[analyzer][Z3] Restore the original timeout of 15s (#118291)
[llvm-project.git] / llvm / lib / IR / AsmWriter.cpp
bloba37a8901489cf704579dd9d01925f19977247cb3
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/AssemblyAnnotationWriter.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugProgramInstruction.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalObject.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRPrintingPasses.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/TypeFinder.h"
64 #include "llvm/IR/TypedPointerType.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <memory>
83 #include <optional>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
98 using OrderMap = MapVector<const Value *, unsigned>;
100 using UseListOrderMap =
101 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
105 static const Value *skipMetadataWrapper(const Value *V) {
106 if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108 return VAM->getValue();
109 return V;
112 static void orderValue(const Value *V, OrderMap &OM) {
113 if (OM.lookup(V))
114 return;
116 if (const Constant *C = dyn_cast<Constant>(V))
117 if (C->getNumOperands() && !isa<GlobalValue>(C))
118 for (const Value *Op : C->operands())
119 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120 orderValue(Op, OM);
122 // Note: we cannot cache this lookup above, since inserting into the map
123 // changes the map's size, and thus affects the other IDs.
124 unsigned ID = OM.size() + 1;
125 OM[V] = ID;
128 static OrderMap orderModule(const Module *M) {
129 OrderMap OM;
131 for (const GlobalVariable &G : M->globals()) {
132 if (G.hasInitializer())
133 if (!isa<GlobalValue>(G.getInitializer()))
134 orderValue(G.getInitializer(), OM);
135 orderValue(&G, OM);
137 for (const GlobalAlias &A : M->aliases()) {
138 if (!isa<GlobalValue>(A.getAliasee()))
139 orderValue(A.getAliasee(), OM);
140 orderValue(&A, OM);
142 for (const GlobalIFunc &I : M->ifuncs()) {
143 if (!isa<GlobalValue>(I.getResolver()))
144 orderValue(I.getResolver(), OM);
145 orderValue(&I, OM);
147 for (const Function &F : *M) {
148 for (const Use &U : F.operands())
149 if (!isa<GlobalValue>(U.get()))
150 orderValue(U.get(), OM);
152 orderValue(&F, OM);
154 if (F.isDeclaration())
155 continue;
157 for (const Argument &A : F.args())
158 orderValue(&A, OM);
159 for (const BasicBlock &BB : F) {
160 orderValue(&BB, OM);
161 for (const Instruction &I : BB) {
162 for (const Value *Op : I.operands()) {
163 Op = skipMetadataWrapper(Op);
164 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165 isa<InlineAsm>(*Op))
166 orderValue(Op, OM);
168 orderValue(&I, OM);
172 return OM;
175 static std::vector<unsigned>
176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177 // Predict use-list order for this one.
178 using Entry = std::pair<const Use *, unsigned>;
179 SmallVector<Entry, 64> List;
180 for (const Use &U : V->uses())
181 // Check if this user will be serialized.
182 if (OM.lookup(U.getUser()))
183 List.push_back(std::make_pair(&U, List.size()));
185 if (List.size() < 2)
186 // We may have lost some users.
187 return {};
189 // When referencing a value before its declaration, a temporary value is
190 // created, which will later be RAUWed with the actual value. This reverses
191 // the use list. This happens for all values apart from basic blocks.
192 bool GetsReversed = !isa<BasicBlock>(V);
193 if (auto *BA = dyn_cast<BlockAddress>(V))
194 ID = OM.lookup(BA->getBasicBlock());
195 llvm::sort(List, [&](const Entry &L, const Entry &R) {
196 const Use *LU = L.first;
197 const Use *RU = R.first;
198 if (LU == RU)
199 return false;
201 auto LID = OM.lookup(LU->getUser());
202 auto RID = OM.lookup(RU->getUser());
204 // If ID is 4, then expect: 7 6 5 1 2 3.
205 if (LID < RID) {
206 if (GetsReversed)
207 if (RID <= ID)
208 return true;
209 return false;
211 if (RID < LID) {
212 if (GetsReversed)
213 if (LID <= ID)
214 return false;
215 return true;
218 // LID and RID are equal, so we have different operands of the same user.
219 // Assume operands are added in order for all instructions.
220 if (GetsReversed)
221 if (LID <= ID)
222 return LU->getOperandNo() < RU->getOperandNo();
223 return LU->getOperandNo() > RU->getOperandNo();
226 if (llvm::is_sorted(List, llvm::less_second()))
227 // Order is already correct.
228 return {};
230 // Store the shuffle.
231 std::vector<unsigned> Shuffle(List.size());
232 for (size_t I = 0, E = List.size(); I != E; ++I)
233 Shuffle[I] = List[I].second;
234 return Shuffle;
237 static UseListOrderMap predictUseListOrder(const Module *M) {
238 OrderMap OM = orderModule(M);
239 UseListOrderMap ULOM;
240 for (const auto &Pair : OM) {
241 const Value *V = Pair.first;
242 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243 continue;
245 std::vector<unsigned> Shuffle =
246 predictValueUseListOrder(V, Pair.second, OM);
247 if (Shuffle.empty())
248 continue;
250 const Function *F = nullptr;
251 if (auto *I = dyn_cast<Instruction>(V))
252 F = I->getFunction();
253 if (auto *A = dyn_cast<Argument>(V))
254 F = A->getParent();
255 if (auto *BB = dyn_cast<BasicBlock>(V))
256 F = BB->getParent();
257 ULOM[F][V] = std::move(Shuffle);
259 return ULOM;
262 static const Module *getModuleFromVal(const Value *V) {
263 if (const Argument *MA = dyn_cast<Argument>(V))
264 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
266 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
269 if (const Instruction *I = dyn_cast<Instruction>(V)) {
270 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271 return M ? M->getParent() : nullptr;
274 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275 return GV->getParent();
277 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278 for (const User *U : MAV->users())
279 if (isa<Instruction>(U))
280 if (const Module *M = getModuleFromVal(U))
281 return M;
282 return nullptr;
285 return nullptr;
288 static const Module *getModuleFromDPI(const DbgMarker *Marker) {
289 const Function *M =
290 Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
291 return M ? M->getParent() : nullptr;
294 static const Module *getModuleFromDPI(const DbgRecord *DR) {
295 return DR->getMarker() ? getModuleFromDPI(DR->getMarker()) : nullptr;
298 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
299 switch (cc) {
300 default: Out << "cc" << cc; break;
301 case CallingConv::Fast: Out << "fastcc"; break;
302 case CallingConv::Cold: Out << "coldcc"; break;
303 case CallingConv::AnyReg: Out << "anyregcc"; break;
304 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
305 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
306 case CallingConv::PreserveNone: Out << "preserve_nonecc"; break;
307 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
308 case CallingConv::GHC: Out << "ghccc"; break;
309 case CallingConv::Tail: Out << "tailcc"; break;
310 case CallingConv::GRAAL: Out << "graalcc"; break;
311 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
312 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
313 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
314 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
315 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
316 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
317 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
318 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
319 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
320 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
321 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
322 case CallingConv::AArch64_SVE_VectorCall:
323 Out << "aarch64_sve_vector_pcs";
324 break;
325 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
326 Out << "aarch64_sme_preservemost_from_x0";
327 break;
328 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1:
329 Out << "aarch64_sme_preservemost_from_x1";
330 break;
331 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
332 Out << "aarch64_sme_preservemost_from_x2";
333 break;
334 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
335 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
336 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
337 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
338 case CallingConv::PTX_Device: Out << "ptx_device"; break;
339 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
340 case CallingConv::Win64: Out << "win64cc"; break;
341 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
342 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
343 case CallingConv::Swift: Out << "swiftcc"; break;
344 case CallingConv::SwiftTail: Out << "swifttailcc"; break;
345 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
346 case CallingConv::DUMMY_HHVM:
347 Out << "hhvmcc";
348 break;
349 case CallingConv::DUMMY_HHVM_C:
350 Out << "hhvm_ccc";
351 break;
352 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
353 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
354 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
355 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
356 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
357 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
358 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
359 case CallingConv::AMDGPU_CS_Chain:
360 Out << "amdgpu_cs_chain";
361 break;
362 case CallingConv::AMDGPU_CS_ChainPreserve:
363 Out << "amdgpu_cs_chain_preserve";
364 break;
365 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
366 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
367 case CallingConv::M68k_RTD: Out << "m68k_rtdcc"; break;
368 case CallingConv::RISCV_VectorCall:
369 Out << "riscv_vector_cc";
370 break;
374 enum PrefixType {
375 GlobalPrefix,
376 ComdatPrefix,
377 LabelPrefix,
378 LocalPrefix,
379 NoPrefix
382 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
383 assert(!Name.empty() && "Cannot get empty name!");
385 // Scan the name to see if it needs quotes first.
386 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
387 if (!NeedsQuotes) {
388 for (unsigned char C : Name) {
389 // By making this unsigned, the value passed in to isalnum will always be
390 // in the range 0-255. This is important when building with MSVC because
391 // its implementation will assert. This situation can arise when dealing
392 // with UTF-8 multibyte characters.
393 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
394 C != '_') {
395 NeedsQuotes = true;
396 break;
401 // If we didn't need any quotes, just write out the name in one blast.
402 if (!NeedsQuotes) {
403 OS << Name;
404 return;
407 // Okay, we need quotes. Output the quotes and escape any scary characters as
408 // needed.
409 OS << '"';
410 printEscapedString(Name, OS);
411 OS << '"';
414 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
415 /// (if the string only contains simple characters) or is surrounded with ""'s
416 /// (if it has special chars in it). Print it out.
417 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
418 switch (Prefix) {
419 case NoPrefix:
420 break;
421 case GlobalPrefix:
422 OS << '@';
423 break;
424 case ComdatPrefix:
425 OS << '$';
426 break;
427 case LabelPrefix:
428 break;
429 case LocalPrefix:
430 OS << '%';
431 break;
433 printLLVMNameWithoutPrefix(OS, Name);
436 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
437 /// (if the string only contains simple characters) or is surrounded with ""'s
438 /// (if it has special chars in it). Print it out.
439 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
440 PrintLLVMName(OS, V->getName(),
441 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
444 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
445 Out << ", <";
446 if (isa<ScalableVectorType>(Ty))
447 Out << "vscale x ";
448 Out << Mask.size() << " x i32> ";
449 bool FirstElt = true;
450 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
451 Out << "zeroinitializer";
452 } else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
453 Out << "poison";
454 } else {
455 Out << "<";
456 for (int Elt : Mask) {
457 if (FirstElt)
458 FirstElt = false;
459 else
460 Out << ", ";
461 Out << "i32 ";
462 if (Elt == PoisonMaskElem)
463 Out << "poison";
464 else
465 Out << Elt;
467 Out << ">";
471 namespace {
473 class TypePrinting {
474 public:
475 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
477 TypePrinting(const TypePrinting &) = delete;
478 TypePrinting &operator=(const TypePrinting &) = delete;
480 /// The named types that are used by the current module.
481 TypeFinder &getNamedTypes();
483 /// The numbered types, number to type mapping.
484 std::vector<StructType *> &getNumberedTypes();
486 bool empty();
488 void print(Type *Ty, raw_ostream &OS);
490 void printStructBody(StructType *Ty, raw_ostream &OS);
492 private:
493 void incorporateTypes();
495 /// A module to process lazily when needed. Set to nullptr as soon as used.
496 const Module *DeferredM;
498 TypeFinder NamedTypes;
500 // The numbered types, along with their value.
501 DenseMap<StructType *, unsigned> Type2Number;
503 std::vector<StructType *> NumberedTypes;
506 } // end anonymous namespace
508 TypeFinder &TypePrinting::getNamedTypes() {
509 incorporateTypes();
510 return NamedTypes;
513 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
514 incorporateTypes();
516 // We know all the numbers that each type is used and we know that it is a
517 // dense assignment. Convert the map to an index table, if it's not done
518 // already (judging from the sizes):
519 if (NumberedTypes.size() == Type2Number.size())
520 return NumberedTypes;
522 NumberedTypes.resize(Type2Number.size());
523 for (const auto &P : Type2Number) {
524 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
525 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
526 NumberedTypes[P.second] = P.first;
528 return NumberedTypes;
531 bool TypePrinting::empty() {
532 incorporateTypes();
533 return NamedTypes.empty() && Type2Number.empty();
536 void TypePrinting::incorporateTypes() {
537 if (!DeferredM)
538 return;
540 NamedTypes.run(*DeferredM, false);
541 DeferredM = nullptr;
543 // The list of struct types we got back includes all the struct types, split
544 // the unnamed ones out to a numbering and remove the anonymous structs.
545 unsigned NextNumber = 0;
547 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
548 for (StructType *STy : NamedTypes) {
549 // Ignore anonymous types.
550 if (STy->isLiteral())
551 continue;
553 if (STy->getName().empty())
554 Type2Number[STy] = NextNumber++;
555 else
556 *NextToUse++ = STy;
559 NamedTypes.erase(NextToUse, NamedTypes.end());
562 /// Write the specified type to the specified raw_ostream, making use of type
563 /// names or up references to shorten the type name where possible.
564 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
565 switch (Ty->getTypeID()) {
566 case Type::VoidTyID: OS << "void"; return;
567 case Type::HalfTyID: OS << "half"; return;
568 case Type::BFloatTyID: OS << "bfloat"; return;
569 case Type::FloatTyID: OS << "float"; return;
570 case Type::DoubleTyID: OS << "double"; return;
571 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
572 case Type::FP128TyID: OS << "fp128"; return;
573 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
574 case Type::LabelTyID: OS << "label"; return;
575 case Type::MetadataTyID:
576 OS << "metadata";
577 return;
578 case Type::X86_AMXTyID: OS << "x86_amx"; return;
579 case Type::TokenTyID: OS << "token"; return;
580 case Type::IntegerTyID:
581 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
582 return;
584 case Type::FunctionTyID: {
585 FunctionType *FTy = cast<FunctionType>(Ty);
586 print(FTy->getReturnType(), OS);
587 OS << " (";
588 ListSeparator LS;
589 for (Type *Ty : FTy->params()) {
590 OS << LS;
591 print(Ty, OS);
593 if (FTy->isVarArg())
594 OS << LS << "...";
595 OS << ')';
596 return;
598 case Type::StructTyID: {
599 StructType *STy = cast<StructType>(Ty);
601 if (STy->isLiteral())
602 return printStructBody(STy, OS);
604 if (!STy->getName().empty())
605 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
607 incorporateTypes();
608 const auto I = Type2Number.find(STy);
609 if (I != Type2Number.end())
610 OS << '%' << I->second;
611 else // Not enumerated, print the hex address.
612 OS << "%\"type " << STy << '\"';
613 return;
615 case Type::PointerTyID: {
616 PointerType *PTy = cast<PointerType>(Ty);
617 OS << "ptr";
618 if (unsigned AddressSpace = PTy->getAddressSpace())
619 OS << " addrspace(" << AddressSpace << ')';
620 return;
622 case Type::ArrayTyID: {
623 ArrayType *ATy = cast<ArrayType>(Ty);
624 OS << '[' << ATy->getNumElements() << " x ";
625 print(ATy->getElementType(), OS);
626 OS << ']';
627 return;
629 case Type::FixedVectorTyID:
630 case Type::ScalableVectorTyID: {
631 VectorType *PTy = cast<VectorType>(Ty);
632 ElementCount EC = PTy->getElementCount();
633 OS << "<";
634 if (EC.isScalable())
635 OS << "vscale x ";
636 OS << EC.getKnownMinValue() << " x ";
637 print(PTy->getElementType(), OS);
638 OS << '>';
639 return;
641 case Type::TypedPointerTyID: {
642 TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
643 OS << "typedptr(" << *TPTy->getElementType() << ", "
644 << TPTy->getAddressSpace() << ")";
645 return;
647 case Type::TargetExtTyID:
648 TargetExtType *TETy = cast<TargetExtType>(Ty);
649 OS << "target(\"";
650 printEscapedString(Ty->getTargetExtName(), OS);
651 OS << "\"";
652 for (Type *Inner : TETy->type_params()) {
653 OS << ", ";
654 Inner->print(OS, /*IsForDebug=*/false, /*NoDetails=*/true);
656 for (unsigned IntParam : TETy->int_params())
657 OS << ", " << IntParam;
658 OS << ")";
659 return;
661 llvm_unreachable("Invalid TypeID");
664 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
665 if (STy->isOpaque()) {
666 OS << "opaque";
667 return;
670 if (STy->isPacked())
671 OS << '<';
673 if (STy->getNumElements() == 0) {
674 OS << "{}";
675 } else {
676 OS << "{ ";
677 ListSeparator LS;
678 for (Type *Ty : STy->elements()) {
679 OS << LS;
680 print(Ty, OS);
683 OS << " }";
685 if (STy->isPacked())
686 OS << '>';
689 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
691 namespace llvm {
693 //===----------------------------------------------------------------------===//
694 // SlotTracker Class: Enumerate slot numbers for unnamed values
695 //===----------------------------------------------------------------------===//
696 /// This class provides computation of slot numbers for LLVM Assembly writing.
698 class SlotTracker : public AbstractSlotTrackerStorage {
699 public:
700 /// ValueMap - A mapping of Values to slot numbers.
701 using ValueMap = DenseMap<const Value *, unsigned>;
703 private:
704 /// TheModule - The module for which we are holding slot numbers.
705 const Module* TheModule;
707 /// TheFunction - The function for which we are holding slot numbers.
708 const Function* TheFunction = nullptr;
709 bool FunctionProcessed = false;
710 bool ShouldInitializeAllMetadata;
712 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
713 ProcessModuleHookFn;
714 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
715 ProcessFunctionHookFn;
717 /// The summary index for which we are holding slot numbers.
718 const ModuleSummaryIndex *TheIndex = nullptr;
720 /// mMap - The slot map for the module level data.
721 ValueMap mMap;
722 unsigned mNext = 0;
724 /// fMap - The slot map for the function level data.
725 ValueMap fMap;
726 unsigned fNext = 0;
728 /// mdnMap - Map for MDNodes.
729 DenseMap<const MDNode*, unsigned> mdnMap;
730 unsigned mdnNext = 0;
732 /// asMap - The slot map for attribute sets.
733 DenseMap<AttributeSet, unsigned> asMap;
734 unsigned asNext = 0;
736 /// ModulePathMap - The slot map for Module paths used in the summary index.
737 StringMap<unsigned> ModulePathMap;
738 unsigned ModulePathNext = 0;
740 /// GUIDMap - The slot map for GUIDs used in the summary index.
741 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
742 unsigned GUIDNext = 0;
744 /// TypeIdMap - The slot map for type ids used in the summary index.
745 StringMap<unsigned> TypeIdMap;
746 unsigned TypeIdNext = 0;
748 /// TypeIdCompatibleVtableMap - The slot map for type compatible vtable ids
749 /// used in the summary index.
750 StringMap<unsigned> TypeIdCompatibleVtableMap;
751 unsigned TypeIdCompatibleVtableNext = 0;
753 public:
754 /// Construct from a module.
756 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
757 /// functions, giving correct numbering for metadata referenced only from
758 /// within a function (even if no functions have been initialized).
759 explicit SlotTracker(const Module *M,
760 bool ShouldInitializeAllMetadata = false);
762 /// Construct from a function, starting out in incorp state.
764 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
765 /// functions, giving correct numbering for metadata referenced only from
766 /// within a function (even if no functions have been initialized).
