1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/SelectionDAGNodes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGenTypes/MachineValueType.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GCStrategy.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
56 #define DEBUG_TYPE "statepoint-lowering"
58 STATISTIC(NumSlotsAllocatedForStatepoints
,
59 "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints
, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired
,
62 "Maximum number of stack slots required for a singe statepoint");
64 static cl::opt
<bool> UseRegistersForDeoptValues(
65 "use-registers-for-deopt-values", cl::Hidden
, cl::init(false),
66 cl::desc("Allow using registers for non pointer deopt args"));
68 static cl::opt
<bool> UseRegistersForGCPointersInLandingPad(
69 "use-registers-for-gc-values-in-landing-pad", cl::Hidden
, cl::init(false),
70 cl::desc("Allow using registers for gc pointer in landing pad"));
72 static cl::opt
<unsigned> MaxRegistersForGCPointers(
73 "max-registers-for-gc-values", cl::Hidden
, cl::init(0),
74 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
76 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType
;
78 static void pushStackMapConstant(SmallVectorImpl
<SDValue
>& Ops
,
79 SelectionDAGBuilder
&Builder
, uint64_t Value
) {
80 SDLoc L
= Builder
.getCurSDLoc();
81 Ops
.push_back(Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, L
,
83 Ops
.push_back(Builder
.DAG
.getTargetConstant(Value
, L
, MVT::i64
));
86 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder
&Builder
) {
88 assert(PendingGCRelocateCalls
.empty() &&
89 "Trying to visit statepoint before finished processing previous one");
91 NextSlotToAllocate
= 0;
92 // Need to resize this on each safepoint - we need the two to stay in sync and
93 // the clear patterns of a SelectionDAGBuilder have no relation to
94 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
95 AllocatedStackSlots
.clear();
96 AllocatedStackSlots
.resize(Builder
.FuncInfo
.StatepointStackSlots
.size());
99 void StatepointLoweringState::clear() {
101 AllocatedStackSlots
.clear();
102 assert(PendingGCRelocateCalls
.empty() &&
103 "cleared before statepoint sequence completed");
107 StatepointLoweringState::allocateStackSlot(EVT ValueType
,
108 SelectionDAGBuilder
&Builder
) {
109 NumSlotsAllocatedForStatepoints
++;
110 MachineFrameInfo
&MFI
= Builder
.DAG
.getMachineFunction().getFrameInfo();
112 unsigned SpillSize
= ValueType
.getStoreSize();
113 assert((SpillSize
* 8) ==
114 (-8u & (7 + ValueType
.getSizeInBits())) && // Round up modulo 8.
115 "Size not in bytes?");
117 // First look for a previously created stack slot which is not in
118 // use (accounting for the fact arbitrary slots may already be
119 // reserved), or to create a new stack slot and use it.
121 const size_t NumSlots
= AllocatedStackSlots
.size();
122 assert(NextSlotToAllocate
<= NumSlots
&& "Broken invariant");
124 assert(AllocatedStackSlots
.size() ==
125 Builder
.FuncInfo
.StatepointStackSlots
.size() &&
128 for (; NextSlotToAllocate
< NumSlots
; NextSlotToAllocate
++) {
129 if (!AllocatedStackSlots
.test(NextSlotToAllocate
)) {
130 const int FI
= Builder
.FuncInfo
.StatepointStackSlots
[NextSlotToAllocate
];
131 if (MFI
.getObjectSize(FI
) == SpillSize
) {
132 AllocatedStackSlots
.set(NextSlotToAllocate
);
133 // TODO: Is ValueType the right thing to use here?
134 return Builder
.DAG
.getFrameIndex(FI
, ValueType
);
139 // Couldn't find a free slot, so create a new one:
141 SDValue SpillSlot
= Builder
.DAG
.CreateStackTemporary(ValueType
);
142 const unsigned FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
143 MFI
.markAsStatepointSpillSlotObjectIndex(FI
);
145 Builder
.FuncInfo
.StatepointStackSlots
.push_back(FI
);
146 AllocatedStackSlots
.resize(AllocatedStackSlots
.size()+1, true);
147 assert(AllocatedStackSlots
.size() ==
148 Builder
.FuncInfo
.StatepointStackSlots
.size() &&
151 StatepointMaxSlotsRequired
.updateMax(
152 Builder
.FuncInfo
.StatepointStackSlots
.size());
157 /// Utility function for reservePreviousStackSlotForValue. Tries to find
158 /// stack slot index to which we have spilled value for previous statepoints.
159 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
160 static std::optional
<int> findPreviousSpillSlot(const Value
*Val
,
161 SelectionDAGBuilder
&Builder
,
163 // Can not look any further - give up now
164 if (LookUpDepth
<= 0)
167 // Spill location is known for gc relocates
168 if (const auto *Relocate
= dyn_cast
<GCRelocateInst
>(Val
)) {
169 const Value
*Statepoint
= Relocate
->getStatepoint();
170 assert((isa
<GCStatepointInst
>(Statepoint
) || isa
<UndefValue
>(Statepoint
)) &&
171 "GetStatepoint must return one of two types");
172 if (isa
<UndefValue
>(Statepoint
))
175 const auto &RelocationMap
= Builder
.FuncInfo
.StatepointRelocationMaps
176 [cast
<GCStatepointInst
>(Statepoint
)];
178 auto It
= RelocationMap
.find(Relocate
);
179 if (It
== RelocationMap
.end())
182 auto &Record
= It
->second
;
183 if (Record
.type
!= RecordType::Spill
)
186 return Record
.payload
.FI
;
189 // Look through bitcast instructions.
190 if (const BitCastInst
*Cast
= dyn_cast
<BitCastInst
>(Val
))
191 return findPreviousSpillSlot(Cast
->getOperand(0), Builder
, LookUpDepth
- 1);
193 // Look through phi nodes
194 // All incoming values should have same known stack slot, otherwise result
196 if (const PHINode
*Phi
= dyn_cast
<PHINode
>(Val
)) {
197 std::optional
<int> MergedResult
;
199 for (const auto &IncomingValue
: Phi
->incoming_values()) {
200 std::optional
<int> SpillSlot
=
201 findPreviousSpillSlot(IncomingValue
, Builder
, LookUpDepth
- 1);
205 if (MergedResult
&& *MergedResult
!= *SpillSlot
)
208 MergedResult
= SpillSlot
;
213 // TODO: We can do better for PHI nodes. In cases like this:
214 // ptr = phi(relocated_pointer, not_relocated_pointer)
216 // We will return that stack slot for ptr is unknown. And later we might
217 // assign different stack slots for ptr and relocated_pointer. This limits
218 // llvm's ability to remove redundant stores.
219 // Unfortunately it's hard to accomplish in current infrastructure.
220 // We use this function to eliminate spill store completely, while
221 // in example we still need to emit store, but instead of any location
222 // we need to use special "preferred" location.
