AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blobd64a90bcaae7dac49d44b30df74f9621078379f3
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/CFG.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/UniformityAnalysis.h"
34 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/StackProtector.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/CodeGen/ValueTypes.h"
63 #include "llvm/CodeGen/WinEHFuncInfo.h"
64 #include "llvm/CodeGenTypes/MachineValueType.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfo.h"
69 #include "llvm/IR/DebugInfoMetadata.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DiagnosticInfo.h"
72 #include "llvm/IR/EHPersonalities.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/PrintPasses.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/Timer.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <iterator>
109 #include <limits>
110 #include <memory>
111 #include <optional>
112 #include <string>
113 #include <utility>
114 #include <vector>
116 using namespace llvm;
118 #define DEBUG_TYPE "isel"
119 #define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump"
121 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
122 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
123 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
124 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
125 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
126 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
127 STATISTIC(NumFastIselFailLowerArguments,
128 "Number of entry blocks where fast isel failed to lower arguments");
130 static cl::opt<int> EnableFastISelAbort(
131 "fast-isel-abort", cl::Hidden,
132 cl::desc("Enable abort calls when \"fast\" instruction selection "
133 "fails to lower an instruction: 0 disable the abort, 1 will "
134 "abort but for args, calls and terminators, 2 will also "
135 "abort for argument lowering, and 3 will never fallback "
136 "to SelectionDAG."));
138 static cl::opt<bool> EnableFastISelFallbackReport(
139 "fast-isel-report-on-fallback", cl::Hidden,
140 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
141 "falls back to SelectionDAG."));
143 static cl::opt<bool>
144 UseMBPI("use-mbpi",
145 cl::desc("use Machine Branch Probability Info"),
146 cl::init(true), cl::Hidden);
148 #ifndef NDEBUG
149 static cl::opt<std::string>
150 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
151 cl::desc("Only display the basic block whose name "
152 "matches this for all view-*-dags options"));
153 static cl::opt<bool>
154 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
155 cl::desc("Pop up a window to show dags before the first "
156 "dag combine pass"));
157 static cl::opt<bool>
158 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
159 cl::desc("Pop up a window to show dags before legalize types"));
160 static cl::opt<bool>
161 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
162 cl::desc("Pop up a window to show dags before the post "
163 "legalize types dag combine pass"));
164 static cl::opt<bool>
165 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
166 cl::desc("Pop up a window to show dags before legalize"));
167 static cl::opt<bool>
168 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
169 cl::desc("Pop up a window to show dags before the second "
170 "dag combine pass"));
171 static cl::opt<bool>
172 ViewISelDAGs("view-isel-dags", cl::Hidden,
173 cl::desc("Pop up a window to show isel dags as they are selected"));
174 static cl::opt<bool>
175 ViewSchedDAGs("view-sched-dags", cl::Hidden,
176 cl::desc("Pop up a window to show sched dags as they are processed"));
177 static cl::opt<bool>
178 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
179 cl::desc("Pop up a window to show SUnit dags after they are processed"));
180 #else
181 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
182 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
183 ViewDAGCombine2 = false, ViewISelDAGs = false,
184 ViewSchedDAGs = false, ViewSUnitDAGs = false;
185 #endif
187 #ifndef NDEBUG
188 #define ISEL_DUMP(X) \
189 do { \
190 if (llvm::DebugFlag && \
191 (isCurrentDebugType(DEBUG_TYPE) || \
192 (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \
193 X; \
195 } while (false)
196 #else
197 #define ISEL_DUMP(X) do { } while (false)
198 #endif
200 //===---------------------------------------------------------------------===//
202 /// RegisterScheduler class - Track the registration of instruction schedulers.
204 //===---------------------------------------------------------------------===//
205 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
206 RegisterScheduler::Registry;
208 //===---------------------------------------------------------------------===//
210 /// ISHeuristic command line option for instruction schedulers.
212 //===---------------------------------------------------------------------===//
213 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214 RegisterPassParser<RegisterScheduler>>
215 ISHeuristic("pre-RA-sched",
216 cl::init(&createDefaultScheduler), cl::Hidden,
217 cl::desc("Instruction schedulers available (before register"
218 " allocation):"));
220 static RegisterScheduler
221 defaultListDAGScheduler("default", "Best scheduler for the target",
222 createDefaultScheduler);
224 static bool dontUseFastISelFor(const Function &Fn) {
225 // Don't enable FastISel for functions with swiftasync Arguments.
226 // Debug info on those is reliant on good Argument lowering, and FastISel is
227 // not capable of lowering the entire function. Mixing the two selectors tend
228 // to result in poor lowering of Arguments.
229 return any_of(Fn.args(), [](const Argument &Arg) {
230 return Arg.hasAttribute(Attribute::AttrKind::SwiftAsync);
234 namespace llvm {
236 //===--------------------------------------------------------------------===//
237 /// This class is used by SelectionDAGISel to temporarily override
238 /// the optimization level on a per-function basis.
239 class OptLevelChanger {
240 SelectionDAGISel &IS;
241 CodeGenOptLevel SavedOptLevel;
242 bool SavedFastISel;
244 public:
245 OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel)
246 : IS(ISel) {
247 SavedOptLevel = IS.OptLevel;
248 SavedFastISel = IS.TM.Options.EnableFastISel;
249 if (NewOptLevel != SavedOptLevel) {
250 IS.OptLevel = NewOptLevel;
251 IS.TM.setOptLevel(NewOptLevel);
252 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
253 << IS.MF->getFunction().getName() << "\n");
254 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel)
255 << " ; After: -O" << static_cast<int>(NewOptLevel)
256 << "\n");
257 if (NewOptLevel == CodeGenOptLevel::None)
258 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
260 if (dontUseFastISelFor(IS.MF->getFunction()))
261 IS.TM.setFastISel(false);
262 LLVM_DEBUG(
263 dbgs() << "\tFastISel is "
264 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
265 << "\n");
268 ~OptLevelChanger() {
269 if (IS.OptLevel == SavedOptLevel)
270 return;
271 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
272 << IS.MF->getFunction().getName() << "\n");
273 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel)
274 << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n");
275 IS.OptLevel = SavedOptLevel;
276 IS.TM.setOptLevel(SavedOptLevel);
277 IS.TM.setFastISel(SavedFastISel);
281 //===--------------------------------------------------------------------===//
282 /// createDefaultScheduler - This creates an instruction scheduler appropriate
283 /// for the target.
284 ScheduleDAGSDNodes *createDefaultScheduler(SelectionDAGISel *IS,
285 CodeGenOptLevel OptLevel) {
286 const TargetLowering *TLI = IS->TLI;
287 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
289 // Try first to see if the Target has its own way of selecting a scheduler
290 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
291 return SchedulerCtor(IS, OptLevel);
294 if (OptLevel == CodeGenOptLevel::None ||
295 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
296 TLI->getSchedulingPreference() == Sched::Source)
297 return createSourceListDAGScheduler(IS, OptLevel);
298 if (TLI->getSchedulingPreference() == Sched::RegPressure)
299 return createBURRListDAGScheduler(IS, OptLevel);
300 if (TLI->getSchedulingPreference() == Sched::Hybrid)
301 return createHybridListDAGScheduler(IS, OptLevel);
302 if (TLI->getSchedulingPreference() == Sched::VLIW)
303 return createVLIWDAGScheduler(IS, OptLevel);
304 if (TLI->getSchedulingPreference() == Sched::Fast)
305 return createFastDAGScheduler(IS, OptLevel);
306 if (TLI->getSchedulingPreference() == Sched::Linearize)
307 return createDAGLinearizer(IS, OptLevel);
308 assert(TLI->getSchedulingPreference() == Sched::ILP &&
309 "Unknown sched type!");
310 return createILPListDAGScheduler(IS, OptLevel);
313 } // end namespace llvm
315 MachineBasicBlock *
316 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
317 MachineBasicBlock *MBB) const {
318 #ifndef NDEBUG
319 dbgs() << "If a target marks an instruction with "
320 "'usesCustomInserter', it must implement "
321 "TargetLowering::EmitInstrWithCustomInserter!\n";
322 #endif
323 llvm_unreachable(nullptr);
326 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
327 SDNode *Node) const {
328 assert(!MI.hasPostISelHook() &&
329 "If a target marks an instruction with 'hasPostISelHook', "
330 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
333 //===----------------------------------------------------------------------===//
334 // SelectionDAGISel code
335 //===----------------------------------------------------------------------===//
337 SelectionDAGISelLegacy::SelectionDAGISelLegacy(
338 char &ID, std::unique_ptr<SelectionDAGISel> S)
339 : MachineFunctionPass(ID), Selector(std::move(S)) {
340 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
341 initializeBranchProbabilityInfoWrapperPassPass(
342 *PassRegistry::getPassRegistry());
343 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
344 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
347 bool SelectionDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) {
348 // If we already selected that function, we do not need to run SDISel.
349 if (MF.getProperties().hasProperty(
350 MachineFunctionProperties::Property::Selected))
351 return false;
353 // Do some sanity-checking on the command-line options.
354 if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel)
355 report_fatal_error("-fast-isel-abort > 0 requires -fast-isel");
357 // Decide what flavour of variable location debug-info will be used, before
358 // we change the optimisation level.
359 MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef());
361 // Reset the target options before resetting the optimization
362 // level below.
363 // FIXME: This is a horrible hack and should be processed via
364 // codegen looking at the optimization level explicitly when
365 // it wants to look at it.
366 Selector->TM.resetTargetOptions(MF.getFunction());
367 // Reset OptLevel to None for optnone functions.
368 CodeGenOptLevel NewOptLevel = skipFunction(MF.getFunction())
369 ? CodeGenOptLevel::None
370 : Selector->OptLevel;
372 Selector->MF = &MF;
373 OptLevelChanger OLC(*Selector, NewOptLevel);
374 Selector->initializeAnalysisResults(*this);
375 return Selector->runOnMachineFunction(MF);
378 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOptLevel OL)
379 : TM(tm), FuncInfo(new FunctionLoweringInfo()),
380 SwiftError(new SwiftErrorValueTracking()),
381 CurDAG(new SelectionDAG(tm, OL)),
382 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
383 OL)),
384 OptLevel(OL) {
385 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
386 initializeBranchProbabilityInfoWrapperPassPass(
387 *PassRegistry::getPassRegistry());
388 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
389 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
392 SelectionDAGISel::~SelectionDAGISel() {
393 delete CurDAG;
394 delete SwiftError;
397 void SelectionDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
398 CodeGenOptLevel OptLevel = Selector->OptLevel;
399 if (OptLevel != CodeGenOptLevel::None)
400 AU.addRequired<AAResultsWrapperPass>();
401 AU.addRequired<GCModuleInfo>();
402 AU.addRequired<StackProtector>();
403 AU.addPreserved<GCModuleInfo>();
404 AU.addRequired<TargetLibraryInfoWrapperPass>();
405 #ifndef NDEBUG
406 AU.addRequired<TargetTransformInfoWrapperPass>();
407 #endif
408 AU.addRequired<AssumptionCacheTracker>();
409 if (UseMBPI && OptLevel != CodeGenOptLevel::None)
410 AU.addRequired<BranchProbabilityInfoWrapperPass>();
411 AU.addRequired<ProfileSummaryInfoWrapperPass>();
412 // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for
413 // the module.
414 AU.addRequired<AssignmentTrackingAnalysis>();
415 AU.addPreserved<AssignmentTrackingAnalysis>();
416 if (OptLevel != CodeGenOptLevel::None)
417 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
418 MachineFunctionPass::getAnalysisUsage(AU);
421 PreservedAnalyses
422 SelectionDAGISelPass::run(MachineFunction &MF,
423 MachineFunctionAnalysisManager &MFAM) {
424 // If we already selected that function, we do not need to run SDISel.
425 if (MF.getProperties().hasProperty(
426 MachineFunctionProperties::Property::Selected))
427 return PreservedAnalyses::all();
429 // Do some sanity-checking on the command-line options.
430 if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel)
431 report_fatal_error("-fast-isel-abort > 0 requires -fast-isel");
433 // Decide what flavour of variable location debug-info will be used, before
434 // we change the optimisation level.
435 MF.setUseDebugInstrRef(MF.shouldUseDebugInstrRef());
437 // Reset the target options before resetting the optimization
438 // level below.
439 // FIXME: This is a horrible hack and should be processed via
440 // codegen looking at the optimization level explicitly when
441 // it wants to look at it.
442 Selector->TM.resetTargetOptions(MF.getFunction());
443 // Reset OptLevel to None for optnone functions.
444 // TODO: Add a function analysis to handle this.
445 Selector->MF = &MF;
446 // Reset OptLevel to None for optnone functions.
447 CodeGenOptLevel NewOptLevel = MF.getFunction().hasOptNone()
448 ? CodeGenOptLevel::None
449 : Selector->OptLevel;
451 OptLevelChanger OLC(*Selector, NewOptLevel);
452 Selector->initializeAnalysisResults(MFAM);
453 Selector->runOnMachineFunction(MF);
455 return getMachineFunctionPassPreservedAnalyses();
458 void SelectionDAGISel::initializeAnalysisResults(
459 MachineFunctionAnalysisManager &MFAM) {
460 auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(*MF)
461 .getManager();
462 auto &MAMP = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(*MF);
463 Function &Fn = MF->getFunction();
464 #ifndef NDEBUG
465 FuncName = Fn.getName();
466 MatchFilterFuncName = isFunctionInPrintList(FuncName);
467 #else
468 (void)MatchFilterFuncName;
469 #endif
471 TII = MF->getSubtarget().getInstrInfo();
472 TLI = MF->getSubtarget().getTargetLowering();
473 RegInfo = &MF->getRegInfo();
474 LibInfo = &FAM.getResult<TargetLibraryAnalysis>(Fn);
475 GFI = Fn.hasGC() ? &FAM.getResult<GCFunctionAnalysis>(Fn) : nullptr;
476 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
477 AC = &FAM.getResult<AssumptionAnalysis>(Fn);
478 auto *PSI = MAMP.getCachedResult<ProfileSummaryAnalysis>(*Fn.getParent());
479 BlockFrequencyInfo *BFI = nullptr;
480 FAM.getResult<BlockFrequencyAnalysis>(Fn);
481 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None)
482 BFI = &FAM.getResult<BlockFrequencyAnalysis>(Fn);
484 FunctionVarLocs const *FnVarLocs = nullptr;
485 if (isAssignmentTrackingEnabled(*Fn.getParent()))
486 FnVarLocs = &FAM.getResult<DebugAssignmentTrackingAnalysis>(Fn);
488 auto *UA = FAM.getCachedResult<UniformityInfoAnalysis>(Fn);
489 MachineModuleInfo &MMI =
490 MAMP.getCachedResult<MachineModuleAnalysis>(*Fn.getParent())->getMMI();
492 CurDAG->init(*MF, *ORE, MFAM, LibInfo, UA, PSI, BFI, MMI, FnVarLocs);
494 // Now get the optional analyzes if we want to.
495 // This is based on the possibly changed OptLevel (after optnone is taken
496 // into account). That's unfortunate but OK because it just means we won't
497 // ask for passes that have been required anyway.
499 if (UseMBPI && OptLevel != CodeGenOptLevel::None)
500 FuncInfo->BPI = &FAM.getResult<BranchProbabilityAnalysis>(Fn);
501 else
502 FuncInfo->BPI = nullptr;
504 if (OptLevel != CodeGenOptLevel::None)
505 AA = &FAM.getResult<AAManager>(Fn);
506 else
507 AA = nullptr;
509 SP = &FAM.getResult<SSPLayoutAnalysis>(Fn);
511 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
512 TTI = &FAM.getResult<TargetIRAnalysis>(Fn);
513 #endif
516 void SelectionDAGISel::initializeAnalysisResults(MachineFunctionPass &MFP) {
517 Function &Fn = MF->getFunction();
518 #ifndef NDEBUG
519 FuncName = Fn.getName();
520 MatchFilterFuncName = isFunctionInPrintList(FuncName);
521 #else
522 (void)MatchFilterFuncName;
523 #endif
525 TII = MF->getSubtarget().getInstrInfo();
526 TLI = MF->getSubtarget().getTargetLowering();
527 RegInfo = &MF->getRegInfo();
528 LibInfo = &MFP.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
529 GFI = Fn.hasGC() ? &MFP.getAnalysis<GCModuleInfo>().getFunctionInfo(Fn)
530 : nullptr;
531 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
532 AC = &MFP.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(Fn);
533 auto *PSI = &MFP.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
534 BlockFrequencyInfo *BFI = nullptr;
535 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOptLevel::None)
536 BFI = &MFP.getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
538 FunctionVarLocs const *FnVarLocs = nullptr;
539 if (isAssignmentTrackingEnabled(*Fn.getParent()))
540 FnVarLocs = MFP.getAnalysis<AssignmentTrackingAnalysis>().getResults();
542 UniformityInfo *UA = nullptr;
543 if (auto *UAPass = MFP.getAnalysisIfAvailable<UniformityInfoWrapperPass>())
544 UA = &UAPass->getUniformityInfo();
546 MachineModuleInfo &MMI =
547 MFP.getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
549 CurDAG->init(*MF, *ORE, &MFP, LibInfo, UA, PSI, BFI, MMI, FnVarLocs);
551 // Now get the optional analyzes if we want to.
552 // This is based on the possibly changed OptLevel (after optnone is taken
553 // into account). That's unfortunate but OK because it just means we won't
554 // ask for passes that have been required anyway.
556 if (UseMBPI && OptLevel != CodeGenOptLevel::None)
557 FuncInfo->BPI =
558 &MFP.getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
559 else
560 FuncInfo->BPI = nullptr;
562 if (OptLevel != CodeGenOptLevel::None)
563 AA = &MFP.getAnalysis<AAResultsWrapperPass>().getAAResults();
564 else
565 AA = nullptr;
567 SP = &MFP.getAnalysis<StackProtector>().getLayoutInfo();
569 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
570 TTI = &MFP.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn);
571 #endif
574 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
575 SwiftError->setFunction(mf);
576 const Function &Fn = mf.getFunction();
578 bool InstrRef = mf.shouldUseDebugInstrRef();
580 FuncInfo->set(MF->getFunction(), *MF, CurDAG);
582 ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << '\n');
584 SDB->init(GFI, AA, AC, LibInfo);
586 MF->setHasInlineAsm(false);
588 FuncInfo->SplitCSR = false;
590 // We split CSR if the target supports it for the given function
591 // and the function has only return exits.
592 if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) {
593 FuncInfo->SplitCSR = true;
595 // Collect all the return blocks.
