[RISCV] Change func to funct in RISCVInstrInfoXqci.td. NFC (#119669)
[llvm-project.git] / llvm / lib / ExecutionEngine / ExecutionEngine.cpp
blob872b24e59932c7f832dc0b8cd8bef5c544ba76b6
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the common interface used by the various execution engine
10 // subclasses.
12 // FIXME: This file needs to be updated to support scalable vectors
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ExecutionEngine/GenericValue.h"
20 #include "llvm/ExecutionEngine/JITEventListener.h"
21 #include "llvm/ExecutionEngine/ObjectCache.h"
22 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Mangler.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/MC/TargetRegistry.h"
31 #include "llvm/Object/Archive.h"
32 #include "llvm/Object/ObjectFile.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DynamicLibrary.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/TargetParser/Host.h"
39 #include <cmath>
40 #include <cstring>
41 #include <mutex>
42 using namespace llvm;
44 #define DEBUG_TYPE "jit"
46 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
47 STATISTIC(NumGlobals , "Number of global vars initialized");
49 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
50 std::unique_ptr<Module> M, std::string *ErrorStr,
51 std::shared_ptr<MCJITMemoryManager> MemMgr,
52 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
53 std::unique_ptr<TargetMachine> TM) = nullptr;
55 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
56 std::string *ErrorStr) =nullptr;
58 void JITEventListener::anchor() {}
60 void ObjectCache::anchor() {}
62 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
63 CompilingLazily = false;
64 GVCompilationDisabled = false;
65 SymbolSearchingDisabled = false;
67 // IR module verification is enabled by default in debug builds, and disabled
68 // by default in release builds.
69 #ifndef NDEBUG
70 VerifyModules = true;
71 #else
72 VerifyModules = false;
73 #endif
75 assert(M && "Module is null?");
76 Modules.push_back(std::move(M));
79 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
80 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
81 Init(std::move(M));
84 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
85 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
86 Init(std::move(M));
89 ExecutionEngine::~ExecutionEngine() {
90 clearAllGlobalMappings();
93 namespace {
94 /// Helper class which uses a value handler to automatically deletes the
95 /// memory block when the GlobalVariable is destroyed.
96 class GVMemoryBlock final : public CallbackVH {
97 GVMemoryBlock(const GlobalVariable *GV)
98 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
100 public:
101 /// Returns the address the GlobalVariable should be written into. The
102 /// GVMemoryBlock object prefixes that.
103 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
104 Type *ElTy = GV->getValueType();
105 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
106 void *RawMemory = ::operator new(
107 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
108 new(RawMemory) GVMemoryBlock(GV);
109 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
112 void deleted() override {
113 // We allocated with operator new and with some extra memory hanging off the
114 // end, so don't just delete this. I'm not sure if this is actually
115 // required.
116 this->~GVMemoryBlock();
117 ::operator delete(this);
120 } // anonymous namespace
122 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
123 return GVMemoryBlock::Create(GV, getDataLayout());
126 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
127 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
130 void
131 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
132 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
135 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
136 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
139 bool ExecutionEngine::removeModule(Module *M) {
140 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
141 Module *Found = I->get();
142 if (Found == M) {
143 I->release();
144 Modules.erase(I);
145 clearGlobalMappingsFromModule(M);
146 return true;
149 return false;
152 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
153 for (const auto &M : Modules) {
154 Function *F = M->getFunction(FnName);
155 if (F && !F->isDeclaration())
156 return F;
158 return nullptr;
161 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
162 for (const auto &M : Modules) {
163 GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal);
164 if (GV && !GV->isDeclaration())
165 return GV;
167 return nullptr;
170 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
171 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
172 uint64_t OldVal;
174 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
175 // GlobalAddressMap.
176 if (I == GlobalAddressMap.end())
177 OldVal = 0;
178 else {
179 GlobalAddressReverseMap.erase(I->second);
180 OldVal = I->second;
181 GlobalAddressMap.erase(I);
184 return OldVal;
187 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
188 assert(GV->hasName() && "Global must have name.");
190 std::lock_guard<sys::Mutex> locked(lock);
191 SmallString<128> FullName;
193 const DataLayout &DL =
194 GV->getDataLayout().isDefault()
195 ? getDataLayout()
196 : GV->getDataLayout();
198 Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
199 return std::string(FullName);
202 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
203 std::lock_guard<sys::Mutex> locked(lock);
204 addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
207 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
208 std::lock_guard<sys::Mutex> locked(lock);
210 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
212 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
213 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
214 assert((!CurVal || !Addr) && "GlobalMapping already established!");
215 CurVal = Addr;
217 // If we are using the reverse mapping, add it too.