767 explicit SlotTracker(const Function *F,
768 bool ShouldInitializeAllMetadata = false);
770 /// Construct from a module summary index.
771 explicit SlotTracker(const ModuleSummaryIndex *Index);
773 SlotTracker(const SlotTracker &) = delete;
774 SlotTracker &operator=(const SlotTracker &) = delete;
776 ~SlotTracker() = default;
778 void setProcessHook(
779 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
780 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
781 const Function *, bool)>);
783 unsigned getNextMetadataSlot() override { return mdnNext; }
785 void createMetadataSlot(const MDNode *N) override;
787 /// Return the slot number of the specified value in it's type
788 /// plane. If something is not in the SlotTracker, return -1.
789 int getLocalSlot(const Value *V);
790 int getGlobalSlot(const GlobalValue *V);
791 int getMetadataSlot(const MDNode *N) override;
792 int getAttributeGroupSlot(AttributeSet AS);
793 int getModulePathSlot(StringRef Path);
794 int getGUIDSlot(GlobalValue::GUID GUID);
795 int getTypeIdSlot(StringRef Id);
796 int getTypeIdCompatibleVtableSlot(StringRef Id);
798 /// If you'd like to deal with a function instead of just a module, use
799 /// this method to get its data into the SlotTracker.
800 void incorporateFunction(const Function *F) {
801 TheFunction = F;
802 FunctionProcessed = false;
805 const Function *getFunction() const { return TheFunction; }
807 /// After calling incorporateFunction, use this method to remove the
808 /// most recently incorporated function from the SlotTracker. This
809 /// will reset the state of the machine back to just the module contents.
810 void purgeFunction();
812 /// MDNode map iterators.
813 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
815 mdn_iterator mdn_begin() { return mdnMap.begin(); }
816 mdn_iterator mdn_end() { return mdnMap.end(); }
817 unsigned mdn_size() const { return mdnMap.size(); }
818 bool mdn_empty() const { return mdnMap.empty(); }
820 /// AttributeSet map iterators.
821 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
823 as_iterator as_begin() { return asMap.begin(); }
824 as_iterator as_end() { return asMap.end(); }
825 unsigned as_size() const { return asMap.size(); }
826 bool as_empty() const { return asMap.empty(); }
828 /// GUID map iterators.
829 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
831 /// These functions do the actual initialization.
832 inline void initializeIfNeeded();
833 int initializeIndexIfNeeded();
835 // Implementation Details
836 private:
837 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
838 void CreateModuleSlot(const GlobalValue *V);
840 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
841 void CreateMetadataSlot(const MDNode *N);
843 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
844 void CreateFunctionSlot(const Value *V);
846 /// Insert the specified AttributeSet into the slot table.
847 void CreateAttributeSetSlot(AttributeSet AS);
849 inline void CreateModulePathSlot(StringRef Path);
850 void CreateGUIDSlot(GlobalValue::GUID GUID);
851 void CreateTypeIdSlot(StringRef Id);
852 void CreateTypeIdCompatibleVtableSlot(StringRef Id);
854 /// Add all of the module level global variables (and their initializers)
855 /// and function declarations, but not the contents of those functions.
856 void processModule();
857 // Returns number of allocated slots
858 int processIndex();
860 /// Add all of the functions arguments, basic blocks, and instructions.
861 void processFunction();
863 /// Add the metadata directly attached to a GlobalObject.
864 void processGlobalObjectMetadata(const GlobalObject &GO);
866 /// Add all of the metadata from a function.
867 void processFunctionMetadata(const Function &F);
869 /// Add all of the metadata from an instruction.
870 void processInstructionMetadata(const Instruction &I);
872 /// Add all of the metadata from a DbgRecord.
873 void processDbgRecordMetadata(const DbgRecord &DVR);
876 } // end namespace llvm
878 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
879 const Function *F)
880 : M(M), F(F), Machine(&Machine) {}
882 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
883 bool ShouldInitializeAllMetadata)
884 : ShouldCreateStorage(M),
885 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
887 ModuleSlotTracker::~ModuleSlotTracker() = default;
889 SlotTracker *ModuleSlotTracker::getMachine() {
890 if (!ShouldCreateStorage)
891 return Machine;
893 ShouldCreateStorage = false;
894 MachineStorage =
895 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
896 Machine = MachineStorage.get();
897 if (ProcessModuleHookFn)
898 Machine->setProcessHook(ProcessModuleHookFn);
899 if (ProcessFunctionHookFn)
900 Machine->setProcessHook(ProcessFunctionHookFn);
901 return Machine;
904 void ModuleSlotTracker::incorporateFunction(const Function &F) {
905 // Using getMachine() may lazily create the slot tracker.
906 if (!getMachine())
907 return;
909 // Nothing to do if this is the right function already.
910 if (this->F == &F)
911 return;
912 if (this->F)
913 Machine->purgeFunction();
914 Machine->incorporateFunction(&F);
915 this->F = &F;
918 int ModuleSlotTracker::getLocalSlot(const Value *V) {
919 assert(F && "No function incorporated");
920 return Machine->getLocalSlot(V);
923 void ModuleSlotTracker::setProcessHook(
924 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
925 Fn) {
926 ProcessModuleHookFn = Fn;
929 void ModuleSlotTracker::setProcessHook(
930 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
931 Fn) {
932 ProcessFunctionHookFn = Fn;
935 static SlotTracker *createSlotTracker(const Value *V) {
936 if (const Argument *FA = dyn_cast<Argument>(V))
937 return new SlotTracker(FA->getParent());
939 if (const Instruction *I = dyn_cast<Instruction>(V))
940 if (I->getParent())
941 return new SlotTracker(I->getParent()->getParent());
943 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
944 return new SlotTracker(BB->getParent());
946 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
947 return new SlotTracker(GV->getParent());
949 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
950 return new SlotTracker(GA->getParent());
952 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
953 return new SlotTracker(GIF->getParent());
955 if (const Function *Func = dyn_cast<Function>(V))
956 return new SlotTracker(Func);
958 return nullptr;
961 #if 0
962 #define ST_DEBUG(X) dbgs() << X
963 #else
964 #define ST_DEBUG(X)
965 #endif
967 // Module level constructor. Causes the contents of the Module (sans functions)
968 // to be added to the slot table.
969 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
970 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
972 // Function level constructor. Causes the contents of the Module and the one
973 // function provided to be added to the slot table.
974 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
975 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
976 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
978 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
979 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
981 inline void SlotTracker::initializeIfNeeded() {
982 if (TheModule) {
983 processModule();
984 TheModule = nullptr; ///< Prevent re-processing next time we're called.
987 if (TheFunction && !FunctionProcessed)
988 processFunction();
991 int SlotTracker::initializeIndexIfNeeded() {
992 if (!TheIndex)
993 return 0;
994 int NumSlots = processIndex();
995 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
996 return NumSlots;
999 // Iterate through all the global variables, functions, and global
1000 // variable initializers and create slots for them.
1001 void SlotTracker::processModule() {
1002 ST_DEBUG("begin processModule!\n");
1004 // Add all of the unnamed global variables to the value table.
1005 for (const GlobalVariable &Var : TheModule->globals()) {
1006 if (!Var.hasName())
1007 CreateModuleSlot(&Var);
1008 processGlobalObjectMetadata(Var);
1009 auto Attrs = Var.getAttributes();
1010 if (Attrs.hasAttributes())
1011 CreateAttributeSetSlot(Attrs);
1014 for (const GlobalAlias &A : TheModule->aliases()) {
1015 if (!A.hasName())
1016 CreateModuleSlot(&A);
1019 for (const GlobalIFunc &I : TheModule->ifuncs()) {
1020 if (!I.hasName())
1021 CreateModuleSlot(&I);
1024 // Add metadata used by named metadata.
1025 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1026 for (const MDNode *N : NMD.operands())
1027 CreateMetadataSlot(N);
1030 for (const Function &F : *TheModule) {
1031 if (!F.hasName())
1032 // Add all the unnamed functions to the table.
1033 CreateModuleSlot(&F);
1035 if (ShouldInitializeAllMetadata)
1036 processFunctionMetadata(F);
1038 // Add all the function attributes to the table.
1039 // FIXME: Add attributes of other objects?
1040 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1041 if (FnAttrs.hasAttributes())
1042 CreateAttributeSetSlot(FnAttrs);
1045 if (ProcessModuleHookFn)
1046 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1048 ST_DEBUG("end processModule!\n");
1051 // Process the arguments, basic blocks, and instructions of a function.
1052 void SlotTracker::processFunction() {
1053 ST_DEBUG("begin processFunction!\n");
1054 fNext = 0;
1056 // Process function metadata if it wasn't hit at the module-level.
1057 if (!ShouldInitializeAllMetadata)
1058 processFunctionMetadata(*TheFunction);
1060 // Add all the function arguments with no names.
1061 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1062 AE = TheFunction->arg_end(); AI != AE; ++AI)
1063 if (!AI->hasName())
1064 CreateFunctionSlot(&*AI);
1066 ST_DEBUG("Inserting Instructions:\n");
1068 // Add all of the basic blocks and instructions with no names.
1069 for (auto &BB : *TheFunction) {
1070 if (!BB.hasName())
1071 CreateFunctionSlot(&BB);
1073 for (auto &I : BB) {
1074 if (!I.getType()->isVoidTy() && !I.hasName())
1075 CreateFunctionSlot(&I);
1077 // We allow direct calls to any llvm.foo function here, because the
1078 // target may not be linked into the optimizer.
1079 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1080 // Add all the call attributes to the table.
1081 AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1082 if (Attrs.hasAttributes())
1083 CreateAttributeSetSlot(Attrs);
1088 if (ProcessFunctionHookFn)
1089 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1091 FunctionProcessed = true;
1093 ST_DEBUG("end processFunction!\n");
1096 // Iterate through all the GUID in the index and create slots for them.
1097 int SlotTracker::processIndex() {
1098 ST_DEBUG("begin processIndex!\n");
1099 assert(TheIndex);
1101 // The first block of slots are just the module ids, which start at 0 and are
1102 // assigned consecutively. Since the StringMap iteration order isn't
1103 // guaranteed, order by path string before assigning slots.
1104 std::vector<StringRef> ModulePaths;
1105 for (auto &[ModPath, _] : TheIndex->modulePaths())
1106 ModulePaths.push_back(ModPath);
1107 llvm::sort(ModulePaths.begin(), ModulePaths.end());
1108 for (auto &ModPath : ModulePaths)
1109 CreateModulePathSlot(ModPath);
1111 // Start numbering the GUIDs after the module ids.
1112 GUIDNext = ModulePathNext;
1114 for (auto &GlobalList : *TheIndex)
1115 CreateGUIDSlot(GlobalList.first);
1117 // Start numbering the TypeIdCompatibleVtables after the GUIDs.
1118 TypeIdCompatibleVtableNext = GUIDNext;
1119 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1120 CreateTypeIdCompatibleVtableSlot(TId.first);
1122 // Start numbering the TypeIds after the TypeIdCompatibleVtables.
1123 TypeIdNext = TypeIdCompatibleVtableNext;
1124 for (const auto &TID : TheIndex->typeIds())
1125 CreateTypeIdSlot(TID.second.first);
1127 ST_DEBUG("end processIndex!\n");
1128 return TypeIdNext;
1131 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1132 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1133 GO.getAllMetadata(MDs);
1134 for (auto &MD : MDs)
1135 CreateMetadataSlot(MD.second);
1138 void SlotTracker::processFunctionMetadata(const Function &F) {
1139 processGlobalObjectMetadata(F);
1140 for (auto &BB : F) {
1141 for (auto &I : BB) {
1142 for (const DbgRecord &DR : I.getDbgRecordRange())
1143 processDbgRecordMetadata(DR);
1144 processInstructionMetadata(I);
1149 void SlotTracker::processDbgRecordMetadata(const DbgRecord &DR) {
1150 if (const DbgVariableRecord *DVR = dyn_cast<const DbgVariableRecord>(&DR)) {
1151 // Process metadata used by DbgRecords; we only specifically care about the
1152 // DILocalVariable, DILocation, and DIAssignID fields, as the Value and
1153 // Expression fields should only be printed inline and so do not use a slot.
1154 // Note: The above doesn't apply for empty-metadata operands.
1155 if (auto *Empty = dyn_cast<MDNode>(DVR->getRawLocation()))
1156 CreateMetadataSlot(Empty);
1157 CreateMetadataSlot(DVR->getRawVariable());
1158 if (DVR->isDbgAssign()) {
1159 CreateMetadataSlot(cast<MDNode>(DVR->getRawAssignID()));
1160 if (auto *Empty = dyn_cast<MDNode>(DVR->getRawAddress()))
1161 CreateMetadataSlot(Empty);
1163 } else if (const DbgLabelRecord *DLR = dyn_cast<const DbgLabelRecord>(&DR)) {
1164 CreateMetadataSlot(DLR->getRawLabel());
1165 } else {
1166 llvm_unreachable("unsupported DbgRecord kind");
1168 CreateMetadataSlot(DR.getDebugLoc().getAsMDNode());
1171 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1172 // Process metadata used directly by intrinsics.
1173 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1174 if (Function *F = CI->getCalledFunction())
1175 if (F->isIntrinsic())
1176 for (auto &Op : I.operands())
1177 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1178 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1179 CreateMetadataSlot(N);
1181 // Process metadata attached to this instruction.
1182 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1183 I.getAllMetadata(MDs);
1184 for (auto &MD : MDs)
1185 CreateMetadataSlot(MD.second);
1188 /// Clean up after incorporating a function. This is the only way to get out of
1189 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1190 /// incorporation state is indicated by TheFunction != 0.
1191 void SlotTracker::purgeFunction() {
1192 ST_DEBUG("begin purgeFunction!\n");
1193 fMap.clear(); // Simply discard the function level map
1194 TheFunction = nullptr;
1195 FunctionProcessed = false;
1196 ST_DEBUG("end purgeFunction!\n");
1199 /// getGlobalSlot - Get the slot number of a global value.
1200 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1201 // Check for uninitialized state and do lazy initialization.
1202 initializeIfNeeded();
1204 // Find the value in the module map
1205 ValueMap::iterator MI = mMap.find(V);
1206 return MI == mMap.end() ? -1 : (int)MI->second;
1209 void SlotTracker::setProcessHook(
1210 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1211 Fn) {
1212 ProcessModuleHookFn = Fn;
1215 void SlotTracker::setProcessHook(
1216 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1217 Fn) {
1218 ProcessFunctionHookFn = Fn;
1221 /// getMetadataSlot - Get the slot number of a MDNode.
1222 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1224 /// getMetadataSlot - Get the slot number of a MDNode.
1225 int SlotTracker::getMetadataSlot(const MDNode *N) {
1226 // Check for uninitialized state and do lazy initialization.
1227 initializeIfNeeded();
1229 // Find the MDNode in the module map
1230 mdn_iterator MI = mdnMap.find(N);
1231 return MI == mdnMap.end() ? -1 : (int)MI->second;
1234 /// getLocalSlot - Get the slot number for a value that is local to a function.
1235 int SlotTracker::getLocalSlot(const Value *V) {
1236 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1238 // Check for uninitialized state and do lazy initialization.
1239 initializeIfNeeded();
1241 ValueMap::iterator FI = fMap.find(V);
1242 return FI == fMap.end() ? -1 : (int)FI->second;
1245 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1246 // Check for uninitialized state and do lazy initialization.
1247 initializeIfNeeded();
1249 // Find the AttributeSet in the module map.
1250 as_iterator AI = asMap.find(AS);
1251 return AI == asMap.end() ? -1 : (int)AI->second;
1254 int SlotTracker::getModulePathSlot(StringRef Path) {
1255 // Check for uninitialized state and do lazy initialization.
1256 initializeIndexIfNeeded();
1258 // Find the Module path in the map
1259 auto I = ModulePathMap.find(Path);
1260 return I == ModulePathMap.end() ? -1 : (int)I->second;
1263 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1264 // Check for uninitialized state and do lazy initialization.
1265 initializeIndexIfNeeded();
1267 // Find the GUID in the map
1268 guid_iterator I = GUIDMap.find(GUID);
1269 return I == GUIDMap.end() ? -1 : (int)I->second;
1272 int SlotTracker::getTypeIdSlot(StringRef Id) {
1273 // Check for uninitialized state and do lazy initialization.
1274 initializeIndexIfNeeded();
1276 // Find the TypeId string in the map
1277 auto I = TypeIdMap.find(Id);
1278 return I == TypeIdMap.end() ? -1 : (int)I->second;
1281 int SlotTracker::getTypeIdCompatibleVtableSlot(StringRef Id) {
1282 // Check for uninitialized state and do lazy initialization.
1283 initializeIndexIfNeeded();
1285 // Find the TypeIdCompatibleVtable string in the map
1286 auto I = TypeIdCompatibleVtableMap.find(Id);
1287 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1290 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1291 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1292 assert(V && "Can't insert a null Value into SlotTracker!");
1293 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1294 assert(!V->hasName() && "Doesn't need a slot!");
1296 unsigned DestSlot = mNext++;
1297 mMap[V] = DestSlot;
1299 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1300 DestSlot << " [");
1301 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1302 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1303 (isa<Function>(V) ? 'F' :
1304 (isa<GlobalAlias>(V) ? 'A' :
1305 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1308 /// CreateSlot - Create a new slot for the specified value if it has no name.
1309 void SlotTracker::CreateFunctionSlot(const Value *V) {
1310 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1312 unsigned DestSlot = fNext++;
1313 fMap[V] = DestSlot;
1315 // G = Global, F = Function, o = other
1316 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1317 DestSlot << " [o]\n");
1320 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1321 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1322 assert(N && "Can't insert a null Value into SlotTracker!");
1324 // Don't make slots for DIExpressions. We just print them inline everywhere.
1325 if (isa<DIExpression>(N))
1326 return;
1328 unsigned DestSlot = mdnNext;
1329 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1330 return;
1331 ++mdnNext;
1333 // Recursively add any MDNodes referenced by operands.
1334 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1335 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1336 CreateMetadataSlot(Op);
1339 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1340 assert(AS.hasAttributes() && "Doesn't need a slot!");
1342 if (asMap.try_emplace(AS, asNext).second)
1343 ++asNext;
1346 /// Create a new slot for the specified Module
1347 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1348 ModulePathMap[Path] = ModulePathNext++;
1351 /// Create a new slot for the specified GUID
1352 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1353 GUIDMap[GUID] = GUIDNext++;
1356 /// Create a new slot for the specified Id
1357 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1358 TypeIdMap[Id] = TypeIdNext++;
1361 /// Create a new slot for the specified Id
1362 void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1363 TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1366 namespace {
1367 /// Common instances used by most of the printer functions.
1368 struct AsmWriterContext {
1369 TypePrinting *TypePrinter = nullptr;
1370 SlotTracker *Machine = nullptr;
1371 const Module *Context = nullptr;
1373 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1374 : TypePrinter(TP), Machine(ST), Context(M) {}
1376 static AsmWriterContext &getEmpty() {
1377 static AsmWriterContext EmptyCtx(nullptr, nullptr);
1378 return EmptyCtx;
1381 /// A callback that will be triggered when the underlying printer
1382 /// prints a Metadata as operand.
