[clang] Add test for CWG190 "Layout-compatible POD-struct types" (#121668)
[llvm-project.git] / llvm / lib / IR / Verifier.cpp
blob7b6f7b5aa6171a49fa092b8860dd6100df75d123
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * All basic blocks should only end with terminator insts, not contain them
27 // * The entry node to a function must not have predecessors
28 // * All Instructions must be embedded into a basic block
29 // * Functions cannot take a void-typed parameter
30 // * Verify that a function's argument list agrees with it's declared type.
31 // * It is illegal to specify a name for a void value.
32 // * It is illegal to have a internal global value with no initializer
33 // * It is illegal to have a ret instruction that returns a value that does not
34 // agree with the function return value type.
35 // * Function call argument types match the function prototype
36 // * A landing pad is defined by a landingpad instruction, and can be jumped to
37 // only by the unwind edge of an invoke instruction.
38 // * A landingpad instruction must be the first non-PHI instruction in the
39 // block.
40 // * Landingpad instructions must be in a function with a personality function.
41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 // The applied restrictions are too numerous to list here.
43 // * The convergence entry intrinsic and the loop heart must be the first
44 // non-PHI instruction in their respective block. This does not conflict with
45 // the landing pads, since these two kinds cannot occur in the same block.
46 // * All other things that are tested by asserts spread about the code...
48 //===----------------------------------------------------------------------===//
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/SmallSet.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringRef.h"
62 #include "llvm/ADT/Twine.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/AttributeMask.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/ConstantRangeList.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/ConvergenceVerifier.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/EHPersonalities.h"
83 #include "llvm/IR/Function.h"
84 #include "llvm/IR/GCStrategy.h"
85 #include "llvm/IR/GlobalAlias.h"
86 #include "llvm/IR/GlobalValue.h"
87 #include "llvm/IR/GlobalVariable.h"
88 #include "llvm/IR/InlineAsm.h"
89 #include "llvm/IR/InstVisitor.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/IntrinsicsAArch64.h"
96 #include "llvm/IR/IntrinsicsAMDGPU.h"
97 #include "llvm/IR/IntrinsicsARM.h"
98 #include "llvm/IR/IntrinsicsNVPTX.h"
99 #include "llvm/IR/IntrinsicsWebAssembly.h"
100 #include "llvm/IR/LLVMContext.h"
101 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
102 #include "llvm/IR/Metadata.h"
103 #include "llvm/IR/Module.h"
104 #include "llvm/IR/ModuleSlotTracker.h"
105 #include "llvm/IR/PassManager.h"
106 #include "llvm/IR/ProfDataUtils.h"
107 #include "llvm/IR/Statepoint.h"
108 #include "llvm/IR/Type.h"
109 #include "llvm/IR/Use.h"
110 #include "llvm/IR/User.h"
111 #include "llvm/IR/VFABIDemangler.h"
112 #include "llvm/IR/Value.h"
113 #include "llvm/InitializePasses.h"
114 #include "llvm/Pass.h"
115 #include "llvm/Support/AMDGPUAddrSpace.h"
116 #include "llvm/Support/AtomicOrdering.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/MathExtras.h"
121 #include "llvm/Support/ModRef.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cstdint>
126 #include <memory>
127 #include <optional>
128 #include <string>
129 #include <utility>
131 using namespace llvm;
133 static cl::opt<bool> VerifyNoAliasScopeDomination(
134 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
135 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
136 "scopes are not dominating"));
138 namespace llvm {
140 struct VerifierSupport {
141 raw_ostream *OS;
142 const Module &M;
143 ModuleSlotTracker MST;
144 Triple TT;
145 const DataLayout &DL;
146 LLVMContext &Context;
148 /// Track the brokenness of the module while recursively visiting.
149 bool Broken = false;
150 /// Broken debug info can be "recovered" from by stripping the debug info.
151 bool BrokenDebugInfo = false;
152 /// Whether to treat broken debug info as an error.
153 bool TreatBrokenDebugInfoAsError = true;
155 explicit VerifierSupport(raw_ostream *OS, const Module &M)
156 : OS(OS), M(M), MST(&M), TT(Triple::normalize(M.getTargetTriple())),
157 DL(M.getDataLayout()), Context(M.getContext()) {}
159 private:
160 void Write(const Module *M) {
161 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
164 void Write(const Value *V) {
165 if (V)
166 Write(*V);
169 void Write(const Value &V) {
170 if (isa<Instruction>(V)) {
171 V.print(*OS, MST);
172 *OS << '\n';
173 } else {
174 V.printAsOperand(*OS, true, MST);
175 *OS << '\n';
179 void Write(const DbgRecord *DR) {
180 if (DR) {
181 DR->print(*OS, MST, false);
182 *OS << '\n';
186 void Write(DbgVariableRecord::LocationType Type) {
187 switch (Type) {
188 case DbgVariableRecord::LocationType::Value:
189 *OS << "value";
190 break;
191 case DbgVariableRecord::LocationType::Declare:
192 *OS << "declare";
193 break;
194 case DbgVariableRecord::LocationType::Assign:
195 *OS << "assign";
196 break;
197 case DbgVariableRecord::LocationType::End:
198 *OS << "end";
199 break;
200 case DbgVariableRecord::LocationType::Any:
201 *OS << "any";
202 break;
206 void Write(const Metadata *MD) {
207 if (!MD)
208 return;
209 MD->print(*OS, MST, &M);
210 *OS << '\n';
213 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
214 Write(MD.get());
217 void Write(const NamedMDNode *NMD) {
218 if (!NMD)
219 return;
220 NMD->print(*OS, MST);
221 *OS << '\n';
224 void Write(Type *T) {
225 if (!T)
226 return;
227 *OS << ' ' << *T;
230 void Write(const Comdat *C) {
231 if (!C)
232 return;
233 *OS << *C;
236 void Write(const APInt *AI) {
237 if (!AI)
238 return;
239 *OS << *AI << '\n';
242 void Write(const unsigned i) { *OS << i << '\n'; }
244 // NOLINTNEXTLINE(readability-identifier-naming)
245 void Write(const Attribute *A) {
246 if (!A)
247 return;
248 *OS << A->getAsString() << '\n';
251 // NOLINTNEXTLINE(readability-identifier-naming)
252 void Write(const AttributeSet *AS) {
253 if (!AS)
254 return;
255 *OS << AS->getAsString() << '\n';
258 // NOLINTNEXTLINE(readability-identifier-naming)
259 void Write(const AttributeList *AL) {
260 if (!AL)
261 return;
262 AL->print(*OS);
265 void Write(Printable P) { *OS << P << '\n'; }
267 template <typename T> void Write(ArrayRef<T> Vs) {
268 for (const T &V : Vs)
269 Write(V);
272 template <typename T1, typename... Ts>
273 void WriteTs(const T1 &V1, const Ts &... Vs) {
274 Write(V1);
275 WriteTs(Vs...);
278 template <typename... Ts> void WriteTs() {}
280 public:
281 /// A check failed, so printout out the condition and the message.
283 /// This provides a nice place to put a breakpoint if you want to see why
284 /// something is not correct.
285 void CheckFailed(const Twine &Message) {
286 if (OS)
287 *OS << Message << '\n';
288 Broken = true;
291 /// A check failed (with values to print).
293 /// This calls the Message-only version so that the above is easier to set a
294 /// breakpoint on.
295 template <typename T1, typename... Ts>
296 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
297 CheckFailed(Message);
298 if (OS)
299 WriteTs(V1, Vs...);
302 /// A debug info check failed.
303 void DebugInfoCheckFailed(const Twine &Message) {
304 if (OS)
305 *OS << Message << '\n';
306 Broken |= TreatBrokenDebugInfoAsError;
307 BrokenDebugInfo = true;
310 /// A debug info check failed (with values to print).
311 template <typename T1, typename... Ts>
312 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
313 const Ts &... Vs) {
314 DebugInfoCheckFailed(Message);
315 if (OS)
316 WriteTs(V1, Vs...);
320 } // namespace llvm
322 namespace {
324 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
325 friend class InstVisitor<Verifier>;
326 DominatorTree DT;
328 /// When verifying a basic block, keep track of all of the
329 /// instructions we have seen so far.
331 /// This allows us to do efficient dominance checks for the case when an
332 /// instruction has an operand that is an instruction in the same block.
333 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
335 /// Keep track of the metadata nodes that have been checked already.
336 SmallPtrSet<const Metadata *, 32> MDNodes;
338 /// Keep track which DISubprogram is attached to which function.
339 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
341 /// Track all DICompileUnits visited.
342 SmallPtrSet<const Metadata *, 2> CUVisited;
344 /// The result type for a landingpad.
345 Type *LandingPadResultTy;
347 /// Whether we've seen a call to @llvm.localescape in this function
348 /// already.
349 bool SawFrameEscape;
351 /// Whether the current function has a DISubprogram attached to it.
352 bool HasDebugInfo = false;
354 /// Stores the count of how many objects were passed to llvm.localescape for a
355 /// given function and the largest index passed to llvm.localrecover.
356 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
358 // Maps catchswitches and cleanuppads that unwind to siblings to the
359 // terminators that indicate the unwind, used to detect cycles therein.
360 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
362 /// Cache which blocks are in which funclet, if an EH funclet personality is
363 /// in use. Otherwise empty.
364 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
366 /// Cache of constants visited in search of ConstantExprs.
367 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
369 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
370 SmallVector<const Function *, 4> DeoptimizeDeclarations;
372 /// Cache of attribute lists verified.
373 SmallPtrSet<const void *, 32> AttributeListsVisited;
375 // Verify that this GlobalValue is only used in this module.
376 // This map is used to avoid visiting uses twice. We can arrive at a user
377 // twice, if they have multiple operands. In particular for very large
378 // constant expressions, we can arrive at a particular user many times.
379 SmallPtrSet<const Value *, 32> GlobalValueVisited;
381 // Keeps track of duplicate function argument debug info.
382 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
384 TBAAVerifier TBAAVerifyHelper;
385 ConvergenceVerifier ConvergenceVerifyHelper;
387 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
389 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
391 public:
392 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
393 const Module &M)
394 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
395 SawFrameEscape(false), TBAAVerifyHelper(this) {
396 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
399 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
401 bool verify(const Function &F) {
402 assert(F.getParent() == &M &&
403 "An instance of this class only works with a specific module!");
405 // First ensure the function is well-enough formed to compute dominance
406 // information, and directly compute a dominance tree. We don't rely on the
407 // pass manager to provide this as it isolates us from a potentially
408 // out-of-date dominator tree and makes it significantly more complex to run
409 // this code outside of a pass manager.
410 // FIXME: It's really gross that we have to cast away constness here.
411 if (!F.empty())
412 DT.recalculate(const_cast<Function &>(F));
414 for (const BasicBlock &BB : F) {
415 if (!BB.empty() && BB.back().isTerminator())
416 continue;
418 if (OS) {
419 *OS << "Basic Block in function '" << F.getName()
420 << "' does not have terminator!\n";
421 BB.printAsOperand(*OS, true, MST);
422 *OS << "\n";
424 return false;
427 auto FailureCB = [this](const Twine &Message) {
428 this->CheckFailed(Message);
430 ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
432 Broken = false;
433 // FIXME: We strip const here because the inst visitor strips const.
434 visit(const_cast<Function &>(F));
435 verifySiblingFuncletUnwinds();
437 if (ConvergenceVerifyHelper.sawTokens())
438 ConvergenceVerifyHelper.verify(DT);
440 InstsInThisBlock.clear();
441 DebugFnArgs.clear();
442 LandingPadResultTy = nullptr;
443 SawFrameEscape = false;
444 SiblingFuncletInfo.clear();
445 verifyNoAliasScopeDecl();
446 NoAliasScopeDecls.clear();
448 return !Broken;
451 /// Verify the module that this instance of \c Verifier was initialized with.
452 bool verify() {
453 Broken = false;
455 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
456 for (const Function &F : M)
457 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
458 DeoptimizeDeclarations.push_back(&F);
460 // Now that we've visited every function, verify that we never asked to
461 // recover a frame index that wasn't escaped.
462 verifyFrameRecoverIndices();
463 for (const GlobalVariable &GV : M.globals())
464 visitGlobalVariable(GV);
466 for (const GlobalAlias &GA : M.aliases())
467 visitGlobalAlias(GA);
469 for (const GlobalIFunc &GI : M.ifuncs())
470 visitGlobalIFunc(GI);
472 for (const NamedMDNode &NMD : M.named_metadata())
473 visitNamedMDNode(NMD);
475 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
476 visitComdat(SMEC.getValue());
478 visitModuleFlags();
479 visitModuleIdents();
480 visitModuleCommandLines();
482 verifyCompileUnits();
484 verifyDeoptimizeCallingConvs();
485 DISubprogramAttachments.clear();
486 return !Broken;
489 private:
490 /// Whether a metadata node is allowed to be, or contain, a DILocation.
491 enum class AreDebugLocsAllowed { No, Yes };
493 /// Metadata that should be treated as a range, with slightly different
494 /// requirements.
495 enum class RangeLikeMetadataKind {
496 Range, // MD_range
497 AbsoluteSymbol, // MD_absolute_symbol
498 NoaliasAddrspace // MD_noalias_addrspace
501 // Verification methods...
502 void visitGlobalValue(const GlobalValue &GV);
503 void visitGlobalVariable(const GlobalVariable &GV);
504 void visitGlobalAlias(const GlobalAlias &GA);
505 void visitGlobalIFunc(const GlobalIFunc &GI);
506 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
507 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
508 const GlobalAlias &A, const Constant &C);
509 void visitNamedMDNode(const NamedMDNode &NMD);
510 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
511 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
512 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
513 void visitDIArgList(const DIArgList &AL, Function *F);
514 void visitComdat(const Comdat &C);
515 void visitModuleIdents();
516 void visitModuleCommandLines();
517 void visitModuleFlags();
518 void visitModuleFlag(const MDNode *Op,
519 DenseMap<const MDString *, const MDNode *> &SeenIDs,
520 SmallVectorImpl<const MDNode *> &Requirements);
521 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
522 void visitFunction(const Function &F);
523 void visitBasicBlock(BasicBlock &BB);
524 void verifyRangeLikeMetadata(const Value &V, const MDNode *Range, Type *Ty,
525 RangeLikeMetadataKind Kind);
526 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
527 void visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range, Type *Ty);
528 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
529 void visitProfMetadata(Instruction &I, MDNode *MD);
530 void visitCallStackMetadata(MDNode *MD);
531 void visitMemProfMetadata(Instruction &I, MDNode *MD);
532 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
533 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
534 void visitMMRAMetadata(Instruction &I, MDNode *MD);
535 void visitAnnotationMetadata(MDNode *Annotation);
536 void visitAliasScopeMetadata(const MDNode *MD);
537 void visitAliasScopeListMetadata(const MDNode *MD);
538 void visitAccessGroupMetadata(const MDNode *MD);
540 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
541 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
542 #include "llvm/IR/Metadata.def"
543 void visitDIScope(const DIScope &N);
544 void visitDIVariable(const DIVariable &N);
545 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
546 void visitDITemplateParameter(const DITemplateParameter &N);
548 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
550 void visit(DbgLabelRecord &DLR);
551 void visit(DbgVariableRecord &DVR);
552 // InstVisitor overrides...
553 using InstVisitor<Verifier>::visit;
554 void visitDbgRecords(Instruction &I);
555 void visit(Instruction &I);
557 void visitTruncInst(TruncInst &I);
558 void visitZExtInst(ZExtInst &I);
559 void visitSExtInst(SExtInst &I);
560 void visitFPTruncInst(FPTruncInst &I);
561 void visitFPExtInst(FPExtInst &I);
562 void visitFPToUIInst(FPToUIInst &I);
563 void visitFPToSIInst(FPToSIInst &I);
564 void visitUIToFPInst(UIToFPInst &I);
565 void visitSIToFPInst(SIToFPInst &I);
566 void visitIntToPtrInst(IntToPtrInst &I);
567 void visitPtrToIntInst(PtrToIntInst &I);
568 void visitBitCastInst(BitCastInst &I);
569 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
570 void visitPHINode(PHINode &PN);
571 void visitCallBase(CallBase &Call);
572 void visitUnaryOperator(UnaryOperator &U);
573 void visitBinaryOperator(BinaryOperator &B);
574 void visitICmpInst(ICmpInst &IC);
575 void visitFCmpInst(FCmpInst &FC);
576 void visitExtractElementInst(ExtractElementInst &EI);
577 void visitInsertElementInst(InsertElementInst &EI);
578 void visitShuffleVectorInst(ShuffleVectorInst &EI);
579 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
580 void visitCallInst(CallInst &CI);
581 void visitInvokeInst(InvokeInst &II);
582 void visitGetElementPtrInst(GetElementPtrInst &GEP);
583 void visitLoadInst(LoadInst &LI);
584 void visitStoreInst(StoreInst &SI);
585 void verifyDominatesUse(Instruction &I, unsigned i);
586 void visitInstruction(Instruction &I);
587 void visitTerminator(Instruction &I);
588 void visitBranchInst(BranchInst &BI);
589 void visitReturnInst(ReturnInst &RI);
590 void visitSwitchInst(SwitchInst &SI);
591 void visitIndirectBrInst(IndirectBrInst &BI);
592 void visitCallBrInst(CallBrInst &CBI);
593 void visitSelectInst(SelectInst &SI);
594 void visitUserOp1(Instruction &I);
595 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
596 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
597 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
598 void visitVPIntrinsic(VPIntrinsic &VPI);
599 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
600 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
601 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
602 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
603 void visitFenceInst(FenceInst &FI);
604 void visitAllocaInst(AllocaInst &AI);
605 void visitExtractValueInst(ExtractValueInst &EVI);
606 void visitInsertValueInst(InsertValueInst &IVI);
607 void visitEHPadPredecessors(Instruction &I);
608 void visitLandingPadInst(LandingPadInst &LPI);
609 void visitResumeInst(ResumeInst &RI);
610 void visitCatchPadInst(CatchPadInst &CPI);
611 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
612 void visitCleanupPadInst(CleanupPadInst &CPI);
613 void visitFuncletPadInst(FuncletPadInst &FPI);
614 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
615 void visitCleanupReturnInst(CleanupReturnInst &CRI);
617 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
618 void verifySwiftErrorValue(const Value *SwiftErrorVal);
619 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
620 void verifyMustTailCall(CallInst &CI);
621 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
622 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
623 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
624 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
625 const Value *V);
626 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
627 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
628 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
630 void visitConstantExprsRecursively(const Constant *EntryC);
631 void visitConstantExpr(const ConstantExpr *CE);
632 void visitConstantPtrAuth(const ConstantPtrAuth *CPA);
633 void verifyInlineAsmCall(const CallBase &Call);
634 void verifyStatepoint(const CallBase &Call);
635 void verifyFrameRecoverIndices();
636 void verifySiblingFuncletUnwinds();
638 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
639 void verifyFragmentExpression(const DbgVariableRecord &I);
640 template <typename ValueOrMetadata>
641 void verifyFragmentExpression(const DIVariable &V,
642 DIExpression::FragmentInfo Fragment,
643 ValueOrMetadata *Desc);
644 void verifyFnArgs(const DbgVariableIntrinsic &I);
645 void verifyFnArgs(const DbgVariableRecord &DVR);
646 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
647 void verifyNotEntryValue(const DbgVariableRecord &I);
649 /// Module-level debug info verification...
