI->canCreateUndefOrPoisonForTargetNode(
5649 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5650 break;
5653 // Be conservative and return true.
5654 return true;
5657 bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5658 unsigned Opcode = Op.getOpcode();
5659 if (Opcode == ISD::OR)
5660 return Op->getFlags().hasDisjoint() ||
5661 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5662 if (Opcode == ISD::XOR)
5663 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5664 return false;
5667 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
5668 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5669 (Op.getOpcode() == ISD::ADD || isADDLike(Op));
5672 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
5673 // If we're told that NaNs won't happen, assume they won't.
5674 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5675 return true;
5677 if (Depth >= MaxRecursionDepth)
5678 return false; // Limit search depth.
5680 // If the value is a constant, we can obviously see if it is a NaN or not.
5681 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
5682 return !C->getValueAPF().isNaN() ||
5683 (SNaN && !C->getValueAPF().isSignaling());
5686 unsigned Opcode = Op.getOpcode();
5687 switch (Opcode) {
5688 case ISD::FADD:
5689 case ISD::FSUB:
5690 case ISD::FMUL:
5691 case ISD::FDIV:
5692 case ISD::FREM:
5693 case ISD::FSIN:
5694 case ISD::FCOS:
5695 case ISD::FTAN:
5696 case ISD::FASIN:
5697 case ISD::FACOS:
5698 case ISD::FATAN:
5699 case ISD::FATAN2:
5700 case ISD::FSINH:
5701 case ISD::FCOSH:
5702 case ISD::FTANH:
5703 case ISD::FMA:
5704 case ISD::FMAD: {
5705 if (SNaN)
5706 return true;
5707 // TODO: Need isKnownNeverInfinity
5708 return false;
5710 case ISD::FCANONICALIZE:
5711 case ISD::FEXP:
5712 case ISD::FEXP2:
5713 case ISD::FEXP10:
5714 case ISD::FTRUNC:
5715 case ISD::FFLOOR:
5716 case ISD::FCEIL:
5717 case ISD::FROUND:
5718 case ISD::FROUNDEVEN:
5719 case ISD::LROUND:
5720 case ISD::LLROUND:
5721 case ISD::FRINT:
5722 case ISD::LRINT:
5723 case ISD::LLRINT:
5724 case ISD::FNEARBYINT:
5725 case ISD::FLDEXP: {
5726 if (SNaN)
5727 return true;
5728 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5730 case ISD::FABS:
5731 case ISD::FNEG:
5732 case ISD::FCOPYSIGN: {
5733 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5735 case ISD::SELECT:
5736 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
5737 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
5738 case ISD::FP_EXTEND:
5739 case ISD::FP_ROUND: {
5740 if (SNaN)
5741 return true;
5742 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5744 case ISD::SINT_TO_FP:
5745 case ISD::UINT_TO_FP:
5746 return true;
5747 case ISD::FSQRT: // Need is known positive
5748 case ISD::FLOG:
5749 case ISD::FLOG2:
5750 case ISD::FLOG10:
5751 case ISD::FPOWI:
5752 case ISD::FPOW: {
5753 if (SNaN)
5754 return true;
5755 // TODO: Refine on operand
5756 return false;
5758 case ISD::FMINNUM:
5759 case ISD::FMAXNUM:
5760 case ISD::FMINIMUMNUM:
5761 case ISD::FMAXIMUMNUM: {
5762 // Only one needs to be known not-nan, since it will be returned if the
5763 // other ends up being one.
5764 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
5765 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5767 case ISD::FMINNUM_IEEE:
5768 case ISD::FMAXNUM_IEEE: {
5769 if (SNaN)
5770 return true;
5771 // This can return a NaN if either operand is an sNaN, or if both operands
5772 // are NaN.
5773 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
5774 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
5775 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
5776 isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
5778 case ISD::FMINIMUM:
5779 case ISD::FMAXIMUM: {
5780 // TODO: Does this quiet or return the origina NaN as-is?
5781 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
5782 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5784 case ISD::EXTRACT_VECTOR_ELT: {
5785 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5787 case ISD::BUILD_VECTOR: {
5788 for (const SDValue &Opnd : Op->ops())
5789 if (!isKnownNeverNaN(Opnd, SNaN, Depth + 1))
5790 return false;
5791 return true;
5793 default:
5794 if (Opcode >= ISD::BUILTIN_OP_END ||
5795 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5796 Opcode == ISD::INTRINSIC_W_CHAIN ||
5797 Opcode == ISD::INTRINSIC_VOID) {
5798 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
5801 return false;
5805 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
5806 assert(Op.getValueType().isFloatingPoint() &&
5807 "Floating point type expected");
5809 // If the value is a constant, we can obviously see if it is a zero or not.
5810 return ISD::matchUnaryFpPredicate(
5811 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
5814 bool SelectionDAG::isKnownNeverZero(SDValue Op, unsigned Depth) const {
5815 if (Depth >= MaxRecursionDepth)
5816 return false; // Limit search depth.
5818 assert(!Op.getValueType().isFloatingPoint() &&
5819 "Floating point types unsupported - use isKnownNeverZeroFloat");
5821 // If the value is a constant, we can obviously see if it is a zero or not.
5822 if (ISD::matchUnaryPredicate(Op,
5823 [](ConstantSDNode *C) { return !C->isZero(); }))
5824 return true;
5826 // TODO: Recognize more cases here. Most of the cases are also incomplete to
5827 // some degree.
5828 switch (Op.getOpcode()) {
5829 default:
5830 break;
5832 case ISD::OR:
5833 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5834 isKnownNeverZero(Op.getOperand(0), Depth + 1);
5836 case ISD::VSELECT:
5837 case ISD::SELECT:
5838 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5839 isKnownNeverZero(Op.getOperand(2), Depth + 1);
5841 case ISD::SHL: {
5842 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5843 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5844 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
5845 // 1 << X is never zero.
5846 if (ValKnown.One[0])
5847 return true;
5848 // If max shift cnt of known ones is non-zero, result is non-zero.
5849 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
5850 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
5851 !ValKnown.One.shl(MaxCnt).isZero())
5852 return true;
5853 break;
5855 case ISD::UADDSAT:
5856 case ISD::UMAX:
5857 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5858 isKnownNeverZero(Op.getOperand(0), Depth + 1);
5860 // For smin/smax: If either operand is known negative/positive
5861 // respectively we don't need the other to be known at all.
5862 case ISD::SMAX: {
5863 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
5864 if (Op1.isStrictlyPositive())
5865 return true;
5867 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
5868 if (Op0.isStrictlyPositive())
5869 return true;
5871 if (Op1.isNonZero() && Op0.isNonZero())
5872 return true;
5874 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5875 isKnownNeverZero(Op.getOperand(0), Depth + 1);
5877 case ISD::SMIN: {
5878 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
5879 if (Op1.isNegative())
5880 return true;
5882 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
5883 if (Op0.isNegative())
5884 return true;
5886 if (Op1.isNonZero() && Op0.isNonZero())
5887 return true;
5889 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5890 isKnownNeverZero(Op.getOperand(0), Depth + 1);
5892 case ISD::UMIN:
5893 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5894 isKnownNeverZero(Op.getOperand(0), Depth + 1);
5896 case ISD::ROTL:
5897 case ISD::ROTR:
5898 case ISD::BITREVERSE:
5899 case ISD::BSWAP:
5900 case ISD::CTPOP:
5901 case ISD::ABS:
5902 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5904 case ISD::SRA:
5905 case ISD::SRL: {
5906 if (Op->getFlags().hasExact())
5907 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5908 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
5909 if (ValKnown.isNegative())
5910 return true;
5911 // If max shift cnt of known ones is non-zero, result is non-zero.
5912 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
5913 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
5914 !ValKnown.One.lshr(MaxCnt).isZero())
5915 return true;
5916 break;
5918 case ISD::UDIV:
5919 case ISD::SDIV:
5920 // div exact can only produce a zero if the dividend is zero.
5921 // TODO: For udiv this is also true if Op1 u<= Op0
5922 if (Op->getFlags().hasExact())
5923 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5924 break;
5926 case ISD::ADD:
5927 if (Op->getFlags().hasNoUnsignedWrap())
5928 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5929 isKnownNeverZero(Op.getOperand(0), Depth + 1))
5930 return true;
5931 // TODO: There are a lot more cases we can prove for add.
5932 break;
5934 case ISD::SUB: {
5935 if (isNullConstant(Op.getOperand(0)))
5936 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
5938 std::optional<bool> ne =
5939 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
5940 computeKnownBits(Op.getOperand(1), Depth + 1));
5941 return ne && *ne;
5944 case ISD::MUL:
5945 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5946 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5947 isKnownNeverZero(Op.getOperand(0), Depth + 1))
5948 return true;
5949 break;
5951 case ISD::ZERO_EXTEND:
5952 case ISD::SIGN_EXTEND:
5953 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5954 case ISD::VSCALE: {
5955 const Function &F = getMachineFunction().getFunction();
5956 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
5957 ConstantRange CR =
5958 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
5959 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
5960 return true;
5961 break;
5965 return computeKnownBits(Op, Depth).isNonZero();
5968 bool SelectionDAG::cannotBeOrderedNegativeFP(SDValue Op) const {
5969 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
5970 return !C1->isNegative();
5972 return Op.getOpcode() == ISD::FABS;
5975 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
5976 // Check the obvious case.
5977 if (A == B) return true;
5979 // For negative and positive zero.
5980 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
5981 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
5982 if (CA->isZero() && CB->isZero()) return true;
5984 // Otherwise they may not be equal.
5985 return false;
5988 // Only bits set in Mask must be negated, other bits may be arbitrary.
5989 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
5990 if (isBitwiseNot(V, AllowUndefs))
5991 return V.getOperand(0);
5993 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
5994 // bits in the non-extended part.
5995 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
5996 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
5997 return SDValue();
5998 SDValue ExtArg = V.getOperand(0);
5999 if (ExtArg.getScalarValueSizeInBits() >=
6000 MaskC->getAPIntValue().getActiveBits() &&
6001 isBitwiseNot(ExtArg, AllowUndefs) &&
6002 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6003 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6004 return ExtArg.getOperand(0).getOperand(0);
6005 return SDValue();
6008 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
6009 // Match masked merge pattern (X & ~M) op (Y & M)
6010 // Including degenerate case (X & ~M) op M
6011 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6012 SDValue Other) {
6013 if (SDValue NotOperand =
6014 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6015 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6016 NotOperand->getOpcode() == ISD::TRUNCATE)
6017 NotOperand = NotOperand->getOperand(0);
6019 if (Other == NotOperand)
6020 return true;
6021 if (Other->getOpcode() == ISD::AND)
6022 return NotOperand == Other->getOperand(0) ||
6023 NotOperand == Other->getOperand(1);
6025 return false;
6028 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6029 A = A->getOperand(0);
6031 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6032 B = B->getOperand(0);
6034 if (A->getOpcode() == ISD::AND)
6035 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6036 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6037 return false;
6040 // FIXME: unify with llvm::haveNoCommonBitsSet.
6041 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
6042 assert(A.getValueType() == B.getValueType() &&
6043 "Values must have the same type");
6044 if (haveNoCommonBitsSetCommutative(A, B) ||
6045 haveNoCommonBitsSetCommutative(B, A))
6046 return true;
6047 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
6048 computeKnownBits(B));
6051 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6052 SelectionDAG &DAG) {
6053 if (cast<ConstantSDNode>(Step)->isZero())
6054 return DAG.getConstant(0, DL, VT);
6056 return SDValue();
6059 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
6060 ArrayRef<SDValue> Ops,
6061 SelectionDAG &DAG) {
6062 int NumOps = Ops.size();
6063 assert(NumOps != 0 && "Can't build an empty vector!");
6064 assert(!VT.isScalableVector() &&
6065 "BUILD_VECTOR cannot be used with scalable types");
6066 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6067 "Incorrect element count in BUILD_VECTOR!");
6069 // BUILD_VECTOR of UNDEFs is UNDEF.
6070 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6071 return DAG.getUNDEF(VT);
6073 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6074 SDValue IdentitySrc;
6075 bool IsIdentity = true;
6076 for (int i = 0; i != NumOps; ++i) {
6077 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6078 Ops[i].getOperand(0).getValueType() != VT ||
6079 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6080 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6081 Ops[i].getConstantOperandAPInt(1) != i) {
6082 IsIdentity = false;
6083 break;
6085 IdentitySrc = Ops[i].getOperand(0);
6087 if (IsIdentity)
6088 return IdentitySrc;
6090 return SDValue();
6093 /// Try to simplify vector concatenation to an input value, undef, or build
6094 /// vector.
6095 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
6096 ArrayRef<SDValue> Ops,
6097 SelectionDAG &DAG) {
6098 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6099 assert(llvm::all_of(Ops,
6100 [Ops](SDValue Op) {
6101 return Ops[0].getValueType() == Op.getValueType();
6102 }) &&
6103 "Concatenation of vectors with inconsistent value types!");
6104 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6105 VT.getVectorElementCount() &&
6106 "Incorrect element count in vector concatenation!");
6108 if (Ops.size() == 1)
6109 return Ops[0];
6111 // Concat of UNDEFs is UNDEF.
6112 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6113 return DAG.getUNDEF(VT);
6115 // Scan the operands and look for extract operations from a single source
6116 // that correspond to insertion at the same location via this concatenation:
6117 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6118 SDValue IdentitySrc;
6119 bool IsIdentity = true;
6120 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6121 SDValue Op = Ops[i];
6122 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6123 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6124 Op.getOperand(0).getValueType() != VT ||
6125 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6126 Op.getConstantOperandVal(1) != IdentityIndex) {
6127 IsIdentity = false;
6128 break;
6130 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6131 "Unexpected identity source vector for concat of extracts");
6132 IdentitySrc = Op.getOperand(0);
6134 if (IsIdentity) {
6135 assert(IdentitySrc && "Failed to set source vector of extracts");
6136 return IdentitySrc;
6139 // The code below this point is only designed to work for fixed width
6140 // vectors, so we bail out for now.
6141 if (VT.isScalableVector())
6142 return SDValue();
6144 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6145 // simplified to one big BUILD_VECTOR.
6146 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6147 EVT SVT = VT.getScalarType();
6148 SmallVector<SDValue, 16> Elts;
6149 for (SDValue Op : Ops) {
6150 EVT OpVT = Op.getValueType();
6151 if (Op.isUndef())
6152 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6153 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6154 Elts.append(Op->op_begin(), Op->op_end());
6155 else
6156 return SDValue();
6159 // BUILD_VECTOR requires all inputs to be of the same type, find the
6160 // maximum type and extend them all.
6161 for (SDValue Op : Elts)
6162 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6164 if (SVT.bitsGT(VT.getScalarType())) {
6165 for (SDValue &Op : Elts) {
6166 if (Op.isUndef())
6167 Op = DAG.getUNDEF(SVT);
6168 else
6169 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6170 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6171 : DAG.getSExtOrTrunc(Op, DL, SVT);
6175 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6176 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6177 return V;
6180 /// Gets or creates the specified node.
6181 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6182 SDVTList VTs = getVTList(VT);
6183 FoldingSetNodeID ID;
6184 AddNodeIDNode(ID, Opcode, VTs, {});
6185 void *IP = nullptr;
6186 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6187 return SDValue(E, 0);
6189 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6190 CSEMap.InsertNode(N, IP);
6192 InsertNode(N);
6193 SDValue V = SDValue(N, 0);
6194 NewSDValueDbgMsg(V, "Creating new node: ", this);
6195 return V;
6198 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6199 SDValue N1) {
6200 SDNodeFlags Flags;
6201 if (Inserter)
6202 Flags = Inserter->getFlags();
6203 return getNode(Opcode, DL, VT, N1, Flags);
6206 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6207 SDValue N1, const SDNodeFlags Flags) {
6208 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6210 // Constant fold unary operations with a vector integer or float operand.
6211 switch (Opcode) {
6212 default:
6213 // FIXME: Entirely reasonable to perform folding of other unary
6214 // operations here as the need arises.
6215 break;
6216 case ISD::FNEG:
6217 case ISD::FABS:
6218 case ISD::FCEIL:
6219 case ISD::FTRUNC:
6220 case ISD::FFLOOR:
6221 case ISD::FP_EXTEND:
6222 case ISD::FP_TO_SINT:
6223 case ISD::FP_TO_UINT:
6224 case ISD::FP_TO_FP16:
6225 case ISD::FP_TO_BF16:
6226 case ISD::TRUNCATE:
6227 case ISD::ANY_EXTEND:
6228 case ISD::ZERO_EXTEND:
6229 case ISD::SIGN_EXTEND:
6230 case ISD::UINT_TO_FP:
6231 case ISD::SINT_TO_FP:
6232 case ISD::FP16_TO_FP:
6233 case ISD::BF16_TO_FP:
6234 case ISD::BITCAST:
6235 case ISD::ABS:
6236 case ISD::BITREVERSE:
6237 case ISD::BSWAP:
6238 case ISD::CTLZ:
6239 case ISD::CTLZ_ZERO_UNDEF:
6240 case ISD::CTTZ:
6241 case ISD::CTTZ_ZERO_UNDEF:
6242 case ISD::CTPOP:
6243 case ISD::STEP_VECTOR: {
6244 SDValue Ops = {N1};
6245 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6246 return Fold;
6250 unsigned OpOpcode = N1.getNode()->getOpcode();
6251 switch (Opcode) {
6252 case ISD::STEP_VECTOR:
6253 assert(VT.isScalableVector() &&
6254 "STEP_VECTOR can only be used with scalable types");
6255 assert(OpOpcode == ISD::TargetConstant &&
6256 VT.getVectorElementType() == N1.getValueType() &&
6257 "Unexpected step operand");
6258 break;
6259 case ISD::FREEZE:
6260 assert(VT == N1.getValueType() && "Unexpected VT!");
6261 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly*/ false,
6262 /*Depth*/ 1))
6263 return N1;
6264 break;
6265 case ISD::TokenFactor:
6266 case ISD::MERGE_VALUES:
6267 case ISD::CONCAT_VECTORS:
6268 return N1; // Factor, merge or concat of one node? No need.
6269 case ISD::BUILD_VECTOR: {
6270 // Attempt to simplify BUILD_VECTOR.
6271 SDValue Ops[] = {N1};
6272 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6273 return V;
6274 break;
6276 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6277 case ISD::FP_EXTEND:
6278 assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() &&
6279 "Invalid FP cast!");
6280 if (N1.getValueType() == VT) return N1; // noop conversion.
6281 assert((!VT.isVector() || VT.getVectorElementCount() ==
6282 N1.getValueType().getVectorElementCount()) &&
6283 "Vector element count mismatch!");
6284 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6285 if (N1.isUndef())
6286 return getUNDEF(VT);
6287 break;
6288 case ISD::FP_TO_SINT:
6289 case ISD::FP_TO_UINT:
6290 if (N1.isUndef())
6291 return getUNDEF(VT);
6292 break;
6293 case ISD::SINT_TO_FP:
6294 case ISD::UINT_TO_FP:
6295 // [us]itofp(undef) = 0, because the result value is bounded.
6296 if (N1.isUndef())
6297 return getConstantFP(0.0, DL, VT);
6298 break;
6299 case ISD::SIGN_EXTEND:
6300 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6301 "Invalid SIGN_EXTEND!");
6302 assert(VT.isVector() == N1.getValueType().isVector() &&
6303 "SIGN_EXTEND result type type should be vector iff the operand "
6304 "type is vector!");
6305 if (N1.getValueType() == VT) return N1; // noop extension
6306 assert((!VT.isVector() || VT.getVectorElementCount() ==
6307 N1.getValueType().getVectorElementCount()) &&
6308 "Vector element count mismatch!");
6309 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6310 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6311 SDNodeFlags Flags;
6312 if (OpOpcode == ISD::ZERO_EXTEND)
6313 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6314 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6316 if (OpOpcode == ISD::UNDEF)
6317 // sext(undef) = 0, because the top bits will all be the same.
6318 return getConstant(0, DL, VT);
6319 break;
6320 case ISD::ZERO_EXTEND:
6321 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6322 "Invalid ZERO_EXTEND!");
6323 assert(VT.isVector() == N1.getValueType().isVector() &&
6324 "ZERO_EXTEND result type type should be vector iff the operand "
6325 "type is vector!");
6326 if (N1.getValueType() == VT) return N1; // noop extension
6327 assert((!VT.isVector() || VT.getVectorElementCount() ==
6328 N1.getValueType().getVectorElementCount()) &&
6329 "Vector element count mismatch!");
6330 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6331 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6332 SDNodeFlags Flags;
6333 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6334 return getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6336 if (OpOpcode == ISD::UNDEF)
6337 // zext(undef) = 0, because the top bits will be zero.
6338 return getConstant(0, DL, VT);
6340 // Skip unnecessary zext_inreg pattern:
6341 // (zext (trunc x)) -> x iff the upper bits are known zero.
6342 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6343 // use to recognise zext_inreg patterns.
6344 if (OpOpcode == ISD::TRUNCATE) {
6345 SDValue OpOp = N1.getOperand(0);
6346 if (OpOp.getValueType() == VT) {
6347 if (OpOp.getOpcode() != ISD::AND) {
6348 APInt HiBits = APInt::getBitsSetFrom(VT.getScalarSizeInBits(),
6349 N1.getScalarValueSizeInBits());
6350 if (MaskedValueIsZero(OpOp, HiBits)) {
6351 transferDbgValues(N1, OpOp);
6352 return OpOp;
6357 break;
6358 case ISD::ANY_EXTEND:
6359 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6360 "Invalid ANY_EXTEND!");
6361 assert(VT.isVector() == N1.getValueType().isVector() &&
6362 "ANY_EXTEND result type type should be vector iff the operand "
6363 "type is vector!");
6364 if (N1.getValueType() == VT) return N1; // noop extension
6365 assert((!VT.isVector() || VT.getVectorElementCount() ==
6366 N1.getValueType().getVectorElementCount()) &&
6367 "Vector element count mismatch!");
6368 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6370 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6371 OpOpcode == ISD::ANY_EXTEND) {
6372 SDNodeFlags Flags;
6373 if (OpOpcode == ISD::ZERO_EXTEND)
6374 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6375 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6376 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6378 if (OpOpcode == ISD::UNDEF)
6379 return getUNDEF(VT);
6381 // (ext (trunc x)) -> x
6382 if (OpOpcode == ISD::TRUNCATE) {
6383 SDValue OpOp = N1.getOperand(0);
6384 if (OpOp.getValueType() == VT) {
6385 transferDbgValues(N1, OpOp);
6386 return OpOp;
6389 break;
6390 case ISD::TRUNCATE:
6391 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6392 "Invalid TRUNCATE!");
6393 assert(VT.isVector() == N1.getValueType().isVector() &&
6394 "TRUNCATE result type type should be vector iff the operand "
6395 "type is vector!");
6396 if (N1.getValueType() == VT) return N1; // noop truncate
6397 assert((!VT.isVector() || VT.getVectorElementCount() ==
6398 N1.getValueType().getVectorElementCount()) &&
6399 "Vector element count mismatch!");
6400 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6401 if (OpOpcode == ISD::TRUNCATE)
6402 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6403 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6404 OpOpcode == ISD::ANY_EXTEND) {
6405 // If the source is smaller than the dest, we still need an extend.
6406 if (N1.getOperand(0).getValueType().getScalarType().bitsLT(
6407 VT.getScalarType()))
6408 return getNode(OpOpcode, DL, VT, N1.getOperand(0));
6409 if (N1.getOperand(0).getValueType().bitsGT(VT))
6410 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6411 return N1.getOperand(0);
6413 if (OpOpcode == ISD::UNDEF)
6414 return getUNDEF(VT);
6415 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6416 return getVScale(DL, VT,
6417 N1.getConstantOperandAPInt(0).trunc(VT.getSizeInBits()));
6418 break;
6419 case ISD::ANY_EXTEND_VECTOR_INREG:
6420 case ISD::ZERO_EXTEND_VECTOR_INREG:
6421 case ISD::SIGN_EXTEND_VECTOR_INREG:
6422 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6423 assert(N1.getValueType().bitsLE(VT) &&
6424 "The input must be the same size or smaller than the result.");
6425 assert(VT.getVectorMinNumElements() <
6426 N1.getValueType().getVectorMinNumElements() &&
6427 "The destination vector type must have fewer lanes than the input.");
6428 break;
6429 case ISD::ABS:
6430 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6431 if (OpOpcode == ISD::UNDEF)
6432 return getConstant(0, DL, VT);
6433 break;
6434 case ISD::BSWAP:
6435 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6436 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6437 "BSWAP types must be a multiple of 16 bits!");
6438 if (OpOpcode == ISD::UNDEF)
6439 return getUNDEF(VT);
6440 // bswap(bswap(X)) -> X.
6441 if (OpOpcode == ISD::BSWAP)
6442 return N1.getOperand(0);
6443 break;
6444 case ISD::BITREVERSE:
6445 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6446 if (OpOpcode == ISD::UNDEF)
6447 return getUNDEF(VT);
6448 break;
6449 case ISD::BITCAST:
6450 assert(VT.getSizeInBits() == N1.getValueSizeInBits() &&
6451 "Cannot BITCAST between types of different sizes!");
6452 if (VT == N1.getValueType()) return N1; // noop conversion.
6453 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6454 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6455 if (OpOpcode == ISD::UNDEF)
6456 return getUNDEF(VT);
6457 break;
6458 case ISD::SCALAR_TO_VECTOR:
6459 assert(VT.isVector() && !N1.getValueType().isVector() &&
6460 (VT.getVectorElementType() == N1.getValueType() ||
6461 (VT.getVectorElementType().isInteger() &&
6462 N1.getValueType().isInteger() &&
6463 VT.getVectorElementType().bitsLE(N1.getValueType()))) &&
6464 "Illegal SCALAR_TO_VECTOR node!");
6465 if (OpOpcode == ISD::UNDEF)
6466 return getUNDEF(VT);
6467 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6468 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6469 isa<ConstantSDNode>(N1.getOperand(1)) &&
6470 N1.getConstantOperandVal(1) == 0 &&
6471 N1.getOperand(0).getValueType() == VT)
6472 return N1.getOperand(0);
6473 break;
6474 case ISD::FNEG:
6475 // Negation of an unknown bag of bits is still completely undefined.
6476 if (OpOpcode == ISD::UNDEF)
6477 return getUNDEF(VT);
6479 if (OpOpcode == ISD::FNEG) // --X -> X
6480 return N1.getOperand(0);
6481 break;
6482 case ISD::FABS:
6483 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6484 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6485 break;
6486 case ISD::VSCALE:
6487 assert(VT == N1.getValueType() && "Unexpected VT!");
6488 break;
6489 case ISD::CTPOP:
6490 if (N1.getValueType().getScalarType() == MVT::i1)
6491 return N1;
6492 break;
6493 case ISD::CTLZ:
6494 case ISD::CTTZ:
6495 if (N1.getValueType().getScalarType() == MVT::i1)
6496 return getNOT(DL, N1, N1.getValueType());
6497 break;
6498 case ISD::VECREDUCE_ADD:
6499 if (N1.getValueType().getScalarType() == MVT::i1)
6500 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6501 break;
6502 case ISD::VECREDUCE_SMIN:
6503 case ISD::VECREDUCE_UMAX:
6504 if (N1.getValueType().getScalarType() == MVT::i1)
6505 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6506 break;
6507 case ISD::VECREDUCE_SMAX:
6508 case ISD::VECREDUCE_UMIN:
6509 if (N1.getValueType().getScalarType() == MVT::i1)
6510 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6511 break;
6512 case ISD::SPLAT_VECTOR:
6513 assert(VT.isVector() && "Wrong return type!");
6514 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6515 // that for now.
6516 assert((VT.getVectorElementType() == N1.getValueType() ||
6517 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6518 (VT.getVectorElementType().isInteger() &&
6519 N1.getValueType().isInteger() &&
6520 VT.getVectorElementType().bitsLE(N1.getValueType()))) &&
6521 "Wrong operand type!");
6522 break;
6525 SDNode *N;
6526 SDVTList VTs = getVTList(VT);
6527 SDValue Ops[] = {N1};
6528 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6529 FoldingSetNodeID ID;
6530 AddNodeIDNode(ID, Opcode, VTs, Ops);
6531 void *IP = nullptr;
6532 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6533 E->intersectFlagsWith(Flags);
6534 return SDValue(E, 0);
6537 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6538 N->setFlags(Flags);
6539 createOperands(N, Ops);
6540 CSEMap.InsertNode(N, IP);
6541 } else {
6542 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6543 createOperands(N, Ops);
6546 InsertNode(N);
6547 SDValue V = SDValue(N, 0);
6548 NewSDValueDbgMsg(V, "Creating new node: ", this);
6549 return V;
6552 static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6553 const APInt &C2) {
6554 switch (Opcode) {
6555 case ISD::ADD: return C1 + C2;
6556 case ISD::SUB: return C1 - C2;
6557 case ISD::MUL: return C1 * C2;
6558 case ISD::AND: return C1 & C2;
6559 case ISD::OR: return C1 | C2;
6560 case ISD::XOR: return C1 ^ C2;
6561 case ISD::SHL: return C1 << C2;
6562 case ISD::SRL: return C1.lshr(C2);
6563 case ISD::SRA: return C1.ashr(C2);
6564 case ISD::ROTL: return C1.rotl(C2);
6565 case ISD::ROTR: return C1.rotr(C2);
6566 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6567 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6568 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6569 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6570 case ISD::SADDSAT: return C1.sadd_sat(C2);
6571 case ISD::UADDSAT: return C1.uadd_sat(C2);
6572 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6573 case ISD::USUBSAT: return C1.usub_sat(C2);
6574 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6575 case ISD::USHLSAT: return C1.ushl_sat(C2);
6576 case ISD::UDIV:
6577 if (!C2.getBoolValue())
6578 break;
6579 return C1.udiv(C2);
6580 case ISD::UREM:
6581 if (!C2.getBoolValue())
6582 break;
6583 return C1.urem(C2);
6584 case ISD::SDIV:
6585 if (!C2.getBoolValue())
6586 break;
6587 return C1.sdiv(C2);
6588 case ISD::SREM:
6589 if (!C2.getBoolValue())
6590 break;
6591 return C1.srem(C2);
6592 case ISD::AVGFLOORS:
6593 return APIntOps::avgFloorS(C1, C2);
6594 case ISD::AVGFLOORU:
6595 return APIntOps::avgFloorU(C1, C2);
6596 case ISD::AVGCEILS:
6597 return APIntOps::avgCeilS(C1, C2);
6598 case ISD::AVGCEILU:
6599 return APIntOps::avgCeilU(C1, C2);
6600 case ISD::ABDS:
6601 return APIntOps::abds(C1, C2);
6602 case ISD::ABDU:
6603 return APIntOps::abdu(C1, C2);
6604 case ISD::MULHS:
6605 return APIntOps::mulhs(C1, C2);
6606 case ISD::MULHU:
6607 return APIntOps::mulhu(C1, C2);
6609 return std::nullopt;
6611 // Handle constant folding with UNDEF.
6612 // TODO: Handle more cases.
