1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/CFG.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/UniformityAnalysis.h"
34 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/StackProtector.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/CodeGen/ValueTypes.h"
63 #include "llvm/CodeGen/WinEHFuncInfo.h"
64 #include "llvm/CodeGenTypes/MachineValueType.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfo.h"
69 #include "llvm/IR/DebugInfoMetadata.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DiagnosticInfo.h"
72 #include "llvm/IR/EHPersonalities.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/PrintPasses.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/Timer.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 using namespace llvm
;
118 #define DEBUG_TYPE "isel"
119 #define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump"
121 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
122 STATISTIC(NumFastIselSuccess
, "Number of instructions fast isel selected");
123 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
124 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
125 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
126 STATISTIC(NumEntryBlocks
, "Number of entry blocks encountered");
127 STATISTIC(NumFastIselFailLowerArguments
,
128 "Number of entry blocks where fast isel failed to lower arguments");
130 static cl::opt
<int> EnableFastISelAbort(
131 "fast-isel-abort", cl::Hidden
,
132 cl::desc("Enable abort calls when \"fast\" instruction selection "
133 "fails to lower an instruction: 0 disable the abort, 1 will "
134 "abort but for args, calls and terminators, 2 will also "
135 "abort for argument lowering, and 3 will never fallback "
136 "to SelectionDAG."));
138 static cl::opt
<bool> EnableFastISelFallbackReport(
139 "fast-isel-report-on-fallback", cl::Hidden
,
140 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
141 "falls back to SelectionDAG."));
145 cl::desc("use Machine Branch Probability Info"),
146 cl::init(true), cl::Hidden
);
149 static cl::opt
<std::string
>
150 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden
,
151 cl::desc("Only display the basic block whose name "
152 "matches this for all view-*-dags options"));
154 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
155 cl::desc("Pop up a window to show dags before the first "
156 "dag combine pass"));
158 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
159 cl::desc("Pop up a window to show dags before legalize types"));
161 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
162 cl::desc("Pop up a window to show dags before the post "
163 "legalize types dag combine pass"));
165 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
166 cl::desc("Pop up a window to show dags before legalize"));
168 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
169 cl::desc("Pop up a window to show dags before the second "
170 "dag combine pass"));
172 ViewISelDAGs("view-isel-dags", cl::Hidden
,
173 cl::desc("Pop up a window to show isel dags as they are selected"));
175 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
176 cl::desc("Pop up a window to show sched dags as they are processed"));
178 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
179 cl::desc("Pop up a window to show SUnit dags after they are processed"));
181 static const bool ViewDAGCombine1
= false, ViewLegalizeTypesDAGs
= false,
182 ViewDAGCombineLT
= false, ViewLegalizeDAGs
= false,
183 ViewDAGCombine2
= false, ViewISelDAGs
= false,
184 ViewSchedDAGs
= false, ViewSUnitDAGs
= false;
188 #define ISEL_DUMP(X) \
190 if (llvm::DebugFlag && \
191 (isCurrentDebugType(DEBUG_TYPE) || \
192 (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \
197 #define ISEL_DUMP(X) do { } while (false)
200 //===---------------------------------------------------------------------===//
202 /// RegisterScheduler class - Track the registration of instruction schedulers.
204 //===---------------------------------------------------------------------===//
205 MachinePassRegistry
<RegisterScheduler::FunctionPassCtor
>
206 RegisterScheduler::Registry
;
208 //===---------------------------------------------------------------------===//
210 /// ISHeuristic command line option for instruction schedulers.
212 //===---------------------------------------------------------------------===//
213 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
214 RegisterPassParser
<RegisterScheduler
>>
215 ISHeuristic("pre-RA-sched",
216 cl::init(&createDefaultScheduler
), cl::Hidden
,
217 cl::desc("Instruction schedulers available (before register"
220 static RegisterScheduler
221 defaultListDAGScheduler("default", "Best scheduler for the target",
222 createDefaultScheduler
);
224 static bool dontUseFastISelFor(const Function
&Fn
) {
225 // Don't enable FastISel for functions with swiftasync Arguments.
226 // Debug info on those is reliant on good Argument lowering, and FastISel is
227 // not capable of lowering the entire function. Mixing the two selectors tend
228 // to result in poor lowering of Arguments.
229 return any_of(Fn
.args(), [](const Argument
&Arg
) {
230 return Arg
.hasAttribute(Attribute::AttrKind::SwiftAsync
);
236 //===--------------------------------------------------------------------===//
237 /// This class is used by SelectionDAGISel to temporarily override
238 /// the optimization level on a per-function basis.
239 class OptLevelChanger
{
240 SelectionDAGISel
&IS
;
241 CodeGenOptLevel SavedOptLevel
;
245 OptLevelChanger(SelectionDAGISel
&ISel
, CodeGenOptLevel NewOptLevel
)
247 SavedOptLevel
= IS
.OptLevel
;
248 SavedFastISel
= IS
.TM
.Options
.EnableFastISel
;
249 if (NewOptLevel
!= SavedOptLevel
) {
250 IS
.OptLevel
= NewOptLevel
;
251 IS
.TM
.setOptLevel(NewOptLevel
);
252 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
253 << IS
.MF
->getFunction().getName() << "\n");
254 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel
)
255 << " ; After: -O" << static_cast<int>(NewOptLevel
)
257 if (NewOptLevel
== CodeGenOptLevel::None
)
258 IS
.TM
.setFastISel(IS
.TM
.getO0WantsFastISel());
260 if (dontUseFastISelFor(IS
.MF
->getFunction()))
261 IS
.TM
.setFastISel(false);
263 dbgs() << "\tFastISel is "
264 << (IS
.TM
.Options
.EnableFastISel
? "enabled" : "disabled")
269 if (IS
.OptLevel
== SavedOptLevel
)
271 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
272 << IS
.MF
->getFunction().getName() << "\n");
273 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS
.OptLevel
)
274 << " ; After: -O" << static_cast<int>(SavedOptLevel
) << "\n");
275 IS
.OptLevel
= SavedOptLevel
;
276 IS
.TM
.setOptLevel(SavedOptLevel
);
277 IS
.TM
.setFastISel(SavedFastISel
);
281 //===--------------------------------------------------------------------===//
282 /// createDefaultScheduler - This creates an instruction scheduler appropriate
284 ScheduleDAGSDNodes
*createDefaultScheduler(SelectionDAGISel
*IS
,
285 CodeGenOptLevel OptLevel
) {
286 const TargetLowering
*TLI
= IS
->TLI
;
287 const TargetSubtargetInfo
&ST
= IS
->MF
->getSubtarget();
289 // Try first to see if the Target has its own way of selecting a scheduler
290 if (auto *SchedulerCtor
= ST
.getDAGScheduler(OptLevel
)) {
291 return SchedulerCtor(IS
, OptLevel
);
294 if (OptLevel
== CodeGenOptLevel::None
||
295 (ST
.enableMachineScheduler() && ST
.enableMachineSchedDefaultSched()) ||
296 TLI
->getSchedulingPreference() == Sched::Source
)
297 return createSourceListDAGScheduler(IS
, OptLevel
);
298 if (TLI
->getSchedulingPreference() == Sched::RegPressure
)
299 return createBURRListDAGScheduler(IS
, OptLevel
);
300 if (TLI
->getSchedulingPreference() == Sched::Hybrid
)
301 return createHybridListDAGScheduler(IS
, OptLevel
);
302 if (TLI
->getSchedulingPreference() == Sched::VLIW
)
303 return createVLIWDAGScheduler(IS
, OptLevel
);
304 if (TLI
->getSchedulingPreference() == Sched::Fast
)
305 return createFastDAGScheduler(IS
, OptLevel
);
306 if (TLI
->getSchedulingPreference() == Sched::Linearize
)
307 return createDAGLinearizer(IS
, OptLevel
);
308 assert(TLI
->getSchedulingPreference() == Sched::ILP
&&
309 "Unknown sched type!");
310 return createILPListDAGScheduler(IS
, OptLevel
);
313 } // end namespace llvm
316 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
317 MachineBasicBlock
*MBB
) const {
319 dbgs() << "If a target marks an instruction with "
320 "'usesCustomInserter', it must implement "
321 "TargetLowering::EmitInstrWithCustomInserter!\n";
323 llvm_unreachable(nullptr);
326 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
327 SDNode
*Node
) const {
328 assert(!MI
.hasPostISelHook() &&
329 "If a target marks an instruction with 'hasPostISelHook', "
330 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
333 //===----------------------------------------------------------------------===//
334 // SelectionDAGISel code
335 //===----------------------------------------------------------------------===//
337 SelectionDAGISelLegacy::SelectionDAGISelLegacy(
338 char &ID
, std::unique_ptr
<SelectionDAGISel
> S
)
339 : MachineFunctionPass(ID
), Selector(std::move(S
)) {
340 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
341 initializeBranchProbabilityInfoWrapperPassPass(
342 *PassRegistry::getPassRegistry());
343 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
344 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
347 bool SelectionDAGISelLegacy::runOnMachineFunction(MachineFunction
&MF
) {
348 // If we already selected that function, we do not need to run SDISel.
349 if (MF
.getProperties().hasProperty(
350 MachineFunctionProperties::Property::Selected
))
353 // Do some sanity-checking on the command-line options.
354 if (EnableFastISelAbort
&& !Selector
->TM
.Options
.EnableFastISel
)
355 report_fatal_error("-fast-isel-abort > 0 requires -fast-isel");
357 // Decide what flavour of variable location debug-info will be used, before
358 // we change the optimisation level.
359 MF
.setUseDebugInstrRef(MF
.shouldUseDebugInstrRef());
361 // Reset the target options before resetting the optimization
363 // FIXME: This is a horrible hack and should be processed via
364 // codegen looking at the optimization level explicitly when
365 // it wants to look at it.
366 Selector
->TM
.resetTargetOptions(MF
.getFunction());
367 // Reset OptLevel to None for optnone functions.
368 CodeGenOptLevel NewOptLevel
= skipFunction(MF
.getFunction())
369 ? CodeGenOptLevel::None
370 : Selector
->OptLevel
;
373 OptLevelChanger
OLC(*Selector
, NewOptLevel
);
374 Selector
->initializeAnalysisResults(*this);
375 return Selector
->runOnMachineFunction(MF
);
378 SelectionDAGISel::SelectionDAGISel(TargetMachine
&tm
, CodeGenOptLevel OL
)
379 : TM(tm
), FuncInfo(new FunctionLoweringInfo()),
380 SwiftError(new SwiftErrorValueTracking()),
381 CurDAG(new SelectionDAG(tm
, OL
)),
382 SDB(std::make_unique
<SelectionDAGBuilder
>(*CurDAG
, *FuncInfo
, *SwiftError
,
385 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
386 initializeBranchProbabilityInfoWrapperPassPass(
387 *PassRegistry::getPassRegistry());
388 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
389 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
392 SelectionDAGISel::~SelectionDAGISel() {
397 void SelectionDAGISelLegacy::getAnalysisUsage(AnalysisUsage
&AU
) const {
398 CodeGenOptLevel OptLevel
= Selector
->OptLevel
;
399 if (OptLevel
!= CodeGenOptLevel::None
)
400 AU
.addRequired
<AAResultsWrapperPass
>();
401 AU
.addRequired
<GCModuleInfo
>();
402 AU
.addRequired
<StackProtector
>();
403 AU
.addPreserved
<GCModuleInfo
>();
404 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
406 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
408 AU
.addRequired
<AssumptionCacheTracker
>();
409 if (UseMBPI
&& OptLevel
!= CodeGenOptLevel::None
)
410 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
411 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
412 // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for
414 AU
.addRequired
<AssignmentTrackingAnalysis
>();
415 AU
.addPreserved
<AssignmentTrackingAnalysis
>();
416 if (OptLevel
!= CodeGenOptLevel::None
)
417 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
418 MachineFunctionPass::getAnalysisUsage(AU
);
422 SelectionDAGISelPass::run(MachineFunction
&MF
,
423 MachineFunctionAnalysisManager
&MFAM
) {
424 // If we already selected that function, we do not need to run SDISel.
425 if (MF
.getProperties().hasProperty(
426 MachineFunctionProperties::Property::Selected
))
427 return PreservedAnalyses::all();
429 // Do some sanity-checking on the command-line options.
430 if (EnableFastISelAbort
&& !Selector
->TM
.Options
.EnableFastISel
)
431 report_fatal_error("-fast-isel-abort > 0 requires -fast-isel");
433 // Decide what flavour of variable location debug-info will be used, before
434 // we change the optimisation level.
435 MF
.setUseDebugInstrRef(MF
.shouldUseDebugInstrRef());
437 // Reset the target options before resetting the optimization
439 // FIXME: This is a horrible hack and should be processed via
440 // codegen looking at the optimization level explicitly when
441 // it wants to look at it.
442 Selector
->TM
.resetTargetOptions(MF
.getFunction());
443 // Reset OptLevel to None for optnone functions.
444 // TODO: Add a function analysis to handle this.
446 // Reset OptLevel to None for optnone functions.
447 CodeGenOptLevel NewOptLevel
= MF
.getFunction().hasOptNone()
448 ? CodeGenOptLevel::None
449 : Selector
->OptLevel
;
451 OptLevelChanger
OLC(*Selector
, NewOptLevel
);
452 Selector
->initializeAnalysisResults(MFAM
);
453 Selector
->runOnMachineFunction(MF
);
455 return getMachineFunctionPassPreservedAnalyses();
458 void SelectionDAGISel::initializeAnalysisResults(
459 MachineFunctionAnalysisManager
&MFAM
) {
460 auto &FAM
= MFAM
.getResult
<FunctionAnalysisManagerMachineFunctionProxy
>(*MF
)
462 auto &MAMP
= MFAM
.getResult
<ModuleAnalysisManagerMachineFunctionProxy
>(*MF
);
463 Function
&Fn
= MF
->getFunction();
465 FuncName
= Fn
.getName();
466 MatchFilterFuncName
= isFunctionInPrintList(FuncName
);
468 (void)MatchFilterFuncName
;
471 TII
= MF
->getSubtarget().getInstrInfo();
472 TLI
= MF
->getSubtarget().getTargetLowering();
473 RegInfo
= &MF
->getRegInfo();
474 LibInfo
= &FAM
.getResult
<TargetLibraryAnalysis
>(Fn
);
475 GFI
= Fn
.hasGC() ? &FAM
.getResult
<GCFunctionAnalysis
>(Fn
) : nullptr;
476 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&Fn
);
477 AC
= &FAM
.getResult
<AssumptionAnalysis
>(Fn
);
478 auto *PSI
= MAMP
.getCachedResult
<ProfileSummaryAnalysis
>(*Fn
.getParent());
479 BlockFrequencyInfo
*BFI
= nullptr;
480 FAM
.getResult
<BlockFrequencyAnalysis
>(Fn
);
481 if (PSI
&& PSI
->hasProfileSummary() && OptLevel
!= CodeGenOptLevel::None
)
482 BFI
= &FAM
.getResult
<BlockFrequencyAnalysis
>(Fn
);
484 FunctionVarLocs
const *FnVarLocs
= nullptr;
485 if (isAssignmentTrackingEnabled(*Fn
.getParent()))
486 FnVarLocs
= &FAM
.getResult
<DebugAssignmentTrackingAnalysis
>(Fn
);
488 auto *UA
= FAM
.getCachedResult
<UniformityInfoAnalysis
>(Fn
);
489 MachineModuleInfo
&MMI
=
490 MAMP
.getCachedResult
<MachineModuleAnalysis
>(*Fn
.getParent())->getMMI();
492 CurDAG
->init(*MF
, *ORE
, MFAM
, LibInfo
, UA
, PSI
, BFI
, MMI
, FnVarLocs
);
494 // Now get the optional analyzes if we want to.
495 // This is based on the possibly changed OptLevel (after optnone is taken
496 // into account). That's unfortunate but OK because it just means we won't
497 // ask for passes that have been required anyway.
499 if (UseMBPI
&& OptLevel
!= CodeGenOptLevel::None
)
500 FuncInfo
->BPI
= &FAM
.getResult
<BranchProbabilityAnalysis
>(Fn
);
502 FuncInfo
->BPI
= nullptr;
504 if (OptLevel
!= CodeGenOptLevel::None
)
505 AA
= &FAM
.getResult
<AAManager
>(Fn
);
509 SP
= &FAM
.getResult
<SSPLayoutAnalysis
>(Fn
);
511 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
512 TTI
= &FAM
.getResult
<TargetIRAnalysis
>(Fn
);
516 void SelectionDAGISel::initializeAnalysisResults(MachineFunctionPass
&MFP
) {
517 Function
&Fn
= MF
->getFunction();
519 FuncName
= Fn
.getName();
520 MatchFilterFuncName
= isFunctionInPrintList(FuncName
);
522 (void)MatchFilterFuncName
;
525 TII
= MF
->getSubtarget().getInstrInfo();
526 TLI
= MF
->getSubtarget().getTargetLowering();
527 RegInfo
= &MF
->getRegInfo();
528 LibInfo
= &MFP
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(Fn
);
529 GFI
= Fn
.hasGC() ? &MFP
.getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
)
531 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(&Fn
);
532 AC
= &MFP
.getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(Fn
);
533 auto *PSI
= &MFP
.getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
534 BlockFrequencyInfo
*BFI
= nullptr;
535 if (PSI
&& PSI
->hasProfileSummary() && OptLevel
!= CodeGenOptLevel::None
)
536 BFI
= &MFP
.getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI();
538 FunctionVarLocs
const *FnVarLocs
= nullptr;
539 if (isAssignmentTrackingEnabled(*Fn
.getParent()))
540 FnVarLocs
= MFP
.getAnalysis
<AssignmentTrackingAnalysis
>().getResults();
542 UniformityInfo
*UA
= nullptr;
543 if (auto *UAPass
= MFP
.getAnalysisIfAvailable
<UniformityInfoWrapperPass
>())
544 UA
= &UAPass
->getUniformityInfo();
546 MachineModuleInfo
&MMI
=
547 MFP
.getAnalysis
<MachineModuleInfoWrapperPass
>().getMMI();
549 CurDAG
->init(*MF
, *ORE
, &MFP
, LibInfo
, UA
, PSI
, BFI
, MMI
, FnVarLocs
);
551 // Now get the optional analyzes if we want to.
552 // This is based on the possibly changed OptLevel (after optnone is taken
553 // into account). That's unfortunate but OK because it just means we won't
554 // ask for passes that have been required anyway.
556 if (UseMBPI
&& OptLevel
!= CodeGenOptLevel::None
)
558 &MFP
.getAnalysis
<BranchProbabilityInfoWrapperPass
>().getBPI();
560 FuncInfo
->BPI
= nullptr;
562 if (OptLevel
!= CodeGenOptLevel::None
)
563 AA
= &MFP
.getAnalysis
<AAResultsWrapperPass
>().getAAResults();
567 SP
= &MFP
.getAnalysis
<StackProtector
>().getLayoutInfo();
569 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
570 TTI
= &MFP
.getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(Fn
);
574 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
575 SwiftError
->setFunction(mf
);
576 const Function
&Fn
= mf
.getFunction();
578 bool InstrRef
= mf
.shouldUseDebugInstrRef();
580 FuncInfo
->set(MF
->getFunction(), *MF
, CurDAG
);
582 ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName
<< '\n');
584 SDB
->init(GFI
, AA
, AC
, LibInfo
);
586 MF
->setHasInlineAsm(false);
588 FuncInfo
->SplitCSR
= false;
590 // We split CSR if the target supports it for the given function
591 // and the function has only return exits.
592 if (OptLevel
!= CodeGenOptLevel::None
&& TLI
->supportSplitCSR(MF
)) {
593 FuncInfo
->SplitCSR
= true;
595 // Collect all the return blocks.
596 for (const BasicBlock
&BB
: Fn
) {
597 if (!succ_empty(&BB
))
600 const Instruction
*Term
= BB
.getTerminator();
601 if (isa
<UnreachableInst
>(Term
) || isa
<ReturnInst
>(Term
))
604 // Bail out if the exit block is not Return nor Unreachable.