218 if (!EEState.getGlobalAddressReverseMap().empty()) {
219 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
220 assert((!V.empty() || !Name.empty()) &&
221 "GlobalMapping already established!");
222 V = std::string(Name);
226 void ExecutionEngine::clearAllGlobalMappings() {
227 std::lock_guard<sys::Mutex> locked(lock);
229 EEState.getGlobalAddressMap().clear();
230 EEState.getGlobalAddressReverseMap().clear();
233 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
234 std::lock_guard<sys::Mutex> locked(lock);
236 for (GlobalObject &GO : M->global_objects())
237 EEState.RemoveMapping(getMangledName(&GO));
240 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
241 void *Addr) {
242 std::lock_guard<sys::Mutex> locked(lock);
243 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
246 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
247 std::lock_guard<sys::Mutex> locked(lock);
249 ExecutionEngineState::GlobalAddressMapTy &Map =
250 EEState.getGlobalAddressMap();
252 // Deleting from the mapping?
253 if (!Addr)
254 return EEState.RemoveMapping(Name);
256 uint64_t &CurVal = Map[Name];
257 uint64_t OldVal = CurVal;
259 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
260 EEState.getGlobalAddressReverseMap().erase(CurVal);
261 CurVal = Addr;
263 // If we are using the reverse mapping, add it too.
264 if (!EEState.getGlobalAddressReverseMap().empty()) {
265 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
266 assert((!V.empty() || !Name.empty()) &&
267 "GlobalMapping already established!");
268 V = std::string(Name);
270 return OldVal;
273 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
274 std::lock_guard<sys::Mutex> locked(lock);
275 uint64_t Address = 0;
276 ExecutionEngineState::GlobalAddressMapTy::iterator I =
277 EEState.getGlobalAddressMap().find(S);
278 if (I != EEState.getGlobalAddressMap().end())
279 Address = I->second;
280 return Address;
284 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
285 std::lock_guard<sys::Mutex> locked(lock);
286 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
287 return Address;
288 return nullptr;
291 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
292 std::lock_guard<sys::Mutex> locked(lock);
293 return getPointerToGlobalIfAvailable(getMangledName(GV));
296 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
297 std::lock_guard<sys::Mutex> locked(lock);
299 // If we haven't computed the reverse mapping yet, do so first.
300 if (EEState.getGlobalAddressReverseMap().empty()) {
301 for (ExecutionEngineState::GlobalAddressMapTy::iterator
302 I = EEState.getGlobalAddressMap().begin(),
303 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
304 StringRef Name = I->first();
305 uint64_t Addr = I->second;
306 EEState.getGlobalAddressReverseMap().insert(
307 std::make_pair(Addr, std::string(Name)));
311 std::map<uint64_t, std::string>::iterator I =
312 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
314 if (I != EEState.getGlobalAddressReverseMap().end()) {
315 StringRef Name = I->second;
316 for (const auto &M : Modules)
317 if (GlobalValue *GV = M->getNamedValue(Name))
318 return GV;
320 return nullptr;
323 namespace {
324 class ArgvArray {
325 std::unique_ptr<char[]> Array;
326 std::vector<std::unique_ptr<char[]>> Values;
327 public:
328 /// Turn a vector of strings into a nice argv style array of pointers to null
329 /// terminated strings.
330 void *reset(LLVMContext &C, ExecutionEngine *EE,
331 const std::vector<std::string> &InputArgv);
333 } // anonymous namespace
334 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
335 const std::vector<std::string> &InputArgv) {
336 Values.clear(); // Free the old contents.
337 Values.reserve(InputArgv.size());
338 unsigned PtrSize = EE->getDataLayout().getPointerSize();
339 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
341 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
342 Type *SBytePtr = PointerType::getUnqual(C);
344 for (unsigned i = 0; i != InputArgv.size(); ++i) {
345 unsigned Size = InputArgv[i].size()+1;
346 auto Dest = std::make_unique<char[]>(Size);
347 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
348 << "\n");
350 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
351 Dest[Size-1] = 0;
353 // Endian safe: Array[i] = (PointerTy)Dest;
354 EE->StoreValueToMemory(PTOGV(Dest.get()),
355 (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
356 Values.push_back(std::move(Dest));
359 // Null terminate it
360 EE->StoreValueToMemory(PTOGV(nullptr),
361 (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
362 SBytePtr);
363 return Array.get();
366 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
367 bool isDtors) {
368 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
369 GlobalVariable *GV = module.getNamedGlobal(Name);
371 // If this global has internal linkage, or if it has a use, then it must be
372 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
373 // this is the case, don't execute any of the global ctors, __main will do
374 // it.
375 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
377 // Should be an array of '{ i32, void ()* }' structs. The first value is
378 // the init priority, which we ignore.
379 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
380 if (!InitList)
381 return;
382 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
383 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
384 if (!CS) continue;
386 Constant *FP = CS->getOperand(1);
387 if (FP->isNullValue())
388 continue; // Found a sentinel value, ignore.
