1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "Targets/RuntimeDyldELFMips.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Object/ObjectFile.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/TargetParser/Triple.h"
25 using namespace llvm::object
;
26 using namespace llvm::support::endian
;
28 #define DEBUG_TYPE "dyld"
30 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
32 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
33 or32le(L
, (Imm
& 0xFFF) << 10);
36 template <class T
> static void write(bool isBE
, void *P
, T V
) {
37 isBE
? write
<T
, llvm::endianness::big
>(P
, V
)
38 : write
<T
, llvm::endianness::little
>(P
, V
);
41 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
42 uint32_t ImmLo
= (Imm
& 0x3) << 29;
43 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
44 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
51 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
52 return (Val
>> Start
) & Mask
;
57 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
60 typedef typename
ELFT::uint addr_type
;
62 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
65 static Expected
<std::unique_ptr
<DyldELFObject
>>
66 create(MemoryBufferRef Wrapper
);
68 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
70 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary
*v
) {
74 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
75 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
77 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
78 return v
->isDyldType();
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory. Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
88 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
89 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
90 this->isDyldELFObject
= true;
94 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
95 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
96 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
97 if (auto E
= Obj
.takeError())
99 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
100 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
101 return std::move(Ret
);
104 template <class ELFT
>
105 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
107 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
109 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
116 template <class ELFT
>
117 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
120 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
121 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym
->st_value
= static_cast<addr_type
>(Addr
);
128 class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
130 RuntimeDyld::LoadedObjectInfo
> {
132 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
133 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
135 OwningBinary
<ObjectFile
>
136 getObjectForDebug(const ObjectFile
&Obj
) const override
;
139 template <typename ELFT
>
140 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
142 const LoadedELFObjectInfo
&L
) {
143 typedef typename
ELFT::Shdr Elf_Shdr
;
144 typedef typename
ELFT::uint addr_type
;
146 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
147 DyldELFObject
<ELFT
>::create(Buffer
);
148 if (Error E
= ObjOrErr
.takeError())
151 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
153 // Iterate over all sections in the object.
154 auto SI
= SourceObject
.section_begin();
155 for (const auto &Sec
: Obj
->sections()) {
156 Expected
<StringRef
> NameOrErr
= Sec
.getName();
158 consumeError(NameOrErr
.takeError());
162 if (*NameOrErr
!= "") {
163 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
164 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
165 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
167 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
176 return std::move(Obj
);
179 static OwningBinary
<ObjectFile
>
180 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
181 assert(Obj
.isELF() && "Not an ELF object file.");
183 std::unique_ptr
<MemoryBuffer
> Buffer
=
184 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
186 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
187 handleAllErrors(DebugObj
.takeError());
188 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
190 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
191 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
193 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
194 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
196 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
197 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
199 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
201 llvm_unreachable("Unexpected ELF format");
203 handleAllErrors(DebugObj
.takeError());
204 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
207 OwningBinary
<ObjectFile
>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
209 return createELFDebugObject(Obj
, *this);
212 } // anonymous namespace
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
217 JITSymbolResolver
&Resolver
)
218 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() = default;
221 void RuntimeDyldELF::registerEHFrames() {
222 for (SID EHFrameSID
: UnregisteredEHFrameSections
) {
223 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
224 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
225 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
226 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
228 UnregisteredEHFrameSections
.clear();
231 std::unique_ptr
<RuntimeDyldELF
>
232 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
233 RuntimeDyld::MemoryManager
&MemMgr
,
234 JITSymbolResolver
&Resolver
) {
237 return std::make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
241 case Triple::mips64el
:
242 return std::make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
246 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
247 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
248 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
249 return std::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
252 raw_string_ostream
ErrStream(ErrorStr
);
253 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
258 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
259 uint64_t Offset
, uint64_t Value
,
260 uint32_t Type
, int64_t Addend
,
261 uint64_t SymOffset
) {
264 report_fatal_error("Relocation type not implemented yet!");
266 case ELF::R_X86_64_NONE
:
268 case ELF::R_X86_64_8
: {
270 assert((int64_t)Value
<= INT8_MAX
&& (int64_t)Value
>= INT8_MIN
);
271 uint8_t TruncatedAddr
= (Value
& 0xFF);
272 *Section
.getAddressWithOffset(Offset
) = TruncatedAddr
;
273 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
274 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
277 case ELF::R_X86_64_16
: {
279 assert((int64_t)Value
<= INT16_MAX
&& (int64_t)Value
>= INT16_MIN
);
280 uint16_t TruncatedAddr
= (Value
& 0xFFFF);
281 support::ulittle16_t::ref(Section
.getAddressWithOffset(Offset
)) =
283 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
284 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
287 case ELF::R_X86_64_64
: {
288 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
290 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
291 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
294 case ELF::R_X86_64_32
:
295 case ELF::R_X86_64_32S
: {
297 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
298 (Type
== ELF::R_X86_64_32S
&&
299 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
300 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
301 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
303 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
304 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
307 case ELF::R_X86_64_PC8
: {
308 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
309 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
310 assert(isInt
<8>(RealOffset
));
311 int8_t TruncOffset
= (RealOffset
& 0xFF);
312 Section
.getAddress()[Offset
] = TruncOffset
;
315 case ELF::R_X86_64_PC32
: {
316 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
317 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
318 assert(isInt
<32>(RealOffset
));
319 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
320 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
324 case ELF::R_X86_64_PC64
: {
325 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
326 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
327 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
329 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
330 << format("%p\n", FinalAddress
));
333 case ELF::R_X86_64_GOTOFF64
: {
334 // Compute Value - GOTBase.
335 uint64_t GOTBase
= 0;
336 for (const auto &Section
: Sections
) {
337 if (Section
.getName() == ".got") {
338 GOTBase
= Section
.getLoadAddressWithOffset(0);
342 assert(GOTBase
!= 0 && "missing GOT");
343 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
344 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
347 case ELF::R_X86_64_DTPMOD64
: {
348 // We only have one DSO, so the module id is always 1.
349 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = 1;
352 case ELF::R_X86_64_DTPOFF64
:
353 case ELF::R_X86_64_TPOFF64
: {
354 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
355 // offset in the *initial* TLS block. Since we are statically linking, all
356 // TLS blocks already exist in the initial block, so resolve both
357 // relocations equally.
358 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
362 case ELF::R_X86_64_DTPOFF32
:
363 case ELF::R_X86_64_TPOFF32
: {
364 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
365 // be resolved equally.
366 int64_t RealValue
= Value
+ Addend
;
367 assert(RealValue
>= INT32_MIN
&& RealValue
<= INT32_MAX
);
368 int32_t TruncValue
= RealValue
;
369 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
376 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
377 uint64_t Offset
, uint32_t Value
,
378 uint32_t Type
, int32_t Addend
) {
380 case ELF::R_386_32
: {
381 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
385 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
386 // reach any 32 bit address.
387 case ELF::R_386_PLT32
:
388 case ELF::R_386_PC32
: {
389 uint32_t FinalAddress
=
390 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
391 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
392 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
397 // There are other relocation types, but it appears these are the
398 // only ones currently used by the LLVM ELF object writer
399 report_fatal_error("Relocation type not implemented yet!");
404 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
405 uint64_t Offset
, uint64_t Value
,
406 uint32_t Type
, int64_t Addend
) {
407 uint32_t *TargetPtr
=
408 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
409 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
410 // Data should use target endian. Code should always use little endian.
411 bool isBE
= Arch
== Triple::aarch64_be
;
413 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
414 << format("%llx", Section
.getAddressWithOffset(Offset
))
415 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
416 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
417 << format("%x", Type
) << " Addend: 0x"
418 << format("%llx", Addend
) << "\n");
422 report_fatal_error("Relocation type not implemented yet!");
424 case ELF::R_AARCH64_NONE
:
426 case ELF::R_AARCH64_ABS16
: {
427 uint64_t Result
= Value
+ Addend
;
428 assert(Result
== static_cast<uint64_t>(llvm::SignExtend64(Result
, 16)) ||
429 (Result
>> 16) == 0);
430 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
433 case ELF::R_AARCH64_ABS32
: {
434 uint64_t Result
= Value
+ Addend
;
435 assert(Result
== static_cast<uint64_t>(llvm::SignExtend64(Result
, 32)) ||
436 (Result
>> 32) == 0);
437 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
440 case ELF::R_AARCH64_ABS64
:
441 write(isBE
, TargetPtr
, Value
+ Addend
);
443 case ELF::R_AARCH64_PLT32
: {
444 uint64_t Result
= Value
+ Addend
- FinalAddress
;
445 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
446 static_cast<int64_t>(Result
) <= INT32_MAX
);
447 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
));
450 case ELF::R_AARCH64_PREL16
: {
451 uint64_t Result
= Value
+ Addend
- FinalAddress
;
452 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&&
453 static_cast<int64_t>(Result
) <= UINT16_MAX
);
454 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
457 case ELF::R_AARCH64_PREL32
: {
458 uint64_t Result
= Value
+ Addend
- FinalAddress
;
459 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
460 static_cast<int64_t>(Result
) <= UINT32_MAX
);
461 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
464 case ELF::R_AARCH64_PREL64
:
465 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
467 case ELF::R_AARCH64_CONDBR19
: {
468 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
470 assert(isInt
<21>(BranchImm
));
471 *TargetPtr
&= 0xff00001fU
;
472 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
473 or32le(TargetPtr
, (BranchImm
& 0x001FFFFC) << 3);
476 case ELF::R_AARCH64_TSTBR14
: {
477 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
479 assert(isInt
<16>(BranchImm
));
481 uint32_t RawInstr
= *(support::little32_t
*)TargetPtr
;
482 *(support::little32_t
*)TargetPtr
= RawInstr
& 0xfff8001fU
;
484 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
485 or32le(TargetPtr
, (BranchImm
& 0x0000FFFC) << 3);
488 case ELF::R_AARCH64_CALL26
: // fallthrough
489 case ELF::R_AARCH64_JUMP26
: {
490 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
492 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
494 // "Check that -2^27 <= result < 2^27".
495 assert(isInt
<28>(BranchImm
));
496 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
499 case ELF::R_AARCH64_MOVW_UABS_G3
:
500 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
502 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
503 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
505 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
506 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
508 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
509 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
511 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
512 // Operation: Page(S+A) - Page(P)
514 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
516 // Check that -2^32 <= X < 2^32
517 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
519 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
520 // from bits 32:12 of X.
521 write32AArch64Addr(TargetPtr
, Result
>> 12);
524 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
526 // Immediate goes in bits 21:10 of LD/ST instruction, taken
527 // from bits 11:0 of X
528 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
530 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
532 // Immediate goes in bits 21:10 of LD/ST instruction, taken
533 // from bits 11:0 of X
534 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
536 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
538 // Immediate goes in bits 21:10 of LD/ST instruction, taken
539 // from bits 11:1 of X
540 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
542 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
544 // Immediate goes in bits 21:10 of LD/ST instruction, taken
545 // from bits 11:2 of X
546 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
548 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
550 // Immediate goes in bits 21:10 of LD/ST instruction, taken
551 // from bits 11:3 of X
552 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
554 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
556 // Immediate goes in bits 21:10 of LD/ST instruction, taken
557 // from bits 11:4 of X
558 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
560 case ELF::R_AARCH64_LD_PREL_LO19
: {
561 // Operation: S + A - P
562 uint64_t Result
= Value
+ Addend
- FinalAddress
;
564 // "Check that -2^20 <= result < 2^20".