224 // TODO: handle simple updates. If a value is modified and the original
225 // value is no longer live, it would be nice to put the modified value in the
226 // same slot. This allows folding of the memory accesses for some
227 // instructions types (like an increment).
231 // However we need to be careful for cases like this:
235 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
236 // put handling of simple modifications in this function like it's done
237 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
238 // which we visit values is unspecified.
240 // Don't know any information about this instruction
244 /// Return true if-and-only-if the given SDValue can be lowered as either a
245 /// constant argument or a stack reference. The key point is that the value
246 /// doesn't need to be spilled or tracked as a vreg use.
247 static bool willLowerDirectly(SDValue Incoming
) {
248 // We are making an unchecked assumption that the frame size <= 2^16 as that
249 // is the largest offset which can be encoded in the stackmap format.
250 if (isa
<FrameIndexSDNode
>(Incoming
))
253 // The largest constant describeable in the StackMap format is 64 bits.
254 // Potential Optimization: Constants values are sign extended by consumer,
255 // and thus there are many constants of static type > 64 bits whose value
256 // happens to be sext(Con64) and could thus be lowered directly.
257 if (Incoming
.getValueType().getSizeInBits() > 64)
260 return isIntOrFPConstant(Incoming
) || Incoming
.isUndef();
263 /// Try to find existing copies of the incoming values in stack slots used for
264 /// statepoint spilling. If we can find a spill slot for the incoming value,
265 /// mark that slot as allocated, and reuse the same slot for this safepoint.
266 /// This helps to avoid series of loads and stores that only serve to reshuffle
267 /// values on the stack between calls.
268 static void reservePreviousStackSlotForValue(const Value
*IncomingValue
,
269 SelectionDAGBuilder
&Builder
) {
270 SDValue Incoming
= Builder
.getValue(IncomingValue
);
272 // If we won't spill this, we don't need to check for previously allocated
274 if (willLowerDirectly(Incoming
))
277 SDValue OldLocation
= Builder
.StatepointLowering
.getLocation(Incoming
);
278 if (OldLocation
.getNode())
279 // Duplicates in input
282 const int LookUpDepth
= 6;
283 std::optional
<int> Index
=
284 findPreviousSpillSlot(IncomingValue
, Builder
, LookUpDepth
);
288 const auto &StatepointSlots
= Builder
.FuncInfo
.StatepointStackSlots
;
290 auto SlotIt
= find(StatepointSlots
, *Index
);
291 assert(SlotIt
!= StatepointSlots
.end() &&
292 "Value spilled to the unknown stack slot");
294 // This is one of our dedicated lowering slots
295 const int Offset
= std::distance(StatepointSlots
.begin(), SlotIt
);
296 if (Builder
.StatepointLowering
.isStackSlotAllocated(Offset
)) {
297 // stack slot already assigned to someone else, can't use it!
298 // TODO: currently we reserve space for gc arguments after doing
299 // normal allocation for deopt arguments. We should reserve for
300 // _all_ deopt and gc arguments, then start allocating. This
301 // will prevent some moves being inserted when vm state changes,
302 // but gc state doesn't between two calls.
305 // Reserve this stack slot
306 Builder
.StatepointLowering
.reserveStackSlot(Offset
);
308 // Cache this slot so we find it when going through the normal
311 Builder
.DAG
.getTargetFrameIndex(*Index
, Builder
.getFrameIndexTy());
312 Builder
.StatepointLowering
.setLocation(Incoming
, Loc
);
315 /// Extract call from statepoint, lower it and return pointer to the
316 /// call node. Also update NodeMap so that getValue(statepoint) will
317 /// reference lowered call result
318 static std::pair
<SDValue
, SDNode
*> lowerCallFromStatepointLoweringInfo(
319 SelectionDAGBuilder::StatepointLoweringInfo
&SI
,
320 SelectionDAGBuilder
&Builder
) {
321 SDValue ReturnValue
, CallEndVal
;
322 std::tie(ReturnValue
, CallEndVal
) =
323 Builder
.lowerInvokable(SI
.CLI
, SI
.EHPadBB
);
324 SDNode
*CallEnd
= CallEndVal
.getNode();
326 // Get a call instruction from the call sequence chain. Tail calls are not
327 // allowed. The following code is essentially reverse engineering X86's
330 // We are expecting DAG to have the following form:
332 // ch = eh_label (only in case of invoke statepoint)
333 // ch, glue = callseq_start ch
334 // ch, glue = X86::Call ch, glue
335 // ch, glue = callseq_end ch, glue
336 // get_return_value ch, glue
338 // get_return_value can either be a sequence of CopyFromReg instructions
339 // to grab the return value from the return register(s), or it can be a LOAD
340 // to load a value returned by reference via a stack slot.
342 if (CallEnd
->getOpcode() == ISD::EH_LABEL
)
343 CallEnd
= CallEnd
->getOperand(0).getNode();
345 bool HasDef
= !SI
.CLI
.RetTy
->isVoidTy();
347 if (CallEnd
->getOpcode() == ISD::LOAD
)
348 CallEnd
= CallEnd
->getOperand(0).getNode();
350 while (CallEnd
->getOpcode() == ISD::CopyFromReg
)
351 CallEnd
= CallEnd
->getOperand(0).getNode();
354 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&& "expected!");
355 return std::make_pair(ReturnValue
, CallEnd
->getOperand(0).getNode());
358 static MachineMemOperand
* getMachineMemOperand(MachineFunction
&MF
,
359 FrameIndexSDNode
&FI
) {
360 auto PtrInfo
= MachinePointerInfo::getFixedStack(MF
, FI
.getIndex());
361 auto MMOFlags
= MachineMemOperand::MOStore
|
362 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
363 auto &MFI
= MF
.getFrameInfo();
364 return MF
.getMachineMemOperand(PtrInfo
, MMOFlags
,
365 MFI
.getObjectSize(FI
.getIndex()),
366 MFI
.getObjectAlign(FI
.getIndex()));
369 /// Spill a value incoming to the statepoint. It might be either part of
371 /// or gcstate. In both cases unconditionally spill it on the stack unless it
372 /// is a null constant. Return pair with first element being frame index
373 /// containing saved value and second element with outgoing chain from the
375 static std::tuple
<SDValue
, SDValue
, MachineMemOperand
*>
376 spillIncomingStatepointValue(SDValue Incoming
, SDValue Chain
,
377 SelectionDAGBuilder
&Builder
) {
378 SDValue Loc
= Builder
.StatepointLowering
.getLocation(Incoming
);
379 MachineMemOperand
* MMO
= nullptr;
381 // Emit new store if we didn't do it for this ptr before
382 if (!Loc
.getNode()) {
383 Loc
= Builder
.StatepointLowering
.allocateStackSlot(Incoming
.getValueType(),
385 int Index
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
386 // We use TargetFrameIndex so that isel will not select it into LEA
387 Loc
= Builder
.DAG
.getTargetFrameIndex(Index
, Builder
.getFrameIndexTy());
389 // Right now we always allocate spill slots that are of the same
390 // size as the value we're about to spill (the size of spillee can
391 // vary since we spill vectors of pointers too). At some point we
392 // can consider allowing spills of smaller values to larger slots
393 // (i.e. change the '==' in the assert below to a '>=').