650 void verifyCompileUnits();
652 /// Module-level verification that all @llvm.experimental.deoptimize
653 /// declarations share the same calling convention.
654 void verifyDeoptimizeCallingConvs();
656 void verifyAttachedCallBundle(const CallBase &Call,
657 const OperandBundleUse &BU);
659 /// Verify the llvm.experimental.noalias.scope.decl declarations
660 void verifyNoAliasScopeDecl();
663 } // end anonymous namespace
665 /// We know that cond should be true, if not print an error message.
666 #define Check(C, ...) \
667 do { \
668 if (!(C)) { \
669 CheckFailed(__VA_ARGS__); \
670 return; \
672 } while (false)
674 /// We know that a debug info condition should be true, if not print
675 /// an error message.
676 #define CheckDI(C, ...) \
677 do { \
678 if (!(C)) { \
679 DebugInfoCheckFailed(__VA_ARGS__); \
680 return; \
682 } while (false)
684 void Verifier::visitDbgRecords(Instruction &I) {
685 if (!I.DebugMarker)
686 return;
687 CheckDI(I.DebugMarker->MarkedInstr == &I,
688 "Instruction has invalid DebugMarker", &I);
689 CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(),
690 "PHI Node must not have any attached DbgRecords", &I);
691 for (DbgRecord &DR : I.getDbgRecordRange()) {
692 CheckDI(DR.getMarker() == I.DebugMarker,
693 "DbgRecord had invalid DebugMarker", &I, &DR);
694 if (auto *Loc =
695 dyn_cast_or_null<DILocation>(DR.getDebugLoc().getAsMDNode()))
696 visitMDNode(*Loc, AreDebugLocsAllowed::Yes);
697 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) {
698 visit(*DVR);
699 // These have to appear after `visit` for consistency with existing
700 // intrinsic behaviour.
701 verifyFragmentExpression(*DVR);
702 verifyNotEntryValue(*DVR);
703 } else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
704 visit(*DLR);
709 void Verifier::visit(Instruction &I) {
710 visitDbgRecords(I);
711 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
712 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
713 InstVisitor<Verifier>::visit(I);
716 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
717 static void forEachUser(const Value *User,
718 SmallPtrSet<const Value *, 32> &Visited,
719 llvm::function_ref<bool(const Value *)> Callback) {
720 if (!Visited.insert(User).second)
721 return;
723 SmallVector<const Value *> WorkList;
724 append_range(WorkList, User->materialized_users());
725 while (!WorkList.empty()) {
726 const Value *Cur = WorkList.pop_back_val();
727 if (!Visited.insert(Cur).second)
728 continue;
729 if (Callback(Cur))
730 append_range(WorkList, Cur->materialized_users());
734 void Verifier::visitGlobalValue(const GlobalValue &GV) {
735 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
736 "Global is external, but doesn't have external or weak linkage!", &GV);
738 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
740 if (MaybeAlign A = GO->getAlign()) {
741 Check(A->value() <= Value::MaximumAlignment,
742 "huge alignment values are unsupported", GO);
745 if (const MDNode *Associated =
746 GO->getMetadata(LLVMContext::MD_associated)) {
747 Check(Associated->getNumOperands() == 1,
748 "associated metadata must have one operand", &GV, Associated);
749 const Metadata *Op = Associated->getOperand(0).get();
750 Check(Op, "associated metadata must have a global value", GO, Associated);
752 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
753 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
754 if (VM) {
755 Check(isa<PointerType>(VM->getValue()->getType()),
756 "associated value must be pointer typed", GV, Associated);
758 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
759 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
760 "associated metadata must point to a GlobalObject", GO, Stripped);
761 Check(Stripped != GO,
762 "global values should not associate to themselves", GO,
763 Associated);
767 // FIXME: Why is getMetadata on GlobalValue protected?
768 if (const MDNode *AbsoluteSymbol =
769 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
770 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
771 DL.getIntPtrType(GO->getType()),
772 RangeLikeMetadataKind::AbsoluteSymbol);
776 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
777 "Only global variables can have appending linkage!", &GV);
779 if (GV.hasAppendingLinkage()) {
780 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
781 Check(GVar && GVar->getValueType()->isArrayTy(),
782 "Only global arrays can have appending linkage!", GVar);
785 if (GV.isDeclarationForLinker())
786 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
788 if (GV.hasDLLExportStorageClass()) {
789 Check(!GV.hasHiddenVisibility(),
790 "dllexport GlobalValue must have default or protected visibility",
791 &GV);
793 if (GV.hasDLLImportStorageClass()) {
794 Check(GV.hasDefaultVisibility(),
795 "dllimport GlobalValue must have default visibility", &GV);
796 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
797 &GV);
799 Check((GV.isDeclaration() &&
800 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
801 GV.hasAvailableExternallyLinkage(),
802 "Global is marked as dllimport, but not external", &GV);
805 if (GV.isImplicitDSOLocal())
806 Check(GV.isDSOLocal(),
807 "GlobalValue with local linkage or non-default "
808 "visibility must be dso_local!",
809 &GV);
811 if (GV.isTagged()) {
812 Check(!GV.hasSection(), "tagged GlobalValue must not be in section.", &GV);
815 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
816 if (const Instruction *I = dyn_cast<Instruction>(V)) {
817 if (!I->getParent() || !I->getParent()->getParent())
818 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
820 else if (I->getParent()->getParent()->getParent() != &M)
821 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
822 I->getParent()->getParent(),
823 I->getParent()->getParent()->getParent());
824 return false;
825 } else if (const Function *F = dyn_cast<Function>(V)) {
826 if (F->getParent() != &M)
827 CheckFailed("Global is used by function in a different module", &GV, &M,
828 F, F->getParent());
829 return false;
831 return true;
835 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
836 Type *GVType = GV.getValueType();
838 if (GV.hasInitializer()) {
839 Check(GV.getInitializer()->getType() == GVType,
840 "Global variable initializer type does not match global "
841 "variable type!",
842 &GV);
843 // If the global has common linkage, it must have a zero initializer and
844 // cannot be constant.
845 if (GV.hasCommonLinkage()) {
846 Check(GV.getInitializer()->isNullValue(),
847 "'common' global must have a zero initializer!", &GV);
848 Check(!GV.isConstant(), "'common' global may not be marked constant!",
849 &GV);
850 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
854 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
855 GV.getName() == "llvm.global_dtors")) {
856 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
857 "invalid linkage for intrinsic global variable", &GV);
858 Check(GV.materialized_use_empty(),
859 "invalid uses of intrinsic global variable", &GV);
861 // Don't worry about emitting an error for it not being an array,
862 // visitGlobalValue will complain on appending non-array.
863 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
864 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
865 PointerType *FuncPtrTy =
866 PointerType::get(Context, DL.getProgramAddressSpace());
867 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
868 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
869 STy->getTypeAtIndex(1) == FuncPtrTy,
870 "wrong type for intrinsic global variable", &GV);
871 Check(STy->getNumElements() == 3,
872 "the third field of the element type is mandatory, "
873 "specify ptr null to migrate from the obsoleted 2-field form");
874 Type *ETy = STy->getTypeAtIndex(2);
875 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
876 &GV);
880 if (GV.hasName() && (GV.getName() == "llvm.used" ||
881 GV.getName() == "llvm.compiler.used")) {
882 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
883 "invalid linkage for intrinsic global variable", &GV);
884 Check(GV.materialized_use_empty(),
885 "invalid uses of intrinsic global variable", &GV);
887 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
888 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
889 Check(PTy, "wrong type for intrinsic global variable", &GV);
890 if (GV.hasInitializer()) {
891 const Constant *Init = GV.getInitializer();
892 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
893 Check(InitArray, "wrong initalizer for intrinsic global variable",
894 Init);
895 for (Value *Op : InitArray->operands()) {
896 Value *V = Op->stripPointerCasts();
897 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
898 isa<GlobalAlias>(V),
899 Twine("invalid ") + GV.getName() + " member", V);
900 Check(V->hasName(),
901 Twine("members of ") + GV.getName() + " must be named", V);
907 // Visit any debug info attachments.
908 SmallVector<MDNode *, 1> MDs;
909 GV.getMetadata(LLVMContext::MD_dbg, MDs);
910 for (auto *MD : MDs) {
911 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
912 visitDIGlobalVariableExpression(*GVE);
913 else
914 CheckDI(false, "!dbg attachment of global variable must be a "
915 "DIGlobalVariableExpression");
918 // Scalable vectors cannot be global variables, since we don't know
919 // the runtime size.
920 Check(!GVType->isScalableTy(), "Globals cannot contain scalable types", &GV);
922 // Check if it is or contains a target extension type that disallows being
923 // used as a global.
924 Check(!GVType->containsNonGlobalTargetExtType(),
925 "Global @" + GV.getName() + " has illegal target extension type",
926 GVType);
928 if (!GV.hasInitializer()) {
929 visitGlobalValue(GV);
930 return;
933 // Walk any aggregate initializers looking for bitcasts between address spaces
934 visitConstantExprsRecursively(GV.getInitializer());
936 visitGlobalValue(GV);
939 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
940 SmallPtrSet<const GlobalAlias*, 4> Visited;
941 Visited.insert(&GA);
942 visitAliaseeSubExpr(Visited, GA, C);
945 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
946 const GlobalAlias &GA, const Constant &C) {
947 if (GA.hasAvailableExternallyLinkage()) {
948 Check(isa<GlobalValue>(C) &&
949 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
950 "available_externally alias must point to available_externally "
951 "global value",
952 &GA);
954 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
955 if (!GA.hasAvailableExternallyLinkage()) {
956 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
957 &GA);
960 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
961 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
963 Check(!GA2->isInterposable(),
964 "Alias cannot point to an interposable alias", &GA);
965 } else {
966 // Only continue verifying subexpressions of GlobalAliases.
967 // Do not recurse into global initializers.
968 return;
972 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
973 visitConstantExprsRecursively(CE);
975 for (const Use &U : C.operands()) {
976 Value *V = &*U;
977 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
978 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
979 else if (const auto *C2 = dyn_cast<Constant>(V))
980 visitAliaseeSubExpr(Visited, GA, *C2);
984 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
985 Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
986 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
987 "weak_odr, external, or available_externally linkage!",
988 &GA);
989 const Constant *Aliasee = GA.getAliasee();
990 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
991 Check(GA.getType() == Aliasee->getType(),
992 "Alias and aliasee types should match!", &GA);
994 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
995 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
997 visitAliaseeSubExpr(GA, *Aliasee);
999 visitGlobalValue(GA);
1002 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
1003 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
1004 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1005 "weak_odr, or external linkage!",
1006 &GI);
1007 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
1008 // is a Function definition.
1009 const Function *Resolver = GI.getResolverFunction();
1010 Check(Resolver, "IFunc must have a Function resolver", &GI);
1011 Check(!Resolver->isDeclarationForLinker(),
1012 "IFunc resolver must be a definition", &GI);
1014 // Check that the immediate resolver operand (prior to any bitcasts) has the
1015 // correct type.
1016 const Type *ResolverTy = GI.getResolver()->getType();
1018 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
1019 "IFunc resolver must return a pointer", &GI);
1021 Check(ResolverTy == PointerType::get(Context, GI.getAddressSpace()),
1022 "IFunc resolver has incorrect type", &GI);
1025 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
1026 // There used to be various other llvm.dbg.* nodes, but we don't support
1027 // upgrading them and we want to reserve the namespace for future uses.
1028 if (NMD.getName().starts_with("llvm.dbg."))
1029 CheckDI(NMD.getName() == "llvm.dbg.cu",
1030 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1031 for (const MDNode *MD : NMD.operands()) {
1032 if (NMD.getName() == "llvm.dbg.cu")
1033 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
1035 if (!MD)
1036 continue;
1038 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1042 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1043 // Only visit each node once. Metadata can be mutually recursive, so this
1044 // avoids infinite recursion here, as well as being an optimization.
1045 if (!MDNodes.insert(&MD).second)
1046 return;
1048 Check(&MD.getContext() == &Context,
1049 "MDNode context does not match Module context!", &MD);
1051 switch (MD.getMetadataID()) {
1052 default:
1053 llvm_unreachable("Invalid MDNode subclass");
1054 case Metadata::MDTupleKind:
1055 break;
1056 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1057 case Metadata::CLASS##Kind: \
1058 visit##CLASS(cast<CLASS>(MD)); \
1059 break;
1060 #include "llvm/IR/Metadata.def"
1063 for (const Metadata *Op : MD.operands()) {
1064 if (!Op)
1065 continue;
1066 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1067 &MD, Op);
1068 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1069 "DILocation not allowed within this metadata node", &MD, Op);
1070 if (auto *N = dyn_cast<MDNode>(Op)) {
1071 visitMDNode(*N, AllowLocs);
1072 continue;
1074 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1075 visitValueAsMetadata(*V, nullptr);
1076 continue;
1080 // Check these last, so we diagnose problems in operands first.
1081 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1082 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1085 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1086 Check(MD.getValue(), "Expected valid value", &MD);
1087 Check(!MD.getValue()->getType()->isMetadataTy(),
1088 "Unexpected metadata round-trip through values", &MD, MD.getValue());
1090 auto *L = dyn_cast<LocalAsMetadata>(&MD);
1091 if (!L)
1092 return;
1094 Check(F, "function-local metadata used outside a function", L);
1096 // If this was an instruction, bb, or argument, verify that it is in the
1097 // function that we expect.
1098 Function *ActualF = nullptr;
1099 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1100 Check(I->getParent(), "function-local metadata not in basic block", L, I);
1101 ActualF = I->getParent()->getParent();
1102 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1103 ActualF = BB->getParent();
1104 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1105 ActualF = A->getParent();
1106 assert(ActualF && "Unimplemented function local metadata case!");
1108 Check(ActualF == F, "function-local metadata used in wrong function", L);
1111 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1112 for (const ValueAsMetadata *VAM : AL.getArgs())
1113 visitValueAsMetadata(*VAM, F);
1116 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1117 Metadata *MD = MDV.getMetadata();
1118 if (auto *N = dyn_cast<MDNode>(MD)) {
1119 visitMDNode(*N, AreDebugLocsAllowed::No);
1120 return;
1123 // Only visit each node once. Metadata can be mutually recursive, so this
1124 // avoids infinite recursion here, as well as being an optimization.
1125 if (!MDNodes.insert(MD).second)
1126 return;
1128 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1129 visitValueAsMetadata(*V, F);
1131 if (auto *AL = dyn_cast<DIArgList>(MD))
1132 visitDIArgList(*AL, F);
1135 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1136 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1137 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1139 void Verifier::visitDILocation(const DILocation &N) {
1140 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1141 "location requires a valid scope", &N, N.getRawScope());
1142 if (auto *IA = N.getRawInlinedAt())
1143 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1144 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1145 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1148 void Verifier::visitGenericDINode(const GenericDINode &N) {
1149 CheckDI(N.getTag(), "invalid tag", &N);
1152 void Verifier::visitDIScope(const DIScope &N) {
1153 if (auto *F = N.getRawFile())
1154 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1157 void Verifier::visitDISubrange(const DISubrange &N) {
1158 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1159 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1160 "Subrange can have any one of count or upperBound", &N);
1161 auto *CBound = N.getRawCountNode();
1162 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1163 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1164 "Count must be signed constant or DIVariable or DIExpression", &N);
1165 auto Count = N.getCount();
1166 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1167 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1168 "invalid subrange count", &N);
1169 auto *LBound = N.getRawLowerBound();
1170 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1171 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1172 "LowerBound must be signed constant or DIVariable or DIExpression",
1173 &N);
1174 auto *UBound = N.getRawUpperBound();
1175 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1176 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1177 "UpperBound must be signed constant or DIVariable or DIExpression",
1178 &N);
1179 auto *Stride = N.getRawStride();
1180 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1181 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1182 "Stride must be signed constant or DIVariable or DIExpression", &N);
1185 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1186 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1187 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1188 "GenericSubrange can have any one of count or upperBound", &N);
1189 auto *CBound = N.getRawCountNode();
1190 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1191 "Count must be signed constant or DIVariable or DIExpression", &N);
1192 auto *LBound = N.getRawLowerBound();
1193 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1194 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1195 "LowerBound must be signed constant or DIVariable or DIExpression",
1196 &N);
1197 auto *UBound = N.getRawUpperBound();
1198 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1199 "UpperBound must be signed constant or DIVariable or DIExpression",
1200 &N);
1201 auto *Stride = N.getRawStride();
1202 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1203 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1204 "Stride must be signed constant or DIVariable or DIExpression", &N);
1207 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1208 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1211 void Verifier::visitDIBasicType(const DIBasicType &N) {
1212 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1213 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1214 N.getTag() == dwarf::DW_TAG_string_type,
1215 "invalid tag", &N);
1218 void Verifier::visitDIStringType(const DIStringType &N) {
1219 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1220 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1221 &N);
1224 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1225 // Common scope checks.
