1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/BinaryFormat/Dwarf.h"
16 #include "llvm/CodeGen/MachineCombinerPattern.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/MachineScheduler.h"
22 #include "llvm/CodeGen/MachineTraceMetrics.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
25 #include "llvm/CodeGen/StackMaps.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSchedule.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInstrItineraries.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
41 static cl::opt
<bool> DisableHazardRecognizer(
42 "disable-sched-hazard", cl::Hidden
, cl::init(false),
43 cl::desc("Disable hazard detection during preRA scheduling"));
45 TargetInstrInfo::~TargetInstrInfo() = default;
47 const TargetRegisterClass
*
48 TargetInstrInfo::getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
49 const TargetRegisterInfo
*TRI
,
50 const MachineFunction
&MF
) const {
51 if (OpNum
>= MCID
.getNumOperands())
54 short RegClass
= MCID
.operands()[OpNum
].RegClass
;
55 if (MCID
.operands()[OpNum
].isLookupPtrRegClass())
56 return TRI
->getPointerRegClass(MF
, RegClass
);
58 // Instructions like INSERT_SUBREG do not have fixed register classes.
62 // Otherwise just look it up normally.
63 return TRI
->getRegClass(RegClass
);
66 /// insertNoop - Insert a noop into the instruction stream at the specified
68 void TargetInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
69 MachineBasicBlock::iterator MI
) const {
70 llvm_unreachable("Target didn't implement insertNoop!");
73 /// insertNoops - Insert noops into the instruction stream at the specified
75 void TargetInstrInfo::insertNoops(MachineBasicBlock
&MBB
,
76 MachineBasicBlock::iterator MI
,
77 unsigned Quantity
) const {
78 for (unsigned i
= 0; i
< Quantity
; ++i
)
82 static bool isAsmComment(const char *Str
, const MCAsmInfo
&MAI
) {
83 return strncmp(Str
, MAI
.getCommentString().data(),
84 MAI
.getCommentString().size()) == 0;
87 /// Measure the specified inline asm to determine an approximation of its
89 /// Comments (which run till the next SeparatorString or newline) do not
90 /// count as an instruction.
91 /// Any other non-whitespace text is considered an instruction, with
92 /// multiple instructions separated by SeparatorString or newlines.
93 /// Variable-length instructions are not handled here; this function
94 /// may be overloaded in the target code to do that.
95 /// We implement a special case of the .space directive which takes only a
96 /// single integer argument in base 10 that is the size in bytes. This is a
97 /// restricted form of the GAS directive in that we only interpret
98 /// simple--i.e. not a logical or arithmetic expression--size values without
99 /// the optional fill value. This is primarily used for creating arbitrary
100 /// sized inline asm blocks for testing purposes.
101 unsigned TargetInstrInfo::getInlineAsmLength(
103 const MCAsmInfo
&MAI
, const TargetSubtargetInfo
*STI
) const {
104 // Count the number of instructions in the asm.
105 bool AtInsnStart
= true;
107 const unsigned MaxInstLength
= MAI
.getMaxInstLength(STI
);
108 for (; *Str
; ++Str
) {
109 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
110 strlen(MAI
.getSeparatorString())) == 0) {
112 } else if (isAsmComment(Str
, MAI
)) {
113 // Stop counting as an instruction after a comment until the next
118 if (AtInsnStart
&& !isSpace(static_cast<unsigned char>(*Str
))) {
119 unsigned AddLength
= MaxInstLength
;
120 if (strncmp(Str
, ".space", 6) == 0) {
123 SpaceSize
= strtol(Str
+ 6, &EStr
, 10);
124 SpaceSize
= SpaceSize
< 0 ? 0 : SpaceSize
;
125 while (*EStr
!= '\n' && isSpace(static_cast<unsigned char>(*EStr
)))
127 if (*EStr
== '\0' || *EStr
== '\n' ||
128 isAsmComment(EStr
, MAI
)) // Successfully parsed .space argument
129 AddLength
= SpaceSize
;
139 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
140 /// after it, replacing it with an unconditional branch to NewDest.
142 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail
,
143 MachineBasicBlock
*NewDest
) const {
144 MachineBasicBlock
*MBB
= Tail
->getParent();
146 // Remove all the old successors of MBB from the CFG.
147 while (!MBB
->succ_empty())
148 MBB
->removeSuccessor(MBB
->succ_begin());
150 // Save off the debug loc before erasing the instruction.
151 DebugLoc DL
= Tail
->getDebugLoc();
153 // Update call site info and remove all the dead instructions
154 // from the end of MBB.
155 while (Tail
!= MBB
->end()) {
157 if (MI
->shouldUpdateCallSiteInfo())
158 MBB
->getParent()->eraseCallSiteInfo(&*MI
);
162 // If MBB isn't immediately before MBB, insert a branch to it.
163 if (++MachineFunction::iterator(MBB
) != MachineFunction::iterator(NewDest
))
164 insertBranch(*MBB
, NewDest
, nullptr, SmallVector
<MachineOperand
, 0>(), DL
);
165 MBB
->addSuccessor(NewDest
);
168 MachineInstr
*TargetInstrInfo::commuteInstructionImpl(MachineInstr
&MI
,
169 bool NewMI
, unsigned Idx1
,
170 unsigned Idx2
) const {
171 const MCInstrDesc
&MCID
= MI
.getDesc();
172 bool HasDef
= MCID
.getNumDefs();
173 if (HasDef
&& !MI
.getOperand(0).isReg())
174 // No idea how to commute this instruction. Target should implement its own.
177 unsigned CommutableOpIdx1
= Idx1
; (void)CommutableOpIdx1
;
178 unsigned CommutableOpIdx2
= Idx2
; (void)CommutableOpIdx2
;
179 assert(findCommutedOpIndices(MI
, CommutableOpIdx1
, CommutableOpIdx2
) &&
180 CommutableOpIdx1
== Idx1
&& CommutableOpIdx2
== Idx2
&&
181 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
182 assert(MI
.getOperand(Idx1
).isReg() && MI
.getOperand(Idx2
).isReg() &&
183 "This only knows how to commute register operands so far");
185 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
186 Register Reg1
= MI
.getOperand(Idx1
).getReg();
187 Register Reg2
= MI
.getOperand(Idx2
).getReg();
188 unsigned SubReg0
= HasDef
? MI
.getOperand(0).getSubReg() : 0;
189 unsigned SubReg1
= MI
.getOperand(Idx1
).getSubReg();
190 unsigned SubReg2
= MI
.getOperand(Idx2
).getSubReg();
191 bool Reg1IsKill
= MI
.getOperand(Idx1
).isKill();
192 bool Reg2IsKill
= MI
.getOperand(Idx2
).isKill();
193 bool Reg1IsUndef
= MI
.getOperand(Idx1
).isUndef();
194 bool Reg2IsUndef
= MI
.getOperand(Idx2
).isUndef();
195 bool Reg1IsInternal
= MI
.getOperand(Idx1
).isInternalRead();
196 bool Reg2IsInternal
= MI
.getOperand(Idx2
).isInternalRead();
197 // Avoid calling isRenamable for virtual registers since we assert that
198 // renamable property is only queried/set for physical registers.
199 bool Reg1IsRenamable
=
200 Reg1
.isPhysical() ? MI
.getOperand(Idx1
).isRenamable() : false;
201 bool Reg2IsRenamable
=
202 Reg2
.isPhysical() ? MI
.getOperand(Idx2
).isRenamable() : false;
203 // If destination is tied to either of the commuted source register, then
204 // it must be updated.
205 if (HasDef
&& Reg0
== Reg1
&&
206 MI
.getDesc().getOperandConstraint(Idx1
, MCOI::TIED_TO
) == 0) {
210 } else if (HasDef
&& Reg0
== Reg2
&&
211 MI
.getDesc().getOperandConstraint(Idx2
, MCOI::TIED_TO
) == 0) {
217 MachineInstr
*CommutedMI
= nullptr;
219 // Create a new instruction.
220 MachineFunction
&MF
= *MI
.getMF();
221 CommutedMI
= MF
.CloneMachineInstr(&MI
);
227 CommutedMI
->getOperand(0).setReg(Reg0
);
228 CommutedMI
->getOperand(0).setSubReg(SubReg0
);
230 CommutedMI
->getOperand(Idx2
).setReg(Reg1
);
231 CommutedMI
->getOperand(Idx1
).setReg(Reg2
);
232 CommutedMI
->getOperand(Idx2
).setSubReg(SubReg1
);
233 CommutedMI
->getOperand(Idx1
).setSubReg(SubReg2
);
234 CommutedMI
->getOperand(Idx2
).setIsKill(Reg1IsKill
);
235 CommutedMI
->getOperand(Idx1
).setIsKill(Reg2IsKill
);
236 CommutedMI
->getOperand(Idx2
).setIsUndef(Reg1IsUndef
);
237 CommutedMI
->getOperand(Idx1
).setIsUndef(Reg2IsUndef
);
238 CommutedMI
->getOperand(Idx2
).setIsInternalRead(Reg1IsInternal
);
239 CommutedMI
->getOperand(Idx1
).setIsInternalRead(Reg2IsInternal
);
240 // Avoid calling setIsRenamable for virtual registers since we assert that
241 // renamable property is only queried/set for physical registers.
