[clang] Add test for CWG190 "Layout-compatible POD-struct types" (#121668)
[llvm-project.git] / llvm / lib / IR / SafepointIRVerifier.cpp
blobd32852b796c202e4a18f574fce47ad1931a01e1b
1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Run a basic correctness check on the IR to ensure that Safepoints - if
10 // they've been inserted - were inserted correctly. In particular, look for use
11 // of non-relocated values after a safepoint. It's primary use is to check the
12 // correctness of safepoint insertion immediately after insertion, but it can
13 // also be used to verify that later transforms have not found a way to break
14 // safepoint semenatics.
16 // In its current form, this verify checks a property which is sufficient, but
17 // not neccessary for correctness. There are some cases where an unrelocated
18 // pointer can be used after the safepoint. Consider this example:
20 // a = ...
21 // b = ...
22 // (a',b') = safepoint(a,b)
23 // c = cmp eq a b
24 // br c, ..., ....
26 // Because it is valid to reorder 'c' above the safepoint, this is legal. In
27 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
28 // idioms like this. The verifier knows about these cases and avoids reporting
29 // false positives.
31 //===----------------------------------------------------------------------===//
33 #include "llvm/IR/SafepointIRVerifier.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Statepoint.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
51 #define DEBUG_TYPE "safepoint-ir-verifier"
53 using namespace llvm;
55 /// This option is used for writing test cases. Instead of crashing the program
56 /// when verification fails, report a message to the console (for FileCheck
57 /// usage) and continue execution as if nothing happened.
58 static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
59 cl::init(false));
61 namespace {
63 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
64 /// of blocks unreachable from entry then propagates deadness using foldable
65 /// conditional branches without modifying CFG. So GVN does but it changes CFG
66 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
67 /// clean up dead blocks, but in some cases, like verification or loop passes
68 /// it's not possible.
69 class CFGDeadness {
70 const DominatorTree *DT = nullptr;
71 SetVector<const BasicBlock *> DeadBlocks;
72 SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
74 public:
75 /// Return the edge that coresponds to the predecessor.
76 static const Use& getEdge(const_pred_iterator &PredIt) {
77 auto &PU = PredIt.getUse();
78 return PU.getUser()->getOperandUse(PU.getOperandNo());
81 /// Return true if there is at least one live edge that corresponds to the
82 /// basic block InBB listed in the phi node.
83 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
84 assert(!isDeadBlock(InBB) && "block must be live");
85 const BasicBlock* BB = PN->getParent();
86 bool Listed = false;
87 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
88 if (InBB == *PredIt) {
89 if (!isDeadEdge(&getEdge(PredIt)))
90 return true;
91 Listed = true;
94 (void)Listed;
95 assert(Listed && "basic block is not found among incoming blocks");
96 return false;
100 bool isDeadBlock(const BasicBlock *BB) const {
101 return DeadBlocks.count(BB);
104 bool isDeadEdge(const Use *U) const {
105 assert(cast<Instruction>(U->getUser())->isTerminator() &&
106 "edge must be operand of terminator");
107 assert(cast_or_null<BasicBlock>(U->get()) &&
108 "edge must refer to basic block");
109 assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
110 "isDeadEdge() must be applied to edge from live block");
111 return DeadEdges.count(U);
114 bool hasLiveIncomingEdges(const BasicBlock *BB) const {
115 // Check if all incoming edges are dead.
116 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
117 auto &PU = PredIt.getUse();
118 const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
119 if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
120 return true; // Found a live edge.
122 return false;
125 void processFunction(const Function &F, const DominatorTree &DT) {
126 this->DT = &DT;
128 // Start with all blocks unreachable from entry.
129 for (const BasicBlock &BB : F)
130 if (!DT.isReachableFromEntry(&BB))
131 DeadBlocks.insert(&BB);
133 // Top-down walk of the dominator tree
134 ReversePostOrderTraversal<const Function *> RPOT(&F);
135 for (const BasicBlock *BB : RPOT) {
136 const Instruction *TI = BB->getTerminator();
137 assert(TI && "blocks must be well formed");
139 // For conditional branches, we can perform simple conditional propagation on
140 // the condition value itself.
141 const BranchInst *BI = dyn_cast<BranchInst>(TI);
142 if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
143 continue;
145 // If a branch has two identical successors, we cannot declare either dead.