1226 visitDIScope(N);
1228 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1229 N.getTag() == dwarf::DW_TAG_pointer_type ||
1230 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1231 N.getTag() == dwarf::DW_TAG_reference_type ||
1232 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1233 N.getTag() == dwarf::DW_TAG_const_type ||
1234 N.getTag() == dwarf::DW_TAG_immutable_type ||
1235 N.getTag() == dwarf::DW_TAG_volatile_type ||
1236 N.getTag() == dwarf::DW_TAG_restrict_type ||
1237 N.getTag() == dwarf::DW_TAG_atomic_type ||
1238 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1239 N.getTag() == dwarf::DW_TAG_member ||
1240 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1241 N.getTag() == dwarf::DW_TAG_inheritance ||
1242 N.getTag() == dwarf::DW_TAG_friend ||
1243 N.getTag() == dwarf::DW_TAG_set_type ||
1244 N.getTag() == dwarf::DW_TAG_template_alias,
1245 "invalid tag", &N);
1246 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1247 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1248 N.getRawExtraData());
1251 if (N.getTag() == dwarf::DW_TAG_set_type) {
1252 if (auto *T = N.getRawBaseType()) {
1253 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1254 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1255 CheckDI(
1256 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1257 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1258 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1259 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1260 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1261 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1262 "invalid set base type", &N, T);
1266 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1267 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1268 N.getRawBaseType());
1270 if (N.getDWARFAddressSpace()) {
1271 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1272 N.getTag() == dwarf::DW_TAG_reference_type ||
1273 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1274 "DWARF address space only applies to pointer or reference types",
1275 &N);
1279 /// Detect mutually exclusive flags.
1280 static bool hasConflictingReferenceFlags(unsigned Flags) {
1281 return ((Flags & DINode::FlagLValueReference) &&
1282 (Flags & DINode::FlagRValueReference)) ||
1283 ((Flags & DINode::FlagTypePassByValue) &&
1284 (Flags & DINode::FlagTypePassByReference));
1287 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1288 auto *Params = dyn_cast<MDTuple>(&RawParams);
1289 CheckDI(Params, "invalid template params", &N, &RawParams);
1290 for (Metadata *Op : Params->operands()) {
1291 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1292 &N, Params, Op);
1296 void Verifier::visitDICompositeType(const DICompositeType &N) {
1297 // Common scope checks.
1298 visitDIScope(N);
1300 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1301 N.getTag() == dwarf::DW_TAG_structure_type ||
1302 N.getTag() == dwarf::DW_TAG_union_type ||
1303 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1304 N.getTag() == dwarf::DW_TAG_class_type ||
1305 N.getTag() == dwarf::DW_TAG_variant_part ||
1306 N.getTag() == dwarf::DW_TAG_namelist,
1307 "invalid tag", &N);
1309 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1310 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1311 N.getRawBaseType());
1313 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1314 "invalid composite elements", &N, N.getRawElements());
1315 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1316 N.getRawVTableHolder());
1317 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1318 "invalid reference flags", &N);
1319 unsigned DIBlockByRefStruct = 1 << 4;
1320 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1321 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1323 if (N.isVector()) {
1324 const DINodeArray Elements = N.getElements();
1325 CheckDI(Elements.size() == 1 &&
1326 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1327 "invalid vector, expected one element of type subrange", &N);
1330 if (auto *Params = N.getRawTemplateParams())
1331 visitTemplateParams(N, *Params);
1333 if (auto *D = N.getRawDiscriminator()) {
1334 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1335 "discriminator can only appear on variant part");
1338 if (N.getRawDataLocation()) {
1339 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1340 "dataLocation can only appear in array type");
1343 if (N.getRawAssociated()) {
1344 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1345 "associated can only appear in array type");
1348 if (N.getRawAllocated()) {
1349 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1350 "allocated can only appear in array type");
1353 if (N.getRawRank()) {
1354 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1355 "rank can only appear in array type");
1358 if (N.getTag() == dwarf::DW_TAG_array_type) {
1359 CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1363 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1364 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1365 if (auto *Types = N.getRawTypeArray()) {
1366 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1367 for (Metadata *Ty : N.getTypeArray()->operands()) {
1368 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1371 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1372 "invalid reference flags", &N);
1375 void Verifier::visitDIFile(const DIFile &N) {
1376 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1377 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1378 if (Checksum) {
1379 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1380 "invalid checksum kind", &N);
1381 size_t Size;
1382 switch (Checksum->Kind) {
1383 case DIFile::CSK_MD5:
1384 Size = 32;
1385 break;
1386 case DIFile::CSK_SHA1:
1387 Size = 40;
1388 break;
1389 case DIFile::CSK_SHA256:
1390 Size = 64;
1391 break;
1393 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1394 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1395 "invalid checksum", &N);
1399 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1400 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1401 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1403 // Don't bother verifying the compilation directory or producer string
1404 // as those could be empty.
1405 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1406 N.getRawFile());
1407 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1408 N.getFile());
1410 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1411 "invalid emission kind", &N);
1413 if (auto *Array = N.getRawEnumTypes()) {
1414 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1415 for (Metadata *Op : N.getEnumTypes()->operands()) {
1416 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1417 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1418 "invalid enum type", &N, N.getEnumTypes(), Op);
1421 if (auto *Array = N.getRawRetainedTypes()) {
1422 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1423 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1424 CheckDI(
1425 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1426 !cast<DISubprogram>(Op)->isDefinition())),
1427 "invalid retained type", &N, Op);
1430 if (auto *Array = N.getRawGlobalVariables()) {
1431 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1432 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1433 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1434 "invalid global variable ref", &N, Op);
1437 if (auto *Array = N.getRawImportedEntities()) {
1438 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1439 for (Metadata *Op : N.getImportedEntities()->operands()) {
1440 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1441 &N, Op);
1444 if (auto *Array = N.getRawMacros()) {
1445 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1446 for (Metadata *Op : N.getMacros()->operands()) {
1447 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1450 CUVisited.insert(&N);
1453 void Verifier::visitDISubprogram(const DISubprogram &N) {
1454 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1455 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1456 if (auto *F = N.getRawFile())
1457 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1458 else
1459 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1460 if (auto *T = N.getRawType())
1461 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1462 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1463 N.getRawContainingType());
1464 if (auto *Params = N.getRawTemplateParams())
1465 visitTemplateParams(N, *Params);
1466 if (auto *S = N.getRawDeclaration())
1467 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1468 "invalid subprogram declaration", &N, S);
1469 if (auto *RawNode = N.getRawRetainedNodes()) {
1470 auto *Node = dyn_cast<MDTuple>(RawNode);
1471 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1472 for (Metadata *Op : Node->operands()) {
1473 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1474 isa<DIImportedEntity>(Op)),
1475 "invalid retained nodes, expected DILocalVariable, DILabel or "
1476 "DIImportedEntity",
1477 &N, Node, Op);
1480 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1481 "invalid reference flags", &N);
1483 auto *Unit = N.getRawUnit();
1484 if (N.isDefinition()) {
1485 // Subprogram definitions (not part of the type hierarchy).
1486 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1487 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1488 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1489 // There's no good way to cross the CU boundary to insert a nested
1490 // DISubprogram definition in one CU into a type defined in another CU.
1491 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1492 if (CT && CT->getRawIdentifier() &&
1493 M.getContext().isODRUniquingDebugTypes())
1494 CheckDI(N.getDeclaration(),
1495 "definition subprograms cannot be nested within DICompositeType "
1496 "when enabling ODR",
1497 &N);
1498 } else {
1499 // Subprogram declarations (part of the type hierarchy).
1500 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1501 CheckDI(!N.getRawDeclaration(),
1502 "subprogram declaration must not have a declaration field");
1505 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1506 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1507 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1508 for (Metadata *Op : ThrownTypes->operands())
1509 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1510 Op);
1513 if (N.areAllCallsDescribed())
1514 CheckDI(N.isDefinition(),
1515 "DIFlagAllCallsDescribed must be attached to a definition");
1518 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1519 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1520 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1521 "invalid local scope", &N, N.getRawScope());
1522 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1523 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1526 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1527 visitDILexicalBlockBase(N);
1529 CheckDI(N.getLine() || !N.getColumn(),
1530 "cannot have column info without line info", &N);
1533 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1534 visitDILexicalBlockBase(N);
1537 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1538 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1539 if (auto *S = N.getRawScope())
1540 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1541 if (auto *S = N.getRawDecl())
1542 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1545 void Verifier::visitDINamespace(const DINamespace &N) {
1546 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1547 if (auto *S = N.getRawScope())
1548 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1551 void Verifier::visitDIMacro(const DIMacro &N) {
1552 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1553 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1554 "invalid macinfo type", &N);
1555 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1556 if (!N.getValue().empty()) {
1557 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1561 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1562 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1563 "invalid macinfo type", &N);
1564 if (auto *F = N.getRawFile())
1565 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1567 if (auto *Array = N.getRawElements()) {
1568 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1569 for (Metadata *Op : N.getElements()->operands()) {
1570 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1575 void Verifier::visitDIModule(const DIModule &N) {
1576 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1577 CheckDI(!N.getName().empty(), "anonymous module", &N);
1580 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1581 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1584 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1585 visitDITemplateParameter(N);
1587 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1588 &N);
1591 void Verifier::visitDITemplateValueParameter(
1592 const DITemplateValueParameter &N) {
1593 visitDITemplateParameter(N);
1595 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1596 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1597 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1598 "invalid tag", &N);
1601 void Verifier::visitDIVariable(const DIVariable &N) {
1602 if (auto *S = N.getRawScope())
1603 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1604 if (auto *F = N.getRawFile())
1605 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1608 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1609 // Checks common to all variables.
1610 visitDIVariable(N);
1612 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1613 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1614 // Check only if the global variable is not an extern
1615 if (N.isDefinition())
1616 CheckDI(N.getType(), "missing global variable type", &N);
1617 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1618 CheckDI(isa<DIDerivedType>(Member),
1619 "invalid static data member declaration", &N, Member);
1623 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1624 // Checks common to all variables.
1625 visitDIVariable(N);
1627 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1628 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1629 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1630 "local variable requires a valid scope", &N, N.getRawScope());
1631 if (auto Ty = N.getType())
1632 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1635 void Verifier::visitDIAssignID(const DIAssignID &N) {
1636 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1637 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1640 void Verifier::visitDILabel(const DILabel &N) {
1641 if (auto *S = N.getRawScope())
1642 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1643 if (auto *F = N.getRawFile())
1644 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1646 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1647 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1648 "label requires a valid scope", &N, N.getRawScope());
1651 void Verifier::visitDIExpression(const DIExpression &N) {
1652 CheckDI(N.isValid(), "invalid expression", &N);
1655 void Verifier::visitDIGlobalVariableExpression(
1656 const DIGlobalVariableExpression &GVE) {
1657 CheckDI(GVE.getVariable(), "missing variable");
1658 if (auto *Var = GVE.getVariable())
1659 visitDIGlobalVariable(*Var);
1660 if (auto *Expr = GVE.getExpression()) {
1661 visitDIExpression(*Expr);
1662 if (auto Fragment = Expr->getFragmentInfo())
1663 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1667 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1668 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1669 if (auto *T = N.getRawType())
1670 CheckDI(isType(T), "invalid type ref", &N, T);
1671 if (auto *F = N.getRawFile())
1672 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1675 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1676 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1677 N.getTag() == dwarf::DW_TAG_imported_declaration,
1678 "invalid tag", &N);
1679 if (auto *S = N.getRawScope())
1680 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1681 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1682 N.getRawEntity());
1685 void Verifier::visitComdat(const Comdat &C) {
1686 // In COFF the Module is invalid if the GlobalValue has private linkage.
1687 // Entities with private linkage don't have entries in the symbol table.
1688 if (TT.isOSBinFormatCOFF())
1689 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1690 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1691 GV);
1694 void Verifier::visitModuleIdents() {
1695 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1696 if (!Idents)
1697 return;
1699 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1700 // Scan each llvm.ident entry and make sure that this requirement is met.
1701 for (const MDNode *N : Idents->operands()) {
1702 Check(N->getNumOperands() == 1,
1703 "incorrect number of operands in llvm.ident metadata", N);
1704 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1705 ("invalid value for llvm.ident metadata entry operand"
1706 "(the operand should be a string)"),
1707 N->getOperand(0));
1711 void Verifier::visitModuleCommandLines() {
1712 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1713 if (!CommandLines)
1714 return;
1716 // llvm.commandline takes a list of metadata entry. Each entry has only one
1717 // string. Scan each llvm.commandline entry and make sure that this
1718 // requirement is met.
1719 for (const MDNode *N : CommandLines->operands()) {
1720 Check(N->getNumOperands() == 1,
1721 "incorrect number of operands in llvm.commandline metadata", N);
1722 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1723 ("invalid value for llvm.commandline metadata entry operand"
1724 "(the operand should be a string)"),
1725 N->getOperand(0));
1729 void Verifier::visitModuleFlags() {
1730 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1731 if (!Flags) return;
1733 // Scan each flag, and track the flags and requirements.
1734 DenseMap<const MDString*, const MDNode*> SeenIDs;
1735 SmallVector<const MDNode*, 16> Requirements;
1736 uint64_t PAuthABIPlatform = -1;
1737 uint64_t PAuthABIVersion = -1;
1738 for (const MDNode *MDN : Flags->operands()) {
1739 visitModuleFlag(MDN, SeenIDs, Requirements);
1740 if (MDN->getNumOperands() != 3)
1741 continue;
1742 if (const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) {
1743 if (FlagName->getString() == "aarch64-elf-pauthabi-platform") {
1744 if (const auto *PAP =
1745 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1746 PAuthABIPlatform = PAP->getZExtValue();
1747 } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") {
1748 if (const auto *PAV =
1749 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1750 PAuthABIVersion = PAV->getZExtValue();
1755 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1756 CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and "
1757 "'aarch64-elf-pauthabi-version' module flags must be present");
1759 // Validate that the requirements in the module are valid.
1760 for (const MDNode *Requirement : Requirements) {
1761 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1762 const Metadata *ReqValue = Requirement->getOperand(1);
1764 const MDNode *Op = SeenIDs.lookup(Flag);
1765 if (!Op) {
1766 CheckFailed("invalid requirement on flag, flag is not present in module",
1767 Flag);
1768 continue;
1771 if (Op->getOperand(2) != ReqValue) {
1772 CheckFailed(("invalid requirement on flag, "
1773 "flag does not have the required value"),
1774 Flag);
1775 continue;
1780 void
1781 Verifier::visitModuleFlag(const MDNode *Op,
1782 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1783 SmallVectorImpl<const MDNode *> &Requirements) {
1784 // Each module flag should have three arguments, the merge behavior (a
1785 // constant int), the flag ID (an MDString), and the value.
1786 Check(Op->getNumOperands() == 3,
1787 "incorrect number of operands in module flag", Op);
1788 Module::ModFlagBehavior MFB;
1789 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1790 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1791 "invalid behavior operand in module flag (expected constant integer)",
1792 Op->getOperand(0));
1793 Check(false,
1794 "invalid behavior operand in module flag (unexpected constant)",
1795 Op->getOperand(0));
1797 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1798 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1799 Op->getOperand(1));
1801 // Check the values for behaviors with additional requirements.
1802 switch (MFB) {
1803 case Module::Error:
1804 case Module::Warning:
1805 case Module::Override:
1806 // These behavior types accept any value.
1807 break;
1809 case Module::Min: {
1810 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1811 Check(V && V->getValue().isNonNegative(),
1812 "invalid value for 'min' module flag (expected constant non-negative "
1813 "integer)",
1814 Op->getOperand(2));
1815 break;
1818 case Module::Max: {
1819 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1820 "invalid value for 'max' module flag (expected constant integer)",
1821 Op->getOperand(2));
1822 break;
1825 case Module::Require: {
1826 // The value should itself be an MDNode with two operands, a flag ID (an
1827 // MDString), and a value.
1828 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1829 Check(Value && Value->getNumOperands() == 2,
1830 "invalid value for 'require' module flag (expected metadata pair)",
1831 Op->getOperand(2));
1832 Check(isa<MDString>(Value->getOperand(0)),
1833 ("invalid value for 'require' module flag "
1834 "(first value operand should be a string)"),
1835 Value->getOperand(0));
1837 // Append it to the list of requirements, to check once all module flags are
1838 // scanned.
