1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Metadata classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/ConstantRangeList.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DebugProgramInstruction.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ProfDataUtils.h"
45 #include "llvm/IR/TrackingMDRef.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MathExtras.h"
54 #include <type_traits>
60 MetadataAsValue::MetadataAsValue(Type
*Ty
, Metadata
*MD
)
61 : Value(Ty
, MetadataAsValueVal
), MD(MD
) {
65 MetadataAsValue::~MetadataAsValue() {
66 getType()->getContext().pImpl
->MetadataAsValues
.erase(MD
);
70 /// Canonicalize metadata arguments to intrinsics.
72 /// To support bitcode upgrades (and assembly semantic sugar) for \a
73 /// MetadataAsValue, we need to canonicalize certain metadata.
75 /// - nullptr is replaced by an empty MDNode.
76 /// - An MDNode with a single null operand is replaced by an empty MDNode.
77 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
79 /// This maintains readability of bitcode from when metadata was a type of
80 /// value, and these bridges were unnecessary.
81 static Metadata
*canonicalizeMetadataForValue(LLVMContext
&Context
,
85 return MDNode::get(Context
, {});
87 // Return early if this isn't a single-operand MDNode.
88 auto *N
= dyn_cast
<MDNode
>(MD
);
89 if (!N
|| N
->getNumOperands() != 1)
92 if (!N
->getOperand(0))
94 return MDNode::get(Context
, {});
96 if (auto *C
= dyn_cast
<ConstantAsMetadata
>(N
->getOperand(0)))
97 // Look through the MDNode.
103 MetadataAsValue
*MetadataAsValue::get(LLVMContext
&Context
, Metadata
*MD
) {
104 MD
= canonicalizeMetadataForValue(Context
, MD
);
105 auto *&Entry
= Context
.pImpl
->MetadataAsValues
[MD
];
107 Entry
= new MetadataAsValue(Type::getMetadataTy(Context
), MD
);
111 MetadataAsValue
*MetadataAsValue::getIfExists(LLVMContext
&Context
,
113 MD
= canonicalizeMetadataForValue(Context
, MD
);
114 auto &Store
= Context
.pImpl
->MetadataAsValues
;
115 return Store
.lookup(MD
);
118 void MetadataAsValue::handleChangedMetadata(Metadata
*MD
) {
119 LLVMContext
&Context
= getContext();
120 MD
= canonicalizeMetadataForValue(Context
, MD
);
121 auto &Store
= Context
.pImpl
->MetadataAsValues
;
123 // Stop tracking the old metadata.
124 Store
.erase(this->MD
);
128 // Start tracking MD, or RAUW if necessary.
129 auto *&Entry
= Store
[MD
];
131 replaceAllUsesWith(Entry
);
141 void MetadataAsValue::track() {
143 MetadataTracking::track(&MD
, *MD
, *this);
146 void MetadataAsValue::untrack() {
148 MetadataTracking::untrack(MD
);
151 DbgVariableRecord
*DebugValueUser::getUser() {
152 return static_cast<DbgVariableRecord
*>(this);
154 const DbgVariableRecord
*DebugValueUser::getUser() const {
155 return static_cast<const DbgVariableRecord
*>(this);
158 void DebugValueUser::handleChangedValue(void *Old
, Metadata
*New
) {
159 // NOTE: We could inform the "owner" that a value has changed through
160 // getOwner, if needed.
161 auto OldMD
= static_cast<Metadata
**>(Old
);
162 ptrdiff_t Idx
= std::distance(&*DebugValues
.begin(), OldMD
);
163 // If replacing a ValueAsMetadata with a nullptr, replace it with a
164 // PoisonValue instead.
165 if (OldMD
&& isa
<ValueAsMetadata
>(*OldMD
) && !New
) {
166 auto *OldVAM
= cast
<ValueAsMetadata
>(*OldMD
);
167 New
= ValueAsMetadata::get(PoisonValue::get(OldVAM
->getValue()->getType()));
169 resetDebugValue(Idx
, New
);
172 void DebugValueUser::trackDebugValue(size_t Idx
) {
173 assert(Idx
< 3 && "Invalid debug value index.");
174 Metadata
*&MD
= DebugValues
[Idx
];
176 MetadataTracking::track(&MD
, *MD
, *this);
179 void DebugValueUser::trackDebugValues() {
180 for (Metadata
*&MD
: DebugValues
)
182 MetadataTracking::track(&MD
, *MD
, *this);
185 void DebugValueUser::untrackDebugValue(size_t Idx
) {
186 assert(Idx
< 3 && "Invalid debug value index.");
187 Metadata
*&MD
= DebugValues
[Idx
];
189 MetadataTracking::untrack(MD
);
192 void DebugValueUser::untrackDebugValues() {
193 for (Metadata
*&MD
: DebugValues
)
195 MetadataTracking::untrack(MD
);
198 void DebugValueUser::retrackDebugValues(DebugValueUser
&X
) {
199 assert(DebugValueUser::operator==(X
) && "Expected values to match");
200 for (const auto &[MD
, XMD
] : zip(DebugValues
, X
.DebugValues
))
202 MetadataTracking::retrack(XMD
, MD
);
203 X
.DebugValues
.fill(nullptr);
206 bool MetadataTracking::track(void *Ref
, Metadata
&MD
, OwnerTy Owner
) {
207 assert(Ref
&& "Expected live reference");
208 assert((Owner
|| *static_cast<Metadata
**>(Ref
) == &MD
) &&
209 "Reference without owner must be direct");
210 if (auto *R
= ReplaceableMetadataImpl::getOrCreate(MD
)) {
211 R
->addRef(Ref
, Owner
);
214 if (auto *PH
= dyn_cast
<DistinctMDOperandPlaceholder
>(&MD
)) {
215 assert(!PH
->Use
&& "Placeholders can only be used once");
216 assert(!Owner
&& "Unexpected callback to owner");
217 PH
->Use
= static_cast<Metadata
**>(Ref
);
223 void MetadataTracking::untrack(void *Ref
, Metadata
&MD
) {
224 assert(Ref
&& "Expected live reference");
225 if (auto *R
= ReplaceableMetadataImpl::getIfExists(MD
))
227 else if (auto *PH
= dyn_cast
<DistinctMDOperandPlaceholder
>(&MD
))
231 bool MetadataTracking::retrack(void *Ref
, Metadata
&MD
, void *New
) {
232 assert(Ref
&& "Expected live reference");
233 assert(New
&& "Expected live reference");
234 assert(Ref
!= New
&& "Expected change");
235 if (auto *R
= ReplaceableMetadataImpl::getIfExists(MD
)) {
236 R
->moveRef(Ref
, New
, MD
);
239 assert(!isa
<DistinctMDOperandPlaceholder
>(MD
) &&
240 "Unexpected move of an MDOperand");
241 assert(!isReplaceable(MD
) &&
242 "Expected un-replaceable metadata, since we didn't move a reference");
246 bool MetadataTracking::isReplaceable(const Metadata
&MD
) {
247 return ReplaceableMetadataImpl::isReplaceable(MD
);
250 SmallVector
<Metadata
*> ReplaceableMetadataImpl::getAllArgListUsers() {
251 SmallVector
<std::pair
<OwnerTy
, uint64_t> *> MDUsersWithID
;
252 for (auto Pair
: UseMap
) {
253 OwnerTy Owner
= Pair
.second
.first
;
256 if (!isa
<Metadata
*>(Owner
))
258 Metadata
*OwnerMD
= cast
<Metadata
*>(Owner
);
259 if (OwnerMD
->getMetadataID() == Metadata::DIArgListKind
)
260 MDUsersWithID
.push_back(&UseMap
[Pair
.first
]);
262 llvm::sort(MDUsersWithID
, [](auto UserA
, auto UserB
) {
263 return UserA
->second
< UserB
->second
;
265 SmallVector
<Metadata
*> MDUsers
;
266 for (auto *UserWithID
: MDUsersWithID
)
267 MDUsers
.push_back(cast
<Metadata
*>(UserWithID
->first
));
271 SmallVector
<DbgVariableRecord
*>
272 ReplaceableMetadataImpl::getAllDbgVariableRecordUsers() {
273 SmallVector
<std::pair
<OwnerTy
, uint64_t> *> DVRUsersWithID
;
274 for (auto Pair
: UseMap
) {
275 OwnerTy Owner
= Pair
.second
.first
;
278 if (!isa
<DebugValueUser
*>(Owner
))
280 DVRUsersWithID
.push_back(&UseMap
[Pair
.first
]);
282 // Order DbgVariableRecord users in reverse-creation order. Normal dbg.value
283 // users of MetadataAsValues are ordered by their UseList, i.e. reverse order
284 // of when they were added: we need to replicate that here. The structure of
285 // debug-info output depends on the ordering of intrinsics, thus we need
286 // to keep them consistent for comparisons sake.
