[clang][NFC] simplify the unset check in `ParseLabeledStatement` (#117430)
[llvm-project.git] / llvm / lib / CodeGen / TargetInstrInfo.cpp
blob38bd0b0ba4114ca15d659ee5b9e7cb6f2966260e
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/BinaryFormat/Dwarf.h"
16 #include "llvm/CodeGen/MachineCombinerPattern.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineScheduler.h"
22 #include "llvm/CodeGen/MachineTraceMetrics.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
25 #include "llvm/CodeGen/StackMaps.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSchedule.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInstrItineraries.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
39 using namespace llvm;
41 static cl::opt<bool> DisableHazardRecognizer(
42 "disable-sched-hazard", cl::Hidden, cl::init(false),
43 cl::desc("Disable hazard detection during preRA scheduling"));
45 TargetInstrInfo::~TargetInstrInfo() = default;
47 const TargetRegisterClass*
48 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
49 const TargetRegisterInfo *TRI,
50 const MachineFunction &MF) const {
51 if (OpNum >= MCID.getNumOperands())
52 return nullptr;
54 short RegClass = MCID.operands()[OpNum].RegClass;
55 if (MCID.operands()[OpNum].isLookupPtrRegClass())
56 return TRI->getPointerRegClass(MF, RegClass);
58 // Instructions like INSERT_SUBREG do not have fixed register classes.
59 if (RegClass < 0)
60 return nullptr;
62 // Otherwise just look it up normally.
63 return TRI->getRegClass(RegClass);
66 /// insertNoop - Insert a noop into the instruction stream at the specified
67 /// point.
68 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
69 MachineBasicBlock::iterator MI) const {
70 llvm_unreachable("Target didn't implement insertNoop!");
73 /// insertNoops - Insert noops into the instruction stream at the specified
74 /// point.
75 void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
76 MachineBasicBlock::iterator MI,
77 unsigned Quantity) const {
78 for (unsigned i = 0; i < Quantity; ++i)
79 insertNoop(MBB, MI);
82 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
83 return strncmp(Str, MAI.getCommentString().data(),
84 MAI.getCommentString().size()) == 0;
87 /// Measure the specified inline asm to determine an approximation of its
88 /// length.
89 /// Comments (which run till the next SeparatorString or newline) do not
90 /// count as an instruction.
91 /// Any other non-whitespace text is considered an instruction, with
92 /// multiple instructions separated by SeparatorString or newlines.
93 /// Variable-length instructions are not handled here; this function
94 /// may be overloaded in the target code to do that.
95 /// We implement a special case of the .space directive which takes only a
96 /// single integer argument in base 10 that is the size in bytes. This is a
97 /// restricted form of the GAS directive in that we only interpret
98 /// simple--i.e. not a logical or arithmetic expression--size values without
99 /// the optional fill value. This is primarily used for creating arbitrary
100 /// sized inline asm blocks for testing purposes.
101 unsigned TargetInstrInfo::getInlineAsmLength(
102 const char *Str,
103 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
104 // Count the number of instructions in the asm.
105 bool AtInsnStart = true;
106 unsigned Length = 0;
107 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
108 for (; *Str; ++Str) {
109 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
110 strlen(MAI.getSeparatorString())) == 0) {
111 AtInsnStart = true;
112 } else if (isAsmComment(Str, MAI)) {
113 // Stop counting as an instruction after a comment until the next
114 // separator.
115 AtInsnStart = false;
118 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
119 unsigned AddLength = MaxInstLength;
120 if (strncmp(Str, ".space", 6) == 0) {
121 char *EStr;
122 int SpaceSize;
123 SpaceSize = strtol(Str + 6, &EStr, 10);
124 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
125 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
126 ++EStr;
127 if (*EStr == '\0' || *EStr == '\n' ||
128 isAsmComment(EStr, MAI)) // Successfully parsed .space argument
129 AddLength = SpaceSize;
131 Length += AddLength;
132 AtInsnStart = false;
136 return Length;
139 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
140 /// after it, replacing it with an unconditional branch to NewDest.
141 void
142 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
143 MachineBasicBlock *NewDest) const {
144 MachineBasicBlock *MBB = Tail->getParent();
146 // Remove all the old successors of MBB from the CFG.
147 while (!MBB->succ_empty())
148 MBB->removeSuccessor(MBB->succ_begin());
150 // Save off the debug loc before erasing the instruction.
151 DebugLoc DL = Tail->getDebugLoc();
153 // Update call site info and remove all the dead instructions
154 // from the end of MBB.
155 while (Tail != MBB->end()) {
156 auto MI = Tail++;
157 if (MI->shouldUpdateCallSiteInfo())
158 MBB->getParent()->eraseCallSiteInfo(&*MI);
159 MBB->erase(MI);
162 // If MBB isn't immediately before MBB, insert a branch to it.
163 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
164 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
165 MBB->addSuccessor(NewDest);
168 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
169 bool NewMI, unsigned Idx1,
170 unsigned Idx2) const {
171 const MCInstrDesc &MCID = MI.getDesc();
172 bool HasDef = MCID.getNumDefs();
173 if (HasDef && !MI.getOperand(0).isReg())
174 // No idea how to commute this instruction. Target should implement its own.
175 return nullptr;
177 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
178 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
179 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
180 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
181 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
182 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
183 "This only knows how to commute register operands so far");
185 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
186 Register Reg1 = MI.getOperand(Idx1).getReg();
187 Register Reg2 = MI.getOperand(Idx2).getReg();
188 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
189 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
190 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
191 bool Reg1IsKill = MI.getOperand(Idx1).isKill();
192 bool Reg2IsKill = MI.getOperand(Idx2).isKill();
193 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
194 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
195 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
196 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
197 // Avoid calling isRenamable for virtual registers since we assert that
198 // renamable property is only queried/set for physical registers.
199 bool Reg1IsRenamable =
200 Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
201 bool Reg2IsRenamable =
202 Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
203 // If destination is tied to either of the commuted source register, then
204 // it must be updated.
205 if (HasDef && Reg0 == Reg1 &&
206 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
207 Reg2IsKill = false;
208 Reg0 = Reg2;
209 SubReg0 = SubReg2;
210 } else if (HasDef && Reg0 == Reg2 &&
211 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
212 Reg1IsKill = false;
213 Reg0 = Reg1;
214 SubReg0 = SubReg1;
217 MachineInstr *CommutedMI = nullptr;
218 if (NewMI) {
219 // Create a new instruction.
220 MachineFunction &MF = *MI.getMF();
221 CommutedMI = MF.CloneMachineInstr(&MI);
222 } else {
223 CommutedMI = &MI;
226 if (HasDef) {
227 CommutedMI->getOperand(0).setReg(Reg0);
228 CommutedMI->getOperand(0).setSubReg(SubReg0);
230 CommutedMI->getOperand(Idx2).setReg(Reg1);
231 CommutedMI->getOperand(Idx1).setReg(Reg2);
232 CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
233 CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
234 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
235 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
236 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
237 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
238 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
239 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
240 // Avoid calling setIsRenamable for virtual registers since we assert that
241 // renamable property is only queried/set for physical registers.
242 if (Reg1.isPhysical())
243 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
244 if (Reg2.isPhysical())
245 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
246 return CommutedMI;
249 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
250 unsigned OpIdx1,
251 unsigned OpIdx2) const {
252 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
253 // any commutable operand, which is done in findCommutedOpIndices() method
254 // called below.