1839 Requirements.push_back(Value);
1840 break;
1843 case Module::Append:
1844 case Module::AppendUnique: {
1845 // These behavior types require the operand be an MDNode.
1846 Check(isa<MDNode>(Op->getOperand(2)),
1847 "invalid value for 'append'-type module flag "
1848 "(expected a metadata node)",
1849 Op->getOperand(2));
1850 break;
1854 // Unless this is a "requires" flag, check the ID is unique.
1855 if (MFB != Module::Require) {
1856 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1857 Check(Inserted,
1858 "module flag identifiers must be unique (or of 'require' type)", ID);
1861 if (ID->getString() == "wchar_size") {
1862 ConstantInt *Value
1863 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1864 Check(Value, "wchar_size metadata requires constant integer argument");
1867 if (ID->getString() == "Linker Options") {
1868 // If the llvm.linker.options named metadata exists, we assume that the
1869 // bitcode reader has upgraded the module flag. Otherwise the flag might
1870 // have been created by a client directly.
1871 Check(M.getNamedMetadata("llvm.linker.options"),
1872 "'Linker Options' named metadata no longer supported");
1875 if (ID->getString() == "SemanticInterposition") {
1876 ConstantInt *Value =
1877 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1878 Check(Value,
1879 "SemanticInterposition metadata requires constant integer argument");
1882 if (ID->getString() == "CG Profile") {
1883 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1884 visitModuleFlagCGProfileEntry(MDO);
1888 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1889 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1890 if (!FuncMDO)
1891 return;
1892 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1893 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1894 "expected a Function or null", FuncMDO);
1896 auto Node = dyn_cast_or_null<MDNode>(MDO);
1897 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1898 CheckFunction(Node->getOperand(0));
1899 CheckFunction(Node->getOperand(1));
1900 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1901 Check(Count && Count->getType()->isIntegerTy(),
1902 "expected an integer constant", Node->getOperand(2));
1905 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1906 for (Attribute A : Attrs) {
1908 if (A.isStringAttribute()) {
1909 #define GET_ATTR_NAMES
1910 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1911 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1912 if (A.getKindAsString() == #DISPLAY_NAME) { \
1913 auto V = A.getValueAsString(); \
1914 if (!(V.empty() || V == "true" || V == "false")) \
1915 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1916 ""); \
1919 #include "llvm/IR/Attributes.inc"
1920 continue;
1923 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1924 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1926 return;
1931 // VerifyParameterAttrs - Check the given attributes for an argument or return
1932 // value of the specified type. The value V is printed in error messages.
1933 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1934 const Value *V) {
1935 if (!Attrs.hasAttributes())
1936 return;
1938 verifyAttributeTypes(Attrs, V);
1940 for (Attribute Attr : Attrs)
1941 Check(Attr.isStringAttribute() ||
1942 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1943 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1946 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1947 Check(Attrs.getNumAttributes() == 1,
1948 "Attribute 'immarg' is incompatible with other attributes", V);
1951 // Check for mutually incompatible attributes. Only inreg is compatible with
1952 // sret.
1953 unsigned AttrCount = 0;
1954 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1955 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1956 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1957 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1958 Attrs.hasAttribute(Attribute::InReg);
1959 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1960 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1961 Check(AttrCount <= 1,
1962 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1963 "'byref', and 'sret' are incompatible!",
1966 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1967 Attrs.hasAttribute(Attribute::ReadOnly)),
1968 "Attributes "
1969 "'inalloca and readonly' are incompatible!",
1972 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1973 Attrs.hasAttribute(Attribute::Returned)),
1974 "Attributes "
1975 "'sret and returned' are incompatible!",
1978 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1979 Attrs.hasAttribute(Attribute::SExt)),
1980 "Attributes "
1981 "'zeroext and signext' are incompatible!",
1984 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1985 Attrs.hasAttribute(Attribute::ReadOnly)),
1986 "Attributes "
1987 "'readnone and readonly' are incompatible!",
1990 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1991 Attrs.hasAttribute(Attribute::WriteOnly)),
1992 "Attributes "
1993 "'readnone and writeonly' are incompatible!",
1996 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1997 Attrs.hasAttribute(Attribute::WriteOnly)),
1998 "Attributes "
1999 "'readonly and writeonly' are incompatible!",
2002 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
2003 Attrs.hasAttribute(Attribute::AlwaysInline)),
2004 "Attributes "
2005 "'noinline and alwaysinline' are incompatible!",
2008 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2009 Attrs.hasAttribute(Attribute::ReadNone)),
2010 "Attributes writable and readnone are incompatible!", V);
2012 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2013 Attrs.hasAttribute(Attribute::ReadOnly)),
2014 "Attributes writable and readonly are incompatible!", V);
2016 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs);
2017 for (Attribute Attr : Attrs) {
2018 if (!Attr.isStringAttribute() &&
2019 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
2020 CheckFailed("Attribute '" + Attr.getAsString() +
2021 "' applied to incompatible type!", V);
2022 return;
2026 if (isa<PointerType>(Ty)) {
2027 if (Attrs.hasAttribute(Attribute::Alignment)) {
2028 Align AttrAlign = Attrs.getAlignment().valueOrOne();
2029 Check(AttrAlign.value() <= Value::MaximumAlignment,
2030 "huge alignment values are unsupported", V);
2032 if (Attrs.hasAttribute(Attribute::ByVal)) {
2033 Type *ByValTy = Attrs.getByValType();
2034 SmallPtrSet<Type *, 4> Visited;
2035 Check(ByValTy->isSized(&Visited),
2036 "Attribute 'byval' does not support unsized types!", V);
2037 // Check if it is or contains a target extension type that disallows being
2038 // used on the stack.
2039 Check(!ByValTy->containsNonLocalTargetExtType(),
2040 "'byval' argument has illegal target extension type", V);
2041 Check(DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2042 "huge 'byval' arguments are unsupported", V);
2044 if (Attrs.hasAttribute(Attribute::ByRef)) {
2045 SmallPtrSet<Type *, 4> Visited;
2046 Check(Attrs.getByRefType()->isSized(&Visited),
2047 "Attribute 'byref' does not support unsized types!", V);
2048 Check(DL.getTypeAllocSize(Attrs.getByRefType()).getKnownMinValue() <
2049 (1ULL << 32),
2050 "huge 'byref' arguments are unsupported", V);
2052 if (Attrs.hasAttribute(Attribute::InAlloca)) {
2053 SmallPtrSet<Type *, 4> Visited;
2054 Check(Attrs.getInAllocaType()->isSized(&Visited),
2055 "Attribute 'inalloca' does not support unsized types!", V);
2056 Check(DL.getTypeAllocSize(Attrs.getInAllocaType()).getKnownMinValue() <
2057 (1ULL << 32),
2058 "huge 'inalloca' arguments are unsupported", V);
2060 if (Attrs.hasAttribute(Attribute::Preallocated)) {
2061 SmallPtrSet<Type *, 4> Visited;
2062 Check(Attrs.getPreallocatedType()->isSized(&Visited),
2063 "Attribute 'preallocated' does not support unsized types!", V);
2064 Check(
2065 DL.getTypeAllocSize(Attrs.getPreallocatedType()).getKnownMinValue() <
2066 (1ULL << 32),
2067 "huge 'preallocated' arguments are unsupported", V);
2071 if (Attrs.hasAttribute(Attribute::Initializes)) {
2072 auto Inits = Attrs.getAttribute(Attribute::Initializes).getInitializes();
2073 Check(!Inits.empty(), "Attribute 'initializes' does not support empty list",
2075 Check(ConstantRangeList::isOrderedRanges(Inits),
2076 "Attribute 'initializes' does not support unordered ranges", V);
2079 if (Attrs.hasAttribute(Attribute::NoFPClass)) {
2080 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2081 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
2083 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
2084 "Invalid value for 'nofpclass' test mask", V);
2086 if (Attrs.hasAttribute(Attribute::Range)) {
2087 const ConstantRange &CR =
2088 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2089 Check(Ty->isIntOrIntVectorTy(CR.getBitWidth()),
2090 "Range bit width must match type bit width!", V);
2094 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2095 const Value *V) {
2096 if (Attrs.hasFnAttr(Attr)) {
2097 StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
2098 unsigned N;
2099 if (S.getAsInteger(10, N))
2100 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
2104 // Check parameter attributes against a function type.
2105 // The value V is printed in error messages.
2106 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2107 const Value *V, bool IsIntrinsic,
2108 bool IsInlineAsm) {
2109 if (Attrs.isEmpty())
2110 return;
2112 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2113 Check(Attrs.hasParentContext(Context),
2114 "Attribute list does not match Module context!", &Attrs, V);
2115 for (const auto &AttrSet : Attrs) {
2116 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2117 "Attribute set does not match Module context!", &AttrSet, V);
2118 for (const auto &A : AttrSet) {
2119 Check(A.hasParentContext(Context),
2120 "Attribute does not match Module context!", &A, V);
2125 bool SawNest = false;
2126 bool SawReturned = false;
2127 bool SawSRet = false;
2128 bool SawSwiftSelf = false;
2129 bool SawSwiftAsync = false;
2130 bool SawSwiftError = false;
2132 // Verify return value attributes.
2133 AttributeSet RetAttrs = Attrs.getRetAttrs();
2134 for (Attribute RetAttr : RetAttrs)
2135 Check(RetAttr.isStringAttribute() ||
2136 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2137 "Attribute '" + RetAttr.getAsString() +
2138 "' does not apply to function return values",
2141 unsigned MaxParameterWidth = 0;
2142 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2143 if (Ty->isVectorTy()) {
2144 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2145 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2146 if (Size > MaxParameterWidth)
2147 MaxParameterWidth = Size;
2151 GetMaxParameterWidth(FT->getReturnType());
2152 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2154 // Verify parameter attributes.
2155 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2156 Type *Ty = FT->getParamType(i);
2157 AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2159 if (!IsIntrinsic) {
2160 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2161 "immarg attribute only applies to intrinsics", V);
2162 if (!IsInlineAsm)
2163 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2164 "Attribute 'elementtype' can only be applied to intrinsics"
2165 " and inline asm.",
2169 verifyParameterAttrs(ArgAttrs, Ty, V);
2170 GetMaxParameterWidth(Ty);
2172 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2173 Check(!SawNest, "More than one parameter has attribute nest!", V);
2174 SawNest = true;
2177 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2178 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2179 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2180 "Incompatible argument and return types for 'returned' attribute",
2182 SawReturned = true;
2185 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2186 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2187 Check(i == 0 || i == 1,
2188 "Attribute 'sret' is not on first or second parameter!", V);
2189 SawSRet = true;
2192 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2193 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2194 SawSwiftSelf = true;
2197 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2198 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2199 SawSwiftAsync = true;
2202 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2203 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2204 SawSwiftError = true;
2207 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2208 Check(i == FT->getNumParams() - 1,
2209 "inalloca isn't on the last parameter!", V);
2213 if (!Attrs.hasFnAttrs())
2214 return;
2216 verifyAttributeTypes(Attrs.getFnAttrs(), V);
2217 for (Attribute FnAttr : Attrs.getFnAttrs())
2218 Check(FnAttr.isStringAttribute() ||
2219 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2220 "Attribute '" + FnAttr.getAsString() +
2221 "' does not apply to functions!",
2224 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2225 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2226 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2228 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2229 Check(Attrs.hasFnAttr(Attribute::NoInline),
2230 "Attribute 'optnone' requires 'noinline'!", V);
2232 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2233 "Attributes 'optsize and optnone' are incompatible!", V);
2235 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2236 "Attributes 'minsize and optnone' are incompatible!", V);
2238 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2239 "Attributes 'optdebug and optnone' are incompatible!", V);
2242 Check(!(Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2243 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2244 "Attributes "
2245 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2248 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2249 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2250 "Attributes 'optsize and optdebug' are incompatible!", V);
2252 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2253 "Attributes 'minsize and optdebug' are incompatible!", V);
2256 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2257 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2258 "Attribute writable and memory without argmem: write are incompatible!",
2261 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2262 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2263 "Attributes 'aarch64_pstate_sm_enabled and "
2264 "aarch64_pstate_sm_compatible' are incompatible!",
2268 Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") +
2269 Attrs.hasFnAttr("aarch64_inout_za") +
2270 Attrs.hasFnAttr("aarch64_out_za") +
2271 Attrs.hasFnAttr("aarch64_preserves_za") +
2272 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2273 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2274 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2275 "'aarch64_za_state_agnostic' are mutually exclusive",
2278 Check((Attrs.hasFnAttr("aarch64_new_zt0") +
2279 Attrs.hasFnAttr("aarch64_in_zt0") +
2280 Attrs.hasFnAttr("aarch64_inout_zt0") +
2281 Attrs.hasFnAttr("aarch64_out_zt0") +
2282 Attrs.hasFnAttr("aarch64_preserves_zt0") +
2283 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1,
2284 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2285 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2286 "'aarch64_za_state_agnostic' are mutually exclusive",
2289 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2290 const GlobalValue *GV = cast<GlobalValue>(V);
2291 Check(GV->hasGlobalUnnamedAddr(),
2292 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2295 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2296 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2297 if (ParamNo >= FT->getNumParams()) {
2298 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2299 return false;
2302 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2303 CheckFailed("'allocsize' " + Name +
2304 " argument must refer to an integer parameter",
2306 return false;
2309 return true;
2312 if (!CheckParam("element size", Args->first))
2313 return;
2315 if (Args->second && !CheckParam("number of elements", *Args->second))
2316 return;
2319 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2320 AllocFnKind K = Attrs.getAllocKind();
2321 AllocFnKind Type =
2322 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2323 if (!is_contained(
2324 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2325 Type))
2326 CheckFailed(
2327 "'allockind()' requires exactly one of alloc, realloc, and free");
2328 if ((Type == AllocFnKind::Free) &&
2329 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2330 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2331 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2332 "or aligned modifiers.");
2333 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2334 if ((K & ZeroedUninit) == ZeroedUninit)
2335 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2338 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2339 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2340 if (VScaleMin == 0)
2341 CheckFailed("'vscale_range' minimum must be greater than 0", V);
2342 else if (!isPowerOf2_32(VScaleMin))
2343 CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2344 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2345 if (VScaleMax && VScaleMin > VScaleMax)
2346 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2347 else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2348 CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2351 if (Attrs.hasFnAttr("frame-pointer")) {
2352 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2353 if (FP != "all" && FP != "non-leaf" && FP != "none" && FP != "reserved")
2354 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2357 // Check EVEX512 feature.
2358 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2359 TT.isX86()) {
2360 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2361 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2362 "512-bit vector arguments require 'evex512' for AVX512", V);
2365 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2366 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2367 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2369 if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2370 StringRef S = A.getValueAsString();
2371 if (S != "none" && S != "all" && S != "non-leaf")
2372 CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2375 if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2376 StringRef S = A.getValueAsString();
2377 if (S != "a_key" && S != "b_key")
2378 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2380 if (auto AA = Attrs.getFnAttr("sign-return-address"); !AA.isValid()) {
2381 CheckFailed(
2382 "'sign-return-address-key' present without `sign-return-address`");
2386 if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2387 StringRef S = A.getValueAsString();
2388 if (S != "" && S != "true" && S != "false")
2389 CheckFailed(
2390 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2393 if (auto A = Attrs.getFnAttr("branch-protection-pauth-lr"); A.isValid()) {
2394 StringRef S = A.getValueAsString();
2395 if (S != "" && S != "true" && S != "false")
2396 CheckFailed(
2397 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2400 if (auto A = Attrs.getFnAttr("guarded-control-stack"); A.isValid()) {
2401 StringRef S = A.getValueAsString();
2402 if (S != "" && S != "true" && S != "false")
2403 CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S,
2407 if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) {
2408 StringRef S = A.getValueAsString();
2409 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT);
2410 if (!Info)
2411 CheckFailed("invalid name for a VFABI variant: " + S, V);
2414 if (auto A = Attrs.getFnAttr("denormal-fp-math"); A.isValid()) {
2415 StringRef S = A.getValueAsString();
2416 if (!parseDenormalFPAttribute(S).isValid())
2417 CheckFailed("invalid value for 'denormal-fp-math' attribute: " + S, V);
2420 if (auto A = Attrs.getFnAttr("denormal-fp-math-f32"); A.isValid()) {
2421 StringRef S = A.getValueAsString();
2422 if (!parseDenormalFPAttribute(S).isValid())
2423 CheckFailed("invalid value for 'denormal-fp-math-f32' attribute: " + S,
2428 void Verifier::verifyFunctionMetadata(
2429 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2430 for (const auto &Pair : MDs) {
2431 if (Pair.first == LLVMContext::MD_prof) {
2432 MDNode *MD = Pair.second;
2433 Check(MD->getNumOperands() >= 2,
2434 "!prof annotations should have no less than 2 operands", MD);
2436 // Check first operand.
2437 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2438 MD);
2439 Check(isa<MDString>(MD->getOperand(0)),
2440 "expected string with name of the !prof annotation", MD);
2441 MDString *MDS = cast<MDString>(MD->getOperand(0));
2442 StringRef ProfName = MDS->getString();
2443 Check(ProfName == "function_entry_count" ||
2444 ProfName == "synthetic_function_entry_count",
2445 "first operand should be 'function_entry_count'"
2446 " or 'synthetic_function_entry_count'",
2447 MD);
2449 // Check second operand.