287 llvm::sort(DVRUsersWithID
, [](auto UserA
, auto UserB
) {
288 return UserA
->second
> UserB
->second
;
290 SmallVector
<DbgVariableRecord
*> DVRUsers
;
291 for (auto UserWithID
: DVRUsersWithID
)
292 DVRUsers
.push_back(cast
<DebugValueUser
*>(UserWithID
->first
)->getUser());
296 void ReplaceableMetadataImpl::addRef(void *Ref
, OwnerTy Owner
) {
298 UseMap
.insert(std::make_pair(Ref
, std::make_pair(Owner
, NextIndex
)))
301 assert(WasInserted
&& "Expected to add a reference");
304 assert(NextIndex
!= 0 && "Unexpected overflow");
307 void ReplaceableMetadataImpl::dropRef(void *Ref
) {
308 bool WasErased
= UseMap
.erase(Ref
);
310 assert(WasErased
&& "Expected to drop a reference");
313 void ReplaceableMetadataImpl::moveRef(void *Ref
, void *New
,
314 const Metadata
&MD
) {
315 auto I
= UseMap
.find(Ref
);
316 assert(I
!= UseMap
.end() && "Expected to move a reference");
317 auto OwnerAndIndex
= I
->second
;
319 bool WasInserted
= UseMap
.insert(std::make_pair(New
, OwnerAndIndex
)).second
;
321 assert(WasInserted
&& "Expected to add a reference");
323 // Check that the references are direct if there's no owner.
325 assert((OwnerAndIndex
.first
|| *static_cast<Metadata
**>(Ref
) == &MD
) &&
326 "Reference without owner must be direct");
327 assert((OwnerAndIndex
.first
|| *static_cast<Metadata
**>(New
) == &MD
) &&
328 "Reference without owner must be direct");
331 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant
&C
) {
332 if (!C
.isUsedByMetadata()) {
336 LLVMContext
&Context
= C
.getType()->getContext();
337 auto &Store
= Context
.pImpl
->ValuesAsMetadata
;
338 auto I
= Store
.find(&C
);
339 ValueAsMetadata
*MD
= I
->second
;
341 std::pair
<void *, std::pair
<MetadataTracking::OwnerTy
, uint64_t>>;
342 // Copy out uses and update value of Constant used by debug info metadata with undef below
343 SmallVector
<UseTy
, 8> Uses(MD
->UseMap
.begin(), MD
->UseMap
.end());
345 for (const auto &Pair
: Uses
) {
346 MetadataTracking::OwnerTy Owner
= Pair
.second
.first
;
349 // Check for MetadataAsValue.
350 if (isa
<MetadataAsValue
*>(Owner
)) {
351 cast
<MetadataAsValue
*>(Owner
)->handleChangedMetadata(
352 ValueAsMetadata::get(UndefValue::get(C
.getType())));
355 if (!isa
<Metadata
*>(Owner
))
357 auto *OwnerMD
= dyn_cast_if_present
<MDNode
>(cast
<Metadata
*>(Owner
));
360 if (isa
<DINode
>(OwnerMD
)) {
361 OwnerMD
->handleChangedOperand(
362 Pair
.first
, ValueAsMetadata::get(UndefValue::get(C
.getType())));
367 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata
*MD
) {
371 // Copy out uses since UseMap will get touched below.
372 using UseTy
= std::pair
<void *, std::pair
<OwnerTy
, uint64_t>>;
373 SmallVector
<UseTy
, 8> Uses(UseMap
.begin(), UseMap
.end());
374 llvm::sort(Uses
, [](const UseTy
&L
, const UseTy
&R
) {
375 return L
.second
.second
< R
.second
.second
;
377 for (const auto &Pair
: Uses
) {
378 // Check that this Ref hasn't disappeared after RAUW (when updating a
380 if (!UseMap
.count(Pair
.first
))
383 OwnerTy Owner
= Pair
.second
.first
;
385 // Update unowned tracking references directly.
386 Metadata
*&Ref
= *static_cast<Metadata
**>(Pair
.first
);
389 MetadataTracking::track(Ref
);
390 UseMap
.erase(Pair
.first
);
394 // Check for MetadataAsValue.
395 if (isa
<MetadataAsValue
*>(Owner
)) {
396 cast
<MetadataAsValue
*>(Owner
)->handleChangedMetadata(MD
);
400 if (auto *DVU
= dyn_cast
<DebugValueUser
*>(Owner
)) {
401 DVU
->handleChangedValue(Pair
.first
, MD
);
405 // There's a Metadata owner -- dispatch.
406 Metadata
*OwnerMD
= cast
<Metadata
*>(Owner
);
407 switch (OwnerMD
->getMetadataID()) {
408 #define HANDLE_METADATA_LEAF(CLASS) \
409 case Metadata::CLASS##Kind: \
410 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
412 #include "llvm/IR/Metadata.def"
414 llvm_unreachable("Invalid metadata subclass");
417 assert(UseMap
.empty() && "Expected all uses to be replaced");
420 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers
) {
429 // Copy out uses since UseMap could get touched below.
430 using UseTy
= std::pair
<void *, std::pair
<OwnerTy
, uint64_t>>;
431 SmallVector
<UseTy
, 8> Uses(UseMap
.begin(), UseMap
.end());
432 llvm::sort(Uses
, [](const UseTy
&L
, const UseTy
&R
) {
433 return L
.second
.second
< R
.second
.second
;
436 for (const auto &Pair
: Uses
) {
437 auto Owner
= Pair
.second
.first
;
440 if (!isa
<Metadata
*>(Owner
))
443 // Resolve MDNodes that point at this.
444 auto *OwnerMD
= dyn_cast_if_present
<MDNode
>(cast
<Metadata
*>(Owner
));
447 if (OwnerMD
->isResolved())
449 OwnerMD
->decrementUnresolvedOperandCount();
453 // Special handing of DIArgList is required in the RemoveDIs project, see
454 // commentry in DIArgList::handleChangedOperand for details. Hidden behind
455 // conditional compilation to avoid a compile time regression.
456 ReplaceableMetadataImpl
*ReplaceableMetadataImpl::getOrCreate(Metadata
&MD
) {
457 if (auto *N
= dyn_cast
<MDNode
>(&MD
)) {
458 return !N
->isResolved() || N
->isAlwaysReplaceable()
459 ? N
->Context
.getOrCreateReplaceableUses()
462 if (auto ArgList
= dyn_cast
<DIArgList
>(&MD
))
464 return dyn_cast
<ValueAsMetadata
>(&MD
);
467 ReplaceableMetadataImpl
*ReplaceableMetadataImpl::getIfExists(Metadata
&MD
) {
468 if (auto *N
= dyn_cast
<MDNode
>(&MD
)) {
469 return !N
->isResolved() || N
->isAlwaysReplaceable()
470 ? N
->Context
.getReplaceableUses()
473 if (auto ArgList
= dyn_cast
<DIArgList
>(&MD
))
475 return dyn_cast
<ValueAsMetadata
>(&MD
);
478 bool ReplaceableMetadataImpl::isReplaceable(const Metadata
&MD
) {
479 if (auto *N
= dyn_cast
<MDNode
>(&MD
))
480 return !N
->isResolved() || N
->isAlwaysReplaceable();
481 return isa
<ValueAsMetadata
>(&MD
) || isa
<DIArgList
>(&MD
);
484 static DISubprogram
*getLocalFunctionMetadata(Value
*V
) {
485 assert(V
&& "Expected value");
486 if (auto *A
= dyn_cast
<Argument
>(V
)) {
487 if (auto *Fn
= A
->getParent())
488 return Fn
->getSubprogram();
492 if (BasicBlock
*BB
= cast
<Instruction
>(V
)->getParent()) {
493 if (auto *Fn
= BB
->getParent())
494 return Fn
->getSubprogram();
501 ValueAsMetadata
*ValueAsMetadata::get(Value
*V
) {
502 assert(V
&& "Unexpected null Value");
504 auto &Context
= V
->getContext();
505 auto *&Entry
= Context
.pImpl
->ValuesAsMetadata
[V
];
507 assert((isa
<Constant
>(V
) || isa
<Argument
>(V
) || isa
<Instruction
>(V
)) &&
508 "Expected constant or function-local value");
509 assert(!V
->IsUsedByMD
&& "Expected this to be the only metadata use");
510 V
->IsUsedByMD
= true;
511 if (auto *C
= dyn_cast
<Constant
>(V
))
512 Entry
= new ConstantAsMetadata(C
);
514 Entry
= new LocalAsMetadata(V
);
520 ValueAsMetadata
*ValueAsMetadata::getIfExists(Value
*V
) {
521 assert(V
&& "Unexpected null Value");
522 return V
->getContext().pImpl
->ValuesAsMetadata
.lookup(V
);
525 void ValueAsMetadata::handleDeletion(Value
*V
) {
526 assert(V
&& "Expected valid value");
528 auto &Store
= V
->getType()->getContext().pImpl
->ValuesAsMetadata
;
529 auto I
= Store
.find(V
);
530 if (I
== Store
.end())
533 // Remove old entry from the map.