565 assert(isInt
<21>(Result
));
567 *TargetPtr
&= 0xff00001fU
;
568 // Immediate goes in bits 23:5 of LD imm instruction, taken
569 // from bits 20:2 of X
570 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
573 case ELF::R_AARCH64_ADR_PREL_LO21
: {
574 // Operation: S + A - P
575 uint64_t Result
= Value
+ Addend
- FinalAddress
;
577 // "Check that -2^20 <= result < 2^20".
578 assert(isInt
<21>(Result
));
580 *TargetPtr
&= 0x9f00001fU
;
581 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
582 // from bits 20:0 of X
583 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
584 *TargetPtr
|= (Result
& 0x3) << 29;
590 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
591 uint64_t Offset
, uint32_t Value
,
592 uint32_t Type
, int32_t Addend
) {
593 // TODO: Add Thumb relocations.
594 uint32_t *TargetPtr
=
595 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
596 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
599 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
600 << Section
.getAddressWithOffset(Offset
)
601 << " FinalAddress: " << format("%p", FinalAddress
)
602 << " Value: " << format("%x", Value
)
603 << " Type: " << format("%x", Type
)
604 << " Addend: " << format("%x", Addend
) << "\n");
608 llvm_unreachable("Not implemented relocation type!");
610 case ELF::R_ARM_NONE
:
612 // Write a 31bit signed offset
613 case ELF::R_ARM_PREL31
:
614 support::ulittle32_t::ref
{TargetPtr
} =
615 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
616 ((Value
- FinalAddress
) & ~0x80000000);
618 case ELF::R_ARM_TARGET1
:
619 case ELF::R_ARM_ABS32
:
620 support::ulittle32_t::ref
{TargetPtr
} = Value
;
622 // Write first 16 bit of 32 bit value to the mov instruction.
623 // Last 4 bit should be shifted.
624 case ELF::R_ARM_MOVW_ABS_NC
:
625 case ELF::R_ARM_MOVT_ABS
:
626 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
627 Value
= Value
& 0xFFFF;
628 else if (Type
== ELF::R_ARM_MOVT_ABS
)
629 Value
= (Value
>> 16) & 0xFFFF;
630 support::ulittle32_t::ref
{TargetPtr
} =
631 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
632 (((Value
>> 12) & 0xF) << 16);
634 // Write 24 bit relative value to the branch instruction.
635 case ELF::R_ARM_PC24
: // Fall through.
636 case ELF::R_ARM_CALL
: // Fall through.
637 case ELF::R_ARM_JUMP24
:
638 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
639 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
640 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
641 support::ulittle32_t::ref
{TargetPtr
} =
642 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
647 bool RuntimeDyldELF::resolveLoongArch64ShortBranch(
648 unsigned SectionID
, relocation_iterator RelI
,
649 const RelocationValueRef
&Value
) {
651 if (Value
.SymbolName
) {
652 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
653 // Don't create direct branch for external symbols.
654 if (Loc
== GlobalSymbolTable
.end())
656 const auto &SymInfo
= Loc
->second
;
658 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
659 SymInfo
.getOffset()));
661 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
663 uint64_t Offset
= RelI
->getOffset();
664 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
665 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
667 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
672 void RuntimeDyldELF::resolveLoongArch64Branch(unsigned SectionID
,
673 const RelocationValueRef
&Value
,
674 relocation_iterator RelI
,
676 LLVM_DEBUG(dbgs() << "\t\tThis is an LoongArch64 branch relocation.\n");
678 if (resolveLoongArch64ShortBranch(SectionID
, RelI
, Value
))
681 SectionEntry
&Section
= Sections
[SectionID
];
682 uint64_t Offset
= RelI
->getOffset();
683 unsigned RelType
= RelI
->getType();
684 // Look for an existing stub.
685 StubMap::const_iterator i
= Stubs
.find(Value
);
686 if (i
!= Stubs
.end()) {
687 resolveRelocation(Section
, Offset
,
688 (uint64_t)Section
.getAddressWithOffset(i
->second
),
690 LLVM_DEBUG(dbgs() << " Stub function found\n");
693 // Create a new stub function.
694 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
695 Stubs
[Value
] = Section
.getStubOffset();
696 uint8_t *StubTargetAddr
=
697 createStubFunction(Section
.getAddressWithOffset(Section
.getStubOffset()));
698 RelocationEntry
LU12I_W(SectionID
, StubTargetAddr
- Section
.getAddress(),
699 ELF::R_LARCH_ABS_HI20
, Value
.Addend
);
700 RelocationEntry
ORI(SectionID
, StubTargetAddr
- Section
.getAddress() + 4,
701 ELF::R_LARCH_ABS_LO12
, Value
.Addend
);
702 RelocationEntry
LU32I_D(SectionID
, StubTargetAddr
- Section
.getAddress() + 8,
703 ELF::R_LARCH_ABS64_LO20
, Value
.Addend
);
704 RelocationEntry
LU52I_D(SectionID
, StubTargetAddr
- Section
.getAddress() + 12,
705 ELF::R_LARCH_ABS64_HI12
, Value
.Addend
);
706 if (Value
.SymbolName
) {
707 addRelocationForSymbol(LU12I_W
, Value
.SymbolName
);
708 addRelocationForSymbol(ORI
, Value
.SymbolName
);
709 addRelocationForSymbol(LU32I_D
, Value
.SymbolName
);
710 addRelocationForSymbol(LU52I_D
, Value
.SymbolName
);
712 addRelocationForSection(LU12I_W
, Value
.SectionID
);
713 addRelocationForSection(ORI
, Value
.SectionID
);
714 addRelocationForSection(LU32I_D
, Value
.SectionID
);
716 addRelocationForSection(LU52I_D
, Value
.SectionID
);
718 resolveRelocation(Section
, Offset
,
719 reinterpret_cast<uint64_t>(
720 Section
.getAddressWithOffset(Section
.getStubOffset())),
722 Section
.advanceStubOffset(getMaxStubSize());
725 // Returns extract bits Val[Hi:Lo].
726 static inline uint32_t extractBits(uint64_t Val
, uint32_t Hi
, uint32_t Lo
) {
727 return Hi
== 63 ? Val
>> Lo
: (Val
& (((1ULL << (Hi
+ 1)) - 1))) >> Lo
;
730 void RuntimeDyldELF::resolveLoongArch64Relocation(const SectionEntry
&Section
,
732 uint64_t Value
, uint32_t Type
,
734 auto *TargetPtr
= Section
.getAddressWithOffset(Offset
);
735 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
737 LLVM_DEBUG(dbgs() << "resolveLoongArch64Relocation, LocalAddress: 0x"
738 << format("%llx", Section
.getAddressWithOffset(Offset
))
739 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
740 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
741 << format("%x", Type
) << " Addend: 0x"
742 << format("%llx", Addend
) << "\n");
746 report_fatal_error("Relocation type not implemented yet!");
748 case ELF::R_LARCH_32
:
749 support::ulittle32_t::ref
{TargetPtr
} =
750 static_cast<uint32_t>(Value
+ Addend
);
752 case ELF::R_LARCH_64
:
753 support::ulittle64_t::ref
{TargetPtr
} = Value
+ Addend
;
755 case ELF::R_LARCH_32_PCREL
:
756 support::ulittle32_t::ref
{TargetPtr
} =
757 static_cast<uint32_t>(Value
+ Addend
- FinalAddress
);
759 case ELF::R_LARCH_B26
: {
760 uint64_t B26
= (Value
+ Addend
- FinalAddress
) >> 2;
761 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
762 uint32_t Imm15_0
= extractBits(B26
, /*Hi=*/15, /*Lo=*/0) << 10;
763 uint32_t Imm25_16
= extractBits(B26
, /*Hi=*/25, /*Lo=*/16);
764 Instr
= (Instr
& 0xfc000000) | Imm15_0
| Imm25_16
;
767 case ELF::R_LARCH_CALL36
: {
768 uint64_t Call36
= (Value
+ Addend
- FinalAddress
) >> 2;
769 auto Pcaddu18i
= support::ulittle32_t::ref(TargetPtr
);
771 extractBits((Call36
+ (1UL << 15)), /*Hi=*/35, /*Lo=*/16) << 5;
772 Pcaddu18i
= (Pcaddu18i
& 0xfe00001f) | Imm35_16
;
773 auto Jirl
= support::ulittle32_t::ref(TargetPtr
+ 4);
774 uint32_t Imm15_0
= extractBits(Call36
, /*Hi=*/15, /*Lo=*/0) << 10;
775 Jirl
= (Jirl
& 0xfc0003ff) | Imm15_0
;
778 case ELF::R_LARCH_GOT_PC_HI20
:
779 case ELF::R_LARCH_PCALA_HI20
: {
780 uint64_t Target
= Value
+ Addend
;
781 uint64_t TargetPage
=
782 (Target
+ (Target
& 0x800)) & ~static_cast<uint64_t>(0xfff);
783 uint64_t PCPage
= FinalAddress
& ~static_cast<uint64_t>(0xfff);
784 int64_t PageDelta
= TargetPage
- PCPage
;
785 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
786 uint32_t Imm31_12
= extractBits(PageDelta
, /*Hi=*/31, /*Lo=*/12) << 5;
787 Instr
= (Instr
& 0xfe00001f) | Imm31_12
;
790 case ELF::R_LARCH_GOT_PC_LO12
:
791 case ELF::R_LARCH_PCALA_LO12
: {
792 uint64_t TargetOffset
= (Value
+ Addend
) & 0xfff;
793 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
794 uint32_t Imm11_0
= TargetOffset
<< 10;
795 Instr
= (Instr
& 0xffc003ff) | Imm11_0
;
798 case ELF::R_LARCH_ABS_HI20
: {
799 uint64_t Target
= Value
+ Addend
;
800 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
801 uint32_t Imm31_12
= extractBits(Target
, /*Hi=*/31, /*Lo=*/12) << 5;
802 Instr
= (Instr
& 0xfe00001f) | Imm31_12
;
805 case ELF::R_LARCH_ABS_LO12
: {
806 uint64_t Target
= Value
+ Addend
;
807 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
808 uint32_t Imm11_0
= extractBits(Target
, /*Hi=*/11, /*Lo=*/0) << 10;
809 Instr
= (Instr
& 0xffc003ff) | Imm11_0
;
812 case ELF::R_LARCH_ABS64_LO20
: {
813 uint64_t Target
= Value
+ Addend
;
814 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
815 uint32_t Imm51_32
= extractBits(Target
, /*Hi=*/51, /*Lo=*/32) << 5;
816 Instr
= (Instr
& 0xfe00001f) | Imm51_32
;
819 case ELF::R_LARCH_ABS64_HI12
: {
820 uint64_t Target
= Value
+ Addend
;
821 auto Instr
= support::ulittle32_t::ref(TargetPtr
);
822 uint32_t Imm63_52
= extractBits(Target
, /*Hi=*/63, /*Lo=*/52) << 10;
823 Instr
= (Instr
& 0xffc003ff) | Imm63_52
;
826 case ELF::R_LARCH_ADD32
:
827 support::ulittle32_t::ref
{TargetPtr
} =
828 (support::ulittle32_t::ref
{TargetPtr
} +
829 static_cast<uint32_t>(Value
+ Addend
));
831 case ELF::R_LARCH_SUB32
:
832 support::ulittle32_t::ref
{TargetPtr
} =
833 (support::ulittle32_t::ref
{TargetPtr
} -
834 static_cast<uint32_t>(Value
+ Addend
));
836 case ELF::R_LARCH_ADD64
:
837 support::ulittle64_t::ref
{TargetPtr
} =
838 (support::ulittle64_t::ref
{TargetPtr
} + Value
+ Addend
);
840 case ELF::R_LARCH_SUB64
:
841 support::ulittle64_t::ref
{TargetPtr
} =
842 (support::ulittle64_t::ref
{TargetPtr
} - Value
- Addend
);
847 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
848 if (Arch
== Triple::UnknownArch
||
849 Triple::getArchTypePrefix(Arch
) != "mips") {
850 IsMipsO32ABI
= false;
851 IsMipsN32ABI
= false;
852 IsMipsN64ABI
= false;
855 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
856 unsigned AbiVariant
= E
->getPlatformFlags();
857 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
858 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
860 IsMipsN64ABI
= Obj
.getFileFormatName() == "elf64-mips";
863 // Return the .TOC. section and offset.