605 FuncInfo
->SplitCSR
= false;
610 MachineBasicBlock
*EntryMBB
= &MF
->front();
611 if (FuncInfo
->SplitCSR
)
612 // This performs initialization so lowering for SplitCSR will be correct.
613 TLI
->initializeSplitCSR(EntryMBB
);
615 SelectAllBasicBlocks(Fn
);
616 if (FastISelFailed
&& EnableFastISelFallbackReport
) {
617 DiagnosticInfoISelFallback
DiagFallback(Fn
);
618 Fn
.getContext().diagnose(DiagFallback
);
621 // Replace forward-declared registers with the registers containing
622 // the desired value.
623 // Note: it is important that this happens **before** the call to
624 // EmitLiveInCopies, since implementations can skip copies of unused
625 // registers. If we don't apply the reg fixups before, some registers may
626 // appear as unused and will be skipped, resulting in bad MI.
627 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
628 for (DenseMap
<Register
, Register
>::iterator I
= FuncInfo
->RegFixups
.begin(),
629 E
= FuncInfo
->RegFixups
.end();
631 Register From
= I
->first
;
632 Register To
= I
->second
;
633 // If To is also scheduled to be replaced, find what its ultimate
636 DenseMap
<Register
, Register
>::iterator J
= FuncInfo
->RegFixups
.find(To
);
641 // Make sure the new register has a sufficiently constrained register class.
642 if (From
.isVirtual() && To
.isVirtual())
643 MRI
.constrainRegClass(To
, MRI
.getRegClass(From
));
646 // Replacing one register with another won't touch the kill flags.
647 // We need to conservatively clear the kill flags as a kill on the old
648 // register might dominate existing uses of the new register.
649 if (!MRI
.use_empty(To
))
650 MRI
.clearKillFlags(From
);
651 MRI
.replaceRegWith(From
, To
);
654 // If the first basic block in the function has live ins that need to be
655 // copied into vregs, emit the copies into the top of the block before
656 // emitting the code for the block.
657 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
658 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, *TII
);
660 // Insert copies in the entry block and the return blocks.
661 if (FuncInfo
->SplitCSR
) {
662 SmallVector
<MachineBasicBlock
*, 4> Returns
;
663 // Collect all the return blocks.
664 for (MachineBasicBlock
&MBB
: mf
) {
665 if (!MBB
.succ_empty())
668 MachineBasicBlock::iterator Term
= MBB
.getFirstTerminator();
669 if (Term
!= MBB
.end() && Term
->isReturn()) {
670 Returns
.push_back(&MBB
);
674 TLI
->insertCopiesSplitCSR(EntryMBB
, Returns
);
677 DenseMap
<MCRegister
, Register
> LiveInMap
;
678 if (!FuncInfo
->ArgDbgValues
.empty())
679 for (std::pair
<MCRegister
, Register
> LI
: RegInfo
->liveins())
681 LiveInMap
.insert(LI
);
683 // Insert DBG_VALUE instructions for function arguments to the entry block.
684 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
685 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
- i
- 1];
686 assert(MI
->getOpcode() != TargetOpcode::DBG_VALUE_LIST
&&
687 "Function parameters should not be described by DBG_VALUE_LIST.");
688 bool hasFI
= MI
->getDebugOperand(0).isFI();
690 hasFI
? TRI
.getFrameRegister(*MF
) : MI
->getDebugOperand(0).getReg();
691 if (Reg
.isPhysical())
692 EntryMBB
->insert(EntryMBB
->begin(), MI
);
694 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
696 MachineBasicBlock::iterator InsertPos
= Def
;
697 // FIXME: VR def may not be in entry block.
698 Def
->getParent()->insert(std::next(InsertPos
), MI
);
700 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
701 << Register::virtReg2Index(Reg
) << "\n");
704 // Don't try and extend through copies in instruction referencing mode.
708 // If Reg is live-in then update debug info to track its copy in a vreg.
709 DenseMap
<MCRegister
, Register
>::iterator LDI
= LiveInMap
.find(Reg
);
710 if (LDI
!= LiveInMap
.end()) {
711 assert(!hasFI
&& "There's no handling of frame pointer updating here yet "
713 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
714 MachineBasicBlock::iterator InsertPos
= Def
;
715 const MDNode
*Variable
= MI
->getDebugVariable();
716 const MDNode
*Expr
= MI
->getDebugExpression();
717 DebugLoc DL
= MI
->getDebugLoc();
718 bool IsIndirect
= MI
->isIndirectDebugValue();
720 assert(MI
->getDebugOffset().getImm() == 0 &&
721 "DBG_VALUE with nonzero offset");
722 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
723 "Expected inlined-at fields to agree");
724 assert(MI
->getOpcode() != TargetOpcode::DBG_VALUE_LIST
&&
725 "Didn't expect to see a DBG_VALUE_LIST here");
726 // Def is never a terminator here, so it is ok to increment InsertPos.
727 BuildMI(*EntryMBB
, ++InsertPos
, DL
, TII
->get(TargetOpcode::DBG_VALUE
),
728 IsIndirect
, LDI
->second
, Variable
, Expr
);
730 // If this vreg is directly copied into an exported register then
731 // that COPY instructions also need DBG_VALUE, if it is the only
732 // user of LDI->second.
733 MachineInstr
*CopyUseMI
= nullptr;
734 for (MachineInstr
&UseMI
: RegInfo
->use_instructions(LDI
->second
)) {
735 if (UseMI
.isDebugValue())
737 if (UseMI
.isCopy() && !CopyUseMI
&& UseMI
.getParent() == EntryMBB
) {
741 // Otherwise this is another use or second copy use.
746 TRI
.getRegSizeInBits(LDI
->second
, MRI
) ==
747 TRI
.getRegSizeInBits(CopyUseMI
->getOperand(0).getReg(), MRI
)) {
748 // Use MI's debug location, which describes where Variable was
749 // declared, rather than whatever is attached to CopyUseMI.
750 MachineInstr
*NewMI
=
751 BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
752 CopyUseMI
->getOperand(0).getReg(), Variable
, Expr
);
753 MachineBasicBlock::iterator Pos
= CopyUseMI
;
754 EntryMBB
->insertAfter(Pos
, NewMI
);
759 // For debug-info, in instruction referencing mode, we need to perform some
760 // post-isel maintenence.
761 if (MF
->useDebugInstrRef())
762 MF
->finalizeDebugInstrRefs();
764 // Determine if there are any calls in this machine function.
765 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
766 for (const auto &MBB
: *MF
) {
767 if (MFI
.hasCalls() && MF
->hasInlineAsm())
770 for (const auto &MI
: MBB
) {
771 const MCInstrDesc
&MCID
= TII
->get(MI
.getOpcode());
772 if ((MCID
.isCall() && !MCID
.isReturn()) ||
773 MI
.isStackAligningInlineAsm()) {
774 MFI
.setHasCalls(true);
776 if (MI
.isInlineAsm()) {
777 MF
->setHasInlineAsm(true);
782 // Release function-specific state. SDB and CurDAG are already cleared
786 ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n");
787 ISEL_DUMP(MF
->print(dbgs()));
792 static void reportFastISelFailure(MachineFunction
&MF
,
793 OptimizationRemarkEmitter
&ORE
,
794 OptimizationRemarkMissed
&R
,
796 // Print the function name explicitly if we don't have a debug location (which
797 // makes the diagnostic less useful) or if we're going to emit a raw error.
798 if (!R
.getLocation().isValid() || ShouldAbort
)
799 R
<< (" (in function: " + MF
.getName() + ")").str();
802 report_fatal_error(Twine(R
.getMsg()));
805 LLVM_DEBUG(dbgs() << R
.getMsg() << "\n");
808 // Detect any fake uses that follow a tail call and move them before the tail
809 // call. Ignore fake uses that use values that are def'd by or after the tail
811 static void preserveFakeUses(BasicBlock::iterator Begin
,
812 BasicBlock::iterator End
) {
813 BasicBlock::iterator I
= End
;
814 if (--I
== Begin
|| !isa
<ReturnInst
>(*I
))
816 // Detect whether there are any fake uses trailing a (potential) tail call.
817 bool HaveFakeUse
= false;
818 bool HaveTailCall
= false;
820 if (const CallInst
*CI
= dyn_cast
<CallInst
>(--I
))
821 if (CI
->isTailCall()) {
825 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
826 if (II
->getIntrinsicID() == Intrinsic::fake_use
)
828 } while (I
!= Begin
);
830 // If we didn't find any tail calls followed by fake uses, we are done.
831 if (!HaveTailCall
|| !HaveFakeUse
)
834 SmallVector
<IntrinsicInst
*> FakeUses
;
835 // Record the fake uses we found so we can move them to the front of the
836 // tail call. Ignore them if they use a value that is def'd by or after
838 for (BasicBlock::iterator Inst
= I
; Inst
!= End
; Inst
++) {
839 if (IntrinsicInst
*FakeUse
= dyn_cast
<IntrinsicInst
>(Inst
);
840 FakeUse
&& FakeUse
->getIntrinsicID() == Intrinsic::fake_use
) {
841 if (auto UsedDef
= dyn_cast
<Instruction
>(FakeUse
->getOperand(0));
842 !UsedDef
|| UsedDef
->getParent() != I
->getParent() ||
843 UsedDef
->comesBefore(&*I
))
844 FakeUses
.push_back(FakeUse
);
848 for (auto *Inst
: FakeUses
)
849 Inst
->moveBefore(*Inst
->getParent(), I
);
852 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
853 BasicBlock::const_iterator End
,
855 // Allow creating illegal types during DAG building for the basic block.
856 CurDAG
->NewNodesMustHaveLegalTypes
= false;
858 // Lower the instructions. If a call is emitted as a tail call, cease emitting
859 // nodes for this block. If an instruction is elided, don't emit it, but do
860 // handle any debug-info attached to it.
861 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
) {
862 if (!ElidedArgCopyInstrs
.count(&*I
))
865 SDB
->visitDbgInfo(*I
);
868 // Make sure the root of the DAG is up-to-date.
869 CurDAG
->setRoot(SDB
->getControlRoot());
870 HadTailCall
= SDB
->HasTailCall
;
871 SDB
->resolveOrClearDbgInfo();
874 // Final step, emit the lowered DAG as machine code.
878 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
879 SmallPtrSet
<SDNode
*, 16> Added
;
880 SmallVector
<SDNode
*, 128> Worklist
;
882 Worklist
.push_back(CurDAG
->getRoot().getNode());
883 Added
.insert(CurDAG
->getRoot().getNode());
888 SDNode
*N
= Worklist
.pop_back_val();
890 // Otherwise, add all chain operands to the worklist.
891 for (const SDValue
&Op
: N
->op_values())
892 if (Op
.getValueType() == MVT::Other
&& Added
.insert(Op
.getNode()).second
)
893 Worklist
.push_back(Op
.getNode());
895 // If this is a CopyToReg with a vreg dest, process it.
896 if (N
->getOpcode() != ISD::CopyToReg
)
899 Register DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
900 if (!DestReg
.isVirtual())
903 // Ignore non-integer values.
904 SDValue Src
= N
->getOperand(2);
905 EVT SrcVT
= Src
.getValueType();
906 if (!SrcVT
.isInteger())
909 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
910 Known
= CurDAG
->computeKnownBits(Src
);
911 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, Known
);
912 } while (!Worklist
.empty());
915 void SelectionDAGISel::CodeGenAndEmitDAG() {
916 StringRef GroupName
= "sdag";
917 StringRef GroupDescription
= "Instruction Selection and Scheduling";
918 std::string BlockName
;
919 bool MatchFilterBB
= false;
922 // Pre-type legalization allow creation of any node types.
923 CurDAG
->NewNodesMustHaveLegalTypes
= false;
926 MatchFilterBB
= (FilterDAGBasicBlockName
.empty() ||
927 FilterDAGBasicBlockName
==
928 FuncInfo
->MBB
->getBasicBlock()->getName());
931 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewDAGCombineLT
||
932 ViewLegalizeDAGs
|| ViewDAGCombine2
|| ViewISelDAGs
|| ViewSchedDAGs
||
937 (MF
->getName() + ":" + FuncInfo
->MBB
->getBasicBlock()->getName()).str();
939 ISEL_DUMP(dbgs() << "\nInitial selection DAG: "
940 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
944 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
945 if (TTI
->hasBranchDivergence())
946 CurDAG
->VerifyDAGDivergence();
949 if (ViewDAGCombine1
&& MatchFilterBB
)
950 CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
952 // Run the DAG combiner in pre-legalize mode.
954 NamedRegionTimer
T("combine1", "DAG Combining 1", GroupName
,
955 GroupDescription
, TimePassesIsEnabled
);
956 CurDAG
->Combine(BeforeLegalizeTypes
, AA
, OptLevel
);
959 ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: "
960 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
964 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
965 if (TTI
->hasBranchDivergence())
966 CurDAG
->VerifyDAGDivergence();
969 // Second step, hack on the DAG until it only uses operations and types that
970 // the target supports.
971 if (ViewLegalizeTypesDAGs
&& MatchFilterBB
)
972 CurDAG
->viewGraph("legalize-types input for " + BlockName
);
976 NamedRegionTimer
T("legalize_types", "Type Legalization", GroupName
,
977 GroupDescription
, TimePassesIsEnabled
);
978 Changed
= CurDAG
->LegalizeTypes();
981 ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: "
982 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
986 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
987 if (TTI
->hasBranchDivergence())
988 CurDAG
->VerifyDAGDivergence();
991 // Only allow creation of legal node types.
992 CurDAG
->NewNodesMustHaveLegalTypes
= true;
995 if (ViewDAGCombineLT
&& MatchFilterBB
)
996 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
998 // Run the DAG combiner in post-type-legalize mode.
1000 NamedRegionTimer
T("combine_lt", "DAG Combining after legalize types",
1001 GroupName
, GroupDescription
, TimePassesIsEnabled
);
1002 CurDAG
->Combine(AfterLegalizeTypes
, AA
, OptLevel
);
1005 ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: "
1006 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1010 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1011 if (TTI
->hasBranchDivergence())
1012 CurDAG
->VerifyDAGDivergence();
1017 NamedRegionTimer
T("legalize_vec", "Vector Legalization", GroupName
,
1018 GroupDescription
, TimePassesIsEnabled
);
1019 Changed
= CurDAG
->LegalizeVectors();
1023 ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: "
1024 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1028 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1029 if (TTI
->hasBranchDivergence())
1030 CurDAG
->VerifyDAGDivergence();
1034 NamedRegionTimer
T("legalize_types2", "Type Legalization 2", GroupName
,
1035 GroupDescription
, TimePassesIsEnabled
);
1036 CurDAG
->LegalizeTypes();
1039 ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: "
1040 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1044 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1045 if (TTI
->hasBranchDivergence())
1046 CurDAG
->VerifyDAGDivergence();
1049 if (ViewDAGCombineLT
&& MatchFilterBB
)
1050 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
1052 // Run the DAG combiner in post-type-legalize mode.
1054 NamedRegionTimer
T("combine_lv", "DAG Combining after legalize vectors",
1055 GroupName
, GroupDescription
, TimePassesIsEnabled
);
1056 CurDAG
->Combine(AfterLegalizeVectorOps
, AA
, OptLevel
);
1059 ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: "
1060 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1064 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1065 if (TTI
->hasBranchDivergence())
1066 CurDAG
->VerifyDAGDivergence();
1070 if (ViewLegalizeDAGs
&& MatchFilterBB
)
1071 CurDAG
->viewGraph("legalize input for " + BlockName
);
1074 NamedRegionTimer
T("legalize", "DAG Legalization", GroupName
,
1075 GroupDescription
, TimePassesIsEnabled
);
1079 ISEL_DUMP(dbgs() << "\nLegalized selection DAG: "
1080 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1084 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1085 if (TTI
->hasBranchDivergence())
1086 CurDAG
->VerifyDAGDivergence();
1089 if (ViewDAGCombine2
&& MatchFilterBB
)
1090 CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
1092 // Run the DAG combiner in post-legalize mode.
1094 NamedRegionTimer
T("combine2", "DAG Combining 2", GroupName
,
1095 GroupDescription
, TimePassesIsEnabled
);
1096 CurDAG
->Combine(AfterLegalizeDAG
, AA
, OptLevel
);
1099 ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: "
1100 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1104 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1105 if (TTI
->hasBranchDivergence())
1106 CurDAG
->VerifyDAGDivergence();
1109 if (OptLevel
!= CodeGenOptLevel::None
)
1110 ComputeLiveOutVRegInfo();
1112 if (ViewISelDAGs
&& MatchFilterBB
)
1113 CurDAG
->viewGraph("isel input for " + BlockName
);
1115 // Third, instruction select all of the operations to machine code, adding the
1116 // code to the MachineBasicBlock.
1118 NamedRegionTimer
T("isel", "Instruction Selection", GroupName
,
1119 GroupDescription
, TimePassesIsEnabled
);
1120 DoInstructionSelection();
1123 ISEL_DUMP(dbgs() << "\nSelected selection DAG: "
1124 << printMBBReference(*FuncInfo
->MBB
) << " '" << BlockName
1128 if (ViewSchedDAGs
&& MatchFilterBB
)
1129 CurDAG
->viewGraph("scheduler input for " + BlockName
);
1131 // Schedule machine code.
1132 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
1134 NamedRegionTimer
T("sched", "Instruction Scheduling", GroupName
,
1135 GroupDescription
, TimePassesIsEnabled
);
1136 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
);
1139 if (ViewSUnitDAGs
&& MatchFilterBB
)
1140 Scheduler
->viewGraph();
1142 // Emit machine code to BB. This can change 'BB' to the last block being
1144 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
1146 NamedRegionTimer
T("emit", "Instruction Creation", GroupName
,
1147 GroupDescription
, TimePassesIsEnabled
);
1149 // FuncInfo->InsertPt is passed by reference and set to the end of the
1150 // scheduled instructions.
1151 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule(FuncInfo
->InsertPt
);
1154 // If the block was split, make sure we update any references that are used to
1155 // update PHI nodes later on.
1156 if (FirstMBB
!= LastMBB
)
1157 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
1159 // Free the scheduler state.
1161 NamedRegionTimer
T("cleanup", "Instruction Scheduling Cleanup", GroupName
,
1162 GroupDescription
, TimePassesIsEnabled
);
1166 // Free the SelectionDAG state, now that we're finished with it.
1172 /// ISelUpdater - helper class to handle updates of the instruction selection
1174 class ISelUpdater
: public SelectionDAG::DAGUpdateListener
{
1175 SelectionDAG::allnodes_iterator
&ISelPosition
;
1178 ISelUpdater(SelectionDAG
&DAG
, SelectionDAG::allnodes_iterator
&isp
)
1179 : SelectionDAG::DAGUpdateListener(DAG
), ISelPosition(isp
) {}
1181 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1182 /// deleted is the current ISelPosition node, update ISelPosition.
1184 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
1185 if (ISelPosition
== SelectionDAG::allnodes_iterator(N
))
1189 /// NodeInserted - Handle new nodes inserted into the graph: propagate
1190 /// metadata from root nodes that also applies to new nodes, in case the root
1191 /// is later deleted.
1192 void NodeInserted(SDNode
*N
) override
{
1193 SDNode
*CurNode
= &*ISelPosition
;
1194 if (MDNode
*MD
= DAG
.getPCSections(CurNode
))
1195 DAG
.addPCSections(N
, MD
);
1196 if (MDNode
*MMRA
= DAG
.getMMRAMetadata(CurNode
))
1197 DAG
.addMMRAMetadata(N
, MMRA
);
1201 } // end anonymous namespace
1203 // This function is used to enforce the topological node id property
1204 // leveraged during instruction selection. Before the selection process all
1205 // nodes are given a non-negative id such that all nodes have a greater id than
1206 // their operands. As this holds transitively we can prune checks that a node N
1207 // is a predecessor of M another by not recursively checking through M's
1208 // operands if N's ID is larger than M's ID. This significantly improves
1209 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1211 // However, when we fuse multiple nodes into a single node during the
1212 // selection we may induce a predecessor relationship between inputs and
1213 // outputs of distinct nodes being merged, violating the topological property.