6613 static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6614 bool IsUndef1, const APInt &C2,
6615 bool IsUndef2) {
6616 if (!(IsUndef1 || IsUndef2))
6617 return FoldValue(Opcode, C1, C2);
6619 // Fold and(x, undef) -> 0
6620 // Fold mul(x, undef) -> 0
6621 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6622 return APInt::getZero(C1.getBitWidth());
6624 return std::nullopt;
6627 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
6628 const GlobalAddressSDNode *GA,
6629 const SDNode *N2) {
6630 if (GA->getOpcode() != ISD::GlobalAddress)
6631 return SDValue();
6632 if (!TLI->isOffsetFoldingLegal(GA))
6633 return SDValue();
6634 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6635 if (!C2)
6636 return SDValue();
6637 int64_t Offset = C2->getSExtValue();
6638 switch (Opcode) {
6639 case ISD::ADD: break;
6640 case ISD::SUB: Offset = -uint64_t(Offset); break;
6641 default: return SDValue();
6643 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6644 GA->getOffset() + uint64_t(Offset));
6647 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
6648 switch (Opcode) {
6649 case ISD::SDIV:
6650 case ISD::UDIV:
6651 case ISD::SREM:
6652 case ISD::UREM: {
6653 // If a divisor is zero/undef or any element of a divisor vector is
6654 // zero/undef, the whole op is undef.
6655 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6656 SDValue Divisor = Ops[1];
6657 if (Divisor.isUndef() || isNullConstant(Divisor))
6658 return true;
6660 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6661 llvm::any_of(Divisor->op_values(),
6662 [](SDValue V) { return V.isUndef() ||
6663 isNullConstant(V); });
6664 // TODO: Handle signed overflow.
6666 // TODO: Handle oversized shifts.
6667 default:
6668 return false;
6672 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
6673 EVT VT, ArrayRef<SDValue> Ops,
6674 SDNodeFlags Flags) {
6675 // If the opcode is a target-specific ISD node, there's nothing we can
6676 // do here and the operand rules may not line up with the below, so
6677 // bail early.
6678 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6679 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6680 // foldCONCAT_VECTORS in getNode before this is called.
6681 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6682 return SDValue();
6684 unsigned NumOps = Ops.size();
6685 if (NumOps == 0)
6686 return SDValue();
6688 if (isUndef(Opcode, Ops))
6689 return getUNDEF(VT);
6691 // Handle unary special cases.
6692 if (NumOps == 1) {
6693 SDValue N1 = Ops[0];
6695 // Constant fold unary operations with an integer constant operand. Even
6696 // opaque constant will be folded, because the folding of unary operations
6697 // doesn't create new constants with different values. Nevertheless, the
6698 // opaque flag is preserved during folding to prevent future folding with
6699 // other constants.
6700 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6701 const APInt &Val = C->getAPIntValue();
6702 switch (Opcode) {
6703 case ISD::SIGN_EXTEND:
6704 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6705 C->isTargetOpcode(), C->isOpaque());
6706 case ISD::TRUNCATE:
6707 if (C->isOpaque())
6708 break;
6709 [[fallthrough]];
6710 case ISD::ZERO_EXTEND:
6711 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6712 C->isTargetOpcode(), C->isOpaque());
6713 case ISD::ANY_EXTEND:
6714 // Some targets like RISCV prefer to sign extend some types.
6715 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
6716 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6717 C->isTargetOpcode(), C->isOpaque());
6718 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6719 C->isTargetOpcode(), C->isOpaque());
6720 case ISD::ABS:
6721 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
6722 C->isOpaque());
6723 case ISD::BITREVERSE:
6724 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
6725 C->isOpaque());
6726 case ISD::BSWAP:
6727 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
6728 C->isOpaque());
6729 case ISD::CTPOP:
6730 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
6731 C->isOpaque());
6732 case ISD::CTLZ:
6733 case ISD::CTLZ_ZERO_UNDEF:
6734 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
6735 C->isOpaque());
6736 case ISD::CTTZ:
6737 case ISD::CTTZ_ZERO_UNDEF:
6738 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
6739 C->isOpaque());
6740 case ISD::UINT_TO_FP:
6741 case ISD::SINT_TO_FP: {
6742 APFloat FPV(VT.getFltSemantics(), APInt::getZero(VT.getSizeInBits()));
6743 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
6744 APFloat::rmNearestTiesToEven);
6745 return getConstantFP(FPV, DL, VT);
6747 case ISD::FP16_TO_FP:
6748 case ISD::BF16_TO_FP: {
6749 bool Ignored;
6750 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
6751 : APFloat::BFloat(),
6752 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
6754 // This can return overflow, underflow, or inexact; we don't care.
6755 // FIXME need to be more flexible about rounding mode.
6756 (void)FPV.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
6757 &Ignored);
6758 return getConstantFP(FPV, DL, VT);
6760 case ISD::STEP_VECTOR:
6761 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
6762 return V;
6763 break;
6764 case ISD::BITCAST:
6765 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
6766 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
6767 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
6768 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
6769 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
6770 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
6771 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
6772 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
6773 break;
6777 // Constant fold unary operations with a floating point constant operand.
6778 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
6779 APFloat V = C->getValueAPF(); // make copy
6780 switch (Opcode) {
6781 case ISD::FNEG:
6782 V.changeSign();
6783 return getConstantFP(V, DL, VT);
6784 case ISD::FABS:
6785 V.clearSign();
6786 return getConstantFP(V, DL, VT);
6787 case ISD::FCEIL: {
6788 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
6789 if (fs == APFloat::opOK || fs == APFloat::opInexact)
6790 return getConstantFP(V, DL, VT);
6791 return SDValue();
6793 case ISD::FTRUNC: {
6794 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
6795 if (fs == APFloat::opOK || fs == APFloat::opInexact)
6796 return getConstantFP(V, DL, VT);
6797 return SDValue();
6799 case ISD::FFLOOR: {
6800 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
6801 if (fs == APFloat::opOK || fs == APFloat::opInexact)
6802 return getConstantFP(V, DL, VT);
6803 return SDValue();
6805 case ISD::FP_EXTEND: {
6806 bool ignored;
6807 // This can return overflow, underflow, or inexact; we don't care.
6808 // FIXME need to be more flexible about rounding mode.
6809 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
6810 &ignored);
6811 return getConstantFP(V, DL, VT);
6813 case ISD::FP_TO_SINT:
6814 case ISD::FP_TO_UINT: {
6815 bool ignored;
6816 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
6817 // FIXME need to be more flexible about rounding mode.
6818 APFloat::opStatus s =
6819 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
6820 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
6821 break;
6822 return getConstant(IntVal, DL, VT);
6824 case ISD::FP_TO_FP16:
6825 case ISD::FP_TO_BF16: {
6826 bool Ignored;
6827 // This can return overflow, underflow, or inexact; we don't care.
6828 // FIXME need to be more flexible about rounding mode.
6829 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
6830 : APFloat::BFloat(),
6831 APFloat::rmNearestTiesToEven, &Ignored);
6832 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
6834 case ISD::BITCAST:
6835 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
6836 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
6837 VT);
6838 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
6839 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
6840 VT);
6841 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
6842 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
6843 VT);
6844 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
6845 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
6846 break;
6850 // Early-out if we failed to constant fold a bitcast.
6851 if (Opcode == ISD::BITCAST)
6852 return SDValue();
6855 // Handle binops special cases.
6856 if (NumOps == 2) {
6857 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
6858 return CFP;
6860 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
6861 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
6862 if (C1->isOpaque() || C2->isOpaque())
6863 return SDValue();
6865 std::optional<APInt> FoldAttempt =
6866 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
6867 if (!FoldAttempt)
6868 return SDValue();
6870 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
6871 assert((!Folded || !VT.isVector()) &&
6872 "Can't fold vectors ops with scalar operands");
6873 return Folded;
6877 // fold (add Sym, c) -> Sym+c
6878 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
6879 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
6880 if (TLI->isCommutativeBinOp(Opcode))
6881 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
6882 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
6884 // fold (sext_in_reg c1) -> c2
6885 if (Opcode == ISD::SIGN_EXTEND_INREG) {
6886 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
6888 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6889 unsigned FromBits = EVT.getScalarSizeInBits();
6890 Val <<= Val.getBitWidth() - FromBits;
6891 Val.ashrInPlace(Val.getBitWidth() - FromBits);
6892 return getConstant(Val, DL, ConstantVT);
6895 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
6896 const APInt &Val = C1->getAPIntValue();
6897 return SignExtendInReg(Val, VT);
6900 if (ISD::isBuildVectorOfConstantSDNodes(Ops[0].getNode())) {
6901 SmallVector<SDValue, 8> ScalarOps;
6902 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
6903 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
6904 SDValue Op = Ops[0].getOperand(I);
6905 if (Op.isUndef()) {
6906 ScalarOps.push_back(getUNDEF(OpVT));
6907 continue;
6909 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
6910 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
6912 return getBuildVector(VT, DL, ScalarOps);
6915 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
6916 isa<ConstantSDNode>(Ops[0].getOperand(0)))
6917 return getNode(ISD::SPLAT_VECTOR, DL, VT,
6918 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
6919 Ops[0].getOperand(0).getValueType()));
6923 // This is for vector folding only from here on.
6924 if (!VT.isVector())
6925 return SDValue();
6927 ElementCount NumElts = VT.getVectorElementCount();
6929 // See if we can fold through any bitcasted integer ops.
6930 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
6931 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
6932 (Ops[0].getOpcode() == ISD::BITCAST ||
6933 Ops[1].getOpcode() == ISD::BITCAST)) {
6934 SDValue N1 = peekThroughBitcasts(Ops[0]);
6935 SDValue N2 = peekThroughBitcasts(Ops[1]);
6936 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
6937 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
6938 if (BV1 && BV2 && N1.getValueType().isInteger() &&
6939 N2.getValueType().isInteger()) {
6940 bool IsLE = getDataLayout().isLittleEndian();
6941 unsigned EltBits = VT.getScalarSizeInBits();
6942 SmallVector<APInt> RawBits1, RawBits2;
6943 BitVector UndefElts1, UndefElts2;
6944 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
6945 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
6946 SmallVector<APInt> RawBits;
6947 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
6948 std::optional<APInt> Fold = FoldValueWithUndef(
6949 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
6950 if (!Fold)
6951 break;
6952 RawBits.push_back(*Fold);
6954 if (RawBits.size() == NumElts.getFixedValue()) {
6955 // We have constant folded, but we might need to cast this again back
6956 // to the original (possibly legalized) type.
6957 EVT BVVT, BVEltVT;
6958 if (N1.getValueType() == VT) {
6959 BVVT = N1.getValueType();
6960 BVEltVT = BV1->getOperand(0).getValueType();
6961 } else {
6962 BVVT = N2.getValueType();
6963 BVEltVT = BV2->getOperand(0).getValueType();
6965 unsigned BVEltBits = BVEltVT.getSizeInBits();
6966 SmallVector<APInt> DstBits;
6967 BitVector DstUndefs;
6968 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
6969 DstBits, RawBits, DstUndefs,
6970 BitVector(RawBits.size(), false));
6971 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
6972 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
6973 if (DstUndefs[I])
6974 continue;
6975 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
6977 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
6983 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
6984 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
6985 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
6986 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
6987 APInt RHSVal;
6988 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
6989 APInt NewStep = Opcode == ISD::MUL
6990 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
6991 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
6992 return getStepVector(DL, VT, NewStep);
6996 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
6997 return !Op.getValueType().isVector() ||
6998 Op.getValueType().getVectorElementCount() == NumElts;
7001 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7002 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7003 Op.getOpcode() == ISD::BUILD_VECTOR ||
7004 Op.getOpcode() == ISD::SPLAT_VECTOR;
7007 // All operands must be vector types with the same number of elements as
7008 // the result type and must be either UNDEF or a build/splat vector
7009 // or UNDEF scalars.
7010 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7011 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7012 return SDValue();
7014 // If we are comparing vectors, then the result needs to be a i1 boolean that
7015 // is then extended back to the legal result type depending on how booleans
7016 // are represented.
7017 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7018 ISD::NodeType ExtendCode =
7019 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7020 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7021 : ISD::SIGN_EXTEND;
7023 // Find legal integer scalar type for constant promotion and
7024 // ensure that its scalar size is at least as large as source.
7025 EVT LegalSVT = VT.getScalarType();
7026 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7027 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7028 if (LegalSVT.bitsLT(VT.getScalarType()))
7029 return SDValue();
7032 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7033 // only have one operand to check. For fixed-length vector types we may have
7034 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7035 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7037 // Constant fold each scalar lane separately.
7038 SmallVector<SDValue, 4> ScalarResults;
7039 for (unsigned I = 0; I != NumVectorElts; I++) {
7040 SmallVector<SDValue, 4> ScalarOps;
7041 for (SDValue Op : Ops) {
7042 EVT InSVT = Op.getValueType().getScalarType();
7043 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7044 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7045 if (Op.isUndef())
7046 ScalarOps.push_back(getUNDEF(InSVT));
7047 else
7048 ScalarOps.push_back(Op);
7049 continue;
7052 SDValue ScalarOp =
7053 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7054 EVT ScalarVT = ScalarOp.getValueType();
7056 // Build vector (integer) scalar operands may need implicit
7057 // truncation - do this before constant folding.
7058 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7059 // Don't create illegally-typed nodes unless they're constants or undef
7060 // - if we fail to constant fold we can't guarantee the (dead) nodes
7061 // we're creating will be cleaned up before being visited for
7062 // legalization.
7063 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7064 !isa<ConstantSDNode>(ScalarOp) &&
7065 TLI->getTypeAction(*getContext(), InSVT) !=
7066 TargetLowering::TypeLegal)
7067 return SDValue();
7068 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7071 ScalarOps.push_back(ScalarOp);
7074 // Constant fold the scalar operands.
7075 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7077 // Scalar folding only succeeded if the result is a constant or UNDEF.
7078 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7079 ScalarResult.getOpcode() != ISD::ConstantFP)
7080 return SDValue();
7082 // Legalize the (integer) scalar constant if necessary. We only do
7083 // this once we know the folding succeeded, since otherwise we would
7084 // get a node with illegal type which has a user.
7085 if (LegalSVT != SVT)
7086 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7088 ScalarResults.push_back(ScalarResult);
7091 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7092 : getBuildVector(VT, DL, ScalarResults);
7093 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7094 return V;
7097 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
7098 EVT VT, ArrayRef<SDValue> Ops) {
7099 // TODO: Add support for unary/ternary fp opcodes.
7100 if (Ops.size() != 2)
7101 return SDValue();
7103 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7104 // should. That will require dealing with a potentially non-default
7105 // rounding mode, checking the "opStatus" return value from the APFloat
7106 // math calculations, and possibly other variations.
7107 SDValue N1 = Ops[0];
7108 SDValue N2 = Ops[1];
7109 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7110 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7111 if (N1CFP && N2CFP) {
7112 APFloat C1 = N1CFP->getValueAPF(); // make copy
7113 const APFloat &C2 = N2CFP->getValueAPF();
7114 switch (Opcode) {
7115 case ISD::FADD:
7116 C1.add(C2, APFloat::rmNearestTiesToEven);
7117 return getConstantFP(C1, DL, VT);
7118 case ISD::FSUB:
7119 C1.subtract(C2, APFloat::rmNearestTiesToEven);
7120 return getConstantFP(C1, DL, VT);
7121 case ISD::FMUL:
7122 C1.multiply(C2, APFloat::rmNearestTiesToEven);
7123 return getConstantFP(C1, DL, VT);
7124 case ISD::FDIV:
7125 C1.divide(C2, APFloat::rmNearestTiesToEven);
7126 return getConstantFP(C1, DL, VT);
7127 case ISD::FREM:
7128 C1.mod(C2);
7129 return getConstantFP(C1, DL, VT);
7130 case ISD::FCOPYSIGN:
7131 C1.copySign(C2);
7132 return getConstantFP(C1, DL, VT);
7133 case ISD::FMINNUM:
7134 return getConstantFP(minnum(C1, C2), DL, VT);
7135 case ISD::FMAXNUM:
7136 return getConstantFP(maxnum(C1, C2), DL, VT);
7137 case ISD::FMINIMUM:
7138 return getConstantFP(minimum(C1, C2), DL, VT);
7139 case ISD::FMAXIMUM:
7140 return getConstantFP(maximum(C1, C2), DL, VT);
7141 case ISD::FMINIMUMNUM:
7142 return getConstantFP(minimumnum(C1, C2), DL, VT);
7143 case ISD::FMAXIMUMNUM:
7144 return getConstantFP(maximumnum(C1, C2), DL, VT);
7145 default: break;
7148 if (N1CFP && Opcode == ISD::FP_ROUND) {
7149 APFloat C1 = N1CFP->getValueAPF(); // make copy
7150 bool Unused;
7151 // This can return overflow, underflow, or inexact; we don't care.
7152 // FIXME need to be more flexible about rounding mode.
7153 (void)C1.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7154 &Unused);
7155 return getConstantFP(C1, DL, VT);
7158 switch (Opcode) {
7159 case ISD::FSUB:
7160 // -0.0 - undef --> undef (consistent with "fneg undef")
7161 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7162 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7163 return getUNDEF(VT);
7164 [[fallthrough]];
7166 case ISD::FADD:
7167 case ISD::FMUL:
7168 case ISD::FDIV:
7169 case ISD::FREM:
7170 // If both operands are undef, the result is undef. If 1 operand is undef,
7171 // the result is NaN. This should match the behavior of the IR optimizer.
7172 if (N1.isUndef() && N2.isUndef())
7173 return getUNDEF(VT);
7174 if (N1.isUndef() || N2.isUndef())
7175 return getConstantFP(APFloat::getNaN(VT.getFltSemantics()), DL, VT);
7177 return SDValue();
7180 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
7181 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7183 // There's no need to assert on a byte-aligned pointer. All pointers are at
7184 // least byte aligned.
7185 if (A == Align(1))
7186 return Val;
7188 SDVTList VTs = getVTList(Val.getValueType());
7189 FoldingSetNodeID ID;
7190 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7191 ID.AddInteger(A.value());
7193 void *IP = nullptr;
7194 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7195 return SDValue(E, 0);
7197 auto *N =
7198 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7199 createOperands(N, {Val});
7201 CSEMap.InsertNode(N, IP);
7202 InsertNode(N);
7204 SDValue V(N, 0);
7205 NewSDValueDbgMsg(V, "Creating new node: ", this);
7206 return V;
7209 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7210 SDValue N1, SDValue N2) {
7211 SDNodeFlags Flags;
7212 if (Inserter)
7213 Flags = Inserter->getFlags();
7214 return getNode(Opcode, DL, VT, N1, N2, Flags);
7217 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
7218 SDValue &N2) const {
7219 if (!TLI->isCommutativeBinOp(Opcode))
7220 return;
7222 // Canonicalize:
7223 // binop(const, nonconst) -> binop(nonconst, const)
7224 bool N1C = isConstantIntBuildVectorOrConstantInt(N1);
7225 bool N2C = isConstantIntBuildVectorOrConstantInt(N2);
7226 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7227 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7228 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7229 std::swap(N1, N2);
7231 // Canonicalize:
7232 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7233 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7234 N2.getOpcode() == ISD::STEP_VECTOR)
7235 std::swap(N1, N2);
7238 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7239 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7240 assert(N1.getOpcode() != ISD::DELETED_NODE &&
7241 N2.getOpcode() != ISD::DELETED_NODE &&
7242 "Operand is DELETED_NODE!");
7244 canonicalizeCommutativeBinop(Opcode, N1, N2);
7246 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7247 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7249 // Don't allow undefs in vector splats - we might be returning N2 when folding
7250 // to zero etc.
7251 ConstantSDNode *N2CV =
7252 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7254 switch (Opcode) {
7255 default: break;
7256 case ISD::TokenFactor:
7257 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7258 N2.getValueType() == MVT::Other && "Invalid token factor!");
7259 // Fold trivial token factors.
7260 if (N1.getOpcode() == ISD::EntryToken) return N2;
7261 if (N2.getOpcode() == ISD::EntryToken) return N1;
7262 if (N1 == N2) return N1;
7263 break;
7264 case ISD::BUILD_VECTOR: {
7265 // Attempt to simplify BUILD_VECTOR.
7266 SDValue Ops[] = {N1, N2};
7267 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7268 return V;
7269 break;
7271 case ISD::CONCAT_VECTORS: {
7272 SDValue Ops[] = {N1, N2};
7273 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7274 return V;
7275 break;
7277 case ISD::AND:
7278 assert(VT.isInteger() && "This operator does not apply to FP types!");
7279 assert(N1.getValueType() == N2.getValueType() &&
7280 N1.getValueType() == VT && "Binary operator types must match!");
7281 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7282 // worth handling here.
7283 if (N2CV && N2CV->isZero())
7284 return N2;
7285 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7286 return N1;
7287 break;
7288 case ISD::OR:
7289 case ISD::XOR:
7290 case ISD::ADD:
7291 case ISD::SUB:
7292 assert(VT.isInteger() && "This operator does not apply to FP types!");
7293 assert(N1.getValueType() == N2.getValueType() &&
7294 N1.getValueType() == VT && "Binary operator types must match!");
7295 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7296 // it's worth handling here.
7297 if (N2CV && N2CV->isZero())
7298 return N1;
7299 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
7300 VT.getVectorElementType() == MVT::i1)
7301 return getNode(ISD::XOR, DL, VT, N1, N2);
7302 break;
7303 case ISD::MUL:
7304 assert(VT.isInteger() && "This operator does not apply to FP types!");
7305 assert(N1.getValueType() == N2.getValueType() &&
7306 N1.getValueType() == VT && "Binary operator types must match!");
7307 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
7308 return getNode(ISD::AND, DL, VT, N1, N2);
7309 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7310 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7311 const APInt &N2CImm = N2C->getAPIntValue();
7312 return getVScale(DL, VT, MulImm * N2CImm);
7314 break;
7315 case ISD::UDIV:
7316 case ISD::UREM:
7317 case ISD::MULHU:
7318 case ISD::MULHS:
7319 case ISD::SDIV:
7320 case ISD::SREM:
7321 case ISD::SADDSAT:
7322 case ISD::SSUBSAT:
7323 case ISD::UADDSAT:
7324 case ISD::USUBSAT:
7325 assert(VT.isInteger() && "This operator does not apply to FP types!");
7326 assert(N1.getValueType() == N2.getValueType() &&
7327 N1.getValueType() == VT && "Binary operator types must match!");
7328 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
7329 // fold (add_sat x, y) -> (or x, y) for bool types.
7330 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7331 return getNode(ISD::OR, DL, VT, N1, N2);
7332 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7333 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7334 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7336 break;
7337 case ISD::SCMP:
7338 case ISD::UCMP:
7339 assert(N1.getValueType() == N2.getValueType() &&
7340 "Types of operands of UCMP/SCMP must match");
7341 assert(N1.getValueType().isVector() == VT.isVector() &&
7342 "Operands and return type of must both be scalars or vectors");
7343 if (VT.isVector())
7344 assert(VT.getVectorElementCount() ==
7345 N1.getValueType().getVectorElementCount() &&
7346 "Result and operands must have the same number of elements");
7347 break;
7348 case ISD::AVGFLOORS:
7349 case ISD::AVGFLOORU:
7350 case ISD::AVGCEILS:
7351 case ISD::AVGCEILU:
7352 assert(VT.isInteger() && "This operator does not apply to FP types!");
7353 assert(N1.getValueType() == N2.getValueType() &&
7354 N1.getValueType() == VT && "Binary operator types must match!");
7355 break;
7356 case ISD::ABDS:
7357 case ISD::ABDU:
7358 assert(VT.isInteger() && "This operator does not apply to FP types!");
7359 assert(N1.getValueType() == N2.getValueType() &&
7360 N1.getValueType() == VT && "Binary operator types must match!");
7361 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
7362 return getNode(ISD::XOR, DL, VT, N1, N2);
7363 break;
7364 case ISD::SMIN:
7365 case ISD::UMAX:
7366 assert(VT.isInteger() && "This operator does not apply to FP types!");
7367 assert(N1.getValueType() == N2.getValueType() &&
7368 N1.getValueType() == VT && "Binary operator types must match!");
7369 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
7370 return getNode(ISD::OR, DL, VT, N1, N2);
7371 break;
7372 case ISD::SMAX:
7373 case ISD::UMIN:
7374 assert(VT.isInteger() && "This operator does not apply to FP types!");
7375 assert(N1.getValueType() == N2.getValueType() &&
7376 N1.getValueType() == VT && "Binary operator types must match!");
7377 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
7378 return getNode(ISD::AND, DL, VT, N1, N2);
7379 break;
7380 case ISD::FADD:
7381 case ISD::FSUB:
7382 case ISD::FMUL:
7383 case ISD::FDIV:
7384 case ISD::FREM:
7385 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7386 assert(N1.getValueType() == N2.getValueType() &&
7387 N1.getValueType() == VT && "Binary operator types must match!");
7388 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7389 return V;
7390 break;
7391 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7392 assert(N1.getValueType() == VT &&
7393 N1.getValueType().isFloatingPoint() &&
7394 N2.getValueType().isFloatingPoint() &&
7395 "Invalid FCOPYSIGN!");
7396 break;
7397 case ISD::SHL:
7398 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7399 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7400 const APInt &ShiftImm = N2C->getAPIntValue();
7401 return getVScale(DL, VT, MulImm << ShiftImm);
7403 [[fallthrough]];
7404 case ISD::SRA:
7405 case ISD::SRL:
7406 if (SDValue V = simplifyShift(N1, N2))
7407 return V;
7408 [[fallthrough]];
7409 case ISD::ROTL:
7410 case ISD::ROTR:
7411 assert(VT == N1.getValueType() &&
7412 "Shift operators return type must be the same as their first arg");
7413 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7414 "Shifts only work on integers");
7415 assert((!VT.isVector() || VT == N2.getValueType()) &&
7416 "Vector shift amounts must be in the same as their first arg");
7417 // Verify that the shift amount VT is big enough to hold valid shift
7418 // amounts. This catches things like trying to shift an i1024 value by an
7419 // i8, which is easy to fall into in generic code that uses
7420 // TLI.getShiftAmount().
7421 assert(N2.getValueType().getScalarSizeInBits() >=
7422 Log2_32_Ceil(VT.getScalarSizeInBits()) &&
7423 "Invalid use of small shift amount with oversized value!");
7425 // Always fold shifts of i1 values so the code generator doesn't need to
7426 // handle them. Since we know the size of the shift has to be less than the
7427 // size of the value, the shift/rotate count is guaranteed to be zero.
7428 if (VT == MVT::i1)
7429 return N1;
7430 if (N2CV && N2CV->isZero())
7431 return N1;
7432 break;
7433 case ISD::FP_ROUND:
7434 assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() &&
7435 VT.bitsLE(N1.getValueType()) && N2C &&
7436 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7437 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7438 if (N1.getValueType() == VT) return N1; // noop conversion.
7439 break;
7440 case ISD::AssertSext:
7441 case ISD::AssertZext: {
7442 EVT EVT = cast<VTSDNode>(N2)->getVT();
7443 assert(VT == N1.getValueType() && "Not an inreg extend!");
7444 assert(VT.isInteger() && EVT.isInteger() &&
7445 "Cannot *_EXTEND_INREG FP types");
7446 assert(!EVT.isVector() &&
7447 "AssertSExt/AssertZExt type should be the vector element type "
7448 "rather than the vector type!");
7449 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7450 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7451 break;
7453 case ISD::SIGN_EXTEND_INREG: {
7454 EVT EVT = cast<VTSDNode>(N2)->getVT();
7455 assert(VT == N1.getValueType() && "Not an inreg extend!");
7456 assert(VT.isInteger() && EVT.isInteger() &&
7457 "Cannot *_EXTEND_INREG FP types");
7458 assert(EVT.isVector() == VT.isVector() &&
7459 "SIGN_EXTEND_INREG type should be vector iff the operand "
7460 "type is vector!");
7461 assert((!EVT.isVector() ||
7462 EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
7463 "Vector element counts must match in SIGN_EXTEND_INREG");
7464 assert(EVT.bitsLE(VT) && "Not extending!");
7465 if (EVT == VT) return N1; // Not actually extending
7466 break;
7468 case ISD::FP_TO_SINT_SAT:
7469 case ISD::FP_TO_UINT_SAT: {
7470 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7471 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7472 assert(N1.getValueType().isVector() == VT.isVector() &&
7473 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7474 "vector!");
7475 assert((!VT.isVector() || VT.getVectorElementCount() ==
7476 N1.getValueType().getVectorElementCount()) &&
7477 "Vector element counts must match in FP_TO_*INT_SAT");
7478 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7479 "Type to saturate to must be a scalar.");
7480 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7481 "Not extending!");
7482 break;
7484 case ISD::EXTRACT_VECTOR_ELT:
7485 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
7486 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7487 element type of the vector.");
7489 // Extract from an undefined value or using an undefined index is undefined.
7490 if (N1.isUndef() || N2.isUndef())
7491 return getUNDEF(VT);
7493 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7494 // vectors. For scalable vectors we will provide appropriate support for
7495 // dealing with arbitrary indices.
7496 if (N2C && N1.getValueType().isFixedLengthVector() &&
7497 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7498 return getUNDEF(VT);
7500 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7501 // expanding copies of large vectors from registers. This only works for
7502 // fixed length vectors, since we need to know the exact number of
7503 // elements.
7504 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7505 N1.getOperand(0).getValueType().isFixedLengthVector()) {
7506 unsigned Factor =
7507 N1.getOperand(0).getValueType().getVectorNumElements();
7508 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
7509 N1.getOperand(N2C->getZExtValue() / Factor),
7510 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
7513 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7514 // lowering is expanding large vector constants.
7515 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7516 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7517 assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
7518 N1.getValueType().isFixedLengthVector()) &&
7519 "BUILD_VECTOR used for scalable vectors");
7520 unsigned Index =
7521 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7522 SDValue Elt = N1.getOperand(Index);
7524 if (VT != Elt.getValueType())
7525 // If the vector element type is not legal, the BUILD_VECTOR operands
7526 // are promoted and implicitly truncated, and the result implicitly
7527 // extended. Make that explicit here.
7528 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7530 return Elt;
7533 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7534 // operations are lowered to scalars.
7535 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7536 // If the indices are the same, return the inserted element else
7537 // if the indices are known different, extract the element from
7538 // the original vector.
7539 SDValue N1Op2 = N1.getOperand(2);
7540 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
7542 if (N1Op2C && N2C) {
7543 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7544 if (VT == N1.getOperand(1).getValueType())
7545 return N1.getOperand(1);
7546 if (VT.isFloatingPoint()) {
7547 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
7548 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7550 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7552 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7556 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7557 // when vector types are scalarized and v1iX is legal.
7558 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7559 // Here we are completely ignoring the extract element index (N2),
7560 // which is fine for fixed width vectors, since any index other than 0
7561 // is undefined anyway. However, this cannot be ignored for scalable
7562 // vectors - in theory we could support this, but we don't want to do this
7563 // without a profitability check.
7564 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7565 N1.getValueType().isFixedLengthVector() &&
7566 N1.getValueType().getVectorNumElements() == 1) {
7567 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7568 N1.getOperand(1));
7570 break;
7571 case ISD::EXTRACT_ELEMENT:
7572 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
7573 assert(!N1.getValueType().isVector() && !VT.isVector() &&
7574 (N1.getValueType().isInteger() == VT.isInteger()) &&
7575 N1.getValueType() != VT &&
7576 "Wrong types for EXTRACT_ELEMENT!");
7578 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
7579 // 64-bit integers into 32-bit parts. Instead of building the extract of
7580 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
7581 if (N1.getOpcode() == ISD::BUILD_PAIR)
7582 return N1.getOperand(N2C->getZExtValue());
7584 // EXTRACT_ELEMENT of a constant int is also very common.