242 if (Reg1
.isPhysical())
243 CommutedMI
->getOperand(Idx2
).setIsRenamable(Reg1IsRenamable
);
244 if (Reg2
.isPhysical())
245 CommutedMI
->getOperand(Idx1
).setIsRenamable(Reg2IsRenamable
);
249 MachineInstr
*TargetInstrInfo::commuteInstruction(MachineInstr
&MI
, bool NewMI
,
251 unsigned OpIdx2
) const {
252 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
253 // any commutable operand, which is done in findCommutedOpIndices() method
255 if ((OpIdx1
== CommuteAnyOperandIndex
|| OpIdx2
== CommuteAnyOperandIndex
) &&
256 !findCommutedOpIndices(MI
, OpIdx1
, OpIdx2
)) {
257 assert(MI
.isCommutable() &&
258 "Precondition violation: MI must be commutable.");
261 return commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
264 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1
,
265 unsigned &ResultIdx2
,
266 unsigned CommutableOpIdx1
,
267 unsigned CommutableOpIdx2
) {
268 if (ResultIdx1
== CommuteAnyOperandIndex
&&
269 ResultIdx2
== CommuteAnyOperandIndex
) {
270 ResultIdx1
= CommutableOpIdx1
;
271 ResultIdx2
= CommutableOpIdx2
;
272 } else if (ResultIdx1
== CommuteAnyOperandIndex
) {
273 if (ResultIdx2
== CommutableOpIdx1
)
274 ResultIdx1
= CommutableOpIdx2
;
275 else if (ResultIdx2
== CommutableOpIdx2
)
276 ResultIdx1
= CommutableOpIdx1
;
279 } else if (ResultIdx2
== CommuteAnyOperandIndex
) {
280 if (ResultIdx1
== CommutableOpIdx1
)
281 ResultIdx2
= CommutableOpIdx2
;
282 else if (ResultIdx1
== CommutableOpIdx2
)
283 ResultIdx2
= CommutableOpIdx1
;
287 // Check that the result operand indices match the given commutable
289 return (ResultIdx1
== CommutableOpIdx1
&& ResultIdx2
== CommutableOpIdx2
) ||
290 (ResultIdx1
== CommutableOpIdx2
&& ResultIdx2
== CommutableOpIdx1
);
295 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr
&MI
,
297 unsigned &SrcOpIdx2
) const {
298 assert(!MI
.isBundle() &&
299 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
301 const MCInstrDesc
&MCID
= MI
.getDesc();
302 if (!MCID
.isCommutable())
305 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
306 // is not true, then the target must implement this.
307 unsigned CommutableOpIdx1
= MCID
.getNumDefs();
308 unsigned CommutableOpIdx2
= CommutableOpIdx1
+ 1;
309 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
310 CommutableOpIdx1
, CommutableOpIdx2
))
313 if (!MI
.getOperand(SrcOpIdx1
).isReg() || !MI
.getOperand(SrcOpIdx2
).isReg())
319 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
320 if (!MI
.isTerminator()) return false;
322 // Conditional branch is a special case.
323 if (MI
.isBranch() && !MI
.isBarrier())
325 if (!MI
.isPredicable())
327 return !isPredicated(MI
);
330 bool TargetInstrInfo::PredicateInstruction(
331 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Pred
) const {
332 bool MadeChange
= false;
334 assert(!MI
.isBundle() &&
335 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
337 const MCInstrDesc
&MCID
= MI
.getDesc();
338 if (!MI
.isPredicable())
341 for (unsigned j
= 0, i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
342 if (MCID
.operands()[i
].isPredicate()) {
343 MachineOperand
&MO
= MI
.getOperand(i
);
345 MO
.setReg(Pred
[j
].getReg());
347 } else if (MO
.isImm()) {
348 MO
.setImm(Pred
[j
].getImm());
350 } else if (MO
.isMBB()) {
351 MO
.setMBB(Pred
[j
].getMBB());
360 bool TargetInstrInfo::hasLoadFromStackSlot(
361 const MachineInstr
&MI
,
362 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
363 size_t StartSize
= Accesses
.size();
364 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
365 oe
= MI
.memoperands_end();
367 if ((*o
)->isLoad() &&
368 isa_and_nonnull
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
369 Accesses
.push_back(*o
);
371 return Accesses
.size() != StartSize
;
374 bool TargetInstrInfo::hasStoreToStackSlot(
375 const MachineInstr
&MI
,
376 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
377 size_t StartSize
= Accesses
.size();
378 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
379 oe
= MI
.memoperands_end();
381 if ((*o
)->isStore() &&
382 isa_and_nonnull
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
383 Accesses
.push_back(*o
);
385 return Accesses
.size() != StartSize
;
388 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass
*RC
,
389 unsigned SubIdx
, unsigned &Size
,
391 const MachineFunction
&MF
) const {
392 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
394 Size
= TRI
->getSpillSize(*RC
);
398 unsigned BitSize
= TRI
->getSubRegIdxSize(SubIdx
);
399 // Convert bit size to byte size.
403 int BitOffset
= TRI
->getSubRegIdxOffset(SubIdx
);
404 if (BitOffset
< 0 || BitOffset
% 8)
408 Offset
= (unsigned)BitOffset
/ 8;
410 assert(TRI
->getSpillSize(*RC
) >= (Offset
+ Size
) && "bad subregister range");
412 if (!MF
.getDataLayout().isLittleEndian()) {
413 Offset
= TRI
->getSpillSize(*RC
) - (Offset
+ Size
);
418 void TargetInstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
419 MachineBasicBlock::iterator I
,
420 Register DestReg
, unsigned SubIdx
,
421 const MachineInstr
&Orig
,
422 const TargetRegisterInfo
&TRI
) const {
423 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
424 MI
->substituteRegister(MI
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
428 bool TargetInstrInfo::produceSameValue(const MachineInstr
&MI0
,
429 const MachineInstr
&MI1
,
430 const MachineRegisterInfo
*MRI
) const {
431 return MI0
.isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
435 TargetInstrInfo::duplicate(MachineBasicBlock
&MBB
,
436 MachineBasicBlock::iterator InsertBefore
,
437 const MachineInstr
&Orig
) const {
438 MachineFunction
&MF
= *MBB
.getParent();
439 // CFI instructions are marked as non-duplicable, because Darwin compact
440 // unwind info emission can't handle multiple prologue setups.
441 assert((!Orig
.isNotDuplicable() ||
442 (!MF
.getTarget().getTargetTriple().isOSDarwin() &&
443 Orig
.isCFIInstruction())) &&
444 "Instruction cannot be duplicated");
446 return MF
.cloneMachineInstrBundle(MBB
, InsertBefore
, Orig
);
449 // If the COPY instruction in MI can be folded to a stack operation, return
450 // the register class to use.
451 static const TargetRegisterClass
*canFoldCopy(const MachineInstr
&MI
,
452 const TargetInstrInfo
&TII
,
454 assert(TII
.isCopyInstr(MI
) && "MI must be a COPY instruction");
455 if (MI
.getNumOperands() != 2)
457 assert(FoldIdx
<2 && "FoldIdx refers no nonexistent operand");
459 const MachineOperand
&FoldOp
= MI
.getOperand(FoldIdx
);
460 const MachineOperand
&LiveOp
= MI
.getOperand(1 - FoldIdx
);
462 if (FoldOp
.getSubReg() || LiveOp
.getSubReg())
465 Register FoldReg
= FoldOp
.getReg();
466 Register LiveReg
= LiveOp
.getReg();
468 assert(FoldReg
.isVirtual() && "Cannot fold physregs");
470 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
471 const TargetRegisterClass
*RC
= MRI
.getRegClass(FoldReg
);
473 if (LiveOp
.getReg().isPhysical())
474 return RC
->contains(LiveOp
.getReg()) ? RC
: nullptr;
476 if (RC
->hasSubClassEq(MRI
.getRegClass(LiveReg
)))
479 // FIXME: Allow folding when register classes are memory compatible.
483 MCInst
TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
485 std::pair
<unsigned, unsigned>
486 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr
&MI
) const {
487 switch (MI
.getOpcode()) {
488 case TargetOpcode::STACKMAP
:
489 // StackMapLiveValues are foldable
490 return std::make_pair(0, StackMapOpers(&MI
).getVarIdx());
491 case TargetOpcode::PATCHPOINT
:
492 // For PatchPoint, the call args are not foldable (even if reported in the
493 // stackmap e.g. via anyregcc).
494 return std::make_pair(0, PatchPointOpers(&MI
).getVarIdx());
495 case TargetOpcode::STATEPOINT
:
496 // For statepoints, fold deopt and gc arguments, but not call arguments.
497 return std::make_pair(MI
.getNumDefs(), StatepointOpers(&MI
).getVarIdx());
499 llvm_unreachable("unexpected stackmap opcode");
503 static MachineInstr
*foldPatchpoint(MachineFunction
&MF
, MachineInstr
&MI
,
504 ArrayRef
<unsigned> Ops
, int FrameIndex
,
505 const TargetInstrInfo
&TII
) {
506 unsigned StartIdx
= 0;
507 unsigned NumDefs
= 0;
508 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
509 std::tie(NumDefs
, StartIdx
) = TII
.getPatchpointUnfoldableRange(MI
);
511 unsigned DefToFoldIdx
= MI
.getNumOperands();
513 // Return false if any operands requested for folding are not foldable (not
514 // part of the stackmap's live values).