1214 // Should a fused node have a successor which has yet to be selected,
1215 // our legality checks would be incorrect. To avoid this we mark all unselected
1216 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1217 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1218 // We use bit-negation to more clearly enforce that node id -1 can only be
1219 // achieved by selected nodes. As the conversion is reversable to the original
1220 // Id, topological pruning can still be leveraged when looking for unselected
1221 // nodes. This method is called internally in all ISel replacement related
1223 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode
*Node
) {
1224 SmallVector
<SDNode
*, 4> Nodes
;
1225 Nodes
.push_back(Node
);
1227 while (!Nodes
.empty()) {
1228 SDNode
*N
= Nodes
.pop_back_val();
1229 for (auto *U
: N
->users()) {
1230 auto UId
= U
->getNodeId();
1232 InvalidateNodeId(U
);
1239 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1240 // NodeId with the equivalent node id which is invalid for topological
1242 void SelectionDAGISel::InvalidateNodeId(SDNode
*N
) {
1243 int InvalidId
= -(N
->getNodeId() + 1);
1244 N
->setNodeId(InvalidId
);
1247 // getUninvalidatedNodeId - get original uninvalidated node id.
1248 int SelectionDAGISel::getUninvalidatedNodeId(SDNode
*N
) {
1249 int Id
= N
->getNodeId();
1255 void SelectionDAGISel::DoInstructionSelection() {
1256 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1257 << printMBBReference(*FuncInfo
->MBB
) << " '"
1258 << FuncInfo
->MBB
->getName() << "'\n");
1260 PreprocessISelDAG();
1262 // Select target instructions for the DAG.
1264 // Number all nodes with a topological order and set DAGSize.
1265 DAGSize
= CurDAG
->AssignTopologicalOrder();
1267 // Create a dummy node (which is not added to allnodes), that adds
1268 // a reference to the root node, preventing it from being deleted,
1269 // and tracking any changes of the root.
1270 HandleSDNode
Dummy(CurDAG
->getRoot());
1271 SelectionDAG::allnodes_iterator
ISelPosition (CurDAG
->getRoot().getNode());
1274 // Make sure that ISelPosition gets properly updated when nodes are deleted
1275 // in calls made from this function. New nodes inherit relevant metadata.
1276 ISelUpdater
ISU(*CurDAG
, ISelPosition
);
1278 // The AllNodes list is now topological-sorted. Visit the
1279 // nodes by starting at the end of the list (the root of the
1280 // graph) and preceding back toward the beginning (the entry
1282 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
1283 SDNode
*Node
= &*--ISelPosition
;
1284 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1285 // but there are currently some corner cases that it misses. Also, this
1286 // makes it theoretically possible to disable the DAGCombiner.
1287 if (Node
->use_empty())
1291 SmallVector
<SDNode
*, 4> Nodes
;
1292 Nodes
.push_back(Node
);
1294 while (!Nodes
.empty()) {
1295 auto N
= Nodes
.pop_back_val();
1296 if (N
->getOpcode() == ISD::TokenFactor
|| N
->getNodeId() < 0)
1298 for (const SDValue
&Op
: N
->op_values()) {
1299 if (Op
->getOpcode() == ISD::TokenFactor
)
1300 Nodes
.push_back(Op
.getNode());
1302 // We rely on topological ordering of node ids for checking for
1303 // cycles when fusing nodes during selection. All unselected nodes
1304 // successors of an already selected node should have a negative id.
1305 // This assertion will catch such cases. If this assertion triggers
1306 // it is likely you using DAG-level Value/Node replacement functions
1307 // (versus equivalent ISEL replacement) in backend-specific
1308 // selections. See comment in EnforceNodeIdInvariant for more
1310 assert(Op
->getNodeId() != -1 &&
1311 "Node has already selected predecessor node");
1317 // When we are using non-default rounding modes or FP exception behavior
1318 // FP operations are represented by StrictFP pseudo-operations. For
1319 // targets that do not (yet) understand strict FP operations directly,
1320 // we convert them to normal FP opcodes instead at this point. This
1321 // will allow them to be handled by existing target-specific instruction
1323 if (!TLI
->isStrictFPEnabled() && Node
->isStrictFPOpcode()) {
1324 // For some opcodes, we need to call TLI->getOperationAction using
1325 // the first operand type instead of the result type. Note that this
1326 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1328 switch (Node
->getOpcode()) {
1329 case ISD::STRICT_SINT_TO_FP
:
1330 case ISD::STRICT_UINT_TO_FP
:
1331 case ISD::STRICT_LRINT
:
1332 case ISD::STRICT_LLRINT
:
1333 case ISD::STRICT_LROUND
:
1334 case ISD::STRICT_LLROUND
:
1335 case ISD::STRICT_FSETCC
:
1336 case ISD::STRICT_FSETCCS
:
1337 ActionVT
= Node
->getOperand(1).getValueType();
1340 ActionVT
= Node
->getValueType(0);
1343 if (TLI
->getOperationAction(Node
->getOpcode(), ActionVT
)
1344 == TargetLowering::Expand
)
1345 Node
= CurDAG
->mutateStrictFPToFP(Node
);
1348 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1349 Node
->dump(CurDAG
));
1354 CurDAG
->setRoot(Dummy
.getValue());
1357 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1359 PostprocessISelDAG();
1362 static bool hasExceptionPointerOrCodeUser(const CatchPadInst
*CPI
) {
1363 for (const User
*U
: CPI
->users()) {
1364 if (const IntrinsicInst
*EHPtrCall
= dyn_cast
<IntrinsicInst
>(U
)) {
1365 Intrinsic::ID IID
= EHPtrCall
->getIntrinsicID();
1366 if (IID
== Intrinsic::eh_exceptionpointer
||
1367 IID
== Intrinsic::eh_exceptioncode
)
1374 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1375 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1376 // and store the mapping in the function.
1377 static void mapWasmLandingPadIndex(MachineBasicBlock
*MBB
,
1378 const CatchPadInst
*CPI
) {
1379 MachineFunction
*MF
= MBB
->getParent();
1380 // In case of single catch (...), we don't emit LSDA, so we don't need
1381 // this information.
1382 bool IsSingleCatchAllClause
=
1383 CPI
->arg_size() == 1 &&
1384 cast
<Constant
>(CPI
->getArgOperand(0))->isNullValue();
1385 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1386 // and they don't need LSDA info
1387 bool IsCatchLongjmp
= CPI
->arg_size() == 0;
1388 if (!IsSingleCatchAllClause
&& !IsCatchLongjmp
) {
1389 // Create a mapping from landing pad label to landing pad index.
1390 bool IntrFound
= false;
1391 for (const User
*U
: CPI
->users()) {
1392 if (const auto *Call
= dyn_cast
<IntrinsicInst
>(U
)) {
1393 Intrinsic::ID IID
= Call
->getIntrinsicID();
1394 if (IID
== Intrinsic::wasm_landingpad_index
) {
1395 Value
*IndexArg
= Call
->getArgOperand(1);
1396 int Index
= cast
<ConstantInt
>(IndexArg
)->getZExtValue();
1397 MF
->setWasmLandingPadIndex(MBB
, Index
);
1403 assert(IntrFound
&& "wasm.landingpad.index intrinsic not found!");
1408 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1409 /// do other setup for EH landing-pad blocks.
1410 bool SelectionDAGISel::PrepareEHLandingPad() {
1411 MachineBasicBlock
*MBB
= FuncInfo
->MBB
;
1412 const Constant
*PersonalityFn
= FuncInfo
->Fn
->getPersonalityFn();
1413 const BasicBlock
*LLVMBB
= MBB
->getBasicBlock();
1414 const TargetRegisterClass
*PtrRC
=
1415 TLI
->getRegClassFor(TLI
->getPointerTy(CurDAG
->getDataLayout()));
1417 auto Pers
= classifyEHPersonality(PersonalityFn
);
1419 // Catchpads have one live-in register, which typically holds the exception
1421 if (isFuncletEHPersonality(Pers
)) {
1422 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI())) {
1423 if (hasExceptionPointerOrCodeUser(CPI
)) {
1424 // Get or create the virtual register to hold the pointer or code. Mark
1425 // the live in physreg and copy into the vreg.
1426 MCPhysReg EHPhysReg
= TLI
->getExceptionPointerRegister(PersonalityFn
);
1427 assert(EHPhysReg
&& "target lacks exception pointer register");
1428 MBB
->addLiveIn(EHPhysReg
);
1429 unsigned VReg
= FuncInfo
->getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
1430 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(),
1431 TII
->get(TargetOpcode::COPY
), VReg
)
1432 .addReg(EHPhysReg
, RegState::Kill
);
1438 // Add a label to mark the beginning of the landing pad. Deletion of the
1439 // landing pad can thus be detected via the MachineModuleInfo.
1440 MCSymbol
*Label
= MF
->addLandingPad(MBB
);
1442 const MCInstrDesc
&II
= TII
->get(TargetOpcode::EH_LABEL
);
1443 BuildMI(*MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
1446 // If the unwinder does not preserve all registers, ensure that the
1447 // function marks the clobbered registers as used.
1448 const TargetRegisterInfo
&TRI
= *MF
->getSubtarget().getRegisterInfo();
1449 if (auto *RegMask
= TRI
.getCustomEHPadPreservedMask(*MF
))
1450 MF
->getRegInfo().addPhysRegsUsedFromRegMask(RegMask
);
1452 if (Pers
== EHPersonality::Wasm_CXX
) {
1453 if (const auto *CPI
= dyn_cast
<CatchPadInst
>(LLVMBB
->getFirstNonPHI()))
1454 mapWasmLandingPadIndex(MBB
, CPI
);
1456 // Assign the call site to the landing pad's begin label.
1457 MF
->setCallSiteLandingPad(Label
, SDB
->LPadToCallSiteMap
[MBB
]);
1458 // Mark exception register as live in.
1459 if (unsigned Reg
= TLI
->getExceptionPointerRegister(PersonalityFn
))
1460 FuncInfo
->ExceptionPointerVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1461 // Mark exception selector register as live in.
1462 if (unsigned Reg
= TLI
->getExceptionSelectorRegister(PersonalityFn
))
1463 FuncInfo
->ExceptionSelectorVirtReg
= MBB
->addLiveIn(Reg
, PtrRC
);
1469 // Mark and Report IPToState for each Block under IsEHa
1470 void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction
*MF
) {
1471 llvm::WinEHFuncInfo
*EHInfo
= MF
->getWinEHFuncInfo();
1474 for (MachineBasicBlock
&MBB
: *MF
) {
1475 const BasicBlock
*BB
= MBB
.getBasicBlock();
1476 int State
= EHInfo
->BlockToStateMap
[BB
];
1477 if (BB
->getFirstMayFaultInst()) {
1478 // Report IP range only for blocks with Faulty inst
1479 auto MBBb
= MBB
.getFirstNonPHI();
1481 if (MBBb
== MBB
.end())
1484 MachineInstr
*MIb
= &*MBBb
;
1485 if (MIb
->isTerminator())
1489 MCSymbol
*BeginLabel
= MF
->getContext().createTempSymbol();
1490 MCSymbol
*EndLabel
= MF
->getContext().createTempSymbol();
1491 EHInfo
->addIPToStateRange(State
, BeginLabel
, EndLabel
);
1492 BuildMI(MBB
, MBBb
, SDB
->getCurDebugLoc(),
1493 TII
->get(TargetOpcode::EH_LABEL
))
1494 .addSym(BeginLabel
);
1495 auto MBBe
= MBB
.instr_end();
1496 MachineInstr
*MIe
= &*(--MBBe
);
1497 // insert before (possible multiple) terminators
1498 while (MIe
->isTerminator())
1501 BuildMI(MBB
, MBBe
, SDB
->getCurDebugLoc(),
1502 TII
->get(TargetOpcode::EH_LABEL
))
1508 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1509 /// side-effect free and is either dead or folded into a generated instruction.
1510 /// Return false if it needs to be emitted.
1511 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
1512 const FunctionLoweringInfo
&FuncInfo
) {
1513 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1514 !I
->isTerminator() && // Terminators aren't folded.
1515 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
1516 !I
->isEHPad() && // EH pad instructions aren't folded.
1517 !FuncInfo
.isExportedInst(I
); // Exported instrs must be computed.
1520 static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo
&FuncInfo
,
1521 const Value
*Arg
, DIExpression
*Expr
,
1522 DILocalVariable
*Var
,
1524 if (!Expr
->isEntryValue() || !isa
<Argument
>(Arg
))
1527 auto ArgIt
= FuncInfo
.ValueMap
.find(Arg
);
1528 if (ArgIt
== FuncInfo
.ValueMap
.end())
1530 Register ArgVReg
= ArgIt
->getSecond();
1532 // Find the corresponding livein physical register to this argument.
1533 for (auto [PhysReg
, VirtReg
] : FuncInfo
.RegInfo
->liveins())
1534 if (VirtReg
== ArgVReg
) {
1535 // Append an op deref to account for the fact that this is a dbg_declare.
1536 Expr
= DIExpression::append(Expr
, dwarf::DW_OP_deref
);
1537 FuncInfo
.MF
->setVariableDbgInfo(Var
, Expr
, PhysReg
, DbgLoc
);
1538 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1539 << ", Expr=" << *Expr
<< ", MCRegister=" << PhysReg
1540 << ", DbgLoc=" << DbgLoc
<< "\n");
1546 static bool processDbgDeclare(FunctionLoweringInfo
&FuncInfo
,
1547 const Value
*Address
, DIExpression
*Expr
,
1548 DILocalVariable
*Var
, DebugLoc DbgLoc
) {
1550 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var
1551 << " (bad address)\n");
1555 if (processIfEntryValueDbgDeclare(FuncInfo
, Address
, Expr
, Var
, DbgLoc
))
1558 MachineFunction
*MF
= FuncInfo
.MF
;
1559 const DataLayout
&DL
= MF
->getDataLayout();
1561 assert(Var
&& "Missing variable");
1562 assert(DbgLoc
&& "Missing location");
1564 // Look through casts and constant offset GEPs. These mostly come from
1566 APInt
Offset(DL
.getTypeSizeInBits(Address
->getType()), 0);
1567 Address
= Address
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
);
1569 // Check if the variable is a static alloca or a byval or inalloca
1570 // argument passed in memory. If it is not, then we will ignore this
1571 // intrinsic and handle this during isel like dbg.value.
1572 int FI
= std::numeric_limits
<int>::max();
1573 if (const auto *AI
= dyn_cast
<AllocaInst
>(Address
)) {
1574 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1575 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1577 } else if (const auto *Arg
= dyn_cast
<Argument
>(Address
))
1578 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
1580 if (FI
== std::numeric_limits
<int>::max())
1583 if (Offset
.getBoolValue())
1584 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
,
1585 Offset
.getZExtValue());
1587 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1588 << ", Expr=" << *Expr
<< ", FI=" << FI
1589 << ", DbgLoc=" << DbgLoc
<< "\n");
1590 MF
->setVariableDbgInfo(Var
, Expr
, FI
, DbgLoc
);
1594 /// Collect llvm.dbg.declare information. This is done after argument lowering
1595 /// in case the declarations refer to arguments.
1596 static void processDbgDeclares(FunctionLoweringInfo
&FuncInfo
) {
1597 for (const auto &I
: instructions(*FuncInfo
.Fn
)) {
1598 const auto *DI
= dyn_cast
<DbgDeclareInst
>(&I
);
1599 if (DI
&& processDbgDeclare(FuncInfo
, DI
->getAddress(), DI
->getExpression(),
1600 DI
->getVariable(), DI
->getDebugLoc()))
1601 FuncInfo
.PreprocessedDbgDeclares
.insert(DI
);
1602 for (const DbgVariableRecord
&DVR
: filterDbgVars(I
.getDbgRecordRange())) {
1603 if (DVR
.Type
== DbgVariableRecord::LocationType::Declare
&&
1604 processDbgDeclare(FuncInfo
, DVR
.getVariableLocationOp(0),
1605 DVR
.getExpression(), DVR
.getVariable(),
1607 FuncInfo
.PreprocessedDVRDeclares
.insert(&DVR
);
1612 /// Collect single location variable information generated with assignment
1613 /// tracking. This is done after argument lowering in case the declarations
1614 /// refer to arguments.
1615 static void processSingleLocVars(FunctionLoweringInfo
&FuncInfo
,
1616 FunctionVarLocs
const *FnVarLocs
) {
1617 for (auto It
= FnVarLocs
->single_locs_begin(),
1618 End
= FnVarLocs
->single_locs_end();
1620 assert(!It
->Values
.hasArgList() && "Single loc variadic ops not supported");
1621 processDbgDeclare(FuncInfo
, It
->Values
.getVariableLocationOp(0), It
->Expr
,
1622 FnVarLocs
->getDILocalVariable(It
->VariableID
), It
->DL
);
1626 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
1627 FastISelFailed
= false;
1628 // Initialize the Fast-ISel state, if needed.
1629 FastISel
*FastIS
= nullptr;
1630 if (TM
.Options
.EnableFastISel
) {
1631 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1632 FastIS
= TLI
->createFastISel(*FuncInfo
, LibInfo
);
1635 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
1637 // Lower arguments up front. An RPO iteration always visits the entry block
1639 assert(*RPOT
.begin() == &Fn
.getEntryBlock());
1642 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1643 FuncInfo
->MBB
= FuncInfo
->getMBB(&Fn
.getEntryBlock());
1644 FuncInfo
->InsertPt
= FuncInfo
->MBB
->begin();
1646 CurDAG
->setFunctionLoweringInfo(FuncInfo
.get());
1651 // See if fast isel can lower the arguments.
1652 FastIS
->startNewBlock();
1653 if (!FastIS
->lowerArguments()) {
1654 FastISelFailed
= true;
1655 // Fast isel failed to lower these arguments
1656 ++NumFastIselFailLowerArguments
;
1658 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1660 &Fn
.getEntryBlock());
1661 R
<< "FastISel didn't lower all arguments: "
1662 << ore::NV("Prototype", Fn
.getFunctionType());
1663 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 1);
1665 // Use SelectionDAG argument lowering
1667 CurDAG
->setRoot(SDB
->getControlRoot());
1669 CodeGenAndEmitDAG();
1672 // If we inserted any instructions at the beginning, make a note of
1673 // where they are, so we can be sure to emit subsequent instructions
1675 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
1676 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1678 FastIS
->setLastLocalValue(nullptr);
1681 bool Inserted
= SwiftError
->createEntriesInEntryBlock(SDB
->getCurDebugLoc());
1683 if (FastIS
&& Inserted
)
1684 FastIS
->setLastLocalValue(&*std::prev(FuncInfo
->InsertPt
));
1686 if (isAssignmentTrackingEnabled(*Fn
.getParent())) {
1687 assert(CurDAG
->getFunctionVarLocs() &&
1688 "expected AssignmentTrackingAnalysis pass results");
1689 processSingleLocVars(*FuncInfo
, CurDAG
->getFunctionVarLocs());
1691 processDbgDeclares(*FuncInfo
);
1694 // Iterate over all basic blocks in the function.
1695 FuncInfo
->VisitedBBs
.assign(Fn
.getMaxBlockNumber(), false);
1696 for (const BasicBlock
*LLVMBB
: RPOT
) {
1697 if (OptLevel
!= CodeGenOptLevel::None
) {
1698 bool AllPredsVisited
= true;
1699 for (const BasicBlock
*Pred
: predecessors(LLVMBB
)) {
1700 if (!FuncInfo
->VisitedBBs
[Pred
->getNumber()]) {
1701 AllPredsVisited
= false;
1706 if (AllPredsVisited
) {
1707 for (const PHINode
&PN
: LLVMBB
->phis())
1708 FuncInfo
->ComputePHILiveOutRegInfo(&PN
);
1710 for (const PHINode
&PN
: LLVMBB
->phis())
1711 FuncInfo
->InvalidatePHILiveOutRegInfo(&PN
);
1714 FuncInfo
->VisitedBBs
[LLVMBB
->getNumber()] = true;
1717 // Fake uses that follow tail calls are dropped. To avoid this, move
1718 // such fake uses in front of the tail call, provided they don't
1719 // use anything def'd by or after the tail call.