1383 virtual void onWriteMetadataAsOperand(const Metadata *) {}
1385 virtual ~AsmWriterContext() = default;
1387 } // end anonymous namespace
1389 //===----------------------------------------------------------------------===//
1390 // AsmWriter Implementation
1391 //===----------------------------------------------------------------------===//
1393 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1394 AsmWriterContext &WriterCtx);
1396 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1397 AsmWriterContext &WriterCtx,
1398 bool FromValue = false);
1400 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1401 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1402 Out << FPO->getFastMathFlags();
1404 if (const OverflowingBinaryOperator *OBO =
1405 dyn_cast<OverflowingBinaryOperator>(U)) {
1406 if (OBO->hasNoUnsignedWrap())
1407 Out << " nuw";
1408 if (OBO->hasNoSignedWrap())
1409 Out << " nsw";
1410 } else if (const PossiblyExactOperator *Div =
1411 dyn_cast<PossiblyExactOperator>(U)) {
1412 if (Div->isExact())
1413 Out << " exact";
1414 } else if (const PossiblyDisjointInst *PDI =
1415 dyn_cast<PossiblyDisjointInst>(U)) {
1416 if (PDI->isDisjoint())
1417 Out << " disjoint";
1418 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1419 if (GEP->isInBounds())
1420 Out << " inbounds";
1421 else if (GEP->hasNoUnsignedSignedWrap())
1422 Out << " nusw";
1423 if (GEP->hasNoUnsignedWrap())
1424 Out << " nuw";
1425 if (auto InRange = GEP->getInRange()) {
1426 Out << " inrange(" << InRange->getLower() << ", " << InRange->getUpper()
1427 << ")";
1429 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1430 if (NNI->hasNonNeg())
1431 Out << " nneg";
1432 } else if (const auto *TI = dyn_cast<TruncInst>(U)) {
1433 if (TI->hasNoUnsignedWrap())
1434 Out << " nuw";
1435 if (TI->hasNoSignedWrap())
1436 Out << " nsw";
1437 } else if (const auto *ICmp = dyn_cast<ICmpInst>(U)) {
1438 if (ICmp->hasSameSign())
1439 Out << " samesign";
1443 static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF) {
1444 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1445 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1446 // We would like to output the FP constant value in exponential notation,
1447 // but we cannot do this if doing so will lose precision. Check here to
1448 // make sure that we only output it in exponential format if we can parse
1449 // the value back and get the same value.
1451 bool ignored;
1452 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1453 bool isInf = APF.isInfinity();
1454 bool isNaN = APF.isNaN();
1456 if (!isInf && !isNaN) {
1457 double Val = APF.convertToDouble();
1458 SmallString<128> StrVal;
1459 APF.toString(StrVal, 6, 0, false);
1460 // Check to make sure that the stringized number is not some string like
1461 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1462 // that the string matches the "[-+]?[0-9]" regex.
1464 assert((isDigit(StrVal[0]) ||
1465 ((StrVal[0] == '-' || StrVal[0] == '+') && isDigit(StrVal[1]))) &&
1466 "[-+]?[0-9] regex does not match!");
1467 // Reparse stringized version!
1468 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1469 Out << StrVal;
1470 return;
1474 // Otherwise we could not reparse it to exactly the same value, so we must
1475 // output the string in hexadecimal format! Note that loading and storing
1476 // floating point types changes the bits of NaNs on some hosts, notably
1477 // x86, so we must not use these types.
1478 static_assert(sizeof(double) == sizeof(uint64_t),
1479 "assuming that double is 64 bits!");
1480 APFloat apf = APF;
1482 // Floats are represented in ASCII IR as double, convert.
1483 // FIXME: We should allow 32-bit hex float and remove this.
1484 if (!isDouble) {
1485 // A signaling NaN is quieted on conversion, so we need to recreate the
1486 // expected value after convert (quiet bit of the payload is clear).
1487 bool IsSNAN = apf.isSignaling();
1488 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1489 &ignored);
1490 if (IsSNAN) {
1491 APInt Payload = apf.bitcastToAPInt();
1492 apf =
1493 APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(), &Payload);
1497 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1498 return;
1501 // Either half, bfloat or some form of long double.
1502 // These appear as a magic letter identifying the type, then a
1503 // fixed number of hex digits.
1504 Out << "0x";
1505 APInt API = APF.bitcastToAPInt();
1506 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1507 Out << 'K';
1508 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1509 /*Upper=*/true);
1510 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1511 /*Upper=*/true);
1512 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1513 Out << 'L';
1514 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1515 /*Upper=*/true);
1516 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1517 /*Upper=*/true);
1518 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1519 Out << 'M';
1520 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1521 /*Upper=*/true);
1522 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1523 /*Upper=*/true);
1524 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1525 Out << 'H';
1526 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1527 /*Upper=*/true);
1528 } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1529 Out << 'R';
1530 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1531 /*Upper=*/true);
1532 } else
1533 llvm_unreachable("Unsupported floating point type");
1536 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1537 AsmWriterContext &WriterCtx) {
1538 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1539 Type *Ty = CI->getType();
1541 if (Ty->isVectorTy()) {
1542 Out << "splat (";
1543 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1544 Out << " ";
1547 if (Ty->getScalarType()->isIntegerTy(1))
1548 Out << (CI->getZExtValue() ? "true" : "false");
1549 else
1550 Out << CI->getValue();
1552 if (Ty->isVectorTy())
1553 Out << ")";
1555 return;
1558 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1559 Type *Ty = CFP->getType();
1561 if (Ty->isVectorTy()) {
1562 Out << "splat (";
1563 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1564 Out << " ";
1567 WriteAPFloatInternal(Out, CFP->getValueAPF());
1569 if (Ty->isVectorTy())
1570 Out << ")";
1572 return;
1575 if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1576 Out << "zeroinitializer";
1577 return;
1580 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1581 Out << "blockaddress(";
1582 WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1583 Out << ", ";
1584 WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1585 Out << ")";
1586 return;
1589 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1590 Out << "dso_local_equivalent ";
1591 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1592 return;
1595 if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1596 Out << "no_cfi ";
1597 WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1598 return;
1601 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) {
1602 Out << "ptrauth (";
1604 // ptrauth (ptr CST, i32 KEY[, i64 DISC[, ptr ADDRDISC]?]?)
1605 unsigned NumOpsToWrite = 2;
1606 if (!CPA->getOperand(2)->isNullValue())
1607 NumOpsToWrite = 3;
1608 if (!CPA->getOperand(3)->isNullValue())
1609 NumOpsToWrite = 4;
1611 ListSeparator LS;
1612 for (unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1613 Out << LS;
1614 WriterCtx.TypePrinter->print(CPA->getOperand(i)->getType(), Out);
1615 Out << ' ';
1616 WriteAsOperandInternal(Out, CPA->getOperand(i), WriterCtx);
1618 Out << ')';
1619 return;
1622 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1623 Type *ETy = CA->getType()->getElementType();
1624 Out << '[';
1625 WriterCtx.TypePrinter->print(ETy, Out);
1626 Out << ' ';
1627 WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1628 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1629 Out << ", ";
1630 WriterCtx.TypePrinter->print(ETy, Out);
1631 Out << ' ';
1632 WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1634 Out << ']';
1635 return;
1638 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1639 // As a special case, print the array as a string if it is an array of
1640 // i8 with ConstantInt values.
1641 if (CA->isString()) {
1642 Out << "c\"";
1643 printEscapedString(CA->getAsString(), Out);
1644 Out << '"';
1645 return;
1648 Type *ETy = CA->getType()->getElementType();
1649 Out << '[';
1650 WriterCtx.TypePrinter->print(ETy, Out);
1651 Out << ' ';
1652 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1653 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1654 Out << ", ";
1655 WriterCtx.TypePrinter->print(ETy, Out);
1656 Out << ' ';
1657 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1659 Out << ']';
1660 return;
1663 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1664 if (CS->getType()->isPacked())
1665 Out << '<';
1666 Out << '{';
1667 unsigned N = CS->getNumOperands();
1668 if (N) {
1669 Out << ' ';
1670 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1671 Out << ' ';
1673 WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1675 for (unsigned i = 1; i < N; i++) {
1676 Out << ", ";
1677 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1678 Out << ' ';
1680 WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1682 Out << ' ';
1685 Out << '}';
1686 if (CS->getType()->isPacked())
1687 Out << '>';
1688 return;
1691 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1692 auto *CVVTy = cast<FixedVectorType>(CV->getType());
1693 Type *ETy = CVVTy->getElementType();
1695 // Use the same shorthand for splat vector (i.e. "splat(Ty val)") as is
1696 // permitted on IR input to reduce the output changes when enabling
1697 // UseConstant{Int,FP}ForFixedLengthSplat.
1698 // TODO: Remove this block when the UseConstant{Int,FP}ForFixedLengthSplat
1699 // options are removed.
1700 if (auto *SplatVal = CV->getSplatValue()) {
1701 if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1702 Out << "splat (";
1703 WriterCtx.TypePrinter->print(ETy, Out);
1704 Out << ' ';
1705 WriteAsOperandInternal(Out, SplatVal, WriterCtx);
1706 Out << ')';
1707 return;
1711 Out << '<';
1712 WriterCtx.TypePrinter->print(ETy, Out);
1713 Out << ' ';
1714 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1715 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1716 Out << ", ";
1717 WriterCtx.TypePrinter->print(ETy, Out);
1718 Out << ' ';
1719 WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1721 Out << '>';
1722 return;
1725 if (isa<ConstantPointerNull>(CV)) {
1726 Out << "null";
1727 return;
1730 if (isa<ConstantTokenNone>(CV)) {
1731 Out << "none";
1732 return;
1735 if (isa<PoisonValue>(CV)) {
1736 Out << "poison";
1737 return;
1740 if (isa<UndefValue>(CV)) {
1741 Out << "undef";
1742 return;
1745 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1746 // Use the same shorthand for splat vector (i.e. "splat(Ty val)") as is
1747 // permitted on IR input to reduce the output changes when enabling
1748 // UseConstant{Int,FP}ForScalableSplat.
1749 // TODO: Remove this block when the UseConstant{Int,FP}ForScalableSplat
1750 // options are removed.
1751 if (CE->getOpcode() == Instruction::ShuffleVector) {
1752 if (auto *SplatVal = CE->getSplatValue()) {
1753 if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1754 Out << "splat (";
1755 WriterCtx.TypePrinter->print(SplatVal->getType(), Out);
1756 Out << ' ';
1757 WriteAsOperandInternal(Out, SplatVal, WriterCtx);
1758 Out << ')';
1759 return;
1764 Out << CE->getOpcodeName();
1765 WriteOptimizationInfo(Out, CE);
1766 Out << " (";
1768 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1769 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1770 Out << ", ";
1773 for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end();
1774 ++OI) {
1775 WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1776 Out << ' ';
1777 WriteAsOperandInternal(Out, *OI, WriterCtx);
1778 if (OI+1 != CE->op_end())
1779 Out << ", ";
1782 if (CE->isCast()) {
1783 Out << " to ";
1784 WriterCtx.TypePrinter->print(CE->getType(), Out);
1787 if (CE->getOpcode() == Instruction::ShuffleVector)
1788 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1790 Out << ')';
1791 return;
1794 Out << "<placeholder or erroneous Constant>";
1797 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1798 AsmWriterContext &WriterCtx) {
1799 Out << "!{";
1800 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1801 const Metadata *MD = Node->getOperand(mi);
1802 if (!MD)
1803 Out << "null";
1804 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1805 Value *V = MDV->getValue();
1806 WriterCtx.TypePrinter->print(V->getType(), Out);
1807 Out << ' ';
1808 WriteAsOperandInternal(Out, V, WriterCtx);
1809 } else {
1810 WriteAsOperandInternal(Out, MD, WriterCtx);
1811 WriterCtx.onWriteMetadataAsOperand(MD);
1813 if (mi + 1 != me)
1814 Out << ", ";
1817 Out << "}";
1820 namespace {
1822 struct FieldSeparator {
1823 bool Skip = true;
1824 const char *Sep;
1826 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1829 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1830 if (FS.Skip) {
1831 FS.Skip = false;
1832 return OS;
1834 return OS << FS.Sep;
1837 struct MDFieldPrinter {
1838 raw_ostream &Out;
1839 FieldSeparator FS;
1840 AsmWriterContext &WriterCtx;
1842 explicit MDFieldPrinter(raw_ostream &Out)
1843 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1844 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1845 : Out(Out), WriterCtx(Ctx) {}
1847 void printTag(const DINode *N);
1848 void printMacinfoType(const DIMacroNode *N);
1849 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1850 void printString(StringRef Name, StringRef Value,
1851 bool ShouldSkipEmpty = true);
1852 void printMetadata(StringRef Name, const Metadata *MD,
1853 bool ShouldSkipNull = true);
1854 template <class IntTy>
1855 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1856 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1857 bool ShouldSkipZero);
1858 void printBool(StringRef Name, bool Value,
1859 std::optional<bool> Default = std::nullopt);
1860 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1861 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1862 template <class IntTy, class Stringifier>
1863 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1864 bool ShouldSkipZero = true);
1865 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1866 void printNameTableKind(StringRef Name,
1867 DICompileUnit::DebugNameTableKind NTK);
1870 } // end anonymous namespace
1872 void MDFieldPrinter::printTag(const DINode *N) {
1873 Out << FS << "tag: ";
1874 auto Tag = dwarf::TagString(N->getTag());
1875 if (!Tag.empty())
1876 Out << Tag;
1877 else
1878 Out << N->getTag();
1881 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1882 Out << FS << "type: ";
1883 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1884 if (!Type.empty())
1885 Out << Type;
1886 else
1887 Out << N->getMacinfoType();
1890 void MDFieldPrinter::printChecksum(
1891 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1892 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1893 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1896 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1897 bool ShouldSkipEmpty) {
1898 if (ShouldSkipEmpty && Value.empty())
1899 return;
1901 Out << FS << Name << ": \"";
1902 printEscapedString(Value, Out);
1903 Out << "\"";
1906 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1907 AsmWriterContext &WriterCtx) {
1908 if (!MD) {
1909 Out << "null";
1910 return;
1912 WriteAsOperandInternal(Out, MD, WriterCtx);
1913 WriterCtx.onWriteMetadataAsOperand(MD);
1916 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1917 bool ShouldSkipNull) {
1918 if (ShouldSkipNull && !MD)
1919 return;
1921 Out << FS << Name << ": ";
1922 writeMetadataAsOperand(Out, MD, WriterCtx);
1925 template <class IntTy>
1926 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1927 if (ShouldSkipZero && !Int)
1928 return;
1930 Out << FS << Name << ": " << Int;
1933 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1934 bool IsUnsigned, bool ShouldSkipZero) {
1935 if (ShouldSkipZero && Int.isZero())
1936 return;
1938 Out << FS << Name << ": ";
1939 Int.print(Out, !IsUnsigned);
1942 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1943 std::optional<bool> Default) {
1944 if (Default && Value == *Default)
1945 return;
1946 Out << FS << Name << ": " << (Value ? "true" : "false");
1949 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1950 if (!Flags)
1951 return;
1953 Out << FS << Name << ": ";
1955 SmallVector<DINode::DIFlags, 8> SplitFlags;
1956 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1958 FieldSeparator FlagsFS(" | ");
1959 for (auto F : SplitFlags) {
1960 auto StringF = DINode::getFlagString(F);
1961 assert(!StringF.empty() && "Expected valid flag");
1962 Out << FlagsFS << StringF;
1964 if (Extra || SplitFlags.empty())
1965 Out << FlagsFS << Extra;
1968 void MDFieldPrinter::printDISPFlags(StringRef Name,
1969 DISubprogram::DISPFlags Flags) {
1970 // Always print this field, because no flags in the IR at all will be
1971 // interpreted as old-style isDefinition: true.
1972 Out << FS << Name << ": ";
1974 if (!Flags) {
1975 Out << 0;
1976 return;
1979 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1980 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1982 FieldSeparator FlagsFS(" | ");
1983 for (auto F : SplitFlags) {
1984 auto StringF = DISubprogram::getFlagString(F);
1985 assert(!StringF.empty() && "Expected valid flag");
1986 Out << FlagsFS << StringF;
1988 if (Extra || SplitFlags.empty())
1989 Out << FlagsFS << Extra;
1992 void MDFieldPrinter::printEmissionKind(StringRef Name,
1993 DICompileUnit::DebugEmissionKind EK) {
1994 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1997 void MDFieldPrinter::printNameTableKind(StringRef Name,
1998 DICompileUnit::DebugNameTableKind NTK) {
1999 if (NTK == DICompileUnit::DebugNameTableKind::Default)
2000 return;
2001 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
2004 template <class IntTy, class Stringifier>
2005 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
2006 Stringifier toString, bool ShouldSkipZero) {
2007 if (!Value)
2008 return;
2010 Out << FS << Name << ": ";
2011 auto S = toString(Value);
2012 if (!S.empty())
2013 Out << S;
2014 else
2015 Out << Value;
2018 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
2019 AsmWriterContext &WriterCtx) {
2020 Out << "!GenericDINode(";
2021 MDFieldPrinter Printer(Out, WriterCtx);
2022 Printer.printTag(N);
2023 Printer.printString("header", N->getHeader());
2024 if (N->getNumDwarfOperands()) {
2025 Out << Printer.FS << "operands: {";
2026 FieldSeparator IFS;
2027 for (auto &I : N->dwarf_operands()) {
2028 Out << IFS;
2029 writeMetadataAsOperand(Out, I, WriterCtx);
2031 Out << "}";
2033 Out << ")";
2036 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
2037 AsmWriterContext &WriterCtx) {
2038 Out << "!DILocation(";
2039 MDFieldPrinter Printer(Out, WriterCtx);
2040 // Always output the line, since 0 is a relevant and important value for it.
2041 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
2042 Printer.printInt("column", DL->getColumn());
2043 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
2044 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
2045 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
2046 /* Default */ false);
2047 Out << ")";
2050 static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
2051 AsmWriterContext &WriterCtx) {
2052 Out << "!DIAssignID()";
2053 MDFieldPrinter Printer(Out, WriterCtx);
2056 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
2057 AsmWriterContext &WriterCtx) {
2058 Out << "!DISubrange(";
2059 MDFieldPrinter Printer(Out, WriterCtx);
2061 auto *Count = N->getRawCountNode();
2062 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
2063 auto *CV = cast<ConstantInt>(CE->getValue());
2064 Printer.printInt("count", CV->getSExtValue(),
2065 /* ShouldSkipZero */ false);
2066 } else
2067 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2069 // A lowerBound of constant 0 should not be skipped, since it is different
2070 // from an unspecified lower bound (= nullptr).