146 if (BI->getSuccessor(0) == BI->getSuccessor(1))
147 continue;
149 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
150 if (!Cond)
151 continue;
153 addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
157 protected:
158 void addDeadBlock(const BasicBlock *BB) {
159 SmallVector<const BasicBlock *, 4> NewDead;
160 SmallSetVector<const BasicBlock *, 4> DF;
162 NewDead.push_back(BB);
163 while (!NewDead.empty()) {
164 const BasicBlock *D = NewDead.pop_back_val();
165 if (isDeadBlock(D))
166 continue;
168 // All blocks dominated by D are dead.
169 SmallVector<BasicBlock *, 8> Dom;
170 DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
171 // Do not need to mark all in and out edges dead
172 // because BB is marked dead and this is enough
173 // to run further.
174 DeadBlocks.insert(Dom.begin(), Dom.end());
176 // Figure out the dominance-frontier(D).
177 for (BasicBlock *B : Dom)
178 for (BasicBlock *S : successors(B))
179 if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
180 NewDead.push_back(S);
184 void addDeadEdge(const Use &DeadEdge) {
185 if (!DeadEdges.insert(&DeadEdge))
186 return;
188 BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
189 if (hasLiveIncomingEdges(BB))
190 return;
192 addDeadBlock(BB);
195 } // namespace
197 static void Verify(const Function &F, const DominatorTree &DT,
198 const CFGDeadness &CD);
200 namespace llvm {
201 PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
202 FunctionAnalysisManager &AM) {
203 const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
204 CFGDeadness CD;
205 CD.processFunction(F, DT);
206 Verify(F, DT, CD);
207 return PreservedAnalyses::all();
209 } // namespace llvm
211 namespace {
213 struct SafepointIRVerifier : public FunctionPass {
214 static char ID; // Pass identification, replacement for typeid
215 SafepointIRVerifier() : FunctionPass(ID) {
216 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
219 bool runOnFunction(Function &F) override {
220 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
221 CFGDeadness CD;
222 CD.processFunction(F, DT);
223 Verify(F, DT, CD);
224 return false; // no modifications
227 void getAnalysisUsage(AnalysisUsage &AU) const override {
228 AU.addRequiredID(DominatorTreeWrapperPass::ID);
229 AU.setPreservesAll();
232 StringRef getPassName() const override { return "safepoint verifier"; }
234 } // namespace
236 void llvm::verifySafepointIR(Function &F) {
237 SafepointIRVerifier pass;
238 pass.runOnFunction(F);
241 char SafepointIRVerifier::ID = 0;
243 FunctionPass *llvm::createSafepointIRVerifierPass() {
244 return new SafepointIRVerifier();
247 INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
248 "Safepoint IR Verifier", false, false)
249 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
250 INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
251 "Safepoint IR Verifier", false, false)
253 static bool isGCPointerType(Type *T) {
254 if (auto *PT = dyn_cast<PointerType>(T))
255 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
256 // GC managed heap. We know that a pointer into this heap needs to be
257 // updated and that no other pointer does.
258 return (1 == PT->getAddressSpace());
259 return false;
262 static bool containsGCPtrType(Type *Ty) {
263 if (isGCPointerType(Ty))
264 return true;
265 if (VectorType *VT = dyn_cast<VectorType>(Ty))
266 return isGCPointerType(VT->getScalarType());
267 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
268 return containsGCPtrType(AT->getElementType());
269 if (StructType *ST = dyn_cast<StructType>(Ty))
270 return llvm::any_of(ST->elements(), containsGCPtrType);
271 return false;
274 // Debugging aid -- prints a [Begin, End) range of values.
275 template<typename IteratorTy>
276 static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
277 OS << "[ ";
278 while (Begin != End) {
279 OS << **Begin << " ";
280 ++Begin;
282 OS << "]";
285 /// The verifier algorithm is phrased in terms of availability. The set of
286 /// values "available" at a given point in the control flow graph is the set of
287 /// correctly relocated value at that point, and is a subset of the set of
288 /// definitions dominating that point.
290 using AvailableValueSet = DenseSet<const Value *>;
292 namespace {
293 /// State we compute and track per basic block.