596 for (const BasicBlock &BB : Fn) {
597 if (!succ_empty(&BB))
598 continue;
600 const Instruction *Term = BB.getTerminator();
601 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
602 continue;
604 // Bail out if the exit block is not Return nor Unreachable.
605 FuncInfo->SplitCSR = false;
606 break;
610 MachineBasicBlock *EntryMBB = &MF->front();
611 if (FuncInfo->SplitCSR)
612 // This performs initialization so lowering for SplitCSR will be correct.
613 TLI->initializeSplitCSR(EntryMBB);
615 SelectAllBasicBlocks(Fn);
616 if (FastISelFailed && EnableFastISelFallbackReport) {
617 DiagnosticInfoISelFallback DiagFallback(Fn);
618 Fn.getContext().diagnose(DiagFallback);
621 // Replace forward-declared registers with the registers containing
622 // the desired value.
623 // Note: it is important that this happens **before** the call to
624 // EmitLiveInCopies, since implementations can skip copies of unused
625 // registers. If we don't apply the reg fixups before, some registers may
626 // appear as unused and will be skipped, resulting in bad MI.
627 MachineRegisterInfo &MRI = MF->getRegInfo();
628 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
629 E = FuncInfo->RegFixups.end();
630 I != E; ++I) {
631 Register From = I->first;
632 Register To = I->second;
633 // If To is also scheduled to be replaced, find what its ultimate
634 // replacement is.
635 while (true) {
636 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
637 if (J == E)
638 break;
639 To = J->second;
641 // Make sure the new register has a sufficiently constrained register class.
642 if (From.isVirtual() && To.isVirtual())
643 MRI.constrainRegClass(To, MRI.getRegClass(From));
644 // Replace it.
646 // Replacing one register with another won't touch the kill flags.
647 // We need to conservatively clear the kill flags as a kill on the old
648 // register might dominate existing uses of the new register.
649 if (!MRI.use_empty(To))
650 MRI.clearKillFlags(From);
651 MRI.replaceRegWith(From, To);
654 // If the first basic block in the function has live ins that need to be
655 // copied into vregs, emit the copies into the top of the block before
656 // emitting the code for the block.
657 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
658 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
660 // Insert copies in the entry block and the return blocks.
661 if (FuncInfo->SplitCSR) {
662 SmallVector<MachineBasicBlock*, 4> Returns;
663 // Collect all the return blocks.
664 for (MachineBasicBlock &MBB : mf) {
665 if (!MBB.succ_empty())
666 continue;
668 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
669 if (Term != MBB.end() && Term->isReturn()) {
670 Returns.push_back(&MBB);
671 continue;
674 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
677 DenseMap<MCRegister, Register> LiveInMap;
678 if (!FuncInfo->ArgDbgValues.empty())
679 for (std::pair<MCRegister, Register> LI : RegInfo->liveins())
680 if (LI.second)
681 LiveInMap.insert(LI);
683 // Insert DBG_VALUE instructions for function arguments to the entry block.
684 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
685 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
686 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
687 "Function parameters should not be described by DBG_VALUE_LIST.");
688 bool hasFI = MI->getDebugOperand(0).isFI();
689 Register Reg =
690 hasFI ? TRI.getFrameRegister(*MF) : MI->getDebugOperand(0).getReg();
691 if (Reg.isPhysical())
692 EntryMBB->insert(EntryMBB->begin(), MI);
693 else {
694 MachineInstr *Def = RegInfo->getVRegDef(Reg);
695 if (Def) {
696 MachineBasicBlock::iterator InsertPos = Def;
697 // FIXME: VR def may not be in entry block.
698 Def->getParent()->insert(std::next(InsertPos), MI);
699 } else
700 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
701 << Register::virtReg2Index(Reg) << "\n");
704 // Don't try and extend through copies in instruction referencing mode.
705 if (InstrRef)
706 continue;
708 // If Reg is live-in then update debug info to track its copy in a vreg.
709 DenseMap<MCRegister, Register>::iterator LDI = LiveInMap.find(Reg);
710 if (LDI != LiveInMap.end()) {
711 assert(!hasFI && "There's no handling of frame pointer updating here yet "
712 "- add if needed");
713 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
714 MachineBasicBlock::iterator InsertPos = Def;
715 const MDNode *Variable = MI->getDebugVariable();
716 const MDNode *Expr = MI->getDebugExpression();
717 DebugLoc DL = MI->getDebugLoc();
718 bool IsIndirect = MI->isIndirectDebugValue();
719 if (IsIndirect)
720 assert(MI->getDebugOffset().getImm() == 0 &&
721 "DBG_VALUE with nonzero offset");
722 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
723 "Expected inlined-at fields to agree");
724 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
725 "Didn't expect to see a DBG_VALUE_LIST here");
726 // Def is never a terminator here, so it is ok to increment InsertPos.
727 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
728 IsIndirect, LDI->second, Variable, Expr);
730 // If this vreg is directly copied into an exported register then
731 // that COPY instructions also need DBG_VALUE, if it is the only
732 // user of LDI->second.
733 MachineInstr *CopyUseMI = nullptr;
734 for (MachineInstr &UseMI : RegInfo->use_instructions(LDI->second)) {
735 if (UseMI.isDebugValue())
736 continue;
737 if (UseMI.isCopy() && !CopyUseMI && UseMI.getParent() == EntryMBB) {
738 CopyUseMI = &UseMI;
739 continue;
741 // Otherwise this is another use or second copy use.
742 CopyUseMI = nullptr;
743 break;
745 if (CopyUseMI &&
746 TRI.getRegSizeInBits(LDI->second, MRI) ==
747 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
748 // Use MI's debug location, which describes where Variable was
749 // declared, rather than whatever is attached to CopyUseMI.
750 MachineInstr *NewMI =
751 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
752 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
753 MachineBasicBlock::iterator Pos = CopyUseMI;
754 EntryMBB->insertAfter(Pos, NewMI);
759 // For debug-info, in instruction referencing mode, we need to perform some
760 // post-isel maintenence.
761 if (MF->useDebugInstrRef())
762 MF->finalizeDebugInstrRefs();
764 // Determine if there are any calls in this machine function.
765 MachineFrameInfo &MFI = MF->getFrameInfo();
766 for (const auto &MBB : *MF) {
767 if (MFI.hasCalls() && MF->hasInlineAsm())
768 break;
770 for (const auto &MI : MBB) {
771 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
772 if ((MCID.isCall() && !MCID.isReturn()) ||
773 MI.isStackAligningInlineAsm()) {
774 MFI.setHasCalls(true);
776 if (MI.isInlineAsm()) {
777 MF->setHasInlineAsm(true);
782 // Release function-specific state. SDB and CurDAG are already cleared
783 // at this point.
784 FuncInfo->clear();
786 ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n");
787 ISEL_DUMP(MF->print(dbgs()));
789 return true;
792 static void reportFastISelFailure(MachineFunction &MF,
793 OptimizationRemarkEmitter &ORE,
794 OptimizationRemarkMissed &R,
795 bool ShouldAbort) {
796 // Print the function name explicitly if we don't have a debug location (which
797 // makes the diagnostic less useful) or if we're going to emit a raw error.
798 if (!R.getLocation().isValid() || ShouldAbort)
799 R << (" (in function: " + MF.getName() + ")").str();
801 if (ShouldAbort)
802 report_fatal_error(Twine(R.getMsg()));
804 ORE.emit(R);
805 LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
808 // Detect any fake uses that follow a tail call and move them before the tail
809 // call. Ignore fake uses that use values that are def'd by or after the tail
810 // call.
811 static void preserveFakeUses(BasicBlock::iterator Begin,
812 BasicBlock::iterator End) {
813 BasicBlock::iterator I = End;
814 if (--I == Begin || !isa<ReturnInst>(*I))
815 return;
816 // Detect whether there are any fake uses trailing a (potential) tail call.
817 bool HaveFakeUse = false;
818 bool HaveTailCall = false;
819 do {
820 if (const CallInst *CI = dyn_cast<CallInst>(--I))
821 if (CI->isTailCall()) {
822 HaveTailCall = true;
823 break;
825 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
826 if (II->getIntrinsicID() == Intrinsic::fake_use)
827 HaveFakeUse = true;
828 } while (I != Begin);
830 // If we didn't find any tail calls followed by fake uses, we are done.
831 if (!HaveTailCall || !HaveFakeUse)
832 return;
834 SmallVector<IntrinsicInst *> FakeUses;
835 // Record the fake uses we found so we can move them to the front of the
836 // tail call. Ignore them if they use a value that is def'd by or after
837 // the tail call.
838 for (BasicBlock::iterator Inst = I; Inst != End; Inst++) {
839 if (IntrinsicInst *FakeUse = dyn_cast<IntrinsicInst>(Inst);
840 FakeUse && FakeUse->getIntrinsicID() == Intrinsic::fake_use) {
841 if (auto UsedDef = dyn_cast<Instruction>(FakeUse->getOperand(0));
842 !UsedDef || UsedDef->getParent() != I->getParent() ||
843 UsedDef->comesBefore(&*I))
844 FakeUses.push_back(FakeUse);
848 for (auto *Inst : FakeUses)
849 Inst->moveBefore(*Inst->getParent(), I);
852 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
853 BasicBlock::const_iterator End,
854 bool &HadTailCall) {
855 // Allow creating illegal types during DAG building for the basic block.
856 CurDAG->NewNodesMustHaveLegalTypes = false;
858 // Lower the instructions. If a call is emitted as a tail call, cease emitting
859 // nodes for this block. If an instruction is elided, don't emit it, but do
860 // handle any debug-info attached to it.
861 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
862 if (!ElidedArgCopyInstrs.count(&*I))
863 SDB->visit(*I);
864 else
865 SDB->visitDbgInfo(*I);
868 // Make sure the root of the DAG is up-to-date.
869 CurDAG->setRoot(SDB->getControlRoot());
870 HadTailCall = SDB->HasTailCall;
871 SDB->resolveOrClearDbgInfo();
872 SDB->clear();
874 // Final step, emit the lowered DAG as machine code.
875 CodeGenAndEmitDAG();
878 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
879 SmallPtrSet<SDNode *, 16> Added;
880 SmallVector<SDNode*, 128> Worklist;
882 Worklist.push_back(CurDAG->getRoot().getNode());
883 Added.insert(CurDAG->getRoot().getNode());
885 KnownBits Known;
887 do {
888 SDNode *N = Worklist.pop_back_val();
890 // Otherwise, add all chain operands to the worklist.
891 for (const SDValue &Op : N->op_values())
892 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
893 Worklist.push_back(Op.getNode());
895 // If this is a CopyToReg with a vreg dest, process it.
896 if (N->getOpcode() != ISD::CopyToReg)
897 continue;
899 Register DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
900 if (!DestReg.isVirtual())
901 continue;
903 // Ignore non-integer values.
904 SDValue Src = N->getOperand(2);
905 EVT SrcVT = Src.getValueType();
906 if (!SrcVT.isInteger())
907 continue;
909 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
910 Known = CurDAG->computeKnownBits(Src);
911 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
912 } while (!Worklist.empty());
915 void SelectionDAGISel::CodeGenAndEmitDAG() {
916 StringRef GroupName = "sdag";
917 StringRef GroupDescription = "Instruction Selection and Scheduling";
918 std::string BlockName;
919 bool MatchFilterBB = false;
920 (void)MatchFilterBB;
922 // Pre-type legalization allow creation of any node types.
923 CurDAG->NewNodesMustHaveLegalTypes = false;
925 #ifndef NDEBUG
926 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
927 FilterDAGBasicBlockName ==
928 FuncInfo->MBB->getBasicBlock()->getName());
929 #endif
930 #ifdef NDEBUG
931 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
932 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
933 ViewSUnitDAGs)
934 #endif
936 BlockName =
937 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
939 ISEL_DUMP(dbgs() << "\nInitial selection DAG: "
940 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
941 << "'\n";
942 CurDAG->dump());
944 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
945 if (TTI->hasBranchDivergence())
946 CurDAG->VerifyDAGDivergence();
947 #endif
949 if (ViewDAGCombine1 && MatchFilterBB)
950 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
952 // Run the DAG combiner in pre-legalize mode.
954 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
955 GroupDescription, TimePassesIsEnabled);
956 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
959 ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: "
960 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
961 << "'\n";
962 CurDAG->dump());
964 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
965 if (TTI->hasBranchDivergence())
966 CurDAG->VerifyDAGDivergence();
967 #endif
969 // Second step, hack on the DAG until it only uses operations and types that
970 // the target supports.
971 if (ViewLegalizeTypesDAGs && MatchFilterBB)
972 CurDAG->viewGraph("legalize-types input for " + BlockName);
974 bool Changed;
976 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
977 GroupDescription, TimePassesIsEnabled);
978 Changed = CurDAG->LegalizeTypes();
981 ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: "
982 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
983 << "'\n";
984 CurDAG->dump());
986 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
987 if (TTI->hasBranchDivergence())
988 CurDAG->VerifyDAGDivergence();
989 #endif
991 // Only allow creation of legal node types.
992 CurDAG->NewNodesMustHaveLegalTypes = true;
994 if (Changed) {
995 if (ViewDAGCombineLT && MatchFilterBB)
996 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
998 // Run the DAG combiner in post-type-legalize mode.
1000 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
1001 GroupName, GroupDescription, TimePassesIsEnabled);
1002 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
1005 ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: "
1006 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1007 << "'\n";
1008 CurDAG->dump());
1010 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1011 if (TTI->hasBranchDivergence())
1012 CurDAG->VerifyDAGDivergence();
1013 #endif
1017 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
1018 GroupDescription, TimePassesIsEnabled);
1019 Changed = CurDAG->LegalizeVectors();
1022 if (Changed) {
1023 ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: "
1024 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1025 << "'\n";
1026 CurDAG->dump());
1028 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1029 if (TTI->hasBranchDivergence())
1030 CurDAG->VerifyDAGDivergence();
1031 #endif
1034 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
1035 GroupDescription, TimePassesIsEnabled);
1036 CurDAG->LegalizeTypes();
1039 ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: "
1040 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1041 << "'\n";
1042 CurDAG->dump());
1044 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1045 if (TTI->hasBranchDivergence())
1046 CurDAG->VerifyDAGDivergence();
1047 #endif
1049 if (ViewDAGCombineLT && MatchFilterBB)
1050 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
1052 // Run the DAG combiner in post-type-legalize mode.
1054 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
1055 GroupName, GroupDescription, TimePassesIsEnabled);
1056 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
1059 ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: "
1060 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1061 << "'\n";
1062 CurDAG->dump());
1064 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1065 if (TTI->hasBranchDivergence())
1066 CurDAG->VerifyDAGDivergence();
1067 #endif
1070 if (ViewLegalizeDAGs && MatchFilterBB)
1071 CurDAG->viewGraph("legalize input for " + BlockName);
1074 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
1075 GroupDescription, TimePassesIsEnabled);
1076 CurDAG->Legalize();
1079 ISEL_DUMP(dbgs() << "\nLegalized selection DAG: "
1080 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1081 << "'\n";
1082 CurDAG->dump());
1084 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1085 if (TTI->hasBranchDivergence())
1086 CurDAG->VerifyDAGDivergence();
1087 #endif
1089 if (ViewDAGCombine2 && MatchFilterBB)
1090 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
1092 // Run the DAG combiner in post-legalize mode.
1094 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
1095 GroupDescription, TimePassesIsEnabled);
1096 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
1099 ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: "
1100 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1101 << "'\n";
1102 CurDAG->dump());
1104 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1105 if (TTI->hasBranchDivergence())
1106 CurDAG->VerifyDAGDivergence();
1107 #endif
1109 if (OptLevel != CodeGenOptLevel::None)
1110 ComputeLiveOutVRegInfo();
1112 if (ViewISelDAGs && MatchFilterBB)
1113 CurDAG->viewGraph("isel input for " + BlockName);
1115 // Third, instruction select all of the operations to machine code, adding the
1116 // code to the MachineBasicBlock.
1118 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
1119 GroupDescription, TimePassesIsEnabled);
1120 DoInstructionSelection();
1123 ISEL_DUMP(dbgs() << "\nSelected selection DAG: "
1124 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1125 << "'\n";
1126 CurDAG->dump());
1128 if (ViewSchedDAGs && MatchFilterBB)
1129 CurDAG->viewGraph("scheduler input for " + BlockName);
1131 // Schedule machine code.
1132 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
1134 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
1135 GroupDescription, TimePassesIsEnabled);
1136 Scheduler->Run(CurDAG, FuncInfo->MBB);
1139 if (ViewSUnitDAGs && MatchFilterBB)
1140 Scheduler->viewGraph();
1142 // Emit machine code to BB. This can change 'BB' to the last block being
1143 // inserted into.
1144 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1146 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1147 GroupDescription, TimePassesIsEnabled);
1149 // FuncInfo->InsertPt is passed by reference and set to the end of the
1150 // scheduled instructions.
1151 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1154 // If the block was split, make sure we update any references that are used to
1155 // update PHI nodes later on.
1156 if (FirstMBB != LastMBB)
1157 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1159 // Free the scheduler state.
1161 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1162 GroupDescription, TimePassesIsEnabled);
1163 delete Scheduler;
1166 // Free the SelectionDAG state, now that we're finished with it.
1167 CurDAG->clear();
1170 namespace {
1172 /// ISelUpdater - helper class to handle updates of the instruction selection
1173 /// graph.
1174 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1175 SelectionDAG::allnodes_iterator &ISelPosition;
1177 public:
1178 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1179 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1181 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1182 /// deleted is the current ISelPosition node, update ISelPosition.
1184 void NodeDeleted(SDNode *N, SDNode *E) override {
1185 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1186 ++ISelPosition;
1189 /// NodeInserted - Handle new nodes inserted into the graph: propagate
1190 /// metadata from root nodes that also applies to new nodes, in case the root
1191 /// is later deleted.
1192 void NodeInserted(SDNode *N) override {
1193 SDNode *CurNode = &*ISelPosition;
1194 if (MDNode *MD = DAG.getPCSections(CurNode))
1195 DAG.addPCSections(N, MD);
1196 if (MDNode *MMRA = DAG.getMMRAMetadata(CurNode))
1197 DAG.addMMRAMetadata(N, MMRA);
1201 } // end anonymous namespace
1203 // This function is used to enforce the topological node id property
1204 // leveraged during instruction selection. Before the selection process all
1205 // nodes are given a non-negative id such that all nodes have a greater id than
1206 // their operands. As this holds transitively we can prune checks that a node N
1207 // is a predecessor of M another by not recursively checking through M's
1208 // operands if N's ID is larger than M's ID. This significantly improves
1209 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1211 // However, when we fuse multiple nodes into a single node during the
1212 // selection we may induce a predecessor relationship between inputs and
1213 // outputs of distinct nodes being merged, violating the topological property.