2071 auto *LBound = N->getRawLowerBound();
2072 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
2073 auto *LV = cast<ConstantInt>(LE->getValue());
2074 Printer.printInt("lowerBound", LV->getSExtValue(),
2075 /* ShouldSkipZero */ false);
2076 } else
2077 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2079 auto *UBound = N->getRawUpperBound();
2080 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
2081 auto *UV = cast<ConstantInt>(UE->getValue());
2082 Printer.printInt("upperBound", UV->getSExtValue(),
2083 /* ShouldSkipZero */ false);
2084 } else
2085 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2087 auto *Stride = N->getRawStride();
2088 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
2089 auto *SV = cast<ConstantInt>(SE->getValue());
2090 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
2091 } else
2092 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2094 Out << ")";
2097 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
2098 AsmWriterContext &WriterCtx) {
2099 Out << "!DIGenericSubrange(";
2100 MDFieldPrinter Printer(Out, WriterCtx);
2102 auto IsConstant = [&](Metadata *Bound) -> bool {
2103 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
2104 return BE->isConstant() &&
2105 DIExpression::SignedOrUnsignedConstant::SignedConstant ==
2106 *BE->isConstant();
2108 return false;
2111 auto GetConstant = [&](Metadata *Bound) -> int64_t {
2112 assert(IsConstant(Bound) && "Expected constant");
2113 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2114 return static_cast<int64_t>(BE->getElement(1));
2117 auto *Count = N->getRawCountNode();
2118 if (IsConstant(Count))
2119 Printer.printInt("count", GetConstant(Count),
2120 /* ShouldSkipZero */ false);
2121 else
2122 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2124 auto *LBound = N->getRawLowerBound();
2125 if (IsConstant(LBound))
2126 Printer.printInt("lowerBound", GetConstant(LBound),
2127 /* ShouldSkipZero */ false);
2128 else
2129 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2131 auto *UBound = N->getRawUpperBound();
2132 if (IsConstant(UBound))
2133 Printer.printInt("upperBound", GetConstant(UBound),
2134 /* ShouldSkipZero */ false);
2135 else
2136 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2138 auto *Stride = N->getRawStride();
2139 if (IsConstant(Stride))
2140 Printer.printInt("stride", GetConstant(Stride),
2141 /* ShouldSkipZero */ false);
2142 else
2143 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2145 Out << ")";
2148 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
2149 AsmWriterContext &) {
2150 Out << "!DIEnumerator(";
2151 MDFieldPrinter Printer(Out);
2152 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
2153 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2154 /*ShouldSkipZero=*/false);
2155 if (N->isUnsigned())
2156 Printer.printBool("isUnsigned", true);
2157 Out << ")";
2160 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
2161 AsmWriterContext &) {
2162 Out << "!DIBasicType(";
2163 MDFieldPrinter Printer(Out);
2164 if (N->getTag() != dwarf::DW_TAG_base_type)
2165 Printer.printTag(N);
2166 Printer.printString("name", N->getName());
2167 Printer.printInt("size", N->getSizeInBits());
2168 Printer.printInt("align", N->getAlignInBits());
2169 Printer.printDwarfEnum("encoding", N->getEncoding(),
2170 dwarf::AttributeEncodingString);
2171 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2172 Printer.printDIFlags("flags", N->getFlags());
2173 Out << ")";
2176 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2177 AsmWriterContext &WriterCtx) {
2178 Out << "!DIStringType(";
2179 MDFieldPrinter Printer(Out, WriterCtx);
2180 if (N->getTag() != dwarf::DW_TAG_string_type)
2181 Printer.printTag(N);
2182 Printer.printString("name", N->getName());
2183 Printer.printMetadata("stringLength", N->getRawStringLength());
2184 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2185 Printer.printMetadata("stringLocationExpression",
2186 N->getRawStringLocationExp());
2187 Printer.printInt("size", N->getSizeInBits());
2188 Printer.printInt("align", N->getAlignInBits());
2189 Printer.printDwarfEnum("encoding", N->getEncoding(),
2190 dwarf::AttributeEncodingString);
2191 Out << ")";
2194 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2195 AsmWriterContext &WriterCtx) {
2196 Out << "!DIDerivedType(";
2197 MDFieldPrinter Printer(Out, WriterCtx);
2198 Printer.printTag(N);
2199 Printer.printString("name", N->getName());
2200 Printer.printMetadata("scope", N->getRawScope());
2201 Printer.printMetadata("file", N->getRawFile());
2202 Printer.printInt("line", N->getLine());
2203 Printer.printMetadata("baseType", N->getRawBaseType(),
2204 /* ShouldSkipNull */ false);
2205 Printer.printInt("size", N->getSizeInBits());
2206 Printer.printInt("align", N->getAlignInBits());
2207 Printer.printInt("offset", N->getOffsetInBits());
2208 Printer.printDIFlags("flags", N->getFlags());
2209 Printer.printMetadata("extraData", N->getRawExtraData());
2210 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2211 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2212 /* ShouldSkipZero */ false);
2213 Printer.printMetadata("annotations", N->getRawAnnotations());
2214 if (auto PtrAuthData = N->getPtrAuthData()) {
2215 Printer.printInt("ptrAuthKey", PtrAuthData->key());
2216 Printer.printBool("ptrAuthIsAddressDiscriminated",
2217 PtrAuthData->isAddressDiscriminated());
2218 Printer.printInt("ptrAuthExtraDiscriminator",
2219 PtrAuthData->extraDiscriminator());
2220 Printer.printBool("ptrAuthIsaPointer", PtrAuthData->isaPointer());
2221 Printer.printBool("ptrAuthAuthenticatesNullValues",
2222 PtrAuthData->authenticatesNullValues());
2224 Out << ")";
2227 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2228 AsmWriterContext &WriterCtx) {
2229 Out << "!DICompositeType(";
2230 MDFieldPrinter Printer(Out, WriterCtx);
2231 Printer.printTag(N);
2232 Printer.printString("name", N->getName());
2233 Printer.printMetadata("scope", N->getRawScope());
2234 Printer.printMetadata("file", N->getRawFile());
2235 Printer.printInt("line", N->getLine());
2236 Printer.printMetadata("baseType", N->getRawBaseType());
2237 Printer.printInt("size", N->getSizeInBits());
2238 Printer.printInt("align", N->getAlignInBits());
2239 Printer.printInt("offset", N->getOffsetInBits());
2240 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2241 Printer.printDIFlags("flags", N->getFlags());
2242 Printer.printMetadata("elements", N->getRawElements());
2243 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2244 dwarf::LanguageString);
2245 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2246 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2247 Printer.printString("identifier", N->getIdentifier());
2248 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2249 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2250 Printer.printMetadata("associated", N->getRawAssociated());
2251 Printer.printMetadata("allocated", N->getRawAllocated());
2252 if (auto *RankConst = N->getRankConst())
2253 Printer.printInt("rank", RankConst->getSExtValue(),
2254 /* ShouldSkipZero */ false);
2255 else
2256 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2257 Printer.printMetadata("annotations", N->getRawAnnotations());
2258 if (auto *Specification = N->getRawSpecification())
2259 Printer.printMetadata("specification", Specification);
2260 Out << ")";
2263 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2264 AsmWriterContext &WriterCtx) {
2265 Out << "!DISubroutineType(";
2266 MDFieldPrinter Printer(Out, WriterCtx);
2267 Printer.printDIFlags("flags", N->getFlags());
2268 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2269 Printer.printMetadata("types", N->getRawTypeArray(),
2270 /* ShouldSkipNull */ false);
2271 Out << ")";
2274 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2275 Out << "!DIFile(";
2276 MDFieldPrinter Printer(Out);
2277 Printer.printString("filename", N->getFilename(),
2278 /* ShouldSkipEmpty */ false);
2279 Printer.printString("directory", N->getDirectory(),
2280 /* ShouldSkipEmpty */ false);
2281 // Print all values for checksum together, or not at all.
2282 if (N->getChecksum())
2283 Printer.printChecksum(*N->getChecksum());
2284 Printer.printString("source", N->getSource().value_or(StringRef()),
2285 /* ShouldSkipEmpty */ true);
2286 Out << ")";
2289 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2290 AsmWriterContext &WriterCtx) {
2291 Out << "!DICompileUnit(";
2292 MDFieldPrinter Printer(Out, WriterCtx);
2293 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2294 dwarf::LanguageString, /* ShouldSkipZero */ false);
2295 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2296 Printer.printString("producer", N->getProducer());
2297 Printer.printBool("isOptimized", N->isOptimized());
2298 Printer.printString("flags", N->getFlags());
2299 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2300 /* ShouldSkipZero */ false);
2301 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2302 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2303 Printer.printMetadata("enums", N->getRawEnumTypes());
2304 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2305 Printer.printMetadata("globals", N->getRawGlobalVariables());
2306 Printer.printMetadata("imports", N->getRawImportedEntities());
2307 Printer.printMetadata("macros", N->getRawMacros());
2308 Printer.printInt("dwoId", N->getDWOId());
2309 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2310 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2311 false);
2312 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2313 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2314 Printer.printString("sysroot", N->getSysRoot());
2315 Printer.printString("sdk", N->getSDK());
2316 Out << ")";
2319 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2320 AsmWriterContext &WriterCtx) {
2321 Out << "!DISubprogram(";
2322 MDFieldPrinter Printer(Out, WriterCtx);
2323 Printer.printString("name", N->getName());
2324 Printer.printString("linkageName", N->getLinkageName());
2325 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2326 Printer.printMetadata("file", N->getRawFile());
2327 Printer.printInt("line", N->getLine());
2328 Printer.printMetadata("type", N->getRawType());
2329 Printer.printInt("scopeLine", N->getScopeLine());
2330 Printer.printMetadata("containingType", N->getRawContainingType());
2331 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2332 N->getVirtualIndex() != 0)
2333 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2334 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2335 Printer.printDIFlags("flags", N->getFlags());
2336 Printer.printDISPFlags("spFlags", N->getSPFlags());
2337 Printer.printMetadata("unit", N->getRawUnit());
2338 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2339 Printer.printMetadata("declaration", N->getRawDeclaration());
2340 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2341 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2342 Printer.printMetadata("annotations", N->getRawAnnotations());
2343 Printer.printString("targetFuncName", N->getTargetFuncName());
2344 Out << ")";
2347 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2348 AsmWriterContext &WriterCtx) {
2349 Out << "!DILexicalBlock(";
2350 MDFieldPrinter Printer(Out, WriterCtx);
2351 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2352 Printer.printMetadata("file", N->getRawFile());
2353 Printer.printInt("line", N->getLine());
2354 Printer.printInt("column", N->getColumn());
2355 Out << ")";
2358 static void writeDILexicalBlockFile(raw_ostream &Out,
2359 const DILexicalBlockFile *N,
2360 AsmWriterContext &WriterCtx) {
2361 Out << "!DILexicalBlockFile(";
2362 MDFieldPrinter Printer(Out, WriterCtx);
2363 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2364 Printer.printMetadata("file", N->getRawFile());
2365 Printer.printInt("discriminator", N->getDiscriminator(),
2366 /* ShouldSkipZero */ false);
2367 Out << ")";
2370 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2371 AsmWriterContext &WriterCtx) {
2372 Out << "!DINamespace(";
2373 MDFieldPrinter Printer(Out, WriterCtx);
2374 Printer.printString("name", N->getName());
2375 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2376 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2377 Out << ")";
2380 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2381 AsmWriterContext &WriterCtx) {
2382 Out << "!DICommonBlock(";
2383 MDFieldPrinter Printer(Out, WriterCtx);
2384 Printer.printMetadata("scope", N->getRawScope(), false);
2385 Printer.printMetadata("declaration", N->getRawDecl(), false);
2386 Printer.printString("name", N->getName());
2387 Printer.printMetadata("file", N->getRawFile());
2388 Printer.printInt("line", N->getLineNo());
2389 Out << ")";
2392 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2393 AsmWriterContext &WriterCtx) {
2394 Out << "!DIMacro(";
2395 MDFieldPrinter Printer(Out, WriterCtx);
2396 Printer.printMacinfoType(N);
2397 Printer.printInt("line", N->getLine());
2398 Printer.printString("name", N->getName());
2399 Printer.printString("value", N->getValue());
2400 Out << ")";
2403 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2404 AsmWriterContext &WriterCtx) {
2405 Out << "!DIMacroFile(";
2406 MDFieldPrinter Printer(Out, WriterCtx);
2407 Printer.printInt("line", N->getLine());
2408 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2409 Printer.printMetadata("nodes", N->getRawElements());
2410 Out << ")";
2413 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2414 AsmWriterContext &WriterCtx) {
2415 Out << "!DIModule(";
2416 MDFieldPrinter Printer(Out, WriterCtx);
2417 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2418 Printer.printString("name", N->getName());
2419 Printer.printString("configMacros", N->getConfigurationMacros());
2420 Printer.printString("includePath", N->getIncludePath());
2421 Printer.printString("apinotes", N->getAPINotesFile());
2422 Printer.printMetadata("file", N->getRawFile());
2423 Printer.printInt("line", N->getLineNo());
2424 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2425 Out << ")";
2428 static void writeDITemplateTypeParameter(raw_ostream &Out,
2429 const DITemplateTypeParameter *N,
2430 AsmWriterContext &WriterCtx) {
2431 Out << "!DITemplateTypeParameter(";
2432 MDFieldPrinter Printer(Out, WriterCtx);
2433 Printer.printString("name", N->getName());
2434 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2435 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2436 Out << ")";
2439 static void writeDITemplateValueParameter(raw_ostream &Out,
2440 const DITemplateValueParameter *N,
2441 AsmWriterContext &WriterCtx) {
2442 Out << "!DITemplateValueParameter(";
2443 MDFieldPrinter Printer(Out, WriterCtx);
2444 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2445 Printer.printTag(N);
2446 Printer.printString("name", N->getName());
2447 Printer.printMetadata("type", N->getRawType());
2448 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2449 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2450 Out << ")";
2453 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2454 AsmWriterContext &WriterCtx) {
2455 Out << "!DIGlobalVariable(";
2456 MDFieldPrinter Printer(Out, WriterCtx);
2457 Printer.printString("name", N->getName());
2458 Printer.printString("linkageName", N->getLinkageName());
2459 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2460 Printer.printMetadata("file", N->getRawFile());
2461 Printer.printInt("line", N->getLine());
2462 Printer.printMetadata("type", N->getRawType());
2463 Printer.printBool("isLocal", N->isLocalToUnit());
2464 Printer.printBool("isDefinition", N->isDefinition());
2465 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2466 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2467 Printer.printInt("align", N->getAlignInBits());
2468 Printer.printMetadata("annotations", N->getRawAnnotations());
2469 Out << ")";
2472 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2473 AsmWriterContext &WriterCtx) {
2474 Out << "!DILocalVariable(";
2475 MDFieldPrinter Printer(Out, WriterCtx);
2476 Printer.printString("name", N->getName());
2477 Printer.printInt("arg", N->getArg());
2478 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2479 Printer.printMetadata("file", N->getRawFile());
2480 Printer.printInt("line", N->getLine());
2481 Printer.printMetadata("type", N->getRawType());
2482 Printer.printDIFlags("flags", N->getFlags());
2483 Printer.printInt("align", N->getAlignInBits());
2484 Printer.printMetadata("annotations", N->getRawAnnotations());
2485 Out << ")";
2488 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2489 AsmWriterContext &WriterCtx) {
2490 Out << "!DILabel(";
2491 MDFieldPrinter Printer(Out, WriterCtx);
2492 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2493 Printer.printString("name", N->getName());
2494 Printer.printMetadata("file", N->getRawFile());
2495 Printer.printInt("line", N->getLine());
2496 Out << ")";
2499 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2500 AsmWriterContext &WriterCtx) {
2501 Out << "!DIExpression(";
2502 FieldSeparator FS;
2503 if (N->isValid()) {
2504 for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2505 auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2506 assert(!OpStr.empty() && "Expected valid opcode");
2508 Out << FS << OpStr;
2509 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2510 Out << FS << Op.getArg(0);
2511 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2512 } else {
2513 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2514 Out << FS << Op.getArg(A);
2517 } else {
2518 for (const auto &I : N->getElements())
2519 Out << FS << I;
2521 Out << ")";
2524 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2525 AsmWriterContext &WriterCtx,
2526 bool FromValue = false) {
2527 assert(FromValue &&
2528 "Unexpected DIArgList metadata outside of value argument");
2529 Out << "!DIArgList(";
2530 FieldSeparator FS;
2531 MDFieldPrinter Printer(Out, WriterCtx);
2532 for (Metadata *Arg : N->getArgs()) {
2533 Out << FS;
2534 WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2536 Out << ")";
2539 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2540 const DIGlobalVariableExpression *N,
2541 AsmWriterContext &WriterCtx) {
2542 Out << "!DIGlobalVariableExpression(";
2543 MDFieldPrinter Printer(Out, WriterCtx);
2544 Printer.printMetadata("var", N->getVariable());
2545 Printer.printMetadata("expr", N->getExpression());
2546 Out << ")";
2549 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2550 AsmWriterContext &WriterCtx) {
2551 Out << "!DIObjCProperty(";
2552 MDFieldPrinter Printer(Out, WriterCtx);
2553 Printer.printString("name", N->getName());
2554 Printer.printMetadata("file", N->getRawFile());
2555 Printer.printInt("line", N->getLine());
2556 Printer.printString("setter", N->getSetterName());
2557 Printer.printString("getter", N->getGetterName());
2558 Printer.printInt("attributes", N->getAttributes());
2559 Printer.printMetadata("type", N->getRawType());
2560 Out << ")";
2563 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2564 AsmWriterContext &WriterCtx) {
2565 Out << "!DIImportedEntity(";
2566 MDFieldPrinter Printer(Out, WriterCtx);
2567 Printer.printTag(N);
2568 Printer.printString("name", N->getName());
2569 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2570 Printer.printMetadata("entity", N->getRawEntity());
2571 Printer.printMetadata("file", N->getRawFile());
2572 Printer.printInt("line", N->getLine());
2573 Printer.printMetadata("elements", N->getRawElements());
2574 Out << ")";
2577 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2578 AsmWriterContext &Ctx) {
2579 if (Node->isDistinct())
2580 Out << "distinct ";
2581 else if (Node->isTemporary())
2582 Out << "<temporary!> "; // Handle broken code.
2584 switch (Node->getMetadataID()) {
2585 default:
2586 llvm_unreachable("Expected uniquable MDNode");
2587 #define HANDLE_MDNODE_LEAF(CLASS) \
2588 case Metadata::CLASS##Kind: \
2589 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2590 break;
2591 #include "llvm/IR/Metadata.def"
2595 // Full implementation of printing a Value as an operand with support for
2596 // TypePrinting, etc.
2597 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2598 AsmWriterContext &WriterCtx) {
2599 if (V->hasName()) {
2600 PrintLLVMName(Out, V);
2601 return;
2604 const Constant *CV = dyn_cast<Constant>(V);
2605 if (CV && !isa<GlobalValue>(CV)) {
2606 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2607 WriteConstantInternal(Out, CV, WriterCtx);
2608 return;
2611 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2612 Out << "asm ";
2613 if (IA->hasSideEffects())
2614 Out << "sideeffect ";
2615 if (IA->isAlignStack())
2616 Out << "alignstack ";
2617 // We don't emit the AD_ATT dialect as it's the assumed default.
2618 if (IA->getDialect() == InlineAsm::AD_Intel)
2619 Out << "inteldialect ";
2620 if (IA->canThrow())
2621 Out << "unwind ";
2622 Out << '"';
2623 printEscapedString(IA->getAsmString(), Out);
2624 Out << "\", \"";
2625 printEscapedString(IA->getConstraintString(), Out);
2626 Out << '"';
2627 return;
2630 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2631 WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2632 /* FromValue */ true);
2633 return;
2636 char Prefix = '%';
2637 int Slot;
2638 auto *Machine = WriterCtx.Machine;
2639 // If we have a SlotTracker, use it.
2640 if (Machine) {
2641 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2642 Slot = Machine->getGlobalSlot(GV);
2643 Prefix = '@';
2644 } else {
2645 Slot = Machine->getLocalSlot(V);
2647 // If the local value didn't succeed, then we may be referring to a value
2648 // from a different function. Translate it, as this can happen when using
2649 // address of blocks.