394 MachineFrameInfo
&MFI
= Builder
.DAG
.getMachineFunction().getFrameInfo();
395 assert((MFI
.getObjectSize(Index
) * 8) ==
396 (-8 & (7 + // Round up modulo 8.
397 (int64_t)Incoming
.getValueSizeInBits())) &&
398 "Bad spill: stack slot does not match!");
400 // Note: Using the alignment of the spill slot (rather than the abi or
401 // preferred alignment) is required for correctness when dealing with spill
402 // slots with preferred alignments larger than frame alignment..
403 auto &MF
= Builder
.DAG
.getMachineFunction();
404 auto PtrInfo
= MachinePointerInfo::getFixedStack(MF
, Index
);
405 auto *StoreMMO
= MF
.getMachineMemOperand(
406 PtrInfo
, MachineMemOperand::MOStore
, MFI
.getObjectSize(Index
),
407 MFI
.getObjectAlign(Index
));
408 Chain
= Builder
.DAG
.getStore(Chain
, Builder
.getCurSDLoc(), Incoming
, Loc
,
411 MMO
= getMachineMemOperand(MF
, *cast
<FrameIndexSDNode
>(Loc
));
413 Builder
.StatepointLowering
.setLocation(Incoming
, Loc
);
416 assert(Loc
.getNode());
417 return std::make_tuple(Loc
, Chain
, MMO
);
420 /// Lower a single value incoming to a statepoint node. This value can be
421 /// either a deopt value or a gc value, the handling is the same. We special
422 /// case constants and allocas, then fall back to spilling if required.
424 lowerIncomingStatepointValue(SDValue Incoming
, bool RequireSpillSlot
,
425 SmallVectorImpl
<SDValue
> &Ops
,
426 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
,
427 SelectionDAGBuilder
&Builder
) {
429 if (willLowerDirectly(Incoming
)) {
430 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Incoming
)) {
431 // This handles allocas as arguments to the statepoint (this is only
432 // really meaningful for a deopt value. For GC, we'd be trying to
433 // relocate the address of the alloca itself?)
434 assert(Incoming
.getValueType() == Builder
.getFrameIndexTy() &&
435 "Incoming value is a frame index!");
436 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(FI
->getIndex(),
437 Builder
.getFrameIndexTy()));
439 auto &MF
= Builder
.DAG
.getMachineFunction();
440 auto *MMO
= getMachineMemOperand(MF
, *FI
);
441 MemRefs
.push_back(MMO
);
445 assert(Incoming
.getValueType().getSizeInBits() <= 64);
447 if (Incoming
.isUndef()) {
448 // Put an easily recognized constant that's unlikely to be a valid
449 // value so that uses of undef by the consumer of the stackmap is
450 // easily recognized. This is legal since the compiler is always
451 // allowed to chose an arbitrary value for undef.
452 pushStackMapConstant(Ops
, Builder
, 0xFEFEFEFE);
456 // If the original value was a constant, make sure it gets recorded as
457 // such in the stackmap. This is required so that the consumer can
458 // parse any internal format to the deopt state. It also handles null
459 // pointers and other constant pointers in GC states.
460 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Incoming
)) {
461 pushStackMapConstant(Ops
, Builder
, C
->getSExtValue());
463 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Incoming
)) {
464 pushStackMapConstant(Ops
, Builder
,
465 C
->getValueAPF().bitcastToAPInt().getZExtValue());
469 llvm_unreachable("unhandled direct lowering case");
474 if (!RequireSpillSlot
) {
475 // If this value is live in (not live-on-return, or live-through), we can
476 // treat it the same way patchpoint treats it's "live in" values. We'll
477 // end up folding some of these into stack references, but they'll be
478 // handled by the register allocator. Note that we do not have the notion
479 // of a late use so these values might be placed in registers which are
480 // clobbered by the call. This is fine for live-in. For live-through
481 // fix-up pass should be executed to force spilling of such registers.
482 Ops
.push_back(Incoming
);
484 // Otherwise, locate a spill slot and explicitly spill it so it can be
485 // found by the runtime later. Note: We know all of these spills are
486 // independent, but don't bother to exploit that chain wise. DAGCombine
487 // will happily do so as needed, so doing it here would be a small compile
489 SDValue Chain
= Builder
.getRoot();
490 auto Res
= spillIncomingStatepointValue(Incoming
, Chain
, Builder
);
491 Ops
.push_back(std::get
<0>(Res
));
492 if (auto *MMO
= std::get
<2>(Res
))
493 MemRefs
.push_back(MMO
);
494 Chain
= std::get
<1>(Res
);
495 Builder
.DAG
.setRoot(Chain
);
500 /// Return true if value V represents the GC value. The behavior is conservative
501 /// in case it is not sure that value is not GC the function returns true.
502 static bool isGCValue(const Value
*V
, SelectionDAGBuilder
&Builder
) {
503 auto *Ty
= V
->getType();
504 if (!Ty
->isPtrOrPtrVectorTy())
506 if (auto *GFI
= Builder
.GFI
)
507 if (auto IsManaged
= GFI
->getStrategy().isGCManagedPointer(Ty
))
509 return true; // conservative
512 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
513 /// lowering is described in lowerIncomingStatepointValue. This function is
514 /// responsible for lowering everything in the right position and playing some
515 /// tricks to avoid redundant stack manipulation where possible. On
516 /// completion, 'Ops' will contain ready to use operands for machine code
517 /// statepoint. The chain nodes will have already been created and the DAG root
518 /// will be set to the last value spilled (if any were).
520 lowerStatepointMetaArgs(SmallVectorImpl
<SDValue
> &Ops
,
521 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
,
522 SmallVectorImpl
<SDValue
> &GCPtrs
,
523 DenseMap
<SDValue
, int> &LowerAsVReg
,
524 SelectionDAGBuilder::StatepointLoweringInfo
&SI
,
525 SelectionDAGBuilder
&Builder
) {
526 // Lower the deopt and gc arguments for this statepoint. Layout will be:
527 // deopt argument length, deopt arguments.., gc arguments...
529 // Figure out what lowering strategy we're going to use for each part
530 // Note: It is conservatively correct to lower both "live-in" and "live-out"
531 // as "live-through". A "live-through" variable is one which is "live-in",
532 // "live-out", and live throughout the lifetime of the call (i.e. we can find
533 // it from any PC within the transitive callee of the statepoint). In
534 // particular, if the callee spills callee preserved registers we may not
535 // be able to find a value placed in that register during the call. This is
536 // fine for live-out, but not for live-through. If we were willing to make
537 // assumptions about the code generator producing the callee, we could
538 // potentially allow live-through values in callee saved registers.