294 struct BasicBlockState {
295 // Set of values available coming in, before the phi nodes
296 AvailableValueSet AvailableIn;
298 // Set of values available going out
299 AvailableValueSet AvailableOut;
301 // AvailableOut minus AvailableIn.
302 // All elements are Instructions
303 AvailableValueSet Contribution;
305 // True if this block contains a safepoint and thus AvailableIn does not
306 // contribute to AvailableOut.
307 bool Cleared = false;
309 } // namespace
311 /// A given derived pointer can have multiple base pointers through phi/selects.
312 /// This type indicates when the base pointer is exclusively constant
313 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
314 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
315 /// NonConstant.
316 enum BaseType {
317 NonConstant = 1, // Base pointers is not exclusively constant.
318 ExclusivelyNull,
319 ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
320 // set of constants, but they are not exclusively
321 // null.
324 /// Return the baseType for Val which states whether Val is exclusively
325 /// derived from constant/null, or not exclusively derived from constant.
326 /// Val is exclusively derived off a constant base when all operands of phi and
327 /// selects are derived off a constant base.
328 static enum BaseType getBaseType(const Value *Val) {
330 SmallVector<const Value *, 32> Worklist;
331 DenseSet<const Value *> Visited;
332 bool isExclusivelyDerivedFromNull = true;
333 Worklist.push_back(Val);
334 // Strip through all the bitcasts and geps to get base pointer. Also check for
335 // the exclusive value when there can be multiple base pointers (through phis
336 // or selects).
337 while(!Worklist.empty()) {
338 const Value *V = Worklist.pop_back_val();
339 if (!Visited.insert(V).second)
340 continue;
342 if (const auto *CI = dyn_cast<CastInst>(V)) {
343 Worklist.push_back(CI->stripPointerCasts());
344 continue;
346 if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
347 Worklist.push_back(GEP->getPointerOperand());
348 continue;
350 // Push all the incoming values of phi node into the worklist for
351 // processing.
352 if (const auto *PN = dyn_cast<PHINode>(V)) {
353 append_range(Worklist, PN->incoming_values());
354 continue;
356 if (const auto *SI = dyn_cast<SelectInst>(V)) {
357 // Push in the true and false values
358 Worklist.push_back(SI->getTrueValue());
359 Worklist.push_back(SI->getFalseValue());
360 continue;
362 if (const auto *GCRelocate = dyn_cast<GCRelocateInst>(V)) {
363 // GCRelocates do not change null-ness or constant-ness of the value.
364 // So we can continue with derived pointer this instruction relocates.
365 Worklist.push_back(GCRelocate->getDerivedPtr());
366 continue;
368 if (const auto *FI = dyn_cast<FreezeInst>(V)) {
369 // Freeze does not change null-ness or constant-ness of the value.
370 Worklist.push_back(FI->getOperand(0));
371 continue;
373 if (isa<Constant>(V)) {
374 // We found at least one base pointer which is non-null, so this derived
375 // pointer is not exclusively derived from null.
376 if (V != Constant::getNullValue(V->getType()))
377 isExclusivelyDerivedFromNull = false;
378 // Continue processing the remaining values to make sure it's exclusively
379 // constant.
380 continue;
382 // At this point, we know that the base pointer is not exclusively
383 // constant.
384 return BaseType::NonConstant;
386 // Now, we know that the base pointer is exclusively constant, but we need to
387 // differentiate between exclusive null constant and non-null constant.
388 return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
389 : BaseType::ExclusivelySomeConstant;
392 static bool isNotExclusivelyConstantDerived(const Value *V) {
393 return getBaseType(V) == BaseType::NonConstant;
396 namespace {
397 class InstructionVerifier;
399 /// Builds BasicBlockState for each BB of the function.
400 /// It can traverse function for verification and provides all required
401 /// information.
403 /// GC pointer may be in one of three states: relocated, unrelocated and
404 /// poisoned.
405 /// Relocated pointer may be used without any restrictions.
406 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
407 /// or returned. Unrelocated pointer may be safely compared against another
408 /// unrelocated pointer or against a pointer exclusively derived from null.
409 /// Poisoned pointers are produced when we somehow derive pointer from relocated
410 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
411 /// used in a very limited number of situations. Currently the only way to use
412 /// it is comparison against constant exclusively derived from null. All
413 /// limitations arise due to their undefined state: this pointers should be
414 /// treated as relocated and unrelocated simultaneously.