515 for (unsigned Op
: Ops
) {
517 assert(DefToFoldIdx
== MI
.getNumOperands() && "Folding multiple defs");
519 } else if (Op
< StartIdx
) {
522 if (MI
.getOperand(Op
).isTied())
526 MachineInstr
*NewMI
=
527 MF
.CreateMachineInstr(TII
.get(MI
.getOpcode()), MI
.getDebugLoc(), true);
528 MachineInstrBuilder
MIB(MF
, NewMI
);
530 // No need to fold return, the meta data, and function arguments
531 for (unsigned i
= 0; i
< StartIdx
; ++i
)
532 if (i
!= DefToFoldIdx
)
533 MIB
.add(MI
.getOperand(i
));
535 for (unsigned i
= StartIdx
, e
= MI
.getNumOperands(); i
< e
; ++i
) {
536 MachineOperand
&MO
= MI
.getOperand(i
);
538 (void)MI
.isRegTiedToDefOperand(i
, &TiedTo
);
540 if (is_contained(Ops
, i
)) {
541 assert(TiedTo
== e
&& "Cannot fold tied operands");
543 unsigned SpillOffset
;
544 // Compute the spill slot size and offset.
545 const TargetRegisterClass
*RC
=
546 MF
.getRegInfo().getRegClass(MO
.getReg());
548 TII
.getStackSlotRange(RC
, MO
.getSubReg(), SpillSize
, SpillOffset
, MF
);
550 report_fatal_error("cannot spill patchpoint subregister operand");
551 MIB
.addImm(StackMaps::IndirectMemRefOp
);
552 MIB
.addImm(SpillSize
);
553 MIB
.addFrameIndex(FrameIndex
);
554 MIB
.addImm(SpillOffset
);
558 assert(TiedTo
< NumDefs
&& "Bad tied operand");
559 if (TiedTo
> DefToFoldIdx
)
561 NewMI
->tieOperands(TiedTo
, NewMI
->getNumOperands() - 1);
568 static void foldInlineAsmMemOperand(MachineInstr
*MI
, unsigned OpNo
, int FI
,
569 const TargetInstrInfo
&TII
) {
570 // If the machine operand is tied, untie it first.
571 if (MI
->getOperand(OpNo
).isTied()) {
572 unsigned TiedTo
= MI
->findTiedOperandIdx(OpNo
);
573 MI
->untieRegOperand(OpNo
);
574 // Intentional recursion!
575 foldInlineAsmMemOperand(MI
, TiedTo
, FI
, TII
);
578 SmallVector
<MachineOperand
, 5> NewOps
;
579 TII
.getFrameIndexOperands(NewOps
, FI
);
580 assert(!NewOps
.empty() && "getFrameIndexOperands didn't create any operands");
581 MI
->removeOperand(OpNo
);
582 MI
->insert(MI
->operands_begin() + OpNo
, NewOps
);
584 // Change the previous operand to a MemKind InlineAsm::Flag. The second param
585 // is the per-target number of operands that represent the memory operand
586 // excluding this one (MD). This includes MO.
587 InlineAsm::Flag
F(InlineAsm::Kind::Mem
, NewOps
.size());
588 F
.setMemConstraint(InlineAsm::ConstraintCode::m
);
589 MachineOperand
&MD
= MI
->getOperand(OpNo
- 1);
593 // Returns nullptr if not possible to fold.
594 static MachineInstr
*foldInlineAsmMemOperand(MachineInstr
&MI
,
595 ArrayRef
<unsigned> Ops
, int FI
,
596 const TargetInstrInfo
&TII
) {
597 assert(MI
.isInlineAsm() && "wrong opcode");
600 unsigned Op
= Ops
[0];
601 assert(Op
&& "should never be first operand");
602 assert(MI
.getOperand(Op
).isReg() && "shouldn't be folding non-reg operands");
604 if (!MI
.mayFoldInlineAsmRegOp(Op
))
607 MachineInstr
&NewMI
= TII
.duplicate(*MI
.getParent(), MI
.getIterator(), MI
);
609 foldInlineAsmMemOperand(&NewMI
, Op
, FI
, TII
);
611 // Update mayload/maystore metadata, and memoperands.
612 const VirtRegInfo
&RI
=
613 AnalyzeVirtRegInBundle(MI
, MI
.getOperand(Op
).getReg());
614 MachineOperand
&ExtraMO
= NewMI
.getOperand(InlineAsm::MIOp_ExtraInfo
);
615 MachineMemOperand::Flags Flags
= MachineMemOperand::MONone
;
617 ExtraMO
.setImm(ExtraMO
.getImm() | InlineAsm::Extra_MayLoad
);
618 Flags
|= MachineMemOperand::MOLoad
;
621 ExtraMO
.setImm(ExtraMO
.getImm() | InlineAsm::Extra_MayStore
);
622 Flags
|= MachineMemOperand::MOStore
;
624 MachineFunction
*MF
= NewMI
.getMF();
625 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
626 MachineMemOperand
*MMO
= MF
->getMachineMemOperand(
627 MachinePointerInfo::getFixedStack(*MF
, FI
), Flags
, MFI
.getObjectSize(FI
),
628 MFI
.getObjectAlign(FI
));
629 NewMI
.addMemOperand(*MF
, MMO
);
634 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
635 ArrayRef
<unsigned> Ops
, int FI
,
637 VirtRegMap
*VRM
) const {
638 auto Flags
= MachineMemOperand::MONone
;
639 for (unsigned OpIdx
: Ops
)
640 Flags
|= MI
.getOperand(OpIdx
).isDef() ? MachineMemOperand::MOStore
641 : MachineMemOperand::MOLoad
;
643 MachineBasicBlock
*MBB
= MI
.getParent();
644 assert(MBB
&& "foldMemoryOperand needs an inserted instruction");
645 MachineFunction
&MF
= *MBB
->getParent();
647 // If we're not folding a load into a subreg, the size of the load is the
648 // size of the spill slot. But if we are, we need to figure out what the
649 // actual load size is.
651 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
652 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
654 if (Flags
& MachineMemOperand::MOStore
) {
655 MemSize
= MFI
.getObjectSize(FI
);
657 for (unsigned OpIdx
: Ops
) {
658 int64_t OpSize
= MFI
.getObjectSize(FI
);
660 if (auto SubReg
= MI
.getOperand(OpIdx
).getSubReg()) {
661 unsigned SubRegSize
= TRI
->getSubRegIdxSize(SubReg
);
662 if (SubRegSize
> 0 && !(SubRegSize
% 8))
663 OpSize
= SubRegSize
/ 8;
666 MemSize
= std::max(MemSize
, OpSize
);
670 assert(MemSize
&& "Did not expect a zero-sized stack slot");
672 MachineInstr
*NewMI
= nullptr;
674 if (MI
.getOpcode() == TargetOpcode::STACKMAP
||
675 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
676 MI
.getOpcode() == TargetOpcode::STATEPOINT
) {
677 // Fold stackmap/patchpoint.
678 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FI
, *this);
680 MBB
->insert(MI
, NewMI
);
681 } else if (MI
.isInlineAsm()) {
682 return foldInlineAsmMemOperand(MI
, Ops
, FI
, *this);
684 // Ask the target to do the actual folding.
685 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, FI
, LIS
, VRM
);
689 NewMI
->setMemRefs(MF
, MI
.memoperands());
690 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
691 assert((!(Flags
& MachineMemOperand::MOStore
) ||
692 NewMI
->mayStore()) &&
693 "Folded a def to a non-store!");
694 assert((!(Flags
& MachineMemOperand::MOLoad
) ||
696 "Folded a use to a non-load!");
697 assert(MFI
.getObjectOffset(FI
) != -1);
698 MachineMemOperand
*MMO
=
699 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF
, FI
),
700 Flags
, MemSize
, MFI
.getObjectAlign(FI
));
701 NewMI
->addMemOperand(MF
, MMO
);
703 // The pass "x86 speculative load hardening" always attaches symbols to
704 // call instructions. We need copy it form old instruction.
705 NewMI
->cloneInstrSymbols(MF
, MI
);
710 // Straight COPY may fold as load/store.
711 if (!isCopyInstr(MI
) || Ops
.size() != 1)
714 const TargetRegisterClass
*RC
= canFoldCopy(MI
, *this, Ops
[0]);
718 const MachineOperand
&MO
= MI
.getOperand(1 - Ops
[0]);
719 MachineBasicBlock::iterator Pos
= MI
;
721 if (Flags
== MachineMemOperand::MOStore
)
722 storeRegToStackSlot(*MBB
, Pos
, MO
.getReg(), MO
.isKill(), FI
, RC
, TRI
,
725 loadRegFromStackSlot(*MBB
, Pos
, MO
.getReg(), FI
, RC
, TRI
, Register());
729 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
730 ArrayRef
<unsigned> Ops
,
731 MachineInstr
&LoadMI
,
732 LiveIntervals
*LIS
) const {
733 assert(LoadMI
.canFoldAsLoad() && "LoadMI isn't foldable!");
735 for (unsigned OpIdx
: Ops
)
736 assert(MI
.getOperand(OpIdx
).isUse() && "Folding load into def!");
739 MachineBasicBlock
&MBB
= *MI
.getParent();
740 MachineFunction
&MF
= *MBB
.getParent();
742 // Ask the target to do the actual folding.
743 MachineInstr
*NewMI
= nullptr;
746 if ((MI
.getOpcode() == TargetOpcode::STACKMAP
||
747 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
748 MI
.getOpcode() == TargetOpcode::STATEPOINT
) &&
749 isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
750 // Fold stackmap/patchpoint.