864 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
865 ObjSectionToIDMap
&LocalSections
,
866 RelocationValueRef
&Rel
) {
867 // Set a default SectionID in case we do not find a TOC section below.
868 // This may happen for references to TOC base base (sym@toc, .odp
869 // relocation) without a .toc directive. In this case just use the
870 // first section (which is usually the .odp) since the code won't
871 // reference the .toc base directly.
872 Rel
.SymbolName
= nullptr;
875 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
876 // order. The TOC starts where the first of these sections starts.
877 for (auto &Section
: Obj
.sections()) {
878 Expected
<StringRef
> NameOrErr
= Section
.getName();
880 return NameOrErr
.takeError();
881 StringRef SectionName
= *NameOrErr
;
883 if (SectionName
== ".got"
884 || SectionName
== ".toc"
885 || SectionName
== ".tocbss"
886 || SectionName
== ".plt") {
887 if (auto SectionIDOrErr
=
888 findOrEmitSection(Obj
, Section
, false, LocalSections
))
889 Rel
.SectionID
= *SectionIDOrErr
;
891 return SectionIDOrErr
.takeError();
896 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
897 // thus permitting a full 64 Kbytes segment.
900 return Error::success();
903 // Returns the sections and offset associated with the ODP entry referenced
905 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
906 ObjSectionToIDMap
&LocalSections
,
907 RelocationValueRef
&Rel
) {
908 // Get the ELF symbol value (st_value) to compare with Relocation offset in
910 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
913 Expected
<section_iterator
> RelSecOrErr
= si
->getRelocatedSection();
915 report_fatal_error(Twine(toString(RelSecOrErr
.takeError())));
917 section_iterator RelSecI
= *RelSecOrErr
;
918 if (RelSecI
== Obj
.section_end())
921 Expected
<StringRef
> NameOrErr
= RelSecI
->getName();
923 return NameOrErr
.takeError();
924 StringRef RelSectionName
= *NameOrErr
;
926 if (RelSectionName
!= ".opd")
929 for (elf_relocation_iterator i
= si
->relocation_begin(),
930 e
= si
->relocation_end();
932 // The R_PPC64_ADDR64 relocation indicates the first field
934 uint64_t TypeFunc
= i
->getType();
935 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
940 uint64_t TargetSymbolOffset
= i
->getOffset();
941 symbol_iterator TargetSymbol
= i
->getSymbol();
943 if (auto AddendOrErr
= i
->getAddend())
944 Addend
= *AddendOrErr
;
946 return AddendOrErr
.takeError();
952 // Just check if following relocation is a R_PPC64_TOC
953 uint64_t TypeTOC
= i
->getType();
954 if (TypeTOC
!= ELF::R_PPC64_TOC
)
957 // Finally compares the Symbol value and the target symbol offset
958 // to check if this .opd entry refers to the symbol the relocation
960 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
963 section_iterator TSI
= Obj
.section_end();
964 if (auto TSIOrErr
= TargetSymbol
->getSection())
967 return TSIOrErr
.takeError();
968 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
970 bool IsCode
= TSI
->isText();
971 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
973 Rel
.SectionID
= *SectionIDOrErr
;
975 return SectionIDOrErr
.takeError();
976 Rel
.Addend
= (intptr_t)Addend
;
977 return Error::success();
980 llvm_unreachable("Attempting to get address of ODP entry!");
983 // Relocation masks following the #lo(value), #hi(value), #ha(value),
984 // #higher(value), #highera(value), #highest(value), and #highesta(value)
985 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
988 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
990 static inline uint16_t applyPPChi(uint64_t value
) {
991 return (value
>> 16) & 0xffff;
994 static inline uint16_t applyPPCha (uint64_t value
) {
995 return ((value
+ 0x8000) >> 16) & 0xffff;
998 static inline uint16_t applyPPChigher(uint64_t value
) {
999 return (value
>> 32) & 0xffff;
1002 static inline uint16_t applyPPChighera (uint64_t value
) {
1003 return ((value
+ 0x8000) >> 32) & 0xffff;
1006 static inline uint16_t applyPPChighest(uint64_t value
) {
1007 return (value
>> 48) & 0xffff;
1010 static inline uint16_t applyPPChighesta (uint64_t value
) {
1011 return ((value
+ 0x8000) >> 48) & 0xffff;
1014 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
1015 uint64_t Offset
, uint64_t Value
,
1016 uint32_t Type
, int64_t Addend
) {
1017 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
1020 report_fatal_error("Relocation type not implemented yet!");
1022 case ELF::R_PPC_ADDR16_LO
:
1023 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
1025 case ELF::R_PPC_ADDR16_HI
:
1026 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
1028 case ELF::R_PPC_ADDR16_HA
:
1029 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
1034 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
1035 uint64_t Offset
, uint64_t Value
,
1036 uint32_t Type
, int64_t Addend
) {
1037 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
1040 report_fatal_error("Relocation type not implemented yet!");
1042 case ELF::R_PPC64_ADDR16
:
1043 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
1045 case ELF::R_PPC64_ADDR16_DS
:
1046 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
1048 case ELF::R_PPC64_ADDR16_LO
:
1049 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
1051 case ELF::R_PPC64_ADDR16_LO_DS
:
1052 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
1054 case ELF::R_PPC64_ADDR16_HI
:
1055 case ELF::R_PPC64_ADDR16_HIGH
:
1056 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
1058 case ELF::R_PPC64_ADDR16_HA
:
1059 case ELF::R_PPC64_ADDR16_HIGHA
:
1060 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
1062 case ELF::R_PPC64_ADDR16_HIGHER
:
1063 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
1065 case ELF::R_PPC64_ADDR16_HIGHERA
:
1066 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
1068 case ELF::R_PPC64_ADDR16_HIGHEST
:
1069 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
1071 case ELF::R_PPC64_ADDR16_HIGHESTA
:
1072 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
1074 case ELF::R_PPC64_ADDR14
: {
1075 assert(((Value
+ Addend
) & 3) == 0);
1076 // Preserve the AA/LK bits in the branch instruction
1077 uint8_t aalk
= *(LocalAddress
+ 3);
1078 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
1080 case ELF::R_PPC64_REL16_LO
: {
1081 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1082 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
1083 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
1085 case ELF::R_PPC64_REL16_HI
: {
1086 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1087 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
1088 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
1090 case ELF::R_PPC64_REL16_HA
: {
1091 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1092 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
1093 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
1095 case ELF::R_PPC64_ADDR32
: {
1096 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
1097 if (SignExtend64
<32>(Result
) != Result
)
1098 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
1099 writeInt32BE(LocalAddress
, Result
);
1101 case ELF::R_PPC64_REL24
: {
1102 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1103 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
1104 if (SignExtend64
<26>(delta
) != delta
)
1105 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
1106 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
1107 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
1108 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
1110 case ELF::R_PPC64_REL32
: {
1111 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1112 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
1113 if (SignExtend64
<32>(delta
) != delta
)
1114 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1115 writeInt32BE(LocalAddress
, delta
);
1117 case ELF::R_PPC64_REL64
: {
1118 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1119 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
1120 writeInt64BE(LocalAddress
, Delta
);
1122 case ELF::R_PPC64_ADDR64
:
1123 writeInt64BE(LocalAddress
, Value
+ Addend
);
1128 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
1129 uint64_t Offset
, uint64_t Value
,
1130 uint32_t Type
, int64_t Addend
) {
1131 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
1134 report_fatal_error("Relocation type not implemented yet!");
1136 case ELF::R_390_PC16DBL
:
1137 case ELF::R_390_PLT16DBL
: {
1138 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
1139 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
1140 writeInt16BE(LocalAddress
, Delta
/ 2);
1143 case ELF::R_390_PC32DBL
:
1144 case ELF::R_390_PLT32DBL
: {
1145 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
1146 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
1147 writeInt32BE(LocalAddress
, Delta
/ 2);
1150 case ELF::R_390_PC16
: {
1151 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
1152 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
1153 writeInt16BE(LocalAddress
, Delta
);
1156 case ELF::R_390_PC32
: {
1157 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
1158 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
1159 writeInt32BE(LocalAddress
, Delta
);
1162 case ELF::R_390_PC64
: {
1163 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
1164 writeInt64BE(LocalAddress
, Delta
);
1168 *LocalAddress
= (uint8_t)(Value
+ Addend
);
1171 writeInt16BE(LocalAddress
, Value
+ Addend
);
1174 writeInt32BE(LocalAddress
, Value
+ Addend
);
1177 writeInt64BE(LocalAddress
, Value
+ Addend
);
1182 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
1183 uint64_t Offset
, uint64_t Value
,
1184 uint32_t Type
, int64_t Addend
) {
1185 bool isBE
= Arch
== Triple::bpfeb
;
1189 report_fatal_error("Relocation type not implemented yet!");
1191 case ELF::R_BPF_NONE
:
1192 case ELF::R_BPF_64_64
:
1193 case ELF::R_BPF_64_32
:
1194 case ELF::R_BPF_64_NODYLD32
:
1196 case ELF::R_BPF_64_ABS64
: {
1197 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
1198 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
1199 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1202 case ELF::R_BPF_64_ABS32
: {
1204 assert(Value
<= UINT32_MAX
);
1205 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
1206 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
1207 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1213 static void applyUTypeImmRISCV(uint8_t *InstrAddr
, uint32_t Imm
) {
1214 uint32_t UpperImm
= (Imm
+ 0x800) & 0xfffff000;
1215 auto Instr
= support::ulittle32_t::ref(InstrAddr
);
1216 Instr
= (Instr
& 0xfff) | UpperImm
;
1219 static void applyITypeImmRISCV(uint8_t *InstrAddr
, uint32_t Imm
) {
1220 uint32_t LowerImm
= Imm
& 0xfff;
1221 auto Instr
= support::ulittle32_t::ref(InstrAddr
);
1222 Instr
= (Instr
& 0xfffff) | (LowerImm
<< 20);
1225 void RuntimeDyldELF::resolveRISCVRelocation(const SectionEntry
&Section
,
1226 uint64_t Offset
, uint64_t Value
,
1227 uint32_t Type
, int64_t Addend
,
1231 std::string Err
= "Unimplemented reloc type: " + std::to_string(Type
);
1232 llvm::report_fatal_error(Err
.c_str());
1234 // 32-bit PC-relative function call, macros call, tail (PIC)
1235 // Write first 20 bits of 32 bit value to the auipc instruction
1236 // Last 12 bits to the jalr instruction
1237 case ELF::R_RISCV_CALL
:
1238 case ELF::R_RISCV_CALL_PLT
: {
1239 uint64_t P
= Section
.getLoadAddressWithOffset(Offset
);
1240 uint64_t PCOffset
= Value
+ Addend
- P
;
1241 applyUTypeImmRISCV(Section
.getAddressWithOffset(Offset
), PCOffset
);
1242 applyITypeImmRISCV(Section
.getAddressWithOffset(Offset
+ 4), PCOffset
);
1245 // High 20 bits of 32-bit absolute address, %hi(symbol)
1246 case ELF::R_RISCV_HI20
: {
1247 uint64_t PCOffset
= Value
+ Addend
;
1248 applyUTypeImmRISCV(Section
.getAddressWithOffset(Offset
), PCOffset
);
1251 // Low 12 bits of 32-bit absolute address, %lo(symbol)
1252 case ELF::R_RISCV_LO12_I
: {
1253 uint64_t PCOffset
= Value
+ Addend
;
1254 applyITypeImmRISCV(Section
.getAddressWithOffset(Offset
), PCOffset
);
1257 // High 20 bits of 32-bit PC-relative reference, %pcrel_hi(symbol)
1258 case ELF::R_RISCV_GOT_HI20
:
1259 case ELF::R_RISCV_PCREL_HI20
: {
1260 uint64_t P
= Section
.getLoadAddressWithOffset(Offset
);
1261 uint64_t PCOffset
= Value
+ Addend
- P
;
1262 applyUTypeImmRISCV(Section
.getAddressWithOffset(Offset
), PCOffset
);
1267 // auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20
1268 // addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_LO12_I
1270 // The low 12 bits of relative address between pc and symbol.