2650 if (Slot == -1)
2651 if ((Machine = createSlotTracker(V))) {
2652 Slot = Machine->getLocalSlot(V);
2653 delete Machine;
2656 } else if ((Machine = createSlotTracker(V))) {
2657 // Otherwise, create one to get the # and then destroy it.
2658 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2659 Slot = Machine->getGlobalSlot(GV);
2660 Prefix = '@';
2661 } else {
2662 Slot = Machine->getLocalSlot(V);
2664 delete Machine;
2665 Machine = nullptr;
2666 } else {
2667 Slot = -1;
2670 if (Slot != -1)
2671 Out << Prefix << Slot;
2672 else
2673 Out << "<badref>";
2676 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2677 AsmWriterContext &WriterCtx,
2678 bool FromValue) {
2679 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2680 // readability of debug info intrinsics.
2681 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2682 writeDIExpression(Out, Expr, WriterCtx);
2683 return;
2685 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2686 writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2687 return;
2690 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2691 std::unique_ptr<SlotTracker> MachineStorage;
2692 SaveAndRestore SARMachine(WriterCtx.Machine);
2693 if (!WriterCtx.Machine) {
2694 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2695 WriterCtx.Machine = MachineStorage.get();
2697 int Slot = WriterCtx.Machine->getMetadataSlot(N);
2698 if (Slot == -1) {
2699 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2700 writeDILocation(Out, Loc, WriterCtx);
2701 return;
2703 // Give the pointer value instead of "badref", since this comes up all
2704 // the time when debugging.
2705 Out << "<" << N << ">";
2706 } else
2707 Out << '!' << Slot;
2708 return;
2711 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2712 Out << "!\"";
2713 printEscapedString(MDS->getString(), Out);
2714 Out << '"';
2715 return;
2718 auto *V = cast<ValueAsMetadata>(MD);
2719 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2720 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2721 "Unexpected function-local metadata outside of value argument");
2723 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2724 Out << ' ';
2725 WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2728 namespace {
2730 class AssemblyWriter {
2731 formatted_raw_ostream &Out;
2732 const Module *TheModule = nullptr;
2733 const ModuleSummaryIndex *TheIndex = nullptr;
2734 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2735 SlotTracker &Machine;
2736 TypePrinting TypePrinter;
2737 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2738 SetVector<const Comdat *> Comdats;
2739 bool IsForDebug;
2740 bool ShouldPreserveUseListOrder;
2741 UseListOrderMap UseListOrders;
2742 SmallVector<StringRef, 8> MDNames;
2743 /// Synchronization scope names registered with LLVMContext.
2744 SmallVector<StringRef, 8> SSNs;
2745 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2747 public:
2748 /// Construct an AssemblyWriter with an external SlotTracker
2749 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2750 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2751 bool ShouldPreserveUseListOrder = false);
2753 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2754 const ModuleSummaryIndex *Index, bool IsForDebug);
2756 AsmWriterContext getContext() {
2757 return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2760 void printMDNodeBody(const MDNode *MD);
2761 void printNamedMDNode(const NamedMDNode *NMD);
2763 void printModule(const Module *M);
2765 void writeOperand(const Value *Op, bool PrintType);
2766 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2767 void writeOperandBundles(const CallBase *Call);
2768 void writeSyncScope(const LLVMContext &Context,
2769 SyncScope::ID SSID);
2770 void writeAtomic(const LLVMContext &Context,
2771 AtomicOrdering Ordering,
2772 SyncScope::ID SSID);
2773 void writeAtomicCmpXchg(const LLVMContext &Context,
2774 AtomicOrdering SuccessOrdering,
2775 AtomicOrdering FailureOrdering,
2776 SyncScope::ID SSID);
2778 void writeAllMDNodes();
2779 void writeMDNode(unsigned Slot, const MDNode *Node);
2780 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2781 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2782 void writeAllAttributeGroups();
2784 void printTypeIdentities();
2785 void printGlobal(const GlobalVariable *GV);
2786 void printAlias(const GlobalAlias *GA);
2787 void printIFunc(const GlobalIFunc *GI);
2788 void printComdat(const Comdat *C);
2789 void printFunction(const Function *F);
2790 void printArgument(const Argument *FA, AttributeSet Attrs);
2791 void printBasicBlock(const BasicBlock *BB);
2792 void printInstructionLine(const Instruction &I);
2793 void printInstruction(const Instruction &I);
2794 void printDbgMarker(const DbgMarker &DPI);
2795 void printDbgVariableRecord(const DbgVariableRecord &DVR);
2796 void printDbgLabelRecord(const DbgLabelRecord &DLR);
2797 void printDbgRecord(const DbgRecord &DR);
2798 void printDbgRecordLine(const DbgRecord &DR);
2800 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2801 void printUseLists(const Function *F);
2803 void printModuleSummaryIndex();
2804 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2805 void printSummary(const GlobalValueSummary &Summary);
2806 void printAliasSummary(const AliasSummary *AS);
2807 void printGlobalVarSummary(const GlobalVarSummary *GS);
2808 void printFunctionSummary(const FunctionSummary *FS);
2809 void printTypeIdSummary(const TypeIdSummary &TIS);
2810 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2811 void printTypeTestResolution(const TypeTestResolution &TTRes);
2812 void printArgs(const std::vector<uint64_t> &Args);
2813 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2814 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2815 void printVFuncId(const FunctionSummary::VFuncId VFId);
2816 void
2817 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2818 const char *Tag);
2819 void
2820 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2821 const char *Tag);
2823 private:
2824 /// Print out metadata attachments.
2825 void printMetadataAttachments(
2826 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2827 StringRef Separator);
2829 // printInfoComment - Print a little comment after the instruction indicating
2830 // which slot it occupies.
2831 void printInfoComment(const Value &V);
2833 // printGCRelocateComment - print comment after call to the gc.relocate
2834 // intrinsic indicating base and derived pointer names.
2835 void printGCRelocateComment(const GCRelocateInst &Relocate);
2838 } // end anonymous namespace
2840 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2841 const Module *M, AssemblyAnnotationWriter *AAW,
2842 bool IsForDebug, bool ShouldPreserveUseListOrder)
2843 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2844 IsForDebug(IsForDebug),
2845 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2846 if (!TheModule)
2847 return;
2848 for (const GlobalObject &GO : TheModule->global_objects())
2849 if (const Comdat *C = GO.getComdat())
2850 Comdats.insert(C);
2853 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2854 const ModuleSummaryIndex *Index, bool IsForDebug)
2855 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2856 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2858 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2859 if (!Operand) {
2860 Out << "<null operand!>";
2861 return;
2863 if (PrintType) {
2864 TypePrinter.print(Operand->getType(), Out);
2865 Out << ' ';
2867 auto WriterCtx = getContext();
2868 WriteAsOperandInternal(Out, Operand, WriterCtx);
2871 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2872 SyncScope::ID SSID) {
2873 switch (SSID) {
2874 case SyncScope::System: {
2875 break;
2877 default: {
2878 if (SSNs.empty())
2879 Context.getSyncScopeNames(SSNs);
2881 Out << " syncscope(\"";
2882 printEscapedString(SSNs[SSID], Out);
2883 Out << "\")";
2884 break;
2889 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2890 AtomicOrdering Ordering,
2891 SyncScope::ID SSID) {
2892 if (Ordering == AtomicOrdering::NotAtomic)
2893 return;
2895 writeSyncScope(Context, SSID);
2896 Out << " " << toIRString(Ordering);
2899 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2900 AtomicOrdering SuccessOrdering,
2901 AtomicOrdering FailureOrdering,
2902 SyncScope::ID SSID) {
2903 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2904 FailureOrdering != AtomicOrdering::NotAtomic);
2906 writeSyncScope(Context, SSID);
2907 Out << " " << toIRString(SuccessOrdering);
2908 Out << " " << toIRString(FailureOrdering);
2911 void AssemblyWriter::writeParamOperand(const Value *Operand,
2912 AttributeSet Attrs) {
2913 if (!Operand) {
2914 Out << "<null operand!>";
2915 return;
2918 // Print the type
2919 TypePrinter.print(Operand->getType(), Out);
2920 // Print parameter attributes list
2921 if (Attrs.hasAttributes()) {
2922 Out << ' ';
2923 writeAttributeSet(Attrs);
2925 Out << ' ';
2926 // Print the operand
2927 auto WriterCtx = getContext();
2928 WriteAsOperandInternal(Out, Operand, WriterCtx);
2931 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2932 if (!Call->hasOperandBundles())
2933 return;
2935 Out << " [ ";
2937 bool FirstBundle = true;
2938 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2939 OperandBundleUse BU = Call->getOperandBundleAt(i);
2941 if (!FirstBundle)
2942 Out << ", ";
2943 FirstBundle = false;
2945 Out << '"';
2946 printEscapedString(BU.getTagName(), Out);
2947 Out << '"';
2949 Out << '(';
2951 bool FirstInput = true;
2952 auto WriterCtx = getContext();
2953 for (const auto &Input : BU.Inputs) {
2954 if (!FirstInput)
2955 Out << ", ";
2956 FirstInput = false;
2958 if (Input == nullptr)
2959 Out << "<null operand bundle!>";
2960 else {
2961 TypePrinter.print(Input->getType(), Out);
2962 Out << " ";
2963 WriteAsOperandInternal(Out, Input, WriterCtx);
2967 Out << ')';
2970 Out << " ]";
2973 void AssemblyWriter::printModule(const Module *M) {
2974 Machine.initializeIfNeeded();
2976 if (ShouldPreserveUseListOrder)
2977 UseListOrders = predictUseListOrder(M);
2979 if (!M->getModuleIdentifier().empty() &&
2980 // Don't print the ID if it will start a new line (which would
2981 // require a comment char before it).
2982 M->getModuleIdentifier().find('\n') == std::string::npos)
2983 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2985 if (!M->getSourceFileName().empty()) {
2986 Out << "source_filename = \"";
2987 printEscapedString(M->getSourceFileName(), Out);
2988 Out << "\"\n";
2991 const std::string &DL = M->getDataLayoutStr();
2992 if (!DL.empty())
2993 Out << "target datalayout = \"" << DL << "\"\n";
2994 if (!M->getTargetTriple().empty())
2995 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2997 if (!M->getModuleInlineAsm().empty()) {
2998 Out << '\n';
3000 // Split the string into lines, to make it easier to read the .ll file.
3001 StringRef Asm = M->getModuleInlineAsm();
3002 do {
3003 StringRef Front;
3004 std::tie(Front, Asm) = Asm.split('\n');
3006 // We found a newline, print the portion of the asm string from the
3007 // last newline up to this newline.
3008 Out << "module asm \"";
3009 printEscapedString(Front, Out);
3010 Out << "\"\n";
3011 } while (!Asm.empty());
3014 printTypeIdentities();
3016 // Output all comdats.
3017 if (!Comdats.empty())
3018 Out << '\n';
3019 for (const Comdat *C : Comdats) {
3020 printComdat(C);
3021 if (C != Comdats.back())
3022 Out << '\n';
3025 // Output all globals.
3026 if (!M->global_empty()) Out << '\n';
3027 for (const GlobalVariable &GV : M->globals()) {
3028 printGlobal(&GV); Out << '\n';
3031 // Output all aliases.
3032 if (!M->alias_empty()) Out << "\n";
3033 for (const GlobalAlias &GA : M->aliases())
3034 printAlias(&GA);
3036 // Output all ifuncs.
3037 if (!M->ifunc_empty()) Out << "\n";
3038 for (const GlobalIFunc &GI : M->ifuncs())
3039 printIFunc(&GI);
3041 // Output all of the functions.
3042 for (const Function &F : *M) {
3043 Out << '\n';
3044 printFunction(&F);
3047 // Output global use-lists.
3048 printUseLists(nullptr);
3050 // Output all attribute groups.
3051 if (!Machine.as_empty()) {
3052 Out << '\n';
3053 writeAllAttributeGroups();
3056 // Output named metadata.
3057 if (!M->named_metadata_empty()) Out << '\n';
3059 for (const NamedMDNode &Node : M->named_metadata())
3060 printNamedMDNode(&Node);
3062 // Output metadata.
3063 if (!Machine.mdn_empty()) {
3064 Out << '\n';
3065 writeAllMDNodes();
3069 void AssemblyWriter::printModuleSummaryIndex() {
3070 assert(TheIndex);
3071 int NumSlots = Machine.initializeIndexIfNeeded();
3073 Out << "\n";
3075 // Print module path entries. To print in order, add paths to a vector
3076 // indexed by module slot.
3077 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3078 std::string RegularLTOModuleName =
3079 ModuleSummaryIndex::getRegularLTOModuleName();
3080 moduleVec.resize(TheIndex->modulePaths().size());
3081 for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
3082 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
3083 // An empty module path is a special entry for a regular LTO module
3084 // created during the thin link.
3085 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3087 unsigned i = 0;
3088 for (auto &ModPair : moduleVec) {
3089 Out << "^" << i++ << " = module: (";
3090 Out << "path: \"";
3091 printEscapedString(ModPair.first, Out);
3092 Out << "\", hash: (";
3093 FieldSeparator FS;
3094 for (auto Hash : ModPair.second)
3095 Out << FS << Hash;
3096 Out << "))\n";
3099 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
3100 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
3101 for (auto &GlobalList : *TheIndex) {
3102 auto GUID = GlobalList.first;
3103 for (auto &Summary : GlobalList.second.SummaryList)
3104 SummaryToGUIDMap[Summary.get()] = GUID;
3107 // Print the global value summary entries.
3108 for (auto &GlobalList : *TheIndex) {
3109 auto GUID = GlobalList.first;
3110 auto VI = TheIndex->getValueInfo(GlobalList);
3111 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
3114 // Print the TypeIdMap entries.
3115 for (const auto &TID : TheIndex->typeIds()) {
3116 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
3117 << " = typeid: (name: \"" << TID.second.first << "\"";
3118 printTypeIdSummary(TID.second.second);
3119 Out << ") ; guid = " << TID.first << "\n";
3122 // Print the TypeIdCompatibleVtableMap entries.
3123 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3124 auto GUID = GlobalValue::getGUID(TId.first);
3125 Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
3126 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
3127 printTypeIdCompatibleVtableSummary(TId.second);
3128 Out << ") ; guid = " << GUID << "\n";
3131 // Don't emit flags when it's not really needed (value is zero by default).
3132 if (TheIndex->getFlags()) {
3133 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3134 ++NumSlots;
3137 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3138 << "\n";
3141 static const char *
3142 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
3143 switch (K) {
3144 case WholeProgramDevirtResolution::Indir:
3145 return "indir";
3146 case WholeProgramDevirtResolution::SingleImpl:
3147 return "singleImpl";
3148 case WholeProgramDevirtResolution::BranchFunnel:
3149 return "branchFunnel";
3151 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3154 static const char *getWholeProgDevirtResByArgKindName(
3155 WholeProgramDevirtResolution::ByArg::Kind K) {
3156 switch (K) {
3157 case WholeProgramDevirtResolution::ByArg::Indir:
3158 return "indir";
3159 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
3160 return "uniformRetVal";
3161 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
3162 return "uniqueRetVal";
3163 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
3164 return "virtualConstProp";
3166 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3169 static const char *getTTResKindName(TypeTestResolution::Kind K) {
3170 switch (K) {
3171 case TypeTestResolution::Unknown:
3172 return "unknown";
3173 case TypeTestResolution::Unsat:
3174 return "unsat";
3175 case TypeTestResolution::ByteArray:
3176 return "byteArray";
3177 case TypeTestResolution::Inline:
3178 return "inline";
3179 case TypeTestResolution::Single:
3180 return "single";
3181 case TypeTestResolution::AllOnes:
3182 return "allOnes";
3184 llvm_unreachable("invalid TypeTestResolution kind");
3187 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3188 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3189 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3191 // The following fields are only used if the target does not support the use
3192 // of absolute symbols to store constants. Print only if non-zero.
3193 if (TTRes.AlignLog2)
3194 Out << ", alignLog2: " << TTRes.AlignLog2;
3195 if (TTRes.SizeM1)
3196 Out << ", sizeM1: " << TTRes.SizeM1;
3197 if (TTRes.BitMask)
3198 // BitMask is uint8_t which causes it to print the corresponding char.
3199 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3200 if (TTRes.InlineBits)
3201 Out << ", inlineBits: " << TTRes.InlineBits;
3203 Out << ")";
3206 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3207 Out << ", summary: (";
3208 printTypeTestResolution(TIS.TTRes);
3209 if (!TIS.WPDRes.empty()) {
3210 Out << ", wpdResolutions: (";
3211 FieldSeparator FS;
3212 for (auto &WPDRes : TIS.WPDRes) {
3213 Out << FS;
3214 Out << "(offset: " << WPDRes.first << ", ";
3215 printWPDRes(WPDRes.second);
3216 Out << ")";
3218 Out << ")";
3220 Out << ")";
3223 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3224 const TypeIdCompatibleVtableInfo &TI) {
3225 Out << ", summary: (";
3226 FieldSeparator FS;
3227 for (auto &P : TI) {
3228 Out << FS;
3229 Out << "(offset: " << P.AddressPointOffset << ", ";
3230 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3231 Out << ")";
3233 Out << ")";
3236 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3237 Out << "args: (";
3238 FieldSeparator FS;
3239 for (auto arg : Args) {
3240 Out << FS;
3241 Out << arg;
3243 Out << ")";
3246 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3247 Out << "wpdRes: (kind: ";
3248 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3250 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3251 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3253 if (!WPDRes.ResByArg.empty()) {
3254 Out << ", resByArg: (";
3255 FieldSeparator FS;
3256 for (auto &ResByArg : WPDRes.ResByArg) {
3257 Out << FS;
3258 printArgs(ResByArg.first);
3259 Out << ", byArg: (kind: ";
3260 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3261 if (ResByArg.second.TheKind ==
3262 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3263 ResByArg.second.TheKind ==
3264 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3265 Out << ", info: " << ResByArg.second.Info;
3267 // The following fields are only used if the target does not support the
3268 // use of absolute symbols to store constants. Print only if non-zero.
3269 if (ResByArg.second.Byte || ResByArg.second.Bit)
3270 Out << ", byte: " << ResByArg.second.Byte
3271 << ", bit: " << ResByArg.second.Bit;
3273 Out << ")";
3275 Out << ")";
3277 Out << ")";
3280 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3281 switch (SK) {
3282 case GlobalValueSummary::AliasKind:
3283 return "alias";
3284 case GlobalValueSummary::FunctionKind:
3285 return "function";
3286 case GlobalValueSummary::GlobalVarKind:
3287 return "variable";
3289 llvm_unreachable("invalid summary kind");
3292 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3293 Out << ", aliasee: ";
3294 // The indexes emitted for distributed backends may not include the
3295 // aliasee summary (only if it is being imported directly). Handle
3296 // that case by just emitting "null" as the aliasee.