7585 if (N1C) {
7586 unsigned ElementSize = VT.getSizeInBits();
7587 unsigned Shift = ElementSize * N2C->getZExtValue();
7588 const APInt &Val = N1C->getAPIntValue();
7589 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
7591 break;
7592 case ISD::EXTRACT_SUBVECTOR: {
7593 EVT N1VT = N1.getValueType();
7594 assert(VT.isVector() && N1VT.isVector() &&
7595 "Extract subvector VTs must be vectors!");
7596 assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
7597 "Extract subvector VTs must have the same element type!");
7598 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
7599 "Cannot extract a scalable vector from a fixed length vector!");
7600 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
7601 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
7602 "Extract subvector must be from larger vector to smaller vector!");
7603 assert(N2C && "Extract subvector index must be a constant");
7604 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
7605 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
7606 N1VT.getVectorMinNumElements()) &&
7607 "Extract subvector overflow!");
7608 assert(N2C->getAPIntValue().getBitWidth() ==
7609 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
7610 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
7612 // Trivial extraction.
7613 if (VT == N1VT)
7614 return N1;
7616 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
7617 if (N1.isUndef())
7618 return getUNDEF(VT);
7620 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
7621 // the concat have the same type as the extract.
7622 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
7623 VT == N1.getOperand(0).getValueType()) {
7624 unsigned Factor = VT.getVectorMinNumElements();
7625 return N1.getOperand(N2C->getZExtValue() / Factor);
7628 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
7629 // during shuffle legalization.
7630 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
7631 VT == N1.getOperand(1).getValueType())
7632 return N1.getOperand(1);
7633 break;
7637 // Perform trivial constant folding.
7638 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
7639 return SV;
7641 // Canonicalize an UNDEF to the RHS, even over a constant.
7642 if (N1.isUndef()) {
7643 if (TLI->isCommutativeBinOp(Opcode)) {
7644 std::swap(N1, N2);
7645 } else {
7646 switch (Opcode) {
7647 case ISD::SUB:
7648 return getUNDEF(VT); // fold op(undef, arg2) -> undef
7649 case ISD::SIGN_EXTEND_INREG:
7650 case ISD::UDIV:
7651 case ISD::SDIV:
7652 case ISD::UREM:
7653 case ISD::SREM:
7654 case ISD::SSUBSAT:
7655 case ISD::USUBSAT:
7656 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
7661 // Fold a bunch of operators when the RHS is undef.
7662 if (N2.isUndef()) {
7663 switch (Opcode) {
7664 case ISD::XOR:
7665 if (N1.isUndef())
7666 // Handle undef ^ undef -> 0 special case. This is a common
7667 // idiom (misuse).
7668 return getConstant(0, DL, VT);
7669 [[fallthrough]];
7670 case ISD::ADD:
7671 case ISD::SUB:
7672 case ISD::UDIV:
7673 case ISD::SDIV:
7674 case ISD::UREM:
7675 case ISD::SREM:
7676 return getUNDEF(VT); // fold op(arg1, undef) -> undef
7677 case ISD::MUL:
7678 case ISD::AND:
7679 case ISD::SSUBSAT:
7680 case ISD::USUBSAT:
7681 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
7682 case ISD::OR:
7683 case ISD::SADDSAT:
7684 case ISD::UADDSAT:
7685 return getAllOnesConstant(DL, VT);
7689 // Memoize this node if possible.
7690 SDNode *N;
7691 SDVTList VTs = getVTList(VT);
7692 SDValue Ops[] = {N1, N2};
7693 if (VT != MVT::Glue) {
7694 FoldingSetNodeID ID;
7695 AddNodeIDNode(ID, Opcode, VTs, Ops);
7696 void *IP = nullptr;
7697 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7698 E->intersectFlagsWith(Flags);
7699 return SDValue(E, 0);
7702 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7703 N->setFlags(Flags);
7704 createOperands(N, Ops);
7705 CSEMap.InsertNode(N, IP);
7706 } else {
7707 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7708 createOperands(N, Ops);
7711 InsertNode(N);
7712 SDValue V = SDValue(N, 0);
7713 NewSDValueDbgMsg(V, "Creating new node: ", this);
7714 return V;
7717 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7718 SDValue N1, SDValue N2, SDValue N3) {
7719 SDNodeFlags Flags;
7720 if (Inserter)
7721 Flags = Inserter->getFlags();
7722 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
7725 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7726 SDValue N1, SDValue N2, SDValue N3,
7727 const SDNodeFlags Flags) {
7728 assert(N1.getOpcode() != ISD::DELETED_NODE &&
7729 N2.getOpcode() != ISD::DELETED_NODE &&
7730 N3.getOpcode() != ISD::DELETED_NODE &&
7731 "Operand is DELETED_NODE!");
7732 // Perform various simplifications.
7733 switch (Opcode) {
7734 case ISD::FMA:
7735 case ISD::FMAD: {
7736 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7737 assert(N1.getValueType() == VT && N2.getValueType() == VT &&
7738 N3.getValueType() == VT && "FMA types must match!");
7739 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
7740 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
7741 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
7742 if (N1CFP && N2CFP && N3CFP) {
7743 APFloat V1 = N1CFP->getValueAPF();
7744 const APFloat &V2 = N2CFP->getValueAPF();
7745 const APFloat &V3 = N3CFP->getValueAPF();
7746 if (Opcode == ISD::FMAD) {
7747 V1.multiply(V2, APFloat::rmNearestTiesToEven);
7748 V1.add(V3, APFloat::rmNearestTiesToEven);
7749 } else
7750 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
7751 return getConstantFP(V1, DL, VT);
7753 break;
7755 case ISD::BUILD_VECTOR: {
7756 // Attempt to simplify BUILD_VECTOR.
7757 SDValue Ops[] = {N1, N2, N3};
7758 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7759 return V;
7760 break;
7762 case ISD::CONCAT_VECTORS: {
7763 SDValue Ops[] = {N1, N2, N3};
7764 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7765 return V;
7766 break;
7768 case ISD::SETCC: {
7769 assert(VT.isInteger() && "SETCC result type must be an integer!");
7770 assert(N1.getValueType() == N2.getValueType() &&
7771 "SETCC operands must have the same type!");
7772 assert(VT.isVector() == N1.getValueType().isVector() &&
7773 "SETCC type should be vector iff the operand type is vector!");
7774 assert((!VT.isVector() || VT.getVectorElementCount() ==
7775 N1.getValueType().getVectorElementCount()) &&
7776 "SETCC vector element counts must match!");
7777 // Use FoldSetCC to simplify SETCC's.
7778 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
7779 return V;
7780 // Vector constant folding.
7781 SDValue Ops[] = {N1, N2, N3};
7782 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
7783 NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
7784 return V;
7786 break;
7788 case ISD::SELECT:
7789 case ISD::VSELECT:
7790 if (SDValue V = simplifySelect(N1, N2, N3))
7791 return V;
7792 break;
7793 case ISD::VECTOR_SHUFFLE:
7794 llvm_unreachable("should use getVectorShuffle constructor!");
7795 case ISD::VECTOR_SPLICE: {
7796 if (cast<ConstantSDNode>(N3)->isZero())
7797 return N1;
7798 break;
7800 case ISD::INSERT_VECTOR_ELT: {
7801 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
7802 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
7803 // for scalable vectors where we will generate appropriate code to
7804 // deal with out-of-bounds cases correctly.
7805 if (N3C && N1.getValueType().isFixedLengthVector() &&
7806 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
7807 return getUNDEF(VT);
7809 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
7810 if (N3.isUndef())
7811 return getUNDEF(VT);
7813 // If the inserted element is an UNDEF, just use the input vector.
7814 if (N2.isUndef())
7815 return N1;
7817 break;
7819 case ISD::INSERT_SUBVECTOR: {
7820 // Inserting undef into undef is still undef.
7821 if (N1.isUndef() && N2.isUndef())
7822 return getUNDEF(VT);
7824 EVT N2VT = N2.getValueType();
7825 assert(VT == N1.getValueType() &&
7826 "Dest and insert subvector source types must match!");
7827 assert(VT.isVector() && N2VT.isVector() &&
7828 "Insert subvector VTs must be vectors!");
7829 assert(VT.getVectorElementType() == N2VT.getVectorElementType() &&
7830 "Insert subvector VTs must have the same element type!");
7831 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
7832 "Cannot insert a scalable vector into a fixed length vector!");
7833 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
7834 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
7835 "Insert subvector must be from smaller vector to larger vector!");
7836 assert(isa<ConstantSDNode>(N3) &&
7837 "Insert subvector index must be constant");
7838 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
7839 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
7840 VT.getVectorMinNumElements()) &&
7841 "Insert subvector overflow!");
7842 assert(N3->getAsAPIntVal().getBitWidth() ==
7843 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
7844 "Constant index for INSERT_SUBVECTOR has an invalid size");
7846 // Trivial insertion.
7847 if (VT == N2VT)
7848 return N2;
7850 // If this is an insert of an extracted vector into an undef vector, we
7851 // can just use the input to the extract.
7852 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7853 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
7854 return N2.getOperand(0);
7855 break;
7857 case ISD::BITCAST:
7858 // Fold bit_convert nodes from a type to themselves.
7859 if (N1.getValueType() == VT)
7860 return N1;
7861 break;
7862 case ISD::VP_TRUNCATE:
7863 case ISD::VP_SIGN_EXTEND:
7864 case ISD::VP_ZERO_EXTEND:
7865 // Don't create noop casts.
7866 if (N1.getValueType() == VT)
7867 return N1;
7868 break;
7869 case ISD::VECTOR_COMPRESS: {
7870 [[maybe_unused]] EVT VecVT = N1.getValueType();
7871 [[maybe_unused]] EVT MaskVT = N2.getValueType();
7872 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
7873 assert(VT == VecVT && "Vector and result type don't match.");
7874 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
7875 "All inputs must be vectors.");
7876 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
7877 assert(VecVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7878 "Vector and mask must have same number of elements.");
7880 if (N1.isUndef() || N2.isUndef())
7881 return N3;
7883 break;
7887 // Memoize node if it doesn't produce a glue result.
7888 SDNode *N;
7889 SDVTList VTs = getVTList(VT);
7890 SDValue Ops[] = {N1, N2, N3};
7891 if (VT != MVT::Glue) {
7892 FoldingSetNodeID ID;
7893 AddNodeIDNode(ID, Opcode, VTs, Ops);
7894 void *IP = nullptr;
7895 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7896 E->intersectFlagsWith(Flags);
7897 return SDValue(E, 0);
7900 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7901 N->setFlags(Flags);
7902 createOperands(N, Ops);
7903 CSEMap.InsertNode(N, IP);
7904 } else {
7905 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7906 createOperands(N, Ops);
7909 InsertNode(N);
7910 SDValue V = SDValue(N, 0);
7911 NewSDValueDbgMsg(V, "Creating new node: ", this);
7912 return V;
7915 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7916 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7917 const SDNodeFlags Flags) {
7918 SDValue Ops[] = { N1, N2, N3, N4 };
7919 return getNode(Opcode, DL, VT, Ops, Flags);
7922 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7923 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7924 SDNodeFlags Flags;
7925 if (Inserter)
7926 Flags = Inserter->getFlags();
7927 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
7930 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7931 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7932 SDValue N5, const SDNodeFlags Flags) {
7933 SDValue Ops[] = { N1, N2, N3, N4, N5 };
7934 return getNode(Opcode, DL, VT, Ops, Flags);
7937 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7938 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7939 SDValue N5) {
7940 SDNodeFlags Flags;
7941 if (Inserter)
7942 Flags = Inserter->getFlags();
7943 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
7946 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
7947 /// the incoming stack arguments to be loaded from the stack.
7948 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
7949 SmallVector<SDValue, 8> ArgChains;
7951 // Include the original chain at the beginning of the list. When this is
7952 // used by target LowerCall hooks, this helps legalize find the
7953 // CALLSEQ_BEGIN node.
7954 ArgChains.push_back(Chain);
7956 // Add a chain value for each stack argument.
7957 for (SDNode *U : getEntryNode().getNode()->users())
7958 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
7959 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
7960 if (FI->getIndex() < 0)
7961 ArgChains.push_back(SDValue(L, 1));
7963 // Build a tokenfactor for all the chains.
7964 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
7967 /// getMemsetValue - Vectorized representation of the memset value
7968 /// operand.
7969 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
7970 const SDLoc &dl) {
7971 assert(!Value.isUndef());
7973 unsigned NumBits = VT.getScalarSizeInBits();
7974 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
7975 assert(C->getAPIntValue().getBitWidth() == 8);
7976 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
7977 if (VT.isInteger()) {
7978 bool IsOpaque = VT.getSizeInBits() > 64 ||
7979 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
7980 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
7982 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
7985 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
7986 EVT IntVT = VT.getScalarType();
7987 if (!IntVT.isInteger())
7988 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
7990 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
7991 if (NumBits > 8) {
7992 // Use a multiplication with 0x010101... to extend the input to the
7993 // required length.
7994 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7995 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
7996 DAG.getConstant(Magic, dl, IntVT));
7999 if (VT != Value.getValueType() && !VT.isInteger())
8000 Value = DAG.getBitcast(VT.getScalarType(), Value);
8001 if (VT != Value.getValueType())
8002 Value = DAG.getSplatBuildVector(VT, dl, Value);
8004 return Value;
8007 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8008 /// used when a memcpy is turned into a memset when the source is a constant
8009 /// string ptr.
8010 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
8011 const TargetLowering &TLI,
8012 const ConstantDataArraySlice &Slice) {
8013 // Handle vector with all elements zero.
8014 if (Slice.Array == nullptr) {
8015 if (VT.isInteger())
8016 return DAG.getConstant(0, dl, VT);
8017 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
8018 return DAG.getConstantFP(0.0, dl, VT);
8019 if (VT.isVector()) {
8020 unsigned NumElts = VT.getVectorNumElements();
8021 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
8022 return DAG.getNode(ISD::BITCAST, dl, VT,
8023 DAG.getConstant(0, dl,
8024 EVT::getVectorVT(*DAG.getContext(),
8025 EltVT, NumElts)));
8027 llvm_unreachable("Expected type!");
8030 assert(!VT.isVector() && "Can't handle vector type here!");
8031 unsigned NumVTBits = VT.getSizeInBits();
8032 unsigned NumVTBytes = NumVTBits / 8;
8033 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8035 APInt Val(NumVTBits, 0);
8036 if (DAG.getDataLayout().isLittleEndian()) {
8037 for (unsigned i = 0; i != NumBytes; ++i)
8038 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8039 } else {
8040 for (unsigned i = 0; i != NumBytes; ++i)
8041 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8044 // If the "cost" of materializing the integer immediate is less than the cost
8045 // of a load, then it is cost effective to turn the load into the immediate.
8046 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8047 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8048 return DAG.getConstant(Val, dl, VT);
8049 return SDValue();
8052 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
8053 const SDLoc &DL,
8054 const SDNodeFlags Flags) {
8055 EVT VT = Base.getValueType();
8056 SDValue Index;
8058 if (Offset.isScalable())
8059 Index = getVScale(DL, Base.getValueType(),
8060 APInt(Base.getValueSizeInBits().getFixedValue(),
8061 Offset.getKnownMinValue()));
8062 else
8063 Index = getConstant(Offset.getFixedValue(), DL, VT);
8065 return getMemBasePlusOffset(Base, Index, DL, Flags);
8068 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
8069 const SDLoc &DL,
8070 const SDNodeFlags Flags) {
8071 assert(Offset.getValueType().isInteger());
8072 EVT BasePtrVT = Ptr.getValueType();
8073 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8076 /// Returns true if memcpy source is constant data.
8077 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
8078 uint64_t SrcDelta = 0;
8079 GlobalAddressSDNode *G = nullptr;
8080 if (Src.getOpcode() == ISD::GlobalAddress)
8081 G = cast<GlobalAddressSDNode>(Src);
8082 else if (Src.getOpcode() == ISD::ADD &&
8083 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8084 Src.getOperand(1).getOpcode() == ISD::Constant) {
8085 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8086 SrcDelta = Src.getConstantOperandVal(1);
8088 if (!G)
8089 return false;
8091 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8092 SrcDelta + G->getOffset());
8095 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
8096 SelectionDAG &DAG) {
8097 // On Darwin, -Os means optimize for size without hurting performance, so
8098 // only really optimize for size when -Oz (MinSize) is used.
8099 if (MF.getTarget().getTargetTriple().isOSDarwin())
8100 return MF.getFunction().hasMinSize();
8101 return DAG.shouldOptForSize();
8104 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
8105 SmallVector<SDValue, 32> &OutChains, unsigned From,
8106 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8107 SmallVector<SDValue, 16> &OutStoreChains) {
8108 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8109 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8110 SmallVector<SDValue, 16> GluedLoadChains;
8111 for (unsigned i = From; i < To; ++i) {
8112 OutChains.push_back(OutLoadChains[i]);
8113 GluedLoadChains.push_back(OutLoadChains[i]);
8116 // Chain for all loads.
8117 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8118 GluedLoadChains);
8120 for (unsigned i = From; i < To; ++i) {
8121 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8122 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8123 ST->getBasePtr(), ST->getMemoryVT(),
8124 ST->getMemOperand());
8125 OutChains.push_back(NewStore);
8129 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
8130 SDValue Chain, SDValue Dst, SDValue Src,
8131 uint64_t Size, Align Alignment,
8132 bool isVol, bool AlwaysInline,
8133 MachinePointerInfo DstPtrInfo,
8134 MachinePointerInfo SrcPtrInfo,
8135 const AAMDNodes &AAInfo, AAResults *AA) {
8136 // Turn a memcpy of undef to nop.
8137 // FIXME: We need to honor volatile even is Src is undef.
8138 if (Src.isUndef())
8139 return Chain;
8141 // Expand memcpy to a series of load and store ops if the size operand falls
8142 // below a certain threshold.
8143 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8144 // rather than maybe a humongous number of loads and stores.
8145 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8146 const DataLayout &DL = DAG.getDataLayout();
8147 LLVMContext &C = *DAG.getContext();
8148 std::vector<EVT> MemOps;
8149 bool DstAlignCanChange = false;
8150 MachineFunction &MF = DAG.getMachineFunction();
8151 MachineFrameInfo &MFI = MF.getFrameInfo();
8152 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8153 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
8154 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8155 DstAlignCanChange = true;
8156 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8157 if (!SrcAlign || Alignment > *SrcAlign)
8158 SrcAlign = Alignment;
8159 assert(SrcAlign && "SrcAlign must be set");
8160 ConstantDataArraySlice Slice;
8161 // If marked as volatile, perform a copy even when marked as constant.
8162 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8163 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8164 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8165 const MemOp Op = isZeroConstant
8166 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8167 /*IsZeroMemset*/ true, isVol)
8168 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8169 *SrcAlign, isVol, CopyFromConstant);
8170 if (!TLI.findOptimalMemOpLowering(
8171 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8172 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8173 return SDValue();
8175 if (DstAlignCanChange) {
8176 Type *Ty = MemOps[0].getTypeForEVT(C);
8177 Align NewAlign = DL.getABITypeAlign(Ty);
8179 // Don't promote to an alignment that would require dynamic stack
8180 // realignment which may conflict with optimizations such as tail call
8181 // optimization.
8182 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8183 if (!TRI->hasStackRealignment(MF))
8184 if (MaybeAlign StackAlign = DL.getStackAlignment())
8185 NewAlign = std::min(NewAlign, *StackAlign);
8187 if (NewAlign > Alignment) {
8188 // Give the stack frame object a larger alignment if needed.
8189 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8190 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8191 Alignment = NewAlign;
8195 // Prepare AAInfo for loads/stores after lowering this memcpy.
8196 AAMDNodes NewAAInfo = AAInfo;
8197 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8199 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8200 bool isConstant =
8201 AA && SrcVal &&
8202 AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8204 MachineMemOperand::Flags MMOFlags =
8205 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
8206 SmallVector<SDValue, 16> OutLoadChains;
8207 SmallVector<SDValue, 16> OutStoreChains;
8208 SmallVector<SDValue, 32> OutChains;
8209 unsigned NumMemOps = MemOps.size();
8210 uint64_t SrcOff = 0, DstOff = 0;
8211 for (unsigned i = 0; i != NumMemOps; ++i) {
8212 EVT VT = MemOps[i];
8213 unsigned VTSize = VT.getSizeInBits() / 8;
8214 SDValue Value, Store;
8216 if (VTSize > Size) {
8217 // Issuing an unaligned load / store pair that overlaps with the previous
8218 // pair. Adjust the offset accordingly.
8219 assert(i == NumMemOps-1 && i != 0);
8220 SrcOff -= VTSize - Size;
8221 DstOff -= VTSize - Size;
8224 if (CopyFromConstant &&
8225 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8226 // It's unlikely a store of a vector immediate can be done in a single
8227 // instruction. It would require a load from a constantpool first.
8228 // We only handle zero vectors here.
8229 // FIXME: Handle other cases where store of vector immediate is done in
8230 // a single instruction.
8231 ConstantDataArraySlice SubSlice;
8232 if (SrcOff < Slice.Length) {
8233 SubSlice = Slice;
8234 SubSlice.move(SrcOff);
8235 } else {
8236 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8237 SubSlice.Array = nullptr;
8238 SubSlice.Offset = 0;
8239 SubSlice.Length = VTSize;
8241 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8242 if (Value.getNode()) {
8243 Store = DAG.getStore(
8244 Chain, dl, Value,
8245 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8246 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8247 OutChains.push_back(Store);
8251 if (!Store.getNode()) {
8252 // The type might not be legal for the target. This should only happen
8253 // if the type is smaller than a legal type, as on PPC, so the right
8254 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8255 // to Load/Store if NVT==VT.
8256 // FIXME does the case above also need this?
8257 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8258 assert(NVT.bitsGE(VT));
8260 bool isDereferenceable =
8261 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8262 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8263 if (isDereferenceable)
8264 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
8265 if (isConstant)
8266 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8268 Value = DAG.getExtLoad(
8269 ISD::EXTLOAD, dl, NVT, Chain,
8270 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8271 SrcPtrInfo.getWithOffset(SrcOff), VT,
8272 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8273 OutLoadChains.push_back(Value.getValue(1));
8275 Store = DAG.getTruncStore(
8276 Chain, dl, Value,
8277 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8278 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8279 OutStoreChains.push_back(Store);
8281 SrcOff += VTSize;
8282 DstOff += VTSize;
8283 Size -= VTSize;
8286 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8287 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
8288 unsigned NumLdStInMemcpy = OutStoreChains.size();
8290 if (NumLdStInMemcpy) {
8291 // It may be that memcpy might be converted to memset if it's memcpy
8292 // of constants. In such a case, we won't have loads and stores, but
8293 // just stores. In the absence of loads, there is nothing to gang up.
8294 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8295 // If target does not care, just leave as it.
8296 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8297 OutChains.push_back(OutLoadChains[i]);
8298 OutChains.push_back(OutStoreChains[i]);
8300 } else {
8301 // Ld/St less than/equal limit set by target.
8302 if (NumLdStInMemcpy <= GluedLdStLimit) {
8303 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8304 NumLdStInMemcpy, OutLoadChains,
8305 OutStoreChains);
8306 } else {
8307 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8308 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8309 unsigned GlueIter = 0;
8311 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8312 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8313 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8315 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8316 OutLoadChains, OutStoreChains);
8317 GlueIter += GluedLdStLimit;
8320 // Residual ld/st.
8321 if (RemainingLdStInMemcpy) {
8322 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8323 RemainingLdStInMemcpy, OutLoadChains,
8324 OutStoreChains);
8329 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8332 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
8333 SDValue Chain, SDValue Dst, SDValue Src,
8334 uint64_t Size, Align Alignment,
8335 bool isVol, bool AlwaysInline,
8336 MachinePointerInfo DstPtrInfo,
8337 MachinePointerInfo SrcPtrInfo,
8338 const AAMDNodes &AAInfo) {
8339 // Turn a memmove of undef to nop.
8340 // FIXME: We need to honor volatile even is Src is undef.
8341 if (Src.isUndef())
8342 return Chain;
8344 // Expand memmove to a series of load and store ops if the size operand falls
8345 // below a certain threshold.
8346 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8347 const DataLayout &DL = DAG.getDataLayout();
8348 LLVMContext &C = *DAG.getContext();
8349 std::vector<EVT> MemOps;
8350 bool DstAlignCanChange = false;
8351 MachineFunction &MF = DAG.getMachineFunction();
8352 MachineFrameInfo &MFI = MF.getFrameInfo();
8353 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8354 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
8355 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8356 DstAlignCanChange = true;
8357 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8358 if (!SrcAlign || Alignment > *SrcAlign)
8359 SrcAlign = Alignment;
8360 assert(SrcAlign && "SrcAlign must be set");
8361 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8362 if (!TLI.findOptimalMemOpLowering(
8363 MemOps, Limit,
8364 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8365 /*IsVolatile*/ true),
8366 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8367 MF.getFunction().getAttributes()))
8368 return SDValue();
8370 if (DstAlignCanChange) {
8371 Type *Ty = MemOps[0].getTypeForEVT(C);
8372 Align NewAlign = DL.getABITypeAlign(Ty);
8374 // Don't promote to an alignment that would require dynamic stack
8375 // realignment which may conflict with optimizations such as tail call
8376 // optimization.
8377 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8378 if (!TRI->hasStackRealignment(MF))
8379 if (MaybeAlign StackAlign = DL.getStackAlignment())
8380 NewAlign = std::min(NewAlign, *StackAlign);
8382 if (NewAlign > Alignment) {
8383 // Give the stack frame object a larger alignment if needed.
8384 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8385 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8386 Alignment = NewAlign;
8390 // Prepare AAInfo for loads/stores after lowering this memmove.
8391 AAMDNodes NewAAInfo = AAInfo;
8392 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8394 MachineMemOperand::Flags MMOFlags =
8395 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
8396 uint64_t SrcOff = 0, DstOff = 0;
8397 SmallVector<SDValue, 8> LoadValues;
8398 SmallVector<SDValue, 8> LoadChains;
8399 SmallVector<SDValue, 8> OutChains;
8400 unsigned NumMemOps = MemOps.size();
8401 for (unsigned i = 0; i < NumMemOps; i++) {
8402 EVT VT = MemOps[i];
8403 unsigned VTSize = VT.getSizeInBits() / 8;
8404 SDValue Value;
8406 bool isDereferenceable =
8407 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8408 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8409 if (isDereferenceable)
8410 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
8412 Value = DAG.getLoad(
8413 VT, dl, Chain,
8414 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8415 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8416 LoadValues.push_back(Value);
8417 LoadChains.push_back(Value.getValue(1));
8418 SrcOff += VTSize;
8420 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8421 OutChains.clear();
8422 for (unsigned i = 0; i < NumMemOps; i++) {
8423 EVT VT = MemOps[i];
8424 unsigned VTSize = VT.getSizeInBits() / 8;
8425 SDValue Store;
8427 Store = DAG.getStore(
8428 Chain, dl, LoadValues[i],
8429 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8430 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8431 OutChains.push_back(Store);
8432 DstOff += VTSize;
8435 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8438 /// Lower the call to 'memset' intrinsic function into a series of store
8439 /// operations.
8441 /// \param DAG Selection DAG where lowered code is placed.
8442 /// \param dl Link to corresponding IR location.
8443 /// \param Chain Control flow dependency.
8444 /// \param Dst Pointer to destination memory location.
8445 /// \param Src Value of byte to write into the memory.
8446 /// \param Size Number of bytes to write.
8447 /// \param Alignment Alignment of the destination in bytes.
8448 /// \param isVol True if destination is volatile.
8449 /// \param AlwaysInline Makes sure no function call is generated.
8450 /// \param DstPtrInfo IR information on the memory pointer.
8451 /// \returns New head in the control flow, if lowering was successful, empty
8452 /// SDValue otherwise.
8454 /// The function tries to replace 'llvm.memset' intrinsic with several store
8455 /// operations and value calculation code. This is usually profitable for small
8456 /// memory size or when the semantic requires inlining.
8457 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
8458 SDValue Chain, SDValue Dst, SDValue Src,
8459 uint64_t Size, Align Alignment, bool isVol,
8460 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
8461 const AAMDNodes &AAInfo) {
8462 // Turn a memset of undef to nop.
8463 // FIXME: We need to honor volatile even is Src is undef.
8464 if (Src.isUndef())
8465 return Chain;
8467 // Expand memset to a series of load/store ops if the size operand
8468 // falls below a certain threshold.
8469 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8470 std::vector<EVT> MemOps;
8471 bool DstAlignCanChange = false;
8472 MachineFunction &MF = DAG.getMachineFunction();
8473 MachineFrameInfo &MFI = MF.getFrameInfo();
8474 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8475 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
8476 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8477 DstAlignCanChange = true;
8478 bool IsZeroVal = isNullConstant(Src);
8479 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
8481 if (!TLI.findOptimalMemOpLowering(
8482 MemOps, Limit,
8483 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
8484 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
8485 return SDValue();
8487 if (DstAlignCanChange) {
8488 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
8489 const DataLayout &DL = DAG.getDataLayout();
8490 Align NewAlign = DL.getABITypeAlign(Ty);
8492 // Don't promote to an alignment that would require dynamic stack
8493 // realignment which may conflict with optimizations such as tail call
8494 // optimization.
8495 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8496 if (!TRI->hasStackRealignment(MF))
8497 if (MaybeAlign StackAlign = DL.getStackAlignment())
8498 NewAlign = std::min(NewAlign, *StackAlign);
8500 if (NewAlign > Alignment) {
8501 // Give the stack frame object a larger alignment if needed.
8502 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8503 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8504 Alignment = NewAlign;
8508 SmallVector<SDValue, 8> OutChains;
8509 uint64_t DstOff = 0;
8510 unsigned NumMemOps = MemOps.size();
8512 // Find the largest store and generate the bit pattern for it.
8513 EVT LargestVT = MemOps[0];
8514 for (unsigned i = 1; i < NumMemOps; i++)
8515 if (MemOps[i].bitsGT(LargestVT))
8516 LargestVT = MemOps[i];
8517 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
8519 // Prepare AAInfo for loads/stores after lowering this memset.
8520 AAMDNodes NewAAInfo = AAInfo;
8521 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8523 for (unsigned i = 0; i < NumMemOps; i++) {
8524 EVT VT = MemOps[i];
8525 unsigned VTSize = VT.getSizeInBits() / 8;
8526 if (VTSize > Size) {
8527 // Issuing an unaligned load / store pair that overlaps with the previous
8528 // pair. Adjust the offset accordingly.
8529 assert(i == NumMemOps-1 && i != 0);
8530 DstOff -= VTSize - Size;
8533 // If this store is smaller than the largest store see whether we can get
8534 // the smaller value for free with a truncate or extract vector element and
8535 // then store.
8536 SDValue Value = MemSetValue;
8537 if (VT.bitsLT(LargestVT)) {
8538 unsigned Index;
8539 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
8540 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
8541 if (!LargestVT.isVector() && !VT.isVector() &&
8542 TLI.isTruncateFree(LargestVT, VT))
8543 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
8544 else if (LargestVT.isVector() && !VT.isVector() &&
8545 TLI.shallExtractConstSplatVectorElementToStore(
8546 LargestVT.getTypeForEVT(*DAG.getContext()),
8547 VT.getSizeInBits(), Index) &&
8548 TLI.isTypeLegal(SVT) &&
8549 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
8550 // Target which can combine store(extractelement VectorTy, Idx) can get
8551 // the smaller value for free.