534 ValueAsMetadata
*MD
= I
->second
;
535 assert(MD
&& "Expected valid metadata");
536 assert(MD
->getValue() == V
&& "Expected valid mapping");
539 // Delete the metadata.
540 MD
->replaceAllUsesWith(nullptr);
544 void ValueAsMetadata::handleRAUW(Value
*From
, Value
*To
) {
545 assert(From
&& "Expected valid value");
546 assert(To
&& "Expected valid value");
547 assert(From
!= To
&& "Expected changed value");
548 assert(&From
->getContext() == &To
->getContext() && "Expected same context");
550 LLVMContext
&Context
= From
->getType()->getContext();
551 auto &Store
= Context
.pImpl
->ValuesAsMetadata
;
552 auto I
= Store
.find(From
);
553 if (I
== Store
.end()) {
554 assert(!From
->IsUsedByMD
&& "Expected From not to be used by metadata");
558 // Remove old entry from the map.
559 assert(From
->IsUsedByMD
&& "Expected From to be used by metadata");
560 From
->IsUsedByMD
= false;
561 ValueAsMetadata
*MD
= I
->second
;
562 assert(MD
&& "Expected valid metadata");
563 assert(MD
->getValue() == From
&& "Expected valid mapping");
566 if (isa
<LocalAsMetadata
>(MD
)) {
567 if (auto *C
= dyn_cast
<Constant
>(To
)) {
568 // Local became a constant.
569 MD
->replaceAllUsesWith(ConstantAsMetadata::get(C
));
573 if (getLocalFunctionMetadata(From
) && getLocalFunctionMetadata(To
) &&
574 getLocalFunctionMetadata(From
) != getLocalFunctionMetadata(To
)) {
575 // DISubprogram changed.
576 MD
->replaceAllUsesWith(nullptr);
580 } else if (!isa
<Constant
>(To
)) {
581 // Changed to function-local value.
582 MD
->replaceAllUsesWith(nullptr);
587 auto *&Entry
= Store
[To
];
589 // The target already exists.
590 MD
->replaceAllUsesWith(Entry
);
595 // Update MD in place (and update the map entry).
596 assert(!To
->IsUsedByMD
&& "Expected this to be the only metadata use");
597 To
->IsUsedByMD
= true;
602 //===----------------------------------------------------------------------===//
603 // MDString implementation.
606 MDString
*MDString::get(LLVMContext
&Context
, StringRef Str
) {
607 auto &Store
= Context
.pImpl
->MDStringCache
;
608 auto I
= Store
.try_emplace(Str
);
609 auto &MapEntry
= I
.first
->getValue();
612 MapEntry
.Entry
= &*I
.first
;
616 StringRef
MDString::getString() const {
617 assert(Entry
&& "Expected to find string map entry");
618 return Entry
->first();
621 //===----------------------------------------------------------------------===//
622 // MDNode implementation.
625 // Assert that the MDNode types will not be unaligned by the objects
626 // prepended to them.
627 #define HANDLE_MDNODE_LEAF(CLASS) \
629 alignof(uint64_t) >= alignof(CLASS), \
630 "Alignment is insufficient after objects prepended to " #CLASS);
631 #include "llvm/IR/Metadata.def"
633 void *MDNode::operator new(size_t Size
, size_t NumOps
, StorageType Storage
) {
634 // uint64_t is the most aligned type we need support (ensured by static_assert
637 alignTo(Header::getAllocSize(Storage
, NumOps
), alignof(uint64_t));
638 char *Mem
= reinterpret_cast<char *>(::operator new(AllocSize
+ Size
));
639 Header
*H
= new (Mem
+ AllocSize
- sizeof(Header
)) Header(NumOps
, Storage
);
640 return reinterpret_cast<void *>(H
+ 1);
643 void MDNode::operator delete(void *N
) {
644 Header
*H
= reinterpret_cast<Header
*>(N
) - 1;
645 void *Mem
= H
->getAllocation();
647 ::operator delete(Mem
);
650 MDNode::MDNode(LLVMContext
&Context
, unsigned ID
, StorageType Storage
,
651 ArrayRef
<Metadata
*> Ops1
, ArrayRef
<Metadata
*> Ops2
)
652 : Metadata(ID
, Storage
), Context(Context
) {
654 for (Metadata
*MD
: Ops1
)
655 setOperand(Op
++, MD
);
656 for (Metadata
*MD
: Ops2
)
657 setOperand(Op
++, MD
);
662 // Count the unresolved operands. If there are any, RAUW support will be
663 // added lazily on first reference.
664 countUnresolvedOperands();
667 TempMDNode
MDNode::clone() const {
668 switch (getMetadataID()) {
670 llvm_unreachable("Invalid MDNode subclass");
671 #define HANDLE_MDNODE_LEAF(CLASS) \
673 return cast<CLASS>(this)->cloneImpl();
674 #include "llvm/IR/Metadata.def"
678 MDNode::Header::Header(size_t NumOps
, StorageType Storage
) {
679 IsLarge
= isLarge(NumOps
);
680 IsResizable
= isResizable(Storage
);
681 SmallSize
= getSmallSize(NumOps
, IsResizable
, IsLarge
);
684 new (getLargePtr()) LargeStorageVector();
685 getLarge().resize(NumOps
);
688 SmallNumOps
= NumOps
;
689 MDOperand
*O
= reinterpret_cast<MDOperand
*>(this) - SmallSize
;
690 for (MDOperand
*E
= O
+ SmallSize
; O
!= E
;)
691 (void)new (O
++) MDOperand();
694 MDNode::Header::~Header() {
696 getLarge().~LargeStorageVector();
699 MDOperand
*O
= reinterpret_cast<MDOperand
*>(this);
700 for (MDOperand
*E
= O
- SmallSize
; O
!= E
; --O
)
701 (void)(O
- 1)->~MDOperand();
704 void *MDNode::Header::getSmallPtr() {
705 static_assert(alignof(MDOperand
) <= alignof(Header
),
706 "MDOperand too strongly aligned");
707 return reinterpret_cast<char *>(const_cast<Header
*>(this)) -
708 sizeof(MDOperand
) * SmallSize
;
711 void MDNode::Header::resize(size_t NumOps
) {
712 assert(IsResizable
&& "Node is not resizable");
713 if (operands().size() == NumOps
)
717 getLarge().resize(NumOps
);
718 else if (NumOps
<= SmallSize
)
721 resizeSmallToLarge(NumOps
);
724 void MDNode::Header::resizeSmall(size_t NumOps
) {
725 assert(!IsLarge
&& "Expected a small MDNode");
726 assert(NumOps
<= SmallSize
&& "NumOps too large for small resize");
728 MutableArrayRef
<MDOperand
> ExistingOps
= operands();
729 assert(NumOps
!= ExistingOps
.size() && "Expected a different size");
731 int NumNew
= (int)NumOps
- (int)ExistingOps
.size();
732 MDOperand
*O
= ExistingOps
.end();
733 for (int I
= 0, E
= NumNew
; I
< E
; ++I
)
735 for (int I
= 0, E
= NumNew
; I
> E
; --I
)
737 SmallNumOps
= NumOps
;
738 assert(O
== operands().end() && "Operands not (un)initialized until the end");
741 void MDNode::Header::resizeSmallToLarge(size_t NumOps
) {
742 assert(!IsLarge
&& "Expected a small MDNode");
743 assert(NumOps
> SmallSize
&& "Expected NumOps to be larger than allocation");
744 LargeStorageVector NewOps
;
745 NewOps
.resize(NumOps
);
746 llvm::move(operands(), NewOps
.begin());
748 new (getLargePtr()) LargeStorageVector(std::move(NewOps
));
752 static bool isOperandUnresolved(Metadata
*Op
) {
753 if (auto *N
= dyn_cast_or_null
<MDNode
>(Op
))
754 return !N
->isResolved();
758 void MDNode::countUnresolvedOperands() {
759 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
760 assert(isUniqued() && "Expected this to be uniqued");
761 setNumUnresolved(count_if(operands(), isOperandUnresolved
));
764 void MDNode::makeUniqued() {
765 assert(isTemporary() && "Expected this to be temporary");
766 assert(!isResolved() && "Expected this to be unresolved");
768 // Enable uniquing callbacks.