539 const bool LiveInDeopt
=
540 SI
.StatepointFlags
& (uint64_t)StatepointFlags::DeoptLiveIn
;
542 // Decide which deriver pointers will go on VRegs
543 unsigned MaxVRegPtrs
= MaxRegistersForGCPointers
.getValue();
545 // Pointers used on exceptional path of invoke statepoint.
546 // We cannot assing them to VRegs.
547 SmallSet
<SDValue
, 8> LPadPointers
;
548 if (!UseRegistersForGCPointersInLandingPad
)
549 if (const auto *StInvoke
=
550 dyn_cast_or_null
<InvokeInst
>(SI
.StatepointInstr
)) {
551 LandingPadInst
*LPI
= StInvoke
->getLandingPadInst();
552 for (const auto *Relocate
: SI
.GCRelocates
)
553 if (Relocate
->getOperand(0) == LPI
) {
554 LPadPointers
.insert(Builder
.getValue(Relocate
->getBasePtr()));
555 LPadPointers
.insert(Builder
.getValue(Relocate
->getDerivedPtr()));
559 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
561 // List of unique lowered GC Pointer values.
562 SmallSetVector
<SDValue
, 16> LoweredGCPtrs
;
563 // Map lowered GC Pointer value to the index in above vector
564 DenseMap
<SDValue
, unsigned> GCPtrIndexMap
;
566 unsigned CurNumVRegs
= 0;
568 auto canPassGCPtrOnVReg
= [&](SDValue SD
) {
569 if (SD
.getValueType().isVector())
571 if (LPadPointers
.count(SD
))
573 return !willLowerDirectly(SD
);
576 auto processGCPtr
= [&](const Value
*V
) {
577 SDValue PtrSD
= Builder
.getValue(V
);
578 if (!LoweredGCPtrs
.insert(PtrSD
))
579 return; // skip duplicates
580 GCPtrIndexMap
[PtrSD
] = LoweredGCPtrs
.size() - 1;
582 assert(!LowerAsVReg
.count(PtrSD
) && "must not have been seen");
583 if (LowerAsVReg
.size() == MaxVRegPtrs
)
585 assert(V
->getType()->isVectorTy() == PtrSD
.getValueType().isVector() &&
586 "IR and SD types disagree");
587 if (!canPassGCPtrOnVReg(PtrSD
)) {
588 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD
.dump(&Builder
.DAG
));
591 LLVM_DEBUG(dbgs() << "vreg "; PtrSD
.dump(&Builder
.DAG
));
592 LowerAsVReg
[PtrSD
] = CurNumVRegs
++;
595 // Process derived pointers first to give them more chance to go on VReg.
596 for (const Value
*V
: SI
.Ptrs
)
598 for (const Value
*V
: SI
.Bases
)
601 LLVM_DEBUG(dbgs() << LowerAsVReg
.size() << " pointers will go in vregs\n");
603 auto requireSpillSlot
= [&](const Value
*V
) {
604 if (!Builder
.DAG
.getTargetLoweringInfo().isTypeLegal(
605 Builder
.getValue(V
).getValueType()))
607 if (isGCValue(V
, Builder
))
608 return !LowerAsVReg
.count(Builder
.getValue(V
));
609 return !(LiveInDeopt
|| UseRegistersForDeoptValues
);
612 // Before we actually start lowering (and allocating spill slots for values),
613 // reserve any stack slots which we judge to be profitable to reuse for a
614 // particular value. This is purely an optimization over the code below and
615 // doesn't change semantics at all. It is important for performance that we
616 // reserve slots for both deopt and gc values before lowering either.
617 for (const Value
*V
: SI
.DeoptState
) {
618 if (requireSpillSlot(V
))
619 reservePreviousStackSlotForValue(V
, Builder
);
622 for (const Value
*V
: SI
.Ptrs
) {
623 SDValue SDV
= Builder
.getValue(V
);
624 if (!LowerAsVReg
.count(SDV
))
625 reservePreviousStackSlotForValue(V
, Builder
);
628 for (const Value
*V
: SI
.Bases
) {
629 SDValue SDV
= Builder
.getValue(V
);
630 if (!LowerAsVReg
.count(SDV
))
631 reservePreviousStackSlotForValue(V
, Builder
);
634 // First, prefix the list with the number of unique values to be
635 // lowered. Note that this is the number of *Values* not the
636 // number of SDValues required to lower them.
637 const int NumVMSArgs
= SI
.DeoptState
.size();
638 pushStackMapConstant(Ops
, Builder
, NumVMSArgs
);
640 // The vm state arguments are lowered in an opaque manner. We do not know
641 // what type of values are contained within.
642 LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
643 for (const Value
*V
: SI
.DeoptState
) {
645 // If this is a function argument at a static frame index, generate it as
647 if (const Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
648 int FI
= Builder
.FuncInfo
.getArgumentFrameIndex(Arg
);
650 Incoming
= Builder
.DAG
.getFrameIndex(FI
, Builder
.getFrameIndexTy());
652 if (!Incoming
.getNode())
653 Incoming
= Builder
.getValue(V
);
654 LLVM_DEBUG(dbgs() << "Value " << *V
655 << " requireSpillSlot = " << requireSpillSlot(V
) << "\n");
656 lowerIncomingStatepointValue(Incoming
, requireSpillSlot(V
), Ops
, MemRefs
,
660 // Finally, go ahead and lower all the gc arguments.
661 pushStackMapConstant(Ops
, Builder
, LoweredGCPtrs
.size());
662 for (SDValue SDV
: LoweredGCPtrs
)
663 lowerIncomingStatepointValue(SDV
, !LowerAsVReg
.count(SDV
), Ops
, MemRefs
,
666 // Copy to out vector. LoweredGCPtrs will be empty after this point.