255 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
256 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
257 assert(MI.isCommutable() &&
258 "Precondition violation: MI must be commutable.");
259 return nullptr;
261 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
264 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
265 unsigned &ResultIdx2,
266 unsigned CommutableOpIdx1,
267 unsigned CommutableOpIdx2) {
268 if (ResultIdx1 == CommuteAnyOperandIndex &&
269 ResultIdx2 == CommuteAnyOperandIndex) {
270 ResultIdx1 = CommutableOpIdx1;
271 ResultIdx2 = CommutableOpIdx2;
272 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
273 if (ResultIdx2 == CommutableOpIdx1)
274 ResultIdx1 = CommutableOpIdx2;
275 else if (ResultIdx2 == CommutableOpIdx2)
276 ResultIdx1 = CommutableOpIdx1;
277 else
278 return false;
279 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
280 if (ResultIdx1 == CommutableOpIdx1)
281 ResultIdx2 = CommutableOpIdx2;
282 else if (ResultIdx1 == CommutableOpIdx2)
283 ResultIdx2 = CommutableOpIdx1;
284 else
285 return false;
286 } else
287 // Check that the result operand indices match the given commutable
288 // operand indices.
289 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
290 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
292 return true;
295 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
296 unsigned &SrcOpIdx1,
297 unsigned &SrcOpIdx2) const {
298 assert(!MI.isBundle() &&
299 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
301 const MCInstrDesc &MCID = MI.getDesc();
302 if (!MCID.isCommutable())
303 return false;
305 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
306 // is not true, then the target must implement this.
307 unsigned CommutableOpIdx1 = MCID.getNumDefs();
308 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
309 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
310 CommutableOpIdx1, CommutableOpIdx2))
311 return false;
313 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
314 // No idea.
315 return false;
316 return true;
319 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
320 if (!MI.isTerminator()) return false;
322 // Conditional branch is a special case.
323 if (MI.isBranch() && !MI.isBarrier())
324 return true;
325 if (!MI.isPredicable())
326 return true;
327 return !isPredicated(MI);
330 bool TargetInstrInfo::PredicateInstruction(
331 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
332 bool MadeChange = false;
334 assert(!MI.isBundle() &&
335 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
337 const MCInstrDesc &MCID = MI.getDesc();
338 if (!MI.isPredicable())
339 return false;
341 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
342 if (MCID.operands()[i].isPredicate()) {
343 MachineOperand &MO = MI.getOperand(i);
344 if (MO.isReg()) {
345 MO.setReg(Pred[j].getReg());
346 MadeChange = true;
347 } else if (MO.isImm()) {
348 MO.setImm(Pred[j].getImm());
349 MadeChange = true;
350 } else if (MO.isMBB()) {
351 MO.setMBB(Pred[j].getMBB());
352 MadeChange = true;
354 ++j;
357 return MadeChange;
360 bool TargetInstrInfo::hasLoadFromStackSlot(
361 const MachineInstr &MI,
362 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
363 size_t StartSize = Accesses.size();
364 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
365 oe = MI.memoperands_end();
366 o != oe; ++o) {
367 if ((*o)->isLoad() &&
368 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
369 Accesses.push_back(*o);
371 return Accesses.size() != StartSize;
374 bool TargetInstrInfo::hasStoreToStackSlot(
375 const MachineInstr &MI,
376 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
377 size_t StartSize = Accesses.size();
378 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
379 oe = MI.memoperands_end();
380 o != oe; ++o) {
381 if ((*o)->isStore() &&
382 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
383 Accesses.push_back(*o);
385 return Accesses.size() != StartSize;
388 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
389 unsigned SubIdx, unsigned &Size,
390 unsigned &Offset,
391 const MachineFunction &MF) const {
392 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
393 if (!SubIdx) {
394 Size = TRI->getSpillSize(*RC);
395 Offset = 0;
396 return true;
398 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
399 // Convert bit size to byte size.
400 if (BitSize % 8)
401 return false;
403 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
404 if (BitOffset < 0 || BitOffset % 8)
405 return false;
407 Size = BitSize / 8;
408 Offset = (unsigned)BitOffset / 8;
410 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
412 if (!MF.getDataLayout().isLittleEndian()) {
413 Offset = TRI->getSpillSize(*RC) - (Offset + Size);
415 return true;
418 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
419 MachineBasicBlock::iterator I,
420 Register DestReg, unsigned SubIdx,
421 const MachineInstr &Orig,
422 const TargetRegisterInfo &TRI) const {
423 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
424 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
425 MBB.insert(I, MI);
428 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
429 const MachineInstr &MI1,
430 const MachineRegisterInfo *MRI) const {
431 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
434 MachineInstr &
435 TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
436 MachineBasicBlock::iterator InsertBefore,
437 const MachineInstr &Orig) const {
438 MachineFunction &MF = *MBB.getParent();
439 // CFI instructions are marked as non-duplicable, because Darwin compact
440 // unwind info emission can't handle multiple prologue setups.
441 assert((!Orig.isNotDuplicable() ||
442 (!MF.getTarget().getTargetTriple().isOSDarwin() &&
443 Orig.isCFIInstruction())) &&
444 "Instruction cannot be duplicated");
446 return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
449 // If the COPY instruction in MI can be folded to a stack operation, return
450 // the register class to use.
451 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
452 const TargetInstrInfo &TII,
453 unsigned FoldIdx) {
454 assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction");
455 if (MI.getNumOperands() != 2)
456 return nullptr;
457 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
459 const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
460 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
462 if (FoldOp.getSubReg() || LiveOp.getSubReg())
463 return nullptr;
465 Register FoldReg = FoldOp.getReg();
466 Register LiveReg = LiveOp.getReg();
468 assert(FoldReg.isVirtual() && "Cannot fold physregs");
470 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
471 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
473 if (LiveOp.getReg().isPhysical())
474 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
476 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
477 return RC;
479 // FIXME: Allow folding when register classes are memory compatible.
480 return nullptr;
483 MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
485 std::pair<unsigned, unsigned>
486 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
487 switch (MI.getOpcode()) {
488 case TargetOpcode::STACKMAP:
489 // StackMapLiveValues are foldable
490 return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
491 case TargetOpcode::PATCHPOINT:
492 // For PatchPoint, the call args are not foldable (even if reported in the
493 // stackmap e.g. via anyregcc).
494 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
495 case TargetOpcode::STATEPOINT:
496 // For statepoints, fold deopt and gc arguments, but not call arguments.
497 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
498 default:
499 llvm_unreachable("unexpected stackmap opcode");
503 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
504 ArrayRef<unsigned> Ops, int FrameIndex,
505 const TargetInstrInfo &TII) {
506 unsigned StartIdx = 0;
507 unsigned NumDefs = 0;
508 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
509 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
511 unsigned DefToFoldIdx = MI.getNumOperands();
513 // Return false if any operands requested for folding are not foldable (not
514 // part of the stackmap's live values).
515 for (unsigned Op : Ops) {
516 if (Op < NumDefs) {
517 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
518 DefToFoldIdx = Op;
519 } else if (Op < StartIdx) {
520 return nullptr;
522 if (MI.getOperand(Op).isTied())
523 return nullptr;
526 MachineInstr *NewMI =
527 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
528 MachineInstrBuilder MIB(MF, NewMI);
530 // No need to fold return, the meta data, and function arguments
531 for (unsigned i = 0; i < StartIdx; ++i)
532 if (i != DefToFoldIdx)
533 MIB.add(MI.getOperand(i));
535 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
536 MachineOperand &MO = MI.getOperand(i);
537 unsigned TiedTo = e;
538 (void)MI.isRegTiedToDefOperand(i, &TiedTo);
540 if (is_contained(Ops, i)) {
541 assert(TiedTo == e && "Cannot fold tied operands");
542 unsigned SpillSize;
543 unsigned SpillOffset;
544 // Compute the spill slot size and offset.