769 for (auto &Op
: mutable_operands())
770 Op
.reset(Op
.get(), this);
772 // Make this 'uniqued'.
774 countUnresolvedOperands();
775 if (!getNumUnresolved()) {
776 dropReplaceableUses();
777 assert(isResolved() && "Expected this to be resolved");
780 assert(isUniqued() && "Expected this to be uniqued");
783 void MDNode::makeDistinct() {
784 assert(isTemporary() && "Expected this to be temporary");
785 assert(!isResolved() && "Expected this to be unresolved");
787 // Drop RAUW support and store as a distinct node.
788 dropReplaceableUses();
789 storeDistinctInContext();
791 assert(isDistinct() && "Expected this to be distinct");
792 assert(isResolved() && "Expected this to be resolved");
795 void MDNode::resolve() {
796 assert(isUniqued() && "Expected this to be uniqued");
797 assert(!isResolved() && "Expected this to be unresolved");
800 dropReplaceableUses();
802 assert(isResolved() && "Expected this to be resolved");
805 void MDNode::dropReplaceableUses() {
806 assert(!getNumUnresolved() && "Unexpected unresolved operand");
808 // Drop any RAUW support.
809 if (Context
.hasReplaceableUses())
810 Context
.takeReplaceableUses()->resolveAllUses();
813 void MDNode::resolveAfterOperandChange(Metadata
*Old
, Metadata
*New
) {
814 assert(isUniqued() && "Expected this to be uniqued");
815 assert(getNumUnresolved() != 0 && "Expected unresolved operands");
817 // Check if an operand was resolved.
818 if (!isOperandUnresolved(Old
)) {
819 if (isOperandUnresolved(New
))
820 // An operand was un-resolved!
821 setNumUnresolved(getNumUnresolved() + 1);
822 } else if (!isOperandUnresolved(New
))
823 decrementUnresolvedOperandCount();
826 void MDNode::decrementUnresolvedOperandCount() {
827 assert(!isResolved() && "Expected this to be unresolved");
831 assert(isUniqued() && "Expected this to be uniqued");
832 setNumUnresolved(getNumUnresolved() - 1);
833 if (getNumUnresolved())
836 // Last unresolved operand has just been resolved.
837 dropReplaceableUses();
838 assert(isResolved() && "Expected this to become resolved");
841 void MDNode::resolveCycles() {
845 // Resolve this node immediately.
848 // Resolve all operands.
849 for (const auto &Op
: operands()) {
850 auto *N
= dyn_cast_or_null
<MDNode
>(Op
);
854 assert(!N
->isTemporary() &&
855 "Expected all forward declarations to be resolved");
856 if (!N
->isResolved())
861 static bool hasSelfReference(MDNode
*N
) {
862 return llvm::is_contained(N
->operands(), N
);
865 MDNode
*MDNode::replaceWithPermanentImpl() {
866 switch (getMetadataID()) {
868 // If this type isn't uniquable, replace with a distinct node.
869 return replaceWithDistinctImpl();
871 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
874 #include "llvm/IR/Metadata.def"
877 // Even if this type is uniquable, self-references have to be distinct.
878 if (hasSelfReference(this))
879 return replaceWithDistinctImpl();
880 return replaceWithUniquedImpl();
883 MDNode
*MDNode::replaceWithUniquedImpl() {
884 // Try to uniquify in place.
885 MDNode
*UniquedNode
= uniquify();
887 if (UniquedNode
== this) {
892 // Collision, so RAUW instead.
893 replaceAllUsesWith(UniquedNode
);
898 MDNode
*MDNode::replaceWithDistinctImpl() {
903 void MDTuple::recalculateHash() {
904 setHash(MDTupleInfo::KeyTy::calculateHash(this));
907 void MDNode::dropAllReferences() {
908 for (unsigned I
= 0, E
= getNumOperands(); I
!= E
; ++I
)
909 setOperand(I
, nullptr);
910 if (Context
.hasReplaceableUses()) {
911 Context
.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
912 (void)Context
.takeReplaceableUses();
916 void MDNode::handleChangedOperand(void *Ref
, Metadata
*New
) {
917 unsigned Op
= static_cast<MDOperand
*>(Ref
) - op_begin();
918 assert(Op
< getNumOperands() && "Expected valid operand");
921 // This node is not uniqued. Just set the operand and be done with it.
926 // This node is uniqued.
929 Metadata
*Old
= getOperand(Op
);
932 // Drop uniquing for self-reference cycles and deleted constants.
933 if (New
== this || (!New
&& Old
&& isa
<ConstantAsMetadata
>(Old
))) {
936 storeDistinctInContext();
940 // Re-unique the node.
941 auto *Uniqued
= uniquify();
942 if (Uniqued
== this) {
944 resolveAfterOperandChange(Old
, New
);
950 // Still unresolved, so RAUW.
952 // First, clear out all operands to prevent any recursion (similar to
953 // dropAllReferences(), but we still need the use-list).
954 for (unsigned O
= 0, E
= getNumOperands(); O
!= E
; ++O
)
955 setOperand(O
, nullptr);
956 if (Context
.hasReplaceableUses())
957 Context
.getReplaceableUses()->replaceAllUsesWith(Uniqued
);
962 // Store in non-uniqued form if RAUW isn't possible.
963 storeDistinctInContext();
966 void MDNode::deleteAsSubclass() {
967 switch (getMetadataID()) {
969 llvm_unreachable("Invalid subclass of MDNode");
970 #define HANDLE_MDNODE_LEAF(CLASS) \
972 delete cast<CLASS>(this); \
974 #include "llvm/IR/Metadata.def"
978 template <class T
, class InfoT
>
979 static T
*uniquifyImpl(T
*N
, DenseSet
<T
*, InfoT
> &Store
) {
980 if (T
*U
= getUniqued(Store
, N
))
987 template <class NodeTy
> struct MDNode::HasCachedHash
{
990 template <class U
, U Val
> struct SFINAE
{};
993 static Yes
&check(SFINAE
<void (U::*)(unsigned), &U::setHash
> *);
994 template <class U
> static No
&check(...);
996 static const bool value
= sizeof(check
<NodeTy
>(nullptr)) == sizeof(Yes
);
999 MDNode
*MDNode::uniquify() {
1000 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
1002 // Try to insert into uniquing store.
1003 switch (getMetadataID()) {
1005 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
1006 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
1007 case CLASS##Kind: { \
1008 CLASS *SubclassThis = cast<CLASS>(this); \
1009 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
1010 ShouldRecalculateHash; \
1011 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
1012 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
1014 #include "llvm/IR/Metadata.def"
1018 void MDNode::eraseFromStore() {
1019 switch (getMetadataID()) {
1021 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
1022 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
1024 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
1026 #include "llvm/IR/Metadata.def"
1030 MDTuple
*MDTuple::getImpl(LLVMContext
&Context
, ArrayRef
<Metadata
*> MDs
,
1031 StorageType Storage
, bool ShouldCreate
) {
1033 if (Storage
== Uniqued
) {
1034 MDTupleInfo::KeyTy
Key(MDs
);
1035 if (auto *N
= getUniqued(Context
.pImpl
->MDTuples
, Key
))
1039 Hash
= Key
.getHash();
1041 assert(ShouldCreate
&& "Expected non-uniqued nodes to always be created");
1044 return storeImpl(new (MDs
.size(), Storage
)
1045 MDTuple(Context
, Storage
, Hash
, MDs
),
1046 Storage
, Context
.pImpl
->MDTuples
);
1049 void MDNode::deleteTemporary(MDNode
*N
) {
1050 assert(N
->isTemporary() && "Expected temporary node");
1051 N
->replaceAllUsesWith(nullptr);
1052 N
->deleteAsSubclass();
1055 void MDNode::storeDistinctInContext() {
1056 assert(!Context
.hasReplaceableUses() && "Unexpected replaceable uses");
1057 assert(!getNumUnresolved() && "Unexpected unresolved nodes");
1059 assert(isResolved() && "Expected this to be resolved");
1062 switch (getMetadataID()) {
1064 llvm_unreachable("Invalid subclass of MDNode");
1065 #define HANDLE_MDNODE_LEAF(CLASS) \
1066 case CLASS##Kind: { \
1067 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
1068 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
1071 #include "llvm/IR/Metadata.def"
1074 getContext().pImpl
->DistinctMDNodes
.push_back(this);
1077 void MDNode::replaceOperandWith(unsigned I
, Metadata
*New
) {
1078 if (getOperand(I
) == New
)
1086 handleChangedOperand(mutable_begin() + I
, New
);
1089 void MDNode::setOperand(unsigned I
, Metadata
*New
) {
1090 assert(I
< getNumOperands());
1091 mutable_begin()[I
].reset(New
, isUniqued() ? this : nullptr);
1094 /// Get a node or a self-reference that looks like it.