1721 BasicBlock::iterator BBStart
=
1722 const_cast<BasicBlock
*>(LLVMBB
)->getFirstNonPHI()->getIterator();
1723 BasicBlock::iterator BBEnd
= const_cast<BasicBlock
*>(LLVMBB
)->end();
1724 preserveFakeUses(BBStart
, BBEnd
);
1727 BasicBlock::const_iterator
const Begin
=
1728 LLVMBB
->getFirstNonPHI()->getIterator();
1729 BasicBlock::const_iterator
const End
= LLVMBB
->end();
1730 BasicBlock::const_iterator BI
= End
;
1732 FuncInfo
->MBB
= FuncInfo
->getMBB(LLVMBB
);
1734 continue; // Some blocks like catchpads have no code or MBB.
1736 // Insert new instructions after any phi or argument setup code.
1737 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1739 // Setup an EH landing-pad block.
1740 FuncInfo
->ExceptionPointerVirtReg
= 0;
1741 FuncInfo
->ExceptionSelectorVirtReg
= 0;
1742 if (LLVMBB
->isEHPad())
1743 if (!PrepareEHLandingPad())
1746 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1748 if (LLVMBB
!= &Fn
.getEntryBlock())
1749 FastIS
->startNewBlock();
1751 unsigned NumFastIselRemaining
= std::distance(Begin
, End
);
1753 // Pre-assign swifterror vregs.
1754 SwiftError
->preassignVRegs(FuncInfo
->MBB
, Begin
, End
);
1756 // Do FastISel on as many instructions as possible.
1757 for (; BI
!= Begin
; --BI
) {
1758 const Instruction
*Inst
= &*std::prev(BI
);
1760 // If we no longer require this instruction, skip it.
1761 if (isFoldedOrDeadInstruction(Inst
, *FuncInfo
) ||
1762 ElidedArgCopyInstrs
.count(Inst
)) {
1763 --NumFastIselRemaining
;
1764 FastIS
->handleDbgInfo(Inst
);
1768 // Bottom-up: reset the insert pos at the top, after any local-value
1770 FastIS
->recomputeInsertPt();
1772 // Try to select the instruction with FastISel.
1773 if (FastIS
->selectInstruction(Inst
)) {
1774 --NumFastIselRemaining
;
1775 ++NumFastIselSuccess
;
1777 FastIS
->handleDbgInfo(Inst
);
1778 // If fast isel succeeded, skip over all the folded instructions, and
1779 // then see if there is a load right before the selected instructions.
1780 // Try to fold the load if so.
1781 const Instruction
*BeforeInst
= Inst
;
1782 while (BeforeInst
!= &*Begin
) {
1783 BeforeInst
= &*std::prev(BasicBlock::const_iterator(BeforeInst
));
1784 if (!isFoldedOrDeadInstruction(BeforeInst
, *FuncInfo
))
1787 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
1788 BeforeInst
->hasOneUse() &&
1789 FastIS
->tryToFoldLoad(cast
<LoadInst
>(BeforeInst
), Inst
)) {
1790 // If we succeeded, don't re-select the load.
1792 << "FastISel folded load: " << *BeforeInst
<< "\n");
1793 FastIS
->handleDbgInfo(BeforeInst
);
1794 BI
= std::next(BasicBlock::const_iterator(BeforeInst
));
1795 --NumFastIselRemaining
;
1796 ++NumFastIselSuccess
;
1801 FastISelFailed
= true;
1803 // Then handle certain instructions as single-LLVM-Instruction blocks.
1804 // We cannot separate out GCrelocates to their own blocks since we need
1805 // to keep track of gc-relocates for a particular gc-statepoint. This is
1806 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1808 if (isa
<CallInst
>(Inst
) && !isa
<GCStatepointInst
>(Inst
) &&
1809 !isa
<GCRelocateInst
>(Inst
) && !isa
<GCResultInst
>(Inst
)) {
1810 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1811 Inst
->getDebugLoc(), LLVMBB
);
1813 R
<< "FastISel missed call";
1815 if (R
.isEnabled() || EnableFastISelAbort
) {
1816 std::string InstStrStorage
;
1817 raw_string_ostream
InstStr(InstStrStorage
);
1820 R
<< ": " << InstStrStorage
;
1823 reportFastISelFailure(*MF
, *ORE
, R
, EnableFastISelAbort
> 2);
1825 if (!Inst
->getType()->isVoidTy() && !Inst
->getType()->isTokenTy() &&
1826 !Inst
->use_empty()) {
1827 Register
&R
= FuncInfo
->ValueMap
[Inst
];
1829 R
= FuncInfo
->CreateRegs(Inst
);
1832 bool HadTailCall
= false;
1833 MachineBasicBlock::iterator SavedInsertPt
= FuncInfo
->InsertPt
;
1834 SelectBasicBlock(Inst
->getIterator(), BI
, HadTailCall
);
1836 // If the call was emitted as a tail call, we're done with the block.
1837 // We also need to delete any previously emitted instructions.
1839 FastIS
->removeDeadCode(SavedInsertPt
, FuncInfo
->MBB
->end());
1844 // Recompute NumFastIselRemaining as Selection DAG instruction
1845 // selection may have handled the call, input args, etc.
1846 unsigned RemainingNow
= std::distance(Begin
, BI
);
1847 NumFastIselFailures
+= NumFastIselRemaining
- RemainingNow
;
1848 NumFastIselRemaining
= RemainingNow
;
1852 OptimizationRemarkMissed
R("sdagisel", "FastISelFailure",
1853 Inst
->getDebugLoc(), LLVMBB
);
1855 bool ShouldAbort
= EnableFastISelAbort
;
1856 if (Inst
->isTerminator()) {
1857 // Use a different message for terminator misses.
1858 R
<< "FastISel missed terminator";
1859 // Don't abort for terminator unless the level is really high
1860 ShouldAbort
= (EnableFastISelAbort
> 2);
1862 R
<< "FastISel missed";
1865 if (R
.isEnabled() || EnableFastISelAbort
) {
1866 std::string InstStrStorage
;
1867 raw_string_ostream
InstStr(InstStrStorage
);
1869 R
<< ": " << InstStrStorage
;
1872 reportFastISelFailure(*MF
, *ORE
, R
, ShouldAbort
);
1874 NumFastIselFailures
+= NumFastIselRemaining
;
1878 FastIS
->recomputeInsertPt();
1881 if (SP
->shouldEmitSDCheck(*LLVMBB
)) {
1882 bool FunctionBasedInstrumentation
=
1883 TLI
->getSSPStackGuardCheck(*Fn
.getParent());
1884 SDB
->SPDescriptor
.initialize(LLVMBB
, FuncInfo
->getMBB(LLVMBB
),
1885 FunctionBasedInstrumentation
);
1891 ++NumFastIselBlocks
;
1894 // Run SelectionDAG instruction selection on the remainder of the block
1895 // not handled by FastISel. If FastISel is not run, this is the entire
1898 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1900 // But if FastISel was run, we already selected some of the block.
1901 // If we emitted a tail-call, we need to delete any previously emitted
1902 // instruction that follows it.
1903 if (FastIS
&& HadTailCall
&& FuncInfo
->InsertPt
!= FuncInfo
->MBB
->end())
1904 FastIS
->removeDeadCode(FuncInfo
->InsertPt
, FuncInfo
->MBB
->end());
1908 FastIS
->finishBasicBlock();
1910 FuncInfo
->PHINodesToUpdate
.clear();
1911 ElidedArgCopyInstrs
.clear();
1914 // AsynchEH: Report Block State under -AsynchEH
1915 if (Fn
.getParent()->getModuleFlag("eh-asynch"))
1916 reportIPToStateForBlocks(MF
);
1918 SP
->copyToMachineFrameInfo(MF
->getFrameInfo());
1920 SwiftError
->propagateVRegs();
1923 SDB
->clearDanglingDebugInfo();
1924 SDB
->SPDescriptor
.resetPerFunctionState();
1928 SelectionDAGISel::FinishBasicBlock() {
1929 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1930 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1931 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
;
1933 << "Node " << i
<< " : (" << FuncInfo
->PHINodesToUpdate
[i
].first
1934 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1936 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1937 // PHI nodes in successors.
1938 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1939 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[i
].first
);
1940 assert(PHI
->isPHI() &&
1941 "This is not a machine PHI node that we are updating!");
1942 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1944 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[i
].second
).addMBB(FuncInfo
->MBB
);
1947 // Handle stack protector.
1948 if (SDB
->SPDescriptor
.shouldEmitFunctionBasedCheckStackProtector()) {
1949 // The target provides a guard check function. There is no need to
1950 // generate error handling code or to split current basic block.
1951 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1953 // Add load and check to the basicblock.
1954 FuncInfo
->MBB
= ParentMBB
;
1955 FuncInfo
->InsertPt
=
1956 findSplitPointForStackProtector(ParentMBB
, *TII
);
1957 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1958 CurDAG
->setRoot(SDB
->getRoot());
1960 CodeGenAndEmitDAG();
1962 // Clear the Per-BB State.
1963 SDB
->SPDescriptor
.resetPerBBState();
1964 } else if (SDB
->SPDescriptor
.shouldEmitStackProtector()) {
1965 MachineBasicBlock
*ParentMBB
= SDB
->SPDescriptor
.getParentMBB();
1966 MachineBasicBlock
*SuccessMBB
= SDB
->SPDescriptor
.getSuccessMBB();
1968 // Find the split point to split the parent mbb. At the same time copy all
1969 // physical registers used in the tail of parent mbb into virtual registers
1970 // before the split point and back into physical registers after the split
1971 // point. This prevents us needing to deal with Live-ins and many other
1972 // register allocation issues caused by us splitting the parent mbb. The
1973 // register allocator will clean up said virtual copies later on.
1974 MachineBasicBlock::iterator SplitPoint
=
1975 findSplitPointForStackProtector(ParentMBB
, *TII
);
1977 // Splice the terminator of ParentMBB into SuccessMBB.
1978 SuccessMBB
->splice(SuccessMBB
->end(), ParentMBB
,
1982 // Add compare/jump on neq/jump to the parent BB.
1983 FuncInfo
->MBB
= ParentMBB
;
1984 FuncInfo
->InsertPt
= ParentMBB
->end();
1985 SDB
->visitSPDescriptorParent(SDB
->SPDescriptor
, ParentMBB
);
1986 CurDAG
->setRoot(SDB
->getRoot());
1988 CodeGenAndEmitDAG();
1990 // CodeGen Failure MBB if we have not codegened it yet.
1991 MachineBasicBlock
*FailureMBB
= SDB
->SPDescriptor
.getFailureMBB();
1992 if (FailureMBB
->empty()) {
1993 FuncInfo
->MBB
= FailureMBB
;
1994 FuncInfo
->InsertPt
= FailureMBB
->end();
1995 SDB
->visitSPDescriptorFailure(SDB
->SPDescriptor
);
1996 CurDAG
->setRoot(SDB
->getRoot());
1998 CodeGenAndEmitDAG();
2001 // Clear the Per-BB State.
2002 SDB
->SPDescriptor
.resetPerBBState();
2005 // Lower each BitTestBlock.
2006 for (auto &BTB
: SDB
->SL
->BitTestCases
) {
2007 // Lower header first, if it wasn't already lowered
2009 // Set the current basic block to the mbb we wish to insert the code into
2010 FuncInfo
->MBB
= BTB
.Parent
;
2011 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2013 SDB
->visitBitTestHeader(BTB
, FuncInfo
->MBB
);
2014 CurDAG
->setRoot(SDB
->getRoot());
2016 CodeGenAndEmitDAG();
2019 BranchProbability UnhandledProb
= BTB
.Prob
;
2020 for (unsigned j
= 0, ej
= BTB
.Cases
.size(); j
!= ej
; ++j
) {
2021 UnhandledProb
-= BTB
.Cases
[j
].ExtraProb
;
2022 // Set the current basic block to the mbb we wish to insert the code into
2023 FuncInfo
->MBB
= BTB
.Cases
[j
].ThisBB
;
2024 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2027 // If all cases cover a contiguous range, it is not necessary to jump to
2028 // the default block after the last bit test fails. This is because the
2029 // range check during bit test header creation has guaranteed that every
2030 // case here doesn't go outside the range. In this case, there is no need
2031 // to perform the last bit test, as it will always be true. Instead, make
2032 // the second-to-last bit-test fall through to the target of the last bit
2033 // test, and delete the last bit test.
2035 MachineBasicBlock
*NextMBB
;
2036 if ((BTB
.ContiguousRange
|| BTB
.FallthroughUnreachable
) && j
+ 2 == ej
) {
2037 // Second-to-last bit-test with contiguous range or omitted range
2038 // check: fall through to the target of the final bit test.
2039 NextMBB
= BTB
.Cases
[j
+ 1].TargetBB
;
2040 } else if (j
+ 1 == ej
) {
2041 // For the last bit test, fall through to Default.
2042 NextMBB
= BTB
.Default
;
2044 // Otherwise, fall through to the next bit test.
2045 NextMBB
= BTB
.Cases
[j
+ 1].ThisBB
;
2048 SDB
->visitBitTestCase(BTB
, NextMBB
, UnhandledProb
, BTB
.Reg
, BTB
.Cases
[j
],
2051 CurDAG
->setRoot(SDB
->getRoot());
2053 CodeGenAndEmitDAG();
2055 if ((BTB
.ContiguousRange
|| BTB
.FallthroughUnreachable
) && j
+ 2 == ej
) {
2056 // Since we're not going to use the final bit test, remove it.
2057 BTB
.Cases
.pop_back();
2063 for (const std::pair
<MachineInstr
*, unsigned> &P
:
2064 FuncInfo
->PHINodesToUpdate
) {
2065 MachineInstrBuilder
PHI(*MF
, P
.first
);
2066 MachineBasicBlock
*PHIBB
= PHI
->getParent();
2067 assert(PHI
->isPHI() &&
2068 "This is not a machine PHI node that we are updating!");
2069 // This is "default" BB. We have two jumps to it. From "header" BB and
2070 // from last "case" BB, unless the latter was skipped.
2071 if (PHIBB
== BTB
.Default
) {
2072 PHI
.addReg(P
.second
).addMBB(BTB
.Parent
);
2073 if (!BTB
.ContiguousRange
) {
2074 PHI
.addReg(P
.second
).addMBB(BTB
.Cases
.back().ThisBB
);
2077 // One of "cases" BB.
2078 for (const SwitchCG::BitTestCase
&BT
: BTB
.Cases
) {
2079 MachineBasicBlock
* cBB
= BT
.ThisBB
;
2080 if (cBB
->isSuccessor(PHIBB
))
2081 PHI
.addReg(P
.second
).addMBB(cBB
);
2085 SDB
->SL
->BitTestCases
.clear();
2087 // If the JumpTable record is filled in, then we need to emit a jump table.
2088 // Updating the PHI nodes is tricky in this case, since we need to determine
2089 // whether the PHI is a successor of the range check MBB or the jump table MBB
2090 for (unsigned i
= 0, e
= SDB
->SL
->JTCases
.size(); i
!= e
; ++i
) {
2091 // Lower header first, if it wasn't already lowered
2092 if (!SDB
->SL
->JTCases
[i
].first
.Emitted
) {
2093 // Set the current basic block to the mbb we wish to insert the code into
2094 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].first
.HeaderBB
;
2095 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2097 SDB
->visitJumpTableHeader(SDB
->SL
->JTCases
[i
].second
,
2098 SDB
->SL
->JTCases
[i
].first
, FuncInfo
->MBB
);
2099 CurDAG
->setRoot(SDB
->getRoot());
2101 CodeGenAndEmitDAG();
2104 // Set the current basic block to the mbb we wish to insert the code into
2105 FuncInfo
->MBB
= SDB
->SL
->JTCases
[i
].second
.MBB
;
2106 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2108 SDB
->visitJumpTable(SDB
->SL
->JTCases
[i
].second
);
2109 CurDAG
->setRoot(SDB
->getRoot());
2111 CodeGenAndEmitDAG();
2114 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
2116 MachineInstrBuilder
PHI(*MF
, FuncInfo
->PHINodesToUpdate
[pi
].first
);
2117 MachineBasicBlock
*PHIBB
= PHI
->getParent();
2118 assert(PHI
->isPHI() &&
2119 "This is not a machine PHI node that we are updating!");
2120 // "default" BB. We can go there only from header BB.
2121 if (PHIBB
== SDB
->SL
->JTCases
[i
].second
.Default
)
2122 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
)
2123 .addMBB(SDB
->SL
->JTCases
[i
].first
.HeaderBB
);
2124 // JT BB. Just iterate over successors here
2125 if (FuncInfo
->MBB
->isSuccessor(PHIBB
))
2126 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pi
].second
).addMBB(FuncInfo
->MBB
);
2129 SDB
->SL
->JTCases
.clear();
2131 // If we generated any switch lowering information, build and codegen any
2132 // additional DAGs necessary.
2133 for (unsigned i
= 0, e
= SDB
->SL
->SwitchCases
.size(); i
!= e
; ++i
) {
2134 // Set the current basic block to the mbb we wish to insert the code into
2135 FuncInfo
->MBB
= SDB
->SL
->SwitchCases
[i
].ThisBB
;
2136 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2138 // Determine the unique successors.
2139 SmallVector
<MachineBasicBlock
*, 2> Succs
;
2140 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].TrueBB
);
2141 if (SDB
->SL
->SwitchCases
[i
].TrueBB
!= SDB
->SL
->SwitchCases
[i
].FalseBB
)
2142 Succs
.push_back(SDB
->SL
->SwitchCases
[i
].FalseBB
);
2144 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2145 SDB
->visitSwitchCase(SDB
->SL
->SwitchCases
[i
], FuncInfo
->MBB
);
2146 CurDAG
->setRoot(SDB
->getRoot());
2148 CodeGenAndEmitDAG();
2150 // Remember the last block, now that any splitting is done, for use in
2151 // populating PHI nodes in successors.
2152 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
2154 // Handle any PHI nodes in successors of this chunk, as if we were coming
2155 // from the original BB before switch expansion. Note that PHI nodes can
2156 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2157 // handle them the right number of times.
2158 for (MachineBasicBlock
*Succ
: Succs
) {
2159 FuncInfo
->MBB
= Succ
;
2160 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
2161 // FuncInfo->MBB may have been removed from the CFG if a branch was
2163 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
2164 for (MachineBasicBlock::iterator
2165 MBBI
= FuncInfo
->MBB
->begin(), MBBE
= FuncInfo
->MBB
->end();
2166 MBBI
!= MBBE
&& MBBI
->isPHI(); ++MBBI
) {
2167 MachineInstrBuilder
PHI(*MF
, MBBI
);
2168 // This value for this PHI node is recorded in PHINodesToUpdate.
2169 for (unsigned pn
= 0; ; ++pn
) {
2170 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
2171 "Didn't find PHI entry!");
2172 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== PHI
) {
2173 PHI
.addReg(FuncInfo
->PHINodesToUpdate
[pn
].second
).addMBB(ThisBB
);
2181 SDB
->SL
->SwitchCases
.clear();
2184 /// Create the scheduler. If a specific scheduler was specified
2185 /// via the SchedulerRegistry, use it, otherwise select the
2186 /// one preferred by the target.
2188 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
2189 return ISHeuristic(this, OptLevel
);
2192 //===----------------------------------------------------------------------===//
2193 // Helper functions used by the generated instruction selector.
2194 //===----------------------------------------------------------------------===//
2195 // Calls to these methods are generated by tblgen.
2197 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2198 /// the dag combiner simplified the 255, we still want to match. RHS is the
2199 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2200 /// specified in the .td file (e.g. 255).
2201 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
2202 int64_t DesiredMaskS
) const {
2203 const APInt
&ActualMask
= RHS
->getAPIntValue();
2204 // TODO: Avoid implicit trunc?
2205 // See https://github.com/llvm/llvm-project/issues/112510.
2206 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
,
2207 /*isSigned=*/false, /*implicitTrunc=*/true);
2209 // If the actual mask exactly matches, success!