1271 // The symbol is related to the high part instruction which is marked by
1273 case ELF::R_RISCV_PCREL_LO12_I
: {
1274 for (auto &&PendingReloc
: PendingRelocs
) {
1275 const RelocationValueRef
&MatchingValue
= PendingReloc
.first
;
1276 RelocationEntry
&Reloc
= PendingReloc
.second
;
1277 uint64_t HIRelocPC
=
1278 getSectionLoadAddress(Reloc
.SectionID
) + Reloc
.Offset
;
1279 if (Value
+ Addend
== HIRelocPC
) {
1280 uint64_t Symbol
= getSectionLoadAddress(MatchingValue
.SectionID
) +
1281 MatchingValue
.Addend
;
1282 auto PCOffset
= Symbol
- HIRelocPC
;
1283 applyITypeImmRISCV(Section
.getAddressWithOffset(Offset
), PCOffset
);
1288 llvm::report_fatal_error(
1289 "R_RISCV_PCREL_LO12_I without matching R_RISCV_PCREL_HI20");
1291 case ELF::R_RISCV_32_PCREL
: {
1292 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
1293 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
1294 int32_t TruncOffset
= Lo_32(RealOffset
);
1295 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
1299 case ELF::R_RISCV_32
: {
1300 auto Ref
= support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
));
1301 Ref
= Value
+ Addend
;
1304 case ELF::R_RISCV_64
: {
1305 auto Ref
= support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
));
1306 Ref
= Value
+ Addend
;
1309 case ELF::R_RISCV_ADD16
: {
1310 auto Ref
= support::ulittle16_t::ref(Section
.getAddressWithOffset(Offset
));
1311 Ref
= Ref
+ Value
+ Addend
;
1314 case ELF::R_RISCV_ADD32
: {
1315 auto Ref
= support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
));
1316 Ref
= Ref
+ Value
+ Addend
;
1319 case ELF::R_RISCV_ADD64
: {
1320 auto Ref
= support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
));
1321 Ref
= Ref
+ Value
+ Addend
;
1324 case ELF::R_RISCV_SUB16
: {
1325 auto Ref
= support::ulittle16_t::ref(Section
.getAddressWithOffset(Offset
));
1326 Ref
= Ref
- Value
- Addend
;
1329 case ELF::R_RISCV_SUB32
: {
1330 auto Ref
= support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
));
1331 Ref
= Ref
- Value
- Addend
;
1334 case ELF::R_RISCV_SUB64
: {
1335 auto Ref
= support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
));
1336 Ref
= Ref
- Value
- Addend
;
1342 // The target location for the relocation is described by RE.SectionID and
1343 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1344 // SectionEntry has three members describing its location.
1345 // SectionEntry::Address is the address at which the section has been loaded
1346 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1347 // address that the section will have in the target process.
1348 // SectionEntry::ObjAddress is the address of the bits for this section in the
1349 // original emitted object image (also in the current address space).
1351 // Relocations will be applied as if the section were loaded at
1352 // SectionEntry::LoadAddress, but they will be applied at an address based
1353 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1354 // Target memory contents if they are required for value calculations.
1356 // The Value parameter here is the load address of the symbol for the
1357 // relocation to be applied. For relocations which refer to symbols in the
1358 // current object Value will be the LoadAddress of the section in which
1359 // the symbol resides (RE.Addend provides additional information about the
1360 // symbol location). For external symbols, Value will be the address of the
1361 // symbol in the target address space.
1362 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
1364 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
1365 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
1366 RE
.SymOffset
, RE
.SectionID
);
1369 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
1370 uint64_t Offset
, uint64_t Value
,
1371 uint32_t Type
, int64_t Addend
,
1372 uint64_t SymOffset
, SID SectionID
) {
1374 case Triple::x86_64
:
1375 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
1378 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1379 (uint32_t)(Addend
& 0xffffffffL
));
1381 case Triple::aarch64
:
1382 case Triple::aarch64_be
:
1383 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1385 case Triple::arm
: // Fall through.
1388 case Triple::thumbeb
:
1389 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1390 (uint32_t)(Addend
& 0xffffffffL
));
1392 case Triple::loongarch64
:
1393 resolveLoongArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1395 case Triple::ppc
: // Fall through.
1397 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
1399 case Triple::ppc64
: // Fall through.
1400 case Triple::ppc64le
:
1401 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1403 case Triple::systemz
:
1404 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
1408 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
1410 case Triple::riscv32
: // Fall through.
1411 case Triple::riscv64
:
1412 resolveRISCVRelocation(Section
, Offset
, Value
, Type
, Addend
, SectionID
);
1415 llvm_unreachable("Unsupported CPU type!");
1419 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
,
1420 uint64_t Offset
) const {
1421 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
1424 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
1425 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
1426 if (Value
.SymbolName
)
1427 addRelocationForSymbol(RE
, Value
.SymbolName
);
1429 addRelocationForSection(RE
, Value
.SectionID
);
1432 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
1433 bool IsLocal
) const {
1435 case ELF::R_MICROMIPS_GOT16
:
1437 return ELF::R_MICROMIPS_LO16
;
1439 case ELF::R_MICROMIPS_HI16
:
1440 return ELF::R_MICROMIPS_LO16
;
1441 case ELF::R_MIPS_GOT16
:
1443 return ELF::R_MIPS_LO16
;
1445 case ELF::R_MIPS_HI16
:
1446 return ELF::R_MIPS_LO16
;
1447 case ELF::R_MIPS_PCHI16
:
1448 return ELF::R_MIPS_PCLO16
;
1452 return ELF::R_MIPS_NONE
;
1455 // Sometimes we don't need to create thunk for a branch.
1456 // This typically happens when branch target is located
1457 // in the same object file. In such case target is either
1458 // a weak symbol or symbol in a different executable section.
1459 // This function checks if branch target is located in the
1460 // same object file and if distance between source and target
1461 // fits R_AARCH64_CALL26 relocation. If both conditions are
1462 // met, it emits direct jump to the target and returns true.
1463 // Otherwise false is returned and thunk is created.
1464 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1465 unsigned SectionID
, relocation_iterator RelI
,
1466 const RelocationValueRef
&Value
) {
1467 uint64_t TargetOffset
;
1468 unsigned TargetSectionID
;
1469 if (Value
.SymbolName
) {
1470 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1472 // Don't create direct branch for external symbols.
1473 if (Loc
== GlobalSymbolTable
.end())
1476 const auto &SymInfo
= Loc
->second
;
1478 TargetSectionID
= SymInfo
.getSectionID();
1479 TargetOffset
= SymInfo
.getOffset();
1481 TargetSectionID
= Value
.SectionID
;
1485 // We don't actually know the load addresses at this point, so if the
1486 // branch is cross-section, we don't know exactly how far away it is.
1487 if (TargetSectionID
!= SectionID
)
1490 uint64_t SourceOffset
= RelI
->getOffset();
1492 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1493 // If distance between source and target is out of range then we should
1495 if (!isInt
<28>(TargetOffset
+ Value
.Addend
- SourceOffset
))
1498 RelocationEntry
RE(SectionID
, SourceOffset
, RelI
->getType(), Value
.Addend
);
1499 if (Value
.SymbolName
)
1500 addRelocationForSymbol(RE
, Value
.SymbolName
);
1502 addRelocationForSection(RE
, Value
.SectionID
);
1507 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1508 const RelocationValueRef
&Value
,
1509 relocation_iterator RelI
,
1512 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1513 SectionEntry
&Section
= Sections
[SectionID
];
1515 uint64_t Offset
= RelI
->getOffset();
1516 unsigned RelType
= RelI
->getType();
1517 // Look for an existing stub.
1518 StubMap::const_iterator i
= Stubs
.find(Value
);
1519 if (i
!= Stubs
.end()) {
1520 resolveRelocation(Section
, Offset
,
1521 Section
.getLoadAddressWithOffset(i
->second
), RelType
, 0);
1522 LLVM_DEBUG(dbgs() << " Stub function found\n");
1523 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1524 // Create a new stub function.
1525 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1526 Stubs
[Value
] = Section
.getStubOffset();
1527 uint8_t *StubTargetAddr
= createStubFunction(
1528 Section
.getAddressWithOffset(Section
.getStubOffset()));
1530 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1531 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1532 RelocationEntry
REmovk_g2(SectionID
,
1533 StubTargetAddr
- Section
.getAddress() + 4,
1534 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1535 RelocationEntry
REmovk_g1(SectionID
,
1536 StubTargetAddr
- Section
.getAddress() + 8,
1537 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1538 RelocationEntry
REmovk_g0(SectionID
,
1539 StubTargetAddr
- Section
.getAddress() + 12,
1540 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1542 if (Value
.SymbolName
) {
1543 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1544 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1545 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1546 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1548 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1549 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1550 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1551 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1553 resolveRelocation(Section
, Offset
,
1554 Section
.getLoadAddressWithOffset(Section
.getStubOffset()),
1556 Section
.advanceStubOffset(getMaxStubSize());
1560 Expected
<relocation_iterator
>
1561 RuntimeDyldELF::processRelocationRef(
1562 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1563 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1564 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1565 uint64_t RelType
= RelI
->getType();
1567 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1568 Addend
= *AddendOrErr
;
1570 consumeError(AddendOrErr
.takeError());
1571 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1573 // Obtain the symbol name which is referenced in the relocation
1574 StringRef TargetName
;
1575 if (Symbol
!= Obj
.symbol_end()) {
1576 if (auto TargetNameOrErr
= Symbol
->getName())
1577 TargetName
= *TargetNameOrErr
;
1579 return TargetNameOrErr
.takeError();
1581 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1582 << " TargetName: " << TargetName
<< "\n");
1583 RelocationValueRef Value
;
1584 // First search for the symbol in the local symbol table
1585 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1587 // Search for the symbol in the global symbol table
1588 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1589 if (Symbol
!= Obj
.symbol_end()) {
1590 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1591 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1592 if (!SymTypeOrErr
) {
1594 raw_string_ostream
OS(Buf
);
1595 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1596 report_fatal_error(Twine(Buf
));
1598 SymType
= *SymTypeOrErr
;
1600 if (gsi
!= GlobalSymbolTable
.end()) {
1601 const auto &SymInfo
= gsi
->second
;
1602 Value
.SectionID
= SymInfo
.getSectionID();
1603 Value
.Offset
= SymInfo
.getOffset();
1604 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1607 case SymbolRef::ST_Debug
: {
1608 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1609 // and can be changed by another developers. Maybe best way is add
1610 // a new symbol type ST_Section to SymbolRef and use it.