667 GCPtrs
= LoweredGCPtrs
.takeVector();
669 // If there are any explicit spill slots passed to the statepoint, record
670 // them, but otherwise do not do anything special. These are user provided
671 // allocas and give control over placement to the consumer. In this case,
672 // it is the contents of the slot which may get updated, not the pointer to
674 SmallVector
<SDValue
, 4> Allocas
;
675 for (Value
*V
: SI
.GCLives
) {
676 SDValue Incoming
= Builder
.getValue(V
);
677 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Incoming
)) {
678 // This handles allocas as arguments to the statepoint
679 assert(Incoming
.getValueType() == Builder
.getFrameIndexTy() &&
680 "Incoming value is a frame index!");
681 Allocas
.push_back(Builder
.DAG
.getTargetFrameIndex(
682 FI
->getIndex(), Builder
.getFrameIndexTy()));
684 auto &MF
= Builder
.DAG
.getMachineFunction();
685 auto *MMO
= getMachineMemOperand(MF
, *FI
);
686 MemRefs
.push_back(MMO
);
689 pushStackMapConstant(Ops
, Builder
, Allocas
.size());
690 Ops
.append(Allocas
.begin(), Allocas
.end());
692 // Now construct GC base/derived map;
693 pushStackMapConstant(Ops
, Builder
, SI
.Ptrs
.size());
694 SDLoc L
= Builder
.getCurSDLoc();
695 for (unsigned i
= 0; i
< SI
.Ptrs
.size(); ++i
) {
696 SDValue Base
= Builder
.getValue(SI
.Bases
[i
]);
697 assert(GCPtrIndexMap
.count(Base
) && "base not found in index map");
699 Builder
.DAG
.getTargetConstant(GCPtrIndexMap
[Base
], L
, MVT::i64
));
700 SDValue Derived
= Builder
.getValue(SI
.Ptrs
[i
]);
701 assert(GCPtrIndexMap
.count(Derived
) && "derived not found in index map");
703 Builder
.DAG
.getTargetConstant(GCPtrIndexMap
[Derived
], L
, MVT::i64
));
707 SDValue
SelectionDAGBuilder::LowerAsSTATEPOINT(
708 SelectionDAGBuilder::StatepointLoweringInfo
&SI
) {
709 // The basic scheme here is that information about both the original call and
710 // the safepoint is encoded in the CallInst. We create a temporary call and
711 // lower it, then reverse engineer the calling sequence.
715 StatepointLowering
.startNewStatepoint(*this);
716 assert(SI
.Bases
.size() == SI
.Ptrs
.size() && "Pointer without base!");
717 assert((GFI
|| SI
.Bases
.empty()) &&
718 "No gc specified, so cannot relocate pointers!");
720 LLVM_DEBUG(if (SI
.StatepointInstr
) dbgs()
721 << "Lowering statepoint " << *SI
.StatepointInstr
<< "\n");
723 for (const auto *Reloc
: SI
.GCRelocates
)
724 if (Reloc
->getParent() == SI
.StatepointInstr
->getParent())
725 StatepointLowering
.scheduleRelocCall(*Reloc
);
728 // Lower statepoint vmstate and gcstate arguments
730 // All lowered meta args.
731 SmallVector
<SDValue
, 10> LoweredMetaArgs
;
732 // Lowered GC pointers (subset of above).
733 SmallVector
<SDValue
, 16> LoweredGCArgs
;
734 SmallVector
<MachineMemOperand
*, 16> MemRefs
;
735 // Maps derived pointer SDValue to statepoint result of relocated pointer.
736 DenseMap
<SDValue
, int> LowerAsVReg
;
737 lowerStatepointMetaArgs(LoweredMetaArgs
, MemRefs
, LoweredGCArgs
, LowerAsVReg
,
740 // Now that we've emitted the spills, we need to update the root so that the
741 // call sequence is ordered correctly.
742 SI
.CLI
.setChain(getRoot());
744 // Get call node, we will replace it later with statepoint
747 std::tie(ReturnVal
, CallNode
) = lowerCallFromStatepointLoweringInfo(SI
, *this);
749 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
750 // nodes with all the appropriate arguments and return values.
752 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
753 SDValue Chain
= CallNode
->getOperand(0);
756 bool CallHasIncomingGlue
= CallNode
->getGluedNode();
757 if (CallHasIncomingGlue
) {
758 // Glue is always last operand
759 Glue
= CallNode
->getOperand(CallNode
->getNumOperands() - 1);
762 // Build the GC_TRANSITION_START node if necessary.
764 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
765 // order in which they appear in the call to the statepoint intrinsic. If
766 // any of the operands is a pointer-typed, that operand is immediately
767 // followed by a SRCVALUE for the pointer that may be used during lowering
768 // (e.g. to form MachinePointerInfo values for loads/stores).
769 const bool IsGCTransition
=
770 (SI
.StatepointFlags
& (uint64_t)StatepointFlags::GCTransition
) ==
771 (uint64_t)StatepointFlags::GCTransition
;
772 if (IsGCTransition
) {
773 SmallVector
<SDValue
, 8> TSOps
;
776 TSOps
.push_back(Chain
);
778 // Add GC transition arguments
779 for (const Value
*V
: SI
.GCTransitionArgs
) {
780 TSOps
.push_back(getValue(V
));
781 if (V
->getType()->isPointerTy())
782 TSOps
.push_back(DAG
.getSrcValue(V
));
785 // Add glue if necessary
786 if (CallHasIncomingGlue
)
787 TSOps
.push_back(Glue
);
789 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
791 SDValue GCTransitionStart
=
792 DAG
.getNode(ISD::GC_TRANSITION_START
, getCurSDLoc(), NodeTys
, TSOps
);
794 Chain
= GCTransitionStart
.getValue(0);
795 Glue
= GCTransitionStart
.getValue(1);
798 // TODO: Currently, all of these operands are being marked as read/write in
799 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
800 // and flags to be read-only.
801 SmallVector
<SDValue
, 40> Ops
;
803 // Add the <id> and <numBytes> constants.
804 Ops
.push_back(DAG
.getTargetConstant(SI
.ID
, getCurSDLoc(), MVT::i64
));
806 DAG
.getTargetConstant(SI
.NumPatchBytes
, getCurSDLoc(), MVT::i32
));
808 // Calculate and push starting position of vmstate arguments
809 // Get number of arguments incoming directly into call node
810 unsigned NumCallRegArgs
=
811 CallNode
->getNumOperands() - (CallHasIncomingGlue
? 4 : 3);
812 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, getCurSDLoc(), MVT::i32
));
815 SDValue CallTarget
= SDValue(CallNode
->getOperand(1).getNode(), 0);
816 Ops
.push_back(CallTarget
);
818 // Add call arguments
819 // Get position of register mask in the call
820 SDNode::op_iterator RegMaskIt
;
821 if (CallHasIncomingGlue
)
822 RegMaskIt
= CallNode
->op_end() - 2;
824 RegMaskIt
= CallNode
->op_end() - 1;
825 Ops
.insert(Ops
.end(), CallNode
->op_begin() + 2, RegMaskIt
);
827 // Add a constant argument for the calling convention
828 pushStackMapConstant(Ops
, *this, SI
.CLI
.CallConv
);
830 // Add a constant argument for the flags
831 uint64_t Flags
= SI
.StatepointFlags
;
832 assert(((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0) &&
833 "Unknown flag used");
834 pushStackMapConstant(Ops
, *this, Flags
);
836 // Insert all vmstate and gcstate arguments
837 llvm::append_range(Ops
, LoweredMetaArgs
);
839 // Add register mask from call node
840 Ops
.push_back(*RegMaskIt
);
843 Ops
.push_back(Chain
);
845 // Same for the glue, but we add it only if original call had it
849 // Compute return values. Provide a glue output since we consume one as
850 // input. This allows someone else to chain off us as needed.