1214 // Should a fused node have a successor which has yet to be selected,
1215 // our legality checks would be incorrect. To avoid this we mark all unselected
1216 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1217 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1218 // We use bit-negation to more clearly enforce that node id -1 can only be
1219 // achieved by selected nodes. As the conversion is reversable to the original
1220 // Id, topological pruning can still be leveraged when looking for unselected
1221 // nodes. This method is called internally in all ISel replacement related
1222 // functions.
1223 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1224 SmallVector<SDNode *, 4> Nodes;
1225 Nodes.push_back(Node);
1227 while (!Nodes.empty()) {
1228 SDNode *N = Nodes.pop_back_val();
1229 for (auto *U : N->users()) {
1230 auto UId = U->getNodeId();
1231 if (UId > 0) {
1232 InvalidateNodeId(U);
1233 Nodes.push_back(U);
1239 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1240 // NodeId with the equivalent node id which is invalid for topological
1241 // pruning.
1242 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1243 int InvalidId = -(N->getNodeId() + 1);
1244 N->setNodeId(InvalidId);
1247 // getUninvalidatedNodeId - get original uninvalidated node id.
1248 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1249 int Id = N->getNodeId();
1250 if (Id < -1)
1251 return -(Id + 1);
1252 return Id;
1255 void SelectionDAGISel::DoInstructionSelection() {
1256 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1257 << printMBBReference(*FuncInfo->MBB) << " '"
1258 << FuncInfo->MBB->getName() << "'\n");
1260 PreprocessISelDAG();
1262 // Select target instructions for the DAG.
1264 // Number all nodes with a topological order and set DAGSize.
1265 DAGSize = CurDAG->AssignTopologicalOrder();
1267 // Create a dummy node (which is not added to allnodes), that adds
1268 // a reference to the root node, preventing it from being deleted,
1269 // and tracking any changes of the root.
1270 HandleSDNode Dummy(CurDAG->getRoot());
1271 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1272 ++ISelPosition;
1274 // Make sure that ISelPosition gets properly updated when nodes are deleted
1275 // in calls made from this function. New nodes inherit relevant metadata.
1276 ISelUpdater ISU(*CurDAG, ISelPosition);
1278 // The AllNodes list is now topological-sorted. Visit the
1279 // nodes by starting at the end of the list (the root of the
1280 // graph) and preceding back toward the beginning (the entry
1281 // node).
1282 while (ISelPosition != CurDAG->allnodes_begin()) {
1283 SDNode *Node = &*--ISelPosition;
1284 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1285 // but there are currently some corner cases that it misses. Also, this
1286 // makes it theoretically possible to disable the DAGCombiner.
1287 if (Node->use_empty())
1288 continue;
1290 #ifndef NDEBUG
1291 SmallVector<SDNode *, 4> Nodes;
1292 Nodes.push_back(Node);
1294 while (!Nodes.empty()) {
1295 auto N = Nodes.pop_back_val();
1296 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1297 continue;
1298 for (const SDValue &Op : N->op_values()) {
1299 if (Op->getOpcode() == ISD::TokenFactor)
1300 Nodes.push_back(Op.getNode());
1301 else {
1302 // We rely on topological ordering of node ids for checking for
1303 // cycles when fusing nodes during selection. All unselected nodes
1304 // successors of an already selected node should have a negative id.
1305 // This assertion will catch such cases. If this assertion triggers
1306 // it is likely you using DAG-level Value/Node replacement functions
1307 // (versus equivalent ISEL replacement) in backend-specific
1308 // selections. See comment in EnforceNodeIdInvariant for more
1309 // details.
1310 assert(Op->getNodeId() != -1 &&
1311 "Node has already selected predecessor node");
1315 #endif
1317 // When we are using non-default rounding modes or FP exception behavior
1318 // FP operations are represented by StrictFP pseudo-operations. For
1319 // targets that do not (yet) understand strict FP operations directly,
1320 // we convert them to normal FP opcodes instead at this point. This
1321 // will allow them to be handled by existing target-specific instruction
1322 // selectors.
1323 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1324 // For some opcodes, we need to call TLI->getOperationAction using
1325 // the first operand type instead of the result type. Note that this
1326 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1327 EVT ActionVT;
1328 switch (Node->getOpcode()) {
1329 case ISD::STRICT_SINT_TO_FP:
1330 case ISD::STRICT_UINT_TO_FP:
1331 case ISD::STRICT_LRINT:
1332 case ISD::STRICT_LLRINT:
1333 case ISD::STRICT_LROUND:
1334 case ISD::STRICT_LLROUND:
1335 case ISD::STRICT_FSETCC:
1336 case ISD::STRICT_FSETCCS:
1337 ActionVT = Node->getOperand(1).getValueType();
1338 break;
1339 default:
1340 ActionVT = Node->getValueType(0);
1341 break;
1343 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1344 == TargetLowering::Expand)
1345 Node = CurDAG->mutateStrictFPToFP(Node);
1348 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1349 Node->dump(CurDAG));
1351 Select(Node);
1354 CurDAG->setRoot(Dummy.getValue());
1357 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1359 PostprocessISelDAG();
1362 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1363 for (const User *U : CPI->users()) {
1364 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1365 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1366 if (IID == Intrinsic::eh_exceptionpointer ||
1367 IID == Intrinsic::eh_exceptioncode)
1368 return true;
1371 return false;
1374 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1375 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1376 // and store the mapping in the function.
1377 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1378 const CatchPadInst *CPI) {
1379 MachineFunction *MF = MBB->getParent();
1380 // In case of single catch (...), we don't emit LSDA, so we don't need
1381 // this information.
1382 bool IsSingleCatchAllClause =
1383 CPI->arg_size() == 1 &&
1384 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1385 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1386 // and they don't need LSDA info
1387 bool IsCatchLongjmp = CPI->arg_size() == 0;
1388 if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1389 // Create a mapping from landing pad label to landing pad index.
1390 bool IntrFound = false;
1391 for (const User *U : CPI->users()) {
1392 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1393 Intrinsic::ID IID = Call->getIntrinsicID();
1394 if (IID == Intrinsic::wasm_landingpad_index) {
1395 Value *IndexArg = Call->getArgOperand(1);
1396 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1397 MF->setWasmLandingPadIndex(MBB, Index);
1398 IntrFound = true;
1399 break;
1403 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1404 (void)IntrFound;
1408 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1409 /// do other setup for EH landing-pad blocks.
1410 bool SelectionDAGISel::PrepareEHLandingPad() {
1411 MachineBasicBlock *MBB = FuncInfo->MBB;
1412 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1413 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1414 const TargetRegisterClass *PtrRC =
1415 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1417 auto Pers = classifyEHPersonality(PersonalityFn);
1419 // Catchpads have one live-in register, which typically holds the exception
1420 // pointer or code.
1421 if (isFuncletEHPersonality(Pers)) {
1422 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1423 if (hasExceptionPointerOrCodeUser(CPI)) {
1424 // Get or create the virtual register to hold the pointer or code. Mark
1425 // the live in physreg and copy into the vreg.
1426 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1427 assert(EHPhysReg && "target lacks exception pointer register");
1428 MBB->addLiveIn(EHPhysReg);
1429 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1430 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1431 TII->get(TargetOpcode::COPY), VReg)
1432 .addReg(EHPhysReg, RegState::Kill);
1435 return true;
1438 // Add a label to mark the beginning of the landing pad. Deletion of the
1439 // landing pad can thus be detected via the MachineModuleInfo.
1440 MCSymbol *Label = MF->addLandingPad(MBB);
1442 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1443 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1444 .addSym(Label);
1446 // If the unwinder does not preserve all registers, ensure that the
1447 // function marks the clobbered registers as used.
1448 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1449 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1450 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1452 if (Pers == EHPersonality::Wasm_CXX) {
1453 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1454 mapWasmLandingPadIndex(MBB, CPI);
1455 } else {
1456 // Assign the call site to the landing pad's begin label.
1457 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1458 // Mark exception register as live in.
1459 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1460 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1461 // Mark exception selector register as live in.
1462 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1463 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1466 return true;
1469 // Mark and Report IPToState for each Block under IsEHa
1470 void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) {
1471 llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo();
1472 if (!EHInfo)
1473 return;
1474 for (MachineBasicBlock &MBB : *MF) {
1475 const BasicBlock *BB = MBB.getBasicBlock();
1476 int State = EHInfo->BlockToStateMap[BB];
1477 if (BB->getFirstMayFaultInst()) {
1478 // Report IP range only for blocks with Faulty inst
1479 auto MBBb = MBB.getFirstNonPHI();
1481 if (MBBb == MBB.end())
1482 continue;
1484 MachineInstr *MIb = &*MBBb;
1485 if (MIb->isTerminator())
1486 continue;
1488 // Insert EH Labels
1489 MCSymbol *BeginLabel = MF->getContext().createTempSymbol();
1490 MCSymbol *EndLabel = MF->getContext().createTempSymbol();
1491 EHInfo->addIPToStateRange(State, BeginLabel, EndLabel);
1492 BuildMI(MBB, MBBb, SDB->getCurDebugLoc(),
1493 TII->get(TargetOpcode::EH_LABEL))
1494 .addSym(BeginLabel);
1495 auto MBBe = MBB.instr_end();
1496 MachineInstr *MIe = &*(--MBBe);
1497 // insert before (possible multiple) terminators
1498 while (MIe->isTerminator())
1499 MIe = &*(--MBBe);
1500 ++MBBe;
1501 BuildMI(MBB, MBBe, SDB->getCurDebugLoc(),
1502 TII->get(TargetOpcode::EH_LABEL))
1503 .addSym(EndLabel);
1508 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1509 /// side-effect free and is either dead or folded into a generated instruction.
1510 /// Return false if it needs to be emitted.
1511 static bool isFoldedOrDeadInstruction(const Instruction *I,
1512 const FunctionLoweringInfo &FuncInfo) {
1513 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1514 !I->isTerminator() && // Terminators aren't folded.
1515 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1516 !I->isEHPad() && // EH pad instructions aren't folded.
1517 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1520 static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo,
1521 const Value *Arg, DIExpression *Expr,
1522 DILocalVariable *Var,
1523 DebugLoc DbgLoc) {
1524 if (!Expr->isEntryValue() || !isa<Argument>(Arg))
1525 return false;
1527 auto ArgIt = FuncInfo.ValueMap.find(Arg);
1528 if (ArgIt == FuncInfo.ValueMap.end())
1529 return false;
1530 Register ArgVReg = ArgIt->getSecond();
1532 // Find the corresponding livein physical register to this argument.
1533 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1534 if (VirtReg == ArgVReg) {
1535 // Append an op deref to account for the fact that this is a dbg_declare.
1536 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
1537 FuncInfo.MF->setVariableDbgInfo(Var, Expr, PhysReg, DbgLoc);
1538 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1539 << ", Expr=" << *Expr << ", MCRegister=" << PhysReg
1540 << ", DbgLoc=" << DbgLoc << "\n");
1541 return true;
1543 return false;
1546 static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo,
1547 const Value *Address, DIExpression *Expr,
1548 DILocalVariable *Var, DebugLoc DbgLoc) {
1549 if (!Address) {
1550 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var
1551 << " (bad address)\n");
1552 return false;
1555 if (processIfEntryValueDbgDeclare(FuncInfo, Address, Expr, Var, DbgLoc))
1556 return true;
1558 MachineFunction *MF = FuncInfo.MF;
1559 const DataLayout &DL = MF->getDataLayout();
1561 assert(Var && "Missing variable");
1562 assert(DbgLoc && "Missing location");
1564 // Look through casts and constant offset GEPs. These mostly come from
1565 // inalloca.
1566 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1567 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1569 // Check if the variable is a static alloca or a byval or inalloca
1570 // argument passed in memory. If it is not, then we will ignore this
1571 // intrinsic and handle this during isel like dbg.value.
1572 int FI = std::numeric_limits<int>::max();
1573 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1574 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1575 if (SI != FuncInfo.StaticAllocaMap.end())
1576 FI = SI->second;
1577 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1578 FI = FuncInfo.getArgumentFrameIndex(Arg);
1580 if (FI == std::numeric_limits<int>::max())
1581 return false;
1583 if (Offset.getBoolValue())
1584 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1585 Offset.getZExtValue());
1587 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1588 << ", Expr=" << *Expr << ", FI=" << FI
1589 << ", DbgLoc=" << DbgLoc << "\n");
1590 MF->setVariableDbgInfo(Var, Expr, FI, DbgLoc);
1591 return true;
1594 /// Collect llvm.dbg.declare information. This is done after argument lowering
1595 /// in case the declarations refer to arguments.
1596 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1597 for (const auto &I : instructions(*FuncInfo.Fn)) {
1598 const auto *DI = dyn_cast<DbgDeclareInst>(&I);
1599 if (DI && processDbgDeclare(FuncInfo, DI->getAddress(), DI->getExpression(),
1600 DI->getVariable(), DI->getDebugLoc()))
1601 FuncInfo.PreprocessedDbgDeclares.insert(DI);
1602 for (const DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
1603 if (DVR.Type == DbgVariableRecord::LocationType::Declare &&
1604 processDbgDeclare(FuncInfo, DVR.getVariableLocationOp(0),
1605 DVR.getExpression(), DVR.getVariable(),
1606 DVR.getDebugLoc()))
1607 FuncInfo.PreprocessedDVRDeclares.insert(&DVR);
1612 /// Collect single location variable information generated with assignment
1613 /// tracking. This is done after argument lowering in case the declarations
1614 /// refer to arguments.
1615 static void processSingleLocVars(FunctionLoweringInfo &FuncInfo,
1616 FunctionVarLocs const *FnVarLocs) {
1617 for (auto It = FnVarLocs->single_locs_begin(),
1618 End = FnVarLocs->single_locs_end();
1619 It != End; ++It) {
1620 assert(!It->Values.hasArgList() && "Single loc variadic ops not supported");
1621 processDbgDeclare(FuncInfo, It->Values.getVariableLocationOp(0), It->Expr,
1622 FnVarLocs->getDILocalVariable(It->VariableID), It->DL);
1626 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1627 FastISelFailed = false;
1628 // Initialize the Fast-ISel state, if needed.
1629 FastISel *FastIS = nullptr;
1630 if (TM.Options.EnableFastISel) {
1631 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1632 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1635 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1637 // Lower arguments up front. An RPO iteration always visits the entry block
1638 // first.
1639 assert(*RPOT.begin() == &Fn.getEntryBlock());
1640 ++NumEntryBlocks;
1642 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1643 FuncInfo->MBB = FuncInfo->getMBB(&Fn.getEntryBlock());
1644 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1646 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1648 if (!FastIS) {
1649 LowerArguments(Fn);
1650 } else {
1651 // See if fast isel can lower the arguments.
1652 FastIS->startNewBlock();
1653 if (!FastIS->lowerArguments()) {
1654 FastISelFailed = true;
1655 // Fast isel failed to lower these arguments
1656 ++NumFastIselFailLowerArguments;
1658 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1659 Fn.getSubprogram(),
1660 &Fn.getEntryBlock());
1661 R << "FastISel didn't lower all arguments: "
1662 << ore::NV("Prototype", Fn.getFunctionType());
1663 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1665 // Use SelectionDAG argument lowering
1666 LowerArguments(Fn);
1667 CurDAG->setRoot(SDB->getControlRoot());
1668 SDB->clear();
1669 CodeGenAndEmitDAG();
1672 // If we inserted any instructions at the beginning, make a note of
1673 // where they are, so we can be sure to emit subsequent instructions
1674 // after them.
1675 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1676 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1677 else
1678 FastIS->setLastLocalValue(nullptr);
1681 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1683 if (FastIS && Inserted)
1684 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1686 if (isAssignmentTrackingEnabled(*Fn.getParent())) {
1687 assert(CurDAG->getFunctionVarLocs() &&
1688 "expected AssignmentTrackingAnalysis pass results");
1689 processSingleLocVars(*FuncInfo, CurDAG->getFunctionVarLocs());
1690 } else {
1691 processDbgDeclares(*FuncInfo);
1694 // Iterate over all basic blocks in the function.
1695 FuncInfo->VisitedBBs.assign(Fn.getMaxBlockNumber(), false);
1696 for (const BasicBlock *LLVMBB : RPOT) {
1697 if (OptLevel != CodeGenOptLevel::None) {
1698 bool AllPredsVisited = true;
1699 for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1700 if (!FuncInfo->VisitedBBs[Pred->getNumber()]) {
1701 AllPredsVisited = false;
1702 break;
1706 if (AllPredsVisited) {
1707 for (const PHINode &PN : LLVMBB->phis())
1708 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1709 } else {
1710 for (const PHINode &PN : LLVMBB->phis())
1711 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1714 FuncInfo->VisitedBBs[LLVMBB->getNumber()] = true;
1717 // Fake uses that follow tail calls are dropped. To avoid this, move
1718 // such fake uses in front of the tail call, provided they don't
1719 // use anything def'd by or after the tail call.
1721 BasicBlock::iterator BBStart =
1722 const_cast<BasicBlock *>(LLVMBB)->getFirstNonPHI()->getIterator();
1723 BasicBlock::iterator BBEnd = const_cast<BasicBlock *>(LLVMBB)->end();
1724 preserveFakeUses(BBStart, BBEnd);
1727 BasicBlock::const_iterator const Begin =
1728 LLVMBB->getFirstNonPHI()->getIterator();
1729 BasicBlock::const_iterator const End = LLVMBB->end();
1730 BasicBlock::const_iterator BI = End;
1732 FuncInfo->MBB = FuncInfo->getMBB(LLVMBB);
1733 if (!FuncInfo->MBB)
1734 continue; // Some blocks like catchpads have no code or MBB.
1736 // Insert new instructions after any phi or argument setup code.
1737 FuncInfo->InsertPt = FuncInfo->MBB->end();
1739 // Setup an EH landing-pad block.
1740 FuncInfo->ExceptionPointerVirtReg = 0;
1741 FuncInfo->ExceptionSelectorVirtReg = 0;
1742 if (LLVMBB->isEHPad())
1743 if (!PrepareEHLandingPad())
1744 continue;
1746 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1747 if (FastIS) {
1748 if (LLVMBB != &Fn.getEntryBlock())
1749 FastIS->startNewBlock();
1751 unsigned NumFastIselRemaining = std::distance(Begin, End);
1753 // Pre-assign swifterror vregs.