1611 auto SectionOrErr
= Symbol
->getSection();
1612 if (!SectionOrErr
) {
1614 raw_string_ostream
OS(Buf
);
1615 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1616 report_fatal_error(Twine(Buf
));
1618 section_iterator si
= *SectionOrErr
;
1619 if (si
== Obj
.section_end())
1620 llvm_unreachable("Symbol section not found, bad object file format!");
1621 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1622 bool isCode
= si
->isText();
1623 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1625 Value
.SectionID
= *SectionIDOrErr
;
1627 return SectionIDOrErr
.takeError();
1628 Value
.Addend
= Addend
;
1631 case SymbolRef::ST_Data
:
1632 case SymbolRef::ST_Function
:
1633 case SymbolRef::ST_Other
:
1634 case SymbolRef::ST_Unknown
: {
1635 Value
.SymbolName
= TargetName
.data();
1636 Value
.Addend
= Addend
;
1638 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1639 // will manifest here as a NULL symbol name.
1640 // We can set this as a valid (but empty) symbol name, and rely
1641 // on addRelocationForSymbol to handle this.
1642 if (!Value
.SymbolName
)
1643 Value
.SymbolName
= "";
1647 llvm_unreachable("Unresolved symbol type!");
1652 uint64_t Offset
= RelI
->getOffset();
1654 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1656 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1657 if ((RelType
== ELF::R_AARCH64_CALL26
||
1658 RelType
== ELF::R_AARCH64_JUMP26
) &&
1659 MemMgr
.allowStubAllocation()) {
1660 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1661 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1662 // Create new GOT entry or find existing one. If GOT entry is
1663 // to be created, then we also emit ABS64 relocation for it.
1664 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1665 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1666 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1668 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1669 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1670 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1671 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1673 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1675 } else if (Arch
== Triple::arm
) {
1676 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1677 RelType
== ELF::R_ARM_JUMP24
) {
1678 // This is an ARM branch relocation, need to use a stub function.
1679 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1680 SectionEntry
&Section
= Sections
[SectionID
];
1682 // Look for an existing stub.
1683 StubMap::const_iterator i
= Stubs
.find(Value
);
1684 if (i
!= Stubs
.end()) {
1685 resolveRelocation(Section
, Offset
,
1686 Section
.getLoadAddressWithOffset(i
->second
), RelType
,
1688 LLVM_DEBUG(dbgs() << " Stub function found\n");
1690 // Create a new stub function.
1691 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1692 Stubs
[Value
] = Section
.getStubOffset();
1693 uint8_t *StubTargetAddr
= createStubFunction(
1694 Section
.getAddressWithOffset(Section
.getStubOffset()));
1695 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1696 ELF::R_ARM_ABS32
, Value
.Addend
);
1697 if (Value
.SymbolName
)
1698 addRelocationForSymbol(RE
, Value
.SymbolName
);
1700 addRelocationForSection(RE
, Value
.SectionID
);
1704 Section
.getLoadAddressWithOffset(Section
.getStubOffset()), RelType
,
1706 Section
.advanceStubOffset(getMaxStubSize());
1709 uint32_t *Placeholder
=
1710 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1711 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1712 RelType
== ELF::R_ARM_ABS32
) {
1713 Value
.Addend
+= *Placeholder
;
1714 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1715 // See ELF for ARM documentation
1716 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1718 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1720 } else if (Arch
== Triple::loongarch64
) {
1721 if (RelType
== ELF::R_LARCH_B26
&& MemMgr
.allowStubAllocation()) {
1722 resolveLoongArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1723 } else if (RelType
== ELF::R_LARCH_GOT_PC_HI20
||
1724 RelType
== ELF::R_LARCH_GOT_PC_LO12
) {
1725 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_LARCH_64
);
1726 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1729 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1731 } else if (IsMipsO32ABI
) {
1732 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1733 computePlaceholderAddress(SectionID
, Offset
));
1734 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1735 if (RelType
== ELF::R_MIPS_26
) {
1736 // This is an Mips branch relocation, need to use a stub function.
1737 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1738 SectionEntry
&Section
= Sections
[SectionID
];
1740 // Extract the addend from the instruction.
1741 // We shift up by two since the Value will be down shifted again
1742 // when applying the relocation.
1743 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1745 Value
.Addend
+= Addend
;
1747 // Look up for existing stub.
1748 StubMap::const_iterator i
= Stubs
.find(Value
);
1749 if (i
!= Stubs
.end()) {
1750 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1751 addRelocationForSection(RE
, SectionID
);
1752 LLVM_DEBUG(dbgs() << " Stub function found\n");
1754 // Create a new stub function.
1755 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1756 Stubs
[Value
] = Section
.getStubOffset();
1758 unsigned AbiVariant
= Obj
.getPlatformFlags();
1760 uint8_t *StubTargetAddr
= createStubFunction(
1761 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1763 // Creating Hi and Lo relocations for the filled stub instructions.
1764 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1765 ELF::R_MIPS_HI16
, Value
.Addend
);
1766 RelocationEntry
RELo(SectionID
,
1767 StubTargetAddr
- Section
.getAddress() + 4,
1768 ELF::R_MIPS_LO16
, Value
.Addend
);
1770 if (Value
.SymbolName
) {
1771 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1772 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1774 addRelocationForSection(REHi
, Value
.SectionID
);
1775 addRelocationForSection(RELo
, Value
.SectionID
);
1778 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1779 addRelocationForSection(RE
, SectionID
);
1780 Section
.advanceStubOffset(getMaxStubSize());
1782 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1783 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1784 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1785 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1786 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1787 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1788 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1789 const RelocationValueRef
&MatchingValue
= I
->first
;
1790 RelocationEntry
&Reloc
= I
->second
;
1791 if (MatchingValue
== Value
&&
1792 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1793 SectionID
== Reloc
.SectionID
) {
1794 Reloc
.Addend
+= Addend
;
1795 if (Value
.SymbolName
)
1796 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1798 addRelocationForSection(Reloc
, Value
.SectionID
);
1799 I
= PendingRelocs
.erase(I
);
1803 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1804 if (Value
.SymbolName
)
1805 addRelocationForSymbol(RE
, Value
.SymbolName
);
1807 addRelocationForSection(RE
, Value
.SectionID
);
1809 if (RelType
== ELF::R_MIPS_32
)
1810 Value
.Addend
+= Opcode
;
1811 else if (RelType
== ELF::R_MIPS_PC16
)
1812 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1813 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1814 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1815 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1816 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1817 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1818 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1819 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1821 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1822 uint32_t r_type
= RelType
& 0xff;
1823 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1824 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1825 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1826 auto [I
, Inserted
] = GOTSymbolOffsets
.try_emplace(TargetName
);
1828 I
->second
= allocateGOTEntries(1);
1829 RE
.SymOffset
= I
->second
;
1830 if (Value
.SymbolName
)
1831 addRelocationForSymbol(RE
, Value
.SymbolName
);
1833 addRelocationForSection(RE
, Value
.SectionID
);
1834 } else if (RelType
== ELF::R_MIPS_26
) {
1835 // This is an Mips branch relocation, need to use a stub function.
1836 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1837 SectionEntry
&Section
= Sections
[SectionID
];
1839 // Look up for existing stub.
1840 StubMap::const_iterator i
= Stubs
.find(Value
);
1841 if (i
!= Stubs
.end()) {
1842 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1843 addRelocationForSection(RE
, SectionID
);
1844 LLVM_DEBUG(dbgs() << " Stub function found\n");
1846 // Create a new stub function.
1847 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1848 Stubs
[Value
] = Section
.getStubOffset();
1850 unsigned AbiVariant
= Obj
.getPlatformFlags();
1852 uint8_t *StubTargetAddr
= createStubFunction(
1853 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1856 // Creating Hi and Lo relocations for the filled stub instructions.
1857 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1858 ELF::R_MIPS_HI16
, Value
.Addend
);
1859 RelocationEntry
RELo(SectionID
,
1860 StubTargetAddr
- Section
.getAddress() + 4,
1861 ELF::R_MIPS_LO16
, Value
.Addend
);
1862 if (Value
.SymbolName
) {
1863 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1864 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1866 addRelocationForSection(REHi
, Value
.SectionID
);
1867 addRelocationForSection(RELo
, Value
.SectionID
);
1870 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1872 RelocationEntry
REHighest(SectionID
,
1873 StubTargetAddr
- Section
.getAddress(),
1874 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1875 RelocationEntry
REHigher(SectionID
,
1876 StubTargetAddr
- Section
.getAddress() + 4,
1877 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1878 RelocationEntry
REHi(SectionID
,
1879 StubTargetAddr
- Section
.getAddress() + 12,
1880 ELF::R_MIPS_HI16
, Value
.Addend
);
1881 RelocationEntry
RELo(SectionID
,
1882 StubTargetAddr
- Section
.getAddress() + 20,
1883 ELF::R_MIPS_LO16
, Value
.Addend
);
1884 if (Value
.SymbolName
) {
1885 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1886 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1887 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1888 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1890 addRelocationForSection(REHighest
, Value
.SectionID
);
1891 addRelocationForSection(REHigher
, Value
.SectionID
);
1892 addRelocationForSection(REHi
, Value
.SectionID
);
1893 addRelocationForSection(RELo
, Value
.SectionID
);
1896 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1897 addRelocationForSection(RE
, SectionID
);
1898 Section
.advanceStubOffset(getMaxStubSize());
1901 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1904 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1905 if (RelType
== ELF::R_PPC64_REL24
) {
1906 // Determine ABI variant in use for this object.
1907 unsigned AbiVariant
= Obj
.getPlatformFlags();
1908 AbiVariant
&= ELF::EF_PPC64_ABI
;
1909 // A PPC branch relocation will need a stub function if the target is
1910 // an external symbol (either Value.SymbolName is set, or SymType is
1911 // Symbol::ST_Unknown) or if the target address is not within the
1912 // signed 24-bits branch address.
1913 SectionEntry
&Section
= Sections
[SectionID
];
1914 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1915 bool RangeOverflow
= false;
1916 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1918 if (AbiVariant
!= 2) {
1919 // In the ELFv1 ABI, a function call may point to the .opd entry,
1920 // so the final symbol value is calculated based on the relocation
1921 // values in the .opd section.
1922 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1923 return std::move(Err
);
1925 // In the ELFv2 ABI, a function symbol may provide a local entry
1926 // point, which must be used for direct calls.