851 SmallVector
<EVT
, 8> NodeTys
;
852 for (auto SD
: LoweredGCArgs
) {
853 if (!LowerAsVReg
.count(SD
))
855 NodeTys
.push_back(SD
.getValueType());
857 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys
.size() << " results\n");
858 assert(NodeTys
.size() == LowerAsVReg
.size() && "Inconsistent GC Ptr lowering");
859 NodeTys
.push_back(MVT::Other
);
860 NodeTys
.push_back(MVT::Glue
);
862 unsigned NumResults
= NodeTys
.size();
863 MachineSDNode
*StatepointMCNode
=
864 DAG
.getMachineNode(TargetOpcode::STATEPOINT
, getCurSDLoc(), NodeTys
, Ops
);
865 DAG
.setNodeMemRefs(StatepointMCNode
, MemRefs
);
867 // For values lowered to tied-defs, create the virtual registers if used
868 // in other blocks. For local gc.relocate record appropriate statepoint
869 // result in StatepointLoweringState.
870 DenseMap
<SDValue
, Register
> VirtRegs
;
871 for (const auto *Relocate
: SI
.GCRelocates
) {
872 Value
*Derived
= Relocate
->getDerivedPtr();
873 SDValue SD
= getValue(Derived
);
874 if (!LowerAsVReg
.count(SD
))
877 SDValue Relocated
= SDValue(StatepointMCNode
, LowerAsVReg
[SD
]);
879 // Handle local relocate. Note that different relocates might
880 // map to the same SDValue.
881 if (SI
.StatepointInstr
->getParent() == Relocate
->getParent()) {
882 SDValue Res
= StatepointLowering
.getLocation(SD
);
884 assert(Res
== Relocated
);
886 StatepointLowering
.setLocation(SD
, Relocated
);
890 // Handle multiple gc.relocates of the same input efficiently.
891 if (VirtRegs
.count(SD
))
894 auto *RetTy
= Relocate
->getType();
895 Register Reg
= FuncInfo
.CreateRegs(RetTy
);
896 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
897 DAG
.getDataLayout(), Reg
, RetTy
, std::nullopt
);
898 SDValue Chain
= DAG
.getRoot();
899 RFV
.getCopyToRegs(Relocated
, DAG
, getCurSDLoc(), Chain
, nullptr);
900 PendingExports
.push_back(Chain
);
905 // Record for later use how each relocation was lowered. This is needed to
906 // allow later gc.relocates to mirror the lowering chosen.
907 const Instruction
*StatepointInstr
= SI
.StatepointInstr
;
908 auto &RelocationMap
= FuncInfo
.StatepointRelocationMaps
[StatepointInstr
];
909 for (const GCRelocateInst
*Relocate
: SI
.GCRelocates
) {
910 const Value
*V
= Relocate
->getDerivedPtr();
911 SDValue SDV
= getValue(V
);
912 SDValue Loc
= StatepointLowering
.getLocation(SDV
);
914 bool IsLocal
= (Relocate
->getParent() == StatepointInstr
->getParent());
917 if (IsLocal
&& LowerAsVReg
.count(SDV
)) {
918 // Result is already stored in StatepointLowering
919 Record
.type
= RecordType::SDValueNode
;
920 } else if (LowerAsVReg
.count(SDV
)) {
921 Record
.type
= RecordType::VReg
;
922 assert(VirtRegs
.count(SDV
));
923 Record
.payload
.Reg
= VirtRegs
[SDV
];
924 } else if (Loc
.getNode()) {
925 Record
.type
= RecordType::Spill
;
926 Record
.payload
.FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
928 Record
.type
= RecordType::NoRelocate
;
929 // If we didn't relocate a value, we'll essentialy end up inserting an
930 // additional use of the original value when lowering the gc.relocate.
931 // We need to make sure the value is available at the new use, which
932 // might be in another block.
933 if (Relocate
->getParent() != StatepointInstr
->getParent())
934 ExportFromCurrentBlock(V
);
936 RelocationMap
[Relocate
] = Record
;
941 SDNode
*SinkNode
= StatepointMCNode
;
943 // Build the GC_TRANSITION_END node if necessary.
945 // See the comment above regarding GC_TRANSITION_START for the layout of
946 // the operands to the GC_TRANSITION_END node.
947 if (IsGCTransition
) {
948 SmallVector
<SDValue
, 8> TEOps
;
951 TEOps
.push_back(SDValue(StatepointMCNode
, NumResults
- 2));
953 // Add GC transition arguments
954 for (const Value
*V
: SI
.GCTransitionArgs
) {
955 TEOps
.push_back(getValue(V
));
956 if (V
->getType()->isPointerTy())
957 TEOps
.push_back(DAG
.getSrcValue(V
));
961 TEOps
.push_back(SDValue(StatepointMCNode
, NumResults
- 1));
963 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
965 SDValue GCTransitionStart
=
966 DAG
.getNode(ISD::GC_TRANSITION_END
, getCurSDLoc(), NodeTys
, TEOps
);
968 SinkNode
= GCTransitionStart
.getNode();
971 // Replace original call
972 // Call: ch,glue = CALL ...
973 // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
974 unsigned NumSinkValues
= SinkNode
->getNumValues();
975 SDValue StatepointValues
[2] = {SDValue(SinkNode
, NumSinkValues
- 2),
976 SDValue(SinkNode
, NumSinkValues
- 1)};
977 DAG
.ReplaceAllUsesWith(CallNode
, StatepointValues
);
978 // Remove original call node
979 DAG
.DeleteNode(CallNode
);
981 // Since we always emit CopyToRegs (even for local relocates), we must
982 // update root, so that they are emitted before any local uses.
983 (void)getControlRoot();
985 // TODO: A better future implementation would be to emit a single variable
986 // argument, variable return value STATEPOINT node here and then hookup the
987 // return value of each gc.relocate to the respective output of the
988 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
989 // to actually be possible today.
994 /// Return two gc.results if present. First result is a block local
995 /// gc.result, second result is a non-block local gc.result. Corresponding
996 /// entry will be nullptr if not present.
997 static std::pair
<const GCResultInst
*, const GCResultInst
*>
998 getGCResultLocality(const GCStatepointInst
&S
) {
999 std::pair
<const GCResultInst
*, const GCResultInst
*> Res(nullptr, nullptr);
1000 for (const auto *U
: S
.users()) {
1001 auto *GRI
= dyn_cast
<GCResultInst
>(U
);
1004 if (GRI
->getParent() == S
.getParent())
1013 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst
&I
,
1014 const BasicBlock
*EHPadBB
/*= nullptr*/) {
1015 assert(I
.getCallingConv() != CallingConv::AnyReg
&&
1016 "anyregcc is not supported on statepoints!");
1019 // Check that the associated GCStrategy expects to encounter statepoints.
1020 assert(GFI
->getStrategy().useStatepoints() &&
1021 "GCStrategy does not expect to encounter statepoints");
1024 SDValue ActualCallee
;
1025 SDValue Callee
= getValue(I
.getActualCalledOperand());
1027 if (I
.getNumPatchBytes() > 0) {
1028 // If we've been asked to emit a nop sequence instead of a call instruction
1029 // for this statepoint then don't lower the call target, but use a constant
1030 // `undef` instead. Not lowering the call target lets statepoint clients
1031 // get away without providing a physical address for the symbolic call
1032 // target at link time.