545 const TargetRegisterClass *RC =
546 MF.getRegInfo().getRegClass(MO.getReg());
547 bool Valid =
548 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
549 if (!Valid)
550 report_fatal_error("cannot spill patchpoint subregister operand");
551 MIB.addImm(StackMaps::IndirectMemRefOp);
552 MIB.addImm(SpillSize);
553 MIB.addFrameIndex(FrameIndex);
554 MIB.addImm(SpillOffset);
555 } else {
556 MIB.add(MO);
557 if (TiedTo < e) {
558 assert(TiedTo < NumDefs && "Bad tied operand");
559 if (TiedTo > DefToFoldIdx)
560 --TiedTo;
561 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
565 return NewMI;
568 static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI,
569 const TargetInstrInfo &TII) {
570 // If the machine operand is tied, untie it first.
571 if (MI->getOperand(OpNo).isTied()) {
572 unsigned TiedTo = MI->findTiedOperandIdx(OpNo);
573 MI->untieRegOperand(OpNo);
574 // Intentional recursion!
575 foldInlineAsmMemOperand(MI, TiedTo, FI, TII);
578 SmallVector<MachineOperand, 5> NewOps;
579 TII.getFrameIndexOperands(NewOps, FI);
580 assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands");
581 MI->removeOperand(OpNo);
582 MI->insert(MI->operands_begin() + OpNo, NewOps);
584 // Change the previous operand to a MemKind InlineAsm::Flag. The second param
585 // is the per-target number of operands that represent the memory operand
586 // excluding this one (MD). This includes MO.
587 InlineAsm::Flag F(InlineAsm::Kind::Mem, NewOps.size());
588 F.setMemConstraint(InlineAsm::ConstraintCode::m);
589 MachineOperand &MD = MI->getOperand(OpNo - 1);
590 MD.setImm(F);
593 // Returns nullptr if not possible to fold.
594 static MachineInstr *foldInlineAsmMemOperand(MachineInstr &MI,
595 ArrayRef<unsigned> Ops, int FI,
596 const TargetInstrInfo &TII) {
597 assert(MI.isInlineAsm() && "wrong opcode");
598 if (Ops.size() > 1)
599 return nullptr;
600 unsigned Op = Ops[0];
601 assert(Op && "should never be first operand");
602 assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands");
604 if (!MI.mayFoldInlineAsmRegOp(Op))
605 return nullptr;
607 MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI);
609 foldInlineAsmMemOperand(&NewMI, Op, FI, TII);
611 // Update mayload/maystore metadata, and memoperands.
612 const VirtRegInfo &RI =
613 AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg());
614 MachineOperand &ExtraMO = NewMI.getOperand(InlineAsm::MIOp_ExtraInfo);
615 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
616 if (RI.Reads) {
617 ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad);
618 Flags |= MachineMemOperand::MOLoad;
620 if (RI.Writes) {
621 ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore);
622 Flags |= MachineMemOperand::MOStore;
624 MachineFunction *MF = NewMI.getMF();
625 const MachineFrameInfo &MFI = MF->getFrameInfo();
626 MachineMemOperand *MMO = MF->getMachineMemOperand(
627 MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI),
628 MFI.getObjectAlign(FI));
629 NewMI.addMemOperand(*MF, MMO);
631 return &NewMI;
634 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
635 ArrayRef<unsigned> Ops, int FI,
636 LiveIntervals *LIS,
637 VirtRegMap *VRM) const {
638 auto Flags = MachineMemOperand::MONone;
639 for (unsigned OpIdx : Ops)
640 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
641 : MachineMemOperand::MOLoad;
643 MachineBasicBlock *MBB = MI.getParent();
644 assert(MBB && "foldMemoryOperand needs an inserted instruction");
645 MachineFunction &MF = *MBB->getParent();
647 // If we're not folding a load into a subreg, the size of the load is the
648 // size of the spill slot. But if we are, we need to figure out what the
649 // actual load size is.
650 int64_t MemSize = 0;
651 const MachineFrameInfo &MFI = MF.getFrameInfo();
652 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
654 if (Flags & MachineMemOperand::MOStore) {
655 MemSize = MFI.getObjectSize(FI);
656 } else {
657 for (unsigned OpIdx : Ops) {
658 int64_t OpSize = MFI.getObjectSize(FI);
660 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
661 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
662 if (SubRegSize > 0 && !(SubRegSize % 8))
663 OpSize = SubRegSize / 8;
666 MemSize = std::max(MemSize, OpSize);
670 assert(MemSize && "Did not expect a zero-sized stack slot");
672 MachineInstr *NewMI = nullptr;
674 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
675 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
676 MI.getOpcode() == TargetOpcode::STATEPOINT) {
677 // Fold stackmap/patchpoint.
678 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
679 if (NewMI)
680 MBB->insert(MI, NewMI);
681 } else if (MI.isInlineAsm()) {
682 return foldInlineAsmMemOperand(MI, Ops, FI, *this);
683 } else {
684 // Ask the target to do the actual folding.
685 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
688 if (NewMI) {
689 NewMI->setMemRefs(MF, MI.memoperands());
690 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
691 assert((!(Flags & MachineMemOperand::MOStore) ||
692 NewMI->mayStore()) &&
693 "Folded a def to a non-store!");
694 assert((!(Flags & MachineMemOperand::MOLoad) ||
695 NewMI->mayLoad()) &&
696 "Folded a use to a non-load!");
697 assert(MFI.getObjectOffset(FI) != -1);
698 MachineMemOperand *MMO =
699 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
700 Flags, MemSize, MFI.getObjectAlign(FI));
701 NewMI->addMemOperand(MF, MMO);
703 // The pass "x86 speculative load hardening" always attaches symbols to
704 // call instructions. We need copy it form old instruction.
705 NewMI->cloneInstrSymbols(MF, MI);
707 return NewMI;
710 // Straight COPY may fold as load/store.
711 if (!isCopyInstr(MI) || Ops.size() != 1)
712 return nullptr;
714 const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]);
715 if (!RC)
716 return nullptr;
718 const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
719 MachineBasicBlock::iterator Pos = MI;
721 if (Flags == MachineMemOperand::MOStore)
722 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
723 Register());
724 else
725 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
726 return &*--Pos;
729 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
730 ArrayRef<unsigned> Ops,
731 MachineInstr &LoadMI,
732 LiveIntervals *LIS) const {
733 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
734 #ifndef NDEBUG
735 for (unsigned OpIdx : Ops)
736 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
737 #endif
739 MachineBasicBlock &MBB = *MI.getParent();
740 MachineFunction &MF = *MBB.getParent();
742 // Ask the target to do the actual folding.
743 MachineInstr *NewMI = nullptr;
744 int FrameIndex = 0;
746 if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
747 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
748 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
749 isLoadFromStackSlot(LoadMI, FrameIndex)) {
750 // Fold stackmap/patchpoint.
751 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
752 if (NewMI)
753 NewMI = &*MBB.insert(MI, NewMI);
754 } else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) {
755 return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this);
756 } else {
757 // Ask the target to do the actual folding.
758 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
761 if (!NewMI)
762 return nullptr;
764 // Copy the memoperands from the load to the folded instruction.
765 if (MI.memoperands_empty()) {
766 NewMI->setMemRefs(MF, LoadMI.memoperands());
767 } else {
768 // Handle the rare case of folding multiple loads.
769 NewMI->setMemRefs(MF, MI.memoperands());
770 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
771 E = LoadMI.memoperands_end();
772 I != E; ++I) {
773 NewMI->addMemOperand(MF, *I);
776 return NewMI;
779 /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
780 /// replacement instructions immediately precede it. Copy any implicit
781 /// operands from MI to the replacement instruction.
782 static void transferImplicitOperands(MachineInstr *MI,
783 const TargetRegisterInfo *TRI) {
784 MachineBasicBlock::iterator CopyMI = MI;
785 --CopyMI;
787 Register DstReg = MI->getOperand(0).getReg();
788 for (const MachineOperand &MO : MI->implicit_operands()) {
789 CopyMI->addOperand(MO);
791 // Be conservative about preserving kills when subregister defs are
792 // involved. If there was implicit kill of a super-register overlapping the
793 // copy result, we would kill the subregisters previous copies defined.