1927 if (Value
.SectionID
== SectionID
){
1928 uint8_t SymOther
= Symbol
->getOther();
1929 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1932 uint8_t *RelocTarget
=
1933 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1934 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1935 // If it is within 26-bits branch range, just set the branch target
1936 if (SignExtend64
<26>(delta
) != delta
) {
1937 RangeOverflow
= true;
1938 } else if ((AbiVariant
!= 2) ||
1939 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1940 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1941 addRelocationForSection(RE
, Value
.SectionID
);
1944 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1946 // It is an external symbol (either Value.SymbolName is set, or
1947 // SymType is SymbolRef::ST_Unknown) or out of range.
1948 StubMap::const_iterator i
= Stubs
.find(Value
);
1949 if (i
!= Stubs
.end()) {
1950 // Symbol function stub already created, just relocate to it
1951 resolveRelocation(Section
, Offset
,
1952 Section
.getLoadAddressWithOffset(i
->second
),
1954 LLVM_DEBUG(dbgs() << " Stub function found\n");
1956 // Create a new stub function.
1957 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1958 Stubs
[Value
] = Section
.getStubOffset();
1959 uint8_t *StubTargetAddr
= createStubFunction(
1960 Section
.getAddressWithOffset(Section
.getStubOffset()),
1962 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1963 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1965 // Generates the 64-bits address loads as exemplified in section
1966 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1967 // apply to the low part of the instructions, so we have to update
1968 // the offset according to the target endianness.
1969 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1970 if (!IsTargetLittleEndian
)
1971 StubRelocOffset
+= 2;
1973 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1974 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1975 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1976 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1977 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1978 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1979 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1980 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1982 if (Value
.SymbolName
) {
1983 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1984 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1985 addRelocationForSymbol(REh
, Value
.SymbolName
);
1986 addRelocationForSymbol(REl
, Value
.SymbolName
);
1988 addRelocationForSection(REhst
, Value
.SectionID
);
1989 addRelocationForSection(REhr
, Value
.SectionID
);
1990 addRelocationForSection(REh
, Value
.SectionID
);
1991 addRelocationForSection(REl
, Value
.SectionID
);
1996 Section
.getLoadAddressWithOffset(Section
.getStubOffset()),
1998 Section
.advanceStubOffset(getMaxStubSize());
2000 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
2001 // Restore the TOC for external calls
2002 if (AbiVariant
== 2)
2003 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
2005 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
2008 } else if (RelType
== ELF::R_PPC64_TOC16
||
2009 RelType
== ELF::R_PPC64_TOC16_DS
||
2010 RelType
== ELF::R_PPC64_TOC16_LO
||
2011 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
2012 RelType
== ELF::R_PPC64_TOC16_HI
||
2013 RelType
== ELF::R_PPC64_TOC16_HA
) {
2014 // These relocations are supposed to subtract the TOC address from
2015 // the final value. This does not fit cleanly into the RuntimeDyld
2016 // scheme, since there may be *two* sections involved in determining
2017 // the relocation value (the section of the symbol referred to by the
2018 // relocation, and the TOC section associated with the current module).
2020 // Fortunately, these relocations are currently only ever generated
2021 // referring to symbols that themselves reside in the TOC, which means
2022 // that the two sections are actually the same. Thus they cancel out
2023 // and we can immediately resolve the relocation right now.
2025 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
2026 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
2027 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
2028 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
2029 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
2030 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
2031 default: llvm_unreachable("Wrong relocation type.");
2034 RelocationValueRef TOCValue
;
2035 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
2036 return std::move(Err
);
2037 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
2038 llvm_unreachable("Unsupported TOC relocation.");
2039 Value
.Addend
-= TOCValue
.Addend
;
2040 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
2042 // There are two ways to refer to the TOC address directly: either
2043 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
2044 // ignored), or via any relocation that refers to the magic ".TOC."
2045 // symbols (in which case the addend is respected).
2046 if (RelType
== ELF::R_PPC64_TOC
) {
2047 RelType
= ELF::R_PPC64_ADDR64
;
2048 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
2049 return std::move(Err
);
2050 } else if (TargetName
== ".TOC.") {
2051 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
2052 return std::move(Err
);
2053 Value
.Addend
+= Addend
;
2056 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
2058 if (Value
.SymbolName
)
2059 addRelocationForSymbol(RE
, Value
.SymbolName
);
2061 addRelocationForSection(RE
, Value
.SectionID
);
2063 } else if (Arch
== Triple::systemz
&&
2064 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
2065 // Create function stubs for both PLT and GOT references, regardless of
2066 // whether the GOT reference is to data or code. The stub contains the
2067 // full address of the symbol, as needed by GOT references, and the
2068 // executable part only adds an overhead of 8 bytes.
2070 // We could try to conserve space by allocating the code and data
2071 // parts of the stub separately. However, as things stand, we allocate
2072 // a stub for every relocation, so using a GOT in JIT code should be
2073 // no less space efficient than using an explicit constant pool.
2074 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
2075 SectionEntry
&Section
= Sections
[SectionID
];
2077 // Look for an existing stub.
2078 StubMap::const_iterator i
= Stubs
.find(Value
);
2079 uintptr_t StubAddress
;
2080 if (i
!= Stubs
.end()) {
2081 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
2082 LLVM_DEBUG(dbgs() << " Stub function found\n");
2084 // Create a new stub function.
2085 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2087 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
2089 alignTo(BaseAddress
+ Section
.getStubOffset(), getStubAlignment());
2090 unsigned StubOffset
= StubAddress
- BaseAddress
;
2092 Stubs
[Value
] = StubOffset
;
2093 createStubFunction((uint8_t *)StubAddress
);
2094 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
2096 if (Value
.SymbolName
)
2097 addRelocationForSymbol(RE
, Value
.SymbolName
);
2099 addRelocationForSection(RE
, Value
.SectionID
);
2100 Section
.advanceStubOffset(getMaxStubSize());
2103 if (RelType
== ELF::R_390_GOTENT
)
2104 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
2107 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
2108 } else if (Arch
== Triple::x86_64
) {
2109 if (RelType
== ELF::R_X86_64_PLT32
) {
2110 // The way the PLT relocations normally work is that the linker allocates
2112 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
2113 // entry will then jump to an address provided by the GOT. On first call,
2115 // GOT address will point back into PLT code that resolves the symbol. After
2116 // the first call, the GOT entry points to the actual function.
2118 // For local functions we're ignoring all of that here and just replacing
2119 // the PLT32 relocation type with PC32, which will translate the relocation
2120 // into a PC-relative call directly to the function. For external symbols we
2121 // can't be sure the function will be within 2^32 bytes of the call site, so
2122 // we need to create a stub, which calls into the GOT. This case is
2123 // equivalent to the usual PLT implementation except that we use the stub
2124 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
2125 // rather than allocating a PLT section.
2126 if (Value
.SymbolName
&& MemMgr
.allowStubAllocation()) {
2127 // This is a call to an external function.
2128 // Look for an existing stub.
2129 SectionEntry
*Section
= &Sections
[SectionID
];
2130 StubMap::const_iterator i
= Stubs
.find(Value
);
2131 uintptr_t StubAddress
;
2132 if (i
!= Stubs
.end()) {
2133 StubAddress
= uintptr_t(Section
->getAddress()) + i
->second
;
2134 LLVM_DEBUG(dbgs() << " Stub function found\n");
2136 // Create a new stub function (equivalent to a PLT entry).
2137 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2139 uintptr_t BaseAddress
= uintptr_t(Section
->getAddress());
2140 StubAddress
= alignTo(BaseAddress
+ Section
->getStubOffset(),
2141 getStubAlignment());
2142 unsigned StubOffset
= StubAddress
- BaseAddress
;
2143 Stubs
[Value
] = StubOffset
;
2144 createStubFunction((uint8_t *)StubAddress
);
2146 // Bump our stub offset counter
2147 Section
->advanceStubOffset(getMaxStubSize());
2149 // Allocate a GOT Entry
2150 uint64_t GOTOffset
= allocateGOTEntries(1);
2151 // This potentially creates a new Section which potentially
2152 // invalidates the Section pointer, so reload it.
2153 Section
= &Sections
[SectionID
];
2155 // The load of the GOT address has an addend of -4
2156 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
2157 ELF::R_X86_64_PC32
);
2159 // Fill in the value of the symbol we're targeting into the GOT
2160 addRelocationForSymbol(
2161 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
2165 // Make the target call a call into the stub table.
2166 resolveRelocation(*Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
2169 Value
.Addend
+= support::ulittle32_t::ref(
2170 computePlaceholderAddress(SectionID
, Offset
));
2171 processSimpleRelocation(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
);
2173 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
2174 RelType
== ELF::R_X86_64_GOTPCRELX
||
2175 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
2176 uint64_t GOTOffset
= allocateGOTEntries(1);
2177 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
2178 ELF::R_X86_64_PC32
);
2180 // Fill in the value of the symbol we're targeting into the GOT
2181 RelocationEntry RE
=
2182 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
2183 if (Value
.SymbolName
)
2184 addRelocationForSymbol(RE
, Value
.SymbolName
);
2186 addRelocationForSection(RE
, Value
.SectionID
);
2187 } else if (RelType
== ELF::R_X86_64_GOT64
) {
2188 // Fill in a 64-bit GOT offset.
2189 uint64_t GOTOffset
= allocateGOTEntries(1);
2190 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
2191 ELF::R_X86_64_64
, 0);
2193 // Fill in the value of the symbol we're targeting into the GOT
2194 RelocationEntry RE
=
2195 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
2196 if (Value
.SymbolName
)
2197 addRelocationForSymbol(RE
, Value
.SymbolName
);
2199 addRelocationForSection(RE
, Value
.SectionID
);
2200 } else if (RelType
== ELF::R_X86_64_GOTPC32
) {
2201 // Materialize the address of the base of the GOT relative to the PC.
2202 // This doesn't create a GOT entry, but it does mean we need a GOT
2204 (void)allocateGOTEntries(0);
2205 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC32
);
2206 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
2207 (void)allocateGOTEntries(0);
2208 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
2209 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
2210 // GOTOFF relocations ultimately require a section difference relocation.
2211 (void)allocateGOTEntries(0);
2212 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
2213 } else if (RelType
== ELF::R_X86_64_PC32
) {
2214 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
2215 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
2216 } else if (RelType
== ELF::R_X86_64_PC64
) {
2217 Value
.Addend
+= support::ulittle64_t::ref(
2218 computePlaceholderAddress(SectionID
, Offset
));
2219 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
2220 } else if (RelType
== ELF::R_X86_64_GOTTPOFF
) {
2221 processX86_64GOTTPOFFRelocation(SectionID
, Offset
, Value
, Addend
);
2222 } else if (RelType
== ELF::R_X86_64_TLSGD
||
2223 RelType
== ELF::R_X86_64_TLSLD
) {
2224 // The next relocation must be the relocation for __tls_get_addr.