1754 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1756 // Do FastISel on as many instructions as possible.
1757 for (; BI != Begin; --BI) {
1758 const Instruction *Inst = &*std::prev(BI);
1760 // If we no longer require this instruction, skip it.
1761 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1762 ElidedArgCopyInstrs.count(Inst)) {
1763 --NumFastIselRemaining;
1764 FastIS->handleDbgInfo(Inst);
1765 continue;
1768 // Bottom-up: reset the insert pos at the top, after any local-value
1769 // instructions.
1770 FastIS->recomputeInsertPt();
1772 // Try to select the instruction with FastISel.
1773 if (FastIS->selectInstruction(Inst)) {
1774 --NumFastIselRemaining;
1775 ++NumFastIselSuccess;
1777 FastIS->handleDbgInfo(Inst);
1778 // If fast isel succeeded, skip over all the folded instructions, and
1779 // then see if there is a load right before the selected instructions.
1780 // Try to fold the load if so.
1781 const Instruction *BeforeInst = Inst;
1782 while (BeforeInst != &*Begin) {
1783 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1784 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1785 break;
1787 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1788 BeforeInst->hasOneUse() &&
1789 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1790 // If we succeeded, don't re-select the load.
1791 LLVM_DEBUG(dbgs()
1792 << "FastISel folded load: " << *BeforeInst << "\n");
1793 FastIS->handleDbgInfo(BeforeInst);
1794 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1795 --NumFastIselRemaining;
1796 ++NumFastIselSuccess;
1798 continue;
1801 FastISelFailed = true;
1803 // Then handle certain instructions as single-LLVM-Instruction blocks.
1804 // We cannot separate out GCrelocates to their own blocks since we need
1805 // to keep track of gc-relocates for a particular gc-statepoint. This is
1806 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1807 // visitGCRelocate.
1808 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1809 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1810 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1811 Inst->getDebugLoc(), LLVMBB);
1813 R << "FastISel missed call";
1815 if (R.isEnabled() || EnableFastISelAbort) {
1816 std::string InstStrStorage;
1817 raw_string_ostream InstStr(InstStrStorage);
1818 InstStr << *Inst;
1820 R << ": " << InstStrStorage;
1823 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1825 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1826 !Inst->use_empty()) {
1827 Register &R = FuncInfo->ValueMap[Inst];
1828 if (!R)
1829 R = FuncInfo->CreateRegs(Inst);
1832 bool HadTailCall = false;
1833 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1834 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1836 // If the call was emitted as a tail call, we're done with the block.
1837 // We also need to delete any previously emitted instructions.
1838 if (HadTailCall) {
1839 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1840 --BI;
1841 break;
1844 // Recompute NumFastIselRemaining as Selection DAG instruction
1845 // selection may have handled the call, input args, etc.
1846 unsigned RemainingNow = std::distance(Begin, BI);
1847 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1848 NumFastIselRemaining = RemainingNow;
1849 continue;
1852 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1853 Inst->getDebugLoc(), LLVMBB);
1855 bool ShouldAbort = EnableFastISelAbort;
1856 if (Inst->isTerminator()) {
1857 // Use a different message for terminator misses.
1858 R << "FastISel missed terminator";
1859 // Don't abort for terminator unless the level is really high
1860 ShouldAbort = (EnableFastISelAbort > 2);
1861 } else {
1862 R << "FastISel missed";
1865 if (R.isEnabled() || EnableFastISelAbort) {
1866 std::string InstStrStorage;
1867 raw_string_ostream InstStr(InstStrStorage);
1868 InstStr << *Inst;
1869 R << ": " << InstStrStorage;
1872 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1874 NumFastIselFailures += NumFastIselRemaining;
1875 break;
1878 FastIS->recomputeInsertPt();
1881 if (SP->shouldEmitSDCheck(*LLVMBB)) {
1882 bool FunctionBasedInstrumentation =
1883 TLI->getSSPStackGuardCheck(*Fn.getParent());
1884 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->getMBB(LLVMBB),
1885 FunctionBasedInstrumentation);
1888 if (Begin != BI)
1889 ++NumDAGBlocks;
1890 else
1891 ++NumFastIselBlocks;
1893 if (Begin != BI) {
1894 // Run SelectionDAG instruction selection on the remainder of the block
1895 // not handled by FastISel. If FastISel is not run, this is the entire
1896 // block.
1897 bool HadTailCall;
1898 SelectBasicBlock(Begin, BI, HadTailCall);
1900 // But if FastISel was run, we already selected some of the block.
1901 // If we emitted a tail-call, we need to delete any previously emitted
1902 // instruction that follows it.
1903 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1904 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1907 if (FastIS)
1908 FastIS->finishBasicBlock();
1909 FinishBasicBlock();
1910 FuncInfo->PHINodesToUpdate.clear();
1911 ElidedArgCopyInstrs.clear();
1914 // AsynchEH: Report Block State under -AsynchEH
1915 if (Fn.getParent()->getModuleFlag("eh-asynch"))
1916 reportIPToStateForBlocks(MF);
1918 SP->copyToMachineFrameInfo(MF->getFrameInfo());
1920 SwiftError->propagateVRegs();
1922 delete FastIS;
1923 SDB->clearDanglingDebugInfo();
1924 SDB->SPDescriptor.resetPerFunctionState();
1927 void
1928 SelectionDAGISel::FinishBasicBlock() {
1929 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1930 << FuncInfo->PHINodesToUpdate.size() << "\n";
1931 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1932 ++i) dbgs()
1933 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1934 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1936 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1937 // PHI nodes in successors.
1938 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1939 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1940 assert(PHI->isPHI() &&
1941 "This is not a machine PHI node that we are updating!");
1942 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1943 continue;
1944 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1947 // Handle stack protector.
1948 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1949 // The target provides a guard check function. There is no need to
1950 // generate error handling code or to split current basic block.
1951 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1953 // Add load and check to the basicblock.
1954 FuncInfo->MBB = ParentMBB;
1955 FuncInfo->InsertPt =
1956 findSplitPointForStackProtector(ParentMBB, *TII);
1957 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1958 CurDAG->setRoot(SDB->getRoot());
1959 SDB->clear();
1960 CodeGenAndEmitDAG();
1962 // Clear the Per-BB State.
1963 SDB->SPDescriptor.resetPerBBState();
1964 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1965 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1966 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1968 // Find the split point to split the parent mbb. At the same time copy all
1969 // physical registers used in the tail of parent mbb into virtual registers
1970 // before the split point and back into physical registers after the split
1971 // point. This prevents us needing to deal with Live-ins and many other
1972 // register allocation issues caused by us splitting the parent mbb. The
1973 // register allocator will clean up said virtual copies later on.
1974 MachineBasicBlock::iterator SplitPoint =
1975 findSplitPointForStackProtector(ParentMBB, *TII);
1977 // Splice the terminator of ParentMBB into SuccessMBB.
1978 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1979 SplitPoint,
1980 ParentMBB->end());
1982 // Add compare/jump on neq/jump to the parent BB.
1983 FuncInfo->MBB = ParentMBB;
1984 FuncInfo->InsertPt = ParentMBB->end();
1985 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1986 CurDAG->setRoot(SDB->getRoot());
1987 SDB->clear();
1988 CodeGenAndEmitDAG();
1990 // CodeGen Failure MBB if we have not codegened it yet.
1991 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1992 if (FailureMBB->empty()) {
1993 FuncInfo->MBB = FailureMBB;
1994 FuncInfo->InsertPt = FailureMBB->end();
1995 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1996 CurDAG->setRoot(SDB->getRoot());
1997 SDB->clear();
1998 CodeGenAndEmitDAG();
2001 // Clear the Per-BB State.
2002 SDB->SPDescriptor.resetPerBBState();
2005 // Lower each BitTestBlock.
2006 for (auto &BTB : SDB->SL->BitTestCases) {
2007 // Lower header first, if it wasn't already lowered
2008 if (!BTB.Emitted) {
2009 // Set the current basic block to the mbb we wish to insert the code into
2010 FuncInfo->MBB = BTB.Parent;
2011 FuncInfo->InsertPt = FuncInfo->MBB->end();
2012 // Emit the code
2013 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
2014 CurDAG->setRoot(SDB->getRoot());
2015 SDB->clear();
2016 CodeGenAndEmitDAG();
2019 BranchProbability UnhandledProb = BTB.Prob;
2020 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2021 UnhandledProb -= BTB.Cases[j].ExtraProb;
2022 // Set the current basic block to the mbb we wish to insert the code into
2023 FuncInfo->MBB = BTB.Cases[j].ThisBB;
2024 FuncInfo->InsertPt = FuncInfo->MBB->end();
2025 // Emit the code
2027 // If all cases cover a contiguous range, it is not necessary to jump to
2028 // the default block after the last bit test fails. This is because the
2029 // range check during bit test header creation has guaranteed that every
2030 // case here doesn't go outside the range. In this case, there is no need
2031 // to perform the last bit test, as it will always be true. Instead, make
2032 // the second-to-last bit-test fall through to the target of the last bit
2033 // test, and delete the last bit test.
2035 MachineBasicBlock *NextMBB;
2036 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
2037 // Second-to-last bit-test with contiguous range or omitted range
2038 // check: fall through to the target of the final bit test.
2039 NextMBB = BTB.Cases[j + 1].TargetBB;
2040 } else if (j + 1 == ej) {
2041 // For the last bit test, fall through to Default.
2042 NextMBB = BTB.Default;
2043 } else {
2044 // Otherwise, fall through to the next bit test.
2045 NextMBB = BTB.Cases[j + 1].ThisBB;
2048 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
2049 FuncInfo->MBB);
2051 CurDAG->setRoot(SDB->getRoot());
2052 SDB->clear();
2053 CodeGenAndEmitDAG();
2055 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
2056 // Since we're not going to use the final bit test, remove it.
2057 BTB.Cases.pop_back();
2058 break;
2062 // Update PHI Nodes
2063 for (const std::pair<MachineInstr *, unsigned> &P :
2064 FuncInfo->PHINodesToUpdate) {
2065 MachineInstrBuilder PHI(*MF, P.first);
2066 MachineBasicBlock *PHIBB = PHI->getParent();
2067 assert(PHI->isPHI() &&
2068 "This is not a machine PHI node that we are updating!");
2069 // This is "default" BB. We have two jumps to it. From "header" BB and
2070 // from last "case" BB, unless the latter was skipped.
2071 if (PHIBB == BTB.Default) {
2072 PHI.addReg(P.second).addMBB(BTB.Parent);
2073 if (!BTB.ContiguousRange) {
2074 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
2077 // One of "cases" BB.
2078 for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
2079 MachineBasicBlock* cBB = BT.ThisBB;
2080 if (cBB->isSuccessor(PHIBB))
2081 PHI.addReg(P.second).addMBB(cBB);
2085 SDB->SL->BitTestCases.clear();
2087 // If the JumpTable record is filled in, then we need to emit a jump table.
2088 // Updating the PHI nodes is tricky in this case, since we need to determine
2089 // whether the PHI is a successor of the range check MBB or the jump table MBB
2090 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
2091 // Lower header first, if it wasn't already lowered
2092 if (!SDB->SL->JTCases[i].first.Emitted) {
2093 // Set the current basic block to the mbb we wish to insert the code into
2094 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
2095 FuncInfo->InsertPt = FuncInfo->MBB->end();
2096 // Emit the code
2097 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
2098 SDB->SL->JTCases[i].first, FuncInfo->MBB);
2099 CurDAG->setRoot(SDB->getRoot());
2100 SDB->clear();
2101 CodeGenAndEmitDAG();
2104 // Set the current basic block to the mbb we wish to insert the code into
2105 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
2106 FuncInfo->InsertPt = FuncInfo->MBB->end();
2107 // Emit the code
2108 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
2109 CurDAG->setRoot(SDB->getRoot());
2110 SDB->clear();
2111 CodeGenAndEmitDAG();
2113 // Update PHI Nodes
2114 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2115 pi != pe; ++pi) {
2116 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2117 MachineBasicBlock *PHIBB = PHI->getParent();
2118 assert(PHI->isPHI() &&
2119 "This is not a machine PHI node that we are updating!");
2120 // "default" BB. We can go there only from header BB.
2121 if (PHIBB == SDB->SL->JTCases[i].second.Default)
2122 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2123 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
2124 // JT BB. Just iterate over successors here
2125 if (FuncInfo->MBB->isSuccessor(PHIBB))
2126 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2129 SDB->SL->JTCases.clear();
2131 // If we generated any switch lowering information, build and codegen any
2132 // additional DAGs necessary.
2133 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
2134 // Set the current basic block to the mbb we wish to insert the code into
2135 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
2136 FuncInfo->InsertPt = FuncInfo->MBB->end();
2138 // Determine the unique successors.
2139 SmallVector<MachineBasicBlock *, 2> Succs;
2140 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
2141 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
2142 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
2144 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2145 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
2146 CurDAG->setRoot(SDB->getRoot());
2147 SDB->clear();
2148 CodeGenAndEmitDAG();
2150 // Remember the last block, now that any splitting is done, for use in
2151 // populating PHI nodes in successors.
2152 MachineBasicBlock *ThisBB = FuncInfo->MBB;
2154 // Handle any PHI nodes in successors of this chunk, as if we were coming
2155 // from the original BB before switch expansion. Note that PHI nodes can
2156 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2157 // handle them the right number of times.
2158 for (MachineBasicBlock *Succ : Succs) {
2159 FuncInfo->MBB = Succ;
2160 FuncInfo->InsertPt = FuncInfo->MBB->end();
2161 // FuncInfo->MBB may have been removed from the CFG if a branch was
2162 // constant folded.
2163 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2164 for (MachineBasicBlock::iterator
2165 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2166 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2167 MachineInstrBuilder PHI(*MF, MBBI);
2168 // This value for this PHI node is recorded in PHINodesToUpdate.
2169 for (unsigned pn = 0; ; ++pn) {
2170 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2171 "Didn't find PHI entry!");
2172 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2173 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2174 break;
2181 SDB->SL->SwitchCases.clear();
2184 /// Create the scheduler. If a specific scheduler was specified
2185 /// via the SchedulerRegistry, use it, otherwise select the
2186 /// one preferred by the target.
2188 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2189 return ISHeuristic(this, OptLevel);
2192 //===----------------------------------------------------------------------===//
2193 // Helper functions used by the generated instruction selector.
2194 //===----------------------------------------------------------------------===//
2195 // Calls to these methods are generated by tblgen.
2197 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2198 /// the dag combiner simplified the 255, we still want to match. RHS is the
2199 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2200 /// specified in the .td file (e.g. 255).
2201 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2202 int64_t DesiredMaskS) const {
2203 const APInt &ActualMask = RHS->getAPIntValue();
2204 // TODO: Avoid implicit trunc?
2205 // See https://github.com/llvm/llvm-project/issues/112510.
2206 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS,
2207 /*isSigned=*/false, /*implicitTrunc=*/true);
2209 // If the actual mask exactly matches, success!
2210 if (ActualMask == DesiredMask)
2211 return true;
2213 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2214 if (!ActualMask.isSubsetOf(DesiredMask))
2215 return false;
2217 // Otherwise, the DAG Combiner may have proven that the value coming in is
2218 // either already zero or is not demanded. Check for known zero input bits.
2219 APInt NeededMask = DesiredMask & ~ActualMask;
2220 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2221 return true;
2223 // TODO: check to see if missing bits are just not demanded.
2225 // Otherwise, this pattern doesn't match.
2226 return false;
2229 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2230 /// the dag combiner simplified the 255, we still want to match. RHS is the
2231 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2232 /// specified in the .td file (e.g. 255).
2233 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2234 int64_t DesiredMaskS) const {
2235 const APInt &ActualMask = RHS->getAPIntValue();
2236 // TODO: Avoid implicit trunc?
2237 // See https://github.com/llvm/llvm-project/issues/112510.
2238 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS,
2239 /*isSigned=*/false, /*implicitTrunc=*/true);
2241 // If the actual mask exactly matches, success!
2242 if (ActualMask == DesiredMask)
2243 return true;
2245 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2246 if (!ActualMask.isSubsetOf(DesiredMask))
2247 return false;
2249 // Otherwise, the DAG Combiner may have proven that the value coming in is
2250 // either already zero or is not demanded. Check for known zero input bits.
2251 APInt NeededMask = DesiredMask & ~ActualMask;
2252 KnownBits Known = CurDAG->computeKnownBits(LHS);
2254 // If all the missing bits in the or are already known to be set, match!
2255 if (NeededMask.isSubsetOf(Known.One))
2256 return true;
2258 // TODO: check to see if missing bits are just not demanded.
2260 // Otherwise, this pattern doesn't match.
2261 return false;
2264 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2265 /// by tblgen. Others should not call it.
2266 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2267 const SDLoc &DL) {
2268 // Change the vector of SDValue into a list of SDNodeHandle for x86 might call
2269 // replaceAllUses when matching address.
2271 std::list<HandleSDNode> Handles;
2273 Handles.emplace_back(Ops[InlineAsm::Op_InputChain]); // 0
2274 Handles.emplace_back(Ops[InlineAsm::Op_AsmString]); // 1
2275 Handles.emplace_back(Ops[InlineAsm::Op_MDNode]); // 2, !srcloc
2276 Handles.emplace_back(
2277 Ops[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2279 unsigned i = InlineAsm::Op_FirstOperand, e = Ops.size();
2280 if (Ops[e - 1].getValueType() == MVT::Glue)
2281 --e; // Don't process a glue operand if it is here.
2283 while (i != e) {
2284 InlineAsm::Flag Flags(Ops[i]->getAsZExtVal());
2285 if (!Flags.isMemKind() && !Flags.isFuncKind()) {
2286 // Just skip over this operand, copying the operands verbatim.
2287 Handles.insert(Handles.end(), Ops.begin() + i,
2288 Ops.begin() + i + Flags.getNumOperandRegisters() + 1);
2289 i += Flags.getNumOperandRegisters() + 1;
2290 } else {
2291 assert(Flags.getNumOperandRegisters() == 1 &&
2292 "Memory operand with multiple values?");
2294 unsigned TiedToOperand;
2295 if (Flags.isUseOperandTiedToDef(TiedToOperand)) {
2296 // We need the constraint ID from the operand this is tied to.
2297 unsigned CurOp = InlineAsm::Op_FirstOperand;
2298 Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal());
2299 for (; TiedToOperand; --TiedToOperand) {
2300 CurOp += Flags.getNumOperandRegisters() + 1;
2301 Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal());
2305 // Otherwise, this is a memory operand. Ask the target to select it.