415 /// Rules of deriving:
416 /// R + U = P - that's where the poisoned pointers come from
417 /// P + X = P
418 /// U + U = U
419 /// R + R = R
420 /// X + C = X
421 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
422 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
423 /// nothing (in case when "+" is unary operation).
424 /// Deriving of pointers by itself is always safe.
425 /// NOTE: when we are making decision on the status of instruction's result:
426 /// a) for phi we need to check status of each input *at the end of
427 /// corresponding predecessor BB*.
428 /// b) for other instructions we need to check status of each input *at the
429 /// current point*.
431 /// FIXME: This works fairly well except one case
432 /// bb1:
433 /// p = *some GC-ptr def*
434 /// p1 = gep p, offset
435 /// / |
436 /// / |
437 /// bb2: |
438 /// safepoint |
439 /// \ |
440 /// \ |
441 /// bb3:
442 /// p2 = phi [p, bb2] [p1, bb1]
443 /// p3 = phi [p, bb2] [p, bb1]
444 /// here p and p1 is unrelocated
445 /// p2 and p3 is poisoned (though they shouldn't be)
447 /// This leads to some weird results:
448 /// cmp eq p, p2 - illegal instruction (false-positive)
449 /// cmp eq p1, p2 - illegal instruction (false-positive)
450 /// cmp eq p, p3 - illegal instruction (false-positive)
451 /// cmp eq p, p1 - ok
452 /// To fix this we need to introduce conception of generations and be able to
453 /// check if two values belong to one generation or not. This way p2 will be
454 /// considered to be unrelocated and no false alarm will happen.
455 class GCPtrTracker {
456 const Function &F;
457 const CFGDeadness &CD;
458 SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
459 DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
460 // This set contains defs of unrelocated pointers that are proved to be legal
461 // and don't need verification.
462 DenseSet<const Instruction *> ValidUnrelocatedDefs;
463 // This set contains poisoned defs. They can be safely ignored during
464 // verification too.
465 DenseSet<const Value *> PoisonedDefs;
467 public:
468 GCPtrTracker(const Function &F, const DominatorTree &DT,
469 const CFGDeadness &CD);
471 bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
472 return CD.hasLiveIncomingEdge(PN, InBB);
475 BasicBlockState *getBasicBlockState(const BasicBlock *BB);
476 const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
478 bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
480 /// Traverse each BB of the function and call
481 /// InstructionVerifier::verifyInstruction for each possibly invalid
482 /// instruction.
483 /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
484 /// in order to prohibit further usages of GCPtrTracker as it'll be in
485 /// inconsistent state.
486 static void verifyFunction(GCPtrTracker &&Tracker,
487 InstructionVerifier &Verifier);
489 /// Returns true for reachable and live blocks.
490 bool isMapped(const BasicBlock *BB) const { return BlockMap.contains(BB); }
492 private:
493 /// Returns true if the instruction may be safely skipped during verification.
494 bool instructionMayBeSkipped(const Instruction *I) const;
496 /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
497 /// each of them until it converges.
498 void recalculateBBsStates();
500 /// Remove from Contribution all defs that legally produce unrelocated
501 /// pointers and saves them to ValidUnrelocatedDefs.
502 /// Though Contribution should belong to BBS it is passed separately with
503 /// different const-modifier in order to emphasize (and guarantee) that only
504 /// Contribution will be changed.
505 /// Returns true if Contribution was changed otherwise false.
506 bool removeValidUnrelocatedDefs(const BasicBlock *BB,
507 const BasicBlockState *BBS,
508 AvailableValueSet &Contribution);
510 /// Gather all the definitions dominating the start of BB into Result. This is
511 /// simply the defs introduced by every dominating basic block and the
512 /// function arguments.
513 void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
514 const DominatorTree &DT);
516 /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
517 /// which is the BasicBlockState for BB.
518 /// ContributionChanged is set when the verifier runs for the first time
519 /// (in this case Contribution was changed from 'empty' to its initial state)
520 /// or when Contribution of this BB was changed since last computation.
521 static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
522 bool ContributionChanged);
524 /// Model the effect of an instruction on the set of available values.
525 static void transferInstruction(const Instruction &I, bool &Cleared,
526 AvailableValueSet &Available);
529 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
530 /// instruction (which uses heap reference) is legal or not, given our safepoint
531 /// semantics.