2210 if (ActualMask
== DesiredMask
)
2213 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2214 if (!ActualMask
.isSubsetOf(DesiredMask
))
2217 // Otherwise, the DAG Combiner may have proven that the value coming in is
2218 // either already zero or is not demanded. Check for known zero input bits.
2219 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2220 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
2223 // TODO: check to see if missing bits are just not demanded.
2225 // Otherwise, this pattern doesn't match.
2229 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2230 /// the dag combiner simplified the 255, we still want to match. RHS is the
2231 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2232 /// specified in the .td file (e.g. 255).
2233 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
2234 int64_t DesiredMaskS
) const {
2235 const APInt
&ActualMask
= RHS
->getAPIntValue();
2236 // TODO: Avoid implicit trunc?
2237 // See https://github.com/llvm/llvm-project/issues/112510.
2238 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
,
2239 /*isSigned=*/false, /*implicitTrunc=*/true);
2241 // If the actual mask exactly matches, success!
2242 if (ActualMask
== DesiredMask
)
2245 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2246 if (!ActualMask
.isSubsetOf(DesiredMask
))
2249 // Otherwise, the DAG Combiner may have proven that the value coming in is
2250 // either already zero or is not demanded. Check for known zero input bits.
2251 APInt NeededMask
= DesiredMask
& ~ActualMask
;
2252 KnownBits Known
= CurDAG
->computeKnownBits(LHS
);
2254 // If all the missing bits in the or are already known to be set, match!
2255 if (NeededMask
.isSubsetOf(Known
.One
))
2258 // TODO: check to see if missing bits are just not demanded.
2260 // Otherwise, this pattern doesn't match.
2264 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2265 /// by tblgen. Others should not call it.
2266 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
,
2268 // Change the vector of SDValue into a list of SDNodeHandle for x86 might call
2269 // replaceAllUses when matching address.
2271 std::list
<HandleSDNode
> Handles
;
2273 Handles
.emplace_back(Ops
[InlineAsm::Op_InputChain
]); // 0
2274 Handles
.emplace_back(Ops
[InlineAsm::Op_AsmString
]); // 1
2275 Handles
.emplace_back(Ops
[InlineAsm::Op_MDNode
]); // 2, !srcloc
2276 Handles
.emplace_back(
2277 Ops
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
2279 unsigned i
= InlineAsm::Op_FirstOperand
, e
= Ops
.size();
2280 if (Ops
[e
- 1].getValueType() == MVT::Glue
)
2281 --e
; // Don't process a glue operand if it is here.
2284 InlineAsm::Flag
Flags(Ops
[i
]->getAsZExtVal());
2285 if (!Flags
.isMemKind() && !Flags
.isFuncKind()) {
2286 // Just skip over this operand, copying the operands verbatim.
2287 Handles
.insert(Handles
.end(), Ops
.begin() + i
,
2288 Ops
.begin() + i
+ Flags
.getNumOperandRegisters() + 1);
2289 i
+= Flags
.getNumOperandRegisters() + 1;
2291 assert(Flags
.getNumOperandRegisters() == 1 &&
2292 "Memory operand with multiple values?");
2294 unsigned TiedToOperand
;
2295 if (Flags
.isUseOperandTiedToDef(TiedToOperand
)) {
2296 // We need the constraint ID from the operand this is tied to.
2297 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
2298 Flags
= InlineAsm::Flag(Ops
[CurOp
]->getAsZExtVal());
2299 for (; TiedToOperand
; --TiedToOperand
) {
2300 CurOp
+= Flags
.getNumOperandRegisters() + 1;
2301 Flags
= InlineAsm::Flag(Ops
[CurOp
]->getAsZExtVal());
2305 // Otherwise, this is a memory operand. Ask the target to select it.
2306 std::vector
<SDValue
> SelOps
;
2307 const InlineAsm::ConstraintCode ConstraintID
=
2308 Flags
.getMemoryConstraintID();
2309 if (SelectInlineAsmMemoryOperand(Ops
[i
+ 1], ConstraintID
, SelOps
))
2310 report_fatal_error("Could not match memory address. Inline asm"
2313 // Add this to the output node.
2314 Flags
= InlineAsm::Flag(Flags
.isMemKind() ? InlineAsm::Kind::Mem
2315 : InlineAsm::Kind::Func
,
2317 Flags
.setMemConstraint(ConstraintID
);
2318 Handles
.emplace_back(CurDAG
->getTargetConstant(Flags
, DL
, MVT::i32
));
2319 Handles
.insert(Handles
.end(), SelOps
.begin(), SelOps
.end());
2324 // Add the glue input back if present.
2325 if (e
!= Ops
.size())
2326 Handles
.emplace_back(Ops
.back());
2329 for (auto &handle
: Handles
)
2330 Ops
.push_back(handle
.getValue());
2333 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2334 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2335 static bool findNonImmUse(SDNode
*Root
, SDNode
*Def
, SDNode
*ImmedUse
,
2336 bool IgnoreChains
) {
2337 SmallPtrSet
<const SDNode
*, 16> Visited
;
2338 SmallVector
<const SDNode
*, 16> WorkList
;
2339 // Only check if we have non-immediate uses of Def.
2340 if (ImmedUse
->isOnlyUserOf(Def
))
2343 // We don't care about paths to Def that go through ImmedUse so mark it
2344 // visited and mark non-def operands as used.
2345 Visited
.insert(ImmedUse
);
2346 for (const SDValue
&Op
: ImmedUse
->op_values()) {
2347 SDNode
*N
= Op
.getNode();
2348 // Ignore chain deps (they are validated by
2349 // HandleMergeInputChains) and immediate uses
2350 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2352 if (!Visited
.insert(N
).second
)
2354 WorkList
.push_back(N
);
2357 // Initialize worklist to operands of Root.
2358 if (Root
!= ImmedUse
) {
2359 for (const SDValue
&Op
: Root
->op_values()) {
2360 SDNode
*N
= Op
.getNode();
2361 // Ignore chains (they are validated by HandleMergeInputChains)
2362 if ((Op
.getValueType() == MVT::Other
&& IgnoreChains
) || N
== Def
)
2364 if (!Visited
.insert(N
).second
)
2366 WorkList
.push_back(N
);
2370 return SDNode::hasPredecessorHelper(Def
, Visited
, WorkList
, 0, true);
2373 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2374 /// operand node N of U during instruction selection that starts at Root.
2375 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
2376 SDNode
*Root
) const {
2377 if (OptLevel
== CodeGenOptLevel::None
)
2379 return N
.hasOneUse();
2382 /// IsLegalToFold - Returns true if the specific operand node N of
2383 /// U can be folded during instruction selection that starts at Root.
2384 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
2385 CodeGenOptLevel OptLevel
,
2386 bool IgnoreChains
) {
2387 if (OptLevel
== CodeGenOptLevel::None
)
2390 // If Root use can somehow reach N through a path that doesn't contain
2391 // U then folding N would create a cycle. e.g. In the following
2392 // diagram, Root can reach N through X. If N is folded into Root, then
2393 // X is both a predecessor and a successor of U.
2404 // * indicates nodes to be folded together.
2406 // If Root produces glue, then it gets (even more) interesting. Since it
2407 // will be "glued" together with its glue use in the scheduler, we need to
2408 // check if it might reach N.
2427 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2428 // (call it Fold), then X is a predecessor of GU and a successor of
2429 // Fold. But since Fold and GU are glued together, this will create
2430 // a cycle in the scheduling graph.
2432 // If the node has glue, walk down the graph to the "lowest" node in the
2434 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
2435 while (VT
== MVT::Glue
) {
2436 SDNode
*GU
= Root
->getGluedUser();
2440 VT
= Root
->getValueType(Root
->getNumValues()-1);
2442 // If our query node has a glue result with a use, we've walked up it. If
2443 // the user (which has already been selected) has a chain or indirectly uses
2444 // the chain, HandleMergeInputChains will not consider it. Because of
2445 // this, we cannot ignore chains in this predicate.
2446 IgnoreChains
= false;
2449 return !findNonImmUse(Root
, N
.getNode(), U
, IgnoreChains
);
2452 void SelectionDAGISel::Select_INLINEASM(SDNode
*N
) {
2455 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
2456 SelectInlineAsmMemoryOperands(Ops
, DL
);
2458 const EVT VTs
[] = {MVT::Other
, MVT::Glue
};
2459 SDValue New
= CurDAG
->getNode(N
->getOpcode(), DL
, VTs
, Ops
);
2461 ReplaceUses(N
, New
.getNode());
2462 CurDAG
->RemoveDeadNode(N
);
2465 void SelectionDAGISel::Select_READ_REGISTER(SDNode
*Op
) {
2467 MDNodeSDNode
*MD
= cast
<MDNodeSDNode
>(Op
->getOperand(1));
2468 const MDString
*RegStr
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2470 EVT VT
= Op
->getValueType(0);
2471 LLT Ty
= VT
.isSimple() ? getLLTForMVT(VT
.getSimpleVT()) : LLT();
2473 TLI
->getRegisterByName(RegStr
->getString().data(), Ty
,
2474 CurDAG
->getMachineFunction());
2475 SDValue New
= CurDAG
->getCopyFromReg(
2476 Op
->getOperand(0), dl
, Reg
, Op
->getValueType(0));
2478 ReplaceUses(Op
, New
.getNode());
2479 CurDAG
->RemoveDeadNode(Op
);
2482 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode
*Op
) {
2484 MDNodeSDNode
*MD
= cast
<MDNodeSDNode
>(Op
->getOperand(1));
2485 const MDString
*RegStr
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2487 EVT VT
= Op
->getOperand(2).getValueType();
2488 LLT Ty
= VT
.isSimple() ? getLLTForMVT(VT
.getSimpleVT()) : LLT();
2490 Register Reg
= TLI
->getRegisterByName(RegStr
->getString().data(), Ty
,
2491 CurDAG
->getMachineFunction());
2492 SDValue New
= CurDAG
->getCopyToReg(
2493 Op
->getOperand(0), dl
, Reg
, Op
->getOperand(2));
2495 ReplaceUses(Op
, New
.getNode());
2496 CurDAG
->RemoveDeadNode(Op
);
2499 void SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
2500 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2503 // Use the generic target FAKE_USE target opcode. The chain operand
2504 // must come last, because InstrEmitter::AddOperand() requires it.
2505 void SelectionDAGISel::Select_FAKE_USE(SDNode
*N
) {
2506 CurDAG
->SelectNodeTo(N
, TargetOpcode::FAKE_USE
, N
->getValueType(0),
2507 N
->getOperand(1), N
->getOperand(0));
2510 void SelectionDAGISel::Select_FREEZE(SDNode
*N
) {
2511 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2512 // If FREEZE instruction is added later, the code below must be changed as
2514 CurDAG
->SelectNodeTo(N
, TargetOpcode::COPY
, N
->getValueType(0),
2518 void SelectionDAGISel::Select_ARITH_FENCE(SDNode
*N
) {
2519 CurDAG
->SelectNodeTo(N
, TargetOpcode::ARITH_FENCE
, N
->getValueType(0),
2523 void SelectionDAGISel::Select_MEMBARRIER(SDNode
*N
) {
2524 CurDAG
->SelectNodeTo(N
, TargetOpcode::MEMBARRIER
, N
->getValueType(0),
2528 void SelectionDAGISel::Select_CONVERGENCECTRL_ANCHOR(SDNode
*N
) {
2529 CurDAG
->SelectNodeTo(N
, TargetOpcode::CONVERGENCECTRL_ANCHOR
,
2530 N
->getValueType(0));
2533 void SelectionDAGISel::Select_CONVERGENCECTRL_ENTRY(SDNode
*N
) {
2534 CurDAG
->SelectNodeTo(N
, TargetOpcode::CONVERGENCECTRL_ENTRY
,
2535 N
->getValueType(0));
2538 void SelectionDAGISel::Select_CONVERGENCECTRL_LOOP(SDNode
*N
) {
2539 CurDAG
->SelectNodeTo(N
, TargetOpcode::CONVERGENCECTRL_LOOP
,
2540 N
->getValueType(0), N
->getOperand(0));
2543 void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl
<SDValue
> &Ops
,
2544 SDValue OpVal
, SDLoc DL
) {
2545 SDNode
*OpNode
= OpVal
.getNode();
2547 // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2548 // nodes at DAG-construction time.
2549 assert(OpNode
->getOpcode() != ISD::FrameIndex
);
2551 if (OpNode
->getOpcode() == ISD::Constant
) {
2553 CurDAG
->getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
2554 Ops
.push_back(CurDAG
->getTargetConstant(OpNode
->getAsZExtVal(), DL
,
2555 OpVal
.getValueType()));
2557 Ops
.push_back(OpVal
);
2561 void SelectionDAGISel::Select_STACKMAP(SDNode
*N
) {
2562 SmallVector
<SDValue
, 32> Ops
;
2563 auto *It
= N
->op_begin();
2566 // Stash the chain and glue operands so we can move them to the end.
2567 SDValue Chain
= *It
++;
2568 SDValue InGlue
= *It
++;
2572 assert(ID
.getValueType() == MVT::i64
);
2575 // <numShadowBytes> operand.
2576 SDValue Shad
= *It
++;
2577 assert(Shad
.getValueType() == MVT::i32
);
2578 Ops
.push_back(Shad
);
2580 // Live variable operands.
2581 for (; It
!= N
->op_end(); It
++)
2582 pushStackMapLiveVariable(Ops
, *It
, DL
);
2584 Ops
.push_back(Chain
);
2585 Ops
.push_back(InGlue
);
2587 SDVTList NodeTys
= CurDAG
->getVTList(MVT::Other
, MVT::Glue
);
2588 CurDAG
->SelectNodeTo(N
, TargetOpcode::STACKMAP
, NodeTys
, Ops
);
2591 void SelectionDAGISel::Select_PATCHPOINT(SDNode
*N
) {
2592 SmallVector
<SDValue
, 32> Ops
;
2593 auto *It
= N
->op_begin();
2596 // Cache arguments that will be moved to the end in the target node.
2597 SDValue Chain
= *It
++;
2598 std::optional
<SDValue
> Glue
;
2599 if (It
->getValueType() == MVT::Glue
)
2601 SDValue RegMask
= *It
++;
2605 assert(ID
.getValueType() == MVT::i64
);
2608 // <numShadowBytes> operand.
2609 SDValue Shad
= *It
++;
2610 assert(Shad
.getValueType() == MVT::i32
);
2611 Ops
.push_back(Shad
);
2614 Ops
.push_back(*It
++);
2617 SDValue NumArgs
= *It
++;
2618 assert(NumArgs
.getValueType() == MVT::i32
);
2619 Ops
.push_back(NumArgs
);
2621 // Calling convention.
2622 Ops
.push_back(*It
++);
2624 // Push the args for the call.
2625 for (uint64_t I
= NumArgs
->getAsZExtVal(); I
!= 0; I
--)
2626 Ops
.push_back(*It
++);
2628 // Now push the live variables.
2629 for (; It
!= N
->op_end(); It
++)
2630 pushStackMapLiveVariable(Ops
, *It
, DL
);
2632 // Finally, the regmask, chain and (if present) glue are moved to the end.
2633 Ops
.push_back(RegMask
);
2634 Ops
.push_back(Chain
);
2635 if (Glue
.has_value())
2636 Ops
.push_back(*Glue
);
2638 SDVTList NodeTys
= N
->getVTList();
2639 CurDAG
->SelectNodeTo(N
, TargetOpcode::PATCHPOINT
, NodeTys
, Ops
);
2642 /// GetVBR - decode a vbr encoding whose top bit is set.
2643 LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t
2644 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
2645 assert(Val
>= 128 && "Not a VBR");
2646 Val
&= 127; // Remove first vbr bit.
2651 NextBits
= MatcherTable
[Idx
++];
2652 Val
|= (NextBits
&127) << Shift
;
2654 } while (NextBits
& 128);
2659 /// getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value,
2660 /// use GetVBR to decode it.
2661 LLVM_ATTRIBUTE_ALWAYS_INLINE
static MVT::SimpleValueType
2662 getSimpleVT(const unsigned char *MatcherTable
, unsigned &MatcherIndex
) {
2663 unsigned SimpleVT
= MatcherTable
[MatcherIndex
++];
2665 SimpleVT
= GetVBR(SimpleVT
, MatcherTable
, MatcherIndex
);
2667 return static_cast<MVT::SimpleValueType
>(SimpleVT
);
2670 void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode
*N
) {
2672 CurDAG
->SelectNodeTo(N
, TargetOpcode::JUMP_TABLE_DEBUG_INFO
, MVT::Glue
,
2673 CurDAG
->getTargetConstant(N
->getConstantOperandVal(1),
2674 dl
, MVT::i64
, true));
2677 /// When a match is complete, this method updates uses of interior chain results
2678 /// to use the new results.
2679 void SelectionDAGISel::UpdateChains(
2680 SDNode
*NodeToMatch
, SDValue InputChain
,
2681 SmallVectorImpl
<SDNode
*> &ChainNodesMatched
, bool isMorphNodeTo
) {
2682 SmallVector
<SDNode
*, 4> NowDeadNodes
;
2684 // Now that all the normal results are replaced, we replace the chain and
2685 // glue results if present.
2686 if (!ChainNodesMatched
.empty()) {
2687 assert(InputChain
.getNode() &&
2688 "Matched input chains but didn't produce a chain");
2689 // Loop over all of the nodes we matched that produced a chain result.
2690 // Replace all the chain results with the final chain we ended up with.
2691 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
2692 SDNode
*ChainNode
= ChainNodesMatched
[i
];
2693 // If ChainNode is null, it's because we replaced it on a previous
2694 // iteration and we cleared it out of the map. Just skip it.
2698 assert(ChainNode
->getOpcode() != ISD::DELETED_NODE
&&
2699 "Deleted node left in chain");
2701 // Don't replace the results of the root node if we're doing a
2703 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
2706 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
2707 if (ChainVal
.getValueType() == MVT::Glue
)
2708 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
2709 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
2710 SelectionDAG::DAGNodeDeletedListener
NDL(
2711 *CurDAG
, [&](SDNode
*N
, SDNode
*E
) {
2712 std::replace(ChainNodesMatched
.begin(), ChainNodesMatched
.end(), N
,
2713 static_cast<SDNode
*>(nullptr));
2715 if (ChainNode
->getOpcode() != ISD::TokenFactor
)
2716 ReplaceUses(ChainVal
, InputChain
);
2718 // If the node became dead and we haven't already seen it, delete it.
2719 if (ChainNode
!= NodeToMatch
&& ChainNode
->use_empty() &&
2720 !llvm::is_contained(NowDeadNodes
, ChainNode
))
2721 NowDeadNodes
.push_back(ChainNode
);
2725 if (!NowDeadNodes
.empty())
2726 CurDAG
->RemoveDeadNodes(NowDeadNodes
);
2728 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2731 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2732 /// operation for when the pattern matched at least one node with a chains. The
2733 /// input vector contains a list of all of the chained nodes that we match. We
2734 /// must determine if this is a valid thing to cover (i.e. matching it won't
2735 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2736 /// be used as the input node chain for the generated nodes.
2738 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
2739 SelectionDAG
*CurDAG
) {
2741 SmallPtrSet
<const SDNode
*, 16> Visited
;
2742 SmallVector
<const SDNode
*, 8> Worklist
;
2743 SmallVector
<SDValue
, 3> InputChains
;
2744 unsigned int Max
= 8192;
2746 // Quick exit on trivial merge.
2747 if (ChainNodesMatched
.size() == 1)
2748 return ChainNodesMatched
[0]->getOperand(0);
2750 // Add chains that aren't already added (internal). Peek through
2752 std::function
<void(const SDValue
)> AddChains
= [&](const SDValue V
) {
2753 if (V
.getValueType() != MVT::Other
)
2755 if (V
->getOpcode() == ISD::EntryToken
)
2757 if (!Visited
.insert(V
.getNode()).second
)
2759 if (V
->getOpcode() == ISD::TokenFactor
) {
2760 for (const SDValue
&Op
: V
->op_values())
2763 InputChains
.push_back(V
);
2766 for (auto *N
: ChainNodesMatched
) {
2767 Worklist
.push_back(N
);
2771 while (!Worklist
.empty())
2772 AddChains(Worklist
.pop_back_val()->getOperand(0));
2774 // Skip the search if there are no chain dependencies.