2306 std::vector<SDValue> SelOps;
2307 const InlineAsm::ConstraintCode ConstraintID =
2308 Flags.getMemoryConstraintID();
2309 if (SelectInlineAsmMemoryOperand(Ops[i + 1], ConstraintID, SelOps))
2310 report_fatal_error("Could not match memory address. Inline asm"
2311 " failure!");
2313 // Add this to the output node.
2314 Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem
2315 : InlineAsm::Kind::Func,
2316 SelOps.size());
2317 Flags.setMemConstraint(ConstraintID);
2318 Handles.emplace_back(CurDAG->getTargetConstant(Flags, DL, MVT::i32));
2319 Handles.insert(Handles.end(), SelOps.begin(), SelOps.end());
2320 i += 2;
2324 // Add the glue input back if present.
2325 if (e != Ops.size())
2326 Handles.emplace_back(Ops.back());
2328 Ops.clear();
2329 for (auto &handle : Handles)
2330 Ops.push_back(handle.getValue());
2333 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2334 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2335 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2336 bool IgnoreChains) {
2337 SmallPtrSet<const SDNode *, 16> Visited;
2338 SmallVector<const SDNode *, 16> WorkList;
2339 // Only check if we have non-immediate uses of Def.
2340 if (ImmedUse->isOnlyUserOf(Def))
2341 return false;
2343 // We don't care about paths to Def that go through ImmedUse so mark it
2344 // visited and mark non-def operands as used.
2345 Visited.insert(ImmedUse);
2346 for (const SDValue &Op : ImmedUse->op_values()) {
2347 SDNode *N = Op.getNode();
2348 // Ignore chain deps (they are validated by
2349 // HandleMergeInputChains) and immediate uses
2350 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2351 continue;
2352 if (!Visited.insert(N).second)
2353 continue;
2354 WorkList.push_back(N);
2357 // Initialize worklist to operands of Root.
2358 if (Root != ImmedUse) {
2359 for (const SDValue &Op : Root->op_values()) {
2360 SDNode *N = Op.getNode();
2361 // Ignore chains (they are validated by HandleMergeInputChains)
2362 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2363 continue;
2364 if (!Visited.insert(N).second)
2365 continue;
2366 WorkList.push_back(N);
2370 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2373 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2374 /// operand node N of U during instruction selection that starts at Root.
2375 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2376 SDNode *Root) const {
2377 if (OptLevel == CodeGenOptLevel::None)
2378 return false;
2379 return N.hasOneUse();
2382 /// IsLegalToFold - Returns true if the specific operand node N of
2383 /// U can be folded during instruction selection that starts at Root.
2384 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2385 CodeGenOptLevel OptLevel,
2386 bool IgnoreChains) {
2387 if (OptLevel == CodeGenOptLevel::None)
2388 return false;
2390 // If Root use can somehow reach N through a path that doesn't contain
2391 // U then folding N would create a cycle. e.g. In the following
2392 // diagram, Root can reach N through X. If N is folded into Root, then
2393 // X is both a predecessor and a successor of U.
2395 // [N*] //
2396 // ^ ^ //
2397 // / \ //
2398 // [U*] [X]? //
2399 // ^ ^ //
2400 // \ / //
2401 // \ / //
2402 // [Root*] //
2404 // * indicates nodes to be folded together.
2406 // If Root produces glue, then it gets (even more) interesting. Since it
2407 // will be "glued" together with its glue use in the scheduler, we need to
2408 // check if it might reach N.
2410 // [N*] //
2411 // ^ ^ //
2412 // / \ //
2413 // [U*] [X]? //
2414 // ^ ^ //
2415 // \ \ //
2416 // \ | //
2417 // [Root*] | //
2418 // ^ | //
2419 // f | //
2420 // | / //
2421 // [Y] / //
2422 // ^ / //
2423 // f / //
2424 // | / //
2425 // [GU] //
2427 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2428 // (call it Fold), then X is a predecessor of GU and a successor of
2429 // Fold. But since Fold and GU are glued together, this will create
2430 // a cycle in the scheduling graph.
2432 // If the node has glue, walk down the graph to the "lowest" node in the
2433 // glueged set.
2434 EVT VT = Root->getValueType(Root->getNumValues()-1);
2435 while (VT == MVT::Glue) {
2436 SDNode *GU = Root->getGluedUser();
2437 if (!GU)
2438 break;
2439 Root = GU;
2440 VT = Root->getValueType(Root->getNumValues()-1);
2442 // If our query node has a glue result with a use, we've walked up it. If
2443 // the user (which has already been selected) has a chain or indirectly uses
2444 // the chain, HandleMergeInputChains will not consider it. Because of
2445 // this, we cannot ignore chains in this predicate.
2446 IgnoreChains = false;
2449 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2452 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2453 SDLoc DL(N);
2455 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2456 SelectInlineAsmMemoryOperands(Ops, DL);
2458 const EVT VTs[] = {MVT::Other, MVT::Glue};
2459 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2460 New->setNodeId(-1);
2461 ReplaceUses(N, New.getNode());
2462 CurDAG->RemoveDeadNode(N);
2465 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2466 SDLoc dl(Op);
2467 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2468 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2470 EVT VT = Op->getValueType(0);
2471 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2472 Register Reg =
2473 TLI->getRegisterByName(RegStr->getString().data(), Ty,
2474 CurDAG->getMachineFunction());
2475 SDValue New = CurDAG->getCopyFromReg(
2476 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2477 New->setNodeId(-1);
2478 ReplaceUses(Op, New.getNode());
2479 CurDAG->RemoveDeadNode(Op);
2482 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2483 SDLoc dl(Op);
2484 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2485 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2487 EVT VT = Op->getOperand(2).getValueType();
2488 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2490 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2491 CurDAG->getMachineFunction());
2492 SDValue New = CurDAG->getCopyToReg(
2493 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2494 New->setNodeId(-1);
2495 ReplaceUses(Op, New.getNode());
2496 CurDAG->RemoveDeadNode(Op);
2499 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2500 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2503 // Use the generic target FAKE_USE target opcode. The chain operand
2504 // must come last, because InstrEmitter::AddOperand() requires it.
2505 void SelectionDAGISel::Select_FAKE_USE(SDNode *N) {
2506 CurDAG->SelectNodeTo(N, TargetOpcode::FAKE_USE, N->getValueType(0),
2507 N->getOperand(1), N->getOperand(0));
2510 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2511 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2512 // If FREEZE instruction is added later, the code below must be changed as
2513 // well.
2514 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2515 N->getOperand(0));
2518 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2519 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2520 N->getOperand(0));
2523 void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) {
2524 CurDAG->SelectNodeTo(N, TargetOpcode::MEMBARRIER, N->getValueType(0),
2525 N->getOperand(0));
2528 void SelectionDAGISel::Select_CONVERGENCECTRL_ANCHOR(SDNode *N) {
2529 CurDAG->SelectNodeTo(N, TargetOpcode::CONVERGENCECTRL_ANCHOR,
2530 N->getValueType(0));
2533 void SelectionDAGISel::Select_CONVERGENCECTRL_ENTRY(SDNode *N) {
2534 CurDAG->SelectNodeTo(N, TargetOpcode::CONVERGENCECTRL_ENTRY,
2535 N->getValueType(0));
2538 void SelectionDAGISel::Select_CONVERGENCECTRL_LOOP(SDNode *N) {
2539 CurDAG->SelectNodeTo(N, TargetOpcode::CONVERGENCECTRL_LOOP,
2540 N->getValueType(0), N->getOperand(0));
2543 void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops,
2544 SDValue OpVal, SDLoc DL) {
2545 SDNode *OpNode = OpVal.getNode();
2547 // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2548 // nodes at DAG-construction time.
2549 assert(OpNode->getOpcode() != ISD::FrameIndex);
2551 if (OpNode->getOpcode() == ISD::Constant) {
2552 Ops.push_back(
2553 CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
2554 Ops.push_back(CurDAG->getTargetConstant(OpNode->getAsZExtVal(), DL,
2555 OpVal.getValueType()));
2556 } else {
2557 Ops.push_back(OpVal);
2561 void SelectionDAGISel::Select_STACKMAP(SDNode *N) {
2562 SmallVector<SDValue, 32> Ops;
2563 auto *It = N->op_begin();
2564 SDLoc DL(N);
2566 // Stash the chain and glue operands so we can move them to the end.
2567 SDValue Chain = *It++;
2568 SDValue InGlue = *It++;
2570 // <id> operand.
2571 SDValue ID = *It++;
2572 assert(ID.getValueType() == MVT::i64);
2573 Ops.push_back(ID);
2575 // <numShadowBytes> operand.
2576 SDValue Shad = *It++;
2577 assert(Shad.getValueType() == MVT::i32);
2578 Ops.push_back(Shad);
2580 // Live variable operands.
2581 for (; It != N->op_end(); It++)
2582 pushStackMapLiveVariable(Ops, *It, DL);
2584 Ops.push_back(Chain);
2585 Ops.push_back(InGlue);
2587 SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue);
2588 CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops);
2591 void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) {
2592 SmallVector<SDValue, 32> Ops;
2593 auto *It = N->op_begin();
2594 SDLoc DL(N);
2596 // Cache arguments that will be moved to the end in the target node.
2597 SDValue Chain = *It++;
2598 std::optional<SDValue> Glue;
2599 if (It->getValueType() == MVT::Glue)
2600 Glue = *It++;
2601 SDValue RegMask = *It++;
2603 // <id> operand.
2604 SDValue ID = *It++;
2605 assert(ID.getValueType() == MVT::i64);
2606 Ops.push_back(ID);
2608 // <numShadowBytes> operand.
2609 SDValue Shad = *It++;
2610 assert(Shad.getValueType() == MVT::i32);
2611 Ops.push_back(Shad);
2613 // Add the callee.
2614 Ops.push_back(*It++);
2616 // Add <numArgs>.
2617 SDValue NumArgs = *It++;
2618 assert(NumArgs.getValueType() == MVT::i32);
2619 Ops.push_back(NumArgs);
2621 // Calling convention.
2622 Ops.push_back(*It++);
2624 // Push the args for the call.
2625 for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--)
2626 Ops.push_back(*It++);
2628 // Now push the live variables.
2629 for (; It != N->op_end(); It++)
2630 pushStackMapLiveVariable(Ops, *It, DL);
2632 // Finally, the regmask, chain and (if present) glue are moved to the end.
2633 Ops.push_back(RegMask);
2634 Ops.push_back(Chain);
2635 if (Glue.has_value())
2636 Ops.push_back(*Glue);
2638 SDVTList NodeTys = N->getVTList();
2639 CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops);
2642 /// GetVBR - decode a vbr encoding whose top bit is set.
2643 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2644 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2645 assert(Val >= 128 && "Not a VBR");
2646 Val &= 127; // Remove first vbr bit.
2648 unsigned Shift = 7;
2649 uint64_t NextBits;
2650 do {
2651 NextBits = MatcherTable[Idx++];
2652 Val |= (NextBits&127) << Shift;
2653 Shift += 7;
2654 } while (NextBits & 128);
2656 return Val;
2659 /// getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value,
2660 /// use GetVBR to decode it.
2661 LLVM_ATTRIBUTE_ALWAYS_INLINE static MVT::SimpleValueType
2662 getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex) {
2663 unsigned SimpleVT = MatcherTable[MatcherIndex++];
2664 if (SimpleVT & 128)
2665 SimpleVT = GetVBR(SimpleVT, MatcherTable, MatcherIndex);
2667 return static_cast<MVT::SimpleValueType>(SimpleVT);
2670 void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) {
2671 SDLoc dl(N);
2672 CurDAG->SelectNodeTo(N, TargetOpcode::JUMP_TABLE_DEBUG_INFO, MVT::Glue,
2673 CurDAG->getTargetConstant(N->getConstantOperandVal(1),
2674 dl, MVT::i64, true));
2677 /// When a match is complete, this method updates uses of interior chain results
2678 /// to use the new results.
2679 void SelectionDAGISel::UpdateChains(
2680 SDNode *NodeToMatch, SDValue InputChain,
2681 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2682 SmallVector<SDNode*, 4> NowDeadNodes;
2684 // Now that all the normal results are replaced, we replace the chain and
2685 // glue results if present.
2686 if (!ChainNodesMatched.empty()) {
2687 assert(InputChain.getNode() &&
2688 "Matched input chains but didn't produce a chain");
2689 // Loop over all of the nodes we matched that produced a chain result.
2690 // Replace all the chain results with the final chain we ended up with.
2691 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2692 SDNode *ChainNode = ChainNodesMatched[i];
2693 // If ChainNode is null, it's because we replaced it on a previous
2694 // iteration and we cleared it out of the map. Just skip it.
2695 if (!ChainNode)
2696 continue;
2698 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2699 "Deleted node left in chain");
2701 // Don't replace the results of the root node if we're doing a
2702 // MorphNodeTo.
2703 if (ChainNode == NodeToMatch && isMorphNodeTo)
2704 continue;
2706 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2707 if (ChainVal.getValueType() == MVT::Glue)
2708 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2709 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2710 SelectionDAG::DAGNodeDeletedListener NDL(
2711 *CurDAG, [&](SDNode *N, SDNode *E) {
2712 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2713 static_cast<SDNode *>(nullptr));
2715 if (ChainNode->getOpcode() != ISD::TokenFactor)
2716 ReplaceUses(ChainVal, InputChain);
2718 // If the node became dead and we haven't already seen it, delete it.
2719 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2720 !llvm::is_contained(NowDeadNodes, ChainNode))
2721 NowDeadNodes.push_back(ChainNode);
2725 if (!NowDeadNodes.empty())
2726 CurDAG->RemoveDeadNodes(NowDeadNodes);
2728 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2731 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2732 /// operation for when the pattern matched at least one node with a chains. The
2733 /// input vector contains a list of all of the chained nodes that we match. We
2734 /// must determine if this is a valid thing to cover (i.e. matching it won't
2735 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2736 /// be used as the input node chain for the generated nodes.
2737 static SDValue
2738 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2739 SelectionDAG *CurDAG) {
2741 SmallPtrSet<const SDNode *, 16> Visited;
2742 SmallVector<const SDNode *, 8> Worklist;
2743 SmallVector<SDValue, 3> InputChains;
2744 unsigned int Max = 8192;
2746 // Quick exit on trivial merge.
2747 if (ChainNodesMatched.size() == 1)
2748 return ChainNodesMatched[0]->getOperand(0);
2750 // Add chains that aren't already added (internal). Peek through
2751 // token factors.
2752 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2753 if (V.getValueType() != MVT::Other)
2754 return;
2755 if (V->getOpcode() == ISD::EntryToken)
2756 return;
2757 if (!Visited.insert(V.getNode()).second)
2758 return;
2759 if (V->getOpcode() == ISD::TokenFactor) {
2760 for (const SDValue &Op : V->op_values())
2761 AddChains(Op);
2762 } else
2763 InputChains.push_back(V);
2766 for (auto *N : ChainNodesMatched) {
2767 Worklist.push_back(N);
2768 Visited.insert(N);
2771 while (!Worklist.empty())
2772 AddChains(Worklist.pop_back_val()->getOperand(0));
2774 // Skip the search if there are no chain dependencies.
2775 if (InputChains.size() == 0)
2776 return CurDAG->getEntryNode();
2778 // If one of these chains is a successor of input, we must have a
2779 // node that is both the predecessor and successor of the
2780 // to-be-merged nodes. Fail.
2781 Visited.clear();
2782 for (SDValue V : InputChains)
2783 Worklist.push_back(V.getNode());
2785 for (auto *N : ChainNodesMatched)
2786 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2787 return SDValue();
2789 // Return merged chain.
2790 if (InputChains.size() == 1)
2791 return InputChains[0];
2792 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2793 MVT::Other, InputChains);
2796 /// MorphNode - Handle morphing a node in place for the selector.
2797 SDNode *SelectionDAGISel::
2798 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2799 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2800 // It is possible we're using MorphNodeTo to replace a node with no
2801 // normal results with one that has a normal result (or we could be
2802 // adding a chain) and the input could have glue and chains as well.
2803 // In this case we need to shift the operands down.
2804 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2805 // than the old isel though.
2806 int OldGlueResultNo = -1, OldChainResultNo = -1;
2808 unsigned NTMNumResults = Node->getNumValues();
2809 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2810 OldGlueResultNo = NTMNumResults-1;
2811 if (NTMNumResults != 1 &&
2812 Node->getValueType(NTMNumResults-2) == MVT::Other)
2813 OldChainResultNo = NTMNumResults-2;
2814 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2815 OldChainResultNo = NTMNumResults-1;
2817 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2818 // that this deletes operands of the old node that become dead.
2819 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2821 // MorphNodeTo can operate in two ways: if an existing node with the
2822 // specified operands exists, it can just return it. Otherwise, it
2823 // updates the node in place to have the requested operands.
2824 if (Res == Node) {
2825 // If we updated the node in place, reset the node ID. To the isel,
2826 // this should be just like a newly allocated machine node.
2827 Res->setNodeId(-1);
2830 unsigned ResNumResults = Res->getNumValues();
2831 // Move the glue if needed.
2832 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2833 static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1)
2834 ReplaceUses(SDValue(Node, OldGlueResultNo),
2835 SDValue(Res, ResNumResults - 1));
2837 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2838 --ResNumResults;
2840 // Move the chain reference if needed.
2841 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2842 static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1)
2843 ReplaceUses(SDValue(Node, OldChainResultNo),
2844 SDValue(Res, ResNumResults - 1));
2846 // Otherwise, no replacement happened because the node already exists. Replace
2847 // Uses of the old node with the new one.
2848 if (Res != Node) {
2849 ReplaceNode(Node, Res);
2850 } else {
2851 EnforceNodeIdInvariant(Res);
2854 return Res;
2857 /// CheckSame - Implements OP_CheckSame.
2858 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2859 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2860 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2861 // Accept if it is exactly the same as a previously recorded node.
2862 unsigned RecNo = MatcherTable[MatcherIndex++];
2863 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2864 return N == RecordedNodes[RecNo].first;
2867 /// CheckChildSame - Implements OP_CheckChildXSame.
2868 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2869 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2870 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2871 unsigned ChildNo) {
2872 if (ChildNo >= N.getNumOperands())
2873 return false; // Match fails if out of range child #.