751 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FrameIndex
, *this);
753 NewMI
= &*MBB
.insert(MI
, NewMI
);
754 } else if (MI
.isInlineAsm() && isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
755 return foldInlineAsmMemOperand(MI
, Ops
, FrameIndex
, *this);
757 // Ask the target to do the actual folding.
758 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, LoadMI
, LIS
);
764 // Copy the memoperands from the load to the folded instruction.
765 if (MI
.memoperands_empty()) {
766 NewMI
->setMemRefs(MF
, LoadMI
.memoperands());
768 // Handle the rare case of folding multiple loads.
769 NewMI
->setMemRefs(MF
, MI
.memoperands());
770 for (MachineInstr::mmo_iterator I
= LoadMI
.memoperands_begin(),
771 E
= LoadMI
.memoperands_end();
773 NewMI
->addMemOperand(MF
, *I
);
779 /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
780 /// replacement instructions immediately precede it. Copy any implicit
781 /// operands from MI to the replacement instruction.
782 static void transferImplicitOperands(MachineInstr
*MI
,
783 const TargetRegisterInfo
*TRI
) {
784 MachineBasicBlock::iterator CopyMI
= MI
;
787 Register DstReg
= MI
->getOperand(0).getReg();
788 for (const MachineOperand
&MO
: MI
->implicit_operands()) {
789 CopyMI
->addOperand(MO
);
791 // Be conservative about preserving kills when subregister defs are
792 // involved. If there was implicit kill of a super-register overlapping the
793 // copy result, we would kill the subregisters previous copies defined.
795 if (MO
.isKill() && TRI
->regsOverlap(DstReg
, MO
.getReg()))
796 CopyMI
->getOperand(CopyMI
->getNumOperands() - 1).setIsKill(false);
800 void TargetInstrInfo::lowerCopy(MachineInstr
*MI
,
801 const TargetRegisterInfo
*TRI
) const {
802 if (MI
->allDefsAreDead()) {
803 MI
->setDesc(get(TargetOpcode::KILL
));
807 MachineOperand
&DstMO
= MI
->getOperand(0);
808 MachineOperand
&SrcMO
= MI
->getOperand(1);
810 bool IdentityCopy
= (SrcMO
.getReg() == DstMO
.getReg());
811 if (IdentityCopy
|| SrcMO
.isUndef()) {
812 // No need to insert an identity copy instruction, but replace with a KILL
813 // if liveness is changed.
814 if (SrcMO
.isUndef() || MI
->getNumOperands() > 2) {
815 // We must make sure the super-register gets killed. Replace the
816 // instruction with KILL.
817 MI
->setDesc(get(TargetOpcode::KILL
));
820 // Vanilla identity copy.
821 MI
->eraseFromParent();
825 copyPhysReg(*MI
->getParent(), MI
, MI
->getDebugLoc(), DstMO
.getReg(),
826 SrcMO
.getReg(), SrcMO
.isKill(),
827 DstMO
.getReg().isPhysical() ? DstMO
.isRenamable() : false,
828 SrcMO
.getReg().isPhysical() ? SrcMO
.isRenamable() : false);
830 if (MI
->getNumOperands() > 2)
831 transferImplicitOperands(MI
, TRI
);
832 MI
->eraseFromParent();
835 bool TargetInstrInfo::hasReassociableOperands(
836 const MachineInstr
&Inst
, const MachineBasicBlock
*MBB
) const {
837 const MachineOperand
&Op1
= Inst
.getOperand(1);
838 const MachineOperand
&Op2
= Inst
.getOperand(2);
839 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
841 // We need virtual register definitions for the operands that we will
843 MachineInstr
*MI1
= nullptr;
844 MachineInstr
*MI2
= nullptr;
845 if (Op1
.isReg() && Op1
.getReg().isVirtual())
846 MI1
= MRI
.getUniqueVRegDef(Op1
.getReg());
847 if (Op2
.isReg() && Op2
.getReg().isVirtual())
848 MI2
= MRI
.getUniqueVRegDef(Op2
.getReg());
850 // And at least one operand must be defined in MBB.
851 return MI1
&& MI2
&& (MI1
->getParent() == MBB
|| MI2
->getParent() == MBB
);
854 bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1
,
855 unsigned Opcode2
) const {
856 return Opcode1
== Opcode2
|| getInverseOpcode(Opcode1
) == Opcode2
;
859 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr
&Inst
,
860 bool &Commuted
) const {
861 const MachineBasicBlock
*MBB
= Inst
.getParent();
862 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
863 MachineInstr
*MI1
= MRI
.getUniqueVRegDef(Inst
.getOperand(1).getReg());
864 MachineInstr
*MI2
= MRI
.getUniqueVRegDef(Inst
.getOperand(2).getReg());
865 unsigned Opcode
= Inst
.getOpcode();
867 // If only one operand has the same or inverse opcode and it's the second
868 // source operand, the operands must be commuted.
869 Commuted
= !areOpcodesEqualOrInverse(Opcode
, MI1
->getOpcode()) &&
870 areOpcodesEqualOrInverse(Opcode
, MI2
->getOpcode());
874 // 1. The previous instruction must be the same type as Inst.
875 // 2. The previous instruction must also be associative/commutative or be the
876 // inverse of such an operation (this can be different even for
877 // instructions with the same opcode if traits like fast-math-flags are
879 // 3. The previous instruction must have virtual register definitions for its
880 // operands in the same basic block as Inst.
881 // 4. The previous instruction's result must only be used by Inst.
882 return areOpcodesEqualOrInverse(Opcode
, MI1
->getOpcode()) &&
883 (isAssociativeAndCommutative(*MI1
) ||
884 isAssociativeAndCommutative(*MI1
, /* Invert */ true)) &&
885 hasReassociableOperands(*MI1
, MBB
) &&
886 MRI
.hasOneNonDBGUse(MI1
->getOperand(0).getReg());
889 // 1. The operation must be associative and commutative or be the inverse of
890 // such an operation.
891 // 2. The instruction must have virtual register definitions for its
892 // operands in the same basic block.
893 // 3. The instruction must have a reassociable sibling.
894 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr
&Inst
,
895 bool &Commuted
) const {
896 return (isAssociativeAndCommutative(Inst
) ||
897 isAssociativeAndCommutative(Inst
, /* Invert */ true)) &&
898 hasReassociableOperands(Inst
, Inst
.getParent()) &&
899 hasReassociableSibling(Inst
, Commuted
);
902 // The concept of the reassociation pass is that these operations can benefit
903 // from this kind of transformation:
913 // breaking the dependency between A and B, allowing them to be executed in
914 // parallel (or back-to-back in a pipeline) instead of depending on each other.
916 // FIXME: This has the potential to be expensive (compile time) while not
917 // improving the code at all. Some ways to limit the overhead:
918 // 1. Track successful transforms; bail out if hit rate gets too low.
919 // 2. Only enable at -O3 or some other non-default optimization level.
920 // 3. Pre-screen pattern candidates here: if an operand of the previous
921 // instruction is known to not increase the critical path, then don't match
923 bool TargetInstrInfo::getMachineCombinerPatterns(
924 MachineInstr
&Root
, SmallVectorImpl
<unsigned> &Patterns
,
925 bool DoRegPressureReduce
) const {
927 if (isReassociationCandidate(Root
, Commute
)) {
928 // We found a sequence of instructions that may be suitable for a
929 // reassociation of operands to increase ILP. Specify each commutation
930 // possibility for the Prev instruction in the sequence and let the
931 // machine combiner decide if changing the operands is worthwhile.
933 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_YB
);
934 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_YB
);
936 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_BY
);
937 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_BY
);
945 /// Return true when a code sequence can improve loop throughput.
946 bool TargetInstrInfo::isThroughputPattern(unsigned Pattern
) const {
951 TargetInstrInfo::getCombinerObjective(unsigned Pattern
) const {
952 return CombinerObjective::Default
;
955 std::pair
<unsigned, unsigned>
956 TargetInstrInfo::getReassociationOpcodes(unsigned Pattern
,
957 const MachineInstr
&Root
,
958 const MachineInstr
&Prev
) const {
959 bool AssocCommutRoot
= isAssociativeAndCommutative(Root
);
960 bool AssocCommutPrev
= isAssociativeAndCommutative(Prev
);
962 // Early exit if both opcodes are associative and commutative. It's a trivial
963 // reassociation when we only change operands order. In this case opcodes are
964 // not required to have inverse versions.
965 if (AssocCommutRoot
&& AssocCommutPrev
) {
966 assert(Root
.getOpcode() == Prev
.getOpcode() && "Expected to be equal");
967 return std::make_pair(Root
.getOpcode(), Root
.getOpcode());
970 // At least one instruction is not associative or commutative.