532 class InstructionVerifier {
533 bool AnyInvalidUses = false;
535 public:
536 void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
537 const AvailableValueSet &AvailableSet);
539 bool hasAnyInvalidUses() const { return AnyInvalidUses; }
541 private:
542 void reportInvalidUse(const Value &V, const Instruction &I);
544 } // end anonymous namespace
546 GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
547 const CFGDeadness &CD) : F(F), CD(CD) {
548 // Calculate Contribution of each live BB.
549 // Allocate BB states for live blocks.
550 for (const BasicBlock &BB : F)
551 if (!CD.isDeadBlock(&BB)) {
552 BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
553 for (const auto &I : BB)
554 transferInstruction(I, BBS->Cleared, BBS->Contribution);
555 BlockMap[&BB] = BBS;
558 // Initialize AvailableIn/Out sets of each BB using only information about
559 // dominating BBs.
560 for (auto &BBI : BlockMap) {
561 gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
562 transferBlock(BBI.first, *BBI.second, true);
565 // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
566 // sets of each BB until it converges. If any def is proved to be an
567 // unrelocated pointer, it will be removed from all BBSs.
568 recalculateBBsStates();
571 BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
572 return BlockMap.lookup(BB);
575 const BasicBlockState *GCPtrTracker::getBasicBlockState(
576 const BasicBlock *BB) const {
577 return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
580 bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
581 // Poisoned defs are skipped since they are always safe by itself by
582 // definition (for details see comment to this class).
583 return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
586 void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
587 InstructionVerifier &Verifier) {
588 // We need RPO here to a) report always the first error b) report errors in
589 // same order from run to run.
590 ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
591 for (const BasicBlock *BB : RPOT) {
592 BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
593 if (!BBS)
594 continue;
596 // We destructively modify AvailableIn as we traverse the block instruction
597 // by instruction.
598 AvailableValueSet &AvailableSet = BBS->AvailableIn;
599 for (const Instruction &I : *BB) {
600 if (Tracker.instructionMayBeSkipped(&I))
601 continue; // This instruction shouldn't be added to AvailableSet.
603 Verifier.verifyInstruction(&Tracker, I, AvailableSet);
605 // Model the effect of current instruction on AvailableSet to keep the set
606 // relevant at each point of BB.
607 bool Cleared = false;
608 transferInstruction(I, Cleared, AvailableSet);
609 (void)Cleared;
614 void GCPtrTracker::recalculateBBsStates() {
615 SetVector<const BasicBlock *> Worklist;
616 // TODO: This order is suboptimal, it's better to replace it with priority
617 // queue where priority is RPO number of BB.
618 for (auto &BBI : BlockMap)
619 Worklist.insert(BBI.first);
621 // This loop iterates the AvailableIn/Out sets until it converges.
622 // The AvailableIn and AvailableOut sets decrease as we iterate.
623 while (!Worklist.empty()) {
624 const BasicBlock *BB = Worklist.pop_back_val();
625 BasicBlockState *BBS = getBasicBlockState(BB);
626 if (!BBS)
627 continue; // Ignore dead successors.
629 size_t OldInCount = BBS->AvailableIn.size();
630 for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
631 const BasicBlock *PBB = *PredIt;
632 BasicBlockState *PBBS = getBasicBlockState(PBB);
633 if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
634 set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
637 assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
639 bool InputsChanged = OldInCount != BBS->AvailableIn.size();
640 bool ContributionChanged =
641 removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
642 if (!InputsChanged && !ContributionChanged)
643 continue;
645 size_t OldOutCount = BBS->AvailableOut.size();
646 transferBlock(BB, *BBS, ContributionChanged);
647 if (OldOutCount != BBS->AvailableOut.size()) {
648 assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
649 Worklist.insert(succ_begin(BB), succ_end(BB));
654 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
655 const BasicBlockState *BBS,
656 AvailableValueSet &Contribution) {
657 assert(&BBS->Contribution == &Contribution &&
658 "Passed Contribution should be from the passed BasicBlockState!");
659 AvailableValueSet AvailableSet = BBS->AvailableIn;
660 bool ContributionChanged = false;
661 // For explanation why instructions are processed this way see
662 // "Rules of deriving" in the comment to this class.