390 // Strip off constant expression casts.
391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
392 if (CE->isCast())
393 FP = CE->getOperand(0);
395 // Execute the ctor/dtor function!
396 if (Function *F = dyn_cast<Function>(FP))
397 runFunction(F, {});
399 // FIXME: It is marginally lame that we just do nothing here if we see an
400 // entry we don't recognize. It might not be unreasonable for the verifier
401 // to not even allow this and just assert here.
405 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
406 // Execute global ctors/dtors for each module in the program.
407 for (std::unique_ptr<Module> &M : Modules)
408 runStaticConstructorsDestructors(*M, isDtors);
411 #ifndef NDEBUG
412 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
413 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
414 unsigned PtrSize = EE->getDataLayout().getPointerSize();
415 for (unsigned i = 0; i < PtrSize; ++i)
416 if (*(i + (uint8_t*)Loc))
417 return false;
418 return true;
420 #endif
422 int ExecutionEngine::runFunctionAsMain(Function *Fn,
423 const std::vector<std::string> &argv,
424 const char * const * envp) {
425 std::vector<GenericValue> GVArgs;
426 GenericValue GVArgc;
427 GVArgc.IntVal = APInt(32, argv.size());
429 // Check main() type
430 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
431 FunctionType *FTy = Fn->getFunctionType();
432 Type *PPInt8Ty = PointerType::get(Fn->getContext(), 0);
434 // Check the argument types.
435 if (NumArgs > 3)
436 report_fatal_error("Invalid number of arguments of main() supplied");
437 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
438 report_fatal_error("Invalid type for third argument of main() supplied");
439 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
440 report_fatal_error("Invalid type for second argument of main() supplied");
441 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
442 report_fatal_error("Invalid type for first argument of main() supplied");
443 if (!FTy->getReturnType()->isIntegerTy() &&
444 !FTy->getReturnType()->isVoidTy())
445 report_fatal_error("Invalid return type of main() supplied");
447 ArgvArray CArgv;
448 ArgvArray CEnv;
449 if (NumArgs) {
450 GVArgs.push_back(GVArgc); // Arg #0 = argc.
451 if (NumArgs > 1) {
452 // Arg #1 = argv.
453 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
454 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
455 "argv[0] was null after CreateArgv");
456 if (NumArgs > 2) {
457 std::vector<std::string> EnvVars;
458 for (unsigned i = 0; envp[i]; ++i)
459 EnvVars.emplace_back(envp[i]);
460 // Arg #2 = envp.
461 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
466 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
469 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
471 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
472 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
473 OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) {
474 // IR module verification is enabled by default in debug builds, and disabled
475 // by default in release builds.
476 #ifndef NDEBUG
477 VerifyModules = true;
478 #else
479 VerifyModules = false;
480 #endif
483 EngineBuilder::~EngineBuilder() = default;
485 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
486 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
487 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
488 MemMgr = SharedMM;
489 Resolver = SharedMM;
490 return *this;
493 EngineBuilder&
494 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
495 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
496 return *this;
499 EngineBuilder &
500 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
501 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
502 return *this;
505 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
506 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
508 // Make sure we can resolve symbols in the program as well. The zero arg
509 // to the function tells DynamicLibrary to load the program, not a library.
510 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
511 return nullptr;
513 // If the user specified a memory manager but didn't specify which engine to
514 // create, we assume they only want the JIT, and we fail if they only want
515 // the interpreter.
516 if (MemMgr) {
517 if (WhichEngine & EngineKind::JIT)
518 WhichEngine = EngineKind::JIT;
519 else {
520 if (ErrorStr)
521 *ErrorStr = "Cannot create an interpreter with a memory manager.";
522 return nullptr;
526 // Unless the interpreter was explicitly selected or the JIT is not linked,
527 // try making a JIT.
528 if ((WhichEngine & EngineKind::JIT) && TheTM) {
529 if (!TM->getTarget().hasJIT()) {
530 errs() << "WARNING: This target JIT is not designed for the host"
531 << " you are running. If bad things happen, please choose"
532 << " a different -march switch.\n";
535 ExecutionEngine *EE = nullptr;
536 if (ExecutionEngine::MCJITCtor)
537 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
538 std::move(Resolver), std::move(TheTM));
540 if (EE) {
541 EE->setVerifyModules(VerifyModules);
542 return EE;
546 // If we can't make a JIT and we didn't request one specifically, try making
547 // an interpreter instead.