2450 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2451 MD);
2452 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2453 "expected integer argument to function_entry_count", MD);
2454 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2455 MDNode *MD = Pair.second;
2456 Check(MD->getNumOperands() == 1,
2457 "!kcfi_type must have exactly one operand", MD);
2458 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2459 MD);
2460 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2461 "expected a constant operand for !kcfi_type", MD);
2462 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2463 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2464 "expected a constant integer operand for !kcfi_type", MD);
2465 Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2466 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2471 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2472 if (!ConstantExprVisited.insert(EntryC).second)
2473 return;
2475 SmallVector<const Constant *, 16> Stack;
2476 Stack.push_back(EntryC);
2478 while (!Stack.empty()) {
2479 const Constant *C = Stack.pop_back_val();
2481 // Check this constant expression.
2482 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2483 visitConstantExpr(CE);
2485 if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C))
2486 visitConstantPtrAuth(CPA);
2488 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2489 // Global Values get visited separately, but we do need to make sure
2490 // that the global value is in the correct module
2491 Check(GV->getParent() == &M, "Referencing global in another module!",
2492 EntryC, &M, GV, GV->getParent());
2493 continue;
2496 // Visit all sub-expressions.
2497 for (const Use &U : C->operands()) {
2498 const auto *OpC = dyn_cast<Constant>(U);
2499 if (!OpC)
2500 continue;
2501 if (!ConstantExprVisited.insert(OpC).second)
2502 continue;
2503 Stack.push_back(OpC);
2508 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2509 if (CE->getOpcode() == Instruction::BitCast)
2510 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2511 CE->getType()),
2512 "Invalid bitcast", CE);
2515 void Verifier::visitConstantPtrAuth(const ConstantPtrAuth *CPA) {
2516 Check(CPA->getPointer()->getType()->isPointerTy(),
2517 "signed ptrauth constant base pointer must have pointer type");
2519 Check(CPA->getType() == CPA->getPointer()->getType(),
2520 "signed ptrauth constant must have same type as its base pointer");
2522 Check(CPA->getKey()->getBitWidth() == 32,
2523 "signed ptrauth constant key must be i32 constant integer");
2525 Check(CPA->getAddrDiscriminator()->getType()->isPointerTy(),
2526 "signed ptrauth constant address discriminator must be a pointer");
2528 Check(CPA->getDiscriminator()->getBitWidth() == 64,
2529 "signed ptrauth constant discriminator must be i64 constant integer");
2532 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2533 // There shouldn't be more attribute sets than there are parameters plus the
2534 // function and return value.
2535 return Attrs.getNumAttrSets() <= Params + 2;
2538 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2539 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2540 unsigned ArgNo = 0;
2541 unsigned LabelNo = 0;
2542 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2543 if (CI.Type == InlineAsm::isLabel) {
2544 ++LabelNo;
2545 continue;
2548 // Only deal with constraints that correspond to call arguments.
2549 if (!CI.hasArg())
2550 continue;
2552 if (CI.isIndirect) {
2553 const Value *Arg = Call.getArgOperand(ArgNo);
2554 Check(Arg->getType()->isPointerTy(),
2555 "Operand for indirect constraint must have pointer type", &Call);
2557 Check(Call.getParamElementType(ArgNo),
2558 "Operand for indirect constraint must have elementtype attribute",
2559 &Call);
2560 } else {
2561 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2562 "Elementtype attribute can only be applied for indirect "
2563 "constraints",
2564 &Call);
2567 ArgNo++;
2570 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2571 Check(LabelNo == CallBr->getNumIndirectDests(),
2572 "Number of label constraints does not match number of callbr dests",
2573 &Call);
2574 } else {
2575 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2576 &Call);
2580 /// Verify that statepoint intrinsic is well formed.
2581 void Verifier::verifyStatepoint(const CallBase &Call) {
2582 assert(Call.getCalledFunction() &&
2583 Call.getCalledFunction()->getIntrinsicID() ==
2584 Intrinsic::experimental_gc_statepoint);
2586 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2587 !Call.onlyAccessesArgMemory(),
2588 "gc.statepoint must read and write all memory to preserve "
2589 "reordering restrictions required by safepoint semantics",
2590 Call);
2592 const int64_t NumPatchBytes =
2593 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2594 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2595 Check(NumPatchBytes >= 0,
2596 "gc.statepoint number of patchable bytes must be "
2597 "positive",
2598 Call);
2600 Type *TargetElemType = Call.getParamElementType(2);
2601 Check(TargetElemType,
2602 "gc.statepoint callee argument must have elementtype attribute", Call);
2603 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2604 Check(TargetFuncType,
2605 "gc.statepoint callee elementtype must be function type", Call);
2607 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2608 Check(NumCallArgs >= 0,
2609 "gc.statepoint number of arguments to underlying call "
2610 "must be positive",
2611 Call);
2612 const int NumParams = (int)TargetFuncType->getNumParams();
2613 if (TargetFuncType->isVarArg()) {
2614 Check(NumCallArgs >= NumParams,
2615 "gc.statepoint mismatch in number of vararg call args", Call);
2617 // TODO: Remove this limitation
2618 Check(TargetFuncType->getReturnType()->isVoidTy(),
2619 "gc.statepoint doesn't support wrapping non-void "
2620 "vararg functions yet",
2621 Call);
2622 } else
2623 Check(NumCallArgs == NumParams,
2624 "gc.statepoint mismatch in number of call args", Call);
2626 const uint64_t Flags
2627 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2628 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2629 "unknown flag used in gc.statepoint flags argument", Call);
2631 // Verify that the types of the call parameter arguments match
2632 // the type of the wrapped callee.
2633 AttributeList Attrs = Call.getAttributes();
2634 for (int i = 0; i < NumParams; i++) {
2635 Type *ParamType = TargetFuncType->getParamType(i);
2636 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2637 Check(ArgType == ParamType,
2638 "gc.statepoint call argument does not match wrapped "
2639 "function type",
2640 Call);
2642 if (TargetFuncType->isVarArg()) {
2643 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2644 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2645 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2649 const int EndCallArgsInx = 4 + NumCallArgs;
2651 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2652 Check(isa<ConstantInt>(NumTransitionArgsV),
2653 "gc.statepoint number of transition arguments "
2654 "must be constant integer",
2655 Call);
2656 const int NumTransitionArgs =
2657 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2658 Check(NumTransitionArgs == 0,
2659 "gc.statepoint w/inline transition bundle is deprecated", Call);
2660 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2662 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2663 Check(isa<ConstantInt>(NumDeoptArgsV),
2664 "gc.statepoint number of deoptimization arguments "
2665 "must be constant integer",
2666 Call);
2667 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2668 Check(NumDeoptArgs == 0,
2669 "gc.statepoint w/inline deopt operands is deprecated", Call);
2671 const int ExpectedNumArgs = 7 + NumCallArgs;
2672 Check(ExpectedNumArgs == (int)Call.arg_size(),
2673 "gc.statepoint too many arguments", Call);
2675 // Check that the only uses of this gc.statepoint are gc.result or
2676 // gc.relocate calls which are tied to this statepoint and thus part
2677 // of the same statepoint sequence
2678 for (const User *U : Call.users()) {
2679 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2680 Check(UserCall, "illegal use of statepoint token", Call, U);
2681 if (!UserCall)
2682 continue;
2683 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2684 "gc.result or gc.relocate are the only value uses "
2685 "of a gc.statepoint",
2686 Call, U);
2687 if (isa<GCResultInst>(UserCall)) {
2688 Check(UserCall->getArgOperand(0) == &Call,
2689 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2690 } else if (isa<GCRelocateInst>(Call)) {
2691 Check(UserCall->getArgOperand(0) == &Call,
2692 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2696 // Note: It is legal for a single derived pointer to be listed multiple
2697 // times. It's non-optimal, but it is legal. It can also happen after
2698 // insertion if we strip a bitcast away.
2699 // Note: It is really tempting to check that each base is relocated and
2700 // that a derived pointer is never reused as a base pointer. This turns
2701 // out to be problematic since optimizations run after safepoint insertion
2702 // can recognize equality properties that the insertion logic doesn't know
2703 // about. See example statepoint.ll in the verifier subdirectory
2706 void Verifier::verifyFrameRecoverIndices() {
2707 for (auto &Counts : FrameEscapeInfo) {
2708 Function *F = Counts.first;
2709 unsigned EscapedObjectCount = Counts.second.first;
2710 unsigned MaxRecoveredIndex = Counts.second.second;
2711 Check(MaxRecoveredIndex <= EscapedObjectCount,
2712 "all indices passed to llvm.localrecover must be less than the "
2713 "number of arguments passed to llvm.localescape in the parent "
2714 "function",
2719 static Instruction *getSuccPad(Instruction *Terminator) {
2720 BasicBlock *UnwindDest;
2721 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2722 UnwindDest = II->getUnwindDest();
2723 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2724 UnwindDest = CSI->getUnwindDest();
2725 else
2726 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2727 return UnwindDest->getFirstNonPHI();
2730 void Verifier::verifySiblingFuncletUnwinds() {
2731 SmallPtrSet<Instruction *, 8> Visited;
2732 SmallPtrSet<Instruction *, 8> Active;
2733 for (const auto &Pair : SiblingFuncletInfo) {
2734 Instruction *PredPad = Pair.first;
2735 if (Visited.count(PredPad))
2736 continue;
2737 Active.insert(PredPad);
2738 Instruction *Terminator = Pair.second;
2739 do {
2740 Instruction *SuccPad = getSuccPad(Terminator);
2741 if (Active.count(SuccPad)) {
2742 // Found a cycle; report error
2743 Instruction *CyclePad = SuccPad;
2744 SmallVector<Instruction *, 8> CycleNodes;
2745 do {
2746 CycleNodes.push_back(CyclePad);
2747 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2748 if (CycleTerminator != CyclePad)
2749 CycleNodes.push_back(CycleTerminator);
2750 CyclePad = getSuccPad(CycleTerminator);
2751 } while (CyclePad != SuccPad);
2752 Check(false, "EH pads can't handle each other's exceptions",
2753 ArrayRef<Instruction *>(CycleNodes));
2755 // Don't re-walk a node we've already checked
2756 if (!Visited.insert(SuccPad).second)
2757 break;
2758 // Walk to this successor if it has a map entry.
2759 PredPad = SuccPad;
2760 auto TermI = SiblingFuncletInfo.find(PredPad);
2761 if (TermI == SiblingFuncletInfo.end())
2762 break;
2763 Terminator = TermI->second;
2764 Active.insert(PredPad);
2765 } while (true);
2766 // Each node only has one successor, so we've walked all the active
2767 // nodes' successors.
2768 Active.clear();
2772 // visitFunction - Verify that a function is ok.
2774 void Verifier::visitFunction(const Function &F) {
2775 visitGlobalValue(F);
2777 // Check function arguments.
2778 FunctionType *FT = F.getFunctionType();
2779 unsigned NumArgs = F.arg_size();
2781 Check(&Context == &F.getContext(),
2782 "Function context does not match Module context!", &F);
2784 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2785 Check(FT->getNumParams() == NumArgs,
2786 "# formal arguments must match # of arguments for function type!", &F,
2787 FT);
2788 Check(F.getReturnType()->isFirstClassType() ||
2789 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2790 "Functions cannot return aggregate values!", &F);
2792 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2793 "Invalid struct return type!", &F);
2795 AttributeList Attrs = F.getAttributes();
2797 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2798 "Attribute after last parameter!", &F);
2800 CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat,
2801 "Function debug format should match parent module", &F,
2802 F.IsNewDbgInfoFormat, F.getParent(),
2803 F.getParent()->IsNewDbgInfoFormat);
2805 bool IsIntrinsic = F.isIntrinsic();
2807 // Check function attributes.
2808 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2810 // On function declarations/definitions, we do not support the builtin
2811 // attribute. We do not check this in VerifyFunctionAttrs since that is
2812 // checking for Attributes that can/can not ever be on functions.
2813 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2814 "Attribute 'builtin' can only be applied to a callsite.", &F);
2816 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2817 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2819 if (Attrs.hasFnAttr(Attribute::Naked))
2820 for (const Argument &Arg : F.args())
2821 Check(Arg.use_empty(), "cannot use argument of naked function", &Arg);
2823 // Check that this function meets the restrictions on this calling convention.
2824 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2825 // restrictions can be lifted.
2826 switch (F.getCallingConv()) {
2827 default:
2828 case CallingConv::C:
2829 break;
2830 case CallingConv::X86_INTR: {
2831 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2832 "Calling convention parameter requires byval", &F);
2833 break;
2835 case CallingConv::AMDGPU_KERNEL:
2836 case CallingConv::SPIR_KERNEL:
2837 case CallingConv::AMDGPU_CS_Chain:
2838 case CallingConv::AMDGPU_CS_ChainPreserve:
2839 Check(F.getReturnType()->isVoidTy(),
2840 "Calling convention requires void return type", &F);
2841 [[fallthrough]];
2842 case CallingConv::AMDGPU_VS:
2843 case CallingConv::AMDGPU_HS:
2844 case CallingConv::AMDGPU_GS:
2845 case CallingConv::AMDGPU_PS:
2846 case CallingConv::AMDGPU_CS:
2847 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2848 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2849 const unsigned StackAS = DL.getAllocaAddrSpace();
2850 unsigned i = 0;
2851 for (const Argument &Arg : F.args()) {
2852 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2853 "Calling convention disallows byval", &F);
2854 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2855 "Calling convention disallows preallocated", &F);
2856 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2857 "Calling convention disallows inalloca", &F);
2859 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2860 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2861 // value here.
2862 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2863 "Calling convention disallows stack byref", &F);
2866 ++i;
2870 [[fallthrough]];
2871 case CallingConv::Fast:
2872 case CallingConv::Cold:
2873 case CallingConv::Intel_OCL_BI:
2874 case CallingConv::PTX_Kernel:
2875 case CallingConv::PTX_Device:
2876 Check(!F.isVarArg(),
2877 "Calling convention does not support varargs or "
2878 "perfect forwarding!",
2879 &F);
2880 break;
2883 // Check that the argument values match the function type for this function...
2884 unsigned i = 0;
2885 for (const Argument &Arg : F.args()) {
2886 Check(Arg.getType() == FT->getParamType(i),
2887 "Argument value does not match function argument type!", &Arg,
2888 FT->getParamType(i));
2889 Check(Arg.getType()->isFirstClassType(),
2890 "Function arguments must have first-class types!", &Arg);
2891 if (!IsIntrinsic) {
2892 Check(!Arg.getType()->isMetadataTy(),
2893 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2894 Check(!Arg.getType()->isTokenTy(),
2895 "Function takes token but isn't an intrinsic", &Arg, &F);
2896 Check(!Arg.getType()->isX86_AMXTy(),
2897 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2900 // Check that swifterror argument is only used by loads and stores.
2901 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2902 verifySwiftErrorValue(&Arg);
2904 ++i;
2907 if (!IsIntrinsic) {
2908 Check(!F.getReturnType()->isTokenTy(),
2909 "Function returns a token but isn't an intrinsic", &F);
2910 Check(!F.getReturnType()->isX86_AMXTy(),
2911 "Function returns a x86_amx but isn't an intrinsic", &F);
2914 // Get the function metadata attachments.
2915 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2916 F.getAllMetadata(MDs);
2917 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2918 verifyFunctionMetadata(MDs);
2920 // Check validity of the personality function
2921 if (F.hasPersonalityFn()) {
2922 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2923 if (Per)
2924 Check(Per->getParent() == F.getParent(),
2925 "Referencing personality function in another module!", &F,
2926 F.getParent(), Per, Per->getParent());
2929 // EH funclet coloring can be expensive, recompute on-demand
2930 BlockEHFuncletColors.clear();
2932 if (F.isMaterializable()) {
2933 // Function has a body somewhere we can't see.
2934 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2935 MDs.empty() ? nullptr : MDs.front().second);
2936 } else if (F.isDeclaration()) {
2937 for (const auto &I : MDs) {
2938 // This is used for call site debug information.
2939 CheckDI(I.first != LLVMContext::MD_dbg ||
2940 !cast<DISubprogram>(I.second)->isDistinct(),
2941 "function declaration may only have a unique !dbg attachment",
2942 &F);
2943 Check(I.first != LLVMContext::MD_prof,
2944 "function declaration may not have a !prof attachment", &F);
2946 // Verify the metadata itself.
2947 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2949 Check(!F.hasPersonalityFn(),
2950 "Function declaration shouldn't have a personality routine", &F);
2951 } else {
2952 // Verify that this function (which has a body) is not named "llvm.*". It
2953 // is not legal to define intrinsics.
2954 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2956 // Check the entry node
2957 const BasicBlock *Entry = &F.getEntryBlock();
2958 Check(pred_empty(Entry),
2959 "Entry block to function must not have predecessors!", Entry);
2961 // The address of the entry block cannot be taken, unless it is dead.
2962 if (Entry->hasAddressTaken()) {
2963 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2964 "blockaddress may not be used with the entry block!", Entry);
2967 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2968 NumKCFIAttachments = 0;
2969 // Visit metadata attachments.
2970 for (const auto &I : MDs) {
2971 // Verify that the attachment is legal.