2775 if (InputChains
.size() == 0)
2776 return CurDAG
->getEntryNode();
2778 // If one of these chains is a successor of input, we must have a
2779 // node that is both the predecessor and successor of the
2780 // to-be-merged nodes. Fail.
2782 for (SDValue V
: InputChains
)
2783 Worklist
.push_back(V
.getNode());
2785 for (auto *N
: ChainNodesMatched
)
2786 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
, Max
, true))
2789 // Return merged chain.
2790 if (InputChains
.size() == 1)
2791 return InputChains
[0];
2792 return CurDAG
->getNode(ISD::TokenFactor
, SDLoc(ChainNodesMatched
[0]),
2793 MVT::Other
, InputChains
);
2796 /// MorphNode - Handle morphing a node in place for the selector.
2797 SDNode
*SelectionDAGISel::
2798 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
2799 ArrayRef
<SDValue
> Ops
, unsigned EmitNodeInfo
) {
2800 // It is possible we're using MorphNodeTo to replace a node with no
2801 // normal results with one that has a normal result (or we could be
2802 // adding a chain) and the input could have glue and chains as well.
2803 // In this case we need to shift the operands down.
2804 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2805 // than the old isel though.
2806 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
2808 unsigned NTMNumResults
= Node
->getNumValues();
2809 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
2810 OldGlueResultNo
= NTMNumResults
-1;
2811 if (NTMNumResults
!= 1 &&
2812 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
2813 OldChainResultNo
= NTMNumResults
-2;
2814 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
2815 OldChainResultNo
= NTMNumResults
-1;
2817 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2818 // that this deletes operands of the old node that become dead.
2819 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
);
2821 // MorphNodeTo can operate in two ways: if an existing node with the
2822 // specified operands exists, it can just return it. Otherwise, it
2823 // updates the node in place to have the requested operands.
2825 // If we updated the node in place, reset the node ID. To the isel,
2826 // this should be just like a newly allocated machine node.
2830 unsigned ResNumResults
= Res
->getNumValues();
2831 // Move the glue if needed.
2832 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
2833 static_cast<unsigned>(OldGlueResultNo
) != ResNumResults
- 1)
2834 ReplaceUses(SDValue(Node
, OldGlueResultNo
),
2835 SDValue(Res
, ResNumResults
- 1));
2837 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
2840 // Move the chain reference if needed.
2841 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
2842 static_cast<unsigned>(OldChainResultNo
) != ResNumResults
- 1)
2843 ReplaceUses(SDValue(Node
, OldChainResultNo
),
2844 SDValue(Res
, ResNumResults
- 1));
2846 // Otherwise, no replacement happened because the node already exists. Replace
2847 // Uses of the old node with the new one.
2849 ReplaceNode(Node
, Res
);
2851 EnforceNodeIdInvariant(Res
);
2857 /// CheckSame - Implements OP_CheckSame.
2858 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2859 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2860 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
2861 // Accept if it is exactly the same as a previously recorded node.
2862 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2863 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2864 return N
== RecordedNodes
[RecNo
].first
;
2867 /// CheckChildSame - Implements OP_CheckChildXSame.
2868 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool CheckChildSame(
2869 const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
2870 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
,
2872 if (ChildNo
>= N
.getNumOperands())
2873 return false; // Match fails if out of range child #.
2874 return ::CheckSame(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
),
2878 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2879 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2880 CheckPatternPredicate(unsigned Opcode
, const unsigned char *MatcherTable
,
2881 unsigned &MatcherIndex
, const SelectionDAGISel
&SDISel
) {
2882 bool TwoBytePredNo
=
2883 Opcode
== SelectionDAGISel::OPC_CheckPatternPredicateTwoByte
;
2885 TwoBytePredNo
|| Opcode
== SelectionDAGISel::OPC_CheckPatternPredicate
2886 ? MatcherTable
[MatcherIndex
++]
2887 : Opcode
- SelectionDAGISel::OPC_CheckPatternPredicate0
;
2889 PredNo
|= MatcherTable
[MatcherIndex
++] << 8;
2890 return SDISel
.CheckPatternPredicate(PredNo
);
2893 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2894 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2895 CheckNodePredicate(unsigned Opcode
, const unsigned char *MatcherTable
,
2896 unsigned &MatcherIndex
, const SelectionDAGISel
&SDISel
,
2898 unsigned PredNo
= Opcode
== SelectionDAGISel::OPC_CheckPredicate
2899 ? MatcherTable
[MatcherIndex
++]
2900 : Opcode
- SelectionDAGISel::OPC_CheckPredicate0
;
2901 return SDISel
.CheckNodePredicate(N
, PredNo
);
2904 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2905 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2907 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2908 Opc
|= static_cast<uint16_t>(MatcherTable
[MatcherIndex
++]) << 8;
2909 return N
->getOpcode() == Opc
;
2912 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool CheckType(MVT::SimpleValueType VT
,
2914 const TargetLowering
*TLI
,
2915 const DataLayout
&DL
) {
2916 if (N
.getValueType() == VT
)
2919 // Handle the case when VT is iPTR.
2920 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
->getPointerTy(DL
);
2923 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2924 CheckChildType(MVT::SimpleValueType VT
, SDValue N
, const TargetLowering
*TLI
,
2925 const DataLayout
&DL
, unsigned ChildNo
) {
2926 if (ChildNo
>= N
.getNumOperands())
2927 return false; // Match fails if out of range child #.
2928 return ::CheckType(VT
, N
.getOperand(ChildNo
), TLI
, DL
);
2931 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2932 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2934 return cast
<CondCodeSDNode
>(N
)->get() ==
2935 static_cast<ISD::CondCode
>(MatcherTable
[MatcherIndex
++]);
2938 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2939 CheckChild2CondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2941 if (2 >= N
.getNumOperands())
2943 return ::CheckCondCode(MatcherTable
, MatcherIndex
, N
.getOperand(2));
2946 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2947 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2948 SDValue N
, const TargetLowering
*TLI
, const DataLayout
&DL
) {
2949 MVT::SimpleValueType VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
2950 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
2953 // Handle the case when VT is iPTR.
2954 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
->getPointerTy(DL
);
2957 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2958 // shifted left by 1.
2959 static uint64_t decodeSignRotatedValue(uint64_t V
) {
2964 // There is no such thing as -0 with integers. "-0" really means MININT.
2968 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2969 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2971 int64_t Val
= MatcherTable
[MatcherIndex
++];
2973 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2975 Val
= decodeSignRotatedValue(Val
);
2977 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
2978 return C
&& C
->getAPIntValue().trySExtValue() == Val
;
2981 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2982 CheckChildInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2983 SDValue N
, unsigned ChildNo
) {
2984 if (ChildNo
>= N
.getNumOperands())
2985 return false; // Match fails if out of range child #.
2986 return ::CheckInteger(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
));
2989 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
2990 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
2991 SDValue N
, const SelectionDAGISel
&SDISel
) {
2992 int64_t Val
= MatcherTable
[MatcherIndex
++];
2994 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2996 if (N
->getOpcode() != ISD::AND
) return false;
2998 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2999 return C
&& SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
3002 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
3003 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
, SDValue N
,
3004 const SelectionDAGISel
&SDISel
) {
3005 int64_t Val
= MatcherTable
[MatcherIndex
++];
3007 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3009 if (N
->getOpcode() != ISD::OR
) return false;
3011 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3012 return C
&& SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
3015 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
3016 /// scope, evaluate the current node. If the current predicate is known to
3017 /// fail, set Result=true and return anything. If the current predicate is
3018 /// known to pass, set Result=false and return the MatcherIndex to continue
3019 /// with. If the current predicate is unknown, set Result=false and return the
3020 /// MatcherIndex to continue with.
3021 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
3022 unsigned Index
, SDValue N
,
3024 const SelectionDAGISel
&SDISel
,
3025 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
) {
3026 unsigned Opcode
= Table
[Index
++];
3030 return Index
-1; // Could not evaluate this predicate.
3031 case SelectionDAGISel::OPC_CheckSame
:
3032 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
3034 case SelectionDAGISel::OPC_CheckChild0Same
:
3035 case SelectionDAGISel::OPC_CheckChild1Same
:
3036 case SelectionDAGISel::OPC_CheckChild2Same
:
3037 case SelectionDAGISel::OPC_CheckChild3Same
:
3038 Result
= !::CheckChildSame(Table
, Index
, N
, RecordedNodes
,
3039 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Same
);
3041 case SelectionDAGISel::OPC_CheckPatternPredicate
:
3042 case SelectionDAGISel::OPC_CheckPatternPredicate0
:
3043 case SelectionDAGISel::OPC_CheckPatternPredicate1
:
3044 case SelectionDAGISel::OPC_CheckPatternPredicate2
:
3045 case SelectionDAGISel::OPC_CheckPatternPredicate3
:
3046 case SelectionDAGISel::OPC_CheckPatternPredicate4
:
3047 case SelectionDAGISel::OPC_CheckPatternPredicate5
:
3048 case SelectionDAGISel::OPC_CheckPatternPredicate6
:
3049 case SelectionDAGISel::OPC_CheckPatternPredicate7
:
3050 case SelectionDAGISel::OPC_CheckPatternPredicateTwoByte
:
3051 Result
= !::CheckPatternPredicate(Opcode
, Table
, Index
, SDISel
);
3053 case SelectionDAGISel::OPC_CheckPredicate
:
3054 case SelectionDAGISel::OPC_CheckPredicate0
:
3055 case SelectionDAGISel::OPC_CheckPredicate1
:
3056 case SelectionDAGISel::OPC_CheckPredicate2
:
3057 case SelectionDAGISel::OPC_CheckPredicate3
:
3058 case SelectionDAGISel::OPC_CheckPredicate4
:
3059 case SelectionDAGISel::OPC_CheckPredicate5
:
3060 case SelectionDAGISel::OPC_CheckPredicate6
:
3061 case SelectionDAGISel::OPC_CheckPredicate7
:
3062 Result
= !::CheckNodePredicate(Opcode
, Table
, Index
, SDISel
, N
.getNode());
3064 case SelectionDAGISel::OPC_CheckOpcode
:
3065 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
3067 case SelectionDAGISel::OPC_CheckType
:
3068 case SelectionDAGISel::OPC_CheckTypeI32
:
3069 case SelectionDAGISel::OPC_CheckTypeI64
: {
3070 MVT::SimpleValueType VT
;
3072 case SelectionDAGISel::OPC_CheckTypeI32
:
3075 case SelectionDAGISel::OPC_CheckTypeI64
:
3079 VT
= getSimpleVT(Table
, Index
);
3082 Result
= !::CheckType(VT
, N
, SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout());
3085 case SelectionDAGISel::OPC_CheckTypeRes
: {
3086 unsigned Res
= Table
[Index
++];
3087 Result
= !::CheckType(getSimpleVT(Table
, Index
), N
.getValue(Res
),
3088 SDISel
.TLI
, SDISel
.CurDAG
->getDataLayout());
3091 case SelectionDAGISel::OPC_CheckChild0Type
:
3092 case SelectionDAGISel::OPC_CheckChild1Type
:
3093 case SelectionDAGISel::OPC_CheckChild2Type
:
3094 case SelectionDAGISel::OPC_CheckChild3Type
:
3095 case SelectionDAGISel::OPC_CheckChild4Type
:
3096 case SelectionDAGISel::OPC_CheckChild5Type
:
3097 case SelectionDAGISel::OPC_CheckChild6Type
:
3098 case SelectionDAGISel::OPC_CheckChild7Type
:
3099 case SelectionDAGISel::OPC_CheckChild0TypeI32
:
3100 case SelectionDAGISel::OPC_CheckChild1TypeI32
:
3101 case SelectionDAGISel::OPC_CheckChild2TypeI32
:
3102 case SelectionDAGISel::OPC_CheckChild3TypeI32
:
3103 case SelectionDAGISel::OPC_CheckChild4TypeI32
:
3104 case SelectionDAGISel::OPC_CheckChild5TypeI32
:
3105 case SelectionDAGISel::OPC_CheckChild6TypeI32
:
3106 case SelectionDAGISel::OPC_CheckChild7TypeI32
:
3107 case SelectionDAGISel::OPC_CheckChild0TypeI64
:
3108 case SelectionDAGISel::OPC_CheckChild1TypeI64
:
3109 case SelectionDAGISel::OPC_CheckChild2TypeI64
:
3110 case SelectionDAGISel::OPC_CheckChild3TypeI64
:
3111 case SelectionDAGISel::OPC_CheckChild4TypeI64
:
3112 case SelectionDAGISel::OPC_CheckChild5TypeI64
:
3113 case SelectionDAGISel::OPC_CheckChild6TypeI64
:
3114 case SelectionDAGISel::OPC_CheckChild7TypeI64
: {
3115 MVT::SimpleValueType VT
;
3117 if (Opcode
>= SelectionDAGISel::OPC_CheckChild0TypeI32
&&
3118 Opcode
<= SelectionDAGISel::OPC_CheckChild7TypeI32
) {
3120 ChildNo
= Opcode
- SelectionDAGISel::OPC_CheckChild0TypeI32
;
3121 } else if (Opcode
>= SelectionDAGISel::OPC_CheckChild0TypeI64
&&
3122 Opcode
<= SelectionDAGISel::OPC_CheckChild7TypeI64
) {
3124 ChildNo
= Opcode
- SelectionDAGISel::OPC_CheckChild0TypeI64
;
3126 VT
= getSimpleVT(Table
, Index
);
3127 ChildNo
= Opcode
- SelectionDAGISel::OPC_CheckChild0Type
;
3129 Result
= !::CheckChildType(VT
, N
, SDISel
.TLI
,
3130 SDISel
.CurDAG
->getDataLayout(), ChildNo
);
3133 case SelectionDAGISel::OPC_CheckCondCode
:
3134 Result
= !::CheckCondCode(Table
, Index
, N
);
3136 case SelectionDAGISel::OPC_CheckChild2CondCode
:
3137 Result
= !::CheckChild2CondCode(Table
, Index
, N
);
3139 case SelectionDAGISel::OPC_CheckValueType
:
3140 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
,
3141 SDISel
.CurDAG
->getDataLayout());
3143 case SelectionDAGISel::OPC_CheckInteger
:
3144 Result
= !::CheckInteger(Table
, Index
, N
);
3146 case SelectionDAGISel::OPC_CheckChild0Integer
:
3147 case SelectionDAGISel::OPC_CheckChild1Integer
:
3148 case SelectionDAGISel::OPC_CheckChild2Integer
:
3149 case SelectionDAGISel::OPC_CheckChild3Integer
:
3150 case SelectionDAGISel::OPC_CheckChild4Integer
:
3151 Result
= !::CheckChildInteger(Table
, Index
, N
,
3152 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Integer
);
3154 case SelectionDAGISel::OPC_CheckAndImm
:
3155 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
3157 case SelectionDAGISel::OPC_CheckOrImm
:
3158 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
3166 /// FailIndex - If this match fails, this is the index to continue with.
3169 /// NodeStack - The node stack when the scope was formed.
3170 SmallVector
<SDValue
, 4> NodeStack
;
3172 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
3173 unsigned NumRecordedNodes
;
3175 /// NumMatchedMemRefs - The number of matched memref entries.
3176 unsigned NumMatchedMemRefs
;
3178 /// InputChain/InputGlue - The current chain/glue
3179 SDValue InputChain
, InputGlue
;
3181 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
3182 bool HasChainNodesMatched
;
3185 /// \A DAG update listener to keep the matching state
3186 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
3187 /// change the DAG while matching. X86 addressing mode matcher is an example
3189 class MatchStateUpdater
: public SelectionDAG::DAGUpdateListener
3191 SDNode
**NodeToMatch
;
3192 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RecordedNodes
;
3193 SmallVectorImpl
<MatchScope
> &MatchScopes
;
3196 MatchStateUpdater(SelectionDAG
&DAG
, SDNode
**NodeToMatch
,
3197 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*>> &RN
,
3198 SmallVectorImpl
<MatchScope
> &MS
)
3199 : SelectionDAG::DAGUpdateListener(DAG
), NodeToMatch(NodeToMatch
),
3200 RecordedNodes(RN
), MatchScopes(MS
) {}
3202 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
3203 // Some early-returns here to avoid the search if we deleted the node or
3204 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
3205 // do, so it's unnecessary to update matching state at that point).
3206 // Neither of these can occur currently because we only install this
3207 // update listener during matching a complex patterns.
3208 if (!E
|| E
->isMachineOpcode())
3210 // Check if NodeToMatch was updated.
3211 if (N
== *NodeToMatch
)
3213 // Performing linear search here does not matter because we almost never
3214 // run this code. You'd have to have a CSE during complex pattern
3216 for (auto &I
: RecordedNodes
)
3217 if (I
.first
.getNode() == N
)
3220 for (auto &I
: MatchScopes
)
3221 for (auto &J
: I
.NodeStack
)
3222 if (J
.getNode() == N
)
3227 } // end anonymous namespace
3229 void SelectionDAGISel::SelectCodeCommon(SDNode
*NodeToMatch
,
3230 const unsigned char *MatcherTable
,
3231 unsigned TableSize
) {
3232 // FIXME: Should these even be selected? Handle these cases in the caller?
3233 switch (NodeToMatch
->getOpcode()) {
3236 case ISD::EntryToken
: // These nodes remain the same.
3237 case ISD::BasicBlock
:
3239 case ISD::RegisterMask
:
3240 case ISD::HANDLENODE
:
3241 case ISD::MDNODE_SDNODE
:
3242 case ISD::TargetConstant
:
3243 case ISD::TargetConstantFP
:
3244 case ISD::TargetConstantPool
:
3245 case ISD::TargetFrameIndex
:
3246 case ISD::TargetExternalSymbol
:
3248 case ISD::TargetBlockAddress
:
3249 case ISD::TargetJumpTable
:
3250 case ISD::TargetGlobalTLSAddress
:
3251 case ISD::TargetGlobalAddress
:
3252 case ISD::TokenFactor
:
3253 case ISD::CopyFromReg
:
3254 case ISD::CopyToReg
:
3256 case ISD::ANNOTATION_LABEL
:
3257 case ISD::LIFETIME_START
:
3258 case ISD::LIFETIME_END
:
3259 case ISD::PSEUDO_PROBE
:
3260 NodeToMatch
->setNodeId(-1); // Mark selected.
3262 case ISD::AssertSext
:
3263 case ISD::AssertZext
:
3264 case ISD::AssertAlign
:
3265 ReplaceUses(SDValue(NodeToMatch
, 0), NodeToMatch
->getOperand(0));
3266 CurDAG
->RemoveDeadNode(NodeToMatch
);
3268 case ISD::INLINEASM
:
3269 case ISD::INLINEASM_BR
:
3270 Select_INLINEASM(NodeToMatch
);
3272 case ISD::READ_REGISTER
:
3273 Select_READ_REGISTER(NodeToMatch
);
3275 case ISD::WRITE_REGISTER
:
3276 Select_WRITE_REGISTER(NodeToMatch
);
3279 Select_UNDEF(NodeToMatch
);
3282 Select_FAKE_USE(NodeToMatch
);
3285 Select_FREEZE(NodeToMatch
);
3287 case ISD::ARITH_FENCE
:
3288 Select_ARITH_FENCE(NodeToMatch
);
3290 case ISD::MEMBARRIER
:
3291 Select_MEMBARRIER(NodeToMatch
);
3294 Select_STACKMAP(NodeToMatch
);
3296 case ISD::PATCHPOINT
:
3297 Select_PATCHPOINT(NodeToMatch
);
3299 case ISD::JUMP_TABLE_DEBUG_INFO
:
3300 Select_JUMP_TABLE_DEBUG_INFO(NodeToMatch
);
3302 case ISD::CONVERGENCECTRL_ANCHOR
:
3303 Select_CONVERGENCECTRL_ANCHOR(NodeToMatch
);
3305 case ISD::CONVERGENCECTRL_ENTRY
:
3306 Select_CONVERGENCECTRL_ENTRY(NodeToMatch
);
3308 case ISD::CONVERGENCECTRL_LOOP
:
3309 Select_CONVERGENCECTRL_LOOP(NodeToMatch
);
3313 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
3315 // Set up the node stack with NodeToMatch as the only node on the stack.