971 // Since we have matched one of the reassociation patterns, we expect that the
972 // instructions' opcodes are equal or one of them is the inversion of the
974 assert(areOpcodesEqualOrInverse(Root
.getOpcode(), Prev
.getOpcode()) &&
975 "Incorrectly matched pattern");
976 unsigned AssocCommutOpcode
= Root
.getOpcode();
977 unsigned InverseOpcode
= *getInverseOpcode(Root
.getOpcode());
978 if (!AssocCommutRoot
)
979 std::swap(AssocCommutOpcode
, InverseOpcode
);
981 // The transformation rule (`+` is any associative and commutative binary
982 // operation, `-` is the inverse):
984 // (A + X) + Y => A + (X + Y)
985 // (A + X) - Y => A + (X - Y)
986 // (A - X) + Y => A - (X - Y)
987 // (A - X) - Y => A - (X + Y)
989 // (X + A) + Y => (X + Y) + A
990 // (X + A) - Y => (X - Y) + A
991 // (X - A) + Y => (X + Y) - A
992 // (X - A) - Y => (X - Y) - A
994 // Y + (A + X) => (Y + X) + A
995 // Y - (A + X) => (Y - X) - A
996 // Y + (A - X) => (Y - X) + A
997 // Y - (A - X) => (Y + X) - A
999 // Y + (X + A) => (Y + X) + A
1000 // Y - (X + A) => (Y - X) - A
1001 // Y + (X - A) => (Y + X) - A
1002 // Y - (X - A) => (Y - X) + A
1005 llvm_unreachable("Unexpected pattern");
1006 case MachineCombinerPattern::REASSOC_AX_BY
:
1007 if (!AssocCommutRoot
&& AssocCommutPrev
)
1008 return {AssocCommutOpcode
, InverseOpcode
};
1009 if (AssocCommutRoot
&& !AssocCommutPrev
)
1010 return {InverseOpcode
, InverseOpcode
};
1011 if (!AssocCommutRoot
&& !AssocCommutPrev
)
1012 return {InverseOpcode
, AssocCommutOpcode
};
1014 case MachineCombinerPattern::REASSOC_XA_BY
:
1015 if (!AssocCommutRoot
&& AssocCommutPrev
)
1016 return {AssocCommutOpcode
, InverseOpcode
};
1017 if (AssocCommutRoot
&& !AssocCommutPrev
)
1018 return {InverseOpcode
, AssocCommutOpcode
};
1019 if (!AssocCommutRoot
&& !AssocCommutPrev
)
1020 return {InverseOpcode
, InverseOpcode
};
1022 case MachineCombinerPattern::REASSOC_AX_YB
:
1023 if (!AssocCommutRoot
&& AssocCommutPrev
)
1024 return {InverseOpcode
, InverseOpcode
};
1025 if (AssocCommutRoot
&& !AssocCommutPrev
)
1026 return {AssocCommutOpcode
, InverseOpcode
};
1027 if (!AssocCommutRoot
&& !AssocCommutPrev
)
1028 return {InverseOpcode
, AssocCommutOpcode
};
1030 case MachineCombinerPattern::REASSOC_XA_YB
:
1031 if (!AssocCommutRoot
&& AssocCommutPrev
)
1032 return {InverseOpcode
, InverseOpcode
};
1033 if (AssocCommutRoot
&& !AssocCommutPrev
)
1034 return {InverseOpcode
, AssocCommutOpcode
};
1035 if (!AssocCommutRoot
&& !AssocCommutPrev
)
1036 return {AssocCommutOpcode
, InverseOpcode
};
1039 llvm_unreachable("Unhandled combination");
1042 // Return a pair of boolean flags showing if the new root and new prev operands
1043 // must be swapped. See visual example of the rule in
1044 // TargetInstrInfo::getReassociationOpcodes.
1045 static std::pair
<bool, bool> mustSwapOperands(unsigned Pattern
) {
1048 llvm_unreachable("Unexpected pattern");
1049 case MachineCombinerPattern::REASSOC_AX_BY
:
1050 return {false, false};
1051 case MachineCombinerPattern::REASSOC_XA_BY
:
1052 return {true, false};
1053 case MachineCombinerPattern::REASSOC_AX_YB
:
1054 return {true, true};
1055 case MachineCombinerPattern::REASSOC_XA_YB
:
1056 return {true, true};
1060 void TargetInstrInfo::getReassociateOperandIndices(
1061 const MachineInstr
&Root
, unsigned Pattern
,
1062 std::array
<unsigned, 5> &OperandIndices
) const {
1064 case MachineCombinerPattern::REASSOC_AX_BY
:
1065 OperandIndices
= {1, 1, 1, 2, 2};
1067 case MachineCombinerPattern::REASSOC_AX_YB
:
1068 OperandIndices
= {2, 1, 2, 2, 1};
1070 case MachineCombinerPattern::REASSOC_XA_BY
:
1071 OperandIndices
= {1, 2, 1, 1, 2};
1073 case MachineCombinerPattern::REASSOC_XA_YB
:
1074 OperandIndices
= {2, 2, 2, 1, 1};
1077 llvm_unreachable("unexpected MachineCombinerPattern");
1081 /// Attempt the reassociation transformation to reduce critical path length.
1082 /// See the above comments before getMachineCombinerPatterns().
1083 void TargetInstrInfo::reassociateOps(
1084 MachineInstr
&Root
, MachineInstr
&Prev
, unsigned Pattern
,
1085 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
1086 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
1087 ArrayRef
<unsigned> OperandIndices
,
1088 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
1089 MachineFunction
*MF
= Root
.getMF();
1090 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1091 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1092 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1093 const TargetRegisterClass
*RC
= Root
.getRegClassConstraint(0, TII
, TRI
);
1095 MachineOperand
&OpA
= Prev
.getOperand(OperandIndices
[1]);
1096 MachineOperand
&OpB
= Root
.getOperand(OperandIndices
[2]);
1097 MachineOperand
&OpX
= Prev
.getOperand(OperandIndices
[3]);
1098 MachineOperand
&OpY
= Root
.getOperand(OperandIndices
[4]);
1099 MachineOperand
&OpC
= Root
.getOperand(0);
1101 Register RegA
= OpA
.getReg();
1102 Register RegB
= OpB
.getReg();
1103 Register RegX
= OpX
.getReg();
1104 Register RegY
= OpY
.getReg();
1105 Register RegC
= OpC
.getReg();
1107 if (RegA
.isVirtual())
1108 MRI
.constrainRegClass(RegA
, RC
);
1109 if (RegB
.isVirtual())
1110 MRI
.constrainRegClass(RegB
, RC
);
1111 if (RegX
.isVirtual())
1112 MRI
.constrainRegClass(RegX
, RC
);
1113 if (RegY
.isVirtual())
1114 MRI
.constrainRegClass(RegY
, RC
);
1115 if (RegC
.isVirtual())
1116 MRI
.constrainRegClass(RegC
, RC
);
1118 // Create a new virtual register for the result of (X op Y) instead of
1119 // recycling RegB because the MachineCombiner's computation of the critical
1120 // path requires a new register definition rather than an existing one.
1121 Register NewVR
= MRI
.createVirtualRegister(RC
);
1122 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
1124 auto [NewRootOpc
, NewPrevOpc
] = getReassociationOpcodes(Pattern
, Root
, Prev
);
1125 bool KillA
= OpA
.isKill();
1126 bool KillX
= OpX
.isKill();
1127 bool KillY
= OpY
.isKill();
1128 bool KillNewVR
= true;
1130 auto [SwapRootOperands
, SwapPrevOperands
] = mustSwapOperands(Pattern
);
1132 if (SwapPrevOperands
) {
1133 std::swap(RegX
, RegY
);
1134 std::swap(KillX
, KillY
);
1137 unsigned PrevFirstOpIdx
, PrevSecondOpIdx
;
1138 unsigned RootFirstOpIdx
, RootSecondOpIdx
;
1140 case MachineCombinerPattern::REASSOC_AX_BY
:
1141 PrevFirstOpIdx
= OperandIndices
[1];
1142 PrevSecondOpIdx
= OperandIndices
[3];
1143 RootFirstOpIdx
= OperandIndices
[2];
1144 RootSecondOpIdx
= OperandIndices
[4];
1146 case MachineCombinerPattern::REASSOC_AX_YB
:
1147 PrevFirstOpIdx
= OperandIndices
[1];
1148 PrevSecondOpIdx
= OperandIndices
[3];
1149 RootFirstOpIdx
= OperandIndices
[4];
1150 RootSecondOpIdx
= OperandIndices
[2];
1152 case MachineCombinerPattern::REASSOC_XA_BY
:
1153 PrevFirstOpIdx
= OperandIndices
[3];
1154 PrevSecondOpIdx
= OperandIndices
[1];
1155 RootFirstOpIdx
= OperandIndices
[2];
1156 RootSecondOpIdx
= OperandIndices
[4];
1158 case MachineCombinerPattern::REASSOC_XA_YB
:
1159 PrevFirstOpIdx
= OperandIndices
[3];
1160 PrevSecondOpIdx
= OperandIndices
[1];
1161 RootFirstOpIdx
= OperandIndices
[4];
1162 RootSecondOpIdx
= OperandIndices
[2];
1165 llvm_unreachable("unexpected MachineCombinerPattern");
1168 // Basically BuildMI but doesn't add implicit operands by default.
1169 auto buildMINoImplicit
= [](MachineFunction
&MF
, const MIMetadata
&MIMD
,
1170 const MCInstrDesc
&MCID
, Register DestReg
) {
1171 return MachineInstrBuilder(
1172 MF
, MF
.CreateMachineInstr(MCID
, MIMD
.getDL(), /*NoImpl=*/true))
1173 .setPCSections(MIMD
.getPCSections())
1174 .addReg(DestReg
, RegState::Define
);
1177 // Create new instructions for insertion.
1178 MachineInstrBuilder MIB1
=
1179 buildMINoImplicit(*MF
, MIMetadata(Prev
), TII
->get(NewPrevOpc
), NewVR
);
1180 for (const auto &MO
: Prev
.explicit_operands()) {
1181 unsigned Idx
= MO
.getOperandNo();
1182 // Skip the result operand we'd already added.