2972 auto AllowLocs = AreDebugLocsAllowed::No;
2973 switch (I.first) {
2974 default:
2975 break;
2976 case LLVMContext::MD_dbg: {
2977 ++NumDebugAttachments;
2978 CheckDI(NumDebugAttachments == 1,
2979 "function must have a single !dbg attachment", &F, I.second);
2980 CheckDI(isa<DISubprogram>(I.second),
2981 "function !dbg attachment must be a subprogram", &F, I.second);
2982 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2983 "function definition may only have a distinct !dbg attachment",
2984 &F);
2986 auto *SP = cast<DISubprogram>(I.second);
2987 const Function *&AttachedTo = DISubprogramAttachments[SP];
2988 CheckDI(!AttachedTo || AttachedTo == &F,
2989 "DISubprogram attached to more than one function", SP, &F);
2990 AttachedTo = &F;
2991 AllowLocs = AreDebugLocsAllowed::Yes;
2992 break;
2994 case LLVMContext::MD_prof:
2995 ++NumProfAttachments;
2996 Check(NumProfAttachments == 1,
2997 "function must have a single !prof attachment", &F, I.second);
2998 break;
2999 case LLVMContext::MD_kcfi_type:
3000 ++NumKCFIAttachments;
3001 Check(NumKCFIAttachments == 1,
3002 "function must have a single !kcfi_type attachment", &F,
3003 I.second);
3004 break;
3007 // Verify the metadata itself.
3008 visitMDNode(*I.second, AllowLocs);
3012 // If this function is actually an intrinsic, verify that it is only used in
3013 // direct call/invokes, never having its "address taken".
3014 // Only do this if the module is materialized, otherwise we don't have all the
3015 // uses.
3016 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
3017 const User *U;
3018 if (F.hasAddressTaken(&U, false, true, false,
3019 /*IgnoreARCAttachedCall=*/true))
3020 Check(false, "Invalid user of intrinsic instruction!", U);
3023 // Check intrinsics' signatures.
3024 switch (F.getIntrinsicID()) {
3025 case Intrinsic::experimental_gc_get_pointer_base: {
3026 FunctionType *FT = F.getFunctionType();
3027 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
3028 Check(isa<PointerType>(F.getReturnType()),
3029 "gc.get.pointer.base must return a pointer", F);
3030 Check(FT->getParamType(0) == F.getReturnType(),
3031 "gc.get.pointer.base operand and result must be of the same type", F);
3032 break;
3034 case Intrinsic::experimental_gc_get_pointer_offset: {
3035 FunctionType *FT = F.getFunctionType();
3036 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
3037 Check(isa<PointerType>(FT->getParamType(0)),
3038 "gc.get.pointer.offset operand must be a pointer", F);
3039 Check(F.getReturnType()->isIntegerTy(),
3040 "gc.get.pointer.offset must return integer", F);
3041 break;
3045 auto *N = F.getSubprogram();
3046 HasDebugInfo = (N != nullptr);
3047 if (!HasDebugInfo)
3048 return;
3050 // Check that all !dbg attachments lead to back to N.
3052 // FIXME: Check this incrementally while visiting !dbg attachments.
3053 // FIXME: Only check when N is the canonical subprogram for F.
3054 SmallPtrSet<const MDNode *, 32> Seen;
3055 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
3056 // Be careful about using DILocation here since we might be dealing with
3057 // broken code (this is the Verifier after all).
3058 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
3059 if (!DL)
3060 return;
3061 if (!Seen.insert(DL).second)
3062 return;
3064 Metadata *Parent = DL->getRawScope();
3065 CheckDI(Parent && isa<DILocalScope>(Parent),
3066 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
3068 DILocalScope *Scope = DL->getInlinedAtScope();
3069 Check(Scope, "Failed to find DILocalScope", DL);
3071 if (!Seen.insert(Scope).second)
3072 return;
3074 DISubprogram *SP = Scope->getSubprogram();
3076 // Scope and SP could be the same MDNode and we don't want to skip
3077 // validation in that case
3078 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
3079 return;
3081 CheckDI(SP->describes(&F),
3082 "!dbg attachment points at wrong subprogram for function", N, &F,
3083 &I, DL, Scope, SP);
3085 for (auto &BB : F)
3086 for (auto &I : BB) {
3087 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
3088 // The llvm.loop annotations also contain two DILocations.
3089 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
3090 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
3091 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
3092 if (BrokenDebugInfo)
3093 return;
3097 // verifyBasicBlock - Verify that a basic block is well formed...
3099 void Verifier::visitBasicBlock(BasicBlock &BB) {
3100 InstsInThisBlock.clear();
3101 ConvergenceVerifyHelper.visit(BB);
3103 // Ensure that basic blocks have terminators!
3104 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
3106 // Check constraints that this basic block imposes on all of the PHI nodes in
3107 // it.
3108 if (isa<PHINode>(BB.front())) {
3109 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
3110 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
3111 llvm::sort(Preds);
3112 for (const PHINode &PN : BB.phis()) {
3113 Check(PN.getNumIncomingValues() == Preds.size(),
3114 "PHINode should have one entry for each predecessor of its "
3115 "parent basic block!",
3116 &PN);
3118 // Get and sort all incoming values in the PHI node...
3119 Values.clear();
3120 Values.reserve(PN.getNumIncomingValues());
3121 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3122 Values.push_back(
3123 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3124 llvm::sort(Values);
3126 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
3127 // Check to make sure that if there is more than one entry for a
3128 // particular basic block in this PHI node, that the incoming values are
3129 // all identical.
3131 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3132 Values[i].second == Values[i - 1].second,
3133 "PHI node has multiple entries for the same basic block with "
3134 "different incoming values!",
3135 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3137 // Check to make sure that the predecessors and PHI node entries are
3138 // matched up.
3139 Check(Values[i].first == Preds[i],
3140 "PHI node entries do not match predecessors!", &PN,
3141 Values[i].first, Preds[i]);
3146 // Check that all instructions have their parent pointers set up correctly.
3147 for (auto &I : BB)
3149 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
3152 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat,
3153 "BB debug format should match parent function", &BB,
3154 BB.IsNewDbgInfoFormat, BB.getParent(),
3155 BB.getParent()->IsNewDbgInfoFormat);
3157 // Confirm that no issues arise from the debug program.
3158 if (BB.IsNewDbgInfoFormat)
3159 CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!",
3160 &BB);
3163 void Verifier::visitTerminator(Instruction &I) {
3164 // Ensure that terminators only exist at the end of the basic block.
3165 Check(&I == I.getParent()->getTerminator(),
3166 "Terminator found in the middle of a basic block!", I.getParent());
3167 visitInstruction(I);
3170 void Verifier::visitBranchInst(BranchInst &BI) {
3171 if (BI.isConditional()) {
3172 Check(BI.getCondition()->getType()->isIntegerTy(1),
3173 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3175 visitTerminator(BI);
3178 void Verifier::visitReturnInst(ReturnInst &RI) {
3179 Function *F = RI.getParent()->getParent();
3180 unsigned N = RI.getNumOperands();
3181 if (F->getReturnType()->isVoidTy())
3182 Check(N == 0,
3183 "Found return instr that returns non-void in Function of void "
3184 "return type!",
3185 &RI, F->getReturnType());
3186 else
3187 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3188 "Function return type does not match operand "
3189 "type of return inst!",
3190 &RI, F->getReturnType());
3192 // Check to make sure that the return value has necessary properties for
3193 // terminators...
3194 visitTerminator(RI);
3197 void Verifier::visitSwitchInst(SwitchInst &SI) {
3198 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3199 // Check to make sure that all of the constants in the switch instruction
3200 // have the same type as the switched-on value.
3201 Type *SwitchTy = SI.getCondition()->getType();
3202 SmallPtrSet<ConstantInt*, 32> Constants;
3203 for (auto &Case : SI.cases()) {
3204 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3205 "Case value is not a constant integer.", &SI);
3206 Check(Case.getCaseValue()->getType() == SwitchTy,
3207 "Switch constants must all be same type as switch value!", &SI);
3208 Check(Constants.insert(Case.getCaseValue()).second,
3209 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3212 visitTerminator(SI);
3215 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3216 Check(BI.getAddress()->getType()->isPointerTy(),
3217 "Indirectbr operand must have pointer type!", &BI);
3218 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3219 Check(BI.getDestination(i)->getType()->isLabelTy(),
3220 "Indirectbr destinations must all have pointer type!", &BI);
3222 visitTerminator(BI);
3225 void Verifier::visitCallBrInst(CallBrInst &CBI) {
3226 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3227 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3228 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3230 verifyInlineAsmCall(CBI);
3231 visitTerminator(CBI);
3234 void Verifier::visitSelectInst(SelectInst &SI) {
3235 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3236 SI.getOperand(2)),
3237 "Invalid operands for select instruction!", &SI);
3239 Check(SI.getTrueValue()->getType() == SI.getType(),
3240 "Select values must have same type as select instruction!", &SI);
3241 visitInstruction(SI);
3244 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3245 /// a pass, if any exist, it's an error.
3247 void Verifier::visitUserOp1(Instruction &I) {
3248 Check(false, "User-defined operators should not live outside of a pass!", &I);
3251 void Verifier::visitTruncInst(TruncInst &I) {
3252 // Get the source and destination types
3253 Type *SrcTy = I.getOperand(0)->getType();
3254 Type *DestTy = I.getType();
3256 // Get the size of the types in bits, we'll need this later
3257 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3258 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3260 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3261 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3262 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3263 "trunc source and destination must both be a vector or neither", &I);
3264 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3266 visitInstruction(I);
3269 void Verifier::visitZExtInst(ZExtInst &I) {
3270 // Get the source and destination types
3271 Type *SrcTy = I.getOperand(0)->getType();
3272 Type *DestTy = I.getType();
3274 // Get the size of the types in bits, we'll need this later
3275 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3276 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3277 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3278 "zext source and destination must both be a vector or neither", &I);
3279 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3280 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3282 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3284 visitInstruction(I);
3287 void Verifier::visitSExtInst(SExtInst &I) {
3288 // Get the source and destination types
3289 Type *SrcTy = I.getOperand(0)->getType();
3290 Type *DestTy = I.getType();
3292 // Get the size of the types in bits, we'll need this later
3293 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3294 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3296 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3297 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3298 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3299 "sext source and destination must both be a vector or neither", &I);
3300 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3302 visitInstruction(I);
3305 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3306 // Get the source and destination types
3307 Type *SrcTy = I.getOperand(0)->getType();
3308 Type *DestTy = I.getType();
3309 // Get the size of the types in bits, we'll need this later
3310 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3311 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3313 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3314 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3315 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3316 "fptrunc source and destination must both be a vector or neither", &I);
3317 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3319 visitInstruction(I);
3322 void Verifier::visitFPExtInst(FPExtInst &I) {
3323 // Get the source and destination types
3324 Type *SrcTy = I.getOperand(0)->getType();
3325 Type *DestTy = I.getType();
3327 // Get the size of the types in bits, we'll need this later
3328 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3329 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3331 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3332 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3333 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3334 "fpext source and destination must both be a vector or neither", &I);
3335 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3337 visitInstruction(I);
3340 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3341 // Get the source and destination types
3342 Type *SrcTy = I.getOperand(0)->getType();
3343 Type *DestTy = I.getType();
3345 bool SrcVec = SrcTy->isVectorTy();
3346 bool DstVec = DestTy->isVectorTy();
3348 Check(SrcVec == DstVec,
3349 "UIToFP source and dest must both be vector or scalar", &I);
3350 Check(SrcTy->isIntOrIntVectorTy(),
3351 "UIToFP source must be integer or integer vector", &I);
3352 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3353 &I);
3355 if (SrcVec && DstVec)
3356 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3357 cast<VectorType>(DestTy)->getElementCount(),
3358 "UIToFP source and dest vector length mismatch", &I);
3360 visitInstruction(I);
3363 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3364 // Get the source and destination types
3365 Type *SrcTy = I.getOperand(0)->getType();
3366 Type *DestTy = I.getType();
3368 bool SrcVec = SrcTy->isVectorTy();
3369 bool DstVec = DestTy->isVectorTy();
3371 Check(SrcVec == DstVec,
3372 "SIToFP source and dest must both be vector or scalar", &I);
3373 Check(SrcTy->isIntOrIntVectorTy(),
3374 "SIToFP source must be integer or integer vector", &I);
3375 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3376 &I);
3378 if (SrcVec && DstVec)
3379 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3380 cast<VectorType>(DestTy)->getElementCount(),
3381 "SIToFP source and dest vector length mismatch", &I);
3383 visitInstruction(I);
3386 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3387 // Get the source and destination types
3388 Type *SrcTy = I.getOperand(0)->getType();
3389 Type *DestTy = I.getType();
3391 bool SrcVec = SrcTy->isVectorTy();
3392 bool DstVec = DestTy->isVectorTy();
3394 Check(SrcVec == DstVec,
3395 "FPToUI source and dest must both be vector or scalar", &I);
3396 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3397 Check(DestTy->isIntOrIntVectorTy(),
3398 "FPToUI result must be integer or integer vector", &I);
3400 if (SrcVec && DstVec)
3401 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3402 cast<VectorType>(DestTy)->getElementCount(),
3403 "FPToUI source and dest vector length mismatch", &I);
3405 visitInstruction(I);
3408 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3409 // Get the source and destination types
3410 Type *SrcTy = I.getOperand(0)->getType();
3411 Type *DestTy = I.getType();
3413 bool SrcVec = SrcTy->isVectorTy();
3414 bool DstVec = DestTy->isVectorTy();
3416 Check(SrcVec == DstVec,
3417 "FPToSI source and dest must both be vector or scalar", &I);
3418 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3419 Check(DestTy->isIntOrIntVectorTy(),
3420 "FPToSI result must be integer or integer vector", &I);
3422 if (SrcVec && DstVec)
3423 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3424 cast<VectorType>(DestTy)->getElementCount(),
3425 "FPToSI source and dest vector length mismatch", &I);
3427 visitInstruction(I);
3430 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3431 // Get the source and destination types
3432 Type *SrcTy = I.getOperand(0)->getType();
3433 Type *DestTy = I.getType();
3435 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3437 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3438 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3439 &I);
3441 if (SrcTy->isVectorTy()) {
3442 auto *VSrc = cast<VectorType>(SrcTy);
3443 auto *VDest = cast<VectorType>(DestTy);
3444 Check(VSrc->getElementCount() == VDest->getElementCount(),
3445 "PtrToInt Vector width mismatch", &I);
3448 visitInstruction(I);
3451 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3452 // Get the source and destination types
3453 Type *SrcTy = I.getOperand(0)->getType();
3454 Type *DestTy = I.getType();
3456 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3457 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3459 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3460 &I);
3461 if (SrcTy->isVectorTy()) {
3462 auto *VSrc = cast<VectorType>(SrcTy);
3463 auto *VDest = cast<VectorType>(DestTy);
3464 Check(VSrc->getElementCount() == VDest->getElementCount(),
3465 "IntToPtr Vector width mismatch", &I);
3467 visitInstruction(I);
3470 void Verifier::visitBitCastInst(BitCastInst &I) {
3471 Check(
3472 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3473 "Invalid bitcast", &I);
3474 visitInstruction(I);
3477 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3478 Type *SrcTy = I.getOperand(0)->getType();
3479 Type *DestTy = I.getType();
3481 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3482 &I);
3483 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3484 &I);
3485 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3486 "AddrSpaceCast must be between different address spaces", &I);
3487 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3488 Check(SrcVTy->getElementCount() ==
3489 cast<VectorType>(DestTy)->getElementCount(),
3490 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3491 visitInstruction(I);
3494 /// visitPHINode - Ensure that a PHI node is well formed.
3496 void Verifier::visitPHINode(PHINode &PN) {
3497 // Ensure that the PHI nodes are all grouped together at the top of the block.
3498 // This can be tested by checking whether the instruction before this is
3499 // either nonexistent (because this is begin()) or is a PHI node. If not,
3500 // then there is some other instruction before a PHI.
3501 Check(&PN == &PN.getParent()->front() ||
3502 isa<PHINode>(--BasicBlock::iterator(&PN)),
3503 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3505 // Check that a PHI doesn't yield a Token.
3506 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3508 // Check that all of the values of the PHI node have the same type as the
3509 // result.
3510 for (Value *IncValue : PN.incoming_values()) {
3511 Check(PN.getType() == IncValue->getType(),
3512 "PHI node operands are not the same type as the result!", &PN);
3515 // All other PHI node constraints are checked in the visitBasicBlock method.
3517 visitInstruction(PN);
3520 void Verifier::visitCallBase(CallBase &Call) {
3521 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3522 "Called function must be a pointer!", Call);
3523 FunctionType *FTy = Call.getFunctionType();
3525 // Verify that the correct number of arguments are being passed
3526 if (FTy->isVarArg())
3527 Check(Call.arg_size() >= FTy->getNumParams(),
3528 "Called function requires more parameters than were provided!", Call);
3529 else
3530 Check(Call.arg_size() == FTy->getNumParams(),
3531 "Incorrect number of arguments passed to called function!", Call);
3533 // Verify that all arguments to the call match the function type.
3534 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3535 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3536 "Call parameter type does not match function signature!",
3537 Call.getArgOperand(i), FTy->getParamType(i), Call);
3539 AttributeList Attrs = Call.getAttributes();
3541 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3542 "Attribute after last parameter!", Call);
3544 Function *Callee =
3545 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3546 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3547 if (IsIntrinsic)
3548 Check(Callee->getValueType() == FTy,
3549 "Intrinsic called with incompatible signature", Call);
3551 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3552 // convention.
3553 auto CC = Call.getCallingConv();
3554 Check(CC != CallingConv::AMDGPU_CS_Chain &&
3555 CC != CallingConv::AMDGPU_CS_ChainPreserve,
3556 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3557 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3558 Call);
3560 // Disallow passing/returning values with alignment higher than we can
3561 // represent.
3562 // FIXME: Consider making DataLayout cap the alignment, so this isn't
3563 // necessary.