663 for (const Instruction &I : *BB) {
664 bool ValidUnrelocatedPointerDef = false;
665 bool PoisonedPointerDef = false;
666 // TODO: `select` instructions should be handled here too.
667 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
668 if (containsGCPtrType(PN->getType())) {
669 // If both is true, output is poisoned.
670 bool HasRelocatedInputs = false;
671 bool HasUnrelocatedInputs = false;
672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
673 const BasicBlock *InBB = PN->getIncomingBlock(i);
674 if (!isMapped(InBB) ||
675 !CD.hasLiveIncomingEdge(PN, InBB))
676 continue; // Skip dead block or dead edge.
678 const Value *InValue = PN->getIncomingValue(i);
680 if (isNotExclusivelyConstantDerived(InValue)) {
681 if (isValuePoisoned(InValue)) {
682 // If any of inputs is poisoned, output is always poisoned too.
683 HasRelocatedInputs = true;
684 HasUnrelocatedInputs = true;
685 break;
687 if (BlockMap[InBB]->AvailableOut.count(InValue))
688 HasRelocatedInputs = true;
689 else
690 HasUnrelocatedInputs = true;
693 if (HasUnrelocatedInputs) {
694 if (HasRelocatedInputs)
695 PoisonedPointerDef = true;
696 else
697 ValidUnrelocatedPointerDef = true;
700 } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
701 containsGCPtrType(I.getType())) {
702 // GEP/bitcast of unrelocated pointer is legal by itself but this def
703 // shouldn't appear in any AvailableSet.
704 for (const Value *V : I.operands())
705 if (containsGCPtrType(V->getType()) &&
706 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
707 if (isValuePoisoned(V))
708 PoisonedPointerDef = true;
709 else
710 ValidUnrelocatedPointerDef = true;
711 break;
714 assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
715 "Value cannot be both unrelocated and poisoned!");
716 if (ValidUnrelocatedPointerDef) {
717 // Remove def of unrelocated pointer from Contribution of this BB and
718 // trigger update of all its successors.
719 Contribution.erase(&I);
720 PoisonedDefs.erase(&I);
721 ValidUnrelocatedDefs.insert(&I);
722 LLVM_DEBUG(dbgs() << "Removing urelocated " << I
723 << " from Contribution of " << BB->getName() << "\n");
724 ContributionChanged = true;
725 } else if (PoisonedPointerDef) {
726 // Mark pointer as poisoned, remove its def from Contribution and trigger
727 // update of all successors.
728 Contribution.erase(&I);
729 PoisonedDefs.insert(&I);
730 LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
731 << BB->getName() << "\n");
732 ContributionChanged = true;
733 } else {
734 bool Cleared = false;
735 transferInstruction(I, Cleared, AvailableSet);
736 (void)Cleared;
739 return ContributionChanged;
742 void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
743 AvailableValueSet &Result,
744 const DominatorTree &DT) {
745 DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
747 assert(DTN && "Unreachable blocks are ignored");
748 while (DTN->getIDom()) {
749 DTN = DTN->getIDom();
750 auto BBS = getBasicBlockState(DTN->getBlock());
751 assert(BBS && "immediate dominator cannot be dead for a live block");
752 const auto &Defs = BBS->Contribution;
753 Result.insert(Defs.begin(), Defs.end());
754 // If this block is 'Cleared', then nothing LiveIn to this block can be
755 // available after this block completes. Note: This turns out to be
756 // really important for reducing memory consuption of the initial available
757 // sets and thus peak memory usage by this verifier.
758 if (BBS->Cleared)
759 return;
762 for (const Argument &A : BB->getParent()->args())
763 if (containsGCPtrType(A.getType()))
764 Result.insert(&A);
767 void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
768 bool ContributionChanged) {
769 const AvailableValueSet &AvailableIn = BBS.AvailableIn;
770 AvailableValueSet &AvailableOut = BBS.AvailableOut;
772 if (BBS.Cleared) {
773 // AvailableOut will change only when Contribution changed.