8552 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
8553 Value = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, TailValue,
8554 DAG.getVectorIdxConstant(Index, dl));
8555 } else
8556 Value = getMemsetValue(Src, VT, DAG, dl);
8558 assert(Value.getValueType() == VT && "Value with wrong type.");
8559 SDValue Store = DAG.getStore(
8560 Chain, dl, Value,
8561 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8562 DstPtrInfo.getWithOffset(DstOff), Alignment,
8563 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
8564 NewAAInfo);
8565 OutChains.push_back(Store);
8566 DstOff += VT.getSizeInBits() / 8;
8567 Size -= VTSize;
8570 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8573 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
8574 unsigned AS) {
8575 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
8576 // pointer operands can be losslessly bitcasted to pointers of address space 0
8577 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
8578 report_fatal_error("cannot lower memory intrinsic in address space " +
8579 Twine(AS));
8583 SDValue SelectionDAG::getMemcpy(
8584 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
8585 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
8586 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
8587 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, AAResults *AA) {
8588 // Check to see if we should lower the memcpy to loads and stores first.
8589 // For cases within the target-specified limits, this is the best choice.
8590 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8591 if (ConstantSize) {
8592 // Memcpy with size zero? Just return the original chain.
8593 if (ConstantSize->isZero())
8594 return Chain;
8596 SDValue Result = getMemcpyLoadsAndStores(
8597 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8598 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
8599 if (Result.getNode())
8600 return Result;
8603 // Then check to see if we should lower the memcpy with target-specific
8604 // code. If the target chooses to do this, this is the next best.
8605 if (TSI) {
8606 SDValue Result = TSI->EmitTargetCodeForMemcpy(
8607 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
8608 DstPtrInfo, SrcPtrInfo);
8609 if (Result.getNode())
8610 return Result;
8613 // If we really need inline code and the target declined to provide it,
8614 // use a (potentially long) sequence of loads and stores.
8615 if (AlwaysInline) {
8616 assert(ConstantSize && "AlwaysInline requires a constant size!");
8617 return getMemcpyLoadsAndStores(
8618 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8619 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
8622 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8623 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
8625 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
8626 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
8627 // respect volatile, so they may do things like read or write memory
8628 // beyond the given memory regions. But fixing this isn't easy, and most
8629 // people don't care.
8631 // Emit a library call.
8632 TargetLowering::ArgListTy Args;
8633 TargetLowering::ArgListEntry Entry;
8634 Entry.Ty = PointerType::getUnqual(*getContext());
8635 Entry.Node = Dst; Args.push_back(Entry);
8636 Entry.Node = Src; Args.push_back(Entry);
8638 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8639 Entry.Node = Size; Args.push_back(Entry);
8640 // FIXME: pass in SDLoc
8641 TargetLowering::CallLoweringInfo CLI(*this);
8642 bool IsTailCall = false;
8643 if (OverrideTailCall.has_value()) {
8644 IsTailCall = *OverrideTailCall;
8645 } else {
8646 bool LowersToMemcpy =
8647 TLI->getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy");
8648 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
8649 IsTailCall = CI && CI->isTailCall() &&
8650 isInTailCallPosition(*CI, getTarget(),
8651 ReturnsFirstArg && LowersToMemcpy);
8654 CLI.setDebugLoc(dl)
8655 .setChain(Chain)
8656 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
8657 Dst.getValueType().getTypeForEVT(*getContext()),
8658 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
8659 TLI->getPointerTy(getDataLayout())),
8660 std::move(Args))
8661 .setDiscardResult()
8662 .setTailCall(IsTailCall);
8664 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
8665 return CallResult.second;
8668 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
8669 SDValue Dst, SDValue Src, SDValue Size,
8670 Type *SizeTy, unsigned ElemSz,
8671 bool isTailCall,
8672 MachinePointerInfo DstPtrInfo,
8673 MachinePointerInfo SrcPtrInfo) {
8674 // Emit a library call.
8675 TargetLowering::ArgListTy Args;
8676 TargetLowering::ArgListEntry Entry;
8677 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8678 Entry.Node = Dst;
8679 Args.push_back(Entry);
8681 Entry.Node = Src;
8682 Args.push_back(Entry);
8684 Entry.Ty = SizeTy;
8685 Entry.Node = Size;
8686 Args.push_back(Entry);
8688 RTLIB::Libcall LibraryCall =
8689 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8690 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8691 report_fatal_error("Unsupported element size");
8693 TargetLowering::CallLoweringInfo CLI(*this);
8694 CLI.setDebugLoc(dl)
8695 .setChain(Chain)
8696 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8697 Type::getVoidTy(*getContext()),
8698 getExternalSymbol(TLI->getLibcallName(LibraryCall),
8699 TLI->getPointerTy(getDataLayout())),
8700 std::move(Args))
8701 .setDiscardResult()
8702 .setTailCall(isTailCall);
8704 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8705 return CallResult.second;
8708 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
8709 SDValue Src, SDValue Size, Align Alignment,
8710 bool isVol, const CallInst *CI,
8711 std::optional<bool> OverrideTailCall,
8712 MachinePointerInfo DstPtrInfo,
8713 MachinePointerInfo SrcPtrInfo,
8714 const AAMDNodes &AAInfo, AAResults *AA) {
8715 // Check to see if we should lower the memmove to loads and stores first.
8716 // For cases within the target-specified limits, this is the best choice.
8717 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8718 if (ConstantSize) {
8719 // Memmove with size zero? Just return the original chain.
8720 if (ConstantSize->isZero())
8721 return Chain;
8723 SDValue Result = getMemmoveLoadsAndStores(
8724 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8725 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
8726 if (Result.getNode())
8727 return Result;
8730 // Then check to see if we should lower the memmove with target-specific
8731 // code. If the target chooses to do this, this is the next best.
8732 if (TSI) {
8733 SDValue Result =
8734 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
8735 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
8736 if (Result.getNode())
8737 return Result;
8740 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8741 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
8743 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
8744 // not be safe. See memcpy above for more details.
8746 // Emit a library call.
8747 TargetLowering::ArgListTy Args;
8748 TargetLowering::ArgListEntry Entry;
8749 Entry.Ty = PointerType::getUnqual(*getContext());
8750 Entry.Node = Dst; Args.push_back(Entry);
8751 Entry.Node = Src; Args.push_back(Entry);
8753 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8754 Entry.Node = Size; Args.push_back(Entry);
8755 // FIXME: pass in SDLoc
8756 TargetLowering::CallLoweringInfo CLI(*this);
8758 bool IsTailCall = false;
8759 if (OverrideTailCall.has_value()) {
8760 IsTailCall = *OverrideTailCall;
8761 } else {
8762 bool LowersToMemmove =
8763 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
8764 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
8765 IsTailCall = CI && CI->isTailCall() &&
8766 isInTailCallPosition(*CI, getTarget(),
8767 ReturnsFirstArg && LowersToMemmove);
8770 CLI.setDebugLoc(dl)
8771 .setChain(Chain)
8772 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
8773 Dst.getValueType().getTypeForEVT(*getContext()),
8774 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
8775 TLI->getPointerTy(getDataLayout())),
8776 std::move(Args))
8777 .setDiscardResult()
8778 .setTailCall(IsTailCall);
8780 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
8781 return CallResult.second;
8784 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
8785 SDValue Dst, SDValue Src, SDValue Size,
8786 Type *SizeTy, unsigned ElemSz,
8787 bool isTailCall,
8788 MachinePointerInfo DstPtrInfo,
8789 MachinePointerInfo SrcPtrInfo) {
8790 // Emit a library call.
8791 TargetLowering::ArgListTy Args;
8792 TargetLowering::ArgListEntry Entry;
8793 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8794 Entry.Node = Dst;
8795 Args.push_back(Entry);
8797 Entry.Node = Src;
8798 Args.push_back(Entry);
8800 Entry.Ty = SizeTy;
8801 Entry.Node = Size;
8802 Args.push_back(Entry);
8804 RTLIB::Libcall LibraryCall =
8805 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8806 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8807 report_fatal_error("Unsupported element size");
8809 TargetLowering::CallLoweringInfo CLI(*this);
8810 CLI.setDebugLoc(dl)
8811 .setChain(Chain)
8812 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8813 Type::getVoidTy(*getContext()),
8814 getExternalSymbol(TLI->getLibcallName(LibraryCall),
8815 TLI->getPointerTy(getDataLayout())),
8816 std::move(Args))
8817 .setDiscardResult()
8818 .setTailCall(isTailCall);
8820 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8821 return CallResult.second;
8824 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
8825 SDValue Src, SDValue Size, Align Alignment,
8826 bool isVol, bool AlwaysInline,
8827 const CallInst *CI,
8828 MachinePointerInfo DstPtrInfo,
8829 const AAMDNodes &AAInfo) {
8830 // Check to see if we should lower the memset to stores first.
8831 // For cases within the target-specified limits, this is the best choice.
8832 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8833 if (ConstantSize) {
8834 // Memset with size zero? Just return the original chain.
8835 if (ConstantSize->isZero())
8836 return Chain;
8838 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
8839 ConstantSize->getZExtValue(), Alignment,
8840 isVol, false, DstPtrInfo, AAInfo);
8842 if (Result.getNode())
8843 return Result;
8846 // Then check to see if we should lower the memset with target-specific
8847 // code. If the target chooses to do this, this is the next best.
8848 if (TSI) {
8849 SDValue Result = TSI->EmitTargetCodeForMemset(
8850 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
8851 if (Result.getNode())
8852 return Result;
8855 // If we really need inline code and the target declined to provide it,
8856 // use a (potentially long) sequence of loads and stores.
8857 if (AlwaysInline) {
8858 assert(ConstantSize && "AlwaysInline requires a constant size!");
8859 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
8860 ConstantSize->getZExtValue(), Alignment,
8861 isVol, true, DstPtrInfo, AAInfo);
8862 assert(Result &&
8863 "getMemsetStores must return a valid sequence when AlwaysInline");
8864 return Result;
8867 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8869 // Emit a library call.
8870 auto &Ctx = *getContext();
8871 const auto& DL = getDataLayout();
8873 TargetLowering::CallLoweringInfo CLI(*this);
8874 // FIXME: pass in SDLoc
8875 CLI.setDebugLoc(dl).setChain(Chain);
8877 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
8879 // Helper function to create an Entry from Node and Type.
8880 const auto CreateEntry = [](SDValue Node, Type *Ty) {
8881 TargetLowering::ArgListEntry Entry;
8882 Entry.Node = Node;
8883 Entry.Ty = Ty;
8884 return Entry;
8887 bool UseBZero = isNullConstant(Src) && BzeroName;
8888 // If zeroing out and bzero is present, use it.
8889 if (UseBZero) {
8890 TargetLowering::ArgListTy Args;
8891 Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx)));
8892 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
8893 CLI.setLibCallee(
8894 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
8895 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
8896 } else {
8897 TargetLowering::ArgListTy Args;
8898 Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx)));
8899 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
8900 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
8901 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
8902 Dst.getValueType().getTypeForEVT(Ctx),
8903 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
8904 TLI->getPointerTy(DL)),
8905 std::move(Args));
8907 bool LowersToMemset =
8908 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
8909 // If we're going to use bzero, make sure not to tail call unless the
8910 // subsequent return doesn't need a value, as bzero doesn't return the first
8911 // arg unlike memset.
8912 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
8913 bool IsTailCall =
8914 CI && CI->isTailCall() &&
8915 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
8916 CLI.setDiscardResult().setTailCall(IsTailCall);
8918 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8919 return CallResult.second;
8922 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
8923 SDValue Dst, SDValue Value, SDValue Size,
8924 Type *SizeTy, unsigned ElemSz,
8925 bool isTailCall,
8926 MachinePointerInfo DstPtrInfo) {
8927 // Emit a library call.
8928 TargetLowering::ArgListTy Args;
8929 TargetLowering::ArgListEntry Entry;
8930 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8931 Entry.Node = Dst;
8932 Args.push_back(Entry);
8934 Entry.Ty = Type::getInt8Ty(*getContext());
8935 Entry.Node = Value;
8936 Args.push_back(Entry);
8938 Entry.Ty = SizeTy;
8939 Entry.Node = Size;
8940 Args.push_back(Entry);
8942 RTLIB::Libcall LibraryCall =
8943 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8944 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8945 report_fatal_error("Unsupported element size");
8947 TargetLowering::CallLoweringInfo CLI(*this);
8948 CLI.setDebugLoc(dl)
8949 .setChain(Chain)
8950 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8951 Type::getVoidTy(*getContext()),
8952 getExternalSymbol(TLI->getLibcallName(LibraryCall),
8953 TLI->getPointerTy(getDataLayout())),
8954 std::move(Args))
8955 .setDiscardResult()
8956 .setTailCall(isTailCall);
8958 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8959 return CallResult.second;
8962 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8963 SDVTList VTList, ArrayRef<SDValue> Ops,
8964 MachineMemOperand *MMO) {
8965 FoldingSetNodeID ID;
8966 ID.AddInteger(MemVT.getRawBits());
8967 AddNodeIDNode(ID, Opcode, VTList, Ops);
8968 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8969 ID.AddInteger(MMO->getFlags());
8970 void* IP = nullptr;
8971 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8972 cast<AtomicSDNode>(E)->refineAlignment(MMO);
8973 return SDValue(E, 0);
8976 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8977 VTList, MemVT, MMO);
8978 createOperands(N, Ops);
8980 CSEMap.InsertNode(N, IP);
8981 InsertNode(N);
8982 return SDValue(N, 0);
8985 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
8986 EVT MemVT, SDVTList VTs, SDValue Chain,
8987 SDValue Ptr, SDValue Cmp, SDValue Swp,
8988 MachineMemOperand *MMO) {
8989 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
8990 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
8991 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
8993 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
8994 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8997 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8998 SDValue Chain, SDValue Ptr, SDValue Val,
8999 MachineMemOperand *MMO) {
9000 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9001 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9002 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9003 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9004 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9005 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9006 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9007 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9008 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9009 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9010 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9011 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9012 Opcode == ISD::ATOMIC_STORE) &&
9013 "Invalid Atomic Op");
9015 EVT VT = Val.getValueType();
9017 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9018 getVTList(VT, MVT::Other);
9019 SDValue Ops[] = {Chain, Ptr, Val};
9020 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9023 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9024 EVT VT, SDValue Chain, SDValue Ptr,
9025 MachineMemOperand *MMO) {
9026 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
9028 SDVTList VTs = getVTList(VT, MVT::Other);
9029 SDValue Ops[] = {Chain, Ptr};
9030 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9033 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
9034 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
9035 if (Ops.size() == 1)
9036 return Ops[0];
9038 SmallVector<EVT, 4> VTs;
9039 VTs.reserve(Ops.size());
9040 for (const SDValue &Op : Ops)
9041 VTs.push_back(Op.getValueType());
9042 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9045 SDValue SelectionDAG::getMemIntrinsicNode(
9046 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9047 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9048 MachineMemOperand::Flags Flags, LocationSize Size,
9049 const AAMDNodes &AAInfo) {
9050 if (Size.hasValue() && !Size.getValue())
9051 Size = LocationSize::precise(MemVT.getStoreSize());
9053 MachineFunction &MF = getMachineFunction();
9054 MachineMemOperand *MMO =
9055 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9057 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9060 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
9061 SDVTList VTList,
9062 ArrayRef<SDValue> Ops, EVT MemVT,
9063 MachineMemOperand *MMO) {
9064 assert(
9065 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9066 Opcode == ISD::PREFETCH ||
9067 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9068 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9069 "Opcode is not a memory-accessing opcode!");
9071 // Memoize the node unless it returns a glue result.
9072 MemIntrinsicSDNode *N;
9073 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9074 FoldingSetNodeID ID;
9075 AddNodeIDNode(ID, Opcode, VTList, Ops);
9076 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9077 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9078 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9079 ID.AddInteger(MMO->getFlags());
9080 ID.AddInteger(MemVT.getRawBits());
9081 void *IP = nullptr;
9082 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9083 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9084 return SDValue(E, 0);
9087 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9088 VTList, MemVT, MMO);
9089 createOperands(N, Ops);
9091 CSEMap.InsertNode(N, IP);
9092 } else {
9093 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9094 VTList, MemVT, MMO);
9095 createOperands(N, Ops);
9097 InsertNode(N);
9098 SDValue V(N, 0);
9099 NewSDValueDbgMsg(V, "Creating new node: ", this);
9100 return V;
9103 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
9104 SDValue Chain, int FrameIndex,
9105 int64_t Size, int64_t Offset) {
9106 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9107 const auto VTs = getVTList(MVT::Other);
9108 SDValue Ops[2] = {
9109 Chain,
9110 getFrameIndex(FrameIndex,
9111 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9112 true)};
9114 FoldingSetNodeID ID;
9115 AddNodeIDNode(ID, Opcode, VTs, Ops);
9116 ID.AddInteger(FrameIndex);
9117 ID.AddInteger(Size);
9118 ID.AddInteger(Offset);
9119 void *IP = nullptr;
9120 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9121 return SDValue(E, 0);
9123 LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
9124 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
9125 createOperands(N, Ops);
9126 CSEMap.InsertNode(N, IP);
9127 InsertNode(N);
9128 SDValue V(N, 0);
9129 NewSDValueDbgMsg(V, "Creating new node: ", this);
9130 return V;
9133 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
9134 uint64_t Guid, uint64_t Index,
9135 uint32_t Attr) {
9136 const unsigned Opcode = ISD::PSEUDO_PROBE;
9137 const auto VTs = getVTList(MVT::Other);
9138 SDValue Ops[] = {Chain};
9139 FoldingSetNodeID ID;
9140 AddNodeIDNode(ID, Opcode, VTs, Ops);
9141 ID.AddInteger(Guid);
9142 ID.AddInteger(Index);
9143 void *IP = nullptr;
9144 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9145 return SDValue(E, 0);
9147 auto *N = newSDNode<PseudoProbeSDNode>(
9148 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9149 createOperands(N, Ops);
9150 CSEMap.InsertNode(N, IP);
9151 InsertNode(N);
9152 SDValue V(N, 0);
9153 NewSDValueDbgMsg(V, "Creating new node: ", this);
9154 return V;
9157 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9158 /// MachinePointerInfo record from it. This is particularly useful because the
9159 /// code generator has many cases where it doesn't bother passing in a
9160 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9161 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
9162 SelectionDAG &DAG, SDValue Ptr,
9163 int64_t Offset = 0) {
9164 // If this is FI+Offset, we can model it.
9165 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
9166 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
9167 FI->getIndex(), Offset);
9169 // If this is (FI+Offset1)+Offset2, we can model it.
9170 if (Ptr.getOpcode() != ISD::ADD ||
9171 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9172 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9173 return Info;
9175 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9176 return MachinePointerInfo::getFixedStack(
9177 DAG.getMachineFunction(), FI,
9178 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9181 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9182 /// MachinePointerInfo record from it. This is particularly useful because the
9183 /// code generator has many cases where it doesn't bother passing in a
9184 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9185 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
9186 SelectionDAG &DAG, SDValue Ptr,
9187 SDValue OffsetOp) {
9188 // If the 'Offset' value isn't a constant, we can't handle this.
9189 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
9190 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9191 if (OffsetOp.isUndef())
9192 return InferPointerInfo(Info, DAG, Ptr);
9193 return Info;
9196 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
9197 EVT VT, const SDLoc &dl, SDValue Chain,
9198 SDValue Ptr, SDValue Offset,
9199 MachinePointerInfo PtrInfo, EVT MemVT,
9200 Align Alignment,
9201 MachineMemOperand::Flags MMOFlags,
9202 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9203 assert(Chain.getValueType() == MVT::Other &&
9204 "Invalid chain type");
9206 MMOFlags |= MachineMemOperand::MOLoad;
9207 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9208 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9209 // clients.
9210 if (PtrInfo.V.isNull())
9211 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9213 LocationSize Size = LocationSize::precise(MemVT.getStoreSize());
9214 MachineFunction &MF = getMachineFunction();
9215 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9216 Alignment, AAInfo, Ranges);
9217 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9220 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
9221 EVT VT, const SDLoc &dl, SDValue Chain,
9222 SDValue Ptr, SDValue Offset, EVT MemVT,
9223 MachineMemOperand *MMO) {
9224 if (VT == MemVT) {
9225 ExtType = ISD::NON_EXTLOAD;
9226 } else if (ExtType == ISD::NON_EXTLOAD) {
9227 assert(VT == MemVT && "Non-extending load from different memory type!");
9228 } else {
9229 // Extending load.
9230 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9231 "Should only be an extending load, not truncating!");
9232 assert(VT.isInteger() == MemVT.isInteger() &&
9233 "Cannot convert from FP to Int or Int -> FP!");
9234 assert(VT.isVector() == MemVT.isVector() &&
9235 "Cannot use an ext load to convert to or from a vector!");
9236 assert((!VT.isVector() ||
9237 VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
9238 "Cannot use an ext load to change the number of vector elements!");
9241 bool Indexed = AM != ISD::UNINDEXED;
9242 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9244 SDVTList VTs = Indexed ?
9245 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9246 SDValue Ops[] = { Chain, Ptr, Offset };
9247 FoldingSetNodeID ID;
9248 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9249 ID.AddInteger(MemVT.getRawBits());
9250 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9251 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9252 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9253 ID.AddInteger(MMO->getFlags());
9254 void *IP = nullptr;
9255 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9256 cast<LoadSDNode>(E)->refineAlignment(MMO);
9257 return SDValue(E, 0);
9259 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9260 ExtType, MemVT, MMO);
9261 createOperands(N, Ops);
9263 CSEMap.InsertNode(N, IP);
9264 InsertNode(N);
9265 SDValue V(N, 0);
9266 NewSDValueDbgMsg(V, "Creating new node: ", this);
9267 return V;
9270 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
9271 SDValue Ptr, MachinePointerInfo PtrInfo,
9272 MaybeAlign Alignment,
9273 MachineMemOperand::Flags MMOFlags,
9274 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9275 SDValue Undef = getUNDEF(Ptr.getValueType());
9276 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9277 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9280 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
9281 SDValue Ptr, MachineMemOperand *MMO) {
9282 SDValue Undef = getUNDEF(Ptr.getValueType());
9283 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9284 VT, MMO);
9287 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
9288 EVT VT, SDValue Chain, SDValue Ptr,
9289 MachinePointerInfo PtrInfo, EVT MemVT,
9290 MaybeAlign Alignment,
9291 MachineMemOperand::Flags MMOFlags,
9292 const AAMDNodes &AAInfo) {
9293 SDValue Undef = getUNDEF(Ptr.getValueType());
9294 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9295 MemVT, Alignment, MMOFlags, AAInfo);
9298 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
9299 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9300 MachineMemOperand *MMO) {
9301 SDValue Undef = getUNDEF(Ptr.getValueType());
9302 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9303 MemVT, MMO);
9306 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
9307 SDValue Base, SDValue Offset,
9308 ISD::MemIndexedMode AM) {
9309 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9310 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9311 // Don't propagate the invariant or dereferenceable flags.
9312 auto MMOFlags =
9313 LD->getMemOperand()->getFlags() &
9314 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
9315 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9316 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9317 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9320 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9321 SDValue Ptr, MachinePointerInfo PtrInfo,
9322 Align Alignment,
9323 MachineMemOperand::Flags MMOFlags,
9324 const AAMDNodes &AAInfo) {
9325 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9327 MMOFlags |= MachineMemOperand::MOStore;
9328 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9330 if (PtrInfo.V.isNull())
9331 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9333 MachineFunction &MF = getMachineFunction();
9334 LocationSize Size = LocationSize::precise(Val.getValueType().getStoreSize());
9335 MachineMemOperand *MMO =
9336 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9337 return getStore(Chain, dl, Val, Ptr, MMO);
9340 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9341 SDValue Ptr, MachineMemOperand *MMO) {
9342 assert(Chain.getValueType() == MVT::Other &&
9343 "Invalid chain type");
9344 EVT VT = Val.getValueType();
9345 SDVTList VTs = getVTList(MVT::Other);
9346 SDValue Undef = getUNDEF(Ptr.getValueType());
9347 SDValue Ops[] = { Chain, Val, Ptr, Undef };
9348 FoldingSetNodeID ID;
9349 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9350 ID.AddInteger(VT.getRawBits());
9351 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9352 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
9353 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9354 ID.AddInteger(MMO->getFlags());
9355 void *IP = nullptr;
9356 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9357 cast<StoreSDNode>(E)->refineAlignment(MMO);
9358 return SDValue(E, 0);
9360 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9361 ISD::UNINDEXED, false, VT, MMO);
9362 createOperands(N, Ops);
9364 CSEMap.InsertNode(N, IP);
9365 InsertNode(N);
9366 SDValue V(N, 0);
9367 NewSDValueDbgMsg(V, "Creating new node: ", this);
9368 return V;
9371 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9372 SDValue Ptr, MachinePointerInfo PtrInfo,
9373 EVT SVT, Align Alignment,
9374 MachineMemOperand::Flags MMOFlags,
9375 const AAMDNodes &AAInfo) {
9376 assert(Chain.getValueType() == MVT::Other &&
9377 "Invalid chain type");
9379 MMOFlags |= MachineMemOperand::MOStore;
9380 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9382 if (PtrInfo.V.isNull())
9383 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9385 MachineFunction &MF = getMachineFunction();
9386 MachineMemOperand *MMO = MF.getMachineMemOperand(
9387 PtrInfo, MMOFlags, LocationSize::precise(SVT.getStoreSize()), Alignment,
9388 AAInfo);
9389 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9392 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9393 SDValue Ptr, EVT SVT,
9394 MachineMemOperand *MMO) {
9395 EVT VT = Val.getValueType();
9397 assert(Chain.getValueType() == MVT::Other &&
9398 "Invalid chain type");
9399 if (VT == SVT)
9400 return getStore(Chain, dl, Val, Ptr, MMO);
9402 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9403 "Should only be a truncating store, not extending!");
9404 assert(VT.isInteger() == SVT.isInteger() &&
9405 "Can't do FP-INT conversion!");
9406 assert(VT.isVector() == SVT.isVector() &&
9407 "Cannot use trunc store to convert to or from a vector!");
9408 assert((!VT.isVector() ||
9409 VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9410 "Cannot use trunc store to change the number of vector elements!");
9412 SDVTList VTs = getVTList(MVT::Other);
9413 SDValue Undef = getUNDEF(Ptr.getValueType());
9414 SDValue Ops[] = { Chain, Val, Ptr, Undef };
9415 FoldingSetNodeID ID;
9416 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9417 ID.AddInteger(SVT.getRawBits());
9418 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9419 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
9420 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9421 ID.AddInteger(MMO->getFlags());
9422 void *IP = nullptr;
9423 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9424 cast<StoreSDNode>(E)->refineAlignment(MMO);
9425 return SDValue(E, 0);
9427 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9428 ISD::UNINDEXED, true, SVT, MMO);
9429 createOperands(N, Ops);
9431 CSEMap.InsertNode(N, IP);
9432 InsertNode(N);
9433 SDValue V(N, 0);
9434 NewSDValueDbgMsg(V, "Creating new node: ", this);
9435 return V;
9438 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
9439 SDValue Base, SDValue Offset,
9440 ISD::MemIndexedMode AM) {
9441 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
9442 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
9443 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
9444 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
9445 FoldingSetNodeID ID;
9446 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9447 ID.AddInteger(ST->getMemoryVT().getRawBits());
9448 ID.AddInteger(ST->getRawSubclassData());
9449 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
9450 ID.AddInteger(ST->getMemOperand()->getFlags());
9451 void *IP = nullptr;
9452 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9453 return SDValue(E, 0);
9455 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9456 ST->isTruncatingStore(), ST->getMemoryVT(),
9457 ST->getMemOperand());
9458 createOperands(N, Ops);
9460 CSEMap.InsertNode(N, IP);
9461 InsertNode(N);
9462 SDValue V(N, 0);
9463 NewSDValueDbgMsg(V, "Creating new node: ", this);
9464 return V;
9467 SDValue SelectionDAG::getLoadVP(
9468 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
9469 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
9470 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
9471 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9472 const MDNode *Ranges, bool IsExpanding) {
9473 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9475 MMOFlags |= MachineMemOperand::MOLoad;
9476 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9477 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9478 // clients.
9479 if (PtrInfo.V.isNull())
9480 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9482 LocationSize Size = LocationSize::precise(MemVT.getStoreSize());
9483 MachineFunction &MF = getMachineFunction();
9484 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9485 Alignment, AAInfo, Ranges);
9486 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
9487 MMO, IsExpanding);
9490 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
9491 ISD::LoadExtType ExtType, EVT VT,
9492 const SDLoc &dl, SDValue Chain, SDValue Ptr,
9493 SDValue Offset, SDValue Mask, SDValue EVL,
9494 EVT MemVT, MachineMemOperand *MMO,
9495 bool IsExpanding) {
9496 bool Indexed = AM != ISD::UNINDEXED;
9497 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9499 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9500 : getVTList(VT, MVT::Other);
9501 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
9502 FoldingSetNodeID ID;
9503 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
9504 ID.AddInteger(MemVT.getRawBits());
9505 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
9506 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9507 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9508 ID.AddInteger(MMO->getFlags());
9509 void *IP = nullptr;
9510 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9511 cast<VPLoadSDNode>(E)->refineAlignment(MMO);
9512 return SDValue(E, 0);
9514 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9515 ExtType, IsExpanding, MemVT, MMO);
9516 createOperands(N, Ops);
9518 CSEMap.InsertNode(N, IP);
9519 InsertNode(N);
9520 SDValue V(N, 0);
9521 NewSDValueDbgMsg(V, "Creating new node: ", this);
9522 return V;
9525 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
9526 SDValue Ptr, SDValue Mask, SDValue EVL,
9527 MachinePointerInfo PtrInfo,
9528 MaybeAlign Alignment,
9529 MachineMemOperand::Flags MMOFlags,
9530 const AAMDNodes &AAInfo, const MDNode *Ranges,
9531 bool IsExpanding) {
9532 SDValue Undef = getUNDEF(Ptr.getValueType());
9533 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9534 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
9535 IsExpanding);
9538 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
9539 SDValue Ptr, SDValue Mask, SDValue EVL,
9540 MachineMemOperand *MMO, bool IsExpanding) {
9541 SDValue Undef = getUNDEF(Ptr.getValueType());
9542 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9543 Mask, EVL, VT, MMO, IsExpanding);
9546 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
9547 EVT VT, SDValue Chain, SDValue Ptr,
9548 SDValue Mask, SDValue EVL,
9549 MachinePointerInfo PtrInfo, EVT MemVT,
9550 MaybeAlign Alignment,
9551 MachineMemOperand::Flags MMOFlags,
9552 const AAMDNodes &AAInfo, bool IsExpanding) {
9553 SDValue Undef = getUNDEF(Ptr.getValueType());
9554 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
9555 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
9556 IsExpanding);
9559 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
9560 EVT VT, SDValue Chain, SDValue Ptr,
9561 SDValue Mask, SDValue EVL, EVT MemVT,
9562 MachineMemOperand *MMO, bool IsExpanding) {
9563 SDValue Undef = getUNDEF(Ptr.getValueType());
9564 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
9565 EVL, MemVT, MMO, IsExpanding);
9568 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
9569 SDValue Base, SDValue Offset,
9570 ISD::MemIndexedMode AM) {
9571 auto *LD = cast<VPLoadSDNode>(OrigLoad);
9572 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9573 // Don't propagate the invariant or dereferenceable flags.