1096 /// Special handling for finding self-references, for use by \a
1097 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
1098 /// when self-referencing nodes were still uniqued. If the first operand has
1099 /// the same operands as \c Ops, return the first operand instead.
1100 static MDNode
*getOrSelfReference(LLVMContext
&Context
,
1101 ArrayRef
<Metadata
*> Ops
) {
1103 if (MDNode
*N
= dyn_cast_or_null
<MDNode
>(Ops
[0]))
1104 if (N
->getNumOperands() == Ops
.size() && N
== N
->getOperand(0)) {
1105 for (unsigned I
= 1, E
= Ops
.size(); I
!= E
; ++I
)
1106 if (Ops
[I
] != N
->getOperand(I
))
1107 return MDNode::get(Context
, Ops
);
1111 return MDNode::get(Context
, Ops
);
1114 MDNode
*MDNode::concatenate(MDNode
*A
, MDNode
*B
) {
1120 SmallSetVector
<Metadata
*, 4> MDs(A
->op_begin(), A
->op_end());
1121 MDs
.insert(B
->op_begin(), B
->op_end());
1123 // FIXME: This preserves long-standing behaviour, but is it really the right
1124 // behaviour? Or was that an unintended side-effect of node uniquing?
1125 return getOrSelfReference(A
->getContext(), MDs
.getArrayRef());
1128 MDNode
*MDNode::intersect(MDNode
*A
, MDNode
*B
) {
1132 SmallSetVector
<Metadata
*, 4> MDs(A
->op_begin(), A
->op_end());
1133 SmallPtrSet
<Metadata
*, 4> BSet(B
->op_begin(), B
->op_end());
1134 MDs
.remove_if([&](Metadata
*MD
) { return !BSet
.count(MD
); });
1136 // FIXME: This preserves long-standing behaviour, but is it really the right
1137 // behaviour? Or was that an unintended side-effect of node uniquing?
1138 return getOrSelfReference(A
->getContext(), MDs
.getArrayRef());
1141 MDNode
*MDNode::getMostGenericAliasScope(MDNode
*A
, MDNode
*B
) {
1145 // Take the intersection of domains then union the scopes
1146 // within those domains
1147 SmallPtrSet
<const MDNode
*, 16> ADomains
;
1148 SmallPtrSet
<const MDNode
*, 16> IntersectDomains
;
1149 SmallSetVector
<Metadata
*, 4> MDs
;
1150 for (const MDOperand
&MDOp
: A
->operands())
1151 if (const MDNode
*NAMD
= dyn_cast
<MDNode
>(MDOp
))
1152 if (const MDNode
*Domain
= AliasScopeNode(NAMD
).getDomain())
1153 ADomains
.insert(Domain
);
1155 for (const MDOperand
&MDOp
: B
->operands())
1156 if (const MDNode
*NAMD
= dyn_cast
<MDNode
>(MDOp
))
1157 if (const MDNode
*Domain
= AliasScopeNode(NAMD
).getDomain())
1158 if (ADomains
.contains(Domain
)) {
1159 IntersectDomains
.insert(Domain
);
1163 for (const MDOperand
&MDOp
: A
->operands())
1164 if (const MDNode
*NAMD
= dyn_cast
<MDNode
>(MDOp
))
1165 if (const MDNode
*Domain
= AliasScopeNode(NAMD
).getDomain())
1166 if (IntersectDomains
.contains(Domain
))
1169 return MDs
.empty() ? nullptr
1170 : getOrSelfReference(A
->getContext(), MDs
.getArrayRef());
1173 MDNode
*MDNode::getMostGenericFPMath(MDNode
*A
, MDNode
*B
) {
1177 APFloat AVal
= mdconst::extract
<ConstantFP
>(A
->getOperand(0))->getValueAPF();
1178 APFloat BVal
= mdconst::extract
<ConstantFP
>(B
->getOperand(0))->getValueAPF();
1184 // Call instructions with branch weights are only used in SamplePGO as
1186 /// https://llvm.org/docs/BranchWeightMetadata.html#callinst).
1187 MDNode
*MDNode::mergeDirectCallProfMetadata(MDNode
*A
, MDNode
*B
,
1188 const Instruction
*AInstr
,
1189 const Instruction
*BInstr
) {
1190 assert(A
&& B
&& AInstr
&& BInstr
&& "Caller should guarantee");
1191 auto &Ctx
= AInstr
->getContext();
1192 MDBuilder
MDHelper(Ctx
);
1194 // LLVM IR verifier verifies !prof metadata has at least 2 operands.
1195 assert(A
->getNumOperands() >= 2 && B
->getNumOperands() >= 2 &&
1196 "!prof annotations should have no less than 2 operands");
1197 MDString
*AMDS
= dyn_cast
<MDString
>(A
->getOperand(0));
1198 MDString
*BMDS
= dyn_cast
<MDString
>(B
->getOperand(0));
1199 // LLVM IR verfier verifies first operand is MDString.
1200 assert(AMDS
!= nullptr && BMDS
!= nullptr &&
1201 "first operand should be a non-null MDString");
1202 StringRef AProfName
= AMDS
->getString();
1203 StringRef BProfName
= BMDS
->getString();
1204 if (AProfName
== "branch_weights" && BProfName
== "branch_weights") {
1205 ConstantInt
*AInstrWeight
= mdconst::dyn_extract
<ConstantInt
>(
1206 A
->getOperand(getBranchWeightOffset(A
)));
1207 ConstantInt
*BInstrWeight
= mdconst::dyn_extract
<ConstantInt
>(
1208 B
->getOperand(getBranchWeightOffset(B
)));
1209 assert(AInstrWeight
&& BInstrWeight
&& "verified by LLVM verifier");
1210 return MDNode::get(Ctx
,
1211 {MDHelper
.createString("branch_weights"),
1212 MDHelper
.createConstant(ConstantInt::get(
1213 Type::getInt64Ty(Ctx
),
1214 SaturatingAdd(AInstrWeight
->getZExtValue(),
1215 BInstrWeight
->getZExtValue())))});
1220 // Pass in both instructions and nodes. Instruction information (e.g.,
1221 // instruction type) helps interpret profiles and make implementation clearer.
1222 MDNode
*MDNode::getMergedProfMetadata(MDNode
*A
, MDNode
*B
,
1223 const Instruction
*AInstr
,
1224 const Instruction
*BInstr
) {
1229 assert(AInstr
->getMetadata(LLVMContext::MD_prof
) == A
&&
1230 "Caller should guarantee");
1231 assert(BInstr
->getMetadata(LLVMContext::MD_prof
) == B
&&
1232 "Caller should guarantee");
1234 const CallInst
*ACall
= dyn_cast
<CallInst
>(AInstr
);
1235 const CallInst
*BCall
= dyn_cast
<CallInst
>(BInstr
);
1237 // Both ACall and BCall are direct callsites.
1238 if (ACall
&& BCall
&& ACall
->getCalledFunction() &&
1239 BCall
->getCalledFunction())
1240 return mergeDirectCallProfMetadata(A
, B
, AInstr
, BInstr
);
1242 // The rest of the cases are not implemented but could be added
1243 // when there are use cases.