548 if (WhichEngine & EngineKind::Interpreter) {
549 if (ExecutionEngine::InterpCtor)
550 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
551 if (ErrorStr)
552 *ErrorStr = "Interpreter has not been linked in.";
553 return nullptr;
556 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
557 if (ErrorStr)
558 *ErrorStr = "JIT has not been linked in.";
561 return nullptr;
564 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
565 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
566 return getPointerToFunction(F);
568 std::lock_guard<sys::Mutex> locked(lock);
569 if (void* P = getPointerToGlobalIfAvailable(GV))
570 return P;
572 // Global variable might have been added since interpreter started.
573 if (GlobalVariable *GVar =
574 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
575 emitGlobalVariable(GVar);
576 else
577 llvm_unreachable("Global hasn't had an address allocated yet!");
579 return getPointerToGlobalIfAvailable(GV);
582 /// Converts a Constant* into a GenericValue, including handling of
583 /// ConstantExpr values.
584 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
585 // If its undefined, return the garbage.
586 if (isa<UndefValue>(C)) {
587 GenericValue Result;
588 switch (C->getType()->getTypeID()) {
589 default:
590 break;
591 case Type::IntegerTyID:
592 case Type::X86_FP80TyID:
593 case Type::FP128TyID:
594 case Type::PPC_FP128TyID:
595 // Although the value is undefined, we still have to construct an APInt
596 // with the correct bit width.
597 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
598 break;
599 case Type::StructTyID: {
600 // if the whole struct is 'undef' just reserve memory for the value.
601 if(StructType *STy = dyn_cast<StructType>(C->getType())) {
602 unsigned int elemNum = STy->getNumElements();
603 Result.AggregateVal.resize(elemNum);
604 for (unsigned int i = 0; i < elemNum; ++i) {
605 Type *ElemTy = STy->getElementType(i);
606 if (ElemTy->isIntegerTy())
607 Result.AggregateVal[i].IntVal =
608 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
609 else if (ElemTy->isAggregateType()) {
610 const Constant *ElemUndef = UndefValue::get(ElemTy);
611 Result.AggregateVal[i] = getConstantValue(ElemUndef);
616 break;
617 case Type::ScalableVectorTyID:
618 report_fatal_error(
619 "Scalable vector support not yet implemented in ExecutionEngine");
620 case Type::ArrayTyID: {
621 auto *ArrTy = cast<ArrayType>(C->getType());
622 Type *ElemTy = ArrTy->getElementType();
623 unsigned int elemNum = ArrTy->getNumElements();
624 Result.AggregateVal.resize(elemNum);
625 if (ElemTy->isIntegerTy())
626 for (unsigned int i = 0; i < elemNum; ++i)
627 Result.AggregateVal[i].IntVal =
628 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
629 break;
631 case Type::FixedVectorTyID: {
632 // if the whole vector is 'undef' just reserve memory for the value.
633 auto *VTy = cast<FixedVectorType>(C->getType());
634 Type *ElemTy = VTy->getElementType();
635 unsigned int elemNum = VTy->getNumElements();
636 Result.AggregateVal.resize(elemNum);
637 if (ElemTy->isIntegerTy())
638 for (unsigned int i = 0; i < elemNum; ++i)
639 Result.AggregateVal[i].IntVal =
640 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
641 break;
644 return Result;
647 // Otherwise, if the value is a ConstantExpr...
648 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
649 Constant *Op0 = CE->getOperand(0);
650 switch (CE->getOpcode()) {
651 case Instruction::GetElementPtr: {
652 // Compute the index
653 GenericValue Result = getConstantValue(Op0);
654 APInt Offset(DL.getPointerSizeInBits(), 0);
655 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
657 char* tmp = (char*) Result.PointerVal;
658 Result = PTOGV(tmp + Offset.getSExtValue());
659 return Result;
661 case Instruction::Trunc: {
662 GenericValue GV = getConstantValue(Op0);
663 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
664 GV.IntVal = GV.IntVal.trunc(BitWidth);
665 return GV;
667 case Instruction::ZExt: {
668 GenericValue GV = getConstantValue(Op0);
669 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
670 GV.IntVal = GV.IntVal.zext(BitWidth);
671 return GV;
673 case Instruction::SExt: {
674 GenericValue GV = getConstantValue(Op0);
675 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
676 GV.IntVal = GV.IntVal.sext(BitWidth);
677 return GV;
679 case Instruction::FPTrunc: {
680 // FIXME long double
681 GenericValue GV = getConstantValue(Op0);
682 GV.FloatVal = float(GV.DoubleVal);
683 return GV;
685 case Instruction::FPExt:{
686 // FIXME long double
687 GenericValue GV = getConstantValue(Op0);
688 GV.DoubleVal = double(GV.FloatVal);
689 return GV;
691 case Instruction::UIToFP: {
692 GenericValue GV = getConstantValue(Op0);
693 if (CE->getType()->isFloatTy())
694 GV.FloatVal = float(GV.IntVal.roundToDouble());
695 else if (CE->getType()->isDoubleTy())
696 GV.DoubleVal = GV.IntVal.roundToDouble();
697 else if (CE->getType()->isX86_FP80Ty()) {