9574 auto MMOFlags =
9575 LD->getMemOperand()->getFlags() &
9576 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
9577 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9578 LD->getChain(), Base, Offset, LD->getMask(),
9579 LD->getVectorLength(), LD->getPointerInfo(),
9580 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
9581 nullptr, LD->isExpandingLoad());
9584 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
9585 SDValue Ptr, SDValue Offset, SDValue Mask,
9586 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
9587 ISD::MemIndexedMode AM, bool IsTruncating,
9588 bool IsCompressing) {
9589 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9590 bool Indexed = AM != ISD::UNINDEXED;
9591 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
9592 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9593 : getVTList(MVT::Other);
9594 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
9595 FoldingSetNodeID ID;
9596 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9597 ID.AddInteger(MemVT.getRawBits());
9598 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
9599 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9600 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9601 ID.AddInteger(MMO->getFlags());
9602 void *IP = nullptr;
9603 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9604 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
9605 return SDValue(E, 0);
9607 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9608 IsTruncating, IsCompressing, MemVT, MMO);
9609 createOperands(N, Ops);
9611 CSEMap.InsertNode(N, IP);
9612 InsertNode(N);
9613 SDValue V(N, 0);
9614 NewSDValueDbgMsg(V, "Creating new node: ", this);
9615 return V;
9618 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
9619 SDValue Val, SDValue Ptr, SDValue Mask,
9620 SDValue EVL, MachinePointerInfo PtrInfo,
9621 EVT SVT, Align Alignment,
9622 MachineMemOperand::Flags MMOFlags,
9623 const AAMDNodes &AAInfo,
9624 bool IsCompressing) {
9625 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9627 MMOFlags |= MachineMemOperand::MOStore;
9628 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9630 if (PtrInfo.V.isNull())
9631 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9633 MachineFunction &MF = getMachineFunction();
9634 MachineMemOperand *MMO = MF.getMachineMemOperand(
9635 PtrInfo, MMOFlags, LocationSize::precise(SVT.getStoreSize()), Alignment,
9636 AAInfo);
9637 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
9638 IsCompressing);
9641 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
9642 SDValue Val, SDValue Ptr, SDValue Mask,
9643 SDValue EVL, EVT SVT,
9644 MachineMemOperand *MMO,
9645 bool IsCompressing) {
9646 EVT VT = Val.getValueType();
9648 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9649 if (VT == SVT)
9650 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
9651 EVL, VT, MMO, ISD::UNINDEXED,
9652 /*IsTruncating*/ false, IsCompressing);
9654 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9655 "Should only be a truncating store, not extending!");
9656 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9657 assert(VT.isVector() == SVT.isVector() &&
9658 "Cannot use trunc store to convert to or from a vector!");
9659 assert((!VT.isVector() ||
9660 VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9661 "Cannot use trunc store to change the number of vector elements!");
9663 SDVTList VTs = getVTList(MVT::Other);
9664 SDValue Undef = getUNDEF(Ptr.getValueType());
9665 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
9666 FoldingSetNodeID ID;
9667 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9668 ID.AddInteger(SVT.getRawBits());
9669 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
9670 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
9671 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9672 ID.AddInteger(MMO->getFlags());
9673 void *IP = nullptr;
9674 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9675 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
9676 return SDValue(E, 0);
9678 auto *N =
9679 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9680 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
9681 createOperands(N, Ops);
9683 CSEMap.InsertNode(N, IP);
9684 InsertNode(N);
9685 SDValue V(N, 0);
9686 NewSDValueDbgMsg(V, "Creating new node: ", this);
9687 return V;
9690 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
9691 SDValue Base, SDValue Offset,
9692 ISD::MemIndexedMode AM) {
9693 auto *ST = cast<VPStoreSDNode>(OrigStore);
9694 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
9695 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
9696 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
9697 Offset, ST->getMask(), ST->getVectorLength()};
9698 FoldingSetNodeID ID;
9699 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9700 ID.AddInteger(ST->getMemoryVT().getRawBits());
9701 ID.AddInteger(ST->getRawSubclassData());
9702 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
9703 ID.AddInteger(ST->getMemOperand()->getFlags());
9704 void *IP = nullptr;
9705 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9706 return SDValue(E, 0);
9708 auto *N = newSDNode<VPStoreSDNode>(
9709 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
9710 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
9711 createOperands(N, Ops);
9713 CSEMap.InsertNode(N, IP);
9714 InsertNode(N);
9715 SDValue V(N, 0);
9716 NewSDValueDbgMsg(V, "Creating new node: ", this);
9717 return V;
9720 SDValue SelectionDAG::getStridedLoadVP(
9721 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
9722 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
9723 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
9724 bool Indexed = AM != ISD::UNINDEXED;
9725 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9727 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
9728 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9729 : getVTList(VT, MVT::Other);
9730 FoldingSetNodeID ID;
9731 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
9732 ID.AddInteger(VT.getRawBits());
9733 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
9734 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9735 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9737 void *IP = nullptr;
9738 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9739 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
9740 return SDValue(E, 0);
9743 auto *N =
9744 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
9745 ExtType, IsExpanding, MemVT, MMO);
9746 createOperands(N, Ops);
9747 CSEMap.InsertNode(N, IP);
9748 InsertNode(N);
9749 SDValue V(N, 0);
9750 NewSDValueDbgMsg(V, "Creating new node: ", this);
9751 return V;
9754 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
9755 SDValue Ptr, SDValue Stride,
9756 SDValue Mask, SDValue EVL,
9757 MachineMemOperand *MMO,
9758 bool IsExpanding) {
9759 SDValue Undef = getUNDEF(Ptr.getValueType());
9760 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
9761 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
9764 SDValue SelectionDAG::getExtStridedLoadVP(
9765 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
9766 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
9767 MachineMemOperand *MMO, bool IsExpanding) {
9768 SDValue Undef = getUNDEF(Ptr.getValueType());
9769 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
9770 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
9773 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
9774 SDValue Val, SDValue Ptr,
9775 SDValue Offset, SDValue Stride,
9776 SDValue Mask, SDValue EVL, EVT MemVT,
9777 MachineMemOperand *MMO,
9778 ISD::MemIndexedMode AM,
9779 bool IsTruncating, bool IsCompressing) {
9780 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9781 bool Indexed = AM != ISD::UNINDEXED;
9782 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
9783 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9784 : getVTList(MVT::Other);
9785 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
9786 FoldingSetNodeID ID;
9787 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9788 ID.AddInteger(MemVT.getRawBits());
9789 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
9790 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9791 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9792 void *IP = nullptr;
9793 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9794 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
9795 return SDValue(E, 0);
9797 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
9798 VTs, AM, IsTruncating,
9799 IsCompressing, MemVT, MMO);
9800 createOperands(N, Ops);
9802 CSEMap.InsertNode(N, IP);
9803 InsertNode(N);
9804 SDValue V(N, 0);
9805 NewSDValueDbgMsg(V, "Creating new node: ", this);
9806 return V;
9809 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
9810 SDValue Val, SDValue Ptr,
9811 SDValue Stride, SDValue Mask,
9812 SDValue EVL, EVT SVT,
9813 MachineMemOperand *MMO,
9814 bool IsCompressing) {
9815 EVT VT = Val.getValueType();
9817 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9818 if (VT == SVT)
9819 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
9820 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
9821 /*IsTruncating*/ false, IsCompressing);
9823 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9824 "Should only be a truncating store, not extending!");
9825 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9826 assert(VT.isVector() == SVT.isVector() &&
9827 "Cannot use trunc store to convert to or from a vector!");
9828 assert((!VT.isVector() ||
9829 VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9830 "Cannot use trunc store to change the number of vector elements!");
9832 SDVTList VTs = getVTList(MVT::Other);
9833 SDValue Undef = getUNDEF(Ptr.getValueType());
9834 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
9835 FoldingSetNodeID ID;
9836 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9837 ID.AddInteger(SVT.getRawBits());
9838 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
9839 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
9840 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9841 void *IP = nullptr;
9842 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9843 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
9844 return SDValue(E, 0);
9846 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
9847 VTs, ISD::UNINDEXED, true,
9848 IsCompressing, SVT, MMO);
9849 createOperands(N, Ops);
9851 CSEMap.InsertNode(N, IP);
9852 InsertNode(N);
9853 SDValue V(N, 0);
9854 NewSDValueDbgMsg(V, "Creating new node: ", this);
9855 return V;
9858 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9859 ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
9860 ISD::MemIndexType IndexType) {
9861 assert(Ops.size() == 6 && "Incompatible number of operands");
9863 FoldingSetNodeID ID;
9864 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
9865 ID.AddInteger(VT.getRawBits());
9866 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
9867 dl.getIROrder(), VTs, VT, MMO, IndexType));
9868 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9869 ID.AddInteger(MMO->getFlags());
9870 void *IP = nullptr;
9871 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9872 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
9873 return SDValue(E, 0);
9876 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9877 VT, MMO, IndexType);
9878 createOperands(N, Ops);
9880 assert(N->getMask().getValueType().getVectorElementCount() ==
9881 N->getValueType(0).getVectorElementCount() &&
9882 "Vector width mismatch between mask and data");
9883 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9884 N->getValueType(0).getVectorElementCount().isScalable() &&
9885 "Scalable flags of index and data do not match");
9886 assert(ElementCount::isKnownGE(
9887 N->getIndex().getValueType().getVectorElementCount(),
9888 N->getValueType(0).getVectorElementCount()) &&
9889 "Vector width mismatch between index and data");
9890 assert(isa<ConstantSDNode>(N->getScale()) &&
9891 N->getScale()->getAsAPIntVal().isPowerOf2() &&
9892 "Scale should be a constant power of 2");
9894 CSEMap.InsertNode(N, IP);
9895 InsertNode(N);
9896 SDValue V(N, 0);
9897 NewSDValueDbgMsg(V, "Creating new node: ", this);
9898 return V;
9901 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9902 ArrayRef<SDValue> Ops,
9903 MachineMemOperand *MMO,
9904 ISD::MemIndexType IndexType) {
9905 assert(Ops.size() == 7 && "Incompatible number of operands");
9907 FoldingSetNodeID ID;
9908 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
9909 ID.AddInteger(VT.getRawBits());
9910 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
9911 dl.getIROrder(), VTs, VT, MMO, IndexType));
9912 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9913 ID.AddInteger(MMO->getFlags());
9914 void *IP = nullptr;
9915 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9916 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
9917 return SDValue(E, 0);
9919 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9920 VT, MMO, IndexType);
9921 createOperands(N, Ops);
9923 assert(N->getMask().getValueType().getVectorElementCount() ==
9924 N->getValue().getValueType().getVectorElementCount() &&
9925 "Vector width mismatch between mask and data");
9926 assert(
9927 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9928 N->getValue().getValueType().getVectorElementCount().isScalable() &&
9929 "Scalable flags of index and data do not match");
9930 assert(ElementCount::isKnownGE(
9931 N->getIndex().getValueType().getVectorElementCount(),
9932 N->getValue().getValueType().getVectorElementCount()) &&
9933 "Vector width mismatch between index and data");
9934 assert(isa<ConstantSDNode>(N->getScale()) &&
9935 N->getScale()->getAsAPIntVal().isPowerOf2() &&
9936 "Scale should be a constant power of 2");
9938 CSEMap.InsertNode(N, IP);
9939 InsertNode(N);
9940 SDValue V(N, 0);
9941 NewSDValueDbgMsg(V, "Creating new node: ", this);
9942 return V;
9945 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
9946 SDValue Base, SDValue Offset, SDValue Mask,
9947 SDValue PassThru, EVT MemVT,
9948 MachineMemOperand *MMO,
9949 ISD::MemIndexedMode AM,
9950 ISD::LoadExtType ExtTy, bool isExpanding) {
9951 bool Indexed = AM != ISD::UNINDEXED;
9952 assert((Indexed || Offset.isUndef()) &&
9953 "Unindexed masked load with an offset!");
9954 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
9955 : getVTList(VT, MVT::Other);
9956 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
9957 FoldingSetNodeID ID;
9958 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
9959 ID.AddInteger(MemVT.getRawBits());
9960 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
9961 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
9962 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9963 ID.AddInteger(MMO->getFlags());
9964 void *IP = nullptr;
9965 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9966 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
9967 return SDValue(E, 0);
9969 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9970 AM, ExtTy, isExpanding, MemVT, MMO);
9971 createOperands(N, Ops);
9973 CSEMap.InsertNode(N, IP);
9974 InsertNode(N);
9975 SDValue V(N, 0);
9976 NewSDValueDbgMsg(V, "Creating new node: ", this);
9977 return V;
9980 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
9981 SDValue Base, SDValue Offset,
9982 ISD::MemIndexedMode AM) {
9983 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
9984 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
9985 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
9986 Offset, LD->getMask(), LD->getPassThru(),
9987 LD->getMemoryVT(), LD->getMemOperand(), AM,
9988 LD->getExtensionType(), LD->isExpandingLoad());
9991 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
9992 SDValue Val, SDValue Base, SDValue Offset,
9993 SDValue Mask, EVT MemVT,
9994 MachineMemOperand *MMO,
9995 ISD::MemIndexedMode AM, bool IsTruncating,
9996 bool IsCompressing) {
9997 assert(Chain.getValueType() == MVT::Other &&
9998 "Invalid chain type");
9999 bool Indexed = AM != ISD::UNINDEXED;
10000 assert((Indexed || Offset.isUndef()) &&
10001 "Unindexed masked store with an offset!");
10002 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10003 : getVTList(MVT::Other);
10004 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10005 FoldingSetNodeID ID;
10006 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10007 ID.AddInteger(MemVT.getRawBits());
10008 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10009 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10010 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10011 ID.AddInteger(MMO->getFlags());
10012 void *IP = nullptr;
10013 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10014 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10015 return SDValue(E, 0);
10017 auto *N =
10018 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10019 IsTruncating, IsCompressing, MemVT, MMO);
10020 createOperands(N, Ops);
10022 CSEMap.InsertNode(N, IP);
10023 InsertNode(N);
10024 SDValue V(N, 0);
10025 NewSDValueDbgMsg(V, "Creating new node: ", this);
10026 return V;
10029 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
10030 SDValue Base, SDValue Offset,
10031 ISD::MemIndexedMode AM) {
10032 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
10033 assert(ST->getOffset().isUndef() &&
10034 "Masked store is already a indexed store!");
10035 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10036 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10037 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10040 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
10041 ArrayRef<SDValue> Ops,
10042 MachineMemOperand *MMO,
10043 ISD::MemIndexType IndexType,
10044 ISD::LoadExtType ExtTy) {
10045 assert(Ops.size() == 6 && "Incompatible number of operands");
10047 FoldingSetNodeID ID;
10048 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10049 ID.AddInteger(MemVT.getRawBits());
10050 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10051 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10052 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10053 ID.AddInteger(MMO->getFlags());
10054 void *IP = nullptr;
10055 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10056 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10057 return SDValue(E, 0);
10060 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10061 VTs, MemVT, MMO, IndexType, ExtTy);
10062 createOperands(N, Ops);
10064 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10065 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10066 assert(N->getMask().getValueType().getVectorElementCount() ==
10067 N->getValueType(0).getVectorElementCount() &&
10068 "Vector width mismatch between mask and data");
10069 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10070 N->getValueType(0).getVectorElementCount().isScalable() &&
10071 "Scalable flags of index and data do not match");
10072 assert(ElementCount::isKnownGE(
10073 N->getIndex().getValueType().getVectorElementCount(),
10074 N->getValueType(0).getVectorElementCount()) &&
10075 "Vector width mismatch between index and data");
10076 assert(isa<ConstantSDNode>(N->getScale()) &&
10077 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10078 "Scale should be a constant power of 2");
10080 CSEMap.InsertNode(N, IP);
10081 InsertNode(N);
10082 SDValue V(N, 0);
10083 NewSDValueDbgMsg(V, "Creating new node: ", this);
10084 return V;
10087 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
10088 ArrayRef<SDValue> Ops,
10089 MachineMemOperand *MMO,
10090 ISD::MemIndexType IndexType,
10091 bool IsTrunc) {
10092 assert(Ops.size() == 6 && "Incompatible number of operands");
10094 FoldingSetNodeID ID;
10095 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10096 ID.AddInteger(MemVT.getRawBits());
10097 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10098 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10099 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10100 ID.AddInteger(MMO->getFlags());
10101 void *IP = nullptr;
10102 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10103 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10104 return SDValue(E, 0);
10107 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10108 VTs, MemVT, MMO, IndexType, IsTrunc);
10109 createOperands(N, Ops);
10111 assert(N->getMask().getValueType().getVectorElementCount() ==
10112 N->getValue().getValueType().getVectorElementCount() &&
10113 "Vector width mismatch between mask and data");
10114 assert(
10115 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10116 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10117 "Scalable flags of index and data do not match");
10118 assert(ElementCount::isKnownGE(
10119 N->getIndex().getValueType().getVectorElementCount(),
10120 N->getValue().getValueType().getVectorElementCount()) &&
10121 "Vector width mismatch between index and data");
10122 assert(isa<ConstantSDNode>(N->getScale()) &&
10123 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10124 "Scale should be a constant power of 2");
10126 CSEMap.InsertNode(N, IP);
10127 InsertNode(N);
10128 SDValue V(N, 0);
10129 NewSDValueDbgMsg(V, "Creating new node: ", this);
10130 return V;
10133 SDValue SelectionDAG::getMaskedHistogram(SDVTList VTs, EVT MemVT,
10134 const SDLoc &dl, ArrayRef<SDValue> Ops,
10135 MachineMemOperand *MMO,
10136 ISD::MemIndexType IndexType) {
10137 assert(Ops.size() == 7 && "Incompatible number of operands");
10139 FoldingSetNodeID ID;
10140 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10141 ID.AddInteger(MemVT.getRawBits());
10142 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10143 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10145 ID.AddInteger(MMO->getFlags());
10146 void *IP = nullptr;
10147 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10148 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10149 return SDValue(E, 0);
10152 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10153 VTs, MemVT, MMO, IndexType);
10154 createOperands(N, Ops);
10156 assert(N->getMask().getValueType().getVectorElementCount() ==
10157 N->getIndex().getValueType().getVectorElementCount() &&
10158 "Vector width mismatch between mask and data");
10159 assert(isa<ConstantSDNode>(N->getScale()) &&
10160 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10161 "Scale should be a constant power of 2");
10162 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10164 CSEMap.InsertNode(N, IP);
10165 InsertNode(N);
10166 SDValue V(N, 0);
10167 NewSDValueDbgMsg(V, "Creating new node: ", this);
10168 return V;
10171 SDValue SelectionDAG::getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
10172 EVT MemVT, MachineMemOperand *MMO) {
10173 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10174 SDVTList VTs = getVTList(MVT::Other);
10175 SDValue Ops[] = {Chain, Ptr};
10176 FoldingSetNodeID ID;
10177 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10178 ID.AddInteger(MemVT.getRawBits());
10179 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10180 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10181 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10182 ID.AddInteger(MMO->getFlags());
10183 void *IP = nullptr;
10184 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10185 return SDValue(E, 0);
10187 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10188 dl.getDebugLoc(), VTs, MemVT, MMO);
10189 createOperands(N, Ops);
10191 CSEMap.InsertNode(N, IP);
10192 InsertNode(N);
10193 SDValue V(N, 0);
10194 NewSDValueDbgMsg(V, "Creating new node: ", this);
10195 return V;
10198 SDValue SelectionDAG::getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
10199 EVT MemVT, MachineMemOperand *MMO) {
10200 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10201 SDVTList VTs = getVTList(MVT::Other);
10202 SDValue Ops[] = {Chain, Ptr};
10203 FoldingSetNodeID ID;
10204 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10205 ID.AddInteger(MemVT.getRawBits());
10206 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10207 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10208 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10209 ID.AddInteger(MMO->getFlags());
10210 void *IP = nullptr;
10211 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10212 return SDValue(E, 0);
10214 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10215 dl.getDebugLoc(), VTs, MemVT, MMO);
10216 createOperands(N, Ops);
10218 CSEMap.InsertNode(N, IP);
10219 InsertNode(N);
10220 SDValue V(N, 0);
10221 NewSDValueDbgMsg(V, "Creating new node: ", this);
10222 return V;
10225 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
10226 // select undef, T, F --> T (if T is a constant), otherwise F
10227 // select, ?, undef, F --> F
10228 // select, ?, T, undef --> T
10229 if (Cond.isUndef())
10230 return isConstantValueOfAnyType(T) ? T : F;
10231 if (T.isUndef())
10232 return F;
10233 if (F.isUndef())
10234 return T;
10236 // select true, T, F --> T
10237 // select false, T, F --> F
10238 if (auto C = isBoolConstant(Cond, /*AllowTruncation=*/true))
10239 return *C ? T : F;
10241 // select ?, T, T --> T
10242 if (T == F)
10243 return T;
10245 return SDValue();
10248 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
10249 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10250 if (X.isUndef())
10251 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10252 // shift X, undef --> undef (because it may shift by the bitwidth)
10253 if (Y.isUndef())
10254 return getUNDEF(X.getValueType());
10256 // shift 0, Y --> 0
10257 // shift X, 0 --> X
10258 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
10259 return X;
10261 // shift X, C >= bitwidth(X) --> undef
10262 // All vector elements must be too big (or undef) to avoid partial undefs.
10263 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10264 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10266 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10267 return getUNDEF(X.getValueType());
10269 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10270 if (X.getValueType().getScalarType() == MVT::i1)
10271 return X;
10273 return SDValue();
10276 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
10277 SDNodeFlags Flags) {
10278 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10279 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10280 // operation is poison. That result can be relaxed to undef.
10281 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10282 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10283 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10284 (YC && YC->getValueAPF().isNaN());
10285 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10286 (YC && YC->getValueAPF().isInfinity());
10288 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10289 return getUNDEF(X.getValueType());
10291 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10292 return getUNDEF(X.getValueType());
10294 if (!YC)
10295 return SDValue();
10297 // X + -0.0 --> X
10298 if (Opcode == ISD::FADD)
10299 if (YC->getValueAPF().isNegZero())
10300 return X;
10302 // X - +0.0 --> X
10303 if (Opcode == ISD::FSUB)
10304 if (YC->getValueAPF().isPosZero())
10305 return X;
10307 // X * 1.0 --> X
10308 // X / 1.0 --> X
10309 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10310 if (YC->getValueAPF().isExactlyValue(1.0))
10311 return X;
10313 // X * 0.0 --> 0.0
10314 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10315 if (YC->getValueAPF().isZero())
10316 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10318 return SDValue();
10321 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
10322 SDValue Ptr, SDValue SV, unsigned Align) {
10323 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10324 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10328 ArrayRef<SDUse> Ops) {
10329 switch (Ops.size()) {
10330 case 0: return getNode(Opcode, DL, VT);
10331 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
10332 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10333 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10334 default: break;
10337 // Copy from an SDUse array into an SDValue array for use with
10338 // the regular getNode logic.
10339 SmallVector<SDValue, 8> NewOps(Ops);
10340 return getNode(Opcode, DL, VT, NewOps);
10343 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10344 ArrayRef<SDValue> Ops) {
10345 SDNodeFlags Flags;
10346 if (Inserter)
10347 Flags = Inserter->getFlags();
10348 return getNode(Opcode, DL, VT, Ops, Flags);
10351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10352 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10353 unsigned NumOps = Ops.size();
10354 switch (NumOps) {
10355 case 0: return getNode(Opcode, DL, VT);
10356 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10357 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10358 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10359 default: break;
10362 #ifndef NDEBUG
10363 for (const auto &Op : Ops)
10364 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10365 "Operand is DELETED_NODE!");
10366 #endif
10368 switch (Opcode) {
10369 default: break;
10370 case ISD::BUILD_VECTOR:
10371 // Attempt to simplify BUILD_VECTOR.
10372 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10373 return V;
10374 break;
10375 case ISD::CONCAT_VECTORS:
10376 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10377 return V;
10378 break;
10379 case ISD::SELECT_CC:
10380 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10381 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10382 "LHS and RHS of condition must have same type!");
10383 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10384 "True and False arms of SelectCC must have same type!");
10385 assert(Ops[2].getValueType() == VT &&
10386 "select_cc node must be of same type as true and false value!");
10387 assert((!Ops[0].getValueType().isVector() ||
10388 Ops[0].getValueType().getVectorElementCount() ==
10389 VT.getVectorElementCount()) &&
10390 "Expected select_cc with vector result to have the same sized "
10391 "comparison type!");
10392 break;
10393 case ISD::BR_CC:
10394 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10395 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10396 "LHS/RHS of comparison should match types!");
10397 break;
10398 case ISD::VP_ADD:
10399 case ISD::VP_SUB:
10400 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10401 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
10402 Opcode = ISD::VP_XOR;
10403 break;
10404 case ISD::VP_MUL:
10405 // If it is VP_MUL mask operation then turn it to VP_AND
10406 if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
10407 Opcode = ISD::VP_AND;
10408 break;
10409 case ISD::VP_REDUCE_MUL:
10410 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10411 if (VT == MVT::i1)
10412 Opcode = ISD::VP_REDUCE_AND;
10413 break;
10414 case ISD::VP_REDUCE_ADD:
10415 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10416 if (VT == MVT::i1)
10417 Opcode = ISD::VP_REDUCE_XOR;
10418 break;
10419 case ISD::VP_REDUCE_SMAX:
10420 case ISD::VP_REDUCE_UMIN:
10421 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10422 // VP_REDUCE_AND.
10423 if (VT == MVT::i1)
10424 Opcode = ISD::VP_REDUCE_AND;
10425 break;
10426 case ISD::VP_REDUCE_SMIN:
10427 case ISD::VP_REDUCE_UMAX:
10428 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
10429 // VP_REDUCE_OR.
10430 if (VT == MVT::i1)
10431 Opcode = ISD::VP_REDUCE_OR;
10432 break;
10435 // Memoize nodes.
10436 SDNode *N;
10437 SDVTList VTs = getVTList(VT);
10439 if (VT != MVT::Glue) {
10440 FoldingSetNodeID ID;
10441 AddNodeIDNode(ID, Opcode, VTs, Ops);
10442 void *IP = nullptr;
10444 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10445 E->intersectFlagsWith(Flags);
10446 return SDValue(E, 0);
10449 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10450 createOperands(N, Ops);
10452 CSEMap.InsertNode(N, IP);
10453 } else {
10454 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10455 createOperands(N, Ops);
10458 N->setFlags(Flags);
10459 InsertNode(N);
10460 SDValue V(N, 0);
10461 NewSDValueDbgMsg(V, "Creating new node: ", this);
10462 return V;
10465 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10466 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
10467 return getNode(Opcode, DL, getVTList(ResultTys), Ops);
10470 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10471 ArrayRef<SDValue> Ops) {
10472 SDNodeFlags Flags;
10473 if (Inserter)
10474 Flags = Inserter->getFlags();
10475 return getNode(Opcode, DL, VTList, Ops, Flags);
10478 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10479 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10480 if (VTList.NumVTs == 1)
10481 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
10483 #ifndef NDEBUG
10484 for (const auto &Op : Ops)
10485 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10486 "Operand is DELETED_NODE!");
10487 #endif
10489 switch (Opcode) {
10490 case ISD::SADDO:
10491 case ISD::UADDO:
10492 case ISD::SSUBO:
10493 case ISD::USUBO: {
10494 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
10495 "Invalid add/sub overflow op!");
10496 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
10497 Ops[0].getValueType() == Ops[1].getValueType() &&
10498 Ops[0].getValueType() == VTList.VTs[0] &&
10499 "Binary operator types must match!");
10500 SDValue N1 = Ops[0], N2 = Ops[1];
10501 canonicalizeCommutativeBinop(Opcode, N1, N2);
10503 // (X +- 0) -> X with zero-overflow.
10504 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
10505 /*AllowTruncation*/ true);
10506 if (N2CV && N2CV->isZero()) {
10507 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
10508 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
10511 if (VTList.VTs[0].isVector() &&
10512 VTList.VTs[0].getVectorElementType() == MVT::i1 &&
10513 VTList.VTs[1].getVectorElementType() == MVT::i1) {
10514 SDValue F1 = getFreeze(N1);
10515 SDValue F2 = getFreeze(N2);
10516 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
10517 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
10518 return getNode(ISD::MERGE_VALUES, DL, VTList,
10519 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
10520 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
10521 Flags);
10522 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
10523 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
10524 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
10525 return getNode(ISD::MERGE_VALUES, DL, VTList,
10526 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
10527 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
10528 Flags);
10531 break;
10533 case ISD::SADDO_CARRY:
10534 case ISD::UADDO_CARRY:
10535 case ISD::SSUBO_CARRY:
10536 case ISD::USUBO_CARRY:
10537 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
10538 "Invalid add/sub overflow op!");
10539 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
10540 Ops[0].getValueType() == Ops[1].getValueType() &&
10541 Ops[0].getValueType() == VTList.VTs[0] &&
10542 Ops[2].getValueType() == VTList.VTs[1] &&
10543 "Binary operator types must match!");
10544 break;
10545 case ISD::SMUL_LOHI:
10546 case ISD::UMUL_LOHI: {
10547 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
10548 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
10549 VTList.VTs[0] == Ops[0].getValueType() &&
10550 VTList.VTs[0] == Ops[1].getValueType() &&
10551 "Binary operator types must match!");
10552 // Constant fold.
10553 ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(Ops[0]);
10554 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ops[1]);
10555 if (LHS && RHS) {
10556 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
10557 unsigned OutWidth = Width * 2;
10558 APInt Val = LHS->getAPIntValue();
10559 APInt Mul = RHS->getAPIntValue();
10560 if (Opcode == ISD::SMUL_LOHI) {
10561 Val = Val.sext(OutWidth);
10562 Mul = Mul.sext(OutWidth);
10563 } else {
10564 Val = Val.zext(OutWidth);
10565 Mul = Mul.zext(OutWidth);
10567 Val *= Mul;
10569 SDValue Hi =
10570 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
10571 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
10572 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
10574 break;
10576 case ISD::FFREXP: {
10577 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
10578 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
10579 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
10581 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Ops[0])) {
10582 int FrexpExp;
10583 APFloat FrexpMant =
10584 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
10585 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
10586 SDValue Result1 =
10587 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
10588 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
10591 break;
10593 case ISD::STRICT_FP_EXTEND:
10594 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
10595 "Invalid STRICT_FP_EXTEND!");
10596 assert(VTList.VTs[0].isFloatingPoint() &&
10597 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
10598 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
10599 "STRICT_FP_EXTEND result type should be vector iff the operand "
10600 "type is vector!");
10601 assert((!VTList.VTs[0].isVector() ||
10602 VTList.VTs[0].getVectorElementCount() ==
10603 Ops[1].getValueType().getVectorElementCount()) &&
10604 "Vector element count mismatch!");
10605 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
10606 "Invalid fpext node, dst <= src!");
10607 break;
10608 case ISD::STRICT_FP_ROUND:
10609 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
10610 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
10611 "STRICT_FP_ROUND result type should be vector iff the operand "
10612 "type is vector!");
10613 assert((!VTList.VTs[0].isVector() ||
10614 VTList.VTs[0].getVectorElementCount() ==
10615 Ops[1].getValueType().getVectorElementCount()) &&
10616 "Vector element count mismatch!");
10617 assert(VTList.VTs[0].isFloatingPoint() &&
10618 Ops[1].getValueType().isFloatingPoint() &&
10619 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
10620 Ops[2].getOpcode() == ISD::TargetConstant &&
10621 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
10622 "Invalid STRICT_FP_ROUND!");
10623 break;
10624 #if 0
10625 // FIXME: figure out how to safely handle things like
10626 // int foo(int x) { return 1 << (x & 255); }
10627 // int bar() { return foo(256); }
10628 case ISD::SRA_PARTS:
10629 case ISD::SRL_PARTS:
10630 case ISD::SHL_PARTS:
10631 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
10632 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
10633 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
10634 else if (N3.getOpcode() == ISD::AND)
10635 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
10636 // If the and is only masking out bits that cannot effect the shift,
10637 // eliminate the and.
10638 unsigned NumBits = VT.getScalarSizeInBits()*2;
10639 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
10640 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
10642 break;
10643 #endif
10646 // Memoize the node unless it returns a glue result.