1247 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
1248 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
1251 static bool canBeMerged(const ConstantRange
&A
, const ConstantRange
&B
) {
1252 return !A
.intersectWith(B
).isEmptySet() || isContiguous(A
, B
);
1255 static bool tryMergeRange(SmallVectorImpl
<ConstantInt
*> &EndPoints
,
1256 ConstantInt
*Low
, ConstantInt
*High
) {
1257 ConstantRange
NewRange(Low
->getValue(), High
->getValue());
1258 unsigned Size
= EndPoints
.size();
1259 const APInt
&LB
= EndPoints
[Size
- 2]->getValue();
1260 const APInt
&LE
= EndPoints
[Size
- 1]->getValue();
1261 ConstantRange
LastRange(LB
, LE
);
1262 if (canBeMerged(NewRange
, LastRange
)) {
1263 ConstantRange Union
= LastRange
.unionWith(NewRange
);
1264 Type
*Ty
= High
->getType();
1265 EndPoints
[Size
- 2] =
1266 cast
<ConstantInt
>(ConstantInt::get(Ty
, Union
.getLower()));
1267 EndPoints
[Size
- 1] =
1268 cast
<ConstantInt
>(ConstantInt::get(Ty
, Union
.getUpper()));
1274 static void addRange(SmallVectorImpl
<ConstantInt
*> &EndPoints
,
1275 ConstantInt
*Low
, ConstantInt
*High
) {
1276 if (!EndPoints
.empty())
1277 if (tryMergeRange(EndPoints
, Low
, High
))
1280 EndPoints
.push_back(Low
);
1281 EndPoints
.push_back(High
);
1284 MDNode
*MDNode::getMostGenericRange(MDNode
*A
, MDNode
*B
) {
1285 // Given two ranges, we want to compute the union of the ranges. This
1286 // is slightly complicated by having to combine the intervals and merge
1287 // the ones that overlap.
1295 // First, walk both lists in order of the lower boundary of each interval.
1296 // At each step, try to merge the new interval to the last one we added.
1297 SmallVector
<ConstantInt
*, 4> EndPoints
;
1300 unsigned AN
= A
->getNumOperands() / 2;
1301 unsigned BN
= B
->getNumOperands() / 2;
1302 while (AI
< AN
&& BI
< BN
) {
1303 ConstantInt
*ALow
= mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
));
1304 ConstantInt
*BLow
= mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
));
1306 if (ALow
->getValue().slt(BLow
->getValue())) {
1307 addRange(EndPoints
, ALow
,
1308 mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
+ 1)));
1311 addRange(EndPoints
, BLow
,
1312 mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
+ 1)));
1317 addRange(EndPoints
, mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
)),
1318 mdconst::extract
<ConstantInt
>(A
->getOperand(2 * AI
+ 1)));
1322 addRange(EndPoints
, mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
)),
1323 mdconst::extract
<ConstantInt
>(B
->getOperand(2 * BI
+ 1)));
1327 // We haven't handled wrap in the previous merge,
1328 // if we have at least 2 ranges (4 endpoints) we have to try to merge
1329 // the last and first ones.
1330 unsigned Size
= EndPoints
.size();
1332 ConstantInt
*FB
= EndPoints
[0];
1333 ConstantInt
*FE
= EndPoints
[1];
1334 if (tryMergeRange(EndPoints
, FB
, FE
)) {
1335 for (unsigned i
= 0; i
< Size
- 2; ++i
) {
1336 EndPoints
[i
] = EndPoints
[i
+ 2];
1338 EndPoints
.resize(Size
- 2);
1342 // If in the end we have a single range, it is possible that it is now the
1343 // full range. Just drop the metadata in that case.
1344 if (EndPoints
.size() == 2) {
1345 ConstantRange
Range(EndPoints
[0]->getValue(), EndPoints
[1]->getValue());
1346 if (Range
.isFullSet())
1350 SmallVector
<Metadata
*, 4> MDs
;
1351 MDs
.reserve(EndPoints
.size());
1352 for (auto *I
: EndPoints
)
1353 MDs
.push_back(ConstantAsMetadata::get(I
));
1354 return MDNode::get(A
->getContext(), MDs
);
1357 MDNode
*MDNode::getMostGenericNoaliasAddrspace(MDNode
*A
, MDNode
*B
) {
1364 SmallVector
<ConstantRange
> RangeListA
, RangeListB
;
1365 for (unsigned I
= 0, E
= A
->getNumOperands() / 2; I
!= E
; ++I
) {
1366 auto *LowA
= mdconst::extract
<ConstantInt
>(A
->getOperand(2 * I
+ 0));
1367 auto *HighA
= mdconst::extract
<ConstantInt
>(A
->getOperand(2 * I
+ 1));
1368 RangeListA
.push_back(ConstantRange(LowA
->getValue(), HighA
->getValue()));
1371 for (unsigned I
= 0, E
= B
->getNumOperands() / 2; I
!= E
; ++I
) {
1372 auto *LowB
= mdconst::extract
<ConstantInt
>(B
->getOperand(2 * I
+ 0));
1373 auto *HighB
= mdconst::extract
<ConstantInt
>(B
->getOperand(2 * I
+ 1));
1374 RangeListB
.push_back(ConstantRange(LowB
->getValue(), HighB
->getValue()));
1377 ConstantRangeList
CRLA(RangeListA
);
1378 ConstantRangeList
CRLB(RangeListB
);
1379 ConstantRangeList Result
= CRLA
.intersectWith(CRLB
);
1383 SmallVector
<Metadata
*> MDs
;
1384 for (const ConstantRange
&CR
: Result
) {
1385 MDs
.push_back(ConstantAsMetadata::get(
1386 ConstantInt::get(A
->getContext(), CR
.getLower())));
1387 MDs
.push_back(ConstantAsMetadata::get(
1388 ConstantInt::get(A
->getContext(), CR
.getUpper())));
1391 return MDNode::get(A
->getContext(), MDs
);
1394 MDNode
*MDNode::getMostGenericAlignmentOrDereferenceable(MDNode
*A
, MDNode
*B
) {
1398 ConstantInt
*AVal
= mdconst::extract
<ConstantInt
>(A
->getOperand(0));
1399 ConstantInt
*BVal
= mdconst::extract
<ConstantInt
>(B
->getOperand(0));
1400 if (AVal
->getZExtValue() < BVal
->getZExtValue())
1405 //===----------------------------------------------------------------------===//
1406 // NamedMDNode implementation.
1409 static SmallVector
<TrackingMDRef
, 4> &getNMDOps(void *Operands
) {
1410 return *(SmallVector
<TrackingMDRef
, 4> *)Operands
;
1413 NamedMDNode::NamedMDNode(const Twine
&N
)
1414 : Name(N
.str()), Operands(new SmallVector
<TrackingMDRef
, 4>()) {}
1416 NamedMDNode::~NamedMDNode() {
1417 dropAllReferences();
1418 delete &getNMDOps(Operands
);
1421 unsigned NamedMDNode::getNumOperands() const {
1422 return (unsigned)getNMDOps(Operands
).size();
1425 MDNode
*NamedMDNode::getOperand(unsigned i
) const {
1426 assert(i
< getNumOperands() && "Invalid Operand number!");
1427 auto *N
= getNMDOps(Operands
)[i
].get();
1428 return cast_or_null
<MDNode
>(N
);
1431 void NamedMDNode::addOperand(MDNode
*M
) { getNMDOps(Operands
).emplace_back(M
); }
1433 void NamedMDNode::setOperand(unsigned I
, MDNode
*New
) {
1434 assert(I
< getNumOperands() && "Invalid operand number");
1435 getNMDOps(Operands
)[I
].reset(New
);
1438 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1440 void NamedMDNode::clearOperands() { getNMDOps(Operands
).clear(); }
1442 StringRef
NamedMDNode::getName() const { return StringRef(Name
); }
1444 //===----------------------------------------------------------------------===//
1445 // Instruction Metadata method implementations.
1448 MDNode
*MDAttachments::lookup(unsigned ID
) const {
1449 for (const auto &A
: Attachments
)
1455 void MDAttachments::get(unsigned ID
, SmallVectorImpl
<MDNode
*> &Result
) const {
1456 for (const auto &A
: Attachments
)
1458 Result
.push_back(A
.Node
);
1461 void MDAttachments::getAll(
1462 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &Result
) const {
1463 for (const auto &A
: Attachments
)
1464 Result
.emplace_back(A
.MDKind
, A
.Node
);
1466 // Sort the resulting array so it is stable with respect to metadata IDs. We
1467 // need to preserve the original insertion order though.
1468 if (Result
.size() > 1)
1469 llvm::stable_sort(Result
, less_first());
1472 void MDAttachments::set(unsigned ID
, MDNode
*MD
) {
1478 void MDAttachments::insert(unsigned ID
, MDNode
&MD
) {
1479 Attachments
.push_back({ID
, TrackingMDNodeRef(&MD
)});
1482 bool MDAttachments::erase(unsigned ID
) {
1486 // Common case is one value.