1033 ActualCallee
= DAG
.getUNDEF(Callee
.getValueType());
1035 ActualCallee
= Callee
;
1038 const auto GCResultLocality
= getGCResultLocality(I
);
1039 AttributeSet retAttrs
;
1040 if (GCResultLocality
.first
)
1041 retAttrs
= GCResultLocality
.first
->getAttributes().getRetAttrs();
1043 StatepointLoweringInfo
SI(DAG
);
1044 populateCallLoweringInfo(SI
.CLI
, &I
, GCStatepointInst::CallArgsBeginPos
,
1045 I
.getNumCallArgs(), ActualCallee
,
1046 I
.getActualReturnType(), retAttrs
,
1047 /*IsPatchPoint=*/false);
1049 // There may be duplication in the gc.relocate list; such as two copies of
1050 // each relocation on normal and exceptional path for an invoke. We only
1051 // need to spill once and record one copy in the stackmap, but we need to
1052 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
1053 // handled as a CSE problem elsewhere.)
1054 // TODO: There a couple of major stackmap size optimizations we could do
1055 // here if we wished.
1056 // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1057 // record {B,B} if it's seen later.
1058 // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1059 // given that, we could change the format to record base pointer relocations
1060 // separately with half the space. This would require a format rev and a
1061 // fairly major rework of the STATEPOINT node though.
1062 SmallSet
<SDValue
, 8> Seen
;
1063 for (const GCRelocateInst
*Relocate
: I
.getGCRelocates()) {
1064 SI
.GCRelocates
.push_back(Relocate
);
1066 SDValue DerivedSD
= getValue(Relocate
->getDerivedPtr());
1067 if (Seen
.insert(DerivedSD
).second
) {
1068 SI
.Bases
.push_back(Relocate
->getBasePtr());
1069 SI
.Ptrs
.push_back(Relocate
->getDerivedPtr());
1073 // If we find a deopt value which isn't explicitly added, we need to
1074 // ensure it gets lowered such that gc cycles occurring before the
1075 // deoptimization event during the lifetime of the call don't invalidate
1076 // the pointer we're deopting with. Note that we assume that all
1077 // pointers passed to deopt are base pointers; relaxing that assumption
1078 // would require relatively large changes to how we represent relocations.
1079 for (Value
*V
: I
.deopt_operands()) {
1080 if (!isGCValue(V
, *this))
1082 if (Seen
.insert(getValue(V
)).second
) {
1083 SI
.Bases
.push_back(V
);
1084 SI
.Ptrs
.push_back(V
);
1088 SI
.GCLives
= ArrayRef
<const Use
>(I
.gc_live_begin(), I
.gc_live_end());
1089 SI
.StatepointInstr
= &I
;
1092 SI
.DeoptState
= ArrayRef
<const Use
>(I
.deopt_begin(), I
.deopt_end());
1093 SI
.GCTransitionArgs
= ArrayRef
<const Use
>(I
.gc_transition_args_begin(),
1094 I
.gc_transition_args_end());
1096 SI
.StatepointFlags
= I
.getFlags();
1097 SI
.NumPatchBytes
= I
.getNumPatchBytes();
1098 SI
.EHPadBB
= EHPadBB
;
1100 SDValue ReturnValue
= LowerAsSTATEPOINT(SI
);
1102 // Export the result value if needed
1103 if (!GCResultLocality
.first
&& !GCResultLocality
.second
) {
1104 // The return value is not needed, just generate a poison value.
1105 // Note: This covers the void return case.
1106 setValue(&I
, DAG
.getIntPtrConstant(-1, getCurSDLoc()));
1110 if (GCResultLocality
.first
) {
1111 // Result value will be used in a same basic block. Don't export it or
1112 // perform any explicit register copies. The gc_result will simply grab
1114 setValue(&I
, ReturnValue
);
1117 if (!GCResultLocality
.second
)
1119 // Result value will be used in a different basic block so we need to export
1120 // it now. Default exporting mechanism will not work here because statepoint
1121 // call has a different type than the actual call. It means that by default
1122 // llvm will create export register of the wrong type (always i32 in our
1123 // case). So instead we need to create export register with correct type
1125 // TODO: To eliminate this problem we can remove gc.result intrinsics
1126 // completely and make statepoint call to return a tuple.
1127 Type
*RetTy
= GCResultLocality
.second
->getType();
1128 Register Reg
= FuncInfo
.CreateRegs(RetTy
);
1129 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1130 DAG
.getDataLayout(), Reg
, RetTy
,
1131 I
.getCallingConv());
1132 SDValue Chain
= DAG
.getEntryNode();
1134 RFV
.getCopyToRegs(ReturnValue
, DAG
, getCurSDLoc(), Chain
, nullptr);
1135 PendingExports
.push_back(Chain
);
1136 FuncInfo
.ValueMap
[&I
] = Reg
;
1139 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1140 const CallBase
*Call
, SDValue Callee
, const BasicBlock
*EHPadBB
,
1141 bool VarArgDisallowed
, bool ForceVoidReturnTy
) {
1142 StatepointLoweringInfo
SI(DAG
);
1143 unsigned ArgBeginIndex
= Call
->arg_begin() - Call
->op_begin();
1144 populateCallLoweringInfo(
1145 SI
.CLI
, Call
, ArgBeginIndex
, Call
->arg_size(), Callee
,
1146 ForceVoidReturnTy
? Type::getVoidTy(*DAG
.getContext()) : Call
->getType(),
1147 Call
->getAttributes().getRetAttrs(), /*IsPatchPoint=*/false);
1148 if (!VarArgDisallowed
)
1149 SI
.CLI
.IsVarArg
= Call
->getFunctionType()->isVarArg();
1151 auto DeoptBundle
= *Call
->getOperandBundle(LLVMContext::OB_deopt
);
1153 unsigned DefaultID
= StatepointDirectives::DeoptBundleStatepointID
;
1155 auto SD
= parseStatepointDirectivesFromAttrs(Call
->getAttributes());
1156 SI
.ID
= SD
.StatepointID
.value_or(DefaultID
);
1157 SI
.NumPatchBytes
= SD
.NumPatchBytes
.value_or(0);
1160 ArrayRef
<const Use
>(DeoptBundle
.Inputs
.begin(), DeoptBundle
.Inputs
.end());
1161 SI
.StatepointFlags
= static_cast<uint64_t>(StatepointFlags::None
);
1162 SI
.EHPadBB
= EHPadBB
;
1164 // NB! The GC arguments are deliberately left empty.