10647 SDNode *N;
10648 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
10649 FoldingSetNodeID ID;
10650 AddNodeIDNode(ID, Opcode, VTList, Ops);
10651 void *IP = nullptr;
10652 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10653 E->intersectFlagsWith(Flags);
10654 return SDValue(E, 0);
10657 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
10658 createOperands(N, Ops);
10659 CSEMap.InsertNode(N, IP);
10660 } else {
10661 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
10662 createOperands(N, Ops);
10665 N->setFlags(Flags);
10666 InsertNode(N);
10667 SDValue V(N, 0);
10668 NewSDValueDbgMsg(V, "Creating new node: ", this);
10669 return V;
10672 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10673 SDVTList VTList) {
10674 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
10677 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10678 SDValue N1) {
10679 SDValue Ops[] = { N1 };
10680 return getNode(Opcode, DL, VTList, Ops);
10683 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10684 SDValue N1, SDValue N2) {
10685 SDValue Ops[] = { N1, N2 };
10686 return getNode(Opcode, DL, VTList, Ops);
10689 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10690 SDValue N1, SDValue N2, SDValue N3) {
10691 SDValue Ops[] = { N1, N2, N3 };
10692 return getNode(Opcode, DL, VTList, Ops);
10695 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10696 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
10697 SDValue Ops[] = { N1, N2, N3, N4 };
10698 return getNode(Opcode, DL, VTList, Ops);
10701 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10702 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
10703 SDValue N5) {
10704 SDValue Ops[] = { N1, N2, N3, N4, N5 };
10705 return getNode(Opcode, DL, VTList, Ops);
10708 SDVTList SelectionDAG::getVTList(EVT VT) {
10709 if (!VT.isExtended())
10710 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
10712 return makeVTList(&(*EVTs.insert(VT).first), 1);
10715 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
10716 FoldingSetNodeID ID;
10717 ID.AddInteger(2U);
10718 ID.AddInteger(VT1.getRawBits());
10719 ID.AddInteger(VT2.getRawBits());
10721 void *IP = nullptr;
10722 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10723 if (!Result) {
10724 EVT *Array = Allocator.Allocate<EVT>(2);
10725 Array[0] = VT1;
10726 Array[1] = VT2;
10727 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
10728 VTListMap.InsertNode(Result, IP);
10730 return Result->getSDVTList();
10733 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
10734 FoldingSetNodeID ID;
10735 ID.AddInteger(3U);
10736 ID.AddInteger(VT1.getRawBits());
10737 ID.AddInteger(VT2.getRawBits());
10738 ID.AddInteger(VT3.getRawBits());
10740 void *IP = nullptr;
10741 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10742 if (!Result) {
10743 EVT *Array = Allocator.Allocate<EVT>(3);
10744 Array[0] = VT1;
10745 Array[1] = VT2;
10746 Array[2] = VT3;
10747 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
10748 VTListMap.InsertNode(Result, IP);
10750 return Result->getSDVTList();
10753 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
10754 FoldingSetNodeID ID;
10755 ID.AddInteger(4U);
10756 ID.AddInteger(VT1.getRawBits());
10757 ID.AddInteger(VT2.getRawBits());
10758 ID.AddInteger(VT3.getRawBits());
10759 ID.AddInteger(VT4.getRawBits());
10761 void *IP = nullptr;
10762 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10763 if (!Result) {
10764 EVT *Array = Allocator.Allocate<EVT>(4);
10765 Array[0] = VT1;
10766 Array[1] = VT2;
10767 Array[2] = VT3;
10768 Array[3] = VT4;
10769 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
10770 VTListMap.InsertNode(Result, IP);
10772 return Result->getSDVTList();
10775 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
10776 unsigned NumVTs = VTs.size();
10777 FoldingSetNodeID ID;
10778 ID.AddInteger(NumVTs);
10779 for (unsigned index = 0; index < NumVTs; index++) {
10780 ID.AddInteger(VTs[index].getRawBits());
10783 void *IP = nullptr;
10784 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10785 if (!Result) {
10786 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
10787 llvm::copy(VTs, Array);
10788 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
10789 VTListMap.InsertNode(Result, IP);
10791 return Result->getSDVTList();
10795 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
10796 /// specified operands. If the resultant node already exists in the DAG,
10797 /// this does not modify the specified node, instead it returns the node that
10798 /// already exists. If the resultant node does not exist in the DAG, the
10799 /// input node is returned. As a degenerate case, if you specify the same
10800 /// input operands as the node already has, the input node is returned.
10801 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
10802 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
10804 // Check to see if there is no change.
10805 if (Op == N->getOperand(0)) return N;
10807 // See if the modified node already exists.
10808 void *InsertPos = nullptr;
10809 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
10810 return Existing;
10812 // Nope it doesn't. Remove the node from its current place in the maps.
10813 if (InsertPos)
10814 if (!RemoveNodeFromCSEMaps(N))
10815 InsertPos = nullptr;
10817 // Now we update the operands.
10818 N->OperandList[0].set(Op);
10820 updateDivergence(N);
10821 // If this gets put into a CSE map, add it.
10822 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10823 return N;
10826 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
10827 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
10829 // Check to see if there is no change.
10830 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
10831 return N; // No operands changed, just return the input node.
10833 // See if the modified node already exists.
10834 void *InsertPos = nullptr;
10835 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
10836 return Existing;
10838 // Nope it doesn't. Remove the node from its current place in the maps.
10839 if (InsertPos)
10840 if (!RemoveNodeFromCSEMaps(N))
10841 InsertPos = nullptr;
10843 // Now we update the operands.
10844 if (N->OperandList[0] != Op1)
10845 N->OperandList[0].set(Op1);
10846 if (N->OperandList[1] != Op2)
10847 N->OperandList[1].set(Op2);
10849 updateDivergence(N);
10850 // If this gets put into a CSE map, add it.
10851 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10852 return N;
10855 SDNode *SelectionDAG::
10856 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
10857 SDValue Ops[] = { Op1, Op2, Op3 };
10858 return UpdateNodeOperands(N, Ops);
10861 SDNode *SelectionDAG::
10862 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
10863 SDValue Op3, SDValue Op4) {
10864 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
10865 return UpdateNodeOperands(N, Ops);
10868 SDNode *SelectionDAG::
10869 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
10870 SDValue Op3, SDValue Op4, SDValue Op5) {
10871 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
10872 return UpdateNodeOperands(N, Ops);
10875 SDNode *SelectionDAG::
10876 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
10877 unsigned NumOps = Ops.size();
10878 assert(N->getNumOperands() == NumOps &&
10879 "Update with wrong number of operands");
10881 // If no operands changed just return the input node.
10882 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
10883 return N;
10885 // See if the modified node already exists.
10886 void *InsertPos = nullptr;
10887 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
10888 return Existing;
10890 // Nope it doesn't. Remove the node from its current place in the maps.
10891 if (InsertPos)
10892 if (!RemoveNodeFromCSEMaps(N))
10893 InsertPos = nullptr;
10895 // Now we update the operands.
10896 for (unsigned i = 0; i != NumOps; ++i)
10897 if (N->OperandList[i] != Ops[i])
10898 N->OperandList[i].set(Ops[i]);
10900 updateDivergence(N);
10901 // If this gets put into a CSE map, add it.
10902 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10903 return N;
10906 /// DropOperands - Release the operands and set this node to have
10907 /// zero operands.
10908 void SDNode::DropOperands() {
10909 // Unlike the code in MorphNodeTo that does this, we don't need to
10910 // watch for dead nodes here.
10911 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
10912 SDUse &Use = *I++;
10913 Use.set(SDValue());
10917 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
10918 ArrayRef<MachineMemOperand *> NewMemRefs) {
10919 if (NewMemRefs.empty()) {
10920 N->clearMemRefs();
10921 return;
10924 // Check if we can avoid allocating by storing a single reference directly.
10925 if (NewMemRefs.size() == 1) {
10926 N->MemRefs = NewMemRefs[0];
10927 N->NumMemRefs = 1;
10928 return;
10931 MachineMemOperand **MemRefsBuffer =
10932 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
10933 llvm::copy(NewMemRefs, MemRefsBuffer);
10934 N->MemRefs = MemRefsBuffer;
10935 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
10938 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
10939 /// machine opcode.
10941 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10942 EVT VT) {
10943 SDVTList VTs = getVTList(VT);
10944 return SelectNodeTo(N, MachineOpc, VTs, {});
10947 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10948 EVT VT, SDValue Op1) {
10949 SDVTList VTs = getVTList(VT);
10950 SDValue Ops[] = { Op1 };
10951 return SelectNodeTo(N, MachineOpc, VTs, Ops);
10954 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10955 EVT VT, SDValue Op1,
10956 SDValue Op2) {
10957 SDVTList VTs = getVTList(VT);
10958 SDValue Ops[] = { Op1, Op2 };
10959 return SelectNodeTo(N, MachineOpc, VTs, Ops);
10962 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10963 EVT VT, SDValue Op1,
10964 SDValue Op2, SDValue Op3) {
10965 SDVTList VTs = getVTList(VT);
10966 SDValue Ops[] = { Op1, Op2, Op3 };
10967 return SelectNodeTo(N, MachineOpc, VTs, Ops);
10970 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10971 EVT VT, ArrayRef<SDValue> Ops) {
10972 SDVTList VTs = getVTList(VT);
10973 return SelectNodeTo(N, MachineOpc, VTs, Ops);
10976 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10977 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
10978 SDVTList VTs = getVTList(VT1, VT2);
10979 return SelectNodeTo(N, MachineOpc, VTs, Ops);
10982 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10983 EVT VT1, EVT VT2) {
10984 SDVTList VTs = getVTList(VT1, VT2);
10985 return SelectNodeTo(N, MachineOpc, VTs, {});
10988 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10989 EVT VT1, EVT VT2, EVT VT3,
10990 ArrayRef<SDValue> Ops) {
10991 SDVTList VTs = getVTList(VT1, VT2, VT3);
10992 return SelectNodeTo(N, MachineOpc, VTs, Ops);
10995 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10996 EVT VT1, EVT VT2,
10997 SDValue Op1, SDValue Op2) {
10998 SDVTList VTs = getVTList(VT1, VT2);
10999 SDValue Ops[] = { Op1, Op2 };
11000 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11003 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
11004 SDVTList VTs,ArrayRef<SDValue> Ops) {
11005 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11006 // Reset the NodeID to -1.
11007 New->setNodeId(-1);
11008 if (New != N) {
11009 ReplaceAllUsesWith(N, New);
11010 RemoveDeadNode(N);
11012 return New;
11015 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11016 /// the line number information on the merged node since it is not possible to
11017 /// preserve the information that operation is associated with multiple lines.
11018 /// This will make the debugger working better at -O0, were there is a higher
11019 /// probability having other instructions associated with that line.
11021 /// For IROrder, we keep the smaller of the two
11022 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11023 DebugLoc NLoc = N->getDebugLoc();
11024 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11025 N->setDebugLoc(DebugLoc());
11027 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11028 N->setIROrder(Order);
11029 return N;
11032 /// MorphNodeTo - This *mutates* the specified node to have the specified
11033 /// return type, opcode, and operands.
11035 /// Note that MorphNodeTo returns the resultant node. If there is already a
11036 /// node of the specified opcode and operands, it returns that node instead of
11037 /// the current one. Note that the SDLoc need not be the same.
11039 /// Using MorphNodeTo is faster than creating a new node and swapping it in
11040 /// with ReplaceAllUsesWith both because it often avoids allocating a new
11041 /// node, and because it doesn't require CSE recalculation for any of
11042 /// the node's users.
11044 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11045 /// As a consequence it isn't appropriate to use from within the DAG combiner or
11046 /// the legalizer which maintain worklists that would need to be updated when
11047 /// deleting things.
11048 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
11049 SDVTList VTs, ArrayRef<SDValue> Ops) {
11050 // If an identical node already exists, use it.
11051 void *IP = nullptr;
11052 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11053 FoldingSetNodeID ID;
11054 AddNodeIDNode(ID, Opc, VTs, Ops);
11055 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11056 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11059 if (!RemoveNodeFromCSEMaps(N))
11060 IP = nullptr;
11062 // Start the morphing.
11063 N->NodeType = Opc;
11064 N->ValueList = VTs.VTs;
11065 N->NumValues = VTs.NumVTs;
11067 // Clear the operands list, updating used nodes to remove this from their
11068 // use list. Keep track of any operands that become dead as a result.
11069 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11070 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11071 SDUse &Use = *I++;
11072 SDNode *Used = Use.getNode();
11073 Use.set(SDValue());
11074 if (Used->use_empty())
11075 DeadNodeSet.insert(Used);
11078 // For MachineNode, initialize the memory references information.
11079 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
11080 MN->clearMemRefs();
11082 // Swap for an appropriately sized array from the recycler.
11083 removeOperands(N);
11084 createOperands(N, Ops);
11086 // Delete any nodes that are still dead after adding the uses for the
11087 // new operands.
11088 if (!DeadNodeSet.empty()) {
11089 SmallVector<SDNode *, 16> DeadNodes;
11090 for (SDNode *N : DeadNodeSet)
11091 if (N->use_empty())
11092 DeadNodes.push_back(N);
11093 RemoveDeadNodes(DeadNodes);
11096 if (IP)
11097 CSEMap.InsertNode(N, IP); // Memoize the new node.
11098 return N;
11101 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
11102 unsigned OrigOpc = Node->getOpcode();
11103 unsigned NewOpc;
11104 switch (OrigOpc) {
11105 default:
11106 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11107 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11108 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11109 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11110 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11111 #include "llvm/IR/ConstrainedOps.def"
11114 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11116 // We're taking this node out of the chain, so we need to re-link things.
11117 SDValue InputChain = Node->getOperand(0);
11118 SDValue OutputChain = SDValue(Node, 1);
11119 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11121 SmallVector<SDValue, 3> Ops;
11122 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11123 Ops.push_back(Node->getOperand(i));
11125 SDVTList VTs = getVTList(Node->getValueType(0));
11126 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11128 // MorphNodeTo can operate in two ways: if an existing node with the
11129 // specified operands exists, it can just return it. Otherwise, it
11130 // updates the node in place to have the requested operands.
11131 if (Res == Node) {
11132 // If we updated the node in place, reset the node ID. To the isel,
11133 // this should be just like a newly allocated machine node.
11134 Res->setNodeId(-1);
11135 } else {
11136 ReplaceAllUsesWith(Node, Res);
11137 RemoveDeadNode(Node);
11140 return Res;
11143 /// getMachineNode - These are used for target selectors to create a new node
11144 /// with specified return type(s), MachineInstr opcode, and operands.
11146 /// Note that getMachineNode returns the resultant node. If there is already a
11147 /// node of the specified opcode and operands, it returns that node instead of
11148 /// the current one.
11149 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11150 EVT VT) {
11151 SDVTList VTs = getVTList(VT);
11152 return getMachineNode(Opcode, dl, VTs, {});
11155 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11156 EVT VT, SDValue Op1) {
11157 SDVTList VTs = getVTList(VT);
11158 SDValue Ops[] = { Op1 };
11159 return getMachineNode(Opcode, dl, VTs, Ops);
11162 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11163 EVT VT, SDValue Op1, SDValue Op2) {
11164 SDVTList VTs = getVTList(VT);
11165 SDValue Ops[] = { Op1, Op2 };
11166 return getMachineNode(Opcode, dl, VTs, Ops);
11169 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11170 EVT VT, SDValue Op1, SDValue Op2,
11171 SDValue Op3) {
11172 SDVTList VTs = getVTList(VT);
11173 SDValue Ops[] = { Op1, Op2, Op3 };
11174 return getMachineNode(Opcode, dl, VTs, Ops);
11177 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11178 EVT VT, ArrayRef<SDValue> Ops) {
11179 SDVTList VTs = getVTList(VT);
11180 return getMachineNode(Opcode, dl, VTs, Ops);
11183 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11184 EVT VT1, EVT VT2, SDValue Op1,
11185 SDValue Op2) {
11186 SDVTList VTs = getVTList(VT1, VT2);
11187 SDValue Ops[] = { Op1, Op2 };
11188 return getMachineNode(Opcode, dl, VTs, Ops);
11191 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11192 EVT VT1, EVT VT2, SDValue Op1,
11193 SDValue Op2, SDValue Op3) {
11194 SDVTList VTs = getVTList(VT1, VT2);
11195 SDValue Ops[] = { Op1, Op2, Op3 };
11196 return getMachineNode(Opcode, dl, VTs, Ops);
11199 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11200 EVT VT1, EVT VT2,
11201 ArrayRef<SDValue> Ops) {
11202 SDVTList VTs = getVTList(VT1, VT2);
11203 return getMachineNode(Opcode, dl, VTs, Ops);
11206 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11207 EVT VT1, EVT VT2, EVT VT3,
11208 SDValue Op1, SDValue Op2) {
11209 SDVTList VTs = getVTList(VT1, VT2, VT3);
11210 SDValue Ops[] = { Op1, Op2 };
11211 return getMachineNode(Opcode, dl, VTs, Ops);
11214 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11215 EVT VT1, EVT VT2, EVT VT3,
11216 SDValue Op1, SDValue Op2,
11217 SDValue Op3) {
11218 SDVTList VTs = getVTList(VT1, VT2, VT3);
11219 SDValue Ops[] = { Op1, Op2, Op3 };
11220 return getMachineNode(Opcode, dl, VTs, Ops);
11223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11224 EVT VT1, EVT VT2, EVT VT3,
11225 ArrayRef<SDValue> Ops) {
11226 SDVTList VTs = getVTList(VT1, VT2, VT3);
11227 return getMachineNode(Opcode, dl, VTs, Ops);
11230 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
11231 ArrayRef<EVT> ResultTys,
11232 ArrayRef<SDValue> Ops) {
11233 SDVTList VTs = getVTList(ResultTys);
11234 return getMachineNode(Opcode, dl, VTs, Ops);
11237 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
11238 SDVTList VTs,
11239 ArrayRef<SDValue> Ops) {
11240 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11241 MachineSDNode *N;
11242 void *IP = nullptr;
11244 if (DoCSE) {
11245 FoldingSetNodeID ID;
11246 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11247 IP = nullptr;
11248 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11249 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11253 // Allocate a new MachineSDNode.
11254 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11255 createOperands(N, Ops);
11257 if (DoCSE)
11258 CSEMap.InsertNode(N, IP);
11260 InsertNode(N);
11261 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11262 return N;
11265 /// getTargetExtractSubreg - A convenience function for creating
11266 /// TargetOpcode::EXTRACT_SUBREG nodes.
11267 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
11268 SDValue Operand) {
11269 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11270 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11271 VT, Operand, SRIdxVal);
11272 return SDValue(Subreg, 0);
11275 /// getTargetInsertSubreg - A convenience function for creating
11276 /// TargetOpcode::INSERT_SUBREG nodes.
11277 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
11278 SDValue Operand, SDValue Subreg) {
11279 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11280 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11281 VT, Operand, Subreg, SRIdxVal);
11282 return SDValue(Result, 0);
11285 /// getNodeIfExists - Get the specified node if it's already available, or
11286 /// else return NULL.
11287 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
11288 ArrayRef<SDValue> Ops) {
11289 SDNodeFlags Flags;
11290 if (Inserter)
11291 Flags = Inserter->getFlags();
11292 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11295 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
11296 ArrayRef<SDValue> Ops,
11297 const SDNodeFlags Flags) {
11298 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11299 FoldingSetNodeID ID;
11300 AddNodeIDNode(ID, Opcode, VTList, Ops);
11301 void *IP = nullptr;
11302 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11303 E->intersectFlagsWith(Flags);
11304 return E;
11307 return nullptr;
11310 /// doesNodeExist - Check if a node exists without modifying its flags.
11311 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11312 ArrayRef<SDValue> Ops) {
11313 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11314 FoldingSetNodeID ID;
11315 AddNodeIDNode(ID, Opcode, VTList, Ops);
11316 void *IP = nullptr;
11317 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11318 return true;
11320 return false;
11323 /// getDbgValue - Creates a SDDbgValue node.
11325 /// SDNode
11326 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
11327 SDNode *N, unsigned R, bool IsIndirect,
11328 const DebugLoc &DL, unsigned O) {
11329 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11330 "Expected inlined-at fields to agree");
11331 return new (DbgInfo->getAlloc())
11332 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11333 {}, IsIndirect, DL, O,
11334 /*IsVariadic=*/false);
11337 /// Constant
11338 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
11339 DIExpression *Expr,
11340 const Value *C,
11341 const DebugLoc &DL, unsigned O) {
11342 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11343 "Expected inlined-at fields to agree");
11344 return new (DbgInfo->getAlloc())
11345 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11346 /*IsIndirect=*/false, DL, O,
11347 /*IsVariadic=*/false);
11350 /// FrameIndex
11351 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
11352 DIExpression *Expr, unsigned FI,
11353 bool IsIndirect,
11354 const DebugLoc &DL,
11355 unsigned O) {
11356 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11357 "Expected inlined-at fields to agree");
11358 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11361 /// FrameIndex with dependencies
11362 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
11363 DIExpression *Expr, unsigned FI,
11364 ArrayRef<SDNode *> Dependencies,
11365 bool IsIndirect,
11366 const DebugLoc &DL,
11367 unsigned O) {
11368 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11369 "Expected inlined-at fields to agree");
11370 return new (DbgInfo->getAlloc())
11371 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11372 Dependencies, IsIndirect, DL, O,
11373 /*IsVariadic=*/false);
11376 /// VReg
11377 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
11378 unsigned VReg, bool IsIndirect,
11379 const DebugLoc &DL, unsigned O) {
11380 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11381 "Expected inlined-at fields to agree");
11382 return new (DbgInfo->getAlloc())
11383 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11384 {}, IsIndirect, DL, O,
11385 /*IsVariadic=*/false);
11388 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
11389 ArrayRef<SDDbgOperand> Locs,
11390 ArrayRef<SDNode *> Dependencies,
11391 bool IsIndirect, const DebugLoc &DL,
11392 unsigned O, bool IsVariadic) {
11393 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11394 "Expected inlined-at fields to agree");
11395 return new (DbgInfo->getAlloc())
11396 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11397 DL, O, IsVariadic);
11400 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
11401 unsigned OffsetInBits, unsigned SizeInBits,
11402 bool InvalidateDbg) {
11403 SDNode *FromNode = From.getNode();
11404 SDNode *ToNode = To.getNode();
11405 assert(FromNode && ToNode && "Can't modify dbg values");
11407 // PR35338
11408 // TODO: assert(From != To && "Redundant dbg value transfer");
11409 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11410 if (From == To || FromNode == ToNode)
11411 return;
11413 if (!FromNode->getHasDebugValue())
11414 return;
11416 SDDbgOperand FromLocOp =
11417 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11418 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
11420 SmallVector<SDDbgValue *, 2> ClonedDVs;
11421 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11422 if (Dbg->isInvalidated())
11423 continue;
11425 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11427 // Create a new location ops vector that is equal to the old vector, but
11428 // with each instance of FromLocOp replaced with ToLocOp.
11429 bool Changed = false;
11430 auto NewLocOps = Dbg->copyLocationOps();
11431 std::replace_if(
11432 NewLocOps.begin(), NewLocOps.end(),
11433 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11434 bool Match = Op == FromLocOp;
11435 Changed |= Match;
11436 return Match;
11438 ToLocOp);
11439 // Ignore this SDDbgValue if we didn't find a matching location.
11440 if (!Changed)
11441 continue;
11443 DIVariable *Var = Dbg->getVariable();
11444 auto *Expr = Dbg->getExpression();
11445 // If a fragment is requested, update the expression.
11446 if (SizeInBits) {
11447 // When splitting a larger (e.g., sign-extended) value whose
11448 // lower bits are described with an SDDbgValue, do not attempt
11449 // to transfer the SDDbgValue to the upper bits.
11450 if (auto FI = Expr->getFragmentInfo())
11451 if (OffsetInBits + SizeInBits > FI->SizeInBits)
11452 continue;
11453 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
11454 SizeInBits);
11455 if (!Fragment)
11456 continue;
11457 Expr = *Fragment;
11460 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11461 // Clone the SDDbgValue and move it to To.
11462 SDDbgValue *Clone = getDbgValueList(
11463 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11464 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
11465 Dbg->isVariadic());
11466 ClonedDVs.push_back(Clone);
11468 if (InvalidateDbg) {
11469 // Invalidate value and indicate the SDDbgValue should not be emitted.
11470 Dbg->setIsInvalidated();
11471 Dbg->setIsEmitted();
11475 for (SDDbgValue *Dbg : ClonedDVs) {
11476 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
11477 "Transferred DbgValues should depend on the new SDNode");
11478 AddDbgValue(Dbg, false);
11482 void SelectionDAG::salvageDebugInfo(SDNode &N) {
11483 if (!N.getHasDebugValue())
11484 return;
11486 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
11487 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
11488 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
11489 return SDDbgOperand::fromNode(Node, ResNo);
11492 SmallVector<SDDbgValue *, 2> ClonedDVs;
11493 for (auto *DV : GetDbgValues(&N)) {
11494 if (DV->isInvalidated())
11495 continue;
11496 switch (N.getOpcode()) {
11497 default:
11498 break;
11499 case ISD::ADD: {
11500 SDValue N0 = N.getOperand(0);
11501 SDValue N1 = N.getOperand(1);
11502 if (!isa<ConstantSDNode>(N0)) {
11503 bool RHSConstant = isa<ConstantSDNode>(N1);
11504 uint64_t Offset;
11505 if (RHSConstant)
11506 Offset = N.getConstantOperandVal(1);
11507 // We are not allowed to turn indirect debug values variadic, so
11508 // don't salvage those.
11509 if (!RHSConstant && DV->isIndirect())
11510 continue;
11512 // Rewrite an ADD constant node into a DIExpression. Since we are
11513 // performing arithmetic to compute the variable's *value* in the
11514 // DIExpression, we need to mark the expression with a
11515 // DW_OP_stack_value.
11516 auto *DIExpr = DV->getExpression();
11517 auto NewLocOps = DV->copyLocationOps();
11518 bool Changed = false;
11519 size_t OrigLocOpsSize = NewLocOps.size();
11520 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
11521 // We're not given a ResNo to compare against because the whole
11522 // node is going away. We know that any ISD::ADD only has one
11523 // result, so we can assume any node match is using the result.
11524 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
11525 NewLocOps[i].getSDNode() != &N)
11526 continue;
11527 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
11528 if (RHSConstant) {
11529 SmallVector<uint64_t, 3> ExprOps;
11530 DIExpression::appendOffset(ExprOps, Offset);
11531 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
11532 } else {
11533 // Convert to a variadic expression (if not already).
11534 // convertToVariadicExpression() returns a const pointer, so we use
11535 // a temporary const variable here.
11536 const auto *TmpDIExpr =
11537 DIExpression::convertToVariadicExpression(DIExpr);
11538 SmallVector<uint64_t, 3> ExprOps;
11539 ExprOps.push_back(dwarf::DW_OP_LLVM_arg);
11540 ExprOps.push_back(NewLocOps.size());
11541 ExprOps.push_back(dwarf::DW_OP_plus);
11542 SDDbgOperand RHS =
11543 SDDbgOperand::fromNode(N1.getNode(), N1.getResNo());
11544 NewLocOps.push_back(RHS);
11545 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
11547 Changed = true;
11549 (void)Changed;
11550 assert(Changed && "Salvage target doesn't use N");
11552 bool IsVariadic =
11553 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
11555 auto AdditionalDependencies = DV->getAdditionalDependencies();
11556 SDDbgValue *Clone = getDbgValueList(
11557 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
11558 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
11559 ClonedDVs.push_back(Clone);
11560 DV->setIsInvalidated();
11561 DV->setIsEmitted();
11562 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
11563 N0.getNode()->dumprFull(this);
11564 dbgs() << " into " << *DIExpr << '\n');
11566 break;
11568 case ISD::TRUNCATE: {
11569 SDValue N0 = N.getOperand(0);
11570 TypeSize FromSize = N0.getValueSizeInBits();
11571 TypeSize ToSize = N.getValueSizeInBits(0);
11573 DIExpression *DbgExpression = DV->getExpression();
11574 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
11575 auto NewLocOps = DV->copyLocationOps();
11576 bool Changed = false;
11577 for (size_t i = 0; i < NewLocOps.size(); ++i) {
11578 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
11579 NewLocOps[i].getSDNode() != &N)
11580 continue;
11582 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
11583 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
11584 Changed = true;
11586 assert(Changed && "Salvage target doesn't use N");
11587 (void)Changed;
11589 SDDbgValue *Clone =
11590 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
11591 DV->getAdditionalDependencies(), DV->isIndirect(),
11592 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
11594 ClonedDVs.push_back(Clone);
11595 DV->setIsInvalidated();
11596 DV->setIsEmitted();
11597 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
11598 dbgs() << " into " << *DbgExpression << '\n');
11599 break;
11604 for (SDDbgValue *Dbg : ClonedDVs) {
11605 assert((!Dbg->getSDNodes().empty() ||
11606 llvm::any_of(Dbg->getLocationOps(),
11607 [&](const SDDbgOperand &Op) {
11608 return Op.getKind() == SDDbgOperand::FRAMEIX;
11609 })) &&
11610 "Salvaged DbgValue should depend on a new SDNode");
11611 AddDbgValue(Dbg, false);
11615 /// Creates a SDDbgLabel node.
11616 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
11617 const DebugLoc &DL, unsigned O) {
11618 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
11619 "Expected inlined-at fields to agree");
11620 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
11623 namespace {
11625 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
11626 /// pointed to by a use iterator is deleted, increment the use iterator
11627 /// so that it doesn't dangle.
11629 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
11630 SDNode::use_iterator &UI;
11631 SDNode::use_iterator &UE;
11633 void NodeDeleted(SDNode *N, SDNode *E) override {
11634 // Increment the iterator as needed.
11635 while (UI != UE && N == UI->getUser())
11636 ++UI;
11639 public:
11640 RAUWUpdateListener(SelectionDAG &d,
11641 SDNode::use_iterator &ui,
11642 SDNode::use_iterator &ue)
11643 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
11646 } // end anonymous namespace
11648 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11649 /// This can cause recursive merging of nodes in the DAG.
11651 /// This version assumes From has a single result value.
11653 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
11654 SDNode *From = FromN.getNode();
11655 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
11656 "Cannot replace with this method!");
11657 assert(From != To.getNode() && "Cannot replace uses of with self");
11659 // Preserve Debug Values
11660 transferDbgValues(FromN, To);
11661 // Preserve extra info.
11662 copyExtraInfo(From, To.getNode());
11664 // Iterate over all the existing uses of From. New uses will be added
11665 // to the beginning of the use list, which we avoid visiting.
11666 // This specifically avoids visiting uses of From that arise while the
11667 // replacement is happening, because any such uses would be the result
11668 // of CSE: If an existing node looks like From after one of its operands
11669 // is replaced by To, we don't want to replace of all its users with To
11670 // too. See PR3018 for more info.
11671 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11672 RAUWUpdateListener Listener(*this, UI, UE);
11673 while (UI != UE) {
11674 SDNode *User = UI->getUser();
11676 // This node is about to morph, remove its old self from the CSE maps.
11677 RemoveNodeFromCSEMaps(User);
11679 // A user can appear in a use list multiple times, and when this
11680 // happens the uses are usually next to each other in the list.
11681 // To help reduce the number of CSE recomputations, process all
11682 // the uses of this user that we can find this way.
11683 do {
11684 SDUse &Use = *UI;
11685 ++UI;
11686 Use.set(To);
11687 if (To->isDivergent() != From->isDivergent())
11688 updateDivergence(User);
11689 } while (UI != UE && UI->getUser() == User);
11690 // Now that we have modified User, add it back to the CSE maps. If it
11691 // already exists there, recursively merge the results together.