1487 if (Attachments
.size() == 1 && Attachments
.back().MDKind
== ID
) {
1488 Attachments
.pop_back();
1492 auto OldSize
= Attachments
.size();
1493 llvm::erase_if(Attachments
,
1494 [ID
](const Attachment
&A
) { return A
.MDKind
== ID
; });
1495 return OldSize
!= Attachments
.size();
1498 MDNode
*Value::getMetadata(StringRef Kind
) const {
1501 unsigned KindID
= getContext().getMDKindID(Kind
);
1502 return getMetadataImpl(KindID
);
1505 MDNode
*Value::getMetadataImpl(unsigned KindID
) const {
1506 const LLVMContext
&Ctx
= getContext();
1507 const MDAttachments
&Attachements
= Ctx
.pImpl
->ValueMetadata
.at(this);
1508 return Attachements
.lookup(KindID
);
1511 void Value::getMetadata(unsigned KindID
, SmallVectorImpl
<MDNode
*> &MDs
) const {
1513 getContext().pImpl
->ValueMetadata
.at(this).get(KindID
, MDs
);
1516 void Value::getMetadata(StringRef Kind
, SmallVectorImpl
<MDNode
*> &MDs
) const {
1518 getMetadata(getContext().getMDKindID(Kind
), MDs
);
1521 void Value::getAllMetadata(
1522 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &MDs
) const {
1523 if (hasMetadata()) {
1524 assert(getContext().pImpl
->ValueMetadata
.count(this) &&
1525 "bit out of sync with hash table");
1526 const MDAttachments
&Info
= getContext().pImpl
->ValueMetadata
.at(this);
1531 void Value::setMetadata(unsigned KindID
, MDNode
*Node
) {
1532 assert(isa
<Instruction
>(this) || isa
<GlobalObject
>(this));
1534 // Handle the case when we're adding/updating metadata on a value.
1536 MDAttachments
&Info
= getContext().pImpl
->ValueMetadata
[this];
1537 assert(!Info
.empty() == HasMetadata
&& "bit out of sync with hash table");
1540 Info
.set(KindID
, Node
);
1544 // Otherwise, we're removing metadata from an instruction.
1545 assert((HasMetadata
== (getContext().pImpl
->ValueMetadata
.count(this) > 0)) &&
1546 "bit out of sync with hash table");
1548 return; // Nothing to remove!
1549 MDAttachments
&Info
= getContext().pImpl
->ValueMetadata
.find(this)->second
;
1551 // Handle removal of an existing value.
1555 getContext().pImpl
->ValueMetadata
.erase(this);
1556 HasMetadata
= false;
1559 void Value::setMetadata(StringRef Kind
, MDNode
*Node
) {
1560 if (!Node
&& !HasMetadata
)
1562 setMetadata(getContext().getMDKindID(Kind
), Node
);
1565 void Value::addMetadata(unsigned KindID
, MDNode
&MD
) {
1566 assert(isa
<Instruction
>(this) || isa
<GlobalObject
>(this));
1569 getContext().pImpl
->ValueMetadata
[this].insert(KindID
, MD
);
1572 void Value::addMetadata(StringRef Kind
, MDNode
&MD
) {
1573 addMetadata(getContext().getMDKindID(Kind
), MD
);
1576 bool Value::eraseMetadata(unsigned KindID
) {
1577 // Nothing to unset.
1581 MDAttachments
&Store
= getContext().pImpl
->ValueMetadata
.find(this)->second
;
1582 bool Changed
= Store
.erase(KindID
);
1588 void Value::eraseMetadataIf(function_ref
<bool(unsigned, MDNode
*)> Pred
) {
1592 auto &MetadataStore
= getContext().pImpl
->ValueMetadata
;
1593 MDAttachments
&Info
= MetadataStore
.find(this)->second
;
1594 assert(!Info
.empty() && "bit out of sync with hash table");
1595 Info
.remove_if([Pred
](const MDAttachments::Attachment
&I
) {
1596 return Pred(I
.MDKind
, I
.Node
);
1603 void Value::clearMetadata() {
1606 assert(getContext().pImpl
->ValueMetadata
.count(this) &&
1607 "bit out of sync with hash table");
1608 getContext().pImpl
->ValueMetadata
.erase(this);
1609 HasMetadata
= false;
1612 void Instruction::setMetadata(StringRef Kind
, MDNode
*Node
) {
1613 if (!Node
&& !hasMetadata())
1615 setMetadata(getContext().getMDKindID(Kind
), Node
);
1618 MDNode
*Instruction::getMetadataImpl(StringRef Kind
) const {
1619 const LLVMContext
&Ctx
= getContext();
1620 unsigned KindID
= Ctx
.getMDKindID(Kind
);
1621 if (KindID
== LLVMContext::MD_dbg
)
1622 return DbgLoc
.getAsMDNode();
1623 return Value::getMetadata(KindID
);
1626 void Instruction::eraseMetadataIf(function_ref
<bool(unsigned, MDNode
*)> Pred
) {
1627 if (DbgLoc
&& Pred(LLVMContext::MD_dbg
, DbgLoc
.getAsMDNode()))
1630 Value::eraseMetadataIf(Pred
);
1633 void Instruction::dropUnknownNonDebugMetadata(ArrayRef
<unsigned> KnownIDs
) {
1634 if (!Value::hasMetadata())
1635 return; // Nothing to remove!
1637 SmallSet
<unsigned, 32> KnownSet
;
1638 KnownSet
.insert(KnownIDs
.begin(), KnownIDs
.end());
1640 // A DIAssignID attachment is debug metadata, don't drop it.
1641 KnownSet
.insert(LLVMContext::MD_DIAssignID
);
1643 Value::eraseMetadataIf([&KnownSet
](unsigned MDKind
, MDNode
*Node
) {
1644 return !KnownSet
.count(MDKind
);
1648 void Instruction::updateDIAssignIDMapping(DIAssignID
*ID
) {
1649 auto &IDToInstrs
= getContext().pImpl
->AssignmentIDToInstrs
;
1650 if (const DIAssignID
*CurrentID
=
1651 cast_or_null
<DIAssignID
>(getMetadata(LLVMContext::MD_DIAssignID
))) {
1652 // Nothing to do if the ID isn't changing.
1653 if (ID
== CurrentID
)
1656 // Unmap this instruction from its current ID.
1657 auto InstrsIt
= IDToInstrs
.find(CurrentID
);
1658 assert(InstrsIt
!= IDToInstrs
.end() &&
1659 "Expect existing attachment to be mapped");
1661 auto &InstVec
= InstrsIt
->second
;
1662 auto *InstIt
= llvm::find(InstVec
, this);
1663 assert(InstIt
!= InstVec
.end() &&
1664 "Expect instruction to be mapped to attachment");
1665 // The vector contains a ptr to this. If this is the only element in the
1666 // vector, remove the ID:vector entry, otherwise just remove the
1667 // instruction from the vector.
1668 if (InstVec
.size() == 1)
1669 IDToInstrs
.erase(InstrsIt
);
1671 InstVec
.erase(InstIt
);
1674 // Map this instruction to the new ID.
1676 IDToInstrs
[ID
].push_back(this);
1679 void Instruction::setMetadata(unsigned KindID
, MDNode
*Node
) {
1680 if (!Node
&& !hasMetadata())
1683 // Handle 'dbg' as a special case since it is not stored in the hash table.
1684 if (KindID
== LLVMContext::MD_dbg
) {
1685 DbgLoc
= DebugLoc(Node
);
1689 // Update DIAssignID to Instruction(s) mapping.
1690 if (KindID
== LLVMContext::MD_DIAssignID
) {
1691 // The DIAssignID tracking infrastructure doesn't support RAUWing temporary
1692 // nodes with DIAssignIDs. The cast_or_null below would also catch this, but
1693 // having a dedicated assert helps make this obvious.