1166 LLVM_DEBUG(dbgs() << "Lowering call with deopt bundle " << *Call
<< "\n");
1167 if (SDValue ReturnVal
= LowerAsSTATEPOINT(SI
)) {
1168 ReturnVal
= lowerRangeToAssertZExt(DAG
, *Call
, ReturnVal
);
1169 setValue(Call
, ReturnVal
);
1173 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1174 const CallBase
*Call
, SDValue Callee
, const BasicBlock
*EHPadBB
) {
1175 LowerCallSiteWithDeoptBundleImpl(Call
, Callee
, EHPadBB
,
1176 /* VarArgDisallowed = */ false,
1177 /* ForceVoidReturnTy = */ false);
1180 void SelectionDAGBuilder::visitGCResult(const GCResultInst
&CI
) {
1181 // The result value of the gc_result is simply the result of the actual
1182 // call. We've already emitted this, so just grab the value.
1183 const Value
*SI
= CI
.getStatepoint();
1184 assert((isa
<GCStatepointInst
>(SI
) || isa
<UndefValue
>(SI
)) &&
1185 "GetStatepoint must return one of two types");
1186 if (isa
<UndefValue
>(SI
))
1189 if (cast
<GCStatepointInst
>(SI
)->getParent() == CI
.getParent()) {
1190 setValue(&CI
, getValue(SI
));
1193 // Statepoint is in different basic block so we should have stored call
1194 // result in a virtual register.
1195 // We can not use default getValue() functionality to copy value from this
1196 // register because statepoint and actual call return types can be
1197 // different, and getValue() will use CopyFromReg of the wrong type,
1198 // which is always i32 in our case.
1199 Type
*RetTy
= CI
.getType();
1200 SDValue CopyFromReg
= getCopyFromRegs(SI
, RetTy
);
1202 assert(CopyFromReg
.getNode());
1203 setValue(&CI
, CopyFromReg
);
1206 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst
&Relocate
) {
1207 const Value
*Statepoint
= Relocate
.getStatepoint();
1209 // Consistency check
1210 // We skip this check for relocates not in the same basic block as their
1211 // statepoint. It would be too expensive to preserve validation info through
1212 // different basic blocks.
1213 assert((isa
<GCStatepointInst
>(Statepoint
) || isa
<UndefValue
>(Statepoint
)) &&
1214 "GetStatepoint must return one of two types");
1215 if (isa
<UndefValue
>(Statepoint
))
1218 if (cast
<GCStatepointInst
>(Statepoint
)->getParent() == Relocate
.getParent())
1219 StatepointLowering
.relocCallVisited(Relocate
);
1222 const Value
*DerivedPtr
= Relocate
.getDerivedPtr();
1223 auto &RelocationMap
=
1224 FuncInfo
.StatepointRelocationMaps
[cast
<GCStatepointInst
>(Statepoint
)];
1225 auto SlotIt
= RelocationMap
.find(&Relocate
);
1226 assert(SlotIt
!= RelocationMap
.end() && "Relocating not lowered gc value");
1227 const RecordType
&Record
= SlotIt
->second
;
1229 // If relocation was done via virtual register..
1230 if (Record
.type
== RecordType::SDValueNode
) {
1231 assert(cast
<GCStatepointInst
>(Statepoint
)->getParent() ==
1232 Relocate
.getParent() &&
1233 "Nonlocal gc.relocate mapped via SDValue");
1234 SDValue SDV
= StatepointLowering
.getLocation(getValue(DerivedPtr
));
1235 assert(SDV
.getNode() && "empty SDValue");
1236 setValue(&Relocate
, SDV
);
1239 if (Record
.type
== RecordType::VReg
) {
1240 Register InReg
= Record
.payload
.Reg
;
1241 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1242 DAG
.getDataLayout(), InReg
, Relocate
.getType(),
1243 std::nullopt
); // This is not an ABI copy.
1244 // We generate copy to/from regs even for local uses, hence we must
1245 // chain with current root to ensure proper ordering of copies w.r.t.
1247 SDValue Chain
= DAG
.getRoot();
1248 SDValue Relocation
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(),
1249 Chain
, nullptr, nullptr);
1250 setValue(&Relocate
, Relocation
);
1254 if (Record
.type
== RecordType::Spill
) {
1255 unsigned Index
= Record
.payload
.FI
;
1256 SDValue SpillSlot
= DAG
.getTargetFrameIndex(Index
, getFrameIndexTy());
1258 // All the reloads are independent and are reading memory only modified by
1259 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1260 // this lets CSE kick in for free and allows reordering of
1261 // instructions if possible. The lowering for statepoint sets the root,
1262 // so this is ordering all reloads with the either
1263 // a) the statepoint node itself, or
1264 // b) the entry of the current block for an invoke statepoint.
1265 const SDValue Chain
= DAG
.getRoot(); // != Builder.getRoot()
1267 auto &MF
= DAG
.getMachineFunction();
1268 auto &MFI
= MF
.getFrameInfo();
1269 auto PtrInfo
= MachinePointerInfo::getFixedStack(MF
, Index
);
1270 auto *LoadMMO
= MF
.getMachineMemOperand(PtrInfo
, MachineMemOperand::MOLoad
,
1271 MFI
.getObjectSize(Index
),
1272 MFI
.getObjectAlign(Index
));
1274 auto LoadVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
1275 Relocate
.getType());
1278 DAG
.getLoad(LoadVT
, getCurSDLoc(), Chain
, SpillSlot
, LoadMMO
);
1279 PendingLoads
.push_back(SpillLoad
.getValue(1));
1281 assert(SpillLoad
.getNode());
1282 setValue(&Relocate
, SpillLoad
);
1286 assert(Record
.type
== RecordType::NoRelocate
);
1287 SDValue SD
= getValue(DerivedPtr
);
1289 if (SD
.isUndef() && SD
.getValueType().getSizeInBits() <= 64) {
1290 // Lowering relocate(undef) as arbitrary constant. Current constant value
1291 // is chosen such that it's unlikely to be a valid pointer.
1292 setValue(&Relocate
, DAG
.getConstant(0xFEFEFEFE, SDLoc(SD
), MVT::i64
));
1296 // We didn't need to spill these special cases (constants and allocas).
1297 // See the handling in spillIncomingValueForStatepoint for detail.
1298 setValue(&Relocate
, SD
);
1301 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst
*CI
) {
1302 const auto &TLI
= DAG
.getTargetLoweringInfo();
1303 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(RTLIB::DEOPTIMIZE
),
1304 TLI
.getPointerTy(DAG
.getDataLayout()));
1306 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1307 // call. We also do not lower the return value to any virtual register, and
1308 // change the immediately following return to a trap instruction.
1309 LowerCallSiteWithDeoptBundleImpl(CI
, Callee
, /* EHPadBB = */ nullptr,
1310 /* VarArgDisallowed = */ true,
1311 /* ForceVoidReturnTy = */ true);
1314 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1315 // We do not lower the return value from llvm.deoptimize to any virtual
1316 // register, and change the immediately following return to a trap
1318 if (DAG
.getTarget().Options
.TrapUnreachable
)
1320 DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));