1185 if (Idx
== PrevFirstOpIdx
)
1186 MIB1
.addReg(RegX
, getKillRegState(KillX
));
1187 else if (Idx
== PrevSecondOpIdx
)
1188 MIB1
.addReg(RegY
, getKillRegState(KillY
));
1192 MIB1
.copyImplicitOps(Prev
);
1194 if (SwapRootOperands
) {
1195 std::swap(RegA
, NewVR
);
1196 std::swap(KillA
, KillNewVR
);
1199 MachineInstrBuilder MIB2
=
1200 buildMINoImplicit(*MF
, MIMetadata(Root
), TII
->get(NewRootOpc
), RegC
);
1201 for (const auto &MO
: Root
.explicit_operands()) {
1202 unsigned Idx
= MO
.getOperandNo();
1203 // Skip the result operand.
1206 if (Idx
== RootFirstOpIdx
)
1207 MIB2
= MIB2
.addReg(RegA
, getKillRegState(KillA
));
1208 else if (Idx
== RootSecondOpIdx
)
1209 MIB2
= MIB2
.addReg(NewVR
, getKillRegState(KillNewVR
));
1211 MIB2
= MIB2
.add(MO
);
1213 MIB2
.copyImplicitOps(Root
);
1215 // Propagate FP flags from the original instructions.
1216 // But clear poison-generating flags because those may not be valid now.
1217 // TODO: There should be a helper function for copying only fast-math-flags.
1218 uint32_t IntersectedFlags
= Root
.getFlags() & Prev
.getFlags();
1219 MIB1
->setFlags(IntersectedFlags
);
1220 MIB1
->clearFlag(MachineInstr::MIFlag::NoSWrap
);
1221 MIB1
->clearFlag(MachineInstr::MIFlag::NoUWrap
);
1222 MIB1
->clearFlag(MachineInstr::MIFlag::IsExact
);
1224 MIB2
->setFlags(IntersectedFlags
);
1225 MIB2
->clearFlag(MachineInstr::MIFlag::NoSWrap
);
1226 MIB2
->clearFlag(MachineInstr::MIFlag::NoUWrap
);
1227 MIB2
->clearFlag(MachineInstr::MIFlag::IsExact
);
1229 setSpecialOperandAttr(Root
, Prev
, *MIB1
, *MIB2
);
1231 // Record new instructions for insertion and old instructions for deletion.
1232 InsInstrs
.push_back(MIB1
);
1233 InsInstrs
.push_back(MIB2
);
1234 DelInstrs
.push_back(&Prev
);
1235 DelInstrs
.push_back(&Root
);
1238 // B = A op X (Prev)
1239 // C = B op Y (Root)
1241 // B = X op Y (MIB1)
1242 // C = A op B (MIB2)
1243 // C has the same value as before, B doesn't; as such, keep the debug number
1244 // of C but not of B.
1245 if (unsigned OldRootNum
= Root
.peekDebugInstrNum())
1246 MIB2
.getInstr()->setDebugInstrNum(OldRootNum
);
1249 void TargetInstrInfo::genAlternativeCodeSequence(
1250 MachineInstr
&Root
, unsigned Pattern
,
1251 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
1252 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
1253 DenseMap
<unsigned, unsigned> &InstIdxForVirtReg
) const {
1254 MachineRegisterInfo
&MRI
= Root
.getMF()->getRegInfo();
1256 // Select the previous instruction in the sequence based on the input pattern.
1257 std::array
<unsigned, 5> OperandIndices
;
1258 getReassociateOperandIndices(Root
, Pattern
, OperandIndices
);
1259 MachineInstr
*Prev
=
1260 MRI
.getUniqueVRegDef(Root
.getOperand(OperandIndices
[0]).getReg());
1262 // Don't reassociate if Prev and Root are in different blocks.
1263 if (Prev
->getParent() != Root
.getParent())
1266 reassociateOps(Root
, *Prev
, Pattern
, InsInstrs
, DelInstrs
, OperandIndices
,
1270 MachineTraceStrategy
TargetInstrInfo::getMachineCombinerTraceStrategy() const {
1271 return MachineTraceStrategy::TS_MinInstrCount
;
1274 bool TargetInstrInfo::isReallyTriviallyReMaterializable(
1275 const MachineInstr
&MI
) const {
1276 const MachineFunction
&MF
= *MI
.getMF();
1277 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1279 // Remat clients assume operand 0 is the defined register.
1280 if (!MI
.getNumOperands() || !MI
.getOperand(0).isReg())
1282 Register DefReg
= MI
.getOperand(0).getReg();
1284 // A sub-register definition can only be rematerialized if the instruction
1285 // doesn't read the other parts of the register. Otherwise it is really a
1286 // read-modify-write operation on the full virtual register which cannot be
1288 if (DefReg
.isVirtual() && MI
.getOperand(0).getSubReg() &&
1289 MI
.readsVirtualRegister(DefReg
))
1292 // A load from a fixed stack slot can be rematerialized. This may be
1293 // redundant with subsequent checks, but it's target-independent,
1294 // simple, and a common case.
1296 if (isLoadFromStackSlot(MI
, FrameIdx
) &&
1297 MF
.getFrameInfo().isImmutableObjectIndex(FrameIdx
))
1300 // Avoid instructions obviously unsafe for remat.
1301 if (MI
.isNotDuplicable() || MI
.mayStore() || MI
.mayRaiseFPException() ||
1302 MI
.hasUnmodeledSideEffects())
1305 // Don't remat inline asm. We have no idea how expensive it is
1306 // even if it's side effect free.
1307 if (MI
.isInlineAsm())
1310 // Avoid instructions which load from potentially varying memory.
1311 if (MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad())
1314 // If any of the registers accessed are non-constant, conservatively assume
1315 // the instruction is not rematerializable.
1316 for (const MachineOperand
&MO
: MI
.operands()) {
1317 if (!MO
.isReg()) continue;
1318 Register Reg
= MO
.getReg();
1322 // Check for a well-behaved physical register.
1323 if (Reg
.isPhysical()) {
1325 // If the physreg has no defs anywhere, it's just an ambient register
1326 // and we can freely move its uses. Alternatively, if it's allocatable,
1327 // it could get allocated to something with a def during allocation.
1328 if (!MRI
.isConstantPhysReg(Reg
))
1331 // A physreg def. We can't remat it.
1337 // Only allow one virtual-register def. There may be multiple defs of the
1338 // same virtual register, though.
1339 if (MO
.isDef() && Reg
!= DefReg
)
1342 // Don't allow any virtual-register uses. Rematting an instruction with
1343 // virtual register uses would length the live ranges of the uses, which
1344 // is not necessarily a good idea, certainly not "trivial".
1349 // Everything checked out.
1353 int TargetInstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
1354 const MachineFunction
*MF
= MI
.getMF();
1355 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
1356 bool StackGrowsDown
=
1357 TFI
->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
;
1359 unsigned FrameSetupOpcode
= getCallFrameSetupOpcode();
1360 unsigned FrameDestroyOpcode
= getCallFrameDestroyOpcode();
1362 if (!isFrameInstr(MI
))
1365 int SPAdj
= TFI
->alignSPAdjust(getFrameSize(MI
));
1367 if ((!StackGrowsDown
&& MI
.getOpcode() == FrameSetupOpcode
) ||
1368 (StackGrowsDown
&& MI
.getOpcode() == FrameDestroyOpcode
))
1374 /// isSchedulingBoundary - Test if the given instruction should be
1375 /// considered a scheduling boundary. This primarily includes labels
1376 /// and terminators.
1377 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1378 const MachineBasicBlock
*MBB
,
1379 const MachineFunction
&MF
) const {
1380 // Terminators and labels can't be scheduled around.
1381 if (MI
.isTerminator() || MI
.isPosition())
1384 // INLINEASM_BR can jump to another block
1385 if (MI
.getOpcode() == TargetOpcode::INLINEASM_BR
)
1388 // Don't attempt to schedule around any instruction that defines
1389 // a stack-oriented pointer, as it's unlikely to be profitable. This
1390 // saves compile time, because it doesn't require every single
1391 // stack slot reference to depend on the instruction that does the
1393 const TargetLowering
&TLI
= *MF
.getSubtarget().getTargetLowering();
1394 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1395 return MI
.modifiesRegister(TLI
.getStackPointerRegisterToSaveRestore(), TRI
);
1398 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1399 // may choose to honor.
1400 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1401 return !DisableHazardRecognizer
;
1404 // Default implementation of CreateTargetRAHazardRecognizer.
1405 ScheduleHazardRecognizer
*TargetInstrInfo::
1406 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
1407 const ScheduleDAG
*DAG
) const {
1408 // Dummy hazard recognizer allows all instructions to issue.
1409 return new ScheduleHazardRecognizer();
1412 // Default implementation of CreateTargetMIHazardRecognizer.
1413 ScheduleHazardRecognizer
*TargetInstrInfo::CreateTargetMIHazardRecognizer(
1414 const InstrItineraryData
*II
, const ScheduleDAGMI
*DAG
) const {
1415 return new ScoreboardHazardRecognizer(II
, DAG
, "machine-scheduler");
1418 // Default implementation of CreateTargetPostRAHazardRecognizer.