3316 SmallVector
<SDValue
, 8> NodeStack
;
3317 SDValue N
= SDValue(NodeToMatch
, 0);
3318 NodeStack
.push_back(N
);
3320 // MatchScopes - Scopes used when matching, if a match failure happens, this
3321 // indicates where to continue checking.
3322 SmallVector
<MatchScope
, 8> MatchScopes
;
3324 // RecordedNodes - This is the set of nodes that have been recorded by the
3325 // state machine. The second value is the parent of the node, or null if the
3326 // root is recorded.
3327 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
3329 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3331 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
3333 // These are the current input chain and glue for use when generating nodes.
3334 // Various Emit operations change these. For example, emitting a copytoreg
3335 // uses and updates these.
3336 SDValue InputChain
, InputGlue
;
3338 // ChainNodesMatched - If a pattern matches nodes that have input/output
3339 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3340 // which ones they are. The result is captured into this list so that we can
3341 // update the chain results when the pattern is complete.
3342 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
3344 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3346 // Determine where to start the interpreter. Normally we start at opcode #0,
3347 // but if the state machine starts with an OPC_SwitchOpcode, then we
3348 // accelerate the first lookup (which is guaranteed to be hot) with the
3349 // OpcodeOffset table.
3350 unsigned MatcherIndex
= 0;
3352 if (!OpcodeOffset
.empty()) {
3353 // Already computed the OpcodeOffset table, just index into it.
3354 if (N
.getOpcode() < OpcodeOffset
.size())
3355 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
3356 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
3358 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
3359 // Otherwise, the table isn't computed, but the state machine does start
3360 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
3361 // is the first time we're selecting an instruction.
3364 // Get the size of this case.
3365 unsigned CaseSize
= MatcherTable
[Idx
++];
3367 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
3368 if (CaseSize
== 0) break;
3370 // Get the opcode, add the index to the table.
3371 uint16_t Opc
= MatcherTable
[Idx
++];
3372 Opc
|= static_cast<uint16_t>(MatcherTable
[Idx
++]) << 8;
3373 if (Opc
>= OpcodeOffset
.size())
3374 OpcodeOffset
.resize((Opc
+1)*2);
3375 OpcodeOffset
[Opc
] = Idx
;
3379 // Okay, do the lookup for the first opcode.
3380 if (N
.getOpcode() < OpcodeOffset
.size())
3381 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
3385 assert(MatcherIndex
< TableSize
&& "Invalid index");
3387 unsigned CurrentOpcodeIndex
= MatcherIndex
;
3389 BuiltinOpcodes Opcode
=
3390 static_cast<BuiltinOpcodes
>(MatcherTable
[MatcherIndex
++]);
3393 // Okay, the semantics of this operation are that we should push a scope
3394 // then evaluate the first child. However, pushing a scope only to have
3395 // the first check fail (which then pops it) is inefficient. If we can
3396 // determine immediately that the first check (or first several) will
3397 // immediately fail, don't even bother pushing a scope for them.
3401 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
3402 if (NumToSkip
& 128)
3403 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
3404 // Found the end of the scope with no match.
3405 if (NumToSkip
== 0) {
3410 FailIndex
= MatcherIndex
+NumToSkip
;
3412 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
3413 (void)MatcherIndexOfPredicate
; // silence warning.
3415 // If we can't evaluate this predicate without pushing a scope (e.g. if
3416 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3417 // push the scope and evaluate the full predicate chain.
3419 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
3420 Result
, *this, RecordedNodes
);
3425 dbgs() << " Skipped scope entry (due to false predicate) at "
3426 << "index " << MatcherIndexOfPredicate
<< ", continuing at "
3427 << FailIndex
<< "\n");
3428 ++NumDAGIselRetries
;
3430 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3431 // move to the next case.
3432 MatcherIndex
= FailIndex
;
3435 // If the whole scope failed to match, bail.
3436 if (FailIndex
== 0) break;
3438 // Push a MatchScope which indicates where to go if the first child fails
3440 MatchScope NewEntry
;
3441 NewEntry
.FailIndex
= FailIndex
;
3442 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
3443 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
3444 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
3445 NewEntry
.InputChain
= InputChain
;
3446 NewEntry
.InputGlue
= InputGlue
;
3447 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
3448 MatchScopes
.push_back(NewEntry
);
3451 case OPC_RecordNode
: {
3452 // Remember this node, it may end up being an operand in the pattern.
3453 SDNode
*Parent
= nullptr;
3454 if (NodeStack
.size() > 1)
3455 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
3456 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
3460 case OPC_RecordChild0
: case OPC_RecordChild1
:
3461 case OPC_RecordChild2
: case OPC_RecordChild3
:
3462 case OPC_RecordChild4
: case OPC_RecordChild5
:
3463 case OPC_RecordChild6
: case OPC_RecordChild7
: {
3464 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
3465 if (ChildNo
>= N
.getNumOperands())
3466 break; // Match fails if out of range child #.
3468 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
3472 case OPC_RecordMemRef
:
3473 if (auto *MN
= dyn_cast
<MemSDNode
>(N
))
3474 MatchedMemRefs
.push_back(MN
->getMemOperand());
3476 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N
->dump(CurDAG
);
3482 case OPC_CaptureGlueInput
:
3483 // If the current node has an input glue, capture it in InputGlue.
3484 if (N
->getNumOperands() != 0 &&
3485 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
3486 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
3489 case OPC_MoveChild
: {
3490 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
3491 if (ChildNo
>= N
.getNumOperands())
3492 break; // Match fails if out of range child #.
3493 N
= N
.getOperand(ChildNo
);
3494 NodeStack
.push_back(N
);
3498 case OPC_MoveChild0
: case OPC_MoveChild1
:
3499 case OPC_MoveChild2
: case OPC_MoveChild3
:
3500 case OPC_MoveChild4
: case OPC_MoveChild5
:
3501 case OPC_MoveChild6
: case OPC_MoveChild7
: {
3502 unsigned ChildNo
= Opcode
-OPC_MoveChild0
;
3503 if (ChildNo
>= N
.getNumOperands())
3504 break; // Match fails if out of range child #.
3505 N
= N
.getOperand(ChildNo
);
3506 NodeStack
.push_back(N
);
3510 case OPC_MoveSibling
:
3511 case OPC_MoveSibling0
:
3512 case OPC_MoveSibling1
:
3513 case OPC_MoveSibling2
:
3514 case OPC_MoveSibling3
:
3515 case OPC_MoveSibling4
:
3516 case OPC_MoveSibling5
:
3517 case OPC_MoveSibling6
:
3518 case OPC_MoveSibling7
: {
3519 // Pop the current node off the NodeStack.
3520 NodeStack
.pop_back();
3521 assert(!NodeStack
.empty() && "Node stack imbalance!");
3522 N
= NodeStack
.back();
3524 unsigned SiblingNo
= Opcode
== OPC_MoveSibling
3525 ? MatcherTable
[MatcherIndex
++]
3526 : Opcode
- OPC_MoveSibling0
;
3527 if (SiblingNo
>= N
.getNumOperands())
3528 break; // Match fails if out of range sibling #.
3529 N
= N
.getOperand(SiblingNo
);
3530 NodeStack
.push_back(N
);
3533 case OPC_MoveParent
:
3534 // Pop the current node off the NodeStack.
3535 NodeStack
.pop_back();
3536 assert(!NodeStack
.empty() && "Node stack imbalance!");
3537 N
= NodeStack
.back();
3541 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
3544 case OPC_CheckChild0Same
: case OPC_CheckChild1Same
:
3545 case OPC_CheckChild2Same
: case OPC_CheckChild3Same
:
3546 if (!::CheckChildSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
,
3547 Opcode
-OPC_CheckChild0Same
))
3551 case OPC_CheckPatternPredicate
:
3552 case OPC_CheckPatternPredicate0
:
3553 case OPC_CheckPatternPredicate1
:
3554 case OPC_CheckPatternPredicate2
:
3555 case OPC_CheckPatternPredicate3
:
3556 case OPC_CheckPatternPredicate4
:
3557 case OPC_CheckPatternPredicate5
:
3558 case OPC_CheckPatternPredicate6
:
3559 case OPC_CheckPatternPredicate7
:
3560 case OPC_CheckPatternPredicateTwoByte
:
3561 if (!::CheckPatternPredicate(Opcode
, MatcherTable
, MatcherIndex
, *this))
3564 case SelectionDAGISel::OPC_CheckPredicate0
:
3565 case SelectionDAGISel::OPC_CheckPredicate1
:
3566 case SelectionDAGISel::OPC_CheckPredicate2
:
3567 case SelectionDAGISel::OPC_CheckPredicate3
:
3568 case SelectionDAGISel::OPC_CheckPredicate4
:
3569 case SelectionDAGISel::OPC_CheckPredicate5
:
3570 case SelectionDAGISel::OPC_CheckPredicate6
:
3571 case SelectionDAGISel::OPC_CheckPredicate7
:
3572 case OPC_CheckPredicate
:
3573 if (!::CheckNodePredicate(Opcode
, MatcherTable
, MatcherIndex
, *this,
3577 case OPC_CheckPredicateWithOperands
: {
3578 unsigned OpNum
= MatcherTable
[MatcherIndex
++];
3579 SmallVector
<SDValue
, 8> Operands
;
3581 for (unsigned i
= 0; i
< OpNum
; ++i
)
3582 Operands
.push_back(RecordedNodes
[MatcherTable
[MatcherIndex
++]].first
);
3584 unsigned PredNo
= MatcherTable
[MatcherIndex
++];
3585 if (!CheckNodePredicateWithOperands(N
.getNode(), PredNo
, Operands
))
3589 case OPC_CheckComplexPat
:
3590 case OPC_CheckComplexPat0
:
3591 case OPC_CheckComplexPat1
:
3592 case OPC_CheckComplexPat2
:
3593 case OPC_CheckComplexPat3
:
3594 case OPC_CheckComplexPat4
:
3595 case OPC_CheckComplexPat5
:
3596 case OPC_CheckComplexPat6
:
3597 case OPC_CheckComplexPat7
: {
3598 unsigned CPNum
= Opcode
== OPC_CheckComplexPat
3599 ? MatcherTable
[MatcherIndex
++]
3600 : Opcode
- OPC_CheckComplexPat0
;
3601 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3602 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
3604 // If target can modify DAG during matching, keep the matching state
3606 std::unique_ptr
<MatchStateUpdater
> MSU
;
3607 if (ComplexPatternFuncMutatesDAG())
3608 MSU
.reset(new MatchStateUpdater(*CurDAG
, &NodeToMatch
, RecordedNodes
,
3611 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
3612 RecordedNodes
[RecNo
].first
, CPNum
,
3617 case OPC_CheckOpcode
:
3618 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
3622 case OPC_CheckTypeI32
:
3623 case OPC_CheckTypeI64
:
3624 MVT::SimpleValueType VT
;
3626 case OPC_CheckTypeI32
:
3629 case OPC_CheckTypeI64
:
3633 VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
3636 if (!::CheckType(VT
, N
, TLI
, CurDAG
->getDataLayout()))
3640 case OPC_CheckTypeRes
: {
3641 unsigned Res
= MatcherTable
[MatcherIndex
++];
3642 if (!::CheckType(getSimpleVT(MatcherTable
, MatcherIndex
), N
.getValue(Res
),
3643 TLI
, CurDAG
->getDataLayout()))
3648 case OPC_SwitchOpcode
: {
3649 unsigned CurNodeOpcode
= N
.getOpcode();
3650 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3653 // Get the size of this case.
3654 CaseSize
= MatcherTable
[MatcherIndex
++];
3656 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3657 if (CaseSize
== 0) break;
3659 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
3660 Opc
|= static_cast<uint16_t>(MatcherTable
[MatcherIndex
++]) << 8;
3662 // If the opcode matches, then we will execute this case.
3663 if (CurNodeOpcode
== Opc
)
3666 // Otherwise, skip over this case.
3667 MatcherIndex
+= CaseSize
;
3670 // If no cases matched, bail out.
3671 if (CaseSize
== 0) break;
3673 // Otherwise, execute the case we found.
3674 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
<< " to "
3675 << MatcherIndex
<< "\n");
3679 case OPC_SwitchType
: {
3680 MVT CurNodeVT
= N
.getSimpleValueType();
3681 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
3684 // Get the size of this case.
3685 CaseSize
= MatcherTable
[MatcherIndex
++];
3687 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
3688 if (CaseSize
== 0) break;
3690 MVT CaseVT
= getSimpleVT(MatcherTable
, MatcherIndex
);
3691 if (CaseVT
== MVT::iPTR
)
3692 CaseVT
= TLI
->getPointerTy(CurDAG
->getDataLayout());
3694 // If the VT matches, then we will execute this case.
3695 if (CurNodeVT
== CaseVT
)
3698 // Otherwise, skip over this case.
3699 MatcherIndex
+= CaseSize
;
3702 // If no cases matched, bail out.
3703 if (CaseSize
== 0) break;
3705 // Otherwise, execute the case we found.
3706 LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT
3707 << "] from " << SwitchStart
<< " to " << MatcherIndex
3711 case OPC_CheckChild0Type
:
3712 case OPC_CheckChild1Type
:
3713 case OPC_CheckChild2Type
:
3714 case OPC_CheckChild3Type
:
3715 case OPC_CheckChild4Type
:
3716 case OPC_CheckChild5Type
:
3717 case OPC_CheckChild6Type
:
3718 case OPC_CheckChild7Type
:
3719 case OPC_CheckChild0TypeI32
:
3720 case OPC_CheckChild1TypeI32
:
3721 case OPC_CheckChild2TypeI32
:
3722 case OPC_CheckChild3TypeI32
:
3723 case OPC_CheckChild4TypeI32
:
3724 case OPC_CheckChild5TypeI32
:
3725 case OPC_CheckChild6TypeI32
:
3726 case OPC_CheckChild7TypeI32
:
3727 case OPC_CheckChild0TypeI64
:
3728 case OPC_CheckChild1TypeI64
:
3729 case OPC_CheckChild2TypeI64
:
3730 case OPC_CheckChild3TypeI64
:
3731 case OPC_CheckChild4TypeI64
:
3732 case OPC_CheckChild5TypeI64
:
3733 case OPC_CheckChild6TypeI64
:
3734 case OPC_CheckChild7TypeI64
: {
3735 MVT::SimpleValueType VT
;
3737 if (Opcode
>= SelectionDAGISel::OPC_CheckChild0TypeI32
&&
3738 Opcode
<= SelectionDAGISel::OPC_CheckChild7TypeI32
) {
3740 ChildNo
= Opcode
- SelectionDAGISel::OPC_CheckChild0TypeI32
;
3741 } else if (Opcode
>= SelectionDAGISel::OPC_CheckChild0TypeI64
&&
3742 Opcode
<= SelectionDAGISel::OPC_CheckChild7TypeI64
) {
3744 ChildNo
= Opcode
- SelectionDAGISel::OPC_CheckChild0TypeI64
;
3746 VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
3747 ChildNo
= Opcode
- SelectionDAGISel::OPC_CheckChild0Type
;
3749 if (!::CheckChildType(VT
, N
, TLI
, CurDAG
->getDataLayout(), ChildNo
))
3753 case OPC_CheckCondCode
:
3754 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
3756 case OPC_CheckChild2CondCode
:
3757 if (!::CheckChild2CondCode(MatcherTable
, MatcherIndex
, N
)) break;
3759 case OPC_CheckValueType
:
3760 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
,
3761 CurDAG
->getDataLayout()))
3764 case OPC_CheckInteger
:
3765 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
3767 case OPC_CheckChild0Integer
: case OPC_CheckChild1Integer
:
3768 case OPC_CheckChild2Integer
: case OPC_CheckChild3Integer
:
3769 case OPC_CheckChild4Integer
:
3770 if (!::CheckChildInteger(MatcherTable
, MatcherIndex
, N
,
3771 Opcode
-OPC_CheckChild0Integer
)) break;
3773 case OPC_CheckAndImm
:
3774 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3776 case OPC_CheckOrImm
:
3777 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
3779 case OPC_CheckImmAllOnesV
:
3780 if (!ISD::isConstantSplatVectorAllOnes(N
.getNode()))
3783 case OPC_CheckImmAllZerosV
:
3784 if (!ISD::isConstantSplatVectorAllZeros(N
.getNode()))
3788 case OPC_CheckFoldableChainNode
: {
3789 assert(NodeStack
.size() != 1 && "No parent node");
3790 // Verify that all intermediate nodes between the root and this one have
3791 // a single use (ignoring chains, which are handled in UpdateChains).
3792 bool HasMultipleUses
= false;
3793 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
) {
3794 unsigned NNonChainUses
= 0;
3795 SDNode
*NS
= NodeStack
[i
].getNode();
3796 for (const SDUse
&U
: NS
->uses())
3797 if (U
.getValueType() != MVT::Other
)
3798 if (++NNonChainUses
> 1) {
3799 HasMultipleUses
= true;
3802 if (HasMultipleUses
) break;
3804 if (HasMultipleUses
) break;
3806 // Check to see that the target thinks this is profitable to fold and that
3807 // we can fold it without inducing cycles in the graph.
3808 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3810 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
3811 NodeToMatch
, OptLevel
,
3812 true/*We validate our own chains*/))
3817 case OPC_EmitInteger
:
3818 case OPC_EmitInteger8
:
3819 case OPC_EmitInteger16
:
3820 case OPC_EmitInteger32
:
3821 case OPC_EmitInteger64
:
3822 case OPC_EmitStringInteger
:
3823 case OPC_EmitStringInteger32
: {
3824 MVT::SimpleValueType VT
;
3826 case OPC_EmitInteger8
:
3829 case OPC_EmitInteger16
:
3832 case OPC_EmitInteger32
:
3833 case OPC_EmitStringInteger32
:
3836 case OPC_EmitInteger64
:
3840 VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
3843 int64_t Val
= MatcherTable
[MatcherIndex
++];
3845 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
3846 if (Opcode
>= OPC_EmitInteger
&& Opcode
<= OPC_EmitInteger64
)
3847 Val
= decodeSignRotatedValue(Val
);
3848 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3849 CurDAG
->getSignedConstant(Val
, SDLoc(NodeToMatch
), VT
,
3854 case OPC_EmitRegister
:
3855 case OPC_EmitRegisterI32
:
3856 case OPC_EmitRegisterI64
: {
3857 MVT::SimpleValueType VT
;
3859 case OPC_EmitRegisterI32
:
3862 case OPC_EmitRegisterI64
:
3866 VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
3869 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3870 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3871 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3874 case OPC_EmitRegister2
: {
3875 // For targets w/ more than 256 register names, the register enum
3876 // values are stored in two bytes in the matcher table (just like
3878 MVT::SimpleValueType VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
3879 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
3880 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
3881 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
3882 CurDAG
->getRegister(RegNo
, VT
), nullptr));
3886 case OPC_EmitConvertToTarget
:
3887 case OPC_EmitConvertToTarget0
:
3888 case OPC_EmitConvertToTarget1
:
3889 case OPC_EmitConvertToTarget2
:
3890 case OPC_EmitConvertToTarget3
:
3891 case OPC_EmitConvertToTarget4
:
3892 case OPC_EmitConvertToTarget5
:
3893 case OPC_EmitConvertToTarget6
:
3894 case OPC_EmitConvertToTarget7
: {
3895 // Convert from IMM/FPIMM to target version.