795 if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg()))
796 CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false);
800 void TargetInstrInfo::lowerCopy(MachineInstr *MI,
801 const TargetRegisterInfo *TRI) const {
802 if (MI->allDefsAreDead()) {
803 MI->setDesc(get(TargetOpcode::KILL));
804 return;
807 MachineOperand &DstMO = MI->getOperand(0);
808 MachineOperand &SrcMO = MI->getOperand(1);
810 bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg());
811 if (IdentityCopy || SrcMO.isUndef()) {
812 // No need to insert an identity copy instruction, but replace with a KILL
813 // if liveness is changed.
814 if (SrcMO.isUndef() || MI->getNumOperands() > 2) {
815 // We must make sure the super-register gets killed. Replace the
816 // instruction with KILL.
817 MI->setDesc(get(TargetOpcode::KILL));
818 return;
820 // Vanilla identity copy.
821 MI->eraseFromParent();
822 return;
825 copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(),
826 SrcMO.getReg(), SrcMO.isKill(),
827 DstMO.getReg().isPhysical() ? DstMO.isRenamable() : false,
828 SrcMO.getReg().isPhysical() ? SrcMO.isRenamable() : false);
830 if (MI->getNumOperands() > 2)
831 transferImplicitOperands(MI, TRI);
832 MI->eraseFromParent();
835 bool TargetInstrInfo::hasReassociableOperands(
836 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
837 const MachineOperand &Op1 = Inst.getOperand(1);
838 const MachineOperand &Op2 = Inst.getOperand(2);
839 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
841 // We need virtual register definitions for the operands that we will
842 // reassociate.
843 MachineInstr *MI1 = nullptr;
844 MachineInstr *MI2 = nullptr;
845 if (Op1.isReg() && Op1.getReg().isVirtual())
846 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
847 if (Op2.isReg() && Op2.getReg().isVirtual())
848 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
850 // And at least one operand must be defined in MBB.
851 return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
854 bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1,
855 unsigned Opcode2) const {
856 return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
859 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
860 bool &Commuted) const {
861 const MachineBasicBlock *MBB = Inst.getParent();
862 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
863 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
864 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
865 unsigned Opcode = Inst.getOpcode();
867 // If only one operand has the same or inverse opcode and it's the second
868 // source operand, the operands must be commuted.
869 Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
870 areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
871 if (Commuted)
872 std::swap(MI1, MI2);
874 // 1. The previous instruction must be the same type as Inst.
875 // 2. The previous instruction must also be associative/commutative or be the
876 // inverse of such an operation (this can be different even for
877 // instructions with the same opcode if traits like fast-math-flags are
878 // included).
879 // 3. The previous instruction must have virtual register definitions for its
880 // operands in the same basic block as Inst.
881 // 4. The previous instruction's result must only be used by Inst.
882 return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
883 (isAssociativeAndCommutative(*MI1) ||
884 isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
885 hasReassociableOperands(*MI1, MBB) &&
886 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
889 // 1. The operation must be associative and commutative or be the inverse of
890 // such an operation.
891 // 2. The instruction must have virtual register definitions for its
892 // operands in the same basic block.
893 // 3. The instruction must have a reassociable sibling.
894 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
895 bool &Commuted) const {
896 return (isAssociativeAndCommutative(Inst) ||
897 isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
898 hasReassociableOperands(Inst, Inst.getParent()) &&
899 hasReassociableSibling(Inst, Commuted);
902 // The concept of the reassociation pass is that these operations can benefit
903 // from this kind of transformation:
905 // A = ? op ?
906 // B = A op X (Prev)
907 // C = B op Y (Root)
908 // -->
909 // A = ? op ?
910 // B = X op Y
911 // C = A op B
913 // breaking the dependency between A and B, allowing them to be executed in
914 // parallel (or back-to-back in a pipeline) instead of depending on each other.
916 // FIXME: This has the potential to be expensive (compile time) while not
917 // improving the code at all. Some ways to limit the overhead:
918 // 1. Track successful transforms; bail out if hit rate gets too low.
919 // 2. Only enable at -O3 or some other non-default optimization level.
920 // 3. Pre-screen pattern candidates here: if an operand of the previous
921 // instruction is known to not increase the critical path, then don't match
922 // that pattern.
923 bool TargetInstrInfo::getMachineCombinerPatterns(
924 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
925 bool DoRegPressureReduce) const {
926 bool Commute;
927 if (isReassociationCandidate(Root, Commute)) {
928 // We found a sequence of instructions that may be suitable for a
929 // reassociation of operands to increase ILP. Specify each commutation
930 // possibility for the Prev instruction in the sequence and let the
931 // machine combiner decide if changing the operands is worthwhile.
932 if (Commute) {
933 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
934 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
935 } else {
936 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
937 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
939 return true;
942 return false;
945 /// Return true when a code sequence can improve loop throughput.
946 bool TargetInstrInfo::isThroughputPattern(unsigned Pattern) const {
947 return false;
950 CombinerObjective
951 TargetInstrInfo::getCombinerObjective(unsigned Pattern) const {
952 return CombinerObjective::Default;
955 std::pair<unsigned, unsigned>
956 TargetInstrInfo::getReassociationOpcodes(unsigned Pattern,
957 const MachineInstr &Root,
958 const MachineInstr &Prev) const {
959 bool AssocCommutRoot = isAssociativeAndCommutative(Root);
960 bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
962 // Early exit if both opcodes are associative and commutative. It's a trivial
963 // reassociation when we only change operands order. In this case opcodes are
964 // not required to have inverse versions.
965 if (AssocCommutRoot && AssocCommutPrev) {
966 assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
967 return std::make_pair(Root.getOpcode(), Root.getOpcode());
970 // At least one instruction is not associative or commutative.
971 // Since we have matched one of the reassociation patterns, we expect that the
972 // instructions' opcodes are equal or one of them is the inversion of the
973 // other.
974 assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) &&
975 "Incorrectly matched pattern");
976 unsigned AssocCommutOpcode = Root.getOpcode();
977 unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
978 if (!AssocCommutRoot)
979 std::swap(AssocCommutOpcode, InverseOpcode);
981 // The transformation rule (`+` is any associative and commutative binary
982 // operation, `-` is the inverse):
983 // REASSOC_AX_BY:
984 // (A + X) + Y => A + (X + Y)
985 // (A + X) - Y => A + (X - Y)
986 // (A - X) + Y => A - (X - Y)
987 // (A - X) - Y => A - (X + Y)
988 // REASSOC_XA_BY:
989 // (X + A) + Y => (X + Y) + A
990 // (X + A) - Y => (X - Y) + A
991 // (X - A) + Y => (X + Y) - A
992 // (X - A) - Y => (X - Y) - A
993 // REASSOC_AX_YB:
994 // Y + (A + X) => (Y + X) + A
995 // Y - (A + X) => (Y - X) - A
996 // Y + (A - X) => (Y - X) + A
997 // Y - (A - X) => (Y + X) - A
998 // REASSOC_XA_YB:
999 // Y + (X + A) => (Y + X) + A
1000 // Y - (X + A) => (Y - X) - A
1001 // Y + (X - A) => (Y + X) - A
1002 // Y - (X - A) => (Y - X) + A
1003 switch (Pattern) {
1004 default:
1005 llvm_unreachable("Unexpected pattern");
1006 case MachineCombinerPattern::REASSOC_AX_BY:
1007 if (!AssocCommutRoot && AssocCommutPrev)
1008 return {AssocCommutOpcode, InverseOpcode};
1009 if (AssocCommutRoot && !AssocCommutPrev)
1010 return {InverseOpcode, InverseOpcode};
1011 if (!AssocCommutRoot && !AssocCommutPrev)
1012 return {InverseOpcode, AssocCommutOpcode};
1013 break;
1014 case MachineCombinerPattern::REASSOC_XA_BY:
1015 if (!AssocCommutRoot && AssocCommutPrev)
1016 return {AssocCommutOpcode, InverseOpcode};
1017 if (AssocCommutRoot && !AssocCommutPrev)
1018 return {InverseOpcode, AssocCommutOpcode};
1019 if (!AssocCommutRoot && !AssocCommutPrev)
1020 return {InverseOpcode, InverseOpcode};
1021 break;
1022 case MachineCombinerPattern::REASSOC_AX_YB:
1023 if (!AssocCommutRoot && AssocCommutPrev)
1024 return {InverseOpcode, InverseOpcode};
1025 if (AssocCommutRoot && !AssocCommutPrev)
1026 return {AssocCommutOpcode, InverseOpcode};
1027 if (!AssocCommutRoot && !AssocCommutPrev)
1028 return {InverseOpcode, AssocCommutOpcode};
1029 break;
1030 case MachineCombinerPattern::REASSOC_XA_YB:
1031 if (!AssocCommutRoot && AssocCommutPrev)
1032 return {InverseOpcode, InverseOpcode};
1033 if (AssocCommutRoot && !AssocCommutPrev)
1034 return {InverseOpcode, AssocCommutOpcode};
1035 if (!AssocCommutRoot && !AssocCommutPrev)
1036 return {AssocCommutOpcode, InverseOpcode};
1037 break;
1039 llvm_unreachable("Unhandled combination");
1042 // Return a pair of boolean flags showing if the new root and new prev operands
1043 // must be swapped. See visual example of the rule in
1044 // TargetInstrInfo::getReassociationOpcodes.