2226 auto &GetAddrRelocation
= *RelI
;
2227 processX86_64TLSRelocation(SectionID
, Offset
, RelType
, Value
, Addend
,
2230 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
2232 } else if (Arch
== Triple::riscv32
|| Arch
== Triple::riscv64
) {
2233 // *_LO12 relocation receive information about a symbol from the
2234 // corresponding *_HI20 relocation, so we have to collect this information
2236 if (RelType
== ELF::R_RISCV_GOT_HI20
||
2237 RelType
== ELF::R_RISCV_PCREL_HI20
||
2238 RelType
== ELF::R_RISCV_TPREL_HI20
||
2239 RelType
== ELF::R_RISCV_TLS_GD_HI20
||
2240 RelType
== ELF::R_RISCV_TLS_GOT_HI20
) {
2241 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
2242 PendingRelocs
.push_back({Value
, RE
});
2244 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
2246 if (Arch
== Triple::x86
) {
2247 Value
.Addend
+= support::ulittle32_t::ref(
2248 computePlaceholderAddress(SectionID
, Offset
));
2250 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
2255 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID
,
2257 RelocationValueRef Value
,
2259 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2260 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
2261 // only mentions one optimization even though there are two different
2262 // code sequences for the Initial Exec TLS Model. We match the code to
2263 // find out which one was used.
2265 // A possible TLS code sequence and its replacement
2266 struct CodeSequence
{
2267 // The expected code sequence
2268 ArrayRef
<uint8_t> ExpectedCodeSequence
;
2269 // The negative offset of the GOTTPOFF relocation to the beginning of
2271 uint64_t TLSSequenceOffset
;
2272 // The new code sequence
2273 ArrayRef
<uint8_t> NewCodeSequence
;
2274 // The offset of the new TPOFF relocation
2275 uint64_t TpoffRelocationOffset
;
2278 std::array
<CodeSequence
, 2> CodeSequences
;
2280 // Initial Exec Code Model Sequence
2282 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
2283 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2284 0x00, // mov %fs:0, %rax
2285 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
2288 CodeSequences
[0].ExpectedCodeSequence
=
2289 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
2290 CodeSequences
[0].TLSSequenceOffset
= 12;
2292 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
2293 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
2294 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
2296 CodeSequences
[0].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
2297 CodeSequences
[0].TpoffRelocationOffset
= 12;
2300 // Initial Exec Code Model Sequence, II
2302 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
2303 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
2304 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
2306 CodeSequences
[1].ExpectedCodeSequence
=
2307 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
2308 CodeSequences
[1].TLSSequenceOffset
= 3;
2310 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
2311 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
2312 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
2314 CodeSequences
[1].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
2315 CodeSequences
[1].TpoffRelocationOffset
= 10;
2318 bool Resolved
= false;
2319 auto &Section
= Sections
[SectionID
];
2320 for (const auto &C
: CodeSequences
) {
2321 assert(C
.ExpectedCodeSequence
.size() == C
.NewCodeSequence
.size() &&
2322 "Old and new code sequences must have the same size");
2324 if (Offset
< C
.TLSSequenceOffset
||
2325 (Offset
- C
.TLSSequenceOffset
+ C
.NewCodeSequence
.size()) >
2326 Section
.getSize()) {
2327 // This can't be a matching sequence as it doesn't fit in the current
2332 auto TLSSequenceStartOffset
= Offset
- C
.TLSSequenceOffset
;
2333 auto *TLSSequence
= Section
.getAddressWithOffset(TLSSequenceStartOffset
);
2334 if (ArrayRef
<uint8_t>(TLSSequence
, C
.ExpectedCodeSequence
.size()) !=
2335 C
.ExpectedCodeSequence
) {
2339 memcpy(TLSSequence
, C
.NewCodeSequence
.data(), C
.NewCodeSequence
.size());
2341 // The original GOTTPOFF relocation has an addend as it is PC relative,
2342 // so it needs to be corrected. The TPOFF32 relocation is used as an
2343 // absolute value (which is an offset from %fs:0), so remove the addend
2345 RelocationEntry
RE(SectionID
,
2346 TLSSequenceStartOffset
+ C
.TpoffRelocationOffset
,
2347 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
2349 if (Value
.SymbolName
)
2350 addRelocationForSymbol(RE
, Value
.SymbolName
);
2352 addRelocationForSection(RE
, Value
.SectionID
);
2359 // The GOTTPOFF relocation was not used in one of the sequences
2360 // described in the spec, so we can't optimize it to a TPOFF
2362 uint64_t GOTOffset
= allocateGOTEntries(1);
2363 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
2364 ELF::R_X86_64_PC32
);
2365 RelocationEntry RE
=
2366 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_TPOFF64
);
2367 if (Value
.SymbolName
)
2368 addRelocationForSymbol(RE
, Value
.SymbolName
);
2370 addRelocationForSection(RE
, Value
.SectionID
);
2374 void RuntimeDyldELF::processX86_64TLSRelocation(
2375 unsigned SectionID
, uint64_t Offset
, uint64_t RelType
,
2376 RelocationValueRef Value
, int64_t Addend
,
2377 const RelocationRef
&GetAddrRelocation
) {
2378 // Since we are statically linking and have no additional DSOs, we can resolve
2379 // the relocation directly without using __tls_get_addr.
2380 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2381 // to replace it with the Local Exec relocation variant.
2383 // Find out whether the code was compiled with the large or small memory
2384 // model. For this we look at the next relocation which is the relocation
2385 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2386 // small code model, with a 64 bit relocation it's the large code model.
2387 bool IsSmallCodeModel
;
2388 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2389 bool IsGOTPCRel
= false;
2391 switch (GetAddrRelocation
.getType()) {
2392 case ELF::R_X86_64_GOTPCREL
:
2393 case ELF::R_X86_64_REX_GOTPCRELX
:
2394 case ELF::R_X86_64_GOTPCRELX
:
2397 case ELF::R_X86_64_PLT32
:
2398 IsSmallCodeModel
= true;
2400 case ELF::R_X86_64_PLTOFF64
:
2401 IsSmallCodeModel
= false;
2405 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2406 "expected PLT or GOT relocation for __tls_get_addr function");
2409 // The negative offset to the start of the TLS code sequence relative to
2410 // the offset of the TLSGD/TLSLD relocation
2411 uint64_t TLSSequenceOffset
;
2412 // The expected start of the code sequence
2413 ArrayRef
<uint8_t> ExpectedCodeSequence
;
2414 // The new TLS code sequence that will replace the existing code
2415 ArrayRef
<uint8_t> NewCodeSequence
;
2417 if (RelType
== ELF::R_X86_64_TLSGD
) {
2418 // The offset of the new TPOFF32 relocation (offset starting from the
2419 // beginning of the whole TLS sequence)
2420 uint64_t TpoffRelocOffset
;
2422 if (IsSmallCodeModel
) {
2424 static const std::initializer_list
<uint8_t> CodeSequence
= {
2425 0x66, // data16 (no-op prefix)
2426 0x48, 0x8d, 0x3d, 0x00, 0x00,
2427 0x00, 0x00, // lea <disp32>(%rip), %rdi
2428 0x66, 0x66, // two data16 prefixes
2429 0x48, // rex64 (no-op prefix)
2430 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2432 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2433 TLSSequenceOffset
= 4;
2435 // This code sequence is not described in the TLS spec but gcc
2436 // generates it sometimes.
2437 static const std::initializer_list
<uint8_t> CodeSequence
= {
2438 0x66, // data16 (no-op prefix)
2439 0x48, 0x8d, 0x3d, 0x00, 0x00,
2440 0x00, 0x00, // lea <disp32>(%rip), %rdi
2441 0x66, // data16 prefix (no-op prefix)
2442 0x48, // rex64 (no-op prefix)
2443 0xff, 0x15, 0x00, 0x00, 0x00,
2444 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2446 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2447 TLSSequenceOffset
= 4;
2450 // The replacement code for the small code model. It's the same for
2452 static const std::initializer_list
<uint8_t> SmallSequence
= {
2453 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2454 0x00, // mov %fs:0, %rax
2455 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2458 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2459 TpoffRelocOffset
= 12;
2461 static const std::initializer_list
<uint8_t> CodeSequence
= {
2462 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2464 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2465 0x00, // movabs $__tls_get_addr@pltoff, %rax
2466 0x48, 0x01, 0xd8, // add %rbx, %rax
2467 0xff, 0xd0 // call *%rax
2469 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2470 TLSSequenceOffset
= 3;
2472 // The replacement code for the large code model
2473 static const std::initializer_list
<uint8_t> LargeSequence
= {
2474 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2475 0x00, // mov %fs:0, %rax
2476 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2478 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2480 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2481 TpoffRelocOffset
= 12;
2484 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2485 // The new TPOFF32 relocations is used as an absolute offset from
2486 // %fs:0, so remove the TLSGD/TLSLD addend again.
2487 RelocationEntry
RE(SectionID
, Offset
- TLSSequenceOffset
+ TpoffRelocOffset
,
2488 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
2489 if (Value
.SymbolName
)
2490 addRelocationForSymbol(RE
, Value
.SymbolName
);
2492 addRelocationForSection(RE
, Value
.SectionID
);
2493 } else if (RelType
== ELF::R_X86_64_TLSLD
) {
2494 if (IsSmallCodeModel
) {
2496 static const std::initializer_list
<uint8_t> CodeSequence
= {
2497 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2498 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2500 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2501 TLSSequenceOffset
= 3;
2503 // The replacement code for the small code model
2504 static const std::initializer_list
<uint8_t> SmallSequence
= {
2505 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2506 0x64, 0x48, 0x8b, 0x04, 0x25,
2507 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2509 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2511 // This code sequence is not described in the TLS spec but gcc
2512 // generates it sometimes.
2513 static const std::initializer_list
<uint8_t> CodeSequence
= {
2514 0x48, 0x8d, 0x3d, 0x00,
2515 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2516 0xff, 0x15, 0x00, 0x00,
2518 // *__tls_get_addr@gotpcrel(%rip)
2520 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2521 TLSSequenceOffset
= 3;
2523 // The replacement is code is just like above but it needs to be
2525 static const std::initializer_list
<uint8_t> SmallSequence
= {
2526 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2527 0x64, 0x48, 0x8b, 0x04, 0x25,
2528 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2530 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2533 // This is the same sequence as for the TLSGD sequence with the large
2534 // memory model above
2535 static const std::initializer_list
<uint8_t> CodeSequence
= {
2536 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2538 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2539 0x48, // movabs $__tls_get_addr@pltoff, %rax
2540 0x01, 0xd8, // add %rbx, %rax
2541 0xff, 0xd0 // call *%rax
2543 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2544 TLSSequenceOffset
= 3;
2546 // The replacement code for the large code model
2547 static const std::initializer_list
<uint8_t> LargeSequence
= {
2548 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2549 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2550 0x00, // 10 byte nop
2551 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2553 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2556 llvm_unreachable("both TLS relocations handled above");
2559 assert(ExpectedCodeSequence
.size() == NewCodeSequence
.size() &&
2560 "Old and new code sequences must have the same size");
2562 auto &Section
= Sections
[SectionID
];
2563 if (Offset
< TLSSequenceOffset
||
2564 (Offset
- TLSSequenceOffset
+ NewCodeSequence
.size()) >
2565 Section
.getSize()) {
2566 report_fatal_error("unexpected end of section in TLS sequence");
2569 auto *TLSSequence
= Section
.getAddressWithOffset(Offset
- TLSSequenceOffset
);
2570 if (ArrayRef
<uint8_t>(TLSSequence
, ExpectedCodeSequence
.size()) !=
2571 ExpectedCodeSequence
) {
2573 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2576 memcpy(TLSSequence
, NewCodeSequence
.data(), NewCodeSequence
.size());
2579 size_t RuntimeDyldELF::getGOTEntrySize() {
2580 // We don't use the GOT in all of these cases, but it's essentially free
2581 // to put them all here.