698 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
699 (void)apf.convertFromAPInt(GV.IntVal,
700 false,
701 APFloat::rmNearestTiesToEven);
702 GV.IntVal = apf.bitcastToAPInt();
704 return GV;
706 case Instruction::SIToFP: {
707 GenericValue GV = getConstantValue(Op0);
708 if (CE->getType()->isFloatTy())
709 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
710 else if (CE->getType()->isDoubleTy())
711 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
712 else if (CE->getType()->isX86_FP80Ty()) {
713 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
714 (void)apf.convertFromAPInt(GV.IntVal,
715 true,
716 APFloat::rmNearestTiesToEven);
717 GV.IntVal = apf.bitcastToAPInt();
719 return GV;
721 case Instruction::FPToUI: // double->APInt conversion handles sign
722 case Instruction::FPToSI: {
723 GenericValue GV = getConstantValue(Op0);
724 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
725 if (Op0->getType()->isFloatTy())
726 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
727 else if (Op0->getType()->isDoubleTy())
728 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
729 else if (Op0->getType()->isX86_FP80Ty()) {
730 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
731 uint64_t v;
732 bool ignored;
733 (void)apf.convertToInteger(MutableArrayRef(v), BitWidth,
734 CE->getOpcode()==Instruction::FPToSI,
735 APFloat::rmTowardZero, &ignored);
736 GV.IntVal = v; // endian?
738 return GV;
740 case Instruction::PtrToInt: {
741 GenericValue GV = getConstantValue(Op0);
742 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
743 assert(PtrWidth <= 64 && "Bad pointer width");
744 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
745 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
746 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
747 return GV;
749 case Instruction::IntToPtr: {
750 GenericValue GV = getConstantValue(Op0);
751 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
752 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
753 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
754 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
755 return GV;
757 case Instruction::BitCast: {
758 GenericValue GV = getConstantValue(Op0);
759 Type* DestTy = CE->getType();
760 switch (Op0->getType()->getTypeID()) {
761 default: llvm_unreachable("Invalid bitcast operand");
762 case Type::IntegerTyID:
763 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
764 if (DestTy->isFloatTy())
765 GV.FloatVal = GV.IntVal.bitsToFloat();
766 else if (DestTy->isDoubleTy())
767 GV.DoubleVal = GV.IntVal.bitsToDouble();
768 break;
769 case Type::FloatTyID:
770 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
771 GV.IntVal = APInt::floatToBits(GV.FloatVal);
772 break;
773 case Type::DoubleTyID:
774 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
775 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
776 break;
777 case Type::PointerTyID:
778 assert(DestTy->isPointerTy() && "Invalid bitcast");
779 break; // getConstantValue(Op0) above already converted it
781 return GV;
783 case Instruction::Add:
784 case Instruction::FAdd:
785 case Instruction::Sub:
786 case Instruction::FSub:
787 case Instruction::Mul:
788 case Instruction::FMul:
789 case Instruction::UDiv:
790 case Instruction::SDiv:
791 case Instruction::URem:
792 case Instruction::SRem:
793 case Instruction::And:
794 case Instruction::Or:
795 case Instruction::Xor: {
796 GenericValue LHS = getConstantValue(Op0);
797 GenericValue RHS = getConstantValue(CE->getOperand(1));
798 GenericValue GV;
799 switch (CE->getOperand(0)->getType()->getTypeID()) {
800 default: llvm_unreachable("Bad add type!");
801 case Type::IntegerTyID:
802 switch (CE->getOpcode()) {
803 default: llvm_unreachable("Invalid integer opcode");
804 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
805 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
806 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
807 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
808 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
809 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
810 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
811 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
812 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
813 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
815 break;
816 case Type::FloatTyID:
817 switch (CE->getOpcode()) {
818 default: llvm_unreachable("Invalid float opcode");
819 case Instruction::FAdd:
820 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
821 case Instruction::FSub:
822 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
823 case Instruction::FMul:
824 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
825 case Instruction::FDiv:
826 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
827 case Instruction::FRem:
828 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
830 break;
831 case Type::DoubleTyID:
832 switch (CE->getOpcode()) {
833 default: llvm_unreachable("Invalid double opcode");
834 case Instruction::FAdd:
835 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
836 case Instruction::FSub:
837 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
838 case Instruction::FMul:
839 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
840 case Instruction::FDiv:
841 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
842 case Instruction::FRem:
843 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
845 break;
846 case Type::X86_FP80TyID:
847 case Type::PPC_FP128TyID:
848 case Type::FP128TyID: {
849 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
850 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
851 switch (CE->getOpcode()) {
852 default: llvm_unreachable("Invalid long double opcode");
853 case Instruction::FAdd:
854 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
855 GV.IntVal = apfLHS.bitcastToAPInt();
856 break;
857 case Instruction::FSub:
858 apfLHS.subtract(APFloat(Sem, RHS.IntVal),
859 APFloat::rmNearestTiesToEven);
860 GV.IntVal = apfLHS.bitcastToAPInt();
861 break;
862 case Instruction::FMul:
863 apfLHS.multiply(APFloat(Sem, RHS.IntVal),
864 APFloat::rmNearestTiesToEven);
865 GV.IntVal = apfLHS.bitcastToAPInt();
866 break;
867 case Instruction::FDiv:
868 apfLHS.divide(APFloat(Sem, RHS.IntVal),
869 APFloat::rmNearestTiesToEven);
870 GV.IntVal = apfLHS.bitcastToAPInt();
871 break;
872 case Instruction::FRem:
873 apfLHS.mod(APFloat(Sem, RHS.IntVal));
874 GV.IntVal = apfLHS.bitcastToAPInt();
875 break;
878 break;
880 return GV;
882 default:
883 break;
886 SmallString<256> Msg;
887 raw_svector_ostream OS(Msg);
888 OS << "ConstantExpr not handled: " << *CE;
889 report_fatal_error(OS.str());
892 if (auto *TETy = dyn_cast<TargetExtType>(C->getType())) {
893 assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() &&
894 "TargetExtType only supports null constant value");
895 C = Constant::getNullValue(TETy->getLayoutType());
898 // Otherwise, we have a simple constant.
899 GenericValue Result;
900 switch (C->getType()->getTypeID()) {
901 case Type::FloatTyID:
902 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
903 break;
904 case Type::DoubleTyID:
905 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
906 break;
907 case Type::X86_FP80TyID:
908 case Type::FP128TyID:
909 case Type::PPC_FP128TyID:
910 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
911 break;
912 case Type::IntegerTyID:
913 Result.IntVal = cast<ConstantInt>(C)->getValue();
914 break;
915 case Type::PointerTyID:
916 while (auto *A = dyn_cast<GlobalAlias>(C)) {
917 C = A->getAliasee();
919 if (isa<ConstantPointerNull>(C))
920 Result.PointerVal = nullptr;
921 else if (const Function *F = dyn_cast<Function>(C))
922 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
923 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
924 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
925 else
926 llvm_unreachable("Unknown constant pointer type!");
927 break;
928 case Type::ScalableVectorTyID:
929 report_fatal_error(
930 "Scalable vector support not yet implemented in ExecutionEngine");
931 case Type::FixedVectorTyID: {
932 unsigned elemNum;
933 Type* ElemTy;
934 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
935 const ConstantVector *CV = dyn_cast<ConstantVector>(C);
936 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
938 if (CDV) {
939 elemNum = CDV->getNumElements();
940 ElemTy = CDV->getElementType();
941 } else if (CV || CAZ) {
942 auto *VTy = cast<FixedVectorType>(C->getType());
943 elemNum = VTy->getNumElements();
944 ElemTy = VTy->getElementType();
945 } else {
946 llvm_unreachable("Unknown constant vector type!");
949 Result.AggregateVal.resize(elemNum);
950 // Check if vector holds floats.
951 if(ElemTy->isFloatTy()) {
952 if (CAZ) {
953 GenericValue floatZero;
954 floatZero.FloatVal = 0.f;
955 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
956 floatZero);
957 break;
959 if(CV) {
960 for (unsigned i = 0; i < elemNum; ++i)
961 if (!isa<UndefValue>(CV->getOperand(i)))
962 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
963 CV->getOperand(i))->getValueAPF().convertToFloat();
964 break;
966 if(CDV)
967 for (unsigned i = 0; i < elemNum; ++i)
968 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
970 break;
972 // Check if vector holds doubles.
973 if (ElemTy->isDoubleTy()) {
974 if (CAZ) {
975 GenericValue doubleZero;
976 doubleZero.DoubleVal = 0.0;
977 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
978 doubleZero);
979 break;
981 if(CV) {
982 for (unsigned i = 0; i < elemNum; ++i)
983 if (!isa<UndefValue>(CV->getOperand(i)))
984 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
985 CV->getOperand(i))->getValueAPF().convertToDouble();
986 break;
988 if(CDV)
989 for (unsigned i = 0; i < elemNum; ++i)
990 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
992 break;
994 // Check if vector holds integers.