11692 AddModifiedNodeToCSEMaps(User);
11695 // If we just RAUW'd the root, take note.
11696 if (FromN == getRoot())
11697 setRoot(To);
11700 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11701 /// This can cause recursive merging of nodes in the DAG.
11703 /// This version assumes that for each value of From, there is a
11704 /// corresponding value in To in the same position with the same type.
11706 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
11707 #ifndef NDEBUG
11708 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
11709 assert((!From->hasAnyUseOfValue(i) ||
11710 From->getValueType(i) == To->getValueType(i)) &&
11711 "Cannot use this version of ReplaceAllUsesWith!");
11712 #endif
11714 // Handle the trivial case.
11715 if (From == To)
11716 return;
11718 // Preserve Debug Info. Only do this if there's a use.
11719 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
11720 if (From->hasAnyUseOfValue(i)) {
11721 assert((i < To->getNumValues()) && "Invalid To location");
11722 transferDbgValues(SDValue(From, i), SDValue(To, i));
11724 // Preserve extra info.
11725 copyExtraInfo(From, To);
11727 // Iterate over just the existing users of From. See the comments in
11728 // the ReplaceAllUsesWith above.
11729 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11730 RAUWUpdateListener Listener(*this, UI, UE);
11731 while (UI != UE) {
11732 SDNode *User = UI->getUser();
11734 // This node is about to morph, remove its old self from the CSE maps.
11735 RemoveNodeFromCSEMaps(User);
11737 // A user can appear in a use list multiple times, and when this
11738 // happens the uses are usually next to each other in the list.
11739 // To help reduce the number of CSE recomputations, process all
11740 // the uses of this user that we can find this way.
11741 do {
11742 SDUse &Use = *UI;
11743 ++UI;
11744 Use.setNode(To);
11745 if (To->isDivergent() != From->isDivergent())
11746 updateDivergence(User);
11747 } while (UI != UE && UI->getUser() == User);
11749 // Now that we have modified User, add it back to the CSE maps. If it
11750 // already exists there, recursively merge the results together.
11751 AddModifiedNodeToCSEMaps(User);
11754 // If we just RAUW'd the root, take note.
11755 if (From == getRoot().getNode())
11756 setRoot(SDValue(To, getRoot().getResNo()));
11759 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11760 /// This can cause recursive merging of nodes in the DAG.
11762 /// This version can replace From with any result values. To must match the
11763 /// number and types of values returned by From.
11764 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
11765 if (From->getNumValues() == 1) // Handle the simple case efficiently.
11766 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
11768 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
11769 // Preserve Debug Info.
11770 transferDbgValues(SDValue(From, i), To[i]);
11771 // Preserve extra info.
11772 copyExtraInfo(From, To[i].getNode());
11775 // Iterate over just the existing users of From. See the comments in
11776 // the ReplaceAllUsesWith above.
11777 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11778 RAUWUpdateListener Listener(*this, UI, UE);
11779 while (UI != UE) {
11780 SDNode *User = UI->getUser();
11782 // This node is about to morph, remove its old self from the CSE maps.
11783 RemoveNodeFromCSEMaps(User);
11785 // A user can appear in a use list multiple times, and when this happens the
11786 // uses are usually next to each other in the list. To help reduce the
11787 // number of CSE and divergence recomputations, process all the uses of this
11788 // user that we can find this way.
11789 bool To_IsDivergent = false;
11790 do {
11791 SDUse &Use = *UI;
11792 const SDValue &ToOp = To[Use.getResNo()];
11793 ++UI;
11794 Use.set(ToOp);
11795 To_IsDivergent |= ToOp->isDivergent();
11796 } while (UI != UE && UI->getUser() == User);
11798 if (To_IsDivergent != From->isDivergent())
11799 updateDivergence(User);
11801 // Now that we have modified User, add it back to the CSE maps. If it
11802 // already exists there, recursively merge the results together.
11803 AddModifiedNodeToCSEMaps(User);
11806 // If we just RAUW'd the root, take note.
11807 if (From == getRoot().getNode())
11808 setRoot(SDValue(To[getRoot().getResNo()]));
11811 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
11812 /// uses of other values produced by From.getNode() alone. The Deleted
11813 /// vector is handled the same way as for ReplaceAllUsesWith.
11814 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
11815 // Handle the really simple, really trivial case efficiently.
11816 if (From == To) return;
11818 // Handle the simple, trivial, case efficiently.
11819 if (From.getNode()->getNumValues() == 1) {
11820 ReplaceAllUsesWith(From, To);
11821 return;
11824 // Preserve Debug Info.
11825 transferDbgValues(From, To);
11826 copyExtraInfo(From.getNode(), To.getNode());
11828 // Iterate over just the existing users of From. See the comments in
11829 // the ReplaceAllUsesWith above.
11830 SDNode::use_iterator UI = From.getNode()->use_begin(),
11831 UE = From.getNode()->use_end();
11832 RAUWUpdateListener Listener(*this, UI, UE);
11833 while (UI != UE) {
11834 SDNode *User = UI->getUser();
11835 bool UserRemovedFromCSEMaps = false;
11837 // A user can appear in a use list multiple times, and when this
11838 // happens the uses are usually next to each other in the list.
11839 // To help reduce the number of CSE recomputations, process all
11840 // the uses of this user that we can find this way.
11841 do {
11842 SDUse &Use = *UI;
11844 // Skip uses of different values from the same node.
11845 if (Use.getResNo() != From.getResNo()) {
11846 ++UI;
11847 continue;
11850 // If this node hasn't been modified yet, it's still in the CSE maps,
11851 // so remove its old self from the CSE maps.
11852 if (!UserRemovedFromCSEMaps) {
11853 RemoveNodeFromCSEMaps(User);
11854 UserRemovedFromCSEMaps = true;
11857 ++UI;
11858 Use.set(To);
11859 if (To->isDivergent() != From->isDivergent())
11860 updateDivergence(User);
11861 } while (UI != UE && UI->getUser() == User);
11862 // We are iterating over all uses of the From node, so if a use
11863 // doesn't use the specific value, no changes are made.
11864 if (!UserRemovedFromCSEMaps)
11865 continue;
11867 // Now that we have modified User, add it back to the CSE maps. If it
11868 // already exists there, recursively merge the results together.
11869 AddModifiedNodeToCSEMaps(User);
11872 // If we just RAUW'd the root, take note.
11873 if (From == getRoot())
11874 setRoot(To);
11877 namespace {
11879 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
11880 /// to record information about a use.
11881 struct UseMemo {
11882 SDNode *User;
11883 unsigned Index;
11884 SDUse *Use;
11887 /// operator< - Sort Memos by User.
11888 bool operator<(const UseMemo &L, const UseMemo &R) {
11889 return (intptr_t)L.User < (intptr_t)R.User;
11892 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
11893 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
11894 /// the node already has been taken care of recursively.
11895 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
11896 SmallVectorImpl<UseMemo> &Uses;
11898 void NodeDeleted(SDNode *N, SDNode *E) override {
11899 for (UseMemo &Memo : Uses)
11900 if (Memo.User == N)
11901 Memo.User = nullptr;
11904 public:
11905 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
11906 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
11909 } // end anonymous namespace
11911 /// Return true if a glue output should propagate divergence information.
11912 static bool gluePropagatesDivergence(const SDNode *Node) {
11913 switch (Node->getOpcode()) {
11914 case ISD::CopyFromReg:
11915 case ISD::CopyToReg:
11916 return false;
11917 default:
11918 return true;
11921 llvm_unreachable("covered opcode switch");
11924 bool SelectionDAG::calculateDivergence(SDNode *N) {
11925 if (TLI->isSDNodeAlwaysUniform(N)) {
11926 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
11927 "Conflicting divergence information!");
11928 return false;
11930 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
11931 return true;
11932 for (const auto &Op : N->ops()) {
11933 EVT VT = Op.getValueType();
11935 // Skip Chain. It does not carry divergence.
11936 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
11937 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
11938 return true;
11940 return false;
11943 void SelectionDAG::updateDivergence(SDNode *N) {
11944 SmallVector<SDNode *, 16> Worklist(1, N);
11945 do {
11946 N = Worklist.pop_back_val();
11947 bool IsDivergent = calculateDivergence(N);
11948 if (N->SDNodeBits.IsDivergent != IsDivergent) {
11949 N->SDNodeBits.IsDivergent = IsDivergent;
11950 llvm::append_range(Worklist, N->users());
11952 } while (!Worklist.empty());
11955 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
11956 DenseMap<SDNode *, unsigned> Degree;
11957 Order.reserve(AllNodes.size());
11958 for (auto &N : allnodes()) {
11959 unsigned NOps = N.getNumOperands();
11960 Degree[&N] = NOps;
11961 if (0 == NOps)
11962 Order.push_back(&N);
11964 for (size_t I = 0; I != Order.size(); ++I) {
11965 SDNode *N = Order[I];
11966 for (auto *U : N->users()) {
11967 unsigned &UnsortedOps = Degree[U];
11968 if (0 == --UnsortedOps)
11969 Order.push_back(U);
11974 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
11975 void SelectionDAG::VerifyDAGDivergence() {
11976 std::vector<SDNode *> TopoOrder;
11977 CreateTopologicalOrder(TopoOrder);
11978 for (auto *N : TopoOrder) {
11979 assert(calculateDivergence(N) == N->isDivergent() &&
11980 "Divergence bit inconsistency detected");
11983 #endif
11985 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
11986 /// uses of other values produced by From.getNode() alone. The same value
11987 /// may appear in both the From and To list. The Deleted vector is
11988 /// handled the same way as for ReplaceAllUsesWith.
11989 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
11990 const SDValue *To,
11991 unsigned Num){
11992 // Handle the simple, trivial case efficiently.
11993 if (Num == 1)
11994 return ReplaceAllUsesOfValueWith(*From, *To);
11996 transferDbgValues(*From, *To);
11997 copyExtraInfo(From->getNode(), To->getNode());
11999 // Read up all the uses and make records of them. This helps
12000 // processing new uses that are introduced during the
12001 // replacement process.
12002 SmallVector<UseMemo, 4> Uses;
12003 for (unsigned i = 0; i != Num; ++i) {
12004 unsigned FromResNo = From[i].getResNo();
12005 SDNode *FromNode = From[i].getNode();
12006 for (SDUse &Use : FromNode->uses()) {
12007 if (Use.getResNo() == FromResNo) {
12008 UseMemo Memo = {Use.getUser(), i, &Use};
12009 Uses.push_back(Memo);
12014 // Sort the uses, so that all the uses from a given User are together.
12015 llvm::sort(Uses);
12016 RAUOVWUpdateListener Listener(*this, Uses);
12018 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12019 UseIndex != UseIndexEnd; ) {
12020 // We know that this user uses some value of From. If it is the right
12021 // value, update it.
12022 SDNode *User = Uses[UseIndex].User;
12023 // If the node has been deleted by recursive CSE updates when updating
12024 // another node, then just skip this entry.
12025 if (User == nullptr) {
12026 ++UseIndex;
12027 continue;
12030 // This node is about to morph, remove its old self from the CSE maps.
12031 RemoveNodeFromCSEMaps(User);
12033 // The Uses array is sorted, so all the uses for a given User
12034 // are next to each other in the list.
12035 // To help reduce the number of CSE recomputations, process all
12036 // the uses of this user that we can find this way.
12037 do {
12038 unsigned i = Uses[UseIndex].Index;
12039 SDUse &Use = *Uses[UseIndex].Use;
12040 ++UseIndex;
12042 Use.set(To[i]);
12043 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12045 // Now that we have modified User, add it back to the CSE maps. If it
12046 // already exists there, recursively merge the results together.
12047 AddModifiedNodeToCSEMaps(User);
12051 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12052 /// based on their topological order. It returns the maximum id and a vector
12053 /// of the SDNodes* in assigned order by reference.
12054 unsigned SelectionDAG::AssignTopologicalOrder() {
12055 unsigned DAGSize = 0;
12057 // SortedPos tracks the progress of the algorithm. Nodes before it are
12058 // sorted, nodes after it are unsorted. When the algorithm completes
12059 // it is at the end of the list.
12060 allnodes_iterator SortedPos = allnodes_begin();
12062 // Visit all the nodes. Move nodes with no operands to the front of
12063 // the list immediately. Annotate nodes that do have operands with their
12064 // operand count. Before we do this, the Node Id fields of the nodes
12065 // may contain arbitrary values. After, the Node Id fields for nodes
12066 // before SortedPos will contain the topological sort index, and the
12067 // Node Id fields for nodes At SortedPos and after will contain the
12068 // count of outstanding operands.
12069 for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
12070 checkForCycles(&N, this);
12071 unsigned Degree = N.getNumOperands();
12072 if (Degree == 0) {
12073 // A node with no uses, add it to the result array immediately.
12074 N.setNodeId(DAGSize++);
12075 allnodes_iterator Q(&N);
12076 if (Q != SortedPos)
12077 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12078 assert(SortedPos != AllNodes.end() && "Overran node list");
12079 ++SortedPos;
12080 } else {
12081 // Temporarily use the Node Id as scratch space for the degree count.
12082 N.setNodeId(Degree);
12086 // Visit all the nodes. As we iterate, move nodes into sorted order,
12087 // such that by the time the end is reached all nodes will be sorted.
12088 for (SDNode &Node : allnodes()) {
12089 SDNode *N = &Node;
12090 checkForCycles(N, this);
12091 // N is in sorted position, so all its uses have one less operand
12092 // that needs to be sorted.
12093 for (SDNode *P : N->users()) {
12094 unsigned Degree = P->getNodeId();
12095 assert(Degree != 0 && "Invalid node degree");
12096 --Degree;
12097 if (Degree == 0) {
12098 // All of P's operands are sorted, so P may sorted now.
12099 P->setNodeId(DAGSize++);
12100 if (P->getIterator() != SortedPos)
12101 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12102 assert(SortedPos != AllNodes.end() && "Overran node list");
12103 ++SortedPos;
12104 } else {
12105 // Update P's outstanding operand count.
12106 P->setNodeId(Degree);
12109 if (Node.getIterator() == SortedPos) {
12110 #ifndef NDEBUG
12111 allnodes_iterator I(N);
12112 SDNode *S = &*++I;
12113 dbgs() << "Overran sorted position:\n";
12114 S->dumprFull(this); dbgs() << "\n";
12115 dbgs() << "Checking if this is due to cycles\n";
12116 checkForCycles(this, true);
12117 #endif
12118 llvm_unreachable(nullptr);
12122 assert(SortedPos == AllNodes.end() &&
12123 "Topological sort incomplete!");
12124 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12125 "First node in topological sort is not the entry token!");
12126 assert(AllNodes.front().getNodeId() == 0 &&
12127 "First node in topological sort has non-zero id!");
12128 assert(AllNodes.front().getNumOperands() == 0 &&
12129 "First node in topological sort has operands!");
12130 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12131 "Last node in topologic sort has unexpected id!");
12132 assert(AllNodes.back().use_empty() &&
12133 "Last node in topologic sort has users!");
12134 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12135 return DAGSize;
12138 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12139 /// value is produced by SD.
12140 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12141 for (SDNode *SD : DB->getSDNodes()) {
12142 if (!SD)
12143 continue;
12144 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12145 SD->setHasDebugValue(true);
12147 DbgInfo->add(DB, isParameter);
12150 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12152 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
12153 SDValue NewMemOpChain) {
12154 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12155 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12156 // The new memory operation must have the same position as the old load in
12157 // terms of memory dependency. Create a TokenFactor for the old load and new
12158 // memory operation and update uses of the old load's output chain to use that
12159 // TokenFactor.
12160 if (OldChain == NewMemOpChain || OldChain.use_empty())
12161 return NewMemOpChain;
12163 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12164 OldChain, NewMemOpChain);
12165 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12166 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12167 return TokenFactor;
12170 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
12171 SDValue NewMemOp) {
12172 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12173 SDValue OldChain = SDValue(OldLoad, 1);
12174 SDValue NewMemOpChain = NewMemOp.getValue(1);
12175 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12178 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
12179 Function **OutFunction) {
12180 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12182 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12183 auto *Module = MF->getFunction().getParent();
12184 auto *Function = Module->getFunction(Symbol);
12186 if (OutFunction != nullptr)
12187 *OutFunction = Function;
12189 if (Function != nullptr) {
12190 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12191 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12194 std::string ErrorStr;
12195 raw_string_ostream ErrorFormatter(ErrorStr);
12196 ErrorFormatter << "Undefined external symbol ";
12197 ErrorFormatter << '"' << Symbol << '"';
12198 report_fatal_error(Twine(ErrorStr));
12201 //===----------------------------------------------------------------------===//
12202 // SDNode Class
12203 //===----------------------------------------------------------------------===//
12205 bool llvm::isNullConstant(SDValue V) {
12206 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
12207 return Const != nullptr && Const->isZero();
12210 bool llvm::isNullConstantOrUndef(SDValue V) {
12211 return V.isUndef() || isNullConstant(V);
12214 bool llvm::isNullFPConstant(SDValue V) {
12215 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
12216 return Const != nullptr && Const->isZero() && !Const->isNegative();
12219 bool llvm::isAllOnesConstant(SDValue V) {
12220 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
12221 return Const != nullptr && Const->isAllOnes();
12224 bool llvm::isOneConstant(SDValue V) {
12225 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
12226 return Const != nullptr && Const->isOne();
12229 bool llvm::isMinSignedConstant(SDValue V) {
12230 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
12231 return Const != nullptr && Const->isMinSignedValue();
12234 bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12235 unsigned OperandNo) {
12236 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12237 // TODO: Target-specific opcodes could be added.
12238 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12239 /*AllowTruncation*/ true)) {
12240 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12241 switch (Opcode) {
12242 case ISD::ADD:
12243 case ISD::OR:
12244 case ISD::XOR:
12245 case ISD::UMAX:
12246 return Const.isZero();
12247 case ISD::MUL:
12248 return Const.isOne();
12249 case ISD::AND:
12250 case ISD::UMIN:
12251 return Const.isAllOnes();
12252 case ISD::SMAX:
12253 return Const.isMinSignedValue();
12254 case ISD::SMIN:
12255 return Const.isMaxSignedValue();
12256 case ISD::SUB:
12257 case ISD::SHL:
12258 case ISD::SRA:
12259 case ISD::SRL:
12260 return OperandNo == 1 && Const.isZero();
12261 case ISD::UDIV:
12262 case ISD::SDIV:
12263 return OperandNo == 1 && Const.isOne();
12265 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12266 switch (Opcode) {
12267 case ISD::FADD:
12268 return ConstFP->isZero() &&
12269 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12270 case ISD::FSUB:
12271 return OperandNo == 1 && ConstFP->isZero() &&
12272 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12273 case ISD::FMUL:
12274 return ConstFP->isExactlyValue(1.0);
12275 case ISD::FDIV:
12276 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12277 case ISD::FMINNUM:
12278 case ISD::FMAXNUM: {
12279 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12280 EVT VT = V.getValueType();
12281 const fltSemantics &Semantics = VT.getFltSemantics();
12282 APFloat NeutralAF = !Flags.hasNoNaNs()
12283 ? APFloat::getQNaN(Semantics)
12284 : !Flags.hasNoInfs()
12285 ? APFloat::getInf(Semantics)
12286 : APFloat::getLargest(Semantics);
12287 if (Opcode == ISD::FMAXNUM)
12288 NeutralAF.changeSign();
12290 return ConstFP->isExactlyValue(NeutralAF);
12294 return false;
12297 SDValue llvm::peekThroughBitcasts(SDValue V) {
12298 while (V.getOpcode() == ISD::BITCAST)
12299 V = V.getOperand(0);
12300 return V;
12303 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
12304 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12305 V = V.getOperand(0);
12306 return V;
12309 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
12310 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12311 V = V.getOperand(0);
12312 return V;
12315 SDValue llvm::peekThroughTruncates(SDValue V) {
12316 while (V.getOpcode() == ISD::TRUNCATE)
12317 V = V.getOperand(0);
12318 return V;
12321 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12322 if (V.getOpcode() != ISD::XOR)
12323 return false;
12324 V = peekThroughBitcasts(V.getOperand(1));
12325 unsigned NumBits = V.getScalarValueSizeInBits();
12326 ConstantSDNode *C =
12327 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12328 return C && (C->getAPIntValue().countr_one() >= NumBits);
12331 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
12332 bool AllowTruncation) {
12333 EVT VT = N.getValueType();
12334 APInt DemandedElts = VT.isFixedLengthVector()
12335 ? APInt::getAllOnes(VT.getVectorMinNumElements())
12336 : APInt(1, 1);
12337 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12340 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
12341 bool AllowUndefs,
12342 bool AllowTruncation) {
12343 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
12344 return CN;
12346 // SplatVectors can truncate their operands. Ignore that case here unless
12347 // AllowTruncation is set.
12348 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12349 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12350 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12351 EVT CVT = CN->getValueType(0);
12352 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12353 if (AllowTruncation || CVT == VecEltVT)
12354 return CN;
12358 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
12359 BitVector UndefElements;
12360 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12362 // BuildVectors can truncate their operands. Ignore that case here unless
12363 // AllowTruncation is set.
12364 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12365 if (CN && (UndefElements.none() || AllowUndefs)) {
12366 EVT CVT = CN->getValueType(0);
12367 EVT NSVT = N.getValueType().getScalarType();
12368 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12369 if (AllowTruncation || (CVT == NSVT))
12370 return CN;
12374 return nullptr;
12377 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
12378 EVT VT = N.getValueType();
12379 APInt DemandedElts = VT.isFixedLengthVector()
12380 ? APInt::getAllOnes(VT.getVectorMinNumElements())
12381 : APInt(1, 1);
12382 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12385 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
12386 const APInt &DemandedElts,
12387 bool AllowUndefs) {
12388 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
12389 return CN;
12391 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
12392 BitVector UndefElements;
12393 ConstantFPSDNode *CN =
12394 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12395 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12396 if (CN && (UndefElements.none() || AllowUndefs))
12397 return CN;
12400 if (N.getOpcode() == ISD::SPLAT_VECTOR)
12401 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12402 return CN;
12404 return nullptr;
12407 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12408 // TODO: may want to use peekThroughBitcast() here.
12409 ConstantSDNode *C =
12410 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12411 return C && C->isZero();
12414 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12415 ConstantSDNode *C =
12416 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12417 return C && C->isOne();
12420 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
12421 N = peekThroughBitcasts(N);
12422 unsigned BitWidth = N.getScalarValueSizeInBits();
12423 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12424 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
12427 HandleSDNode::~HandleSDNode() {
12428 DropOperands();
12431 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
12432 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
12433 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
12434 MemSDNodeBits.IsVolatile = MMO->isVolatile();
12435 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
12436 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
12437 MemSDNodeBits.IsInvariant = MMO->isInvariant();
12439 // We check here that the size of the memory operand fits within the size of
12440 // the MMO. This is because the MMO might indicate only a possible address
12441 // range instead of specifying the affected memory addresses precisely.
12442 assert(
12443 (!MMO->getType().isValid() ||
12444 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
12445 "Size mismatch!");
12448 /// Profile - Gather unique data for the node.
12450 void SDNode::Profile(FoldingSetNodeID &ID) const {
12451 AddNodeIDNode(ID, this);
12454 namespace {
12456 struct EVTArray {
12457 std::vector<EVT> VTs;
12459 EVTArray() {
12460 VTs.reserve(MVT::VALUETYPE_SIZE);
12461 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
12462 VTs.push_back(MVT((MVT::SimpleValueType)i));
12466 } // end anonymous namespace
12468 /// getValueTypeList - Return a pointer to the specified value type.
12470 const EVT *SDNode::getValueTypeList(MVT VT) {
12471 static EVTArray SimpleVTArray;
12473 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
12474 return &SimpleVTArray.VTs[VT.SimpleTy];
12477 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
12478 /// indicated value. This method ignores uses of other values defined by this
12479 /// operation.
12480 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
12481 assert(Value < getNumValues() && "Bad value!");
12483 // TODO: Only iterate over uses of a given value of the node
12484 for (SDUse &U : uses()) {
12485 if (U.getResNo() == Value) {
12486 if (NUses == 0)
12487 return false;
12488 --NUses;
12492 // Found exactly the right number of uses?
12493 return NUses == 0;
12496 /// hasAnyUseOfValue - Return true if there are any use of the indicated
12497 /// value. This method ignores uses of other values defined by this operation.
12498 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
12499 assert(Value < getNumValues() && "Bad value!");
12501 for (SDUse &U : uses())
12502 if (U.getResNo() == Value)
12503 return true;
12505 return false;
12508 /// isOnlyUserOf - Return true if this node is the only use of N.
12509 bool SDNode::isOnlyUserOf(const SDNode *N) const {
12510 bool Seen = false;
12511 for (const SDNode *User : N->users()) {
12512 if (User == this)
12513 Seen = true;
12514 else
12515 return false;
12518 return Seen;
12521 /// Return true if the only users of N are contained in Nodes.
12522 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
12523 bool Seen = false;
12524 for (const SDNode *User : N->users()) {
12525 if (llvm::is_contained(Nodes, User))
12526 Seen = true;
12527 else
12528 return false;
12531 return Seen;
12534 /// isOperand - Return true if this node is an operand of N.
12535 bool SDValue::isOperandOf(const SDNode *N) const {
12536 return is_contained(N->op_values(), *this);
12539 bool SDNode::isOperandOf(const SDNode *N) const {
12540 return any_of(N->op_values(),
12541 [this](SDValue Op) { return this == Op.getNode(); });
12544 /// reachesChainWithoutSideEffects - Return true if this operand (which must
12545 /// be a chain) reaches the specified operand without crossing any
12546 /// side-effecting instructions on any chain path. In practice, this looks
12547 /// through token factors and non-volatile loads. In order to remain efficient,
12548 /// this only looks a couple of nodes in, it does not do an exhaustive search.
12550 /// Note that we only need to examine chains when we're searching for
12551 /// side-effects; SelectionDAG requires that all side-effects are represented
12552 /// by chains, even if another operand would force a specific ordering. This
12553 /// constraint is necessary to allow transformations like splitting loads.
12554 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
12555 unsigned Depth) const {
12556 if (*this == Dest) return true;
12558 // Don't search too deeply, we just want to be able to see through
12559 // TokenFactor's etc.
12560 if (Depth == 0) return false;
12562 // If this is a token factor, all inputs to the TF happen in parallel.
12563 if (getOpcode() == ISD::TokenFactor) {
12564 // First, try a shallow search.
12565 if (is_contained((*this)->ops(), Dest)) {
12566 // We found the chain we want as an operand of this TokenFactor.
12567 // Essentially, we reach the chain without side-effects if we could
12568 // serialize the TokenFactor into a simple chain of operations with
12569 // Dest as the last operation. This is automatically true if the
12570 // chain has one use: there are no other ordering constraints.
12571 // If the chain has more than one use, we give up: some other
12572 // use of Dest might force a side-effect between Dest and the current
12573 // node.
12574 if (Dest.hasOneUse())
12575 return true;
12577 // Next, try a deep search: check whether every operand of the TokenFactor
12578 // reaches Dest.
12579 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
12580 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
12584 // Loads don't have side effects, look through them.
12585 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
12586 if (Ld->isUnordered())
12587 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
12589 return false;
12592 bool SDNode::hasPredecessor(const SDNode *N) const {
12593 SmallPtrSet<const SDNode *, 32> Visited;
12594 SmallVector<const SDNode *, 16> Worklist;
12595 Worklist.push_back(this);
12596 return hasPredecessorHelper(N, Visited, Worklist);
12599 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
12600 this->Flags &= Flags;
12603 SDValue
12604 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
12605 ArrayRef<ISD::NodeType> CandidateBinOps,
12606 bool AllowPartials) {
12607 // The pattern must end in an extract from index 0.
12608 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12609 !isNullConstant(Extract->getOperand(1)))
12610 return SDValue();
12612 // Match against one of the candidate binary ops.
12613 SDValue Op = Extract->getOperand(0);
12614 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
12615 return Op.getOpcode() == unsigned(BinOp);
12617 return SDValue();
12619 // Floating-point reductions may require relaxed constraints on the final step
12620 // of the reduction because they may reorder intermediate operations.
12621 unsigned CandidateBinOp = Op.getOpcode();
12622 if (Op.getValueType().isFloatingPoint()) {
12623 SDNodeFlags Flags = Op->getFlags();
12624 switch (CandidateBinOp) {
12625 case ISD::FADD:
12626 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
12627 return SDValue();
12628 break;
12629 default:
12630 llvm_unreachable("Unhandled FP opcode for binop reduction");
12634 // Matching failed - attempt to see if we did enough stages that a partial
12635 // reduction from a subvector is possible.
12636 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
12637 if (!AllowPartials || !Op)
12638 return SDValue();
12639 EVT OpVT = Op.getValueType();
12640 EVT OpSVT = OpVT.getScalarType();
12641 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
12642 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
12643 return SDValue();
12644 BinOp = (ISD::NodeType)CandidateBinOp;
12645 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
12646 getVectorIdxConstant(0, SDLoc(Op)));
12649 // At each stage, we're looking for something that looks like:
12650 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
12651 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
12652 // i32 undef, i32 undef, i32 undef, i32 undef>
12653 // %a = binop <8 x i32> %op, %s
12654 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
12655 // we expect something like:
12656 // <4,5,6,7,u,u,u,u>
12657 // <2,3,u,u,u,u,u,u>
12658 // <1,u,u,u,u,u,u,u>
12659 // While a partial reduction match would be:
12660 // <2,3,u,u,u,u,u,u>
12661 // <1,u,u,u,u,u,u,u>
12662 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
12663 SDValue PrevOp;
12664 for (unsigned i = 0; i < Stages; ++i) {
12665 unsigned MaskEnd = (1 << i);
12667 if (Op.getOpcode() != CandidateBinOp)
12668 return PartialReduction(PrevOp, MaskEnd);
12670 SDValue Op0 = Op.getOperand(0);
12671 SDValue Op1 = Op.getOperand(1);
12673 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
12674 if (Shuffle) {
12675 Op = Op1;
12676 } else {
12677 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
12678 Op = Op0;
12681 // The first operand of the shuffle should be the same as the other operand
12682 // of the binop.
12683 if (!Shuffle || Shuffle->getOperand(0) != Op)
12684 return PartialReduction(PrevOp, MaskEnd);
12686 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
12687 for (int Index = 0; Index < (int)MaskEnd; ++Index)
12688 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
12689 return PartialReduction(PrevOp, MaskEnd);
12691 PrevOp = Op;
12694 // Handle subvector reductions, which tend to appear after the shuffle
12695 // reduction stages.
12696 while (Op.getOpcode() == CandidateBinOp) {
12697 unsigned NumElts = Op.getValueType().getVectorNumElements();
12698 SDValue Op0 = Op.getOperand(0);
12699 SDValue Op1 = Op.getOperand(1);
12700 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12701 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12702 Op0.getOperand(0) != Op1.getOperand(0))
12703 break;
12704 SDValue Src = Op0.getOperand(0);
12705 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
12706 if (NumSrcElts != (2 * NumElts))
12707 break;
12708 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
12709 Op1.getConstantOperandAPInt(1) == NumElts) &&
12710 !(Op1.getConstantOperandAPInt(1) == 0 &&
12711 Op0.getConstantOperandAPInt(1) == NumElts))
12712 break;
12713 Op = Src;
12716 BinOp = (ISD::NodeType)CandidateBinOp;
12717 return Op;
12720 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
12721 EVT VT = N->getValueType(0);
12722 EVT EltVT = VT.getVectorElementType();
12723 unsigned NE = VT.getVectorNumElements();
12725 SDLoc dl(N);
12727 // If ResNE is 0, fully unroll the vector op.