3564 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3565 if (!Ty->isSized())
3566 return;
3567 Align ABIAlign = DL.getABITypeAlign(Ty);
3568 Check(ABIAlign.value() <= Value::MaximumAlignment,
3569 "Incorrect alignment of " + Message + " to called function!", Call);
3572 if (!IsIntrinsic) {
3573 VerifyTypeAlign(FTy->getReturnType(), "return type");
3574 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3575 Type *Ty = FTy->getParamType(i);
3576 VerifyTypeAlign(Ty, "argument passed");
3580 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3581 // Don't allow speculatable on call sites, unless the underlying function
3582 // declaration is also speculatable.
3583 Check(Callee && Callee->isSpeculatable(),
3584 "speculatable attribute may not apply to call sites", Call);
3587 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3588 Check(Call.getCalledFunction()->getIntrinsicID() ==
3589 Intrinsic::call_preallocated_arg,
3590 "preallocated as a call site attribute can only be on "
3591 "llvm.call.preallocated.arg");
3594 // Verify call attributes.
3595 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3597 // Conservatively check the inalloca argument.
3598 // We have a bug if we can find that there is an underlying alloca without
3599 // inalloca.
3600 if (Call.hasInAllocaArgument()) {
3601 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3602 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3603 Check(AI->isUsedWithInAlloca(),
3604 "inalloca argument for call has mismatched alloca", AI, Call);
3607 // For each argument of the callsite, if it has the swifterror argument,
3608 // make sure the underlying alloca/parameter it comes from has a swifterror as
3609 // well.
3610 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3611 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3612 Value *SwiftErrorArg = Call.getArgOperand(i);
3613 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3614 Check(AI->isSwiftError(),
3615 "swifterror argument for call has mismatched alloca", AI, Call);
3616 continue;
3618 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3619 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3620 SwiftErrorArg, Call);
3621 Check(ArgI->hasSwiftErrorAttr(),
3622 "swifterror argument for call has mismatched parameter", ArgI,
3623 Call);
3626 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3627 // Don't allow immarg on call sites, unless the underlying declaration
3628 // also has the matching immarg.
3629 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3630 "immarg may not apply only to call sites", Call.getArgOperand(i),
3631 Call);
3634 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3635 Value *ArgVal = Call.getArgOperand(i);
3636 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3637 "immarg operand has non-immediate parameter", ArgVal, Call);
3640 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3641 Value *ArgVal = Call.getArgOperand(i);
3642 bool hasOB =
3643 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3644 bool isMustTail = Call.isMustTailCall();
3645 Check(hasOB != isMustTail,
3646 "preallocated operand either requires a preallocated bundle or "
3647 "the call to be musttail (but not both)",
3648 ArgVal, Call);
3652 if (FTy->isVarArg()) {
3653 // FIXME? is 'nest' even legal here?
3654 bool SawNest = false;
3655 bool SawReturned = false;
3657 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3658 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3659 SawNest = true;
3660 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3661 SawReturned = true;
3664 // Check attributes on the varargs part.
3665 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3666 Type *Ty = Call.getArgOperand(Idx)->getType();
3667 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3668 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3670 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3671 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3672 SawNest = true;
3675 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3676 Check(!SawReturned, "More than one parameter has attribute returned!",
3677 Call);
3678 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3679 "Incompatible argument and return types for 'returned' "
3680 "attribute",
3681 Call);
3682 SawReturned = true;
3685 // Statepoint intrinsic is vararg but the wrapped function may be not.
3686 // Allow sret here and check the wrapped function in verifyStatepoint.
3687 if (!Call.getCalledFunction() ||
3688 Call.getCalledFunction()->getIntrinsicID() !=
3689 Intrinsic::experimental_gc_statepoint)
3690 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3691 "Attribute 'sret' cannot be used for vararg call arguments!",
3692 Call);
3694 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3695 Check(Idx == Call.arg_size() - 1,
3696 "inalloca isn't on the last argument!", Call);
3700 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3701 if (!IsIntrinsic) {
3702 for (Type *ParamTy : FTy->params()) {
3703 Check(!ParamTy->isMetadataTy(),
3704 "Function has metadata parameter but isn't an intrinsic", Call);
3705 Check(!ParamTy->isTokenTy(),
3706 "Function has token parameter but isn't an intrinsic", Call);
3710 // Verify that indirect calls don't return tokens.
3711 if (!Call.getCalledFunction()) {
3712 Check(!FTy->getReturnType()->isTokenTy(),
3713 "Return type cannot be token for indirect call!");
3714 Check(!FTy->getReturnType()->isX86_AMXTy(),
3715 "Return type cannot be x86_amx for indirect call!");
3718 if (Function *F = Call.getCalledFunction())
3719 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3720 visitIntrinsicCall(ID, Call);
3722 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3723 // most one "gc-transition", at most one "cfguardtarget", at most one
3724 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3725 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3726 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3727 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3728 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3729 FoundAttachedCallBundle = false;
3730 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3731 OperandBundleUse BU = Call.getOperandBundleAt(i);
3732 uint32_t Tag = BU.getTagID();
3733 if (Tag == LLVMContext::OB_deopt) {
3734 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3735 FoundDeoptBundle = true;
3736 } else if (Tag == LLVMContext::OB_gc_transition) {
3737 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3738 Call);
3739 FoundGCTransitionBundle = true;
3740 } else if (Tag == LLVMContext::OB_funclet) {
3741 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3742 FoundFuncletBundle = true;
3743 Check(BU.Inputs.size() == 1,
3744 "Expected exactly one funclet bundle operand", Call);
3745 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3746 "Funclet bundle operands should correspond to a FuncletPadInst",
3747 Call);
3748 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3749 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3750 Call);
3751 FoundCFGuardTargetBundle = true;
3752 Check(BU.Inputs.size() == 1,
3753 "Expected exactly one cfguardtarget bundle operand", Call);
3754 } else if (Tag == LLVMContext::OB_ptrauth) {
3755 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3756 FoundPtrauthBundle = true;
3757 Check(BU.Inputs.size() == 2,
3758 "Expected exactly two ptrauth bundle operands", Call);
3759 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3760 BU.Inputs[0]->getType()->isIntegerTy(32),
3761 "Ptrauth bundle key operand must be an i32 constant", Call);
3762 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3763 "Ptrauth bundle discriminator operand must be an i64", Call);
3764 } else if (Tag == LLVMContext::OB_kcfi) {
3765 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3766 FoundKCFIBundle = true;
3767 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3768 Call);
3769 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3770 BU.Inputs[0]->getType()->isIntegerTy(32),
3771 "Kcfi bundle operand must be an i32 constant", Call);
3772 } else if (Tag == LLVMContext::OB_preallocated) {
3773 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3774 Call);
3775 FoundPreallocatedBundle = true;
3776 Check(BU.Inputs.size() == 1,
3777 "Expected exactly one preallocated bundle operand", Call);
3778 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3779 Check(Input &&
3780 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3781 "\"preallocated\" argument must be a token from "
3782 "llvm.call.preallocated.setup",
3783 Call);
3784 } else if (Tag == LLVMContext::OB_gc_live) {
3785 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3786 FoundGCLiveBundle = true;
3787 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3788 Check(!FoundAttachedCallBundle,
3789 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3790 FoundAttachedCallBundle = true;
3791 verifyAttachedCallBundle(Call, BU);
3795 // Verify that callee and callsite agree on whether to use pointer auth.
3796 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3797 "Direct call cannot have a ptrauth bundle", Call);
3799 // Verify that each inlinable callsite of a debug-info-bearing function in a
3800 // debug-info-bearing function has a debug location attached to it. Failure to
3801 // do so causes assertion failures when the inliner sets up inline scope info
3802 // (Interposable functions are not inlinable, neither are functions without
3803 // definitions.)
3804 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3805 !Call.getCalledFunction()->isInterposable() &&
3806 !Call.getCalledFunction()->isDeclaration() &&
3807 Call.getCalledFunction()->getSubprogram())
3808 CheckDI(Call.getDebugLoc(),
3809 "inlinable function call in a function with "
3810 "debug info must have a !dbg location",
3811 Call);
3813 if (Call.isInlineAsm())
3814 verifyInlineAsmCall(Call);
3816 ConvergenceVerifyHelper.visit(Call);
3818 visitInstruction(Call);
3821 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3822 StringRef Context) {
3823 Check(!Attrs.contains(Attribute::InAlloca),
3824 Twine("inalloca attribute not allowed in ") + Context);
3825 Check(!Attrs.contains(Attribute::InReg),
3826 Twine("inreg attribute not allowed in ") + Context);
3827 Check(!Attrs.contains(Attribute::SwiftError),
3828 Twine("swifterror attribute not allowed in ") + Context);
3829 Check(!Attrs.contains(Attribute::Preallocated),
3830 Twine("preallocated attribute not allowed in ") + Context);
3831 Check(!Attrs.contains(Attribute::ByRef),
3832 Twine("byref attribute not allowed in ") + Context);
3835 /// Two types are "congruent" if they are identical, or if they are both pointer
3836 /// types with different pointee types and the same address space.
3837 static bool isTypeCongruent(Type *L, Type *R) {
3838 if (L == R)
3839 return true;
3840 PointerType *PL = dyn_cast<PointerType>(L);
3841 PointerType *PR = dyn_cast<PointerType>(R);
3842 if (!PL || !PR)
3843 return false;
3844 return PL->getAddressSpace() == PR->getAddressSpace();
3847 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3848 static const Attribute::AttrKind ABIAttrs[] = {
3849 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3850 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3851 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3852 Attribute::ByRef};
3853 AttrBuilder Copy(C);
3854 for (auto AK : ABIAttrs) {
3855 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3856 if (Attr.isValid())
3857 Copy.addAttribute(Attr);
3860 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3861 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3862 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3863 Attrs.hasParamAttr(I, Attribute::ByRef)))
3864 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3865 return Copy;
3868 void Verifier::verifyMustTailCall(CallInst &CI) {
3869 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3871 Function *F = CI.getParent()->getParent();
3872 FunctionType *CallerTy = F->getFunctionType();
3873 FunctionType *CalleeTy = CI.getFunctionType();
3874 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3875 "cannot guarantee tail call due to mismatched varargs", &CI);
3876 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3877 "cannot guarantee tail call due to mismatched return types", &CI);
3879 // - The calling conventions of the caller and callee must match.
3880 Check(F->getCallingConv() == CI.getCallingConv(),
3881 "cannot guarantee tail call due to mismatched calling conv", &CI);
3883 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3884 // or a pointer bitcast followed by a ret instruction.
3885 // - The ret instruction must return the (possibly bitcasted) value
3886 // produced by the call or void.
3887 Value *RetVal = &CI;
3888 Instruction *Next = CI.getNextNode();
3890 // Handle the optional bitcast.
3891 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3892 Check(BI->getOperand(0) == RetVal,
3893 "bitcast following musttail call must use the call", BI);
3894 RetVal = BI;
3895 Next = BI->getNextNode();
3898 // Check the return.
3899 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3900 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3901 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3902 isa<UndefValue>(Ret->getReturnValue()),
3903 "musttail call result must be returned", Ret);
3905 AttributeList CallerAttrs = F->getAttributes();
3906 AttributeList CalleeAttrs = CI.getAttributes();
3907 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3908 CI.getCallingConv() == CallingConv::Tail) {
3909 StringRef CCName =
3910 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3912 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3913 // are allowed in swifttailcc call
3914 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3915 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3916 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3917 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3919 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3920 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3921 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3922 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3924 // - Varargs functions are not allowed
3925 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3926 " tail call for varargs function");
3927 return;
3930 // - The caller and callee prototypes must match. Pointer types of
3931 // parameters or return types may differ in pointee type, but not
3932 // address space.
3933 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3934 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3935 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3936 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3937 Check(
3938 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3939 "cannot guarantee tail call due to mismatched parameter types", &CI);
3943 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3944 // returned, preallocated, and inalloca, must match.
3945 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3946 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3947 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3948 Check(CallerABIAttrs == CalleeABIAttrs,
3949 "cannot guarantee tail call due to mismatched ABI impacting "
3950 "function attributes",
3951 &CI, CI.getOperand(I));
3955 void Verifier::visitCallInst(CallInst &CI) {
3956 visitCallBase(CI);
3958 if (CI.isMustTailCall())
3959 verifyMustTailCall(CI);
3962 void Verifier::visitInvokeInst(InvokeInst &II) {
3963 visitCallBase(II);
3965 // Verify that the first non-PHI instruction of the unwind destination is an
3966 // exception handling instruction.
3967 Check(
3968 II.getUnwindDest()->isEHPad(),
3969 "The unwind destination does not have an exception handling instruction!",
3970 &II);
3972 visitTerminator(II);
3975 /// visitUnaryOperator - Check the argument to the unary operator.
3977 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3978 Check(U.getType() == U.getOperand(0)->getType(),
3979 "Unary operators must have same type for"
3980 "operands and result!",
3981 &U);
3983 switch (U.getOpcode()) {
3984 // Check that floating-point arithmetic operators are only used with
3985 // floating-point operands.
3986 case Instruction::FNeg:
3987 Check(U.getType()->isFPOrFPVectorTy(),
3988 "FNeg operator only works with float types!", &U);
3989 break;
3990 default:
3991 llvm_unreachable("Unknown UnaryOperator opcode!");
3994 visitInstruction(U);
3997 /// visitBinaryOperator - Check that both arguments to the binary operator are
3998 /// of the same type!
4000 void Verifier::visitBinaryOperator(BinaryOperator &B) {
4001 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
4002 "Both operands to a binary operator are not of the same type!", &B);
4004 switch (B.getOpcode()) {
4005 // Check that integer arithmetic operators are only used with
4006 // integral operands.
4007 case Instruction::Add:
4008 case Instruction::Sub:
4009 case Instruction::Mul:
4010 case Instruction::SDiv:
4011 case Instruction::UDiv:
4012 case Instruction::SRem:
4013 case Instruction::URem:
4014 Check(B.getType()->isIntOrIntVectorTy(),
4015 "Integer arithmetic operators only work with integral types!", &B);
4016 Check(B.getType() == B.getOperand(0)->getType(),
4017 "Integer arithmetic operators must have same type "
4018 "for operands and result!",
4019 &B);
4020 break;
4021 // Check that floating-point arithmetic operators are only used with
4022 // floating-point operands.
4023 case Instruction::FAdd:
4024 case Instruction::FSub:
4025 case Instruction::FMul:
4026 case Instruction::FDiv:
4027 case Instruction::FRem:
4028 Check(B.getType()->isFPOrFPVectorTy(),
4029 "Floating-point arithmetic operators only work with "
4030 "floating-point types!",
4031 &B);
4032 Check(B.getType() == B.getOperand(0)->getType(),
4033 "Floating-point arithmetic operators must have same type "
4034 "for operands and result!",
4035 &B);
4036 break;
4037 // Check that logical operators are only used with integral operands.
4038 case Instruction::And:
4039 case Instruction::Or:
4040 case Instruction::Xor:
4041 Check(B.getType()->isIntOrIntVectorTy(),
4042 "Logical operators only work with integral types!", &B);
4043 Check(B.getType() == B.getOperand(0)->getType(),
4044 "Logical operators must have same type for operands and result!", &B);
4045 break;
4046 case Instruction::Shl:
4047 case Instruction::LShr:
4048 case Instruction::AShr:
4049 Check(B.getType()->isIntOrIntVectorTy(),
4050 "Shifts only work with integral types!", &B);
4051 Check(B.getType() == B.getOperand(0)->getType(),
4052 "Shift return type must be same as operands!", &B);
4053 break;
4054 default:
4055 llvm_unreachable("Unknown BinaryOperator opcode!");
4058 visitInstruction(B);
4061 void Verifier::visitICmpInst(ICmpInst &IC) {
4062 // Check that the operands are the same type
4063 Type *Op0Ty = IC.getOperand(0)->getType();
4064 Type *Op1Ty = IC.getOperand(1)->getType();
4065 Check(Op0Ty == Op1Ty,
4066 "Both operands to ICmp instruction are not of the same type!", &IC);
4067 // Check that the operands are the right type
4068 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
4069 "Invalid operand types for ICmp instruction", &IC);
4070 // Check that the predicate is valid.
4071 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
4073 visitInstruction(IC);
4076 void Verifier::visitFCmpInst(FCmpInst &FC) {
4077 // Check that the operands are the same type
4078 Type *Op0Ty = FC.getOperand(0)->getType();
4079 Type *Op1Ty = FC.getOperand(1)->getType();
4080 Check(Op0Ty == Op1Ty,
4081 "Both operands to FCmp instruction are not of the same type!", &FC);
4082 // Check that the operands are the right type
4083 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
4084 &FC);
4085 // Check that the predicate is valid.
4086 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
4088 visitInstruction(FC);
4091 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4092 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
4093 "Invalid extractelement operands!", &EI);
4094 visitInstruction(EI);
4097 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4098 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
4099 IE.getOperand(2)),
4100 "Invalid insertelement operands!", &IE);
4101 visitInstruction(IE);
4104 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4105 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
4106 SV.getShuffleMask()),
4107 "Invalid shufflevector operands!", &SV);
4108 visitInstruction(SV);
4111 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
4112 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
4114 Check(isa<PointerType>(TargetTy),
4115 "GEP base pointer is not a vector or a vector of pointers", &GEP);
4116 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
4118 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
4119 Check(!STy->isScalableTy(),
4120 "getelementptr cannot target structure that contains scalable vector"
4121 "type",
4122 &GEP);
4125 SmallVector<Value *, 16> Idxs(GEP.indices());
4126 Check(
4127 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
4128 "GEP indexes must be integers", &GEP);
4129 Type *ElTy =
4130 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
4131 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
4133 PointerType *PtrTy = dyn_cast<PointerType>(GEP.getType()->getScalarType());
4135 Check(PtrTy && GEP.getResultElementType() == ElTy,
4136 "GEP is not of right type for indices!", &GEP, ElTy);
4138 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
4139 // Additional checks for vector GEPs.