1419 ScheduleHazardRecognizer
*TargetInstrInfo::
1420 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
1421 const ScheduleDAG
*DAG
) const {
1422 return new ScoreboardHazardRecognizer(II
, DAG
, "post-RA-sched");
1425 // Default implementation of getMemOperandWithOffset.
1426 bool TargetInstrInfo::getMemOperandWithOffset(
1427 const MachineInstr
&MI
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
1428 bool &OffsetIsScalable
, const TargetRegisterInfo
*TRI
) const {
1429 SmallVector
<const MachineOperand
*, 4> BaseOps
;
1430 LocationSize Width
= 0;
1431 if (!getMemOperandsWithOffsetWidth(MI
, BaseOps
, Offset
, OffsetIsScalable
,
1433 BaseOps
.size() != 1)
1435 BaseOp
= BaseOps
.front();
1439 //===----------------------------------------------------------------------===//
1440 // SelectionDAG latency interface.
1441 //===----------------------------------------------------------------------===//
1443 std::optional
<unsigned>
1444 TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1445 SDNode
*DefNode
, unsigned DefIdx
,
1446 SDNode
*UseNode
, unsigned UseIdx
) const {
1447 if (!ItinData
|| ItinData
->isEmpty())
1448 return std::nullopt
;
1450 if (!DefNode
->isMachineOpcode())
1451 return std::nullopt
;
1453 unsigned DefClass
= get(DefNode
->getMachineOpcode()).getSchedClass();
1454 if (!UseNode
->isMachineOpcode())
1455 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
1456 unsigned UseClass
= get(UseNode
->getMachineOpcode()).getSchedClass();
1457 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1460 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1462 if (!ItinData
|| ItinData
->isEmpty())
1465 if (!N
->isMachineOpcode())
1468 return ItinData
->getStageLatency(get(N
->getMachineOpcode()).getSchedClass());
1471 //===----------------------------------------------------------------------===//
1472 // MachineInstr latency interface.
1473 //===----------------------------------------------------------------------===//
1475 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
1476 const MachineInstr
&MI
) const {
1477 if (!ItinData
|| ItinData
->isEmpty())
1480 unsigned Class
= MI
.getDesc().getSchedClass();
1481 int UOps
= ItinData
->Itineraries
[Class
].NumMicroOps
;
1485 // The # of u-ops is dynamically determined. The specific target should
1486 // override this function to return the right number.
1490 /// Return the default expected latency for a def based on it's opcode.
1491 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel
&SchedModel
,
1492 const MachineInstr
&DefMI
) const {
1493 if (DefMI
.isTransient())
1495 if (DefMI
.mayLoad())
1496 return SchedModel
.LoadLatency
;
1497 if (isHighLatencyDef(DefMI
.getOpcode()))
1498 return SchedModel
.HighLatency
;
1502 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr
&) const {
1506 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1507 const MachineInstr
&MI
,
1508 unsigned *PredCost
) const {
1509 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1510 // still have a MinLatency property, which getStageLatency checks.
1512 return MI
.mayLoad() ? 2 : 1;
1514 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
1517 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel
&SchedModel
,
1518 const MachineInstr
&DefMI
,
1519 unsigned DefIdx
) const {
1520 const InstrItineraryData
*ItinData
= SchedModel
.getInstrItineraries();
1521 if (!ItinData
|| ItinData
->isEmpty())
1524 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1525 std::optional
<unsigned> DefCycle
=
1526 ItinData
->getOperandCycle(DefClass
, DefIdx
);
1527 return DefCycle
&& DefCycle
<= 1U;
1530 bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction
&MF
) const {
1531 // TODO: We don't split functions where a section attribute has been set
1532 // since the split part may not be placed in a contiguous region. It may also
1533 // be more beneficial to augment the linker to ensure contiguous layout of
1534 // split functions within the same section as specified by the attribute.
1535 if (MF
.getFunction().hasSection())
1538 // We don't want to proceed further for cold functions
1539 // or functions of unknown hotness. Lukewarm functions have no prefix.
1540 std::optional
<StringRef
> SectionPrefix
= MF
.getFunction().getSectionPrefix();
1541 if (SectionPrefix
&&
1542 (*SectionPrefix
== "unlikely" || *SectionPrefix
== "unknown")) {
1549 std::optional
<ParamLoadedValue
>
1550 TargetInstrInfo::describeLoadedValue(const MachineInstr
&MI
,
1551 Register Reg
) const {
1552 const MachineFunction
*MF
= MI
.getMF();
1553 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1554 DIExpression
*Expr
= DIExpression::get(MF
->getFunction().getContext(), {});
1556 bool OffsetIsScalable
;
1558 // To simplify the sub-register handling, verify that we only need to
1559 // consider physical registers.
1560 assert(MF
->getProperties().hasProperty(
1561 MachineFunctionProperties::Property::NoVRegs
));
1563 if (auto DestSrc
= isCopyInstr(MI
)) {
1564 Register DestReg
= DestSrc
->Destination
->getReg();
1566 // If the copy destination is the forwarding reg, describe the forwarding
1567 // reg using the copy source as the backup location. Example:
1570 // call callee(x0) ; x0 described as x7
1572 return ParamLoadedValue(*DestSrc
->Source
, Expr
);
1574 // If the target's hook couldn't describe this copy, give up.
1575 return std::nullopt
;
1576 } else if (auto RegImm
= isAddImmediate(MI
, Reg
)) {
1577 Register SrcReg
= RegImm
->Reg
;
1578 Offset
= RegImm
->Imm
;
1579 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
, Offset
);
1580 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg
, false), Expr
);
1581 } else if (MI
.hasOneMemOperand()) {
1582 // Only describe memory which provably does not escape the function. As
1583 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1584 // callee (or by another thread).
1585 const auto &TII
= MF
->getSubtarget().getInstrInfo();
1586 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1587 const MachineMemOperand
*MMO
= MI
.memoperands()[0];
1588 const PseudoSourceValue
*PSV
= MMO
->getPseudoValue();
1590 // If the address points to "special" memory (e.g. a spill slot), it's
1591 // sufficient to check that it isn't aliased by any high-level IR value.
1592 if (!PSV
|| PSV
->mayAlias(&MFI
))
1593 return std::nullopt
;
1595 const MachineOperand
*BaseOp
;
1596 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, OffsetIsScalable
,
1598 return std::nullopt
;
1600 // FIXME: Scalable offsets are not yet handled in the offset code below.
1601 if (OffsetIsScalable
)
1602 return std::nullopt
;
1604 // TODO: Can currently only handle mem instructions with a single define.
1605 // An example from the x86 target:
1607 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1610 if (MI
.getNumExplicitDefs() != 1)
1611 return std::nullopt
;
1613 // TODO: In what way do we need to take Reg into consideration here?
1615 SmallVector
<uint64_t, 8> Ops
;
1616 DIExpression::appendOffset(Ops
, Offset
);
1617 Ops
.push_back(dwarf::DW_OP_deref_size
);
1618 Ops
.push_back(MMO
->getSize().hasValue() ? MMO
->getSize().getValue()
1620 Expr
= DIExpression::prependOpcodes(Expr
, Ops
);
1621 return ParamLoadedValue(*BaseOp
, Expr
);
1624 return std::nullopt
;
1627 // Get the call frame size just before MI.
1628 unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr
&MI
) const {
1629 // Search backwards from MI for the most recent call frame instruction.
1630 MachineBasicBlock
*MBB
= MI
.getParent();
1631 for (auto &AdjI
: reverse(make_range(MBB
->instr_begin(), MI
.getIterator()))) {
1632 if (AdjI
.getOpcode() == getCallFrameSetupOpcode())
1633 return getFrameTotalSize(AdjI
);
1634 if (AdjI
.getOpcode() == getCallFrameDestroyOpcode())
1638 // If none was found, use the call frame size from the start of the basic
1640 return MBB
->getCallFrameSize();
1643 /// Both DefMI and UseMI must be valid. By default, call directly to the
1644 /// itinerary. This may be overriden by the target.
1645 std::optional
<unsigned> TargetInstrInfo::getOperandLatency(
1646 const InstrItineraryData
*ItinData
, const MachineInstr
&DefMI
,
1647 unsigned DefIdx
, const MachineInstr
&UseMI
, unsigned UseIdx
) const {
1648 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1649 unsigned UseClass
= UseMI
.getDesc().getSchedClass();
1650 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1653 bool TargetInstrInfo::getRegSequenceInputs(
1654 const MachineInstr
&MI
, unsigned DefIdx
,
1655 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
1656 assert((MI
.isRegSequence() ||
1657 MI
.isRegSequenceLike()) && "Instruction do not have the proper type");
1659 if (!MI
.isRegSequence())
1660 return getRegSequenceLikeInputs(MI
, DefIdx
, InputRegs
);
1662 // We are looking at:
1663 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1664 assert(DefIdx
== 0 && "REG_SEQUENCE only has one def");
1665 for (unsigned OpIdx
= 1, EndOpIdx
= MI
.getNumOperands(); OpIdx
!= EndOpIdx
;
1667 const MachineOperand
&MOReg
= MI
.getOperand(OpIdx
);
1668 if (MOReg
.isUndef())
1670 const MachineOperand
&MOSubIdx
= MI
.getOperand(OpIdx
+ 1);
1671 assert(MOSubIdx
.isImm() &&
1672 "One of the subindex of the reg_sequence is not an immediate");
1673 // Record Reg:SubReg, SubIdx.