995 if (ElemTy->isIntegerTy()) {
996 if (CAZ) {
997 GenericValue intZero;
998 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
999 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
1000 intZero);
1001 break;
1003 if(CV) {
1004 for (unsigned i = 0; i < elemNum; ++i)
1005 if (!isa<UndefValue>(CV->getOperand(i)))
1006 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
1007 CV->getOperand(i))->getValue();
1008 else {
1009 Result.AggregateVal[i].IntVal =
1010 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
1012 break;
1014 if(CDV)
1015 for (unsigned i = 0; i < elemNum; ++i)
1016 Result.AggregateVal[i].IntVal = APInt(
1017 CDV->getElementType()->getPrimitiveSizeInBits(),
1018 CDV->getElementAsInteger(i));
1020 break;
1022 llvm_unreachable("Unknown constant pointer type!");
1023 } break;
1025 default:
1026 SmallString<256> Msg;
1027 raw_svector_ostream OS(Msg);
1028 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1029 report_fatal_error(OS.str());
1032 return Result;
1035 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1036 GenericValue *Ptr, Type *Ty) {
1037 // It is safe to treat TargetExtType as its layout type since the underlying
1038 // bits are only copied and are not inspected.
1039 if (auto *TETy = dyn_cast<TargetExtType>(Ty))
1040 Ty = TETy->getLayoutType();
1042 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1044 switch (Ty->getTypeID()) {
1045 default:
1046 dbgs() << "Cannot store value of type " << *Ty << "!\n";
1047 break;
1048 case Type::IntegerTyID:
1049 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1050 break;
1051 case Type::FloatTyID:
1052 *((float*)Ptr) = Val.FloatVal;
1053 break;
1054 case Type::DoubleTyID:
1055 *((double*)Ptr) = Val.DoubleVal;
1056 break;
1057 case Type::X86_FP80TyID:
1058 memcpy(static_cast<void *>(Ptr), Val.IntVal.getRawData(), 10);
1059 break;
1060 case Type::PointerTyID:
1061 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1062 if (StoreBytes != sizeof(PointerTy))
1063 memset(&(Ptr->PointerVal), 0, StoreBytes);
1065 *((PointerTy*)Ptr) = Val.PointerVal;
1066 break;
1067 case Type::FixedVectorTyID:
1068 case Type::ScalableVectorTyID:
1069 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1070 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1071 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1072 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1073 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1074 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1075 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1076 StoreIntToMemory(Val.AggregateVal[i].IntVal,
1077 (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1080 break;
1083 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1084 // Host and target are different endian - reverse the stored bytes.
1085 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1088 /// FIXME: document
1090 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1091 GenericValue *Ptr,
1092 Type *Ty) {
1093 if (auto *TETy = dyn_cast<TargetExtType>(Ty))
1094 Ty = TETy->getLayoutType();
1096 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1098 switch (Ty->getTypeID()) {
1099 case Type::IntegerTyID:
1100 // An APInt with all words initially zero.
1101 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1102 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1103 break;
1104 case Type::FloatTyID:
1105 Result.FloatVal = *((float*)Ptr);
1106 break;
1107 case Type::DoubleTyID:
1108 Result.DoubleVal = *((double*)Ptr);
1109 break;
1110 case Type::PointerTyID:
1111 Result.PointerVal = *((PointerTy*)Ptr);
1112 break;
1113 case Type::X86_FP80TyID: {
1114 // This is endian dependent, but it will only work on x86 anyway.
1115 // FIXME: Will not trap if loading a signaling NaN.
1116 uint64_t y[2];
1117 memcpy(y, Ptr, 10);
1118 Result.IntVal = APInt(80, y);
1119 break;
1121 case Type::ScalableVectorTyID:
1122 report_fatal_error(
1123 "Scalable vector support not yet implemented in ExecutionEngine");
1124 case Type::FixedVectorTyID: {
1125 auto *VT = cast<FixedVectorType>(Ty);
1126 Type *ElemT = VT->getElementType();
1127 const unsigned numElems = VT->getNumElements();
1128 if (ElemT->isFloatTy()) {
1129 Result.AggregateVal.resize(numElems);
1130 for (unsigned i = 0; i < numElems; ++i)
1131 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1133 if (ElemT->isDoubleTy()) {
1134 Result.AggregateVal.resize(numElems);
1135 for (unsigned i = 0; i < numElems; ++i)
1136 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1138 if (ElemT->isIntegerTy()) {
1139 GenericValue intZero;
1140 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1141 intZero.IntVal = APInt(elemBitWidth, 0);
1142 Result.AggregateVal.resize(numElems, intZero);
1143 for (unsigned i = 0; i < numElems; ++i)
1144 LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1145 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1147 break;
1149 default:
1150 SmallString<256> Msg;
1151 raw_svector_ostream OS(Msg);
1152 OS << "Cannot load value of type " << *Ty << "!";
1153 report_fatal_error(OS.str());
1157 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1158 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1159 LLVM_DEBUG(Init->dump());
1160 if (isa<UndefValue>(Init))
1161 return;
1163 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1164 unsigned ElementSize =
1165 getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1166 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1167 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1168 return;
1171 if (isa<ConstantAggregateZero>(Init)) {
1172 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1173 return;
1176 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1177 unsigned ElementSize =
1178 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1179 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1180 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1181 return;
1184 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1185 const StructLayout *SL =
1186 getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1187 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1188 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1189 return;
1192 if (const ConstantDataSequential *CDS =
1193 dyn_cast<ConstantDataSequential>(Init)) {
1194 // CDS is already laid out in host memory order.