4140 ElementCount GEPWidth = GEPVTy->getElementCount();
4141 if (GEP.getPointerOperandType()->isVectorTy())
4142 Check(
4143 GEPWidth ==
4144 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
4145 "Vector GEP result width doesn't match operand's", &GEP);
4146 for (Value *Idx : Idxs) {
4147 Type *IndexTy = Idx->getType();
4148 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
4149 ElementCount IndexWidth = IndexVTy->getElementCount();
4150 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
4152 Check(IndexTy->isIntOrIntVectorTy(),
4153 "All GEP indices should be of integer type");
4157 Check(GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4158 "GEP address space doesn't match type", &GEP);
4160 visitInstruction(GEP);
4163 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
4164 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
4167 /// Verify !range and !absolute_symbol metadata. These have the same
4168 /// restrictions, except !absolute_symbol allows the full set.
4169 void Verifier::verifyRangeLikeMetadata(const Value &I, const MDNode *Range,
4170 Type *Ty, RangeLikeMetadataKind Kind) {
4171 unsigned NumOperands = Range->getNumOperands();
4172 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4173 unsigned NumRanges = NumOperands / 2;
4174 Check(NumRanges >= 1, "It should have at least one range!", Range);
4176 ConstantRange LastRange(1, true); // Dummy initial value
4177 for (unsigned i = 0; i < NumRanges; ++i) {
4178 ConstantInt *Low =
4179 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
4180 Check(Low, "The lower limit must be an integer!", Low);
4181 ConstantInt *High =
4182 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
4183 Check(High, "The upper limit must be an integer!", High);
4185 Check(High->getType() == Low->getType(), "Range pair types must match!",
4186 &I);
4188 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4189 Check(High->getType()->isIntegerTy(32),
4190 "noalias.addrspace type must be i32!", &I);
4191 } else {
4192 Check(High->getType() == Ty->getScalarType(),
4193 "Range types must match instruction type!", &I);
4196 APInt HighV = High->getValue();
4197 APInt LowV = Low->getValue();
4199 // ConstantRange asserts if the ranges are the same except for the min/max
4200 // value. Leave the cases it tolerates for the empty range error below.
4201 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4202 "The upper and lower limits cannot be the same value", &I);
4204 ConstantRange CurRange(LowV, HighV);
4205 Check(!CurRange.isEmptySet() &&
4206 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4207 !CurRange.isFullSet()),
4208 "Range must not be empty!", Range);
4209 if (i != 0) {
4210 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4211 "Intervals are overlapping", Range);
4212 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4213 Range);
4214 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4215 Range);
4217 LastRange = ConstantRange(LowV, HighV);
4219 if (NumRanges > 2) {
4220 APInt FirstLow =
4221 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4222 APInt FirstHigh =
4223 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4224 ConstantRange FirstRange(FirstLow, FirstHigh);
4225 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4226 "Intervals are overlapping", Range);
4227 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4228 Range);
4232 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4233 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4234 "precondition violation");
4235 verifyRangeLikeMetadata(I, Range, Ty, RangeLikeMetadataKind::Range);
4238 void Verifier::visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range,
4239 Type *Ty) {
4240 assert(Range && Range == I.getMetadata(LLVMContext::MD_noalias_addrspace) &&
4241 "precondition violation");
4242 verifyRangeLikeMetadata(I, Range, Ty,
4243 RangeLikeMetadataKind::NoaliasAddrspace);
4246 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4247 unsigned Size = DL.getTypeSizeInBits(Ty);
4248 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4249 Check(!(Size & (Size - 1)),
4250 "atomic memory access' operand must have a power-of-two size", Ty, I);
4253 void Verifier::visitLoadInst(LoadInst &LI) {
4254 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4255 Check(PTy, "Load operand must be a pointer.", &LI);
4256 Type *ElTy = LI.getType();
4257 if (MaybeAlign A = LI.getAlign()) {
4258 Check(A->value() <= Value::MaximumAlignment,
4259 "huge alignment values are unsupported", &LI);
4261 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4262 if (LI.isAtomic()) {
4263 Check(LI.getOrdering() != AtomicOrdering::Release &&
4264 LI.getOrdering() != AtomicOrdering::AcquireRelease,
4265 "Load cannot have Release ordering", &LI);
4266 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4267 "atomic load operand must have integer, pointer, or floating point "
4268 "type!",
4269 ElTy, &LI);
4270 checkAtomicMemAccessSize(ElTy, &LI);
4271 } else {
4272 Check(LI.getSyncScopeID() == SyncScope::System,
4273 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4276 visitInstruction(LI);
4279 void Verifier::visitStoreInst(StoreInst &SI) {
4280 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4281 Check(PTy, "Store operand must be a pointer.", &SI);
4282 Type *ElTy = SI.getOperand(0)->getType();
4283 if (MaybeAlign A = SI.getAlign()) {
4284 Check(A->value() <= Value::MaximumAlignment,
4285 "huge alignment values are unsupported", &SI);
4287 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4288 if (SI.isAtomic()) {
4289 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4290 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4291 "Store cannot have Acquire ordering", &SI);
4292 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4293 "atomic store operand must have integer, pointer, or floating point "
4294 "type!",
4295 ElTy, &SI);
4296 checkAtomicMemAccessSize(ElTy, &SI);
4297 } else {
4298 Check(SI.getSyncScopeID() == SyncScope::System,
4299 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4301 visitInstruction(SI);
4304 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4305 void Verifier::verifySwiftErrorCall(CallBase &Call,
4306 const Value *SwiftErrorVal) {
4307 for (const auto &I : llvm::enumerate(Call.args())) {
4308 if (I.value() == SwiftErrorVal) {
4309 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4310 "swifterror value when used in a callsite should be marked "
4311 "with swifterror attribute",
4312 SwiftErrorVal, Call);
4317 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4318 // Check that swifterror value is only used by loads, stores, or as
4319 // a swifterror argument.
4320 for (const User *U : SwiftErrorVal->users()) {
4321 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4322 isa<InvokeInst>(U),
4323 "swifterror value can only be loaded and stored from, or "
4324 "as a swifterror argument!",
4325 SwiftErrorVal, U);
4326 // If it is used by a store, check it is the second operand.
4327 if (auto StoreI = dyn_cast<StoreInst>(U))
4328 Check(StoreI->getOperand(1) == SwiftErrorVal,
4329 "swifterror value should be the second operand when used "
4330 "by stores",
4331 SwiftErrorVal, U);
4332 if (auto *Call = dyn_cast<CallBase>(U))
4333 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4337 void Verifier::visitAllocaInst(AllocaInst &AI) {
4338 Type *Ty = AI.getAllocatedType();
4339 SmallPtrSet<Type*, 4> Visited;
4340 Check(Ty->isSized(&Visited), "Cannot allocate unsized type", &AI);
4341 // Check if it's a target extension type that disallows being used on the
4342 // stack.
4343 Check(!Ty->containsNonLocalTargetExtType(),
4344 "Alloca has illegal target extension type", &AI);
4345 Check(AI.getArraySize()->getType()->isIntegerTy(),
4346 "Alloca array size must have integer type", &AI);
4347 if (MaybeAlign A = AI.getAlign()) {
4348 Check(A->value() <= Value::MaximumAlignment,
4349 "huge alignment values are unsupported", &AI);
4352 if (AI.isSwiftError()) {
4353 Check(Ty->isPointerTy(), "swifterror alloca must have pointer type", &AI);
4354 Check(!AI.isArrayAllocation(),
4355 "swifterror alloca must not be array allocation", &AI);
4356 verifySwiftErrorValue(&AI);
4359 visitInstruction(AI);
4362 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4363 Type *ElTy = CXI.getOperand(1)->getType();
4364 Check(ElTy->isIntOrPtrTy(),
4365 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4366 checkAtomicMemAccessSize(ElTy, &CXI);
4367 visitInstruction(CXI);
4370 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4371 Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4372 "atomicrmw instructions cannot be unordered.", &RMWI);
4373 auto Op = RMWI.getOperation();
4374 Type *ElTy = RMWI.getOperand(1)->getType();
4375 if (Op == AtomicRMWInst::Xchg) {
4376 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4377 ElTy->isPointerTy(),
4378 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4379 " operand must have integer or floating point type!",
4380 &RMWI, ElTy);
4381 } else if (AtomicRMWInst::isFPOperation(Op)) {
4382 Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy),
4383 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4384 " operand must have floating-point or fixed vector of floating-point "
4385 "type!",
4386 &RMWI, ElTy);
4387 } else {
4388 Check(ElTy->isIntegerTy(),
4389 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4390 " operand must have integer type!",
4391 &RMWI, ElTy);
4393 checkAtomicMemAccessSize(ElTy, &RMWI);
4394 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4395 "Invalid binary operation!", &RMWI);
4396 visitInstruction(RMWI);
4399 void Verifier::visitFenceInst(FenceInst &FI) {
4400 const AtomicOrdering Ordering = FI.getOrdering();
4401 Check(Ordering == AtomicOrdering::Acquire ||
4402 Ordering == AtomicOrdering::Release ||
4403 Ordering == AtomicOrdering::AcquireRelease ||
4404 Ordering == AtomicOrdering::SequentiallyConsistent,
4405 "fence instructions may only have acquire, release, acq_rel, or "
4406 "seq_cst ordering.",
4407 &FI);
4408 visitInstruction(FI);
4411 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4412 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4413 EVI.getIndices()) == EVI.getType(),
4414 "Invalid ExtractValueInst operands!", &EVI);
4416 visitInstruction(EVI);
4419 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4420 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4421 IVI.getIndices()) ==
4422 IVI.getOperand(1)->getType(),
4423 "Invalid InsertValueInst operands!", &IVI);
4425 visitInstruction(IVI);
4428 static Value *getParentPad(Value *EHPad) {
4429 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4430 return FPI->getParentPad();
4432 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4435 void Verifier::visitEHPadPredecessors(Instruction &I) {
4436 assert(I.isEHPad());
4438 BasicBlock *BB = I.getParent();
4439 Function *F = BB->getParent();
4441 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4443 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4444 // The landingpad instruction defines its parent as a landing pad block. The
4445 // landing pad block may be branched to only by the unwind edge of an
4446 // invoke.
4447 for (BasicBlock *PredBB : predecessors(BB)) {
4448 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4449 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4450 "Block containing LandingPadInst must be jumped to "
4451 "only by the unwind edge of an invoke.",
4452 LPI);
4454 return;
4456 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4457 if (!pred_empty(BB))
4458 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4459 "Block containg CatchPadInst must be jumped to "
4460 "only by its catchswitch.",
4461 CPI);
4462 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4463 "Catchswitch cannot unwind to one of its catchpads",
4464 CPI->getCatchSwitch(), CPI);
4465 return;
4468 // Verify that each pred has a legal terminator with a legal to/from EH
4469 // pad relationship.
4470 Instruction *ToPad = &I;
4471 Value *ToPadParent = getParentPad(ToPad);
4472 for (BasicBlock *PredBB : predecessors(BB)) {
4473 Instruction *TI = PredBB->getTerminator();
4474 Value *FromPad;
4475 if (auto *II = dyn_cast<InvokeInst>(TI)) {
4476 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4477 "EH pad must be jumped to via an unwind edge", ToPad, II);
4478 auto *CalledFn =
4479 dyn_cast<Function>(II->getCalledOperand()->stripPointerCasts());
4480 if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() &&
4481 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
4482 continue;
4483 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4484 FromPad = Bundle->Inputs[0];
4485 else
4486 FromPad = ConstantTokenNone::get(II->getContext());
4487 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4488 FromPad = CRI->getOperand(0);
4489 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4490 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4491 FromPad = CSI;
4492 } else {
4493 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4496 // The edge may exit from zero or more nested pads.
4497 SmallSet<Value *, 8> Seen;
4498 for (;; FromPad = getParentPad(FromPad)) {
4499 Check(FromPad != ToPad,
4500 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4501 if (FromPad == ToPadParent) {
4502 // This is a legal unwind edge.
4503 break;
4505 Check(!isa<ConstantTokenNone>(FromPad),
4506 "A single unwind edge may only enter one EH pad", TI);
4507 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4508 FromPad);
4510 // This will be diagnosed on the corresponding instruction already. We
4511 // need the extra check here to make sure getParentPad() works.
4512 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4513 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4518 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4519 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4520 // isn't a cleanup.
4521 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4522 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4524 visitEHPadPredecessors(LPI);
4526 if (!LandingPadResultTy)
4527 LandingPadResultTy = LPI.getType();
4528 else
4529 Check(LandingPadResultTy == LPI.getType(),
4530 "The landingpad instruction should have a consistent result type "
4531 "inside a function.",
4532 &LPI);
4534 Function *F = LPI.getParent()->getParent();
4535 Check(F->hasPersonalityFn(),
4536 "LandingPadInst needs to be in a function with a personality.", &LPI);
4538 // The landingpad instruction must be the first non-PHI instruction in the
4539 // block.
4540 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4541 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4543 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4544 Constant *Clause = LPI.getClause(i);
4545 if (LPI.isCatch(i)) {
4546 Check(isa<PointerType>(Clause->getType()),
4547 "Catch operand does not have pointer type!", &LPI);
4548 } else {
4549 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4550 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4551 "Filter operand is not an array of constants!", &LPI);
4555 visitInstruction(LPI);
4558 void Verifier::visitResumeInst(ResumeInst &RI) {
4559 Check(RI.getFunction()->hasPersonalityFn(),
4560 "ResumeInst needs to be in a function with a personality.", &RI);
4562 if (!LandingPadResultTy)
4563 LandingPadResultTy = RI.getValue()->getType();
4564 else
4565 Check(LandingPadResultTy == RI.getValue()->getType(),
4566 "The resume instruction should have a consistent result type "
4567 "inside a function.",
4568 &RI);
4570 visitTerminator(RI);
4573 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4574 BasicBlock *BB = CPI.getParent();
4576 Function *F = BB->getParent();
4577 Check(F->hasPersonalityFn(),
4578 "CatchPadInst needs to be in a function with a personality.", &CPI);
4580 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4581 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4582 CPI.getParentPad());
4584 // The catchpad instruction must be the first non-PHI instruction in the
4585 // block.
4586 Check(BB->getFirstNonPHI() == &CPI,
4587 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4589 visitEHPadPredecessors(CPI);
4590 visitFuncletPadInst(CPI);
4593 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4594 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4595 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4596 CatchReturn.getOperand(0));
4598 visitTerminator(CatchReturn);
4601 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4602 BasicBlock *BB = CPI.getParent();
4604 Function *F = BB->getParent();
4605 Check(F->hasPersonalityFn(),
4606 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4608 // The cleanuppad instruction must be the first non-PHI instruction in the
4609 // block.
4610 Check(BB->getFirstNonPHI() == &CPI,
4611 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4613 auto *ParentPad = CPI.getParentPad();
4614 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4615 "CleanupPadInst has an invalid parent.", &CPI);
4617 visitEHPadPredecessors(CPI);
4618 visitFuncletPadInst(CPI);
4621 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4622 User *FirstUser = nullptr;
4623 Value *FirstUnwindPad = nullptr;
4624 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4625 SmallSet<FuncletPadInst *, 8> Seen;
4627 while (!Worklist.empty()) {
4628 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4629 Check(Seen.insert(CurrentPad).second,
4630 "FuncletPadInst must not be nested within itself", CurrentPad);
4631 Value *UnresolvedAncestorPad = nullptr;
4632 for (User *U : CurrentPad->users()) {
4633 BasicBlock *UnwindDest;
4634 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4635 UnwindDest = CRI->getUnwindDest();
4636 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4637 // We allow catchswitch unwind to caller to nest
4638 // within an outer pad that unwinds somewhere else,
4639 // because catchswitch doesn't have a nounwind variant.
4640 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4641 if (CSI->unwindsToCaller())
4642 continue;
4643 UnwindDest = CSI->getUnwindDest();
4644 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4645 UnwindDest = II->getUnwindDest();
4646 } else if (isa<CallInst>(U)) {
4647 // Calls which don't unwind may be found inside funclet
4648 // pads that unwind somewhere else. We don't *require*
4649 // such calls to be annotated nounwind.
4650 continue;
4651 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4652 // The unwind dest for a cleanup can only be found by
4653 // recursive search. Add it to the worklist, and we'll
4654 // search for its first use that determines where it unwinds.
4655 Worklist.push_back(CPI);
4656 continue;
4657 } else {
4658 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4659 continue;
4662 Value *UnwindPad;
4663 bool ExitsFPI;
4664 if (UnwindDest) {
4665 UnwindPad = UnwindDest->getFirstNonPHI();
4666 if (!cast<Instruction>(UnwindPad)->isEHPad())
4667 continue;
4668 Value *UnwindParent = getParentPad(UnwindPad);
4669 // Ignore unwind edges that don't exit CurrentPad.
4670 if (UnwindParent == CurrentPad)
4671 continue;
4672 // Determine whether the original funclet pad is exited,
4673 // and if we are scanning nested pads determine how many
4674 // of them are exited so we can stop searching their
4675 // children.
4676 Value *ExitedPad = CurrentPad;
4677 ExitsFPI = false;
4678 do {
4679 if (ExitedPad == &FPI) {
4680 ExitsFPI = true;
4681 // Now we can resolve any ancestors of CurrentPad up to
4682 // FPI, but not including FPI since we need to make sure
4683 // to check all direct users