3297 if (AS->hasAliasee())
3298 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3299 else
3300 Out << "null";
3303 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3304 auto VTableFuncs = GS->vTableFuncs();
3305 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3306 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3307 << "constant: " << GS->VarFlags.Constant;
3308 if (!VTableFuncs.empty())
3309 Out << ", "
3310 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3311 Out << ")";
3313 if (!VTableFuncs.empty()) {
3314 Out << ", vTableFuncs: (";
3315 FieldSeparator FS;
3316 for (auto &P : VTableFuncs) {
3317 Out << FS;
3318 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3319 << ", offset: " << P.VTableOffset;
3320 Out << ")";
3322 Out << ")";
3326 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3327 switch (LT) {
3328 case GlobalValue::ExternalLinkage:
3329 return "external";
3330 case GlobalValue::PrivateLinkage:
3331 return "private";
3332 case GlobalValue::InternalLinkage:
3333 return "internal";
3334 case GlobalValue::LinkOnceAnyLinkage:
3335 return "linkonce";
3336 case GlobalValue::LinkOnceODRLinkage:
3337 return "linkonce_odr";
3338 case GlobalValue::WeakAnyLinkage:
3339 return "weak";
3340 case GlobalValue::WeakODRLinkage:
3341 return "weak_odr";
3342 case GlobalValue::CommonLinkage:
3343 return "common";
3344 case GlobalValue::AppendingLinkage:
3345 return "appending";
3346 case GlobalValue::ExternalWeakLinkage:
3347 return "extern_weak";
3348 case GlobalValue::AvailableExternallyLinkage:
3349 return "available_externally";
3351 llvm_unreachable("invalid linkage");
3354 // When printing the linkage types in IR where the ExternalLinkage is
3355 // not printed, and other linkage types are expected to be printed with
3356 // a space after the name.
3357 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3358 if (LT == GlobalValue::ExternalLinkage)
3359 return "";
3360 return getLinkageName(LT) + " ";
3363 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3364 switch (Vis) {
3365 case GlobalValue::DefaultVisibility:
3366 return "default";
3367 case GlobalValue::HiddenVisibility:
3368 return "hidden";
3369 case GlobalValue::ProtectedVisibility:
3370 return "protected";
3372 llvm_unreachable("invalid visibility");
3375 static const char *getImportTypeName(GlobalValueSummary::ImportKind IK) {
3376 switch (IK) {
3377 case GlobalValueSummary::Definition:
3378 return "definition";
3379 case GlobalValueSummary::Declaration:
3380 return "declaration";
3382 llvm_unreachable("invalid import kind");
3385 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3386 Out << ", insts: " << FS->instCount();
3387 if (FS->fflags().anyFlagSet())
3388 Out << ", " << FS->fflags();
3390 if (!FS->calls().empty()) {
3391 Out << ", calls: (";
3392 FieldSeparator IFS;
3393 for (auto &Call : FS->calls()) {
3394 Out << IFS;
3395 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3396 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3397 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3398 else if (Call.second.RelBlockFreq)
3399 Out << ", relbf: " << Call.second.RelBlockFreq;
3400 // Follow the convention of emitting flags as a boolean value, but only
3401 // emit if true to avoid unnecessary verbosity and test churn.
3402 if (Call.second.HasTailCall)
3403 Out << ", tail: 1";
3404 Out << ")";
3406 Out << ")";
3409 if (const auto *TIdInfo = FS->getTypeIdInfo())
3410 printTypeIdInfo(*TIdInfo);
3412 // The AllocationType identifiers capture the profiled context behavior
3413 // reaching a specific static allocation site (possibly cloned).
3414 auto AllocTypeName = [](uint8_t Type) -> const char * {
3415 switch (Type) {
3416 case (uint8_t)AllocationType::None:
3417 return "none";
3418 case (uint8_t)AllocationType::NotCold:
3419 return "notcold";
3420 case (uint8_t)AllocationType::Cold:
3421 return "cold";
3422 case (uint8_t)AllocationType::Hot:
3423 return "hot";
3425 llvm_unreachable("Unexpected alloc type");
3428 if (!FS->allocs().empty()) {
3429 Out << ", allocs: (";
3430 FieldSeparator AFS;
3431 for (auto &AI : FS->allocs()) {
3432 Out << AFS;
3433 Out << "(versions: (";
3434 FieldSeparator VFS;
3435 for (auto V : AI.Versions) {
3436 Out << VFS;
3437 Out << AllocTypeName(V);
3439 Out << "), memProf: (";
3440 FieldSeparator MIBFS;
3441 for (auto &MIB : AI.MIBs) {
3442 Out << MIBFS;
3443 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3444 Out << ", stackIds: (";
3445 FieldSeparator SIDFS;
3446 for (auto Id : MIB.StackIdIndices) {
3447 Out << SIDFS;
3448 Out << TheIndex->getStackIdAtIndex(Id);
3450 Out << "))";
3452 Out << "))";
3454 Out << ")";
3457 if (!FS->callsites().empty()) {
3458 Out << ", callsites: (";
3459 FieldSeparator SNFS;
3460 for (auto &CI : FS->callsites()) {
3461 Out << SNFS;
3462 if (CI.Callee)
3463 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3464 else
3465 Out << "(callee: null";
3466 Out << ", clones: (";
3467 FieldSeparator VFS;
3468 for (auto V : CI.Clones) {
3469 Out << VFS;
3470 Out << V;
3472 Out << "), stackIds: (";
3473 FieldSeparator SIDFS;
3474 for (auto Id : CI.StackIdIndices) {
3475 Out << SIDFS;
3476 Out << TheIndex->getStackIdAtIndex(Id);
3478 Out << "))";
3480 Out << ")";
3483 auto PrintRange = [&](const ConstantRange &Range) {
3484 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3487 if (!FS->paramAccesses().empty()) {
3488 Out << ", params: (";
3489 FieldSeparator IFS;
3490 for (auto &PS : FS->paramAccesses()) {
3491 Out << IFS;
3492 Out << "(param: " << PS.ParamNo;
3493 Out << ", offset: ";
3494 PrintRange(PS.Use);
3495 if (!PS.Calls.empty()) {
3496 Out << ", calls: (";
3497 FieldSeparator IFS;
3498 for (auto &Call : PS.Calls) {
3499 Out << IFS;
3500 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3501 Out << ", param: " << Call.ParamNo;
3502 Out << ", offset: ";
3503 PrintRange(Call.Offsets);
3504 Out << ")";
3506 Out << ")";
3508 Out << ")";
3510 Out << ")";
3514 void AssemblyWriter::printTypeIdInfo(
3515 const FunctionSummary::TypeIdInfo &TIDInfo) {
3516 Out << ", typeIdInfo: (";
3517 FieldSeparator TIDFS;
3518 if (!TIDInfo.TypeTests.empty()) {
3519 Out << TIDFS;
3520 Out << "typeTests: (";
3521 FieldSeparator FS;
3522 for (auto &GUID : TIDInfo.TypeTests) {
3523 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3524 if (TidIter.first == TidIter.second) {
3525 Out << FS;
3526 Out << GUID;
3527 continue;
3529 // Print all type id that correspond to this GUID.
3530 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3531 Out << FS;
3532 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3533 assert(Slot != -1);
3534 Out << "^" << Slot;
3537 Out << ")";
3539 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3540 Out << TIDFS;
3541 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3543 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3544 Out << TIDFS;
3545 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3547 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3548 Out << TIDFS;
3549 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3550 "typeTestAssumeConstVCalls");
3552 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3553 Out << TIDFS;
3554 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3555 "typeCheckedLoadConstVCalls");
3557 Out << ")";
3560 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3561 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3562 if (TidIter.first == TidIter.second) {
3563 Out << "vFuncId: (";
3564 Out << "guid: " << VFId.GUID;
3565 Out << ", offset: " << VFId.Offset;
3566 Out << ")";
3567 return;
3569 // Print all type id that correspond to this GUID.
3570 FieldSeparator FS;
3571 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3572 Out << FS;
3573 Out << "vFuncId: (";
3574 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3575 assert(Slot != -1);
3576 Out << "^" << Slot;
3577 Out << ", offset: " << VFId.Offset;
3578 Out << ")";
3582 void AssemblyWriter::printNonConstVCalls(
3583 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3584 Out << Tag << ": (";
3585 FieldSeparator FS;
3586 for (auto &VFuncId : VCallList) {
3587 Out << FS;
3588 printVFuncId(VFuncId);
3590 Out << ")";
3593 void AssemblyWriter::printConstVCalls(
3594 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3595 const char *Tag) {
3596 Out << Tag << ": (";
3597 FieldSeparator FS;
3598 for (auto &ConstVCall : VCallList) {
3599 Out << FS;
3600 Out << "(";
3601 printVFuncId(ConstVCall.VFunc);
3602 if (!ConstVCall.Args.empty()) {
3603 Out << ", ";
3604 printArgs(ConstVCall.Args);
3606 Out << ")";
3608 Out << ")";
3611 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3612 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3613 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3614 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3615 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3616 << ", flags: (";
3617 Out << "linkage: " << getLinkageName(LT);
3618 Out << ", visibility: "
3619 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3620 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3621 Out << ", live: " << GVFlags.Live;
3622 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3623 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3624 Out << ", importType: "
3625 << getImportTypeName(GlobalValueSummary::ImportKind(GVFlags.ImportType));
3626 Out << ")";
3628 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3629 printAliasSummary(cast<AliasSummary>(&Summary));
3630 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3631 printFunctionSummary(cast<FunctionSummary>(&Summary));
3632 else
3633 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3635 auto RefList = Summary.refs();
3636 if (!RefList.empty()) {
3637 Out << ", refs: (";
3638 FieldSeparator FS;
3639 for (auto &Ref : RefList) {
3640 Out << FS;
3641 if (Ref.isReadOnly())
3642 Out << "readonly ";
3643 else if (Ref.isWriteOnly())
3644 Out << "writeonly ";
3645 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3647 Out << ")";
3650 Out << ")";
3653 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3654 Out << "^" << Slot << " = gv: (";
3655 if (VI.hasName() && !VI.name().empty())
3656 Out << "name: \"" << VI.name() << "\"";
3657 else
3658 Out << "guid: " << VI.getGUID();
3659 if (!VI.getSummaryList().empty()) {
3660 Out << ", summaries: (";
3661 FieldSeparator FS;
3662 for (auto &Summary : VI.getSummaryList()) {
3663 Out << FS;
3664 printSummary(*Summary);
3666 Out << ")";
3668 Out << ")";
3669 if (VI.hasName() && !VI.name().empty())
3670 Out << " ; guid = " << VI.getGUID();
3671 Out << "\n";
3674 static void printMetadataIdentifier(StringRef Name,
3675 formatted_raw_ostream &Out) {
3676 if (Name.empty()) {
3677 Out << "<empty name> ";
3678 } else {
3679 unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3680 if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3681 FirstC == '_')
3682 Out << FirstC;
3683 else
3684 Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3685 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3686 unsigned char C = Name[i];
3687 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3688 Out << C;
3689 else
3690 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3695 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3696 Out << '!';
3697 printMetadataIdentifier(NMD->getName(), Out);
3698 Out << " = !{";
3699 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3700 if (i)
3701 Out << ", ";
3703 // Write DIExpressions inline.
3704 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3705 MDNode *Op = NMD->getOperand(i);
3706 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3707 writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3708 continue;
3711 int Slot = Machine.getMetadataSlot(Op);
3712 if (Slot == -1)
3713 Out << "<badref>";
3714 else
3715 Out << '!' << Slot;
3717 Out << "}\n";
3720 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3721 formatted_raw_ostream &Out) {
3722 switch (Vis) {
3723 case GlobalValue::DefaultVisibility: break;
3724 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3725 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3729 static void PrintDSOLocation(const GlobalValue &GV,
3730 formatted_raw_ostream &Out) {
3731 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3732 Out << "dso_local ";
3735 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3736 formatted_raw_ostream &Out) {
3737 switch (SCT) {
3738 case GlobalValue::DefaultStorageClass: break;
3739 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3740 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3744 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3745 formatted_raw_ostream &Out) {
3746 switch (TLM) {
3747 case GlobalVariable::NotThreadLocal:
3748 break;
3749 case GlobalVariable::GeneralDynamicTLSModel:
3750 Out << "thread_local ";
3751 break;
3752 case GlobalVariable::LocalDynamicTLSModel:
3753 Out << "thread_local(localdynamic) ";
3754 break;
3755 case GlobalVariable::InitialExecTLSModel:
3756 Out << "thread_local(initialexec) ";
3757 break;
3758 case GlobalVariable::LocalExecTLSModel:
3759 Out << "thread_local(localexec) ";
3760 break;
3764 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3765 switch (UA) {
3766 case GlobalVariable::UnnamedAddr::None:
3767 return "";
3768 case GlobalVariable::UnnamedAddr::Local:
3769 return "local_unnamed_addr";
3770 case GlobalVariable::UnnamedAddr::Global:
3771 return "unnamed_addr";
3773 llvm_unreachable("Unknown UnnamedAddr");
3776 static void maybePrintComdat(formatted_raw_ostream &Out,
3777 const GlobalObject &GO) {
3778 const Comdat *C = GO.getComdat();
3779 if (!C)
3780 return;
3782 if (isa<GlobalVariable>(GO))
3783 Out << ',';
3784 Out << " comdat";
3786 if (GO.getName() == C->getName())
3787 return;
3789 Out << '(';
3790 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3791 Out << ')';
3794 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3795 if (GV->isMaterializable())
3796 Out << "; Materializable\n";
3798 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3799 WriteAsOperandInternal(Out, GV, WriterCtx);
3800 Out << " = ";
3802 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3803 Out << "external ";
3805 Out << getLinkageNameWithSpace(GV->getLinkage());
3806 PrintDSOLocation(*GV, Out);
3807 PrintVisibility(GV->getVisibility(), Out);
3808 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3809 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3810 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3811 if (!UA.empty())
3812 Out << UA << ' ';
3814 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3815 Out << "addrspace(" << AddressSpace << ") ";
3816 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3817 Out << (GV->isConstant() ? "constant " : "global ");
3818 TypePrinter.print(GV->getValueType(), Out);
3820 if (GV->hasInitializer()) {
3821 Out << ' ';
3822 writeOperand(GV->getInitializer(), false);
3825 if (GV->hasSection()) {
3826 Out << ", section \"";
3827 printEscapedString(GV->getSection(), Out);
3828 Out << '"';
3830 if (GV->hasPartition()) {
3831 Out << ", partition \"";
3832 printEscapedString(GV->getPartition(), Out);
3833 Out << '"';
3835 if (auto CM = GV->getCodeModel()) {
3836 Out << ", code_model \"";
3837 switch (*CM) {
3838 case CodeModel::Tiny:
3839 Out << "tiny";
3840 break;
3841 case CodeModel::Small:
3842 Out << "small";
3843 break;
3844 case CodeModel::Kernel:
3845 Out << "kernel";
3846 break;
3847 case CodeModel::Medium:
3848 Out << "medium";
3849 break;
3850 case CodeModel::Large:
3851 Out << "large";
3852 break;
3854 Out << '"';
3857 using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3858 if (GV->hasSanitizerMetadata()) {
3859 SanitizerMetadata MD = GV->getSanitizerMetadata();
3860 if (MD.NoAddress)
3861 Out << ", no_sanitize_address";
3862 if (MD.NoHWAddress)
3863 Out << ", no_sanitize_hwaddress";
3864 if (MD.Memtag)
3865 Out << ", sanitize_memtag";
3866 if (MD.IsDynInit)
3867 Out << ", sanitize_address_dyninit";
3870 maybePrintComdat(Out, *GV);
3871 if (MaybeAlign A = GV->getAlign())
3872 Out << ", align " << A->value();
3874 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3875 GV->getAllMetadata(MDs);
3876 printMetadataAttachments(MDs, ", ");
3878 auto Attrs = GV->getAttributes();
3879 if (Attrs.hasAttributes())
3880 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3882 printInfoComment(*GV);
3885 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3886 if (GA->isMaterializable())
3887 Out << "; Materializable\n";
3889 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3890 WriteAsOperandInternal(Out, GA, WriterCtx);
3891 Out << " = ";
3893 Out << getLinkageNameWithSpace(GA->getLinkage());
3894 PrintDSOLocation(*GA, Out);
3895 PrintVisibility(GA->getVisibility(), Out);
3896 PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3897 PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3898 StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3899 if (!UA.empty())
3900 Out << UA << ' ';
3902 Out << "alias ";
3904 TypePrinter.print(GA->getValueType(), Out);
3905 Out << ", ";
3907 if (const Constant *Aliasee = GA->getAliasee()) {
3908 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3909 } else {
3910 TypePrinter.print(GA->getType(), Out);
3911 Out << " <<NULL ALIASEE>>";
3914 if (GA->hasPartition()) {
3915 Out << ", partition \"";
3916 printEscapedString(GA->getPartition(), Out);
3917 Out << '"';
3920 printInfoComment(*GA);
3921 Out << '\n';
3924 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3925 if (GI->isMaterializable())
3926 Out << "; Materializable\n";
3928 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3929 WriteAsOperandInternal(Out, GI, WriterCtx);
3930 Out << " = ";
3932 Out << getLinkageNameWithSpace(GI->getLinkage());
3933 PrintDSOLocation(*GI, Out);
3934 PrintVisibility(GI->getVisibility(), Out);
3936 Out << "ifunc ";
3938 TypePrinter.print(GI->getValueType(), Out);
3939 Out << ", ";
3941 if (const Constant *Resolver = GI->getResolver()) {
3942 writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3943 } else {
3944 TypePrinter.print(GI->getType(), Out);
3945 Out << " <<NULL RESOLVER>>";
3948 if (GI->hasPartition()) {
3949 Out << ", partition \"";
3950 printEscapedString(GI->getPartition(), Out);
3951 Out << '"';
3954 printInfoComment(*GI);
3955 Out << '\n';
3958 void AssemblyWriter::printComdat(const Comdat *C) {
3959 C->print(Out);
3962 void AssemblyWriter::printTypeIdentities() {
3963 if (TypePrinter.empty())
3964 return;
3966 Out << '\n';
3968 // Emit all numbered types.
3969 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3970 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3971 Out << '%' << I << " = type ";
3973 // Make sure we print out at least one level of the type structure, so
3974 // that we do not get %2 = type %2
3975 TypePrinter.printStructBody(NumberedTypes[I], Out);
3976 Out << '\n';
3979 auto &NamedTypes = TypePrinter.getNamedTypes();
3980 for (StructType *NamedType : NamedTypes) {
3981 PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3982 Out << " = type ";
3984 // Make sure we print out at least one level of the type structure, so
3985 // that we do not get %FILE = type %FILE
3986 TypePrinter.printStructBody(NamedType, Out);
3987 Out << '\n';
3991 /// printFunction - Print all aspects of a function.
3992 void AssemblyWriter::printFunction(const Function *F) {
3993 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3995 if (F->isMaterializable())
3996 Out << "; Materializable\n";
3998 const AttributeList &Attrs = F->getAttributes();
3999 if (Attrs.hasFnAttrs()) {
4000 AttributeSet AS = Attrs.getFnAttrs();
4001 std::string AttrStr;
4003 for (const Attribute &Attr : AS) {
4004 if (!Attr.isStringAttribute()) {
4005 if (!AttrStr.empty()) AttrStr += ' ';
4006 AttrStr += Attr.getAsString();
4010 if (!AttrStr.empty())
4011 Out << "; Function Attrs: " << AttrStr << '\n';
4014 Machine.incorporateFunction(F);
4016 if (F->isDeclaration()) {
4017 Out << "declare";
4018 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4019 F->getAllMetadata(MDs);
4020 printMetadataAttachments(MDs, " ");
4021 Out << ' ';
4022 } else
4023 Out << "define ";
4025 Out << getLinkageNameWithSpace(F->getLinkage());
4026 PrintDSOLocation(*F, Out);
4027 PrintVisibility(F->getVisibility(), Out);
4028 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
4030 // Print the calling convention.