2874 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2875 RecordedNodes);
2878 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2879 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2880 CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable,
2881 unsigned &MatcherIndex, const SelectionDAGISel &SDISel) {
2882 bool TwoBytePredNo =
2883 Opcode == SelectionDAGISel::OPC_CheckPatternPredicateTwoByte;
2884 unsigned PredNo =
2885 TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate
2886 ? MatcherTable[MatcherIndex++]
2887 : Opcode - SelectionDAGISel::OPC_CheckPatternPredicate0;
2888 if (TwoBytePredNo)
2889 PredNo |= MatcherTable[MatcherIndex++] << 8;
2890 return SDISel.CheckPatternPredicate(PredNo);
2893 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2894 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2895 CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable,
2896 unsigned &MatcherIndex, const SelectionDAGISel &SDISel,
2897 SDNode *N) {
2898 unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate
2899 ? MatcherTable[MatcherIndex++]
2900 : Opcode - SelectionDAGISel::OPC_CheckPredicate0;
2901 return SDISel.CheckNodePredicate(N, PredNo);
2904 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2905 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2906 SDNode *N) {
2907 uint16_t Opc = MatcherTable[MatcherIndex++];
2908 Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
2909 return N->getOpcode() == Opc;
2912 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(MVT::SimpleValueType VT,
2913 SDValue N,
2914 const TargetLowering *TLI,
2915 const DataLayout &DL) {
2916 if (N.getValueType() == VT)
2917 return true;
2919 // Handle the case when VT is iPTR.
2920 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2923 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2924 CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI,
2925 const DataLayout &DL, unsigned ChildNo) {
2926 if (ChildNo >= N.getNumOperands())
2927 return false; // Match fails if out of range child #.
2928 return ::CheckType(VT, N.getOperand(ChildNo), TLI, DL);
2931 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2932 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2933 SDValue N) {
2934 return cast<CondCodeSDNode>(N)->get() ==
2935 static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]);
2938 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2939 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2940 SDValue N) {
2941 if (2 >= N.getNumOperands())
2942 return false;
2943 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2946 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2947 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2948 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2949 MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex);
2950 if (cast<VTSDNode>(N)->getVT() == VT)
2951 return true;
2953 // Handle the case when VT is iPTR.
2954 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2957 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2958 // shifted left by 1.
2959 static uint64_t decodeSignRotatedValue(uint64_t V) {
2960 if ((V & 1) == 0)
2961 return V >> 1;
2962 if (V != 1)
2963 return -(V >> 1);
2964 // There is no such thing as -0 with integers. "-0" really means MININT.
2965 return 1ULL << 63;
2968 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2969 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2970 SDValue N) {
2971 int64_t Val = MatcherTable[MatcherIndex++];
2972 if (Val & 128)
2973 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2975 Val = decodeSignRotatedValue(Val);
2977 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2978 return C && C->getAPIntValue().trySExtValue() == Val;
2981 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2982 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2983 SDValue N, unsigned ChildNo) {
2984 if (ChildNo >= N.getNumOperands())
2985 return false; // Match fails if out of range child #.
2986 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2989 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2990 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2991 SDValue N, const SelectionDAGISel &SDISel) {
2992 int64_t Val = MatcherTable[MatcherIndex++];
2993 if (Val & 128)
2994 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2996 if (N->getOpcode() != ISD::AND) return false;
2998 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2999 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
3002 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
3003 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
3004 const SelectionDAGISel &SDISel) {
3005 int64_t Val = MatcherTable[MatcherIndex++];
3006 if (Val & 128)
3007 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3009 if (N->getOpcode() != ISD::OR) return false;
3011 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3012 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
3015 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
3016 /// scope, evaluate the current node. If the current predicate is known to
3017 /// fail, set Result=true and return anything. If the current predicate is
3018 /// known to pass, set Result=false and return the MatcherIndex to continue
3019 /// with. If the current predicate is unknown, set Result=false and return the
3020 /// MatcherIndex to continue with.
3021 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
3022 unsigned Index, SDValue N,
3023 bool &Result,
3024 const SelectionDAGISel &SDISel,
3025 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
3026 unsigned Opcode = Table[Index++];
3027 switch (Opcode) {
3028 default:
3029 Result = false;
3030 return Index-1; // Could not evaluate this predicate.
3031 case SelectionDAGISel::OPC_CheckSame:
3032 Result = !::CheckSame(Table, Index, N, RecordedNodes);
3033 return Index;
3034 case SelectionDAGISel::OPC_CheckChild0Same:
3035 case SelectionDAGISel::OPC_CheckChild1Same:
3036 case SelectionDAGISel::OPC_CheckChild2Same:
3037 case SelectionDAGISel::OPC_CheckChild3Same:
3038 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
3039 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
3040 return Index;
3041 case SelectionDAGISel::OPC_CheckPatternPredicate:
3042 case SelectionDAGISel::OPC_CheckPatternPredicate0:
3043 case SelectionDAGISel::OPC_CheckPatternPredicate1:
3044 case SelectionDAGISel::OPC_CheckPatternPredicate2:
3045 case SelectionDAGISel::OPC_CheckPatternPredicate3:
3046 case SelectionDAGISel::OPC_CheckPatternPredicate4:
3047 case SelectionDAGISel::OPC_CheckPatternPredicate5:
3048 case SelectionDAGISel::OPC_CheckPatternPredicate6:
3049 case SelectionDAGISel::OPC_CheckPatternPredicate7:
3050 case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte:
3051 Result = !::CheckPatternPredicate(Opcode, Table, Index, SDISel);
3052 return Index;
3053 case SelectionDAGISel::OPC_CheckPredicate:
3054 case SelectionDAGISel::OPC_CheckPredicate0:
3055 case SelectionDAGISel::OPC_CheckPredicate1:
3056 case SelectionDAGISel::OPC_CheckPredicate2:
3057 case SelectionDAGISel::OPC_CheckPredicate3:
3058 case SelectionDAGISel::OPC_CheckPredicate4:
3059 case SelectionDAGISel::OPC_CheckPredicate5:
3060 case SelectionDAGISel::OPC_CheckPredicate6:
3061 case SelectionDAGISel::OPC_CheckPredicate7:
3062 Result = !::CheckNodePredicate(Opcode, Table, Index, SDISel, N.getNode());
3063 return Index;
3064 case SelectionDAGISel::OPC_CheckOpcode:
3065 Result = !::CheckOpcode(Table, Index, N.getNode());
3066 return Index;
3067 case SelectionDAGISel::OPC_CheckType:
3068 case SelectionDAGISel::OPC_CheckTypeI32:
3069 case SelectionDAGISel::OPC_CheckTypeI64: {
3070 MVT::SimpleValueType VT;
3071 switch (Opcode) {
3072 case SelectionDAGISel::OPC_CheckTypeI32:
3073 VT = MVT::i32;
3074 break;
3075 case SelectionDAGISel::OPC_CheckTypeI64:
3076 VT = MVT::i64;
3077 break;
3078 default:
3079 VT = getSimpleVT(Table, Index);
3080 break;
3082 Result = !::CheckType(VT, N, SDISel.TLI, SDISel.CurDAG->getDataLayout());
3083 return Index;
3085 case SelectionDAGISel::OPC_CheckTypeRes: {
3086 unsigned Res = Table[Index++];
3087 Result = !::CheckType(getSimpleVT(Table, Index), N.getValue(Res),
3088 SDISel.TLI, SDISel.CurDAG->getDataLayout());
3089 return Index;
3091 case SelectionDAGISel::OPC_CheckChild0Type:
3092 case SelectionDAGISel::OPC_CheckChild1Type:
3093 case SelectionDAGISel::OPC_CheckChild2Type:
3094 case SelectionDAGISel::OPC_CheckChild3Type:
3095 case SelectionDAGISel::OPC_CheckChild4Type:
3096 case SelectionDAGISel::OPC_CheckChild5Type:
3097 case SelectionDAGISel::OPC_CheckChild6Type:
3098 case SelectionDAGISel::OPC_CheckChild7Type:
3099 case SelectionDAGISel::OPC_CheckChild0TypeI32:
3100 case SelectionDAGISel::OPC_CheckChild1TypeI32:
3101 case SelectionDAGISel::OPC_CheckChild2TypeI32:
3102 case SelectionDAGISel::OPC_CheckChild3TypeI32:
3103 case SelectionDAGISel::OPC_CheckChild4TypeI32:
3104 case SelectionDAGISel::OPC_CheckChild5TypeI32:
3105 case SelectionDAGISel::OPC_CheckChild6TypeI32:
3106 case SelectionDAGISel::OPC_CheckChild7TypeI32:
3107 case SelectionDAGISel::OPC_CheckChild0TypeI64:
3108 case SelectionDAGISel::OPC_CheckChild1TypeI64:
3109 case SelectionDAGISel::OPC_CheckChild2TypeI64:
3110 case SelectionDAGISel::OPC_CheckChild3TypeI64:
3111 case SelectionDAGISel::OPC_CheckChild4TypeI64:
3112 case SelectionDAGISel::OPC_CheckChild5TypeI64:
3113 case SelectionDAGISel::OPC_CheckChild6TypeI64:
3114 case SelectionDAGISel::OPC_CheckChild7TypeI64: {
3115 MVT::SimpleValueType VT;
3116 unsigned ChildNo;
3117 if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 &&
3118 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) {
3119 VT = MVT::i32;
3120 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32;
3121 } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 &&
3122 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) {
3123 VT = MVT::i64;
3124 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64;
3125 } else {
3126 VT = getSimpleVT(Table, Index);
3127 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type;
3129 Result = !::CheckChildType(VT, N, SDISel.TLI,
3130 SDISel.CurDAG->getDataLayout(), ChildNo);
3131 return Index;
3133 case SelectionDAGISel::OPC_CheckCondCode:
3134 Result = !::CheckCondCode(Table, Index, N);
3135 return Index;
3136 case SelectionDAGISel::OPC_CheckChild2CondCode:
3137 Result = !::CheckChild2CondCode(Table, Index, N);
3138 return Index;
3139 case SelectionDAGISel::OPC_CheckValueType:
3140 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
3141 SDISel.CurDAG->getDataLayout());
3142 return Index;
3143 case SelectionDAGISel::OPC_CheckInteger:
3144 Result = !::CheckInteger(Table, Index, N);
3145 return Index;
3146 case SelectionDAGISel::OPC_CheckChild0Integer:
3147 case SelectionDAGISel::OPC_CheckChild1Integer:
3148 case SelectionDAGISel::OPC_CheckChild2Integer:
3149 case SelectionDAGISel::OPC_CheckChild3Integer:
3150 case SelectionDAGISel::OPC_CheckChild4Integer:
3151 Result = !::CheckChildInteger(Table, Index, N,
3152 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
3153 return Index;
3154 case SelectionDAGISel::OPC_CheckAndImm:
3155 Result = !::CheckAndImm(Table, Index, N, SDISel);
3156 return Index;
3157 case SelectionDAGISel::OPC_CheckOrImm:
3158 Result = !::CheckOrImm(Table, Index, N, SDISel);
3159 return Index;
3163 namespace {
3165 struct MatchScope {
3166 /// FailIndex - If this match fails, this is the index to continue with.
3167 unsigned FailIndex;
3169 /// NodeStack - The node stack when the scope was formed.
3170 SmallVector<SDValue, 4> NodeStack;
3172 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
3173 unsigned NumRecordedNodes;
3175 /// NumMatchedMemRefs - The number of matched memref entries.
3176 unsigned NumMatchedMemRefs;
3178 /// InputChain/InputGlue - The current chain/glue
3179 SDValue InputChain, InputGlue;
3181 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
3182 bool HasChainNodesMatched;
3185 /// \A DAG update listener to keep the matching state
3186 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
3187 /// change the DAG while matching. X86 addressing mode matcher is an example
3188 /// for this.
3189 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
3191 SDNode **NodeToMatch;
3192 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
3193 SmallVectorImpl<MatchScope> &MatchScopes;
3195 public:
3196 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
3197 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
3198 SmallVectorImpl<MatchScope> &MS)
3199 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
3200 RecordedNodes(RN), MatchScopes(MS) {}
3202 void NodeDeleted(SDNode *N, SDNode *E) override {
3203 // Some early-returns here to avoid the search if we deleted the node or
3204 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
3205 // do, so it's unnecessary to update matching state at that point).
3206 // Neither of these can occur currently because we only install this
3207 // update listener during matching a complex patterns.
3208 if (!E || E->isMachineOpcode())
3209 return;
3210 // Check if NodeToMatch was updated.
3211 if (N == *NodeToMatch)
3212 *NodeToMatch = E;
3213 // Performing linear search here does not matter because we almost never
3214 // run this code. You'd have to have a CSE during complex pattern
3215 // matching.
3216 for (auto &I : RecordedNodes)
3217 if (I.first.getNode() == N)
3218 I.first.setNode(E);
3220 for (auto &I : MatchScopes)
3221 for (auto &J : I.NodeStack)
3222 if (J.getNode() == N)
3223 J.setNode(E);
3227 } // end anonymous namespace
3229 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
3230 const unsigned char *MatcherTable,
3231 unsigned TableSize) {
3232 // FIXME: Should these even be selected? Handle these cases in the caller?
3233 switch (NodeToMatch->getOpcode()) {
3234 default:
3235 break;
3236 case ISD::EntryToken: // These nodes remain the same.
3237 case ISD::BasicBlock:
3238 case ISD::Register:
3239 case ISD::RegisterMask:
3240 case ISD::HANDLENODE:
3241 case ISD::MDNODE_SDNODE:
3242 case ISD::TargetConstant:
3243 case ISD::TargetConstantFP:
3244 case ISD::TargetConstantPool:
3245 case ISD::TargetFrameIndex:
3246 case ISD::TargetExternalSymbol:
3247 case ISD::MCSymbol:
3248 case ISD::TargetBlockAddress:
3249 case ISD::TargetJumpTable:
3250 case ISD::TargetGlobalTLSAddress:
3251 case ISD::TargetGlobalAddress:
3252 case ISD::TokenFactor:
3253 case ISD::CopyFromReg:
3254 case ISD::CopyToReg:
3255 case ISD::EH_LABEL:
3256 case ISD::ANNOTATION_LABEL:
3257 case ISD::LIFETIME_START:
3258 case ISD::LIFETIME_END:
3259 case ISD::PSEUDO_PROBE:
3260 NodeToMatch->setNodeId(-1); // Mark selected.
3261 return;
3262 case ISD::AssertSext:
3263 case ISD::AssertZext:
3264 case ISD::AssertAlign:
3265 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
3266 CurDAG->RemoveDeadNode(NodeToMatch);
3267 return;
3268 case ISD::INLINEASM:
3269 case ISD::INLINEASM_BR:
3270 Select_INLINEASM(NodeToMatch);
3271 return;
3272 case ISD::READ_REGISTER:
3273 Select_READ_REGISTER(NodeToMatch);
3274 return;
3275 case ISD::WRITE_REGISTER:
3276 Select_WRITE_REGISTER(NodeToMatch);
3277 return;
3278 case ISD::UNDEF:
3279 Select_UNDEF(NodeToMatch);
3280 return;
3281 case ISD::FAKE_USE:
3282 Select_FAKE_USE(NodeToMatch);
3283 return;
3284 case ISD::FREEZE:
3285 Select_FREEZE(NodeToMatch);
3286 return;
3287 case ISD::ARITH_FENCE:
3288 Select_ARITH_FENCE(NodeToMatch);
3289 return;
3290 case ISD::MEMBARRIER:
3291 Select_MEMBARRIER(NodeToMatch);
3292 return;
3293 case ISD::STACKMAP:
3294 Select_STACKMAP(NodeToMatch);
3295 return;
3296 case ISD::PATCHPOINT:
3297 Select_PATCHPOINT(NodeToMatch);
3298 return;
3299 case ISD::JUMP_TABLE_DEBUG_INFO:
3300 Select_JUMP_TABLE_DEBUG_INFO(NodeToMatch);
3301 return;
3302 case ISD::CONVERGENCECTRL_ANCHOR:
3303 Select_CONVERGENCECTRL_ANCHOR(NodeToMatch);
3304 return;
3305 case ISD::CONVERGENCECTRL_ENTRY:
3306 Select_CONVERGENCECTRL_ENTRY(NodeToMatch);
3307 return;
3308 case ISD::CONVERGENCECTRL_LOOP:
3309 Select_CONVERGENCECTRL_LOOP(NodeToMatch);
3310 return;
3313 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
3315 // Set up the node stack with NodeToMatch as the only node on the stack.
3316 SmallVector<SDValue, 8> NodeStack;
3317 SDValue N = SDValue(NodeToMatch, 0);
3318 NodeStack.push_back(N);
3320 // MatchScopes - Scopes used when matching, if a match failure happens, this
3321 // indicates where to continue checking.
3322 SmallVector<MatchScope, 8> MatchScopes;
3324 // RecordedNodes - This is the set of nodes that have been recorded by the
3325 // state machine. The second value is the parent of the node, or null if the
3326 // root is recorded.
3327 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
3329 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3330 // pattern.
3331 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
3333 // These are the current input chain and glue for use when generating nodes.
3334 // Various Emit operations change these. For example, emitting a copytoreg
3335 // uses and updates these.
3336 SDValue InputChain, InputGlue;
3338 // ChainNodesMatched - If a pattern matches nodes that have input/output
3339 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3340 // which ones they are. The result is captured into this list so that we can
3341 // update the chain results when the pattern is complete.
3342 SmallVector<SDNode*, 3> ChainNodesMatched;
3344 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3346 // Determine where to start the interpreter. Normally we start at opcode #0,
3347 // but if the state machine starts with an OPC_SwitchOpcode, then we
3348 // accelerate the first lookup (which is guaranteed to be hot) with the
3349 // OpcodeOffset table.
3350 unsigned MatcherIndex = 0;
3352 if (!OpcodeOffset.empty()) {
3353 // Already computed the OpcodeOffset table, just index into it.
3354 if (N.getOpcode() < OpcodeOffset.size())
3355 MatcherIndex = OpcodeOffset[N.getOpcode()];
3356 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
3358 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
3359 // Otherwise, the table isn't computed, but the state machine does start
3360 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
3361 // is the first time we're selecting an instruction.
3362 unsigned Idx = 1;
3363 while (true) {
3364 // Get the size of this case.
3365 unsigned CaseSize = MatcherTable[Idx++];
3366 if (CaseSize & 128)
3367 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3368 if (CaseSize == 0) break;
3370 // Get the opcode, add the index to the table.
3371 uint16_t Opc = MatcherTable[Idx++];
3372 Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8;
3373 if (Opc >= OpcodeOffset.size())
3374 OpcodeOffset.resize((Opc+1)*2);
3375 OpcodeOffset[Opc] = Idx;
3376 Idx += CaseSize;
3379 // Okay, do the lookup for the first opcode.