1045 static std::pair<bool, bool> mustSwapOperands(unsigned Pattern) {
1046 switch (Pattern) {
1047 default:
1048 llvm_unreachable("Unexpected pattern");
1049 case MachineCombinerPattern::REASSOC_AX_BY:
1050 return {false, false};
1051 case MachineCombinerPattern::REASSOC_XA_BY:
1052 return {true, false};
1053 case MachineCombinerPattern::REASSOC_AX_YB:
1054 return {true, true};
1055 case MachineCombinerPattern::REASSOC_XA_YB:
1056 return {true, true};
1060 void TargetInstrInfo::getReassociateOperandIndices(
1061 const MachineInstr &Root, unsigned Pattern,
1062 std::array<unsigned, 5> &OperandIndices) const {
1063 switch (Pattern) {
1064 case MachineCombinerPattern::REASSOC_AX_BY:
1065 OperandIndices = {1, 1, 1, 2, 2};
1066 break;
1067 case MachineCombinerPattern::REASSOC_AX_YB:
1068 OperandIndices = {2, 1, 2, 2, 1};
1069 break;
1070 case MachineCombinerPattern::REASSOC_XA_BY:
1071 OperandIndices = {1, 2, 1, 1, 2};
1072 break;
1073 case MachineCombinerPattern::REASSOC_XA_YB:
1074 OperandIndices = {2, 2, 2, 1, 1};
1075 break;
1076 default:
1077 llvm_unreachable("unexpected MachineCombinerPattern");
1081 /// Attempt the reassociation transformation to reduce critical path length.
1082 /// See the above comments before getMachineCombinerPatterns().
1083 void TargetInstrInfo::reassociateOps(
1084 MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1085 SmallVectorImpl<MachineInstr *> &InsInstrs,
1086 SmallVectorImpl<MachineInstr *> &DelInstrs,
1087 ArrayRef<unsigned> OperandIndices,
1088 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
1089 MachineFunction *MF = Root.getMF();
1090 MachineRegisterInfo &MRI = MF->getRegInfo();
1091 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1092 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1093 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
1095 MachineOperand &OpA = Prev.getOperand(OperandIndices[1]);
1096 MachineOperand &OpB = Root.getOperand(OperandIndices[2]);
1097 MachineOperand &OpX = Prev.getOperand(OperandIndices[3]);
1098 MachineOperand &OpY = Root.getOperand(OperandIndices[4]);
1099 MachineOperand &OpC = Root.getOperand(0);
1101 Register RegA = OpA.getReg();
1102 Register RegB = OpB.getReg();
1103 Register RegX = OpX.getReg();
1104 Register RegY = OpY.getReg();
1105 Register RegC = OpC.getReg();
1107 if (RegA.isVirtual())
1108 MRI.constrainRegClass(RegA, RC);
1109 if (RegB.isVirtual())
1110 MRI.constrainRegClass(RegB, RC);
1111 if (RegX.isVirtual())
1112 MRI.constrainRegClass(RegX, RC);
1113 if (RegY.isVirtual())
1114 MRI.constrainRegClass(RegY, RC);
1115 if (RegC.isVirtual())
1116 MRI.constrainRegClass(RegC, RC);
1118 // Create a new virtual register for the result of (X op Y) instead of
1119 // recycling RegB because the MachineCombiner's computation of the critical
1120 // path requires a new register definition rather than an existing one.
1121 Register NewVR = MRI.createVirtualRegister(RC);
1122 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
1124 auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
1125 bool KillA = OpA.isKill();
1126 bool KillX = OpX.isKill();
1127 bool KillY = OpY.isKill();
1128 bool KillNewVR = true;
1130 auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
1132 if (SwapPrevOperands) {
1133 std::swap(RegX, RegY);
1134 std::swap(KillX, KillY);
1137 unsigned PrevFirstOpIdx, PrevSecondOpIdx;
1138 unsigned RootFirstOpIdx, RootSecondOpIdx;
1139 switch (Pattern) {
1140 case MachineCombinerPattern::REASSOC_AX_BY:
1141 PrevFirstOpIdx = OperandIndices[1];
1142 PrevSecondOpIdx = OperandIndices[3];
1143 RootFirstOpIdx = OperandIndices[2];
1144 RootSecondOpIdx = OperandIndices[4];
1145 break;
1146 case MachineCombinerPattern::REASSOC_AX_YB:
1147 PrevFirstOpIdx = OperandIndices[1];
1148 PrevSecondOpIdx = OperandIndices[3];
1149 RootFirstOpIdx = OperandIndices[4];
1150 RootSecondOpIdx = OperandIndices[2];
1151 break;
1152 case MachineCombinerPattern::REASSOC_XA_BY:
1153 PrevFirstOpIdx = OperandIndices[3];
1154 PrevSecondOpIdx = OperandIndices[1];
1155 RootFirstOpIdx = OperandIndices[2];
1156 RootSecondOpIdx = OperandIndices[4];
1157 break;
1158 case MachineCombinerPattern::REASSOC_XA_YB:
1159 PrevFirstOpIdx = OperandIndices[3];
1160 PrevSecondOpIdx = OperandIndices[1];
1161 RootFirstOpIdx = OperandIndices[4];
1162 RootSecondOpIdx = OperandIndices[2];
1163 break;
1164 default:
1165 llvm_unreachable("unexpected MachineCombinerPattern");
1168 // Basically BuildMI but doesn't add implicit operands by default.
1169 auto buildMINoImplicit = [](MachineFunction &MF, const MIMetadata &MIMD,
1170 const MCInstrDesc &MCID, Register DestReg) {
1171 return MachineInstrBuilder(
1172 MF, MF.CreateMachineInstr(MCID, MIMD.getDL(), /*NoImpl=*/true))
1173 .setPCSections(MIMD.getPCSections())
1174 .addReg(DestReg, RegState::Define);
1177 // Create new instructions for insertion.
1178 MachineInstrBuilder MIB1 =
1179 buildMINoImplicit(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR);
1180 for (const auto &MO : Prev.explicit_operands()) {
1181 unsigned Idx = MO.getOperandNo();
1182 // Skip the result operand we'd already added.