4031 if (F->getCallingConv() != CallingConv::C) {
4032 PrintCallingConv(F->getCallingConv(), Out);
4033 Out << " ";
4036 FunctionType *FT = F->getFunctionType();
4037 if (Attrs.hasRetAttrs())
4038 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
4039 TypePrinter.print(F->getReturnType(), Out);
4040 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
4041 Out << ' ';
4042 WriteAsOperandInternal(Out, F, WriterCtx);
4043 Out << '(';
4045 // Loop over the arguments, printing them...
4046 if (F->isDeclaration() && !IsForDebug) {
4047 // We're only interested in the type here - don't print argument names.
4048 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
4049 // Insert commas as we go... the first arg doesn't get a comma
4050 if (I)
4051 Out << ", ";
4052 // Output type...
4053 TypePrinter.print(FT->getParamType(I), Out);
4055 AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
4056 if (ArgAttrs.hasAttributes()) {
4057 Out << ' ';
4058 writeAttributeSet(ArgAttrs);
4061 } else {
4062 // The arguments are meaningful here, print them in detail.
4063 for (const Argument &Arg : F->args()) {
4064 // Insert commas as we go... the first arg doesn't get a comma
4065 if (Arg.getArgNo() != 0)
4066 Out << ", ";
4067 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
4071 // Finish printing arguments...
4072 if (FT->isVarArg()) {
4073 if (FT->getNumParams()) Out << ", ";
4074 Out << "..."; // Output varargs portion of signature!
4076 Out << ')';
4077 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
4078 if (!UA.empty())
4079 Out << ' ' << UA;
4080 // We print the function address space if it is non-zero or if we are writing
4081 // a module with a non-zero program address space or if there is no valid
4082 // Module* so that the file can be parsed without the datalayout string.
4083 const Module *Mod = F->getParent();
4084 if (F->getAddressSpace() != 0 || !Mod ||
4085 Mod->getDataLayout().getProgramAddressSpace() != 0)
4086 Out << " addrspace(" << F->getAddressSpace() << ")";
4087 if (Attrs.hasFnAttrs())
4088 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
4089 if (F->hasSection()) {
4090 Out << " section \"";
4091 printEscapedString(F->getSection(), Out);
4092 Out << '"';
4094 if (F->hasPartition()) {
4095 Out << " partition \"";
4096 printEscapedString(F->getPartition(), Out);
4097 Out << '"';
4099 maybePrintComdat(Out, *F);
4100 if (MaybeAlign A = F->getAlign())
4101 Out << " align " << A->value();
4102 if (F->hasGC())
4103 Out << " gc \"" << F->getGC() << '"';
4104 if (F->hasPrefixData()) {
4105 Out << " prefix ";
4106 writeOperand(F->getPrefixData(), true);
4108 if (F->hasPrologueData()) {
4109 Out << " prologue ";
4110 writeOperand(F->getPrologueData(), true);
4112 if (F->hasPersonalityFn()) {
4113 Out << " personality ";
4114 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
4117 if (F->isDeclaration()) {
4118 Out << '\n';
4119 } else {
4120 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4121 F->getAllMetadata(MDs);
4122 printMetadataAttachments(MDs, " ");
4124 Out << " {";
4125 // Output all of the function's basic blocks.
4126 for (const BasicBlock &BB : *F)
4127 printBasicBlock(&BB);
4129 // Output the function's use-lists.
4130 printUseLists(F);
4132 Out << "}\n";
4135 Machine.purgeFunction();
4138 /// printArgument - This member is called for every argument that is passed into
4139 /// the function. Simply print it out
4140 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4141 // Output type...
4142 TypePrinter.print(Arg->getType(), Out);
4144 // Output parameter attributes list
4145 if (Attrs.hasAttributes()) {
4146 Out << ' ';
4147 writeAttributeSet(Attrs);
4150 // Output name, if available...
4151 if (Arg->hasName()) {
4152 Out << ' ';
4153 PrintLLVMName(Out, Arg);
4154 } else {
4155 int Slot = Machine.getLocalSlot(Arg);
4156 assert(Slot != -1 && "expect argument in function here");
4157 Out << " %" << Slot;
4161 /// printBasicBlock - This member is called for each basic block in a method.
4162 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4163 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
4164 if (BB->hasName()) { // Print out the label if it exists...
4165 Out << "\n";
4166 PrintLLVMName(Out, BB->getName(), LabelPrefix);
4167 Out << ':';
4168 } else if (!IsEntryBlock) {
4169 Out << "\n";
4170 int Slot = Machine.getLocalSlot(BB);
4171 if (Slot != -1)
4172 Out << Slot << ":";
4173 else
4174 Out << "<badref>:";
4177 if (!IsEntryBlock) {
4178 // Output predecessors for the block.
4179 Out.PadToColumn(50);
4180 Out << ";";
4181 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
4183 if (PI == PE) {
4184 Out << " No predecessors!";
4185 } else {
4186 Out << " preds = ";
4187 writeOperand(*PI, false);
4188 for (++PI; PI != PE; ++PI) {
4189 Out << ", ";
4190 writeOperand(*PI, false);
4195 Out << "\n";
4197 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4199 // Output all of the instructions in the basic block...
4200 for (const Instruction &I : *BB) {
4201 for (const DbgRecord &DR : I.getDbgRecordRange())
4202 printDbgRecordLine(DR);
4203 printInstructionLine(I);
4206 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4209 /// printInstructionLine - Print an instruction and a newline character.
4210 void AssemblyWriter::printInstructionLine(const Instruction &I) {
4211 printInstruction(I);
4212 Out << '\n';
4215 /// printGCRelocateComment - print comment after call to the gc.relocate
4216 /// intrinsic indicating base and derived pointer names.
4217 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4218 Out << " ; (";
4219 writeOperand(Relocate.getBasePtr(), false);
4220 Out << ", ";
4221 writeOperand(Relocate.getDerivedPtr(), false);
4222 Out << ")";
4225 /// printInfoComment - Print a little comment after the instruction indicating
4226 /// which slot it occupies.
4227 void AssemblyWriter::printInfoComment(const Value &V) {
4228 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4229 printGCRelocateComment(*Relocate);
4231 if (AnnotationWriter) {
4232 AnnotationWriter->printInfoComment(V, Out);
4236 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4237 raw_ostream &Out) {
4238 // We print the address space of the call if it is non-zero.
4239 if (Operand == nullptr) {
4240 Out << " <cannot get addrspace!>";
4241 return;
4243 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4244 bool PrintAddrSpace = CallAddrSpace != 0;
4245 if (!PrintAddrSpace) {
4246 const Module *Mod = getModuleFromVal(I);
4247 // We also print it if it is zero but not equal to the program address space
4248 // or if we can't find a valid Module* to make it possible to parse
4249 // the resulting file even without a datalayout string.
4250 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4251 PrintAddrSpace = true;
4253 if (PrintAddrSpace)
4254 Out << " addrspace(" << CallAddrSpace << ")";
4257 // This member is called for each Instruction in a function..
4258 void AssemblyWriter::printInstruction(const Instruction &I) {
4259 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4261 // Print out indentation for an instruction.
4262 Out << " ";
4264 // Print out name if it exists...
4265 if (I.hasName()) {
4266 PrintLLVMName(Out, &I);
4267 Out << " = ";
4268 } else if (!I.getType()->isVoidTy()) {
4269 // Print out the def slot taken.
4270 int SlotNum = Machine.getLocalSlot(&I);
4271 if (SlotNum == -1)
4272 Out << "<badref> = ";
4273 else
4274 Out << '%' << SlotNum << " = ";
4277 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4278 if (CI->isMustTailCall())
4279 Out << "musttail ";
4280 else if (CI->isTailCall())
4281 Out << "tail ";
4282 else if (CI->isNoTailCall())
4283 Out << "notail ";
4286 // Print out the opcode...
4287 Out << I.getOpcodeName();
4289 // If this is an atomic load or store, print out the atomic marker.
4290 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
4291 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4292 Out << " atomic";
4294 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4295 Out << " weak";
4297 // If this is a volatile operation, print out the volatile marker.
4298 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
4299 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4300 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4301 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4302 Out << " volatile";
4304 // Print out optimization information.
4305 WriteOptimizationInfo(Out, &I);
4307 // Print out the compare instruction predicates
4308 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4309 Out << ' ' << CI->getPredicate();
4311 // Print out the atomicrmw operation
4312 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4313 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4315 // Print out the type of the operands...
4316 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4318 // Special case conditional branches to swizzle the condition out to the front
4319 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4320 const BranchInst &BI(cast<BranchInst>(I));
4321 Out << ' ';
4322 writeOperand(BI.getCondition(), true);
4323 Out << ", ";
4324 writeOperand(BI.getSuccessor(0), true);
4325 Out << ", ";
4326 writeOperand(BI.getSuccessor(1), true);
4328 } else if (isa<SwitchInst>(I)) {
4329 const SwitchInst& SI(cast<SwitchInst>(I));
4330 // Special case switch instruction to get formatting nice and correct.
4331 Out << ' ';
4332 writeOperand(SI.getCondition(), true);
4333 Out << ", ";
4334 writeOperand(SI.getDefaultDest(), true);
4335 Out << " [";
4336 for (auto Case : SI.cases()) {
4337 Out << "\n ";
4338 writeOperand(Case.getCaseValue(), true);
4339 Out << ", ";
4340 writeOperand(Case.getCaseSuccessor(), true);
4342 Out << "\n ]";
4343 } else if (isa<IndirectBrInst>(I)) {
4344 // Special case indirectbr instruction to get formatting nice and correct.
4345 Out << ' ';
4346 writeOperand(Operand, true);
4347 Out << ", [";
4349 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4350 if (i != 1)
4351 Out << ", ";
4352 writeOperand(I.getOperand(i), true);
4354 Out << ']';
4355 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4356 Out << ' ';
4357 TypePrinter.print(I.getType(), Out);
4358 Out << ' ';
4360 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4361 if (op) Out << ", ";
4362 Out << "[ ";
4363 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4364 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4366 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4367 Out << ' ';
4368 writeOperand(I.getOperand(0), true);
4369 for (unsigned i : EVI->indices())
4370 Out << ", " << i;
4371 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4372 Out << ' ';
4373 writeOperand(I.getOperand(0), true); Out << ", ";
4374 writeOperand(I.getOperand(1), true);
4375 for (unsigned i : IVI->indices())
4376 Out << ", " << i;
4377 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4378 Out << ' ';
4379 TypePrinter.print(I.getType(), Out);
4380 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4381 Out << '\n';
4383 if (LPI->isCleanup())
4384 Out << " cleanup";
4386 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4387 if (i != 0 || LPI->isCleanup()) Out << "\n";
4388 if (LPI->isCatch(i))
4389 Out << " catch ";
4390 else
4391 Out << " filter ";
4393 writeOperand(LPI->getClause(i), true);
4395 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4396 Out << " within ";
4397 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4398 Out << " [";
4399 unsigned Op = 0;
4400 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4401 if (Op > 0)
4402 Out << ", ";
4403 writeOperand(PadBB, /*PrintType=*/true);
4404 ++Op;
4406 Out << "] unwind ";
4407 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4408 writeOperand(UnwindDest, /*PrintType=*/true);
4409 else
4410 Out << "to caller";
4411 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4412 Out << " within ";
4413 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4414 Out << " [";
4415 for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4416 if (Op > 0)
4417 Out << ", ";
4418 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4420 Out << ']';
4421 } else if (isa<ReturnInst>(I) && !Operand) {
4422 Out << " void";
4423 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4424 Out << " from ";
4425 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4427 Out << " to ";
4428 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4429 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4430 Out << " from ";
4431 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4433 Out << " unwind ";
4434 if (CRI->hasUnwindDest())
4435 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4436 else
4437 Out << "to caller";
4438 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4439 // Print the calling convention being used.
4440 if (CI->getCallingConv() != CallingConv::C) {
4441 Out << " ";
4442 PrintCallingConv(CI->getCallingConv(), Out);
4445 Operand = CI->getCalledOperand();
4446 FunctionType *FTy = CI->getFunctionType();
4447 Type *RetTy = FTy->getReturnType();
4448 const AttributeList &PAL = CI->getAttributes();
4450 if (PAL.hasRetAttrs())
4451 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4453 // Only print addrspace(N) if necessary:
4454 maybePrintCallAddrSpace(Operand, &I, Out);
4456 // If possible, print out the short form of the call instruction. We can
4457 // only do this if the first argument is a pointer to a nonvararg function,
4458 // and if the return type is not a pointer to a function.
4459 Out << ' ';
4460 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4461 Out << ' ';
4462 writeOperand(Operand, false);
4463 Out << '(';
4464 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4465 if (op > 0)
4466 Out << ", ";
4467 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4470 // Emit an ellipsis if this is a musttail call in a vararg function. This
4471 // is only to aid readability, musttail calls forward varargs by default.
4472 if (CI->isMustTailCall() && CI->getParent() &&
4473 CI->getParent()->getParent() &&
4474 CI->getParent()->getParent()->isVarArg()) {
4475 if (CI->arg_size() > 0)
4476 Out << ", ";
4477 Out << "...";
4480 Out << ')';
4481 if (PAL.hasFnAttrs())
4482 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4484 writeOperandBundles(CI);
4485 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4486 Operand = II->getCalledOperand();
4487 FunctionType *FTy = II->getFunctionType();
4488 Type *RetTy = FTy->getReturnType();
4489 const AttributeList &PAL = II->getAttributes();
4491 // Print the calling convention being used.
4492 if (II->getCallingConv() != CallingConv::C) {
4493 Out << " ";
4494 PrintCallingConv(II->getCallingConv(), Out);
4497 if (PAL.hasRetAttrs())
4498 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4500 // Only print addrspace(N) if necessary:
4501 maybePrintCallAddrSpace(Operand, &I, Out);
4503 // If possible, print out the short form of the invoke instruction. We can
4504 // only do this if the first argument is a pointer to a nonvararg function,
4505 // and if the return type is not a pointer to a function.
4507 Out << ' ';
4508 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4509 Out << ' ';
4510 writeOperand(Operand, false);
4511 Out << '(';
4512 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4513 if (op)
4514 Out << ", ";
4515 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4518 Out << ')';
4519 if (PAL.hasFnAttrs())
4520 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4522 writeOperandBundles(II);
4524 Out << "\n to ";
4525 writeOperand(II->getNormalDest(), true);
4526 Out << " unwind ";
4527 writeOperand(II->getUnwindDest(), true);
4528 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4529 Operand = CBI->getCalledOperand();
4530 FunctionType *FTy = CBI->getFunctionType();
4531 Type *RetTy = FTy->getReturnType();
4532 const AttributeList &PAL = CBI->getAttributes();
4534 // Print the calling convention being used.
4535 if (CBI->getCallingConv() != CallingConv::C) {
4536 Out << " ";
4537 PrintCallingConv(CBI->getCallingConv(), Out);
4540 if (PAL.hasRetAttrs())
4541 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4543 // If possible, print out the short form of the callbr instruction. We can
4544 // only do this if the first argument is a pointer to a nonvararg function,
4545 // and if the return type is not a pointer to a function.
4547 Out << ' ';
4548 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4549 Out << ' ';
4550 writeOperand(Operand, false);
4551 Out << '(';
4552 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4553 if (op)
4554 Out << ", ";
4555 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4558 Out << ')';
4559 if (PAL.hasFnAttrs())
4560 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4562 writeOperandBundles(CBI);
4564 Out << "\n to ";
4565 writeOperand(CBI->getDefaultDest(), true);
4566 Out << " [";
4567 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4568 if (i != 0)
4569 Out << ", ";
4570 writeOperand(CBI->getIndirectDest(i), true);
4572 Out << ']';
4573 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4574 Out << ' ';
4575 if (AI->isUsedWithInAlloca())
4576 Out << "inalloca ";
4577 if (AI->isSwiftError())
4578 Out << "swifterror ";
4579 TypePrinter.print(AI->getAllocatedType(), Out);
4581 // Explicitly write the array size if the code is broken, if it's an array
4582 // allocation, or if the type is not canonical for scalar allocations. The
4583 // latter case prevents the type from mutating when round-tripping through
4584 // assembly.
4585 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4586 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4587 Out << ", ";
4588 writeOperand(AI->getArraySize(), true);
4590 if (MaybeAlign A = AI->getAlign()) {
4591 Out << ", align " << A->value();
4594 unsigned AddrSpace = AI->getAddressSpace();
4595 if (AddrSpace != 0) {
4596 Out << ", addrspace(" << AddrSpace << ')';
4598 } else if (isa<CastInst>(I)) {
4599 if (Operand) {
4600 Out << ' ';
4601 writeOperand(Operand, true); // Work with broken code
4603 Out << " to ";
4604 TypePrinter.print(I.getType(), Out);
4605 } else if (isa<VAArgInst>(I)) {
4606 if (Operand) {
4607 Out << ' ';
4608 writeOperand(Operand, true); // Work with broken code
4610 Out << ", ";
4611 TypePrinter.print(I.getType(), Out);
4612 } else if (Operand) { // Print the normal way.
4613 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4614 Out << ' ';
4615 TypePrinter.print(GEP->getSourceElementType(), Out);
4616 Out << ',';
4617 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4618 Out << ' ';
4619 TypePrinter.print(LI->getType(), Out);
4620 Out << ',';
4623 // PrintAllTypes - Instructions who have operands of all the same type
4624 // omit the type from all but the first operand. If the instruction has
4625 // different type operands (for example br), then they are all printed.
4626 bool PrintAllTypes = false;
4627 Type *TheType = Operand->getType();
4629 // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4630 // types.
4631 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4632 isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4633 isa<AtomicRMWInst>(I)) {
4634 PrintAllTypes = true;
4635 } else {
4636 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4637 Operand = I.getOperand(i);
4638 // note that Operand shouldn't be null, but the test helps make dump()
4639 // more tolerant of malformed IR
4640 if (Operand && Operand->getType() != TheType) {
4641 PrintAllTypes = true; // We have differing types! Print them all!
4642 break;
4647 if (!PrintAllTypes) {
4648 Out << ' ';
4649 TypePrinter.print(TheType, Out);
4652 Out << ' ';
4653 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4654 if (i) Out << ", ";
4655 writeOperand(I.getOperand(i), PrintAllTypes);
4659 // Print atomic ordering/alignment for memory operations
4660 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4661 if (LI->isAtomic())
4662 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4663 if (MaybeAlign A = LI->getAlign())
4664 Out << ", align " << A->value();
4665 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4666 if (SI->isAtomic())
4667 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4668 if (MaybeAlign A = SI->getAlign())
4669 Out << ", align " << A->value();
4670 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4671 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4672 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4673 Out << ", align " << CXI->getAlign().value();
4674 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4675 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4676 RMWI->getSyncScopeID());
4677 Out << ", align " << RMWI->getAlign().value();
4678 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4679 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4680 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4681 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4684 // Print Metadata info.
4685 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4686 I.getAllMetadata(InstMD);
4687 printMetadataAttachments(InstMD, ", ");
4689 // Print a nice comment.
4690 printInfoComment(I);
4693 void AssemblyWriter::printDbgMarker(const DbgMarker &Marker) {
4694 // There's no formal representation of a DbgMarker -- print purely as a
4695 // debugging aid.