3380 if (N.getOpcode() < OpcodeOffset.size())
3381 MatcherIndex = OpcodeOffset[N.getOpcode()];
3384 while (true) {
3385 assert(MatcherIndex < TableSize && "Invalid index");
3386 #ifndef NDEBUG
3387 unsigned CurrentOpcodeIndex = MatcherIndex;
3388 #endif
3389 BuiltinOpcodes Opcode =
3390 static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]);
3391 switch (Opcode) {
3392 case OPC_Scope: {
3393 // Okay, the semantics of this operation are that we should push a scope
3394 // then evaluate the first child. However, pushing a scope only to have
3395 // the first check fail (which then pops it) is inefficient. If we can
3396 // determine immediately that the first check (or first several) will
3397 // immediately fail, don't even bother pushing a scope for them.
3398 unsigned FailIndex;
3400 while (true) {
3401 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3402 if (NumToSkip & 128)
3403 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3404 // Found the end of the scope with no match.
3405 if (NumToSkip == 0) {
3406 FailIndex = 0;
3407 break;
3410 FailIndex = MatcherIndex+NumToSkip;
3412 unsigned MatcherIndexOfPredicate = MatcherIndex;
3413 (void)MatcherIndexOfPredicate; // silence warning.
3415 // If we can't evaluate this predicate without pushing a scope (e.g. if
3416 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3417 // push the scope and evaluate the full predicate chain.
3418 bool Result;
3419 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3420 Result, *this, RecordedNodes);
3421 if (!Result)
3422 break;
3424 LLVM_DEBUG(
3425 dbgs() << " Skipped scope entry (due to false predicate) at "
3426 << "index " << MatcherIndexOfPredicate << ", continuing at "
3427 << FailIndex << "\n");
3428 ++NumDAGIselRetries;
3430 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3431 // move to the next case.
3432 MatcherIndex = FailIndex;
3435 // If the whole scope failed to match, bail.
3436 if (FailIndex == 0) break;
3438 // Push a MatchScope which indicates where to go if the first child fails
3439 // to match.
3440 MatchScope NewEntry;
3441 NewEntry.FailIndex = FailIndex;
3442 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3443 NewEntry.NumRecordedNodes = RecordedNodes.size();
3444 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3445 NewEntry.InputChain = InputChain;
3446 NewEntry.InputGlue = InputGlue;
3447 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3448 MatchScopes.push_back(NewEntry);
3449 continue;
3451 case OPC_RecordNode: {
3452 // Remember this node, it may end up being an operand in the pattern.
3453 SDNode *Parent = nullptr;
3454 if (NodeStack.size() > 1)
3455 Parent = NodeStack[NodeStack.size()-2].getNode();
3456 RecordedNodes.push_back(std::make_pair(N, Parent));
3457 continue;
3460 case OPC_RecordChild0: case OPC_RecordChild1:
3461 case OPC_RecordChild2: case OPC_RecordChild3:
3462 case OPC_RecordChild4: case OPC_RecordChild5:
3463 case OPC_RecordChild6: case OPC_RecordChild7: {
3464 unsigned ChildNo = Opcode-OPC_RecordChild0;
3465 if (ChildNo >= N.getNumOperands())
3466 break; // Match fails if out of range child #.
3468 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3469 N.getNode()));
3470 continue;
3472 case OPC_RecordMemRef:
3473 if (auto *MN = dyn_cast<MemSDNode>(N))
3474 MatchedMemRefs.push_back(MN->getMemOperand());
3475 else {
3476 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3477 dbgs() << '\n');
3480 continue;
3482 case OPC_CaptureGlueInput:
3483 // If the current node has an input glue, capture it in InputGlue.
3484 if (N->getNumOperands() != 0 &&
3485 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3486 InputGlue = N->getOperand(N->getNumOperands()-1);
3487 continue;
3489 case OPC_MoveChild: {
3490 unsigned ChildNo = MatcherTable[MatcherIndex++];
3491 if (ChildNo >= N.getNumOperands())
3492 break; // Match fails if out of range child #.
3493 N = N.getOperand(ChildNo);
3494 NodeStack.push_back(N);
3495 continue;
3498 case OPC_MoveChild0: case OPC_MoveChild1:
3499 case OPC_MoveChild2: case OPC_MoveChild3:
3500 case OPC_MoveChild4: case OPC_MoveChild5:
3501 case OPC_MoveChild6: case OPC_MoveChild7: {
3502 unsigned ChildNo = Opcode-OPC_MoveChild0;
3503 if (ChildNo >= N.getNumOperands())
3504 break; // Match fails if out of range child #.
3505 N = N.getOperand(ChildNo);
3506 NodeStack.push_back(N);
3507 continue;
3510 case OPC_MoveSibling:
3511 case OPC_MoveSibling0:
3512 case OPC_MoveSibling1:
3513 case OPC_MoveSibling2:
3514 case OPC_MoveSibling3:
3515 case OPC_MoveSibling4:
3516 case OPC_MoveSibling5:
3517 case OPC_MoveSibling6:
3518 case OPC_MoveSibling7: {
3519 // Pop the current node off the NodeStack.
3520 NodeStack.pop_back();
3521 assert(!NodeStack.empty() && "Node stack imbalance!");
3522 N = NodeStack.back();
3524 unsigned SiblingNo = Opcode == OPC_MoveSibling
3525 ? MatcherTable[MatcherIndex++]
3526 : Opcode - OPC_MoveSibling0;
3527 if (SiblingNo >= N.getNumOperands())
3528 break; // Match fails if out of range sibling #.
3529 N = N.getOperand(SiblingNo);
3530 NodeStack.push_back(N);
3531 continue;
3533 case OPC_MoveParent:
3534 // Pop the current node off the NodeStack.
3535 NodeStack.pop_back();
3536 assert(!NodeStack.empty() && "Node stack imbalance!");
3537 N = NodeStack.back();
3538 continue;
3540 case OPC_CheckSame:
3541 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3542 continue;
3544 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3545 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3546 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3547 Opcode-OPC_CheckChild0Same))
3548 break;
3549 continue;
3551 case OPC_CheckPatternPredicate:
3552 case OPC_CheckPatternPredicate0:
3553 case OPC_CheckPatternPredicate1:
3554 case OPC_CheckPatternPredicate2:
3555 case OPC_CheckPatternPredicate3:
3556 case OPC_CheckPatternPredicate4:
3557 case OPC_CheckPatternPredicate5:
3558 case OPC_CheckPatternPredicate6:
3559 case OPC_CheckPatternPredicate7:
3560 case OPC_CheckPatternPredicateTwoByte:
3561 if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, *this))
3562 break;
3563 continue;
3564 case SelectionDAGISel::OPC_CheckPredicate0:
3565 case SelectionDAGISel::OPC_CheckPredicate1:
3566 case SelectionDAGISel::OPC_CheckPredicate2:
3567 case SelectionDAGISel::OPC_CheckPredicate3:
3568 case SelectionDAGISel::OPC_CheckPredicate4:
3569 case SelectionDAGISel::OPC_CheckPredicate5:
3570 case SelectionDAGISel::OPC_CheckPredicate6:
3571 case SelectionDAGISel::OPC_CheckPredicate7:
3572 case OPC_CheckPredicate:
3573 if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, *this,
3574 N.getNode()))
3575 break;
3576 continue;
3577 case OPC_CheckPredicateWithOperands: {
3578 unsigned OpNum = MatcherTable[MatcherIndex++];
3579 SmallVector<SDValue, 8> Operands;
3581 for (unsigned i = 0; i < OpNum; ++i)
3582 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3584 unsigned PredNo = MatcherTable[MatcherIndex++];
3585 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3586 break;
3587 continue;
3589 case OPC_CheckComplexPat:
3590 case OPC_CheckComplexPat0:
3591 case OPC_CheckComplexPat1:
3592 case OPC_CheckComplexPat2:
3593 case OPC_CheckComplexPat3:
3594 case OPC_CheckComplexPat4:
3595 case OPC_CheckComplexPat5:
3596 case OPC_CheckComplexPat6:
3597 case OPC_CheckComplexPat7: {
3598 unsigned CPNum = Opcode == OPC_CheckComplexPat
3599 ? MatcherTable[MatcherIndex++]
3600 : Opcode - OPC_CheckComplexPat0;
3601 unsigned RecNo = MatcherTable[MatcherIndex++];
3602 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3604 // If target can modify DAG during matching, keep the matching state
3605 // consistent.
3606 std::unique_ptr<MatchStateUpdater> MSU;
3607 if (ComplexPatternFuncMutatesDAG())
3608 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3609 MatchScopes));
3611 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3612 RecordedNodes[RecNo].first, CPNum,
3613 RecordedNodes))
3614 break;
3615 continue;
3617 case OPC_CheckOpcode:
3618 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3619 continue;
3621 case OPC_CheckType:
3622 case OPC_CheckTypeI32:
3623 case OPC_CheckTypeI64:
3624 MVT::SimpleValueType VT;
3625 switch (Opcode) {
3626 case OPC_CheckTypeI32:
3627 VT = MVT::i32;
3628 break;
3629 case OPC_CheckTypeI64:
3630 VT = MVT::i64;
3631 break;
3632 default:
3633 VT = getSimpleVT(MatcherTable, MatcherIndex);
3634 break;
3636 if (!::CheckType(VT, N, TLI, CurDAG->getDataLayout()))
3637 break;
3638 continue;
3640 case OPC_CheckTypeRes: {
3641 unsigned Res = MatcherTable[MatcherIndex++];
3642 if (!::CheckType(getSimpleVT(MatcherTable, MatcherIndex), N.getValue(Res),
3643 TLI, CurDAG->getDataLayout()))
3644 break;
3645 continue;
3648 case OPC_SwitchOpcode: {
3649 unsigned CurNodeOpcode = N.getOpcode();
3650 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3651 unsigned CaseSize;
3652 while (true) {
3653 // Get the size of this case.
3654 CaseSize = MatcherTable[MatcherIndex++];
3655 if (CaseSize & 128)
3656 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3657 if (CaseSize == 0) break;
3659 uint16_t Opc = MatcherTable[MatcherIndex++];
3660 Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
3662 // If the opcode matches, then we will execute this case.
3663 if (CurNodeOpcode == Opc)
3664 break;
3666 // Otherwise, skip over this case.
3667 MatcherIndex += CaseSize;
3670 // If no cases matched, bail out.
3671 if (CaseSize == 0) break;
3673 // Otherwise, execute the case we found.
3674 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3675 << MatcherIndex << "\n");
3676 continue;
3679 case OPC_SwitchType: {
3680 MVT CurNodeVT = N.getSimpleValueType();
3681 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3682 unsigned CaseSize;
3683 while (true) {
3684 // Get the size of this case.
3685 CaseSize = MatcherTable[MatcherIndex++];
3686 if (CaseSize & 128)
3687 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3688 if (CaseSize == 0) break;
3690 MVT CaseVT = getSimpleVT(MatcherTable, MatcherIndex);
3691 if (CaseVT == MVT::iPTR)
3692 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3694 // If the VT matches, then we will execute this case.
3695 if (CurNodeVT == CaseVT)
3696 break;
3698 // Otherwise, skip over this case.
3699 MatcherIndex += CaseSize;
3702 // If no cases matched, bail out.
3703 if (CaseSize == 0) break;
3705 // Otherwise, execute the case we found.
3706 LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT
3707 << "] from " << SwitchStart << " to " << MatcherIndex
3708 << '\n');
3709 continue;
3711 case OPC_CheckChild0Type:
3712 case OPC_CheckChild1Type:
3713 case OPC_CheckChild2Type:
3714 case OPC_CheckChild3Type:
3715 case OPC_CheckChild4Type:
3716 case OPC_CheckChild5Type:
3717 case OPC_CheckChild6Type:
3718 case OPC_CheckChild7Type:
3719 case OPC_CheckChild0TypeI32:
3720 case OPC_CheckChild1TypeI32:
3721 case OPC_CheckChild2TypeI32:
3722 case OPC_CheckChild3TypeI32:
3723 case OPC_CheckChild4TypeI32:
3724 case OPC_CheckChild5TypeI32:
3725 case OPC_CheckChild6TypeI32:
3726 case OPC_CheckChild7TypeI32:
3727 case OPC_CheckChild0TypeI64:
3728 case OPC_CheckChild1TypeI64:
3729 case OPC_CheckChild2TypeI64:
3730 case OPC_CheckChild3TypeI64:
3731 case OPC_CheckChild4TypeI64:
3732 case OPC_CheckChild5TypeI64:
3733 case OPC_CheckChild6TypeI64:
3734 case OPC_CheckChild7TypeI64: {
3735 MVT::SimpleValueType VT;
3736 unsigned ChildNo;
3737 if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI32 &&
3738 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI32) {
3739 VT = MVT::i32;
3740 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI32;
3741 } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 &&
3742 Opcode <= SelectionDAGISel::OPC_CheckChild7TypeI64) {
3743 VT = MVT::i64;
3744 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0TypeI64;
3745 } else {
3746 VT = getSimpleVT(MatcherTable, MatcherIndex);
3747 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type;
3749 if (!::CheckChildType(VT, N, TLI, CurDAG->getDataLayout(), ChildNo))
3750 break;
3751 continue;
3753 case OPC_CheckCondCode:
3754 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3755 continue;
3756 case OPC_CheckChild2CondCode:
3757 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3758 continue;
3759 case OPC_CheckValueType:
3760 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3761 CurDAG->getDataLayout()))
3762 break;
3763 continue;
3764 case OPC_CheckInteger:
3765 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3766 continue;
3767 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3768 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3769 case OPC_CheckChild4Integer:
3770 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3771 Opcode-OPC_CheckChild0Integer)) break;
3772 continue;
3773 case OPC_CheckAndImm:
3774 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3775 continue;
3776 case OPC_CheckOrImm:
3777 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3778 continue;
3779 case OPC_CheckImmAllOnesV:
3780 if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3781 break;
3782 continue;
3783 case OPC_CheckImmAllZerosV:
3784 if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3785 break;
3786 continue;
3788 case OPC_CheckFoldableChainNode: {
3789 assert(NodeStack.size() != 1 && "No parent node");
3790 // Verify that all intermediate nodes between the root and this one have
3791 // a single use (ignoring chains, which are handled in UpdateChains).
3792 bool HasMultipleUses = false;
3793 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3794 unsigned NNonChainUses = 0;
3795 SDNode *NS = NodeStack[i].getNode();
3796 for (const SDUse &U : NS->uses())
3797 if (U.getValueType() != MVT::Other)
3798 if (++NNonChainUses > 1) {
3799 HasMultipleUses = true;
3800 break;
3802 if (HasMultipleUses) break;
3804 if (HasMultipleUses) break;
3806 // Check to see that the target thinks this is profitable to fold and that
3807 // we can fold it without inducing cycles in the graph.
3808 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3809 NodeToMatch) ||
3810 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3811 NodeToMatch, OptLevel,
3812 true/*We validate our own chains*/))
3813 break;
3815 continue;
3817 case OPC_EmitInteger:
3818 case OPC_EmitInteger8:
3819 case OPC_EmitInteger16:
3820 case OPC_EmitInteger32:
3821 case OPC_EmitInteger64:
3822 case OPC_EmitStringInteger:
3823 case OPC_EmitStringInteger32: {
3824 MVT::SimpleValueType VT;
3825 switch (Opcode) {
3826 case OPC_EmitInteger8:
3827 VT = MVT::i8;
3828 break;
3829 case OPC_EmitInteger16:
3830 VT = MVT::i16;
3831 break;
3832 case OPC_EmitInteger32:
3833 case OPC_EmitStringInteger32:
3834 VT = MVT::i32;
3835 break;
3836 case OPC_EmitInteger64:
3837 VT = MVT::i64;
3838 break;
3839 default:
3840 VT = getSimpleVT(MatcherTable, MatcherIndex);
3841 break;
3843 int64_t Val = MatcherTable[MatcherIndex++];
3844 if (Val & 128)
3845 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3846 if (Opcode >= OPC_EmitInteger && Opcode <= OPC_EmitInteger64)
3847 Val = decodeSignRotatedValue(Val);
3848 RecordedNodes.push_back(std::pair<SDValue, SDNode *>(
3849 CurDAG->getSignedConstant(Val, SDLoc(NodeToMatch), VT,
3850 /*isTarget=*/true),
3851 nullptr));
3852 continue;
3854 case OPC_EmitRegister:
3855 case OPC_EmitRegisterI32:
3856 case OPC_EmitRegisterI64: {
3857 MVT::SimpleValueType VT;
3858 switch (Opcode) {
3859 case OPC_EmitRegisterI32:
3860 VT = MVT::i32;
3861 break;
3862 case OPC_EmitRegisterI64:
3863 VT = MVT::i64;
3864 break;
3865 default:
3866 VT = getSimpleVT(MatcherTable, MatcherIndex);
3867 break;
3869 unsigned RegNo = MatcherTable[MatcherIndex++];
3870 RecordedNodes.push_back(std::pair<SDValue, SDNode *>(
3871 CurDAG->getRegister(RegNo, VT), nullptr));
3872 continue;
3874 case OPC_EmitRegister2: {
3875 // For targets w/ more than 256 register names, the register enum
3876 // values are stored in two bytes in the matcher table (just like
3877 // opcodes).
3878 MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex);
3879 unsigned RegNo = MatcherTable[MatcherIndex++];
3880 RegNo |= MatcherTable[MatcherIndex++] << 8;
3881 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3882 CurDAG->getRegister(RegNo, VT), nullptr));
3883 continue;
3886 case OPC_EmitConvertToTarget:
3887 case OPC_EmitConvertToTarget0:
3888 case OPC_EmitConvertToTarget1:
3889 case OPC_EmitConvertToTarget2:
3890 case OPC_EmitConvertToTarget3:
3891 case OPC_EmitConvertToTarget4:
3892 case OPC_EmitConvertToTarget5:
3893 case OPC_EmitConvertToTarget6:
3894 case OPC_EmitConvertToTarget7: {
3895 // Convert from IMM/FPIMM to target version.
3896 unsigned RecNo = Opcode == OPC_EmitConvertToTarget
3897 ? MatcherTable[MatcherIndex++]
3898 : Opcode - OPC_EmitConvertToTarget0;
3899 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3900 SDValue Imm = RecordedNodes[RecNo].first;
3902 if (Imm->getOpcode() == ISD::Constant) {
3903 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3904 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3905 Imm.getValueType());
3906 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3907 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3908 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3909 Imm.getValueType());
3912 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3913 continue;
3916 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3917 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3918 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3919 // These are space-optimized forms of OPC_EmitMergeInputChains.