1183 if (Idx == 0)
1184 continue;
1185 if (Idx == PrevFirstOpIdx)
1186 MIB1.addReg(RegX, getKillRegState(KillX));
1187 else if (Idx == PrevSecondOpIdx)
1188 MIB1.addReg(RegY, getKillRegState(KillY));
1189 else
1190 MIB1.add(MO);
1192 MIB1.copyImplicitOps(Prev);
1194 if (SwapRootOperands) {
1195 std::swap(RegA, NewVR);
1196 std::swap(KillA, KillNewVR);
1199 MachineInstrBuilder MIB2 =
1200 buildMINoImplicit(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC);
1201 for (const auto &MO : Root.explicit_operands()) {
1202 unsigned Idx = MO.getOperandNo();
1203 // Skip the result operand.
1204 if (Idx == 0)
1205 continue;
1206 if (Idx == RootFirstOpIdx)
1207 MIB2 = MIB2.addReg(RegA, getKillRegState(KillA));
1208 else if (Idx == RootSecondOpIdx)
1209 MIB2 = MIB2.addReg(NewVR, getKillRegState(KillNewVR));
1210 else
1211 MIB2 = MIB2.add(MO);
1213 MIB2.copyImplicitOps(Root);
1215 // Propagate FP flags from the original instructions.
1216 // But clear poison-generating flags because those may not be valid now.
1217 // TODO: There should be a helper function for copying only fast-math-flags.
1218 uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
1219 MIB1->setFlags(IntersectedFlags);
1220 MIB1->clearFlag(MachineInstr::MIFlag::NoSWrap);
1221 MIB1->clearFlag(MachineInstr::MIFlag::NoUWrap);
1222 MIB1->clearFlag(MachineInstr::MIFlag::IsExact);
1224 MIB2->setFlags(IntersectedFlags);
1225 MIB2->clearFlag(MachineInstr::MIFlag::NoSWrap);
1226 MIB2->clearFlag(MachineInstr::MIFlag::NoUWrap);
1227 MIB2->clearFlag(MachineInstr::MIFlag::IsExact);
1229 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
1231 // Record new instructions for insertion and old instructions for deletion.
1232 InsInstrs.push_back(MIB1);
1233 InsInstrs.push_back(MIB2);
1234 DelInstrs.push_back(&Prev);
1235 DelInstrs.push_back(&Root);
1237 // We transformed:
1238 // B = A op X (Prev)
1239 // C = B op Y (Root)
1240 // Into:
1241 // B = X op Y (MIB1)
1242 // C = A op B (MIB2)
1243 // C has the same value as before, B doesn't; as such, keep the debug number
1244 // of C but not of B.
1245 if (unsigned OldRootNum = Root.peekDebugInstrNum())
1246 MIB2.getInstr()->setDebugInstrNum(OldRootNum);
1249 void TargetInstrInfo::genAlternativeCodeSequence(
1250 MachineInstr &Root, unsigned Pattern,
1251 SmallVectorImpl<MachineInstr *> &InsInstrs,
1252 SmallVectorImpl<MachineInstr *> &DelInstrs,
1253 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
1254 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
1256 // Select the previous instruction in the sequence based on the input pattern.
1257 std::array<unsigned, 5> OperandIndices;
1258 getReassociateOperandIndices(Root, Pattern, OperandIndices);
1259 MachineInstr *Prev =
1260 MRI.getUniqueVRegDef(Root.getOperand(OperandIndices[0]).getReg());
1262 // Don't reassociate if Prev and Root are in different blocks.
1263 if (Prev->getParent() != Root.getParent())
1264 return;
1266 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, OperandIndices,
1267 InstIdxForVirtReg);
1270 MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const {
1271 return MachineTraceStrategy::TS_MinInstrCount;
1274 bool TargetInstrInfo::isReallyTriviallyReMaterializable(
1275 const MachineInstr &MI) const {
1276 const MachineFunction &MF = *MI.getMF();
1277 const MachineRegisterInfo &MRI = MF.getRegInfo();
1279 // Remat clients assume operand 0 is the defined register.
1280 if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
1281 return false;
1282 Register DefReg = MI.getOperand(0).getReg();
1284 // A sub-register definition can only be rematerialized if the instruction
1285 // doesn't read the other parts of the register. Otherwise it is really a
1286 // read-modify-write operation on the full virtual register which cannot be
1287 // moved safely.
1288 if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
1289 MI.readsVirtualRegister(DefReg))
1290 return false;
1292 // A load from a fixed stack slot can be rematerialized. This may be
1293 // redundant with subsequent checks, but it's target-independent,
1294 // simple, and a common case.
1295 int FrameIdx = 0;
1296 if (isLoadFromStackSlot(MI, FrameIdx) &&
1297 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
1298 return true;
1300 // Avoid instructions obviously unsafe for remat.
1301 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
1302 MI.hasUnmodeledSideEffects())
1303 return false;
1305 // Don't remat inline asm. We have no idea how expensive it is
1306 // even if it's side effect free.
1307 if (MI.isInlineAsm())
1308 return false;
1310 // Avoid instructions which load from potentially varying memory.
1311 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
1312 return false;
1314 // If any of the registers accessed are non-constant, conservatively assume
1315 // the instruction is not rematerializable.
1316 for (const MachineOperand &MO : MI.operands()) {
1317 if (!MO.isReg()) continue;
1318 Register Reg = MO.getReg();
1319 if (Reg == 0)
1320 continue;
1322 // Check for a well-behaved physical register.
1323 if (Reg.isPhysical()) {
1324 if (MO.isUse()) {
1325 // If the physreg has no defs anywhere, it's just an ambient register
1326 // and we can freely move its uses. Alternatively, if it's allocatable,
1327 // it could get allocated to something with a def during allocation.
1328 if (!MRI.isConstantPhysReg(Reg))
1329 return false;
1330 } else {
1331 // A physreg def. We can't remat it.
1332 return false;
1334 continue;
1337 // Only allow one virtual-register def. There may be multiple defs of the
1338 // same virtual register, though.
1339 if (MO.isDef() && Reg != DefReg)
1340 return false;
1342 // Don't allow any virtual-register uses. Rematting an instruction with
1343 // virtual register uses would length the live ranges of the uses, which
1344 // is not necessarily a good idea, certainly not "trivial".
1345 if (MO.isUse())
1346 return false;
1349 // Everything checked out.
1350 return true;
1353 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
1354 const MachineFunction *MF = MI.getMF();
1355 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
1356 bool StackGrowsDown =
1357 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
1359 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1360 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1362 if (!isFrameInstr(MI))
1363 return 0;
1365 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1367 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1368 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1369 SPAdj = -SPAdj;
1371 return SPAdj;
1374 /// isSchedulingBoundary - Test if the given instruction should be
1375 /// considered a scheduling boundary. This primarily includes labels
1376 /// and terminators.
1377 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1378 const MachineBasicBlock *MBB,
1379 const MachineFunction &MF) const {
1380 // Terminators and labels can't be scheduled around.
1381 if (MI.isTerminator() || MI.isPosition())
1382 return true;
1384 // INLINEASM_BR can jump to another block
1385 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1386 return true;
1388 // Don't attempt to schedule around any instruction that defines
1389 // a stack-oriented pointer, as it's unlikely to be profitable. This
1390 // saves compile time, because it doesn't require every single
1391 // stack slot reference to depend on the instruction that does the
1392 // modification.
1393 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1394 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1395 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1398 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1399 // may choose to honor.
1400 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1401 return !DisableHazardRecognizer;
1404 // Default implementation of CreateTargetRAHazardRecognizer.
1405 ScheduleHazardRecognizer *TargetInstrInfo::
1406 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1407 const ScheduleDAG *DAG) const {
1408 // Dummy hazard recognizer allows all instructions to issue.
1409 return new ScheduleHazardRecognizer();
1412 // Default implementation of CreateTargetMIHazardRecognizer.
