1 //===-- RuntimeDyldMachO.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // MachO support for MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
14 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
16 #include "RuntimeDyldImpl.h"
17 #include "llvm/Object/MachO.h"
18 #include "llvm/Support/Format.h"
21 class RuntimeDyldMachO
: public RuntimeDyldImpl
{
23 struct SectionOffsetPair
{
28 struct EHFrameRelatedSections
{
29 EHFrameRelatedSections()
30 : EHFrameSID(RTDYLD_INVALID_SECTION_ID
),
31 TextSID(RTDYLD_INVALID_SECTION_ID
),
32 ExceptTabSID(RTDYLD_INVALID_SECTION_ID
) {}
34 EHFrameRelatedSections(SID EH
, SID T
, SID Ex
)
35 : EHFrameSID(EH
), TextSID(T
), ExceptTabSID(Ex
) {}
41 // When a module is loaded we save the SectionID of the EH frame section
42 // in a table until we receive a request to register all unregistered
43 // EH frame sections with the memory manager.
44 SmallVector
<EHFrameRelatedSections
, 2> UnregisteredEHFrameSections
;
46 RuntimeDyldMachO(RuntimeDyld::MemoryManager
&MemMgr
,
47 JITSymbolResolver
&Resolver
)
48 : RuntimeDyldImpl(MemMgr
, Resolver
) {}
50 /// This convenience method uses memcpy to extract a contiguous addend (the
51 /// addend size and offset are taken from the corresponding fields of the RE).
52 int64_t memcpyAddend(const RelocationEntry
&RE
) const;
54 /// Given a relocation_iterator for a non-scattered relocation, construct a
55 /// RelocationEntry and fill in the common fields. The 'Addend' field is *not*
56 /// filled in, since immediate encodings are highly target/opcode specific.
57 /// For targets/opcodes with simple, contiguous immediates (e.g. X86) the
58 /// memcpyAddend method can be used to read the immediate.
59 RelocationEntry
getRelocationEntry(unsigned SectionID
,
60 const ObjectFile
&BaseTObj
,
61 const relocation_iterator
&RI
) const {
62 const MachOObjectFile
&Obj
=
63 static_cast<const MachOObjectFile
&>(BaseTObj
);
64 MachO::any_relocation_info RelInfo
=
65 Obj
.getRelocation(RI
->getRawDataRefImpl());
67 bool IsPCRel
= Obj
.getAnyRelocationPCRel(RelInfo
);
68 unsigned Size
= Obj
.getAnyRelocationLength(RelInfo
);
69 uint64_t Offset
= RI
->getOffset();
70 MachO::RelocationInfoType RelType
=
71 static_cast<MachO::RelocationInfoType
>(Obj
.getAnyRelocationType(RelInfo
));
73 return RelocationEntry(SectionID
, Offset
, RelType
, 0, IsPCRel
, Size
);
76 /// Process a scattered vanilla relocation.
77 Expected
<relocation_iterator
>
78 processScatteredVANILLA(unsigned SectionID
, relocation_iterator RelI
,
79 const ObjectFile
&BaseObjT
,
80 RuntimeDyldMachO::ObjSectionToIDMap
&ObjSectionToID
,
81 bool TargetIsLocalThumbFunc
= false);
83 /// Construct a RelocationValueRef representing the relocation target.
84 /// For Symbols in known sections, this will return a RelocationValueRef
85 /// representing a (SectionID, Offset) pair.
86 /// For Symbols whose section is not known, this will return a
87 /// (SymbolName, Offset) pair, where the Offset is taken from the instruction
88 /// immediate (held in RE.Addend).
89 /// In both cases the Addend field is *NOT* fixed up to be PC-relative. That
90 /// should be done by the caller where appropriate by calling makePCRel on
91 /// the RelocationValueRef.
92 Expected
<RelocationValueRef
>
93 getRelocationValueRef(const ObjectFile
&BaseTObj
,
94 const relocation_iterator
&RI
,
95 const RelocationEntry
&RE
,
96 ObjSectionToIDMap
&ObjSectionToID
);
98 /// Make the RelocationValueRef addend PC-relative.
99 void makeValueAddendPCRel(RelocationValueRef
&Value
,
100 const relocation_iterator
&RI
,
101 unsigned OffsetToNextPC
);
103 /// Dump information about the relocation entry (RE) and resolved value.
104 void dumpRelocationToResolve(const RelocationEntry
&RE
, uint64_t Value
) const;
106 // Return a section iterator for the section containing the given address.
107 static section_iterator
getSectionByAddress(const MachOObjectFile
&Obj
,
111 // Populate __pointers section.
112 Error
populateIndirectSymbolPointersSection(const MachOObjectFile
&Obj
,
113 const SectionRef
&PTSection
,
114 unsigned PTSectionID
);
118 /// Create a RuntimeDyldMachO instance for the given target architecture.
119 static std::unique_ptr
<RuntimeDyldMachO
>
120 create(Triple::ArchType Arch
,
121 RuntimeDyld::MemoryManager
&MemMgr
,
122 JITSymbolResolver
&Resolver
);
124 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
125 loadObject(const object::ObjectFile
&O
) override
;
127 SectionEntry
&getSection(unsigned SectionID
) { return Sections
[SectionID
]; }
129 bool isCompatibleFile(const object::ObjectFile
&Obj
) const override
;
132 /// RuntimeDyldMachOTarget - Templated base class for generic MachO linker
133 /// algorithms and data structures.
135 /// Concrete, target specific sub-classes can be accessed via the impl()
136 /// methods. (i.e. the RuntimeDyldMachO hierarchy uses the Curiously
137 /// Recurring Template Idiom). Concrete subclasses for each target
138 /// can be found in ./Targets.
139 template <typename Impl
>
140 class RuntimeDyldMachOCRTPBase
: public RuntimeDyldMachO
{
142 Impl
&impl() { return static_cast<Impl
&>(*this); }
143 const Impl
&impl() const { return static_cast<const Impl
&>(*this); }
145 unsigned char *processFDE(uint8_t *P
, int64_t DeltaForText
,
149 RuntimeDyldMachOCRTPBase(RuntimeDyld::MemoryManager
&MemMgr
,
150 JITSymbolResolver
&Resolver
)
151 : RuntimeDyldMachO(MemMgr
, Resolver
) {}
153 Error
finalizeLoad(const ObjectFile
&Obj
,
154 ObjSectionToIDMap
&SectionMap
) override
;
155 void registerEHFrames() override
;
158 } // end namespace llvm
160 #endif // LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H