774 if (ContributionChanged)
775 AvailableOut = BBS.Contribution;
776 } else {
777 // Otherwise, we need to reduce the AvailableOut set by things which are no
778 // longer in our AvailableIn
779 AvailableValueSet Temp = BBS.Contribution;
780 set_union(Temp, AvailableIn);
781 AvailableOut = std::move(Temp);
784 LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
785 PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
786 dbgs() << " to ";
787 PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
788 dbgs() << "\n";);
791 void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
792 AvailableValueSet &Available) {
793 if (isa<GCStatepointInst>(I)) {
794 Cleared = true;
795 Available.clear();
796 } else if (containsGCPtrType(I.getType()))
797 Available.insert(&I);
800 void InstructionVerifier::verifyInstruction(
801 const GCPtrTracker *Tracker, const Instruction &I,
802 const AvailableValueSet &AvailableSet) {
803 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
804 if (containsGCPtrType(PN->getType()))
805 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
806 const BasicBlock *InBB = PN->getIncomingBlock(i);
807 const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
808 if (!InBBS ||
809 !Tracker->hasLiveIncomingEdge(PN, InBB))
810 continue; // Skip dead block or dead edge.
812 const Value *InValue = PN->getIncomingValue(i);
814 if (isNotExclusivelyConstantDerived(InValue) &&
815 !InBBS->AvailableOut.count(InValue))
816 reportInvalidUse(*InValue, *PN);
818 } else if (isa<CmpInst>(I) &&
819 containsGCPtrType(I.getOperand(0)->getType())) {
820 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
821 enum BaseType baseTyLHS = getBaseType(LHS),
822 baseTyRHS = getBaseType(RHS);
824 // Returns true if LHS and RHS are unrelocated pointers and they are
825 // valid unrelocated uses.
826 auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
827 &LHS, &RHS] () {
828 // A cmp instruction has valid unrelocated pointer operands only if
829 // both operands are unrelocated pointers.
830 // In the comparison between two pointers, if one is an unrelocated
831 // use, the other *should be* an unrelocated use, for this
832 // instruction to contain valid unrelocated uses. This unrelocated
833 // use can be a null constant as well, or another unrelocated
834 // pointer.
835 if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
836 return false;
837 // Constant pointers (that are not exclusively null) may have
838 // meaning in different VMs, so we cannot reorder the compare
839 // against constant pointers before the safepoint. In other words,
840 // comparison of an unrelocated use against a non-null constant
841 // maybe invalid.
842 if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
843 baseTyRHS == BaseType::NonConstant) ||
844 (baseTyLHS == BaseType::NonConstant &&
845 baseTyRHS == BaseType::ExclusivelySomeConstant))
846 return false;
848 // If one of pointers is poisoned and other is not exclusively derived
849 // from null it is an invalid expression: it produces poisoned result
850 // and unless we want to track all defs (not only gc pointers) the only
851 // option is to prohibit such instructions.
852 if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
853 (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
854 return false;
856 // All other cases are valid cases enumerated below:
857 // 1. Comparison between an exclusively derived null pointer and a
858 // constant base pointer.
859 // 2. Comparison between an exclusively derived null pointer and a
860 // non-constant unrelocated base pointer.
861 // 3. Comparison between 2 unrelocated pointers.
862 // 4. Comparison between a pointer exclusively derived from null and a
863 // non-constant poisoned pointer.
864 return true;
866 if (!hasValidUnrelocatedUse()) {
867 // Print out all non-constant derived pointers that are unrelocated
868 // uses, which are invalid.
869 if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
870 reportInvalidUse(*LHS, I);
871 if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
872 reportInvalidUse(*RHS, I);
874 } else {
875 for (const Value *V : I.operands())
876 if (containsGCPtrType(V->getType()) &&
877 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
878 reportInvalidUse(*V, I);
882 void InstructionVerifier::reportInvalidUse(const Value &V,
883 const Instruction &I) {
884 errs() << "Illegal use of unrelocated value found!\n";
885 errs() << "Def: " << V << "\n";
886 errs() << "Use: " << I << "\n";
887 if (!PrintOnly)
888 abort();
889 AnyInvalidUses = true;
892 static void Verify(const Function &F, const DominatorTree &DT,
893 const CFGDeadness &CD) {
894 LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
895 << "\n");
896 if (PrintOnly)
897 dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
899 GCPtrTracker Tracker(F, DT, CD);
901 // We now have all the information we need to decide if the use of a heap
902 // reference is legal or not, given our safepoint semantics.
904 InstructionVerifier Verifier;
905 GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
907 if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
908 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
909 << "\n";