1413 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1414 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1415 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1418 // Default implementation of CreateTargetPostRAHazardRecognizer.
1419 ScheduleHazardRecognizer *TargetInstrInfo::
1420 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1421 const ScheduleDAG *DAG) const {
1422 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1425 // Default implementation of getMemOperandWithOffset.
1426 bool TargetInstrInfo::getMemOperandWithOffset(
1427 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1428 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1429 SmallVector<const MachineOperand *, 4> BaseOps;
1430 LocationSize Width = 0;
1431 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1432 Width, TRI) ||
1433 BaseOps.size() != 1)
1434 return false;
1435 BaseOp = BaseOps.front();
1436 return true;
1439 //===----------------------------------------------------------------------===//
1440 // SelectionDAG latency interface.
1441 //===----------------------------------------------------------------------===//
1443 std::optional<unsigned>
1444 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1445 SDNode *DefNode, unsigned DefIdx,
1446 SDNode *UseNode, unsigned UseIdx) const {
1447 if (!ItinData || ItinData->isEmpty())
1448 return std::nullopt;
1450 if (!DefNode->isMachineOpcode())
1451 return std::nullopt;
1453 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1454 if (!UseNode->isMachineOpcode())
1455 return ItinData->getOperandCycle(DefClass, DefIdx);
1456 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1457 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1460 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1461 SDNode *N) const {
1462 if (!ItinData || ItinData->isEmpty())
1463 return 1;
1465 if (!N->isMachineOpcode())
1466 return 1;
1468 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1471 //===----------------------------------------------------------------------===//
1472 // MachineInstr latency interface.
1473 //===----------------------------------------------------------------------===//
1475 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1476 const MachineInstr &MI) const {
1477 if (!ItinData || ItinData->isEmpty())
1478 return 1;
1480 unsigned Class = MI.getDesc().getSchedClass();
1481 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1482 if (UOps >= 0)
1483 return UOps;
1485 // The # of u-ops is dynamically determined. The specific target should
1486 // override this function to return the right number.
1487 return 1;
1490 /// Return the default expected latency for a def based on it's opcode.
1491 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1492 const MachineInstr &DefMI) const {
1493 if (DefMI.isTransient())
1494 return 0;
1495 if (DefMI.mayLoad())
1496 return SchedModel.LoadLatency;
1497 if (isHighLatencyDef(DefMI.getOpcode()))
1498 return SchedModel.HighLatency;
1499 return 1;
1502 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1503 return 0;
1506 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1507 const MachineInstr &MI,
1508 unsigned *PredCost) const {
1509 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1510 // still have a MinLatency property, which getStageLatency checks.
1511 if (!ItinData)
1512 return MI.mayLoad() ? 2 : 1;
1514 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1517 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1518 const MachineInstr &DefMI,
1519 unsigned DefIdx) const {
1520 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1521 if (!ItinData || ItinData->isEmpty())
1522 return false;
1524 unsigned DefClass = DefMI.getDesc().getSchedClass();
1525 std::optional<unsigned> DefCycle =
1526 ItinData->getOperandCycle(DefClass, DefIdx);
1527 return DefCycle && DefCycle <= 1U;
1530 bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction &MF) const {
1531 // TODO: We don't split functions where a section attribute has been set
1532 // since the split part may not be placed in a contiguous region. It may also
1533 // be more beneficial to augment the linker to ensure contiguous layout of
1534 // split functions within the same section as specified by the attribute.
1535 if (MF.getFunction().hasSection())
1536 return false;
1538 // We don't want to proceed further for cold functions
1539 // or functions of unknown hotness. Lukewarm functions have no prefix.
1540 std::optional<StringRef> SectionPrefix = MF.getFunction().getSectionPrefix();
1541 if (SectionPrefix &&
1542 (*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) {
1543 return false;
1546 return true;
1549 std::optional<ParamLoadedValue>
1550 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1551 Register Reg) const {
1552 const MachineFunction *MF = MI.getMF();
1553 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1554 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1555 int64_t Offset;
1556 bool OffsetIsScalable;
1558 // To simplify the sub-register handling, verify that we only need to
1559 // consider physical registers.
1560 assert(MF->getProperties().hasProperty(
1561 MachineFunctionProperties::Property::NoVRegs));
1563 if (auto DestSrc = isCopyInstr(MI)) {
1564 Register DestReg = DestSrc->Destination->getReg();
1566 // If the copy destination is the forwarding reg, describe the forwarding
1567 // reg using the copy source as the backup location. Example:
1569 // x0 = MOV x7
1570 // call callee(x0) ; x0 described as x7
1571 if (Reg == DestReg)
1572 return ParamLoadedValue(*DestSrc->Source, Expr);
1574 // If the target's hook couldn't describe this copy, give up.
1575 return std::nullopt;
1576 } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1577 Register SrcReg = RegImm->Reg;
1578 Offset = RegImm->Imm;
1579 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1580 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1581 } else if (MI.hasOneMemOperand()) {
1582 // Only describe memory which provably does not escape the function. As
1583 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1584 // callee (or by another thread).
1585 const auto &TII = MF->getSubtarget().getInstrInfo();
1586 const MachineFrameInfo &MFI = MF->getFrameInfo();
1587 const MachineMemOperand *MMO = MI.memoperands()[0];
1588 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1590 // If the address points to "special" memory (e.g. a spill slot), it's
1591 // sufficient to check that it isn't aliased by any high-level IR value.
1592 if (!PSV || PSV->mayAlias(&MFI))
1593 return std::nullopt;
1595 const MachineOperand *BaseOp;
1596 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1597 TRI))
1598 return std::nullopt;
1600 // FIXME: Scalable offsets are not yet handled in the offset code below.
1601 if (OffsetIsScalable)
1602 return std::nullopt;
1604 // TODO: Can currently only handle mem instructions with a single define.
1605 // An example from the x86 target:
1606 // ...
1607 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1608 // ...
1610 if (MI.getNumExplicitDefs() != 1)
1611 return std::nullopt;
1613 // TODO: In what way do we need to take Reg into consideration here?
1615 SmallVector<uint64_t, 8> Ops;
1616 DIExpression::appendOffset(Ops, Offset);
1617 Ops.push_back(dwarf::DW_OP_deref_size);
1618 Ops.push_back(MMO->getSize().hasValue() ? MMO->getSize().getValue()
1619 : ~UINT64_C(0));
1620 Expr = DIExpression::prependOpcodes(Expr, Ops);
1621 return ParamLoadedValue(*BaseOp, Expr);
1624 return std::nullopt;
1627 // Get the call frame size just before MI.
1628 unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr &MI) const {
1629 // Search backwards from MI for the most recent call frame instruction.
1630 MachineBasicBlock *MBB = MI.getParent();
1631 for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) {
1632 if (AdjI.getOpcode() == getCallFrameSetupOpcode())
1633 return getFrameTotalSize(AdjI);
1634 if (AdjI.getOpcode() == getCallFrameDestroyOpcode())
1635 return 0;
1638 // If none was found, use the call frame size from the start of the basic
1639 // block.
1640 return MBB->getCallFrameSize();
1643 /// Both DefMI and UseMI must be valid. By default, call directly to the
1644 /// itinerary. This may be overriden by the target.
1645 std::optional<unsigned> TargetInstrInfo::getOperandLatency(
1646 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
1647 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
1648 unsigned DefClass = DefMI.getDesc().getSchedClass();
1649 unsigned UseClass = UseMI.getDesc().getSchedClass();
1650 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1653 bool TargetInstrInfo::getRegSequenceInputs(
1654 const MachineInstr &MI, unsigned DefIdx,
1655 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1656 assert((MI.isRegSequence() ||
1657 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1659 if (!MI.isRegSequence())
1660 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1662 // We are looking at:
1663 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1664 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1665 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1666 OpIdx += 2) {
1667 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1668 if (MOReg.isUndef())
1669 continue;
1670 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1671 assert(MOSubIdx.isImm() &&
1672 "One of the subindex of the reg_sequence is not an immediate");
1673 // Record Reg:SubReg, SubIdx.