3896 unsigned RecNo
= Opcode
== OPC_EmitConvertToTarget
3897 ? MatcherTable
[MatcherIndex
++]
3898 : Opcode
- OPC_EmitConvertToTarget0
;
3899 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitConvertToTarget");
3900 SDValue Imm
= RecordedNodes
[RecNo
].first
;
3902 if (Imm
->getOpcode() == ISD::Constant
) {
3903 const ConstantInt
*Val
=cast
<ConstantSDNode
>(Imm
)->getConstantIntValue();
3904 Imm
= CurDAG
->getTargetConstant(*Val
, SDLoc(NodeToMatch
),
3905 Imm
.getValueType());
3906 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
3907 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
3908 Imm
= CurDAG
->getTargetConstantFP(*Val
, SDLoc(NodeToMatch
),
3909 Imm
.getValueType());
3912 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
3916 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
3917 case OPC_EmitMergeInputChains1_1
: // OPC_EmitMergeInputChains, 1, 1
3918 case OPC_EmitMergeInputChains1_2
: { // OPC_EmitMergeInputChains, 1, 2
3919 // These are space-optimized forms of OPC_EmitMergeInputChains.
3920 assert(!InputChain
.getNode() &&
3921 "EmitMergeInputChains should be the first chain producing node");
3922 assert(ChainNodesMatched
.empty() &&
3923 "Should only have one EmitMergeInputChains per match");
3925 // Read all of the chained nodes.
3926 unsigned RecNo
= Opcode
- OPC_EmitMergeInputChains1_0
;
3927 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3928 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3930 // If the chained node is not the root, we can't fold it if it has
3932 // FIXME: What if other value results of the node have uses not matched
3934 if (ChainNodesMatched
.back() != NodeToMatch
&&
3935 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3936 ChainNodesMatched
.clear();
3940 // Merge the input chains if they are not intra-pattern references.
3941 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3943 if (!InputChain
.getNode())
3944 break; // Failed to merge.
3948 case OPC_EmitMergeInputChains
: {
3949 assert(!InputChain
.getNode() &&
3950 "EmitMergeInputChains should be the first chain producing node");
3951 // This node gets a list of nodes we matched in the input that have
3952 // chains. We want to token factor all of the input chains to these nodes
3953 // together. However, if any of the input chains is actually one of the
3954 // nodes matched in this pattern, then we have an intra-match reference.
3955 // Ignore these because the newly token factored chain should not refer to
3957 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
3958 assert(NumChains
!= 0 && "Can't TF zero chains");
3960 assert(ChainNodesMatched
.empty() &&
3961 "Should only have one EmitMergeInputChains per match");
3963 // Read all of the chained nodes.
3964 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
3965 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
3966 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitMergeInputChains");
3967 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
3969 // If the chained node is not the root, we can't fold it if it has
3971 // FIXME: What if other value results of the node have uses not matched
3973 if (ChainNodesMatched
.back() != NodeToMatch
&&
3974 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
3975 ChainNodesMatched
.clear();
3980 // If the inner loop broke out, the match fails.
3981 if (ChainNodesMatched
.empty())
3984 // Merge the input chains if they are not intra-pattern references.
3985 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
3987 if (!InputChain
.getNode())
3988 break; // Failed to merge.
3993 case OPC_EmitCopyToReg
:
3994 case OPC_EmitCopyToReg0
:
3995 case OPC_EmitCopyToReg1
:
3996 case OPC_EmitCopyToReg2
:
3997 case OPC_EmitCopyToReg3
:
3998 case OPC_EmitCopyToReg4
:
3999 case OPC_EmitCopyToReg5
:
4000 case OPC_EmitCopyToReg6
:
4001 case OPC_EmitCopyToReg7
:
4002 case OPC_EmitCopyToRegTwoByte
: {
4004 Opcode
>= OPC_EmitCopyToReg0
&& Opcode
<= OPC_EmitCopyToReg7
4005 ? Opcode
- OPC_EmitCopyToReg0
4006 : MatcherTable
[MatcherIndex
++];
4007 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitCopyToReg");
4008 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
4009 if (Opcode
== OPC_EmitCopyToRegTwoByte
)
4010 DestPhysReg
|= MatcherTable
[MatcherIndex
++] << 8;
4012 if (!InputChain
.getNode())
4013 InputChain
= CurDAG
->getEntryNode();
4015 InputChain
= CurDAG
->getCopyToReg(InputChain
, SDLoc(NodeToMatch
),
4016 DestPhysReg
, RecordedNodes
[RecNo
].first
,
4019 InputGlue
= InputChain
.getValue(1);
4023 case OPC_EmitNodeXForm
: {
4024 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
4025 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
4026 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNodeXForm");
4027 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
4028 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, nullptr));
4031 case OPC_Coverage
: {
4032 // This is emitted right before MorphNode/EmitNode.
4033 // So it should be safe to assume that this node has been selected
4034 unsigned index
= MatcherTable
[MatcherIndex
++];
4035 index
|= (MatcherTable
[MatcherIndex
++] << 8);
4036 index
|= (MatcherTable
[MatcherIndex
++] << 16);
4037 index
|= (MatcherTable
[MatcherIndex
++] << 24);
4038 dbgs() << "COVERED: " << getPatternForIndex(index
) << "\n";
4039 dbgs() << "INCLUDED: " << getIncludePathForIndex(index
) << "\n";
4047 case OPC_EmitNode0None
:
4048 case OPC_EmitNode1None
:
4049 case OPC_EmitNode2None
:
4050 case OPC_EmitNode0Chain
:
4051 case OPC_EmitNode1Chain
:
4052 case OPC_EmitNode2Chain
:
4053 case OPC_MorphNodeTo
:
4054 case OPC_MorphNodeTo0
:
4055 case OPC_MorphNodeTo1
:
4056 case OPC_MorphNodeTo2
:
4057 case OPC_MorphNodeTo0None
:
4058 case OPC_MorphNodeTo1None
:
4059 case OPC_MorphNodeTo2None
:
4060 case OPC_MorphNodeTo0Chain
:
4061 case OPC_MorphNodeTo1Chain
:
4062 case OPC_MorphNodeTo2Chain
:
4063 case OPC_MorphNodeTo0GlueInput
:
4064 case OPC_MorphNodeTo1GlueInput
:
4065 case OPC_MorphNodeTo2GlueInput
:
4066 case OPC_MorphNodeTo0GlueOutput
:
4067 case OPC_MorphNodeTo1GlueOutput
:
4068 case OPC_MorphNodeTo2GlueOutput
: {
4069 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
4070 TargetOpc
|= static_cast<uint16_t>(MatcherTable
[MatcherIndex
++]) << 8;
4071 unsigned EmitNodeInfo
;
4072 if (Opcode
>= OPC_EmitNode0None
&& Opcode
<= OPC_EmitNode2Chain
) {
4073 if (Opcode
>= OPC_EmitNode0Chain
&& Opcode
<= OPC_EmitNode2Chain
)
4074 EmitNodeInfo
= OPFL_Chain
;
4076 EmitNodeInfo
= OPFL_None
;
4077 } else if (Opcode
>= OPC_MorphNodeTo0None
&&
4078 Opcode
<= OPC_MorphNodeTo2GlueOutput
) {
4079 if (Opcode
>= OPC_MorphNodeTo0Chain
&& Opcode
<= OPC_MorphNodeTo2Chain
)
4080 EmitNodeInfo
= OPFL_Chain
;
4081 else if (Opcode
>= OPC_MorphNodeTo0GlueInput
&&
4082 Opcode
<= OPC_MorphNodeTo2GlueInput
)
4083 EmitNodeInfo
= OPFL_GlueInput
;
4084 else if (Opcode
>= OPC_MorphNodeTo0GlueOutput
&&
4085 Opcode
<= OPC_MorphNodeTo2GlueOutput
)
4086 EmitNodeInfo
= OPFL_GlueOutput
;
4088 EmitNodeInfo
= OPFL_None
;
4090 EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
4091 // Get the result VT list.
4093 // If this is one of the compressed forms, get the number of VTs based
4094 // on the Opcode. Otherwise read the next byte from the table.
4095 if (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2
)
4096 NumVTs
= Opcode
- OPC_MorphNodeTo0
;
4097 else if (Opcode
>= OPC_MorphNodeTo0None
&& Opcode
<= OPC_MorphNodeTo2None
)
4098 NumVTs
= Opcode
- OPC_MorphNodeTo0None
;
4099 else if (Opcode
>= OPC_MorphNodeTo0Chain
&&
4100 Opcode
<= OPC_MorphNodeTo2Chain
)
4101 NumVTs
= Opcode
- OPC_MorphNodeTo0Chain
;
4102 else if (Opcode
>= OPC_MorphNodeTo0GlueInput
&&
4103 Opcode
<= OPC_MorphNodeTo2GlueInput
)
4104 NumVTs
= Opcode
- OPC_MorphNodeTo0GlueInput
;
4105 else if (Opcode
>= OPC_MorphNodeTo0GlueOutput
&&
4106 Opcode
<= OPC_MorphNodeTo2GlueOutput
)
4107 NumVTs
= Opcode
- OPC_MorphNodeTo0GlueOutput
;
4108 else if (Opcode
>= OPC_EmitNode0
&& Opcode
<= OPC_EmitNode2
)
4109 NumVTs
= Opcode
- OPC_EmitNode0
;
4110 else if (Opcode
>= OPC_EmitNode0None
&& Opcode
<= OPC_EmitNode2None
)
4111 NumVTs
= Opcode
- OPC_EmitNode0None
;
4112 else if (Opcode
>= OPC_EmitNode0Chain
&& Opcode
<= OPC_EmitNode2Chain
)
4113 NumVTs
= Opcode
- OPC_EmitNode0Chain
;
4115 NumVTs
= MatcherTable
[MatcherIndex
++];
4116 SmallVector
<EVT
, 4> VTs
;
4117 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
4118 MVT::SimpleValueType VT
= getSimpleVT(MatcherTable
, MatcherIndex
);
4119 if (VT
== MVT::iPTR
)
4120 VT
= TLI
->getPointerTy(CurDAG
->getDataLayout()).SimpleTy
;
4124 if (EmitNodeInfo
& OPFL_Chain
)
4125 VTs
.push_back(MVT::Other
);
4126 if (EmitNodeInfo
& OPFL_GlueOutput
)
4127 VTs
.push_back(MVT::Glue
);
4129 // This is hot code, so optimize the two most common cases of 1 and 2
4132 if (VTs
.size() == 1)
4133 VTList
= CurDAG
->getVTList(VTs
[0]);
4134 else if (VTs
.size() == 2)
4135 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
4137 VTList
= CurDAG
->getVTList(VTs
);
4139 // Get the operand list.
4140 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
4141 SmallVector
<SDValue
, 8> Ops
;
4142 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4143 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
4145 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
4147 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
4148 Ops
.push_back(RecordedNodes
[RecNo
].first
);
4151 // If there are variadic operands to add, handle them now.
4152 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
4153 // Determine the start index to copy from.
4154 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
4155 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
4156 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
4157 "Invalid variadic node");
4158 // Copy all of the variadic operands, not including a potential glue
4160 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
4162 SDValue V
= NodeToMatch
->getOperand(i
);
4163 if (V
.getValueType() == MVT::Glue
) break;
4168 // If this has chain/glue inputs, add them.
4169 if (EmitNodeInfo
& OPFL_Chain
)
4170 Ops
.push_back(InputChain
);
4171 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != nullptr)
4172 Ops
.push_back(InputGlue
);
4174 // Check whether any matched node could raise an FP exception. Since all
4175 // such nodes must have a chain, it suffices to check ChainNodesMatched.
4176 // We need to perform this check before potentially modifying one of the
4177 // nodes via MorphNode.
4178 bool MayRaiseFPException
=
4179 llvm::any_of(ChainNodesMatched
, [this](SDNode
*N
) {
4180 return mayRaiseFPException(N
) && !N
->getFlags().hasNoFPExcept();
4184 MachineSDNode
*Res
= nullptr;
4185 bool IsMorphNodeTo
=
4186 Opcode
== OPC_MorphNodeTo
||
4187 (Opcode
>= OPC_MorphNodeTo0
&& Opcode
<= OPC_MorphNodeTo2GlueOutput
);
4188 if (!IsMorphNodeTo
) {
4189 // If this is a normal EmitNode command, just create the new node and
4190 // add the results to the RecordedNodes list.
4191 Res
= CurDAG
->getMachineNode(TargetOpc
, SDLoc(NodeToMatch
),
4194 // Add all the non-glue/non-chain results to the RecordedNodes list.
4195 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
4196 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
4197 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
4201 assert(NodeToMatch
->getOpcode() != ISD::DELETED_NODE
&&
4202 "NodeToMatch was removed partway through selection");
4203 SelectionDAG::DAGNodeDeletedListener
NDL(*CurDAG
, [&](SDNode
*N
,
4205 CurDAG
->salvageDebugInfo(*N
);
4206 auto &Chain
= ChainNodesMatched
;
4207 assert((!E
|| !is_contained(Chain
, N
)) &&
4208 "Chain node replaced during MorphNode");
4209 llvm::erase(Chain
, N
);
4211 Res
= cast
<MachineSDNode
>(MorphNode(NodeToMatch
, TargetOpc
, VTList
,
4212 Ops
, EmitNodeInfo
));
4215 // Set the NoFPExcept flag when no original matched node could
4216 // raise an FP exception, but the new node potentially might.
4217 if (!MayRaiseFPException
&& mayRaiseFPException(Res
))
4218 Res
->setFlags(Res
->getFlags() | SDNodeFlags::NoFPExcept
);
4220 // If the node had chain/glue results, update our notion of the current
4222 if (EmitNodeInfo
& OPFL_GlueOutput
) {
4223 InputGlue
= SDValue(Res
, VTs
.size()-1);
4224 if (EmitNodeInfo
& OPFL_Chain
)
4225 InputChain
= SDValue(Res
, VTs
.size()-2);
4226 } else if (EmitNodeInfo
& OPFL_Chain
)
4227 InputChain
= SDValue(Res
, VTs
.size()-1);
4229 // If the OPFL_MemRefs glue is set on this node, slap all of the
4230 // accumulated memrefs onto it.
4232 // FIXME: This is vastly incorrect for patterns with multiple outputs
4233 // instructions that access memory and for ComplexPatterns that match
4235 if (EmitNodeInfo
& OPFL_MemRefs
) {
4236 // Only attach load or store memory operands if the generated
4237 // instruction may load or store.
4238 const MCInstrDesc
&MCID
= TII
->get(TargetOpc
);
4239 bool mayLoad
= MCID
.mayLoad();
4240 bool mayStore
= MCID
.mayStore();
4242 // We expect to have relatively few of these so just filter them into a
4243 // temporary buffer so that we can easily add them to the instruction.
4244 SmallVector
<MachineMemOperand
*, 4> FilteredMemRefs
;
4245 for (MachineMemOperand
*MMO
: MatchedMemRefs
) {
4246 if (MMO
->isLoad()) {
4248 FilteredMemRefs
.push_back(MMO
);
4249 } else if (MMO
->isStore()) {
4251 FilteredMemRefs
.push_back(MMO
);
4253 FilteredMemRefs
.push_back(MMO
);
4257 CurDAG
->setNodeMemRefs(Res
, FilteredMemRefs
);
4261 if (!MatchedMemRefs
.empty() && Res
->memoperands_empty())
4262 dbgs() << " Dropping mem operands\n";
4263 dbgs() << " " << (IsMorphNodeTo
? "Morphed" : "Created") << " node: ";
4267 // If this was a MorphNodeTo then we're completely done!
4268 if (IsMorphNodeTo
) {
4269 // Update chain uses.
4270 UpdateChains(Res
, InputChain
, ChainNodesMatched
, true);
4276 case OPC_CompleteMatch
: {
4277 // The match has been completed, and any new nodes (if any) have been
4278 // created. Patch up references to the matched dag to use the newly
4280 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
4282 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
4283 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
4285 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
4287 assert(ResSlot
< RecordedNodes
.size() && "Invalid CompleteMatch");
4288 SDValue Res
= RecordedNodes
[ResSlot
].first
;
4290 assert(i
< NodeToMatch
->getNumValues() &&
4291 NodeToMatch
->getValueType(i
) != MVT::Other
&&
4292 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
4293 "Invalid number of results to complete!");
4294 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
4295 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
4296 Res
.getValueType() == MVT::iPTR
||
4297 NodeToMatch
->getValueType(i
).getSizeInBits() ==
4298 Res
.getValueSizeInBits()) &&
4299 "invalid replacement");
4300 ReplaceUses(SDValue(NodeToMatch
, i
), Res
);
4303 // Update chain uses.
4304 UpdateChains(NodeToMatch
, InputChain
, ChainNodesMatched
, false);
4306 // If the root node defines glue, we need to update it to the glue result.
4307 // TODO: This never happens in our tests and I think it can be removed /
4308 // replaced with an assert, but if we do it this the way the change is
4310 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues() - 1) ==
4312 InputGlue
.getNode())
4313 ReplaceUses(SDValue(NodeToMatch
, NodeToMatch
->getNumValues() - 1),
4316 assert(NodeToMatch
->use_empty() &&
4317 "Didn't replace all uses of the node?");
4318 CurDAG
->RemoveDeadNode(NodeToMatch
);
4324 // If the code reached this point, then the match failed. See if there is
4325 // another child to try in the current 'Scope', otherwise pop it until we
4326 // find a case to check.
4327 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
4329 ++NumDAGIselRetries
;
4331 if (MatchScopes
.empty()) {
4332 CannotYetSelect(NodeToMatch
);
4336 // Restore the interpreter state back to the point where the scope was
4338 MatchScope
&LastScope
= MatchScopes
.back();
4339 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
4341 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
4342 N
= NodeStack
.back();
4344 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
4345 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
4346 MatcherIndex
= LastScope
.FailIndex
;
4348 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex
<< "\n");
4350 InputChain
= LastScope
.InputChain
;
4351 InputGlue
= LastScope
.InputGlue
;
4352 if (!LastScope
.HasChainNodesMatched
)
4353 ChainNodesMatched
.clear();
4355 // Check to see what the offset is at the new MatcherIndex. If it is zero
4356 // we have reached the end of this scope, otherwise we have another child
4357 // in the current scope to try.
4358 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
4359 if (NumToSkip
& 128)
4360 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
4362 // If we have another child in this scope to match, update FailIndex and
4364 if (NumToSkip
!= 0) {
4365 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
4369 // End of this scope, pop it and try the next child in the containing
4371 MatchScopes
.pop_back();
4376 /// Return whether the node may raise an FP exception.
4377 bool SelectionDAGISel::mayRaiseFPException(SDNode
*N
) const {
4378 // For machine opcodes, consult the MCID flag.
4379 if (N
->isMachineOpcode()) {
4380 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
4381 return MCID
.mayRaiseFPException();
4384 // For ISD opcodes, only StrictFP opcodes may raise an FP
4386 if (N
->isTargetOpcode()) {
4387 const SelectionDAGTargetInfo
&TSI
= CurDAG
->getSelectionDAGInfo();
4388 return TSI
.mayRaiseFPException(N
->getOpcode());
4390 return N
->isStrictFPOpcode();
4393 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode
*N
) const {
4394 assert(N
->getOpcode() == ISD::OR
&& "Unexpected opcode");
4395 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4399 // Detect when "or" is used to add an offset to a stack object.
4400 if (auto *FN
= dyn_cast
<FrameIndexSDNode
>(N
->getOperand(0))) {
4401 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
4402 Align A
= MFI
.getObjectAlign(FN
->getIndex());
4403 int32_t Off
= C
->getSExtValue();
4404 // If the alleged offset fits in the zero bits guaranteed by
4405 // the alignment, then this or is really an add.
4406 return (Off
>= 0) && (((A
.value() - 1) & Off
) == unsigned(Off
));
4411 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
4413 raw_string_ostream
Msg(msg
);
4414 Msg
<< "Cannot select: ";
4416 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
4417 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
4418 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
4419 N
->printrFull(Msg
, CurDAG
);
4420 Msg
<< "\nIn function: " << MF
->getName();
4422 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
4423 unsigned iid
= N
->getConstantOperandVal(HasInputChain
);
4424 if (iid
< Intrinsic::num_intrinsics
)
4425 Msg
<< "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID
)iid
);
4426 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
4427 Msg
<< "target intrinsic %" << TII
->getName(iid
);
4429 Msg
<< "unknown intrinsic #" << iid
;
4431 report_fatal_error(Twine(msg
));