1195 StringRef Data = CDS->getRawDataValues();
1196 memcpy(Addr, Data.data(), Data.size());
1197 return;
1200 if (Init->getType()->isFirstClassType()) {
1201 GenericValue Val = getConstantValue(Init);
1202 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1203 return;
1206 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1207 llvm_unreachable("Unknown constant type to initialize memory with!");
1210 /// EmitGlobals - Emit all of the global variables to memory, storing their
1211 /// addresses into GlobalAddress. This must make sure to copy the contents of
1212 /// their initializers into the memory.
1213 void ExecutionEngine::emitGlobals() {
1214 // Loop over all of the global variables in the program, allocating the memory
1215 // to hold them. If there is more than one module, do a prepass over globals
1216 // to figure out how the different modules should link together.
1217 std::map<std::pair<std::string, Type*>,
1218 const GlobalValue*> LinkedGlobalsMap;
1220 if (Modules.size() != 1) {
1221 for (const auto &M : Modules) {
1222 for (const auto &GV : M->globals()) {
1223 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1224 GV.hasAppendingLinkage() || !GV.hasName())
1225 continue;// Ignore external globals and globals with internal linkage.
1227 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1228 std::string(GV.getName()), GV.getType())];
1230 // If this is the first time we've seen this global, it is the canonical
1231 // version.
1232 if (!GVEntry) {
1233 GVEntry = &GV;
1234 continue;
1237 // If the existing global is strong, never replace it.
1238 if (GVEntry->hasExternalLinkage())
1239 continue;
1241 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1242 // symbol. FIXME is this right for common?
1243 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1244 GVEntry = &GV;
1249 std::vector<const GlobalValue*> NonCanonicalGlobals;
1250 for (const auto &M : Modules) {
1251 for (const auto &GV : M->globals()) {
1252 // In the multi-module case, see what this global maps to.
1253 if (!LinkedGlobalsMap.empty()) {
1254 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1255 std::string(GV.getName()), GV.getType())]) {
1256 // If something else is the canonical global, ignore this one.
1257 if (GVEntry != &GV) {
1258 NonCanonicalGlobals.push_back(&GV);
1259 continue;
1264 if (!GV.isDeclaration()) {
1265 addGlobalMapping(&GV, getMemoryForGV(&GV));
1266 } else {
1267 // External variable reference. Try to use the dynamic loader to
1268 // get a pointer to it.
1269 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1270 std::string(GV.getName())))
1271 addGlobalMapping(&GV, SymAddr);
1272 else {
1273 report_fatal_error("Could not resolve external global address: "
1274 +GV.getName());
1279 // If there are multiple modules, map the non-canonical globals to their
1280 // canonical location.
1281 if (!NonCanonicalGlobals.empty()) {
1282 for (const GlobalValue *GV : NonCanonicalGlobals) {
1283 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1284 std::string(GV->getName()), GV->getType())];
1285 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1286 assert(Ptr && "Canonical global wasn't codegen'd!");
1287 addGlobalMapping(GV, Ptr);
1291 // Now that all of the globals are set up in memory, loop through them all
1292 // and initialize their contents.
1293 for (const auto &GV : M->globals()) {
1294 if (!GV.isDeclaration()) {
1295 if (!LinkedGlobalsMap.empty()) {
1296 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1297 std::string(GV.getName()), GV.getType())])
1298 if (GVEntry != &GV) // Not the canonical variable.
1299 continue;
1301 emitGlobalVariable(&GV);
1307 // EmitGlobalVariable - This method emits the specified global variable to the
1308 // address specified in GlobalAddresses, or allocates new memory if it's not
1309 // already in the map.
1310 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1311 void *GA = getPointerToGlobalIfAvailable(GV);
1313 if (!GA) {
1314 // If it's not already specified, allocate memory for the global.
1315 GA = getMemoryForGV(GV);
1317 // If we failed to allocate memory for this global, return.
1318 if (!GA) return;
1320 addGlobalMapping(GV, GA);
1323 // Don't initialize if it's thread local, let the client do it.
1324 if (!GV->isThreadLocal())
1325 InitializeMemory(GV->getInitializer(), GA);
1327 Type *ElTy = GV->getValueType();
1328 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1329 NumInitBytes += (unsigned)GVSize;
1330 ++NumGlobals;