1674 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1675 (unsigned)MOSubIdx.getImm()));
1677 return true;
1680 bool TargetInstrInfo::getExtractSubregInputs(
1681 const MachineInstr &MI, unsigned DefIdx,
1682 RegSubRegPairAndIdx &InputReg) const {
1683 assert((MI.isExtractSubreg() ||
1684 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1686 if (!MI.isExtractSubreg())
1687 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1689 // We are looking at:
1690 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1691 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1692 const MachineOperand &MOReg = MI.getOperand(1);
1693 if (MOReg.isUndef())
1694 return false;
1695 const MachineOperand &MOSubIdx = MI.getOperand(2);
1696 assert(MOSubIdx.isImm() &&
1697 "The subindex of the extract_subreg is not an immediate");
1699 InputReg.Reg = MOReg.getReg();
1700 InputReg.SubReg = MOReg.getSubReg();
1701 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1702 return true;
1705 bool TargetInstrInfo::getInsertSubregInputs(
1706 const MachineInstr &MI, unsigned DefIdx,
1707 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1708 assert((MI.isInsertSubreg() ||
1709 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1711 if (!MI.isInsertSubreg())
1712 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1714 // We are looking at:
1715 // Def = INSERT_SEQUENCE v0, v1, sub0.
1716 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1717 const MachineOperand &MOBaseReg = MI.getOperand(1);
1718 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1719 if (MOInsertedReg.isUndef())
1720 return false;
1721 const MachineOperand &MOSubIdx = MI.getOperand(3);
1722 assert(MOSubIdx.isImm() &&
1723 "One of the subindex of the reg_sequence is not an immediate");
1724 BaseReg.Reg = MOBaseReg.getReg();
1725 BaseReg.SubReg = MOBaseReg.getSubReg();
1727 InsertedReg.Reg = MOInsertedReg.getReg();
1728 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1729 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1730 return true;
1733 // Returns a MIRPrinter comment for this machine operand.
1734 std::string TargetInstrInfo::createMIROperandComment(
1735 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1736 const TargetRegisterInfo *TRI) const {
1738 if (!MI.isInlineAsm())
1739 return "";
1741 std::string Flags;
1742 raw_string_ostream OS(Flags);
1744 if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1745 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1746 unsigned ExtraInfo = Op.getImm();
1747 bool First = true;
1748 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1749 if (!First)
1750 OS << " ";
1751 First = false;
1752 OS << Info;
1755 return Flags;
1758 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1759 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1760 return "";
1762 assert(Op.isImm() && "Expected flag operand to be an immediate");
1763 // Pretty print the inline asm operand descriptor.
1764 unsigned Flag = Op.getImm();
1765 const InlineAsm::Flag F(Flag);
1766 OS << F.getKindName();
1768 unsigned RCID;
1769 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1770 if (TRI) {
1771 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1772 } else
1773 OS << ":RC" << RCID;
1776 if (F.isMemKind()) {
1777 InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1778 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1781 unsigned TiedTo;
1782 if (F.isUseOperandTiedToDef(TiedTo))
1783 OS << " tiedto:$" << TiedTo;
1785 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) &&
1786 F.getRegMayBeFolded())
1787 OS << " foldable";
1789 return Flags;
1792 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
1794 void TargetInstrInfo::mergeOutliningCandidateAttributes(
1795 Function &F, std::vector<outliner::Candidate> &Candidates) const {
1796 // Include target features from an arbitrary candidate for the outlined
1797 // function. This makes sure the outlined function knows what kinds of
1798 // instructions are going into it. This is fine, since all parent functions
1799 // must necessarily support the instructions that are in the outlined region.
1800 outliner::Candidate &FirstCand = Candidates.front();
1801 const Function &ParentFn = FirstCand.getMF()->getFunction();
1802 if (ParentFn.hasFnAttribute("target-features"))
1803 F.addFnAttr(ParentFn.getFnAttribute("target-features"));
1804 if (ParentFn.hasFnAttribute("target-cpu"))
1805 F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
1807 // Set nounwind, so we don't generate eh_frame.
1808 if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
1809 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
1811 F.addFnAttr(Attribute::NoUnwind);
1814 outliner::InstrType
1815 TargetInstrInfo::getOutliningType(const MachineModuleInfo &MMI,
1816 MachineBasicBlock::iterator &MIT,
1817 unsigned Flags) const {
1818 MachineInstr &MI = *MIT;
1820 // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
1821 // have support for outlining those. Special-case that here.
1822 if (MI.isCFIInstruction())
1823 // Just go right to the target implementation.
1824 return getOutliningTypeImpl(MMI, MIT, Flags);
1826 // Be conservative about inline assembly.
1827 if (MI.isInlineAsm())
1828 return outliner::InstrType::Illegal;
1830 // Labels generally can't safely be outlined.
1831 if (MI.isLabel())
1832 return outliner::InstrType::Illegal;
1834 // Don't let debug instructions impact analysis.
1835 if (MI.isDebugInstr())
1836 return outliner::InstrType::Invisible;
1838 // Some other special cases.
1839 switch (MI.getOpcode()) {
1840 case TargetOpcode::IMPLICIT_DEF:
1841 case TargetOpcode::KILL:
1842 case TargetOpcode::LIFETIME_START:
1843 case TargetOpcode::LIFETIME_END:
1844 return outliner::InstrType::Invisible;
1845 default:
1846 break;
1849 // Is this a terminator for a basic block?
1850 if (MI.isTerminator()) {
1851 // If this is a branch to another block, we can't outline it.
1852 if (!MI.getParent()->succ_empty())
1853 return outliner::InstrType::Illegal;
1855 // Don't outline if the branch is not unconditional.
1856 if (isPredicated(MI))
1857 return outliner::InstrType::Illegal;
1860 // Make sure none of the operands of this instruction do anything that
1861 // might break if they're moved outside their current function.
1862 // This includes MachineBasicBlock references, BlockAddressses,
1863 // Constant pool indices and jump table indices.
1865 // A quick note on MO_TargetIndex:
1866 // This doesn't seem to be used in any of the architectures that the
1867 // MachineOutliner supports, but it was still filtered out in all of them.
1868 // There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
1869 // As such, this check is removed both here and in the target-specific
1870 // implementations. Instead, we assert to make sure this doesn't
1871 // catch anyone off-guard somewhere down the line.
1872 for (const MachineOperand &MOP : MI.operands()) {
1873 // If you hit this assertion, please remove it and adjust
1874 // `getOutliningTypeImpl` for your target appropriately if necessary.
1875 // Adding the assertion back to other supported architectures
1876 // would be nice too :)
1877 assert(!MOP.isTargetIndex() && "This isn't used quite yet!");
1879 // CFI instructions should already have been filtered out at this point.
1880 assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!");
1882 // PrologEpilogInserter should've already run at this point.
1883 assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!");
1885 if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
1886 return outliner::InstrType::Illegal;
1889 // If we don't know, delegate to the target-specific hook.
1890 return getOutliningTypeImpl(MMI, MIT, Flags);
1893 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1894 unsigned &Flags) const {
1895 // Some instrumentations create special TargetOpcode at the start which
1896 // expands to special code sequences which must be present.
1897 auto First = MBB.getFirstNonDebugInstr();
1898 if (First == MBB.end())
1899 return true;
1901 if (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
1902 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
1903 return false;
1905 // Some instrumentations create special pseudo-instructions at or just before
1906 // the end that must be present.
1907 auto Last = MBB.getLastNonDebugInstr();
1908 if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
1909 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1910 return false;
1912 if (Last != First && Last->isReturn()) {
1913 --Last;
1914 if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
1915 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1916 return false;
1918 return true;