3920 assert(!InputChain.getNode() &&
3921 "EmitMergeInputChains should be the first chain producing node");
3922 assert(ChainNodesMatched.empty() &&
3923 "Should only have one EmitMergeInputChains per match");
3925 // Read all of the chained nodes.
3926 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3927 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3928 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3930 // If the chained node is not the root, we can't fold it if it has
3931 // multiple uses.
3932 // FIXME: What if other value results of the node have uses not matched
3933 // by this pattern?
3934 if (ChainNodesMatched.back() != NodeToMatch &&
3935 !RecordedNodes[RecNo].first.hasOneUse()) {
3936 ChainNodesMatched.clear();
3937 break;
3940 // Merge the input chains if they are not intra-pattern references.
3941 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3943 if (!InputChain.getNode())
3944 break; // Failed to merge.
3945 continue;
3948 case OPC_EmitMergeInputChains: {
3949 assert(!InputChain.getNode() &&
3950 "EmitMergeInputChains should be the first chain producing node");
3951 // This node gets a list of nodes we matched in the input that have
3952 // chains. We want to token factor all of the input chains to these nodes
3953 // together. However, if any of the input chains is actually one of the
3954 // nodes matched in this pattern, then we have an intra-match reference.
3955 // Ignore these because the newly token factored chain should not refer to
3956 // the old nodes.
3957 unsigned NumChains = MatcherTable[MatcherIndex++];
3958 assert(NumChains != 0 && "Can't TF zero chains");
3960 assert(ChainNodesMatched.empty() &&
3961 "Should only have one EmitMergeInputChains per match");
3963 // Read all of the chained nodes.
3964 for (unsigned i = 0; i != NumChains; ++i) {
3965 unsigned RecNo = MatcherTable[MatcherIndex++];
3966 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3967 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3969 // If the chained node is not the root, we can't fold it if it has
3970 // multiple uses.
3971 // FIXME: What if other value results of the node have uses not matched
3972 // by this pattern?
3973 if (ChainNodesMatched.back() != NodeToMatch &&
3974 !RecordedNodes[RecNo].first.hasOneUse()) {
3975 ChainNodesMatched.clear();
3976 break;
3980 // If the inner loop broke out, the match fails.
3981 if (ChainNodesMatched.empty())
3982 break;
3984 // Merge the input chains if they are not intra-pattern references.
3985 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3987 if (!InputChain.getNode())
3988 break; // Failed to merge.
3990 continue;
3993 case OPC_EmitCopyToReg:
3994 case OPC_EmitCopyToReg0:
3995 case OPC_EmitCopyToReg1:
3996 case OPC_EmitCopyToReg2:
3997 case OPC_EmitCopyToReg3:
3998 case OPC_EmitCopyToReg4:
3999 case OPC_EmitCopyToReg5:
4000 case OPC_EmitCopyToReg6:
4001 case OPC_EmitCopyToReg7:
4002 case OPC_EmitCopyToRegTwoByte: {
4003 unsigned RecNo =
4004 Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7
4005 ? Opcode - OPC_EmitCopyToReg0
4006 : MatcherTable[MatcherIndex++];
4007 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
4008 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
4009 if (Opcode == OPC_EmitCopyToRegTwoByte)
4010 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
4012 if (!InputChain.getNode())
4013 InputChain = CurDAG->getEntryNode();
4015 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
4016 DestPhysReg, RecordedNodes[RecNo].first,
4017 InputGlue);
4019 InputGlue = InputChain.getValue(1);
4020 continue;
4023 case OPC_EmitNodeXForm: {
4024 unsigned XFormNo = MatcherTable[MatcherIndex++];
4025 unsigned RecNo = MatcherTable[MatcherIndex++];
4026 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
4027 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
4028 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
4029 continue;
4031 case OPC_Coverage: {
4032 // This is emitted right before MorphNode/EmitNode.
4033 // So it should be safe to assume that this node has been selected
4034 unsigned index = MatcherTable[MatcherIndex++];
4035 index |= (MatcherTable[MatcherIndex++] << 8);
4036 index |= (MatcherTable[MatcherIndex++] << 16);
4037 index |= (MatcherTable[MatcherIndex++] << 24);
4038 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
4039 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
4040 continue;
4043 case OPC_EmitNode:
4044 case OPC_EmitNode0:
4045 case OPC_EmitNode1:
4046 case OPC_EmitNode2:
4047 case OPC_EmitNode0None:
4048 case OPC_EmitNode1None:
4049 case OPC_EmitNode2None:
4050 case OPC_EmitNode0Chain:
4051 case OPC_EmitNode1Chain:
4052 case OPC_EmitNode2Chain:
4053 case OPC_MorphNodeTo:
4054 case OPC_MorphNodeTo0:
4055 case OPC_MorphNodeTo1:
4056 case OPC_MorphNodeTo2:
4057 case OPC_MorphNodeTo0None:
4058 case OPC_MorphNodeTo1None:
4059 case OPC_MorphNodeTo2None:
4060 case OPC_MorphNodeTo0Chain:
4061 case OPC_MorphNodeTo1Chain:
4062 case OPC_MorphNodeTo2Chain:
4063 case OPC_MorphNodeTo0GlueInput:
4064 case OPC_MorphNodeTo1GlueInput:
4065 case OPC_MorphNodeTo2GlueInput:
4066 case OPC_MorphNodeTo0GlueOutput:
4067 case OPC_MorphNodeTo1GlueOutput:
4068 case OPC_MorphNodeTo2GlueOutput: {
4069 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
4070 TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
4071 unsigned EmitNodeInfo;
4072 if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2Chain) {
4073 if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain)
4074 EmitNodeInfo = OPFL_Chain;
4075 else
4076 EmitNodeInfo = OPFL_None;
4077 } else if (Opcode >= OPC_MorphNodeTo0None &&
4078 Opcode <= OPC_MorphNodeTo2GlueOutput) {
4079 if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain)
4080 EmitNodeInfo = OPFL_Chain;
4081 else if (Opcode >= OPC_MorphNodeTo0GlueInput &&
4082 Opcode <= OPC_MorphNodeTo2GlueInput)
4083 EmitNodeInfo = OPFL_GlueInput;
4084 else if (Opcode >= OPC_MorphNodeTo0GlueOutput &&
4085 Opcode <= OPC_MorphNodeTo2GlueOutput)
4086 EmitNodeInfo = OPFL_GlueOutput;
4087 else
4088 EmitNodeInfo = OPFL_None;
4089 } else
4090 EmitNodeInfo = MatcherTable[MatcherIndex++];
4091 // Get the result VT list.
4092 unsigned NumVTs;
4093 // If this is one of the compressed forms, get the number of VTs based
4094 // on the Opcode. Otherwise read the next byte from the table.
4095 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
4096 NumVTs = Opcode - OPC_MorphNodeTo0;
4097 else if (Opcode >= OPC_MorphNodeTo0None && Opcode <= OPC_MorphNodeTo2None)
4098 NumVTs = Opcode - OPC_MorphNodeTo0None;
4099 else if (Opcode >= OPC_MorphNodeTo0Chain &&
4100 Opcode <= OPC_MorphNodeTo2Chain)
4101 NumVTs = Opcode - OPC_MorphNodeTo0Chain;
4102 else if (Opcode >= OPC_MorphNodeTo0GlueInput &&
4103 Opcode <= OPC_MorphNodeTo2GlueInput)
4104 NumVTs = Opcode - OPC_MorphNodeTo0GlueInput;
4105 else if (Opcode >= OPC_MorphNodeTo0GlueOutput &&
4106 Opcode <= OPC_MorphNodeTo2GlueOutput)
4107 NumVTs = Opcode - OPC_MorphNodeTo0GlueOutput;
4108 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
4109 NumVTs = Opcode - OPC_EmitNode0;
4110 else if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2None)
4111 NumVTs = Opcode - OPC_EmitNode0None;
4112 else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain)
4113 NumVTs = Opcode - OPC_EmitNode0Chain;
4114 else
4115 NumVTs = MatcherTable[MatcherIndex++];
4116 SmallVector<EVT, 4> VTs;
4117 for (unsigned i = 0; i != NumVTs; ++i) {
4118 MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex);
4119 if (VT == MVT::iPTR)
4120 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
4121 VTs.push_back(VT);
4124 if (EmitNodeInfo & OPFL_Chain)
4125 VTs.push_back(MVT::Other);
4126 if (EmitNodeInfo & OPFL_GlueOutput)
4127 VTs.push_back(MVT::Glue);
4129 // This is hot code, so optimize the two most common cases of 1 and 2
4130 // results.
4131 SDVTList VTList;
4132 if (VTs.size() == 1)
4133 VTList = CurDAG->getVTList(VTs[0]);
4134 else if (VTs.size() == 2)
4135 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
4136 else
4137 VTList = CurDAG->getVTList(VTs);
4139 // Get the operand list.
4140 unsigned NumOps = MatcherTable[MatcherIndex++];
4141 SmallVector<SDValue, 8> Ops;
4142 for (unsigned i = 0; i != NumOps; ++i) {
4143 unsigned RecNo = MatcherTable[MatcherIndex++];
4144 if (RecNo & 128)
4145 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
4147 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
4148 Ops.push_back(RecordedNodes[RecNo].first);
4151 // If there are variadic operands to add, handle them now.
4152 if (EmitNodeInfo & OPFL_VariadicInfo) {
4153 // Determine the start index to copy from.
4154 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
4155 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
4156 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
4157 "Invalid variadic node");
4158 // Copy all of the variadic operands, not including a potential glue
4159 // input.
4160 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
4161 i != e; ++i) {
4162 SDValue V = NodeToMatch->getOperand(i);
4163 if (V.getValueType() == MVT::Glue) break;
4164 Ops.push_back(V);
4168 // If this has chain/glue inputs, add them.
4169 if (EmitNodeInfo & OPFL_Chain)
4170 Ops.push_back(InputChain);
4171 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
4172 Ops.push_back(InputGlue);
4174 // Check whether any matched node could raise an FP exception. Since all
4175 // such nodes must have a chain, it suffices to check ChainNodesMatched.
4176 // We need to perform this check before potentially modifying one of the
4177 // nodes via MorphNode.
4178 bool MayRaiseFPException =
4179 llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
4180 return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
4183 // Create the node.
4184 MachineSDNode *Res = nullptr;
4185 bool IsMorphNodeTo =
4186 Opcode == OPC_MorphNodeTo ||
4187 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput);
4188 if (!IsMorphNodeTo) {
4189 // If this is a normal EmitNode command, just create the new node and
4190 // add the results to the RecordedNodes list.
4191 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
4192 VTList, Ops);
4194 // Add all the non-glue/non-chain results to the RecordedNodes list.
4195 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
4196 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
4197 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
4198 nullptr));
4200 } else {
4201 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
4202 "NodeToMatch was removed partway through selection");
4203 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
4204 SDNode *E) {
4205 CurDAG->salvageDebugInfo(*N);
4206 auto &Chain = ChainNodesMatched;
4207 assert((!E || !is_contained(Chain, N)) &&
4208 "Chain node replaced during MorphNode");
4209 llvm::erase(Chain, N);
4211 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
4212 Ops, EmitNodeInfo));
4215 // Set the NoFPExcept flag when no original matched node could
4216 // raise an FP exception, but the new node potentially might.
4217 if (!MayRaiseFPException && mayRaiseFPException(Res))
4218 Res->setFlags(Res->getFlags() | SDNodeFlags::NoFPExcept);
4220 // If the node had chain/glue results, update our notion of the current
4221 // chain and glue.
4222 if (EmitNodeInfo & OPFL_GlueOutput) {
4223 InputGlue = SDValue(Res, VTs.size()-1);
4224 if (EmitNodeInfo & OPFL_Chain)
4225 InputChain = SDValue(Res, VTs.size()-2);
4226 } else if (EmitNodeInfo & OPFL_Chain)
4227 InputChain = SDValue(Res, VTs.size()-1);
4229 // If the OPFL_MemRefs glue is set on this node, slap all of the
4230 // accumulated memrefs onto it.
4232 // FIXME: This is vastly incorrect for patterns with multiple outputs
4233 // instructions that access memory and for ComplexPatterns that match
4234 // loads.
4235 if (EmitNodeInfo & OPFL_MemRefs) {
4236 // Only attach load or store memory operands if the generated
4237 // instruction may load or store.
4238 const MCInstrDesc &MCID = TII->get(TargetOpc);
4239 bool mayLoad = MCID.mayLoad();
4240 bool mayStore = MCID.mayStore();
4242 // We expect to have relatively few of these so just filter them into a
4243 // temporary buffer so that we can easily add them to the instruction.
4244 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
4245 for (MachineMemOperand *MMO : MatchedMemRefs) {
4246 if (MMO->isLoad()) {
4247 if (mayLoad)
4248 FilteredMemRefs.push_back(MMO);
4249 } else if (MMO->isStore()) {
4250 if (mayStore)
4251 FilteredMemRefs.push_back(MMO);
4252 } else {
4253 FilteredMemRefs.push_back(MMO);
4257 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
4260 LLVM_DEBUG({
4261 if (!MatchedMemRefs.empty() && Res->memoperands_empty())
4262 dbgs() << " Dropping mem operands\n";
4263 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") << " node: ";
4264 Res->dump(CurDAG);
4267 // If this was a MorphNodeTo then we're completely done!
4268 if (IsMorphNodeTo) {
4269 // Update chain uses.
4270 UpdateChains(Res, InputChain, ChainNodesMatched, true);
4271 return;
4273 continue;
4276 case OPC_CompleteMatch: {
4277 // The match has been completed, and any new nodes (if any) have been
4278 // created. Patch up references to the matched dag to use the newly
4279 // created nodes.
4280 unsigned NumResults = MatcherTable[MatcherIndex++];
4282 for (unsigned i = 0; i != NumResults; ++i) {
4283 unsigned ResSlot = MatcherTable[MatcherIndex++];
4284 if (ResSlot & 128)
4285 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
4287 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
4288 SDValue Res = RecordedNodes[ResSlot].first;
4290 assert(i < NodeToMatch->getNumValues() &&
4291 NodeToMatch->getValueType(i) != MVT::Other &&
4292 NodeToMatch->getValueType(i) != MVT::Glue &&
4293 "Invalid number of results to complete!");
4294 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
4295 NodeToMatch->getValueType(i) == MVT::iPTR ||
4296 Res.getValueType() == MVT::iPTR ||
4297 NodeToMatch->getValueType(i).getSizeInBits() ==
4298 Res.getValueSizeInBits()) &&
4299 "invalid replacement");
4300 ReplaceUses(SDValue(NodeToMatch, i), Res);
4303 // Update chain uses.
4304 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
4306 // If the root node defines glue, we need to update it to the glue result.
4307 // TODO: This never happens in our tests and I think it can be removed /
4308 // replaced with an assert, but if we do it this the way the change is
4309 // NFC.
4310 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
4311 MVT::Glue &&
4312 InputGlue.getNode())
4313 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
4314 InputGlue);
4316 assert(NodeToMatch->use_empty() &&
4317 "Didn't replace all uses of the node?");
4318 CurDAG->RemoveDeadNode(NodeToMatch);
4320 return;
4324 // If the code reached this point, then the match failed. See if there is
4325 // another child to try in the current 'Scope', otherwise pop it until we
4326 // find a case to check.
4327 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
4328 << "\n");
4329 ++NumDAGIselRetries;
4330 while (true) {
4331 if (MatchScopes.empty()) {
4332 CannotYetSelect(NodeToMatch);
4333 return;
4336 // Restore the interpreter state back to the point where the scope was
4337 // formed.
4338 MatchScope &LastScope = MatchScopes.back();
4339 RecordedNodes.resize(LastScope.NumRecordedNodes);
4340 NodeStack.clear();
4341 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
4342 N = NodeStack.back();
4344 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
4345 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
4346 MatcherIndex = LastScope.FailIndex;
4348 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
4350 InputChain = LastScope.InputChain;
4351 InputGlue = LastScope.InputGlue;
4352 if (!LastScope.HasChainNodesMatched)
4353 ChainNodesMatched.clear();
4355 // Check to see what the offset is at the new MatcherIndex. If it is zero
4356 // we have reached the end of this scope, otherwise we have another child
4357 // in the current scope to try.
4358 unsigned NumToSkip = MatcherTable[MatcherIndex++];
4359 if (NumToSkip & 128)
4360 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
4362 // If we have another child in this scope to match, update FailIndex and
4363 // try it.
4364 if (NumToSkip != 0) {
4365 LastScope.FailIndex = MatcherIndex+NumToSkip;
4366 break;
4369 // End of this scope, pop it and try the next child in the containing
4370 // scope.
4371 MatchScopes.pop_back();
4376 /// Return whether the node may raise an FP exception.
4377 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
4378 // For machine opcodes, consult the MCID flag.
4379 if (N->isMachineOpcode()) {
4380 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
4381 return MCID.mayRaiseFPException();
4384 // For ISD opcodes, only StrictFP opcodes may raise an FP
4385 // exception.
4386 if (N->isTargetOpcode()) {
4387 const SelectionDAGTargetInfo &TSI = CurDAG->getSelectionDAGInfo();
4388 return TSI.mayRaiseFPException(N->getOpcode());
4390 return N->isStrictFPOpcode();
4393 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
4394 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
4395 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4396 if (!C)
4397 return false;
4399 // Detect when "or" is used to add an offset to a stack object.
4400 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
4401 MachineFrameInfo &MFI = MF->getFrameInfo();
4402 Align A = MFI.getObjectAlign(FN->getIndex());
4403 int32_t Off = C->getSExtValue();
4404 // If the alleged offset fits in the zero bits guaranteed by
4405 // the alignment, then this or is really an add.
4406 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
4408 return false;
4411 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
4412 std::string msg;
4413 raw_string_ostream Msg(msg);
4414 Msg << "Cannot select: ";
4416 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
4417 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
4418 N->getOpcode() != ISD::INTRINSIC_VOID) {
4419 N->printrFull(Msg, CurDAG);
4420 Msg << "\nIn function: " << MF->getName();
4421 } else {
4422 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
4423 unsigned iid = N->getConstantOperandVal(HasInputChain);
4424 if (iid < Intrinsic::num_intrinsics)
4425 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
4426 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
4427 Msg << "target intrinsic %" << TII->getName(iid);
4428 else
4429 Msg << "unknown intrinsic #" << iid;
4431 report_fatal_error(Twine(msg));