1674 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
.getReg(), MOReg
.getSubReg(),
1675 (unsigned)MOSubIdx
.getImm()));
1680 bool TargetInstrInfo::getExtractSubregInputs(
1681 const MachineInstr
&MI
, unsigned DefIdx
,
1682 RegSubRegPairAndIdx
&InputReg
) const {
1683 assert((MI
.isExtractSubreg() ||
1684 MI
.isExtractSubregLike()) && "Instruction do not have the proper type");
1686 if (!MI
.isExtractSubreg())
1687 return getExtractSubregLikeInputs(MI
, DefIdx
, InputReg
);
1689 // We are looking at:
1690 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1691 assert(DefIdx
== 0 && "EXTRACT_SUBREG only has one def");
1692 const MachineOperand
&MOReg
= MI
.getOperand(1);
1693 if (MOReg
.isUndef())
1695 const MachineOperand
&MOSubIdx
= MI
.getOperand(2);
1696 assert(MOSubIdx
.isImm() &&
1697 "The subindex of the extract_subreg is not an immediate");
1699 InputReg
.Reg
= MOReg
.getReg();
1700 InputReg
.SubReg
= MOReg
.getSubReg();
1701 InputReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();
1705 bool TargetInstrInfo::getInsertSubregInputs(
1706 const MachineInstr
&MI
, unsigned DefIdx
,
1707 RegSubRegPair
&BaseReg
, RegSubRegPairAndIdx
&InsertedReg
) const {
1708 assert((MI
.isInsertSubreg() ||
1709 MI
.isInsertSubregLike()) && "Instruction do not have the proper type");
1711 if (!MI
.isInsertSubreg())
1712 return getInsertSubregLikeInputs(MI
, DefIdx
, BaseReg
, InsertedReg
);
1714 // We are looking at:
1715 // Def = INSERT_SEQUENCE v0, v1, sub0.
1716 assert(DefIdx
== 0 && "INSERT_SUBREG only has one def");
1717 const MachineOperand
&MOBaseReg
= MI
.getOperand(1);
1718 const MachineOperand
&MOInsertedReg
= MI
.getOperand(2);
1719 if (MOInsertedReg
.isUndef())
1721 const MachineOperand
&MOSubIdx
= MI
.getOperand(3);
1722 assert(MOSubIdx
.isImm() &&
1723 "One of the subindex of the reg_sequence is not an immediate");
1724 BaseReg
.Reg
= MOBaseReg
.getReg();
1725 BaseReg
.SubReg
= MOBaseReg
.getSubReg();
1727 InsertedReg
.Reg
= MOInsertedReg
.getReg();
1728 InsertedReg
.SubReg
= MOInsertedReg
.getSubReg();
1729 InsertedReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();
1733 // Returns a MIRPrinter comment for this machine operand.
1734 std::string
TargetInstrInfo::createMIROperandComment(
1735 const MachineInstr
&MI
, const MachineOperand
&Op
, unsigned OpIdx
,
1736 const TargetRegisterInfo
*TRI
) const {
1738 if (!MI
.isInlineAsm())
1742 raw_string_ostream
OS(Flags
);
1744 if (OpIdx
== InlineAsm::MIOp_ExtraInfo
) {
1745 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1746 unsigned ExtraInfo
= Op
.getImm();
1748 for (StringRef Info
: InlineAsm::getExtraInfoNames(ExtraInfo
)) {
1758 int FlagIdx
= MI
.findInlineAsmFlagIdx(OpIdx
);
1759 if (FlagIdx
< 0 || (unsigned)FlagIdx
!= OpIdx
)
1762 assert(Op
.isImm() && "Expected flag operand to be an immediate");
1763 // Pretty print the inline asm operand descriptor.
1764 unsigned Flag
= Op
.getImm();
1765 const InlineAsm::Flag
F(Flag
);
1766 OS
<< F
.getKindName();
1769 if (!F
.isImmKind() && !F
.isMemKind() && F
.hasRegClassConstraint(RCID
)) {
1771 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1773 OS
<< ":RC" << RCID
;
1776 if (F
.isMemKind()) {
1777 InlineAsm::ConstraintCode MCID
= F
.getMemoryConstraintID();
1778 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1782 if (F
.isUseOperandTiedToDef(TiedTo
))
1783 OS
<< " tiedto:$" << TiedTo
;
1785 if ((F
.isRegDefKind() || F
.isRegDefEarlyClobberKind() || F
.isRegUseKind()) &&
1786 F
.getRegMayBeFolded())
1792 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
1794 void TargetInstrInfo::mergeOutliningCandidateAttributes(
1795 Function
&F
, std::vector
<outliner::Candidate
> &Candidates
) const {
1796 // Include target features from an arbitrary candidate for the outlined
1797 // function. This makes sure the outlined function knows what kinds of
1798 // instructions are going into it. This is fine, since all parent functions
1799 // must necessarily support the instructions that are in the outlined region.
1800 outliner::Candidate
&FirstCand
= Candidates
.front();
1801 const Function
&ParentFn
= FirstCand
.getMF()->getFunction();
1802 if (ParentFn
.hasFnAttribute("target-features"))
1803 F
.addFnAttr(ParentFn
.getFnAttribute("target-features"));
1804 if (ParentFn
.hasFnAttribute("target-cpu"))
1805 F
.addFnAttr(ParentFn
.getFnAttribute("target-cpu"));
1807 // Set nounwind, so we don't generate eh_frame.
1808 if (llvm::all_of(Candidates
, [](const outliner::Candidate
&C
) {
1809 return C
.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind
);
1811 F
.addFnAttr(Attribute::NoUnwind
);
1815 TargetInstrInfo::getOutliningType(const MachineModuleInfo
&MMI
,
1816 MachineBasicBlock::iterator
&MIT
,
1817 unsigned Flags
) const {
1818 MachineInstr
&MI
= *MIT
;
1820 // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
1821 // have support for outlining those. Special-case that here.
1822 if (MI
.isCFIInstruction())
1823 // Just go right to the target implementation.
1824 return getOutliningTypeImpl(MMI
, MIT
, Flags
);
1826 // Be conservative about inline assembly.
1827 if (MI
.isInlineAsm())
1828 return outliner::InstrType::Illegal
;
1830 // Labels generally can't safely be outlined.
1832 return outliner::InstrType::Illegal
;
1834 // Don't let debug instructions impact analysis.
1835 if (MI
.isDebugInstr())
1836 return outliner::InstrType::Invisible
;
1838 // Some other special cases.
1839 switch (MI
.getOpcode()) {
1840 case TargetOpcode::IMPLICIT_DEF
:
1841 case TargetOpcode::KILL
:
1842 case TargetOpcode::LIFETIME_START
:
1843 case TargetOpcode::LIFETIME_END
:
1844 return outliner::InstrType::Invisible
;
1849 // Is this a terminator for a basic block?
1850 if (MI
.isTerminator()) {
1851 // If this is a branch to another block, we can't outline it.
1852 if (!MI
.getParent()->succ_empty())
1853 return outliner::InstrType::Illegal
;
1855 // Don't outline if the branch is not unconditional.
1856 if (isPredicated(MI
))
1857 return outliner::InstrType::Illegal
;
1860 // Make sure none of the operands of this instruction do anything that
1861 // might break if they're moved outside their current function.
1862 // This includes MachineBasicBlock references, BlockAddressses,
1863 // Constant pool indices and jump table indices.
1865 // A quick note on MO_TargetIndex:
1866 // This doesn't seem to be used in any of the architectures that the
1867 // MachineOutliner supports, but it was still filtered out in all of them.
1868 // There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
1869 // As such, this check is removed both here and in the target-specific
1870 // implementations. Instead, we assert to make sure this doesn't
1871 // catch anyone off-guard somewhere down the line.
1872 for (const MachineOperand
&MOP
: MI
.operands()) {
1873 // If you hit this assertion, please remove it and adjust
1874 // `getOutliningTypeImpl` for your target appropriately if necessary.
1875 // Adding the assertion back to other supported architectures
1876 // would be nice too :)
1877 assert(!MOP
.isTargetIndex() && "This isn't used quite yet!");
1879 // CFI instructions should already have been filtered out at this point.
1880 assert(!MOP
.isCFIIndex() && "CFI instructions handled elsewhere!");
1882 // PrologEpilogInserter should've already run at this point.
1883 assert(!MOP
.isFI() && "FrameIndex instructions should be gone by now!");
1885 if (MOP
.isMBB() || MOP
.isBlockAddress() || MOP
.isCPI() || MOP
.isJTI())
1886 return outliner::InstrType::Illegal
;
1889 // If we don't know, delegate to the target-specific hook.
1890 return getOutliningTypeImpl(MMI
, MIT
, Flags
);
1893 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock
&MBB
,
1894 unsigned &Flags
) const {
1895 // Some instrumentations create special TargetOpcode at the start which
1896 // expands to special code sequences which must be present.
1897 auto First
= MBB
.getFirstNonDebugInstr();
1898 if (First
== MBB
.end())
1901 if (First
->getOpcode() == TargetOpcode::FENTRY_CALL
||
1902 First
->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER
)
1905 // Some instrumentations create special pseudo-instructions at or just before
1906 // the end that must be present.
1907 auto Last
= MBB
.getLastNonDebugInstr();
1908 if (Last
->getOpcode() == TargetOpcode::PATCHABLE_RET
||
1909 Last
->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL
)
1912 if (Last
!= First
&& Last
->isReturn()) {
1914 if (Last
->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT
||
1915 Last
->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL
)