4696 for (const DbgRecord &DPR : Marker.StoredDbgRecords) {
4697 printDbgRecord(DPR);
4698 Out << "\n";
4701 Out << " DbgMarker -> { ";
4702 printInstruction(*Marker.MarkedInstr);
4703 Out << " }";
4706 void AssemblyWriter::printDbgRecord(const DbgRecord &DR) {
4707 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR))
4708 printDbgVariableRecord(*DVR);
4709 else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR))
4710 printDbgLabelRecord(*DLR);
4711 else
4712 llvm_unreachable("Unexpected DbgRecord kind");
4715 void AssemblyWriter::printDbgVariableRecord(const DbgVariableRecord &DVR) {
4716 auto WriterCtx = getContext();
4717 Out << "#dbg_";
4718 switch (DVR.getType()) {
4719 case DbgVariableRecord::LocationType::Value:
4720 Out << "value";
4721 break;
4722 case DbgVariableRecord::LocationType::Declare:
4723 Out << "declare";
4724 break;
4725 case DbgVariableRecord::LocationType::Assign:
4726 Out << "assign";
4727 break;
4728 default:
4729 llvm_unreachable(
4730 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4732 Out << "(";
4733 WriteAsOperandInternal(Out, DVR.getRawLocation(), WriterCtx, true);
4734 Out << ", ";
4735 WriteAsOperandInternal(Out, DVR.getRawVariable(), WriterCtx, true);
4736 Out << ", ";
4737 WriteAsOperandInternal(Out, DVR.getRawExpression(), WriterCtx, true);
4738 Out << ", ";
4739 if (DVR.isDbgAssign()) {
4740 WriteAsOperandInternal(Out, DVR.getRawAssignID(), WriterCtx, true);
4741 Out << ", ";
4742 WriteAsOperandInternal(Out, DVR.getRawAddress(), WriterCtx, true);
4743 Out << ", ";
4744 WriteAsOperandInternal(Out, DVR.getRawAddressExpression(), WriterCtx, true);
4745 Out << ", ";
4747 WriteAsOperandInternal(Out, DVR.getDebugLoc().getAsMDNode(), WriterCtx, true);
4748 Out << ")";
4751 /// printDbgRecordLine - Print a DbgRecord with indentation and a newline
4752 /// character.
4753 void AssemblyWriter::printDbgRecordLine(const DbgRecord &DR) {
4754 // Print lengthier indentation to bring out-of-line with instructions.
4755 Out << " ";
4756 printDbgRecord(DR);
4757 Out << '\n';
4760 void AssemblyWriter::printDbgLabelRecord(const DbgLabelRecord &Label) {
4761 auto WriterCtx = getContext();
4762 Out << "#dbg_label(";
4763 WriteAsOperandInternal(Out, Label.getRawLabel(), WriterCtx, true);
4764 Out << ", ";
4765 WriteAsOperandInternal(Out, Label.getDebugLoc(), WriterCtx, true);
4766 Out << ")";
4769 void AssemblyWriter::printMetadataAttachments(
4770 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4771 StringRef Separator) {
4772 if (MDs.empty())
4773 return;
4775 if (MDNames.empty())
4776 MDs[0].second->getContext().getMDKindNames(MDNames);
4778 auto WriterCtx = getContext();
4779 for (const auto &I : MDs) {
4780 unsigned Kind = I.first;
4781 Out << Separator;
4782 if (Kind < MDNames.size()) {
4783 Out << "!";
4784 printMetadataIdentifier(MDNames[Kind], Out);
4785 } else
4786 Out << "!<unknown kind #" << Kind << ">";
4787 Out << ' ';
4788 WriteAsOperandInternal(Out, I.second, WriterCtx);
4792 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4793 Out << '!' << Slot << " = ";
4794 printMDNodeBody(Node);
4795 Out << "\n";
4798 void AssemblyWriter::writeAllMDNodes() {
4799 SmallVector<const MDNode *, 16> Nodes;
4800 Nodes.resize(Machine.mdn_size());
4801 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4802 Nodes[I.second] = cast<MDNode>(I.first);
4804 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4805 writeMDNode(i, Nodes[i]);
4809 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4810 auto WriterCtx = getContext();
4811 WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4814 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4815 if (!Attr.isTypeAttribute()) {
4816 Out << Attr.getAsString(InAttrGroup);
4817 return;
4820 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4821 if (Type *Ty = Attr.getValueAsType()) {
4822 Out << '(';
4823 TypePrinter.print(Ty, Out);
4824 Out << ')';
4828 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4829 bool InAttrGroup) {
4830 bool FirstAttr = true;
4831 for (const auto &Attr : AttrSet) {
4832 if (!FirstAttr)
4833 Out << ' ';
4834 writeAttribute(Attr, InAttrGroup);
4835 FirstAttr = false;
4839 void AssemblyWriter::writeAllAttributeGroups() {
4840 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4841 asVec.resize(Machine.as_size());
4843 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4844 asVec[I.second] = I;
4846 for (const auto &I : asVec)
4847 Out << "attributes #" << I.second << " = { "
4848 << I.first.getAsString(true) << " }\n";
4851 void AssemblyWriter::printUseListOrder(const Value *V,
4852 const std::vector<unsigned> &Shuffle) {
4853 bool IsInFunction = Machine.getFunction();
4854 if (IsInFunction)
4855 Out << " ";
4857 Out << "uselistorder";
4858 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4859 Out << "_bb ";
4860 writeOperand(BB->getParent(), false);
4861 Out << ", ";
4862 writeOperand(BB, false);
4863 } else {
4864 Out << " ";
4865 writeOperand(V, true);
4867 Out << ", { ";
4869 assert(Shuffle.size() >= 2 && "Shuffle too small");
4870 Out << Shuffle[0];
4871 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4872 Out << ", " << Shuffle[I];
4873 Out << " }\n";
4876 void AssemblyWriter::printUseLists(const Function *F) {
4877 auto It = UseListOrders.find(F);
4878 if (It == UseListOrders.end())
4879 return;
4881 Out << "\n; uselistorder directives\n";
4882 for (const auto &Pair : It->second)
4883 printUseListOrder(Pair.first, Pair.second);
4886 //===----------------------------------------------------------------------===//
4887 // External Interface declarations
4888 //===----------------------------------------------------------------------===//
4890 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4891 bool ShouldPreserveUseListOrder,
4892 bool IsForDebug) const {
4893 SlotTracker SlotTable(this->getParent());
4894 formatted_raw_ostream OS(ROS);
4895 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4896 IsForDebug,
4897 ShouldPreserveUseListOrder);
4898 W.printFunction(this);
4901 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4902 bool ShouldPreserveUseListOrder,
4903 bool IsForDebug) const {
4904 SlotTracker SlotTable(this->getParent());
4905 formatted_raw_ostream OS(ROS);
4906 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4907 IsForDebug,
4908 ShouldPreserveUseListOrder);
4909 W.printBasicBlock(this);
4912 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4913 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4914 SlotTracker SlotTable(this);
4915 formatted_raw_ostream OS(ROS);
4916 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4917 ShouldPreserveUseListOrder);
4918 W.printModule(this);
4921 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4922 SlotTracker SlotTable(getParent());
4923 formatted_raw_ostream OS(ROS);
4924 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4925 W.printNamedMDNode(this);
4928 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4929 bool IsForDebug) const {
4930 std::optional<SlotTracker> LocalST;
4931 SlotTracker *SlotTable;
4932 if (auto *ST = MST.getMachine())
4933 SlotTable = ST;
4934 else {
4935 LocalST.emplace(getParent());
4936 SlotTable = &*LocalST;
4939 formatted_raw_ostream OS(ROS);
4940 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4941 W.printNamedMDNode(this);
4944 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4945 PrintLLVMName(ROS, getName(), ComdatPrefix);
4946 ROS << " = comdat ";
4948 switch (getSelectionKind()) {
4949 case Comdat::Any:
4950 ROS << "any";
4951 break;
4952 case Comdat::ExactMatch:
4953 ROS << "exactmatch";
4954 break;
4955 case Comdat::Largest:
4956 ROS << "largest";
4957 break;
4958 case Comdat::NoDeduplicate:
4959 ROS << "nodeduplicate";
4960 break;
4961 case Comdat::SameSize:
4962 ROS << "samesize";
4963 break;
4966 ROS << '\n';
4969 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4970 TypePrinting TP;
4971 TP.print(const_cast<Type*>(this), OS);
4973 if (NoDetails)
4974 return;
4976 // If the type is a named struct type, print the body as well.
4977 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4978 if (!STy->isLiteral()) {
4979 OS << " = type ";
4980 TP.printStructBody(STy, OS);
4984 static bool isReferencingMDNode(const Instruction &I) {
4985 if (const auto *CI = dyn_cast<CallInst>(&I))
4986 if (Function *F = CI->getCalledFunction())
4987 if (F->isIntrinsic())
4988 for (auto &Op : I.operands())
4989 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4990 if (isa<MDNode>(V->getMetadata()))
4991 return true;
4992 return false;
4995 void DbgMarker::print(raw_ostream &ROS, bool IsForDebug) const {
4997 ModuleSlotTracker MST(getModuleFromDPI(this), true);
4998 print(ROS, MST, IsForDebug);
5001 void DbgVariableRecord::print(raw_ostream &ROS, bool IsForDebug) const {
5003 ModuleSlotTracker MST(getModuleFromDPI(this), true);
5004 print(ROS, MST, IsForDebug);
5007 void DbgMarker::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5008 bool IsForDebug) const {
5009 formatted_raw_ostream OS(ROS);
5010 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5011 SlotTracker &SlotTable =
5012 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5013 auto incorporateFunction = [&](const Function *F) {
5014 if (F)
5015 MST.incorporateFunction(*F);
5017 incorporateFunction(getParent() ? getParent()->getParent() : nullptr);
5018 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5019 W.printDbgMarker(*this);
5022 void DbgLabelRecord::print(raw_ostream &ROS, bool IsForDebug) const {
5024 ModuleSlotTracker MST(getModuleFromDPI(this), true);
5025 print(ROS, MST, IsForDebug);
5028 void DbgVariableRecord::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5029 bool IsForDebug) const {
5030 formatted_raw_ostream OS(ROS);
5031 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5032 SlotTracker &SlotTable =
5033 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5034 auto incorporateFunction = [&](const Function *F) {
5035 if (F)
5036 MST.incorporateFunction(*F);
5038 incorporateFunction(Marker && Marker->getParent()
5039 ? Marker->getParent()->getParent()
5040 : nullptr);
5041 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5042 W.printDbgVariableRecord(*this);
5045 void DbgLabelRecord::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5046 bool IsForDebug) const {
5047 formatted_raw_ostream OS(ROS);
5048 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5049 SlotTracker &SlotTable =
5050 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5051 auto incorporateFunction = [&](const Function *F) {
5052 if (F)
5053 MST.incorporateFunction(*F);
5055 incorporateFunction(Marker->getParent() ? Marker->getParent()->getParent()
5056 : nullptr);
5057 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5058 W.printDbgLabelRecord(*this);
5061 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
5062 bool ShouldInitializeAllMetadata = false;
5063 if (auto *I = dyn_cast<Instruction>(this))
5064 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
5065 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
5066 ShouldInitializeAllMetadata = true;
5068 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
5069 print(ROS, MST, IsForDebug);
5072 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5073 bool IsForDebug) const {
5074 formatted_raw_ostream OS(ROS);
5075 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5076 SlotTracker &SlotTable =
5077 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5078 auto incorporateFunction = [&](const Function *F) {
5079 if (F)
5080 MST.incorporateFunction(*F);
5083 if (const Instruction *I = dyn_cast<Instruction>(this)) {
5084 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
5085 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
5086 W.printInstruction(*I);
5087 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
5088 incorporateFunction(BB->getParent());
5089 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
5090 W.printBasicBlock(BB);
5091 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
5092 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
5093 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
5094 W.printGlobal(V);
5095 else if (const Function *F = dyn_cast<Function>(GV))
5096 W.printFunction(F);
5097 else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
5098 W.printAlias(A);
5099 else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
5100 W.printIFunc(I);
5101 else
5102 llvm_unreachable("Unknown GlobalValue to print out!");
5103 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
5104 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
5105 } else if (const Constant *C = dyn_cast<Constant>(this)) {
5106 TypePrinting TypePrinter;
5107 TypePrinter.print(C->getType(), OS);
5108 OS << ' ';
5109 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
5110 WriteConstantInternal(OS, C, WriterCtx);
5111 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
5112 this->printAsOperand(OS, /* PrintType */ true, MST);
5113 } else {
5114 llvm_unreachable("Unknown value to print out!");
5118 /// Print without a type, skipping the TypePrinting object.
5120 /// \return \c true iff printing was successful.
5121 static bool printWithoutType(const Value &V, raw_ostream &O,
5122 SlotTracker *Machine, const Module *M) {
5123 if (V.hasName() || isa<GlobalValue>(V) ||
5124 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
5125 AsmWriterContext WriterCtx(nullptr, Machine, M);
5126 WriteAsOperandInternal(O, &V, WriterCtx);
5127 return true;
5129 return false;
5132 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
5133 ModuleSlotTracker &MST) {
5134 TypePrinting TypePrinter(MST.getModule());
5135 if (PrintType) {
5136 TypePrinter.print(V.getType(), O);
5137 O << ' ';
5140 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
5141 WriteAsOperandInternal(O, &V, WriterCtx);
5144 void Value::printAsOperand(raw_ostream &O, bool PrintType,
5145 const Module *M) const {
5146 if (!M)
5147 M = getModuleFromVal(this);
5149 if (!PrintType)
5150 if (printWithoutType(*this, O, nullptr, M))
5151 return;
5153 SlotTracker Machine(
5154 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
5155 ModuleSlotTracker MST(Machine, M);
5156 printAsOperandImpl(*this, O, PrintType, MST);
5159 void Value::printAsOperand(raw_ostream &O, bool PrintType,
5160 ModuleSlotTracker &MST) const {
5161 if (!PrintType)
5162 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
5163 return;
5165 printAsOperandImpl(*this, O, PrintType, MST);
5168 /// Recursive version of printMetadataImpl.
5169 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
5170 AsmWriterContext &WriterCtx) {
5171 formatted_raw_ostream OS(ROS);
5172 WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
5174 auto *N = dyn_cast<MDNode>(&MD);
5175 if (!N || isa<DIExpression>(MD))
5176 return;
5178 OS << " = ";
5179 WriteMDNodeBodyInternal(OS, N, WriterCtx);
5182 namespace {
5183 struct MDTreeAsmWriterContext : public AsmWriterContext {
5184 unsigned Level;
5185 // {Level, Printed string}
5186 using EntryTy = std::pair<unsigned, std::string>;
5187 SmallVector<EntryTy, 4> Buffer;
5189 // Used to break the cycle in case there is any.
5190 SmallPtrSet<const Metadata *, 4> Visited;
5192 raw_ostream &MainOS;
5194 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5195 raw_ostream &OS, const Metadata *InitMD)
5196 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5198 void onWriteMetadataAsOperand(const Metadata *MD) override {
5199 if (!Visited.insert(MD).second)
5200 return;
5202 std::string Str;
5203 raw_string_ostream SS(Str);
5204 ++Level;
5205 // A placeholder entry to memorize the correct
5206 // position in buffer.
5207 Buffer.emplace_back(std::make_pair(Level, ""));
5208 unsigned InsertIdx = Buffer.size() - 1;
5210 printMetadataImplRec(SS, *MD, *this);
5211 Buffer[InsertIdx].second = std::move(SS.str());
5212 --Level;
5215 ~MDTreeAsmWriterContext() {
5216 for (const auto &Entry : Buffer) {
5217 MainOS << "\n";
5218 unsigned NumIndent = Entry.first * 2U;
5219 MainOS.indent(NumIndent) << Entry.second;
5223 } // end anonymous namespace
5225 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
5226 ModuleSlotTracker &MST, const Module *M,
5227 bool OnlyAsOperand, bool PrintAsTree = false) {
5228 formatted_raw_ostream OS(ROS);
5230 TypePrinting TypePrinter(M);
5232 std::unique_ptr<AsmWriterContext> WriterCtx;
5233 if (PrintAsTree && !OnlyAsOperand)
5234 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5235 &TypePrinter, MST.getMachine(), M, OS, &MD);
5236 else
5237 WriterCtx =
5238 std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
5240 WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
5242 auto *N = dyn_cast<MDNode>(&MD);
5243 if (OnlyAsOperand || !N || isa<DIExpression>(MD))
5244 return;
5246 OS << " = ";
5247 WriteMDNodeBodyInternal(OS, N, *WriterCtx);
5250 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
5251 ModuleSlotTracker MST(M, isa<MDNode>(this));
5252 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5255 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
5256 const Module *M) const {
5257 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5260 void Metadata::print(raw_ostream &OS, const Module *M,
5261 bool /*IsForDebug*/) const {
5262 ModuleSlotTracker MST(M, isa<MDNode>(this));
5263 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5266 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
5267 const Module *M, bool /*IsForDebug*/) const {
5268 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5271 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
5272 ModuleSlotTracker MST(M, true);
5273 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5274 /*PrintAsTree=*/true);
5277 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
5278 const Module *M) const {
5279 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5280 /*PrintAsTree=*/true);
5283 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
5284 SlotTracker SlotTable(this);
5285 formatted_raw_ostream OS(ROS);
5286 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5287 W.printModuleSummaryIndex();
5290 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
5291 unsigned UB) const {
5292 SlotTracker *ST = MachineStorage.get();
5293 if (!ST)
5294 return;
5296 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5297 if (I.second >= LB && I.second < UB)
5298 L.push_back(std::make_pair(I.second, I.first));
5301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5302 // Value::dump - allow easy printing of Values from the debugger.
5303 LLVM_DUMP_METHOD
5304 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5306 // Value::dump - allow easy printing of Values from the debugger.
5307 LLVM_DUMP_METHOD
5308 void DbgMarker::dump() const {
5309 print(dbgs(), /*IsForDebug=*/true);
5310 dbgs() << '\n';
5313 // Value::dump - allow easy printing of Values from the debugger.
5314 LLVM_DUMP_METHOD
5315 void DbgRecord::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5317 // Type::dump - allow easy printing of Types from the debugger.
5318 LLVM_DUMP_METHOD
5319 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5321 // Module::dump() - Allow printing of Modules from the debugger.
5322 LLVM_DUMP_METHOD
5323 void Module::dump() const {
5324 print(dbgs(), nullptr,
5325 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
5328 // Allow printing of Comdats from the debugger.
5329 LLVM_DUMP_METHOD
5330 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5332 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
5333 LLVM_DUMP_METHOD
5334 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5336 LLVM_DUMP_METHOD
5337 void Metadata::dump() const { dump(nullptr); }
5339 LLVM_DUMP_METHOD
5340 void Metadata::dump(const Module *M) const {
5341 print(dbgs(), M, /*IsForDebug=*/true);
5342 dbgs() << '\n';
5345 LLVM_DUMP_METHOD
5346 void MDNode::dumpTree() const { dumpTree(nullptr); }
5348 LLVM_DUMP_METHOD
5349 void MDNode::dumpTree(const Module *M) const {
5350 printTree(dbgs(), M);
5351 dbgs() << '\n';
5354 // Allow printing of ModuleSummaryIndex from the debugger.
5355 LLVM_DUMP_METHOD
5356 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5357 #endif