12728 if (ResNE == 0)
12729 ResNE = NE;
12730 else if (NE > ResNE)
12731 NE = ResNE;
12733 if (N->getNumValues() == 2) {
12734 SmallVector<SDValue, 8> Scalars0, Scalars1;
12735 SmallVector<SDValue, 4> Operands(N->getNumOperands());
12736 EVT VT1 = N->getValueType(1);
12737 EVT EltVT1 = VT1.getVectorElementType();
12739 unsigned i;
12740 for (i = 0; i != NE; ++i) {
12741 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
12742 SDValue Operand = N->getOperand(j);
12743 EVT OperandVT = Operand.getValueType();
12745 // A vector operand; extract a single element.
12746 EVT OperandEltVT = OperandVT.getVectorElementType();
12747 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
12748 Operand, getVectorIdxConstant(i, dl));
12751 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
12752 Scalars0.push_back(EltOp);
12753 Scalars1.push_back(EltOp.getValue(1));
12756 for (; i < ResNE; ++i) {
12757 Scalars0.push_back(getUNDEF(EltVT));
12758 Scalars1.push_back(getUNDEF(EltVT1));
12761 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
12762 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
12763 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
12764 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
12765 return getMergeValues({Vec0, Vec1}, dl);
12768 assert(N->getNumValues() == 1 &&
12769 "Can't unroll a vector with multiple results!");
12771 SmallVector<SDValue, 8> Scalars;
12772 SmallVector<SDValue, 4> Operands(N->getNumOperands());
12774 unsigned i;
12775 for (i= 0; i != NE; ++i) {
12776 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
12777 SDValue Operand = N->getOperand(j);
12778 EVT OperandVT = Operand.getValueType();
12779 if (OperandVT.isVector()) {
12780 // A vector operand; extract a single element.
12781 EVT OperandEltVT = OperandVT.getVectorElementType();
12782 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
12783 Operand, getVectorIdxConstant(i, dl));
12784 } else {
12785 // A scalar operand; just use it as is.
12786 Operands[j] = Operand;
12790 switch (N->getOpcode()) {
12791 default: {
12792 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
12793 N->getFlags()));
12794 break;
12796 case ISD::VSELECT:
12797 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
12798 break;
12799 case ISD::SHL:
12800 case ISD::SRA:
12801 case ISD::SRL:
12802 case ISD::ROTL:
12803 case ISD::ROTR:
12804 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
12805 getShiftAmountOperand(Operands[0].getValueType(),
12806 Operands[1])));
12807 break;
12808 case ISD::SIGN_EXTEND_INREG: {
12809 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
12810 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
12811 Operands[0],
12812 getValueType(ExtVT)));
12813 break;
12815 case ISD::ADDRSPACECAST: {
12816 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
12817 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
12818 ASC->getSrcAddressSpace(),
12819 ASC->getDestAddressSpace()));
12820 break;
12825 for (; i < ResNE; ++i)
12826 Scalars.push_back(getUNDEF(EltVT));
12828 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
12829 return getBuildVector(VecVT, dl, Scalars);
12832 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
12833 SDNode *N, unsigned ResNE) {
12834 unsigned Opcode = N->getOpcode();
12835 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
12836 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
12837 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
12838 "Expected an overflow opcode");
12840 EVT ResVT = N->getValueType(0);
12841 EVT OvVT = N->getValueType(1);
12842 EVT ResEltVT = ResVT.getVectorElementType();
12843 EVT OvEltVT = OvVT.getVectorElementType();
12844 SDLoc dl(N);
12846 // If ResNE is 0, fully unroll the vector op.
12847 unsigned NE = ResVT.getVectorNumElements();
12848 if (ResNE == 0)
12849 ResNE = NE;
12850 else if (NE > ResNE)
12851 NE = ResNE;
12853 SmallVector<SDValue, 8> LHSScalars;
12854 SmallVector<SDValue, 8> RHSScalars;
12855 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
12856 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
12858 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
12859 SDVTList VTs = getVTList(ResEltVT, SVT);
12860 SmallVector<SDValue, 8> ResScalars;
12861 SmallVector<SDValue, 8> OvScalars;
12862 for (unsigned i = 0; i < NE; ++i) {
12863 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
12864 SDValue Ov =
12865 getSelect(dl, OvEltVT, Res.getValue(1),
12866 getBoolConstant(true, dl, OvEltVT, ResVT),
12867 getConstant(0, dl, OvEltVT));
12869 ResScalars.push_back(Res);
12870 OvScalars.push_back(Ov);
12873 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
12874 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
12876 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
12877 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
12878 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
12879 getBuildVector(NewOvVT, dl, OvScalars));
12882 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
12883 LoadSDNode *Base,
12884 unsigned Bytes,
12885 int Dist) const {
12886 if (LD->isVolatile() || Base->isVolatile())
12887 return false;
12888 // TODO: probably too restrictive for atomics, revisit
12889 if (!LD->isSimple())
12890 return false;
12891 if (LD->isIndexed() || Base->isIndexed())
12892 return false;
12893 if (LD->getChain() != Base->getChain())
12894 return false;
12895 EVT VT = LD->getMemoryVT();
12896 if (VT.getSizeInBits() / 8 != Bytes)
12897 return false;
12899 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
12900 auto LocDecomp = BaseIndexOffset::match(LD, *this);
12902 int64_t Offset = 0;
12903 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
12904 return (Dist * (int64_t)Bytes == Offset);
12905 return false;
12908 /// InferPtrAlignment - Infer alignment of a load / store address. Return
12909 /// std::nullopt if it cannot be inferred.
12910 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
12911 // If this is a GlobalAddress + cst, return the alignment.
12912 const GlobalValue *GV = nullptr;
12913 int64_t GVOffset = 0;
12914 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
12915 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
12916 KnownBits Known(PtrWidth);
12917 llvm::computeKnownBits(GV, Known, getDataLayout());
12918 unsigned AlignBits = Known.countMinTrailingZeros();
12919 if (AlignBits)
12920 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
12923 // If this is a direct reference to a stack slot, use information about the
12924 // stack slot's alignment.
12925 int FrameIdx = INT_MIN;
12926 int64_t FrameOffset = 0;
12927 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
12928 FrameIdx = FI->getIndex();
12929 } else if (isBaseWithConstantOffset(Ptr) &&
12930 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
12931 // Handle FI+Cst
12932 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
12933 FrameOffset = Ptr.getConstantOperandVal(1);
12936 if (FrameIdx != INT_MIN) {
12937 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
12938 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
12941 return std::nullopt;
12944 /// Split the scalar node with EXTRACT_ELEMENT using the provided
12945 /// VTs and return the low/high part.
12946 std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
12947 const SDLoc &DL,
12948 const EVT &LoVT,
12949 const EVT &HiVT) {
12950 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
12951 "Split node must be a scalar type");
12952 SDValue Lo =
12953 getNode(ISD::EXTRACT_ELEMENT, DL, LoVT, N, getIntPtrConstant(0, DL));
12954 SDValue Hi =
12955 getNode(ISD::EXTRACT_ELEMENT, DL, HiVT, N, getIntPtrConstant(1, DL));
12956 return std::make_pair(Lo, Hi);
12959 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
12960 /// which is split (or expanded) into two not necessarily identical pieces.
12961 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
12962 // Currently all types are split in half.
12963 EVT LoVT, HiVT;
12964 if (!VT.isVector())
12965 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
12966 else
12967 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
12969 return std::make_pair(LoVT, HiVT);
12972 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
12973 /// type, dependent on an enveloping VT that has been split into two identical
12974 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
12975 std::pair<EVT, EVT>
12976 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
12977 bool *HiIsEmpty) const {
12978 EVT EltTp = VT.getVectorElementType();
12979 // Examples:
12980 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
12981 // custom VL=9 with enveloping VL=8/8 yields 8/1
12982 // custom VL=10 with enveloping VL=8/8 yields 8/2
12983 // etc.
12984 ElementCount VTNumElts = VT.getVectorElementCount();
12985 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
12986 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
12987 "Mixing fixed width and scalable vectors when enveloping a type");
12988 EVT LoVT, HiVT;
12989 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
12990 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
12991 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
12992 *HiIsEmpty = false;
12993 } else {
12994 // Flag that hi type has zero storage size, but return split envelop type
12995 // (this would be easier if vector types with zero elements were allowed).
12996 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
12997 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
12998 *HiIsEmpty = true;
13000 return std::make_pair(LoVT, HiVT);
13003 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13004 /// low/high part.
13005 std::pair<SDValue, SDValue>
13006 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13007 const EVT &HiVT) {
13008 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13009 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13010 "Splitting vector with an invalid mixture of fixed and scalable "
13011 "vector types");
13012 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
13013 N.getValueType().getVectorMinNumElements() &&
13014 "More vector elements requested than available!");
13015 SDValue Lo, Hi;
13016 Lo =
13017 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
13018 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13019 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13020 // IDX with the runtime scaling factor of the result vector type. For
13021 // fixed-width result vectors, that runtime scaling factor is 1.
13022 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
13023 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
13024 return std::make_pair(Lo, Hi);
13027 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13028 const SDLoc &DL) {
13029 // Split the vector length parameter.
13030 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13031 EVT VT = N.getValueType();
13032 assert(VecVT.getVectorElementCount().isKnownEven() &&
13033 "Expecting the mask to be an evenly-sized vector");
13034 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13035 SDValue HalfNumElts =
13036 VecVT.isFixedLengthVector()
13037 ? getConstant(HalfMinNumElts, DL, VT)
13038 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13039 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13040 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13041 return std::make_pair(Lo, Hi);
13044 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13045 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
13046 EVT VT = N.getValueType();
13047 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
13048 NextPowerOf2(VT.getVectorNumElements()));
13049 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
13050 getVectorIdxConstant(0, DL));
13053 void SelectionDAG::ExtractVectorElements(SDValue Op,
13054 SmallVectorImpl<SDValue> &Args,
13055 unsigned Start, unsigned Count,
13056 EVT EltVT) {
13057 EVT VT = Op.getValueType();
13058 if (Count == 0)
13059 Count = VT.getVectorNumElements();
13060 if (EltVT == EVT())
13061 EltVT = VT.getVectorElementType();
13062 SDLoc SL(Op);
13063 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13064 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
13065 getVectorIdxConstant(i, SL)));
13069 // getAddressSpace - Return the address space this GlobalAddress belongs to.
13070 unsigned GlobalAddressSDNode::getAddressSpace() const {
13071 return getGlobal()->getType()->getAddressSpace();
13074 Type *ConstantPoolSDNode::getType() const {
13075 if (isMachineConstantPoolEntry())
13076 return Val.MachineCPVal->getType();
13077 return Val.ConstVal->getType();
13080 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13081 unsigned &SplatBitSize,
13082 bool &HasAnyUndefs,
13083 unsigned MinSplatBits,
13084 bool IsBigEndian) const {
13085 EVT VT = getValueType(0);
13086 assert(VT.isVector() && "Expected a vector type");
13087 unsigned VecWidth = VT.getSizeInBits();
13088 if (MinSplatBits > VecWidth)
13089 return false;
13091 // FIXME: The widths are based on this node's type, but build vectors can
13092 // truncate their operands.
13093 SplatValue = APInt(VecWidth, 0);
13094 SplatUndef = APInt(VecWidth, 0);
13096 // Get the bits. Bits with undefined values (when the corresponding element
13097 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13098 // in SplatValue. If any of the values are not constant, give up and return
13099 // false.
13100 unsigned int NumOps = getNumOperands();
13101 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13102 unsigned EltWidth = VT.getScalarSizeInBits();
13104 for (unsigned j = 0; j < NumOps; ++j) {
13105 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13106 SDValue OpVal = getOperand(i);
13107 unsigned BitPos = j * EltWidth;
13109 if (OpVal.isUndef())
13110 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13111 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13112 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13113 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13114 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13115 else
13116 return false;
13119 // The build_vector is all constants or undefs. Find the smallest element
13120 // size that splats the vector.
13121 HasAnyUndefs = (SplatUndef != 0);
13123 // FIXME: This does not work for vectors with elements less than 8 bits.
13124 while (VecWidth > 8) {
13125 // If we can't split in half, stop here.
13126 if (VecWidth & 1)
13127 break;
13129 unsigned HalfSize = VecWidth / 2;
13130 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13131 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13132 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13133 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13135 // If the two halves do not match (ignoring undef bits), stop here.
13136 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13137 MinSplatBits > HalfSize)
13138 break;
13140 SplatValue = HighValue | LowValue;
13141 SplatUndef = HighUndef & LowUndef;
13143 VecWidth = HalfSize;
13146 // FIXME: The loop above only tries to split in halves. But if the input
13147 // vector for example is <3 x i16> it wouldn't be able to detect a
13148 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13149 // optimizations. I guess that back in the days when this helper was created
13150 // vectors normally was power-of-2 sized.
13152 SplatBitSize = VecWidth;
13153 return true;
13156 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
13157 BitVector *UndefElements) const {
13158 unsigned NumOps = getNumOperands();
13159 if (UndefElements) {
13160 UndefElements->clear();
13161 UndefElements->resize(NumOps);
13163 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13164 if (!DemandedElts)
13165 return SDValue();
13166 SDValue Splatted;
13167 for (unsigned i = 0; i != NumOps; ++i) {
13168 if (!DemandedElts[i])
13169 continue;
13170 SDValue Op = getOperand(i);
13171 if (Op.isUndef()) {
13172 if (UndefElements)
13173 (*UndefElements)[i] = true;
13174 } else if (!Splatted) {
13175 Splatted = Op;
13176 } else if (Splatted != Op) {
13177 return SDValue();
13181 if (!Splatted) {
13182 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13183 assert(getOperand(FirstDemandedIdx).isUndef() &&
13184 "Can only have a splat without a constant for all undefs.");
13185 return getOperand(FirstDemandedIdx);
13188 return Splatted;
13191 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
13192 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13193 return getSplatValue(DemandedElts, UndefElements);
13196 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
13197 SmallVectorImpl<SDValue> &Sequence,
13198 BitVector *UndefElements) const {
13199 unsigned NumOps = getNumOperands();
13200 Sequence.clear();
13201 if (UndefElements) {
13202 UndefElements->clear();
13203 UndefElements->resize(NumOps);
13205 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13206 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13207 return false;
13209 // Set the undefs even if we don't find a sequence (like getSplatValue).
13210 if (UndefElements)
13211 for (unsigned I = 0; I != NumOps; ++I)
13212 if (DemandedElts[I] && getOperand(I).isUndef())
13213 (*UndefElements)[I] = true;
13215 // Iteratively widen the sequence length looking for repetitions.
13216 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13217 Sequence.append(SeqLen, SDValue());
13218 for (unsigned I = 0; I != NumOps; ++I) {
13219 if (!DemandedElts[I])
13220 continue;
13221 SDValue &SeqOp = Sequence[I % SeqLen];
13222 SDValue Op = getOperand(I);
13223 if (Op.isUndef()) {
13224 if (!SeqOp)
13225 SeqOp = Op;
13226 continue;
13228 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13229 Sequence.clear();
13230 break;
13232 SeqOp = Op;
13234 if (!Sequence.empty())
13235 return true;
13238 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13239 return false;
13242 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
13243 BitVector *UndefElements) const {
13244 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13245 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13248 ConstantSDNode *
13249 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
13250 BitVector *UndefElements) const {
13251 return dyn_cast_or_null<ConstantSDNode>(
13252 getSplatValue(DemandedElts, UndefElements));
13255 ConstantSDNode *
13256 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
13257 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13260 ConstantFPSDNode *
13261 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
13262 BitVector *UndefElements) const {
13263 return dyn_cast_or_null<ConstantFPSDNode>(
13264 getSplatValue(DemandedElts, UndefElements));
13267 ConstantFPSDNode *
13268 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
13269 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
13272 int32_t
13273 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
13274 uint32_t BitWidth) const {
13275 if (ConstantFPSDNode *CN =
13276 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
13277 bool IsExact;
13278 APSInt IntVal(BitWidth);
13279 const APFloat &APF = CN->getValueAPF();
13280 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13281 APFloat::opOK ||
13282 !IsExact)
13283 return -1;
13285 return IntVal.exactLogBase2();
13287 return -1;
13290 bool BuildVectorSDNode::getConstantRawBits(
13291 bool IsLittleEndian, unsigned DstEltSizeInBits,
13292 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13293 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13294 if (!isConstant())
13295 return false;
13297 unsigned NumSrcOps = getNumOperands();
13298 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13299 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13300 "Invalid bitcast scale");
13302 // Extract raw src bits.
13303 SmallVector<APInt> SrcBitElements(NumSrcOps,
13304 APInt::getZero(SrcEltSizeInBits));
13305 BitVector SrcUndeElements(NumSrcOps, false);
13307 for (unsigned I = 0; I != NumSrcOps; ++I) {
13308 SDValue Op = getOperand(I);
13309 if (Op.isUndef()) {
13310 SrcUndeElements.set(I);
13311 continue;
13313 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13314 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13315 assert((CInt || CFP) && "Unknown constant");
13316 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13317 : CFP->getValueAPF().bitcastToAPInt();
13320 // Recast to dst width.
13321 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13322 SrcBitElements, UndefElements, SrcUndeElements);
13323 return true;
13326 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13327 unsigned DstEltSizeInBits,
13328 SmallVectorImpl<APInt> &DstBitElements,
13329 ArrayRef<APInt> SrcBitElements,
13330 BitVector &DstUndefElements,
13331 const BitVector &SrcUndefElements) {
13332 unsigned NumSrcOps = SrcBitElements.size();
13333 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13334 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13335 "Invalid bitcast scale");
13336 assert(NumSrcOps == SrcUndefElements.size() &&
13337 "Vector size mismatch");
13339 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13340 DstUndefElements.clear();
13341 DstUndefElements.resize(NumDstOps, false);
13342 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13344 // Concatenate src elements constant bits together into dst element.
13345 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13346 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13347 for (unsigned I = 0; I != NumDstOps; ++I) {
13348 DstUndefElements.set(I);
13349 APInt &DstBits = DstBitElements[I];
13350 for (unsigned J = 0; J != Scale; ++J) {
13351 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13352 if (SrcUndefElements[Idx])
13353 continue;
13354 DstUndefElements.reset(I);
13355 const APInt &SrcBits = SrcBitElements[Idx];
13356 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13357 "Illegal constant bitwidths");
13358 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13361 return;
13364 // Split src element constant bits into dst elements.
13365 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13366 for (unsigned I = 0; I != NumSrcOps; ++I) {
13367 if (SrcUndefElements[I]) {
13368 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13369 continue;
13371 const APInt &SrcBits = SrcBitElements[I];
13372 for (unsigned J = 0; J != Scale; ++J) {
13373 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13374 APInt &DstBits = DstBitElements[Idx];
13375 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13380 bool BuildVectorSDNode::isConstant() const {
13381 for (const SDValue &Op : op_values()) {
13382 unsigned Opc = Op.getOpcode();
13383 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13384 return false;
13386 return true;
13389 std::optional<std::pair<APInt, APInt>>
13390 BuildVectorSDNode::isConstantSequence() const {
13391 unsigned NumOps = getNumOperands();
13392 if (NumOps < 2)
13393 return std::nullopt;
13395 if (!isa<ConstantSDNode>(getOperand(0)) ||
13396 !isa<ConstantSDNode>(getOperand(1)))
13397 return std::nullopt;
13399 unsigned EltSize = getValueType(0).getScalarSizeInBits();
13400 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13401 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13403 if (Stride.isZero())
13404 return std::nullopt;
13406 for (unsigned i = 2; i < NumOps; ++i) {
13407 if (!isa<ConstantSDNode>(getOperand(i)))
13408 return std::nullopt;
13410 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13411 if (Val != (Start + (Stride * i)))
13412 return std::nullopt;
13415 return std::make_pair(Start, Stride);
13418 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
13419 // Find the first non-undef value in the shuffle mask.
13420 unsigned i, e;
13421 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
13422 /* search */;
13424 // If all elements are undefined, this shuffle can be considered a splat
13425 // (although it should eventually get simplified away completely).
13426 if (i == e)
13427 return true;
13429 // Make sure all remaining elements are either undef or the same as the first
13430 // non-undef value.
13431 for (int Idx = Mask[i]; i != e; ++i)
13432 if (Mask[i] >= 0 && Mask[i] != Idx)
13433 return false;
13434 return true;
13437 // Returns true if it is a constant integer BuildVector or constant integer,
13438 // possibly hidden by a bitcast.
13439 bool SelectionDAG::isConstantIntBuildVectorOrConstantInt(
13440 SDValue N, bool AllowOpaques) const {
13441 N = peekThroughBitcasts(N);
13443 if (auto *C = dyn_cast<ConstantSDNode>(N))
13444 return AllowOpaques || !C->isOpaque();
13446 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
13447 return true;
13449 // Treat a GlobalAddress supporting constant offset folding as a
13450 // constant integer.
13451 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
13452 if (GA->getOpcode() == ISD::GlobalAddress &&
13453 TLI->isOffsetFoldingLegal(GA))
13454 return true;
13456 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13457 isa<ConstantSDNode>(N.getOperand(0)))
13458 return true;
13459 return false;
13462 // Returns true if it is a constant float BuildVector or constant float.
13463 bool SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
13464 if (isa<ConstantFPSDNode>(N))
13465 return true;
13467 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
13468 return true;
13470 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13471 isa<ConstantFPSDNode>(N.getOperand(0)))
13472 return true;
13474 return false;
13477 std::optional<bool> SelectionDAG::isBoolConstant(SDValue N,
13478 bool AllowTruncation) const {
13479 ConstantSDNode *Const = isConstOrConstSplat(N, false, AllowTruncation);
13480 if (!Const)
13481 return std::nullopt;
13483 const APInt &CVal = Const->getAPIntValue();
13484 switch (TLI->getBooleanContents(N.getValueType())) {
13485 case TargetLowering::ZeroOrOneBooleanContent:
13486 if (CVal.isOne())
13487 return true;
13488 if (CVal.isZero())
13489 return false;
13490 return std::nullopt;
13491 case TargetLowering::ZeroOrNegativeOneBooleanContent:
13492 if (CVal.isAllOnes())
13493 return true;
13494 if (CVal.isZero())
13495 return false;
13496 return std::nullopt;
13497 case TargetLowering::UndefinedBooleanContent:
13498 return CVal[0];
13500 llvm_unreachable("Unknown BooleanContent enum");
13503 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
13504 assert(!Node->OperandList && "Node already has operands");
13505 assert(SDNode::getMaxNumOperands() >= Vals.size() &&
13506 "too many operands to fit into SDNode");
13507 SDUse *Ops = OperandRecycler.allocate(
13508 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
13510 bool IsDivergent = false;
13511 for (unsigned I = 0; I != Vals.size(); ++I) {
13512 Ops[I].setUser(Node);
13513 Ops[I].setInitial(Vals[I]);
13514 EVT VT = Ops[I].getValueType();
13516 // Skip Chain. It does not carry divergence.
13517 if (VT != MVT::Other &&
13518 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
13519 Ops[I].getNode()->isDivergent()) {
13520 IsDivergent = true;
13523 Node->NumOperands = Vals.size();
13524 Node->OperandList = Ops;
13525 if (!TLI->isSDNodeAlwaysUniform(Node)) {
13526 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
13527 Node->SDNodeBits.IsDivergent = IsDivergent;
13529 checkForCycles(Node);
13532 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
13533 SmallVectorImpl<SDValue> &Vals) {
13534 size_t Limit = SDNode::getMaxNumOperands();
13535 while (Vals.size() > Limit) {
13536 unsigned SliceIdx = Vals.size() - Limit;
13537 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
13538 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
13539 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
13540 Vals.emplace_back(NewTF);
13542 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
13545 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
13546 EVT VT, SDNodeFlags Flags) {
13547 switch (Opcode) {
13548 default:
13549 return SDValue();
13550 case ISD::ADD:
13551 case ISD::OR:
13552 case ISD::XOR:
13553 case ISD::UMAX:
13554 return getConstant(0, DL, VT);
13555 case ISD::MUL:
13556 return getConstant(1, DL, VT);
13557 case ISD::AND:
13558 case ISD::UMIN:
13559 return getAllOnesConstant(DL, VT);
13560 case ISD::SMAX:
13561 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
13562 case ISD::SMIN:
13563 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
13564 case ISD::FADD:
13565 // If flags allow, prefer positive zero since it's generally cheaper
13566 // to materialize on most targets.
13567 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
13568 case ISD::FMUL:
13569 return getConstantFP(1.0, DL, VT);
13570 case ISD::FMINNUM:
13571 case ISD::FMAXNUM: {
13572 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
13573 const fltSemantics &Semantics = VT.getFltSemantics();
13574 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
13575 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
13576 APFloat::getLargest(Semantics);
13577 if (Opcode == ISD::FMAXNUM)
13578 NeutralAF.changeSign();
13580 return getConstantFP(NeutralAF, DL, VT);
13582 case ISD::FMINIMUM:
13583 case ISD::FMAXIMUM: {
13584 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
13585 const fltSemantics &Semantics = VT.getFltSemantics();
13586 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
13587 : APFloat::getLargest(Semantics);
13588 if (Opcode == ISD::FMAXIMUM)
13589 NeutralAF.changeSign();
13591 return getConstantFP(NeutralAF, DL, VT);
13597 /// Helper used to make a call to a library function that has one argument of
13598 /// pointer type.
13600 /// Such functions include 'fegetmode', 'fesetenv' and some others, which are
13601 /// used to get or set floating-point state. They have one argument of pointer
13602 /// type, which points to the memory region containing bits of the
13603 /// floating-point state. The value returned by such function is ignored in the
13604 /// created call.
13606 /// \param LibFunc Reference to library function (value of RTLIB::Libcall).
13607 /// \param Ptr Pointer used to save/load state.
13608 /// \param InChain Ingoing token chain.
13609 /// \returns Outgoing chain token.
13610 SDValue SelectionDAG::makeStateFunctionCall(unsigned LibFunc, SDValue Ptr,
13611 SDValue InChain,
13612 const SDLoc &DLoc) {
13613 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
13614 TargetLowering::ArgListTy Args;
13615 TargetLowering::ArgListEntry Entry;
13616 Entry.Node = Ptr;
13617 Entry.Ty = Ptr.getValueType().getTypeForEVT(*getContext());
13618 Args.push_back(Entry);
13619 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
13620 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
13621 TLI->getPointerTy(getDataLayout()));
13622 TargetLowering::CallLoweringInfo CLI(*this);
13623 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
13624 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
13625 std::move(Args));
13626 return TLI->LowerCallTo(CLI).second;
13629 void SelectionDAG::copyExtraInfo(SDNode *From, SDNode *To) {
13630 assert(From && To && "Invalid SDNode; empty source SDValue?");
13631 auto I = SDEI.find(From);
13632 if (I == SDEI.end())
13633 return;
13635 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
13636 // the iterator, hence the need to make a copy to prevent a use-after-free.
13637 NodeExtraInfo NEI = I->second;
13638 if (LLVM_LIKELY(!NEI.PCSections) && LLVM_LIKELY(!NEI.MMRA)) {
13639 // No deep copy required for the types of extra info set.
13641 // FIXME: Investigate if other types of extra info also need deep copy. This
13642 // depends on the types of nodes they can be attached to: if some extra info
13643 // is only ever attached to nodes where a replacement To node is always the
13644 // node where later use and propagation of the extra info has the intended
13645 // semantics, no deep copy is required.
13646 SDEI[To] = std::move(NEI);
13647 return;
13650 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
13651 // through the replacement of From with To. Otherwise, replacements of a node
13652 // (From) with more complex nodes (To and its operands) may result in lost
13653 // extra info where the root node (To) is insignificant in further propagating
13654 // and using extra info when further lowering to MIR.
13656 // In the first step pre-populate the visited set with the nodes reachable
13657 // from the old From node. This avoids copying NodeExtraInfo to parts of the
13658 // DAG that is not new and should be left untouched.
13659 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
13660 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
13661 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
13662 if (MaxDepth == 0) {
13663 // Remember this node in case we need to increase MaxDepth and continue
13664 // populating FromReach from this node.
13665 Leafs.emplace_back(N);
13666 return;
13668 if (!FromReach.insert(N).second)
13669 return;
13670 for (const SDValue &Op : N->op_values())
13671 Self(Self, Op.getNode(), MaxDepth - 1);
13674 // Copy extra info to To and all its transitive operands (that are new).
13675 SmallPtrSet<const SDNode *, 8> Visited;
13676 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
13677 if (FromReach.contains(N))
13678 return true;
13679 if (!Visited.insert(N).second)
13680 return true;
13681 if (getEntryNode().getNode() == N)
13682 return false;
13683 for (const SDValue &Op : N->op_values()) {
13684 if (!Self(Self, Op.getNode()))
13685 return false;
13687 // Copy only if entry node was not reached.
13688 SDEI[N] = NEI;
13689 return true;
13692 // We first try with a lower MaxDepth, assuming that the path to common
13693 // operands between From and To is relatively short. This significantly
13694 // improves performance in the common case. The initial MaxDepth is big
13695 // enough to avoid retry in the common case; the last MaxDepth is large
13696 // enough to avoid having to use the fallback below (and protects from
13697 // potential stack exhaustion from recursion).
13698 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
13699 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
13700 // StartFrom is the previous (or initial) set of leafs reachable at the
13701 // previous maximum depth.
13702 SmallVector<const SDNode *> StartFrom;
13703 std::swap(StartFrom, Leafs);
13704 for (const SDNode *N : StartFrom)
13705 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
13706 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
13707 return;
13708 // This should happen very rarely (reached the entry node).
13709 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
13710 assert(!Leafs.empty());
13713 // This should not happen - but if it did, that means the subgraph reachable
13714 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
13715 // could not visit all reachable common operands. Consequently, we were able
13716 // to reach the entry node.
13717 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
13718 assert(false && "From subgraph too complex - increase max. MaxDepth?");
13719 // Best-effort fallback if assertions disabled.
13720 SDEI[To] = std::move(NEI);
13723 #ifndef NDEBUG
13724 static void checkForCyclesHelper(const SDNode *N,
13725 SmallPtrSetImpl<const SDNode*> &Visited,
13726 SmallPtrSetImpl<const SDNode*> &Checked,
13727 const llvm::SelectionDAG *DAG) {
13728 // If this node has already been checked, don't check it again.
13729 if (Checked.count(N))
13730 return;
13732 // If a node has already been visited on this depth-first walk, reject it as
13733 // a cycle.
13734 if (!Visited.insert(N).second) {
13735 errs() << "Detected cycle in SelectionDAG\n";
13736 dbgs() << "Offending node:\n";
13737 N->dumprFull(DAG); dbgs() << "\n";
13738 abort();
13741 for (const SDValue &Op : N->op_values())
13742 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
13744 Checked.insert(N);
13745 Visited.erase(N);
13747 #endif
13749 void llvm::checkForCycles(const llvm::SDNode *N,
13750 const llvm::SelectionDAG *DAG,
13751 bool force) {
13752 #ifndef NDEBUG
13753 bool check = force;
13754 #ifdef EXPENSIVE_CHECKS
13755 check = true;
13756 #endif // EXPENSIVE_CHECKS
13757 if (check) {
13758 assert(N && "Checking nonexistent SDNode");
13759 SmallPtrSet<const SDNode*, 32> visited;
13760 SmallPtrSet<const SDNode*, 32> checked;
13761 checkForCyclesHelper(N, visited, checked, DAG);
13763 #endif // !NDEBUG
13766 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
13767 checkForCycles(DAG->getRoot().getNode(), DAG, force);