1694 assert((!Node
|| !Node
->isTemporary()) &&
1695 "Temporary DIAssignIDs are invalid");
1696 updateDIAssignIDMapping(cast_or_null
<DIAssignID
>(Node
));
1699 Value::setMetadata(KindID
, Node
);
1702 void Instruction::addAnnotationMetadata(SmallVector
<StringRef
> Annotations
) {
1703 SmallVector
<Metadata
*, 4> Names
;
1704 if (auto *Existing
= getMetadata(LLVMContext::MD_annotation
)) {
1705 SmallSetVector
<StringRef
, 2> AnnotationsSet(Annotations
.begin(),
1707 auto *Tuple
= cast
<MDTuple
>(Existing
);
1708 for (auto &N
: Tuple
->operands()) {
1709 if (isa
<MDString
>(N
.get())) {
1713 auto *MDAnnotationTuple
= cast
<MDTuple
>(N
);
1714 if (any_of(MDAnnotationTuple
->operands(), [&AnnotationsSet
](auto &Op
) {
1715 return AnnotationsSet
.contains(cast
<MDString
>(Op
)->getString());
1722 MDBuilder
MDB(getContext());
1723 SmallVector
<Metadata
*> MDAnnotationStrings
;
1724 for (StringRef Annotation
: Annotations
)
1725 MDAnnotationStrings
.push_back(MDB
.createString(Annotation
));
1726 MDNode
*InfoTuple
= MDTuple::get(getContext(), MDAnnotationStrings
);
1727 Names
.push_back(InfoTuple
);
1728 MDNode
*MD
= MDTuple::get(getContext(), Names
);
1729 setMetadata(LLVMContext::MD_annotation
, MD
);
1732 void Instruction::addAnnotationMetadata(StringRef Name
) {
1733 SmallVector
<Metadata
*, 4> Names
;
1734 if (auto *Existing
= getMetadata(LLVMContext::MD_annotation
)) {
1735 auto *Tuple
= cast
<MDTuple
>(Existing
);
1736 for (auto &N
: Tuple
->operands()) {
1737 if (isa
<MDString
>(N
.get()) &&
1738 cast
<MDString
>(N
.get())->getString() == Name
)
1740 Names
.push_back(N
.get());
1744 MDBuilder
MDB(getContext());
1745 Names
.push_back(MDB
.createString(Name
));
1746 MDNode
*MD
= MDTuple::get(getContext(), Names
);
1747 setMetadata(LLVMContext::MD_annotation
, MD
);
1750 AAMDNodes
Instruction::getAAMetadata() const {
1752 // Not using Instruction::hasMetadata() because we're not interested in
1753 // DebugInfoMetadata.
1754 if (Value::hasMetadata()) {
1755 const MDAttachments
&Info
= getContext().pImpl
->ValueMetadata
.at(this);
1756 Result
.TBAA
= Info
.lookup(LLVMContext::MD_tbaa
);
1757 Result
.TBAAStruct
= Info
.lookup(LLVMContext::MD_tbaa_struct
);
1758 Result
.Scope
= Info
.lookup(LLVMContext::MD_alias_scope
);
1759 Result
.NoAlias
= Info
.lookup(LLVMContext::MD_noalias
);
1764 void Instruction::setAAMetadata(const AAMDNodes
&N
) {
1765 setMetadata(LLVMContext::MD_tbaa
, N
.TBAA
);
1766 setMetadata(LLVMContext::MD_tbaa_struct
, N
.TBAAStruct
);
1767 setMetadata(LLVMContext::MD_alias_scope
, N
.Scope
);
1768 setMetadata(LLVMContext::MD_noalias
, N
.NoAlias
);
1771 void Instruction::setNoSanitizeMetadata() {
1772 setMetadata(llvm::LLVMContext::MD_nosanitize
,
1773 llvm::MDNode::get(getContext(), {}));
1776 void Instruction::getAllMetadataImpl(
1777 SmallVectorImpl
<std::pair
<unsigned, MDNode
*>> &Result
) const {
1780 // Handle 'dbg' as a special case since it is not stored in the hash table.
1783 std::make_pair((unsigned)LLVMContext::MD_dbg
, DbgLoc
.getAsMDNode()));
1785 Value::getAllMetadata(Result
);
1788 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal
) const {
1790 (getOpcode() == Instruction::Br
|| getOpcode() == Instruction::Select
||
1791 getOpcode() == Instruction::Call
|| getOpcode() == Instruction::Invoke
||
1792 getOpcode() == Instruction::IndirectBr
||
1793 getOpcode() == Instruction::Switch
) &&
1794 "Looking for branch weights on something besides branch");
1796 return ::extractProfTotalWeight(*this, TotalVal
);
1799 void GlobalObject::copyMetadata(const GlobalObject
*Other
, unsigned Offset
) {
1800 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MDs
;
1801 Other
->getAllMetadata(MDs
);
1802 for (auto &MD
: MDs
) {
1803 // We need to adjust the type metadata offset.
1804 if (Offset
!= 0 && MD
.first
== LLVMContext::MD_type
) {
1805 auto *OffsetConst
= cast
<ConstantInt
>(
1806 cast
<ConstantAsMetadata
>(MD
.second
->getOperand(0))->getValue());
1807 Metadata
*TypeId
= MD
.second
->getOperand(1);
1808 auto *NewOffsetMD
= ConstantAsMetadata::get(ConstantInt::get(
1809 OffsetConst
->getType(), OffsetConst
->getValue() + Offset
));
1810 addMetadata(LLVMContext::MD_type
,
1811 *MDNode::get(getContext(), {NewOffsetMD
, TypeId
}));
1814 // If an offset adjustment was specified we need to modify the DIExpression
1815 // to prepend the adjustment:
1816 // !DIExpression(DW_OP_plus, Offset, [original expr])
1817 auto *Attachment
= MD
.second
;
1818 if (Offset
!= 0 && MD
.first
== LLVMContext::MD_dbg
) {
1819 DIGlobalVariable
*GV
= dyn_cast
<DIGlobalVariable
>(Attachment
);
1820 DIExpression
*E
= nullptr;
1822 auto *GVE
= cast
<DIGlobalVariableExpression
>(Attachment
);
1823 GV
= GVE
->getVariable();
1824 E
= GVE
->getExpression();
1826 ArrayRef
<uint64_t> OrigElements
;
1828 OrigElements
= E
->getElements();
1829 std::vector
<uint64_t> Elements(OrigElements
.size() + 2);
1830 Elements
[0] = dwarf::DW_OP_plus_uconst
;
1831 Elements
[1] = Offset
;
1832 llvm::copy(OrigElements
, Elements
.begin() + 2);
1833 E
= DIExpression::get(getContext(), Elements
);
1834 Attachment
= DIGlobalVariableExpression::get(getContext(), GV
, E
);
1836 addMetadata(MD
.first
, *Attachment
);
1840 void GlobalObject::addTypeMetadata(unsigned Offset
, Metadata
*TypeID
) {
1842 LLVMContext::MD_type
,
1843 *MDTuple::get(getContext(),
1844 {ConstantAsMetadata::get(ConstantInt::get(
1845 Type::getInt64Ty(getContext()), Offset
)),
1849 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility
) {
1850 // Remove any existing vcall visibility metadata first in case we are
1852 eraseMetadata(LLVMContext::MD_vcall_visibility
);
1853 addMetadata(LLVMContext::MD_vcall_visibility
,
1854 *MDNode::get(getContext(),
1855 {ConstantAsMetadata::get(ConstantInt::get(
1856 Type::getInt64Ty(getContext()), Visibility
))}));
1859 GlobalObject::VCallVisibility
GlobalObject::getVCallVisibility() const {
1860 if (MDNode
*MD
= getMetadata(LLVMContext::MD_vcall_visibility
)) {
1861 uint64_t Val
= cast
<ConstantInt
>(
1862 cast
<ConstantAsMetadata
>(MD
->getOperand(0))->getValue())
1864 assert(Val
<= 2 && "unknown vcall visibility!");
1865 return (VCallVisibility
)Val
;
1867 return VCallVisibility::VCallVisibilityPublic
;
1870 void Function::setSubprogram(DISubprogram
*SP
) {
1871 setMetadata(LLVMContext::MD_dbg
, SP
);
1874 DISubprogram
*Function::getSubprogram() const {
1875 return cast_or_null
<DISubprogram
>(getMetadata(LLVMContext::MD_dbg
));
1878 bool Function::shouldEmitDebugInfoForProfiling() const {
1879 if (DISubprogram
*SP
= getSubprogram()) {
1880 if (DICompileUnit
*CU
= SP
->getUnit()) {
1881 return CU
->getDebugInfoForProfiling();
1887 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression
*GV
) {
1888 addMetadata(LLVMContext::MD_dbg
, *GV
);
1891 void GlobalVariable::getDebugInfo(
1892 SmallVectorImpl
<DIGlobalVariableExpression
*> &GVs
) const {
1893 SmallVector
<MDNode
*, 1> MDs
;
1894 getMetadata(LLVMContext::MD_dbg
, MDs
);
1895 for (MDNode
*MD
: MDs
)
1896 GVs
.push_back(cast
<DIGlobalVariableExpression
>(MD
));