2584 case Triple::x86_64
:
2585 case Triple::aarch64
:
2586 case Triple::aarch64_be
:
2587 case Triple::loongarch64
:
2589 case Triple::ppc64le
:
2590 case Triple::systemz
:
2591 Result
= sizeof(uint64_t);
2596 Result
= sizeof(uint32_t);
2599 case Triple::mipsel
:
2600 case Triple::mips64
:
2601 case Triple::mips64el
:
2602 if (IsMipsO32ABI
|| IsMipsN32ABI
)
2603 Result
= sizeof(uint32_t);
2604 else if (IsMipsN64ABI
)
2605 Result
= sizeof(uint64_t);
2607 llvm_unreachable("Mips ABI not handled");
2610 llvm_unreachable("Unsupported CPU type!");
2615 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
2616 if (GOTSectionID
== 0) {
2617 GOTSectionID
= Sections
.size();
2618 // Reserve a section id. We'll allocate the section later
2619 // once we know the total size
2620 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2622 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
2623 CurrentGOTIndex
+= no
;
2627 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
2628 unsigned GOTRelType
) {
2629 auto E
= GOTOffsetMap
.insert({Value
, 0});
2631 uint64_t GOTOffset
= allocateGOTEntries(1);
2633 // Create relocation for newly created GOT entry
2634 RelocationEntry RE
=
2635 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
2636 if (Value
.SymbolName
)
2637 addRelocationForSymbol(RE
, Value
.SymbolName
);
2639 addRelocationForSection(RE
, Value
.SectionID
);
2641 E
.first
->second
= GOTOffset
;
2644 return E
.first
->second
;
2647 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
2651 // Fill in the relative address of the GOT Entry into the stub
2652 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
2653 addRelocationForSection(GOTRE
, GOTSectionID
);
2656 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
2657 uint64_t SymbolOffset
,
2659 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
2662 void RuntimeDyldELF::processNewSymbol(const SymbolRef
&ObjSymbol
, SymbolTableEntry
& Symbol
) {
2663 // This should never return an error as `processNewSymbol` wouldn't have been
2664 // called if getFlags() returned an error before.
2665 auto ObjSymbolFlags
= cantFail(ObjSymbol
.getFlags());
2667 if (ObjSymbolFlags
& SymbolRef::SF_Indirect
) {
2668 if (IFuncStubSectionID
== 0) {
2669 // Create a dummy section for the ifunc stubs. It will be actually
2670 // allocated in finalizeLoad() below.
2671 IFuncStubSectionID
= Sections
.size();
2673 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2674 // First 64B are reserverd for the IFunc resolver
2675 IFuncStubOffset
= 64;
2678 IFuncStubs
.push_back(IFuncStub
{IFuncStubOffset
, Symbol
});
2679 // Modify the symbol so that it points to the ifunc stub instead of to the
2680 // resolver function.
2681 Symbol
= SymbolTableEntry(IFuncStubSectionID
, IFuncStubOffset
,
2683 IFuncStubOffset
+= getMaxIFuncStubSize();
2687 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
2688 ObjSectionToIDMap
&SectionMap
) {
2690 if (!PendingRelocs
.empty())
2691 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
2693 // Create the IFunc stubs if necessary. This must be done before processing
2694 // the GOT entries, as the IFunc stubs may create some.
2695 if (IFuncStubSectionID
!= 0) {
2696 uint8_t *IFuncStubsAddr
= MemMgr
.allocateCodeSection(
2697 IFuncStubOffset
, 1, IFuncStubSectionID
, ".text.__llvm_IFuncStubs");
2698 if (!IFuncStubsAddr
)
2699 return make_error
<RuntimeDyldError
>(
2700 "Unable to allocate memory for IFunc stubs!");
2701 Sections
[IFuncStubSectionID
] =
2702 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr
, IFuncStubOffset
,
2703 IFuncStubOffset
, 0);
2705 createIFuncResolver(IFuncStubsAddr
);
2707 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2708 << IFuncStubSectionID
<< " Addr: "
2709 << Sections
[IFuncStubSectionID
].getAddress() << '\n');
2710 for (auto &IFuncStub
: IFuncStubs
) {
2711 auto &Symbol
= IFuncStub
.OriginalSymbol
;
2712 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol
.getSectionID()
2713 << " Offset: " << format("%p", Symbol
.getOffset())
2714 << " IFuncStubOffset: "
2715 << format("%p\n", IFuncStub
.StubOffset
));
2716 createIFuncStub(IFuncStubSectionID
, 0, IFuncStub
.StubOffset
,
2717 Symbol
.getSectionID(), Symbol
.getOffset());
2720 IFuncStubSectionID
= 0;
2721 IFuncStubOffset
= 0;
2725 // If necessary, allocate the global offset table
2726 if (GOTSectionID
!= 0) {
2727 // Allocate memory for the section
2728 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
2729 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
2730 GOTSectionID
, ".got", false);
2732 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
2734 Sections
[GOTSectionID
] =
2735 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
2737 // For now, initialize all GOT entries to zero. We'll fill them in as
2738 // needed when GOT-based relocations are applied.
2739 memset(Addr
, 0, TotalSize
);
2740 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
2741 // To correctly resolve Mips GOT relocations, we need a mapping from
2742 // object's sections to GOTs.
2743 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
2745 if (SI
->relocation_begin() != SI
->relocation_end()) {
2746 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
2748 return make_error
<RuntimeDyldError
>(
2749 toString(RelSecOrErr
.takeError()));
2751 section_iterator RelocatedSection
= *RelSecOrErr
;
2752 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
2753 assert(i
!= SectionMap
.end());
2754 SectionToGOTMap
[i
->second
] = GOTSectionID
;
2757 GOTSymbolOffsets
.clear();
2761 // Look for and record the EH frame section.
2762 ObjSectionToIDMap::iterator i
, e
;
2763 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
2764 const SectionRef
&Section
= i
->first
;
2767 Expected
<StringRef
> NameOrErr
= Section
.getName();
2771 consumeError(NameOrErr
.takeError());
2773 if (Name
== ".eh_frame") {
2774 UnregisteredEHFrameSections
.push_back(i
->second
);
2779 GOTOffsetMap
.clear();
2781 CurrentGOTIndex
= 0;
2783 return Error::success();
2786 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
2790 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr
) const {
2791 if (Arch
== Triple::x86_64
) {
2792 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2793 // (see createIFuncStub() for details)
2794 // The following code first saves all registers that contain the original
2795 // function arguments as those registers are not saved by the resolver
2796 // function. %r11 is saved as well so that the GOT2 entry can be updated
2797 // afterwards. Then it calls the actual IFunc resolver function whose
2798 // address is stored in GOT2. After the resolver function returns, all
2799 // saved registers are restored and the return value is written to GOT1.
2800 // Finally, jump to the now resolved function.
2802 const uint8_t StubCode
[] = {
2807 0x41, 0x50, // push %r8
2808 0x41, 0x51, // push %r9
2809 0x41, 0x53, // push %r11
2810 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2811 0x41, 0x5b, // pop %r11
2812 0x41, 0x59, // pop %r9
2813 0x41, 0x58, // pop %r8
2818 0x49, 0x89, 0x03, // mov %rax,(%r11)
2819 0xff, 0xe0 // jmp *%rax
2822 static_assert(sizeof(StubCode
) <= 64,
2823 "maximum size of the IFunc resolver is 64B");
2824 memcpy(Addr
, StubCode
, sizeof(StubCode
));
2827 "IFunc resolver is not supported for target architecture");
2831 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID
,
2832 uint64_t IFuncResolverOffset
,
2833 uint64_t IFuncStubOffset
,
2834 unsigned IFuncSectionID
,
2835 uint64_t IFuncOffset
) {
2836 auto &IFuncStubSection
= Sections
[IFuncStubSectionID
];
2837 auto *Addr
= IFuncStubSection
.getAddressWithOffset(IFuncStubOffset
);
2839 if (Arch
== Triple::x86_64
) {
2840 // The first instruction loads a PC-relative address into %r11 which is a
2841 // GOT entry for this stub. This initially contains the address to the
2842 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2843 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2844 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2847 // The next instruction just jumps to the address contained in the GOT
2848 // entry. As mentioned above, we do this two-step jump by first setting
2849 // %r11 so that the IFunc resolver has access to it.
2851 // The IFunc resolver of course also needs to know the actual address of
2852 // the actual IFunc resolver function. This will be stored in a GOT entry
2853 // right next to the first one for this stub. So, the IFunc resolver will
2854 // be able to call it with %r11+8.
2856 // In total, two adjacent GOT entries (+relocation) and one additional
2857 // relocation are required:
2858 // GOT1: Address of the IFunc resolver.
2859 // GOT2: Address of the IFunc resolver function.
2860 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2861 uint64_t GOT1
= allocateGOTEntries(2);
2862 uint64_t GOT2
= GOT1
+ getGOTEntrySize();
2864 RelocationEntry
RE1(GOTSectionID
, GOT1
, ELF::R_X86_64_64
,
2865 IFuncResolverOffset
, {});
2866 addRelocationForSection(RE1
, IFuncStubSectionID
);
2867 RelocationEntry
RE2(GOTSectionID
, GOT2
, ELF::R_X86_64_64
, IFuncOffset
, {});
2868 addRelocationForSection(RE2
, IFuncSectionID
);
2870 const uint8_t StubCode
[] = {
2871 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2872 0x41, 0xff, 0x23 // jmpq *(%r11)
2874 assert(sizeof(StubCode
) <= getMaxIFuncStubSize() &&
2875 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2876 memcpy(Addr
, StubCode
, sizeof(StubCode
));
2878 // The PC-relative value starts 4 bytes from the end of the leaq
2879 // instruction, so the addend is -4.
2880 resolveGOTOffsetRelocation(IFuncStubSectionID
, IFuncStubOffset
+ 3,
2881 GOT1
- 4, ELF::R_X86_64_PC32
);
2883 report_fatal_error("IFunc stub is not supported for target architecture");
2887 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2888 if (Arch
== Triple::x86_64
) {
2894 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
2895 unsigned RelTy
= R
.getType();
2896 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
2897 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
2898 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
2900 if (Arch
== Triple::loongarch64
)
2901 return RelTy
== ELF::R_LARCH_GOT_PC_HI20
||
2902 RelTy
== ELF::R_LARCH_GOT_PC_LO12
;
2904 if (Arch
== Triple::x86_64
)
2905 return RelTy
== ELF::R_X86_64_GOTPCREL
||
2906 RelTy
== ELF::R_X86_64_GOTPCRELX
||
2907 RelTy
== ELF::R_X86_64_GOT64
||
2908 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
2912 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
2913 if (Arch
!= Triple::x86_64
)
2914 return true; // Conservative answer
2916 switch (R
.getType()) {
2918 return true; // Conservative answer
2921 case ELF::R_X86_64_GOTPCREL
:
2922 case ELF::R_X86_64_GOTPCRELX
:
2923 case ELF::R_X86_64_REX_GOTPCRELX
:
2924 case ELF::R_X86_64_GOTPC64
:
2925 case ELF::R_X86_64_GOT64
:
2926 case ELF::R_X86_64_GOTOFF64
:
2927 case ELF::R_X86_64_PC32
:
2928 case ELF::R_X86_64_PC64
:
2929 case ELF::R_X86_64_64
:
2930 // We know that these reloation types won't need a stub function. This list
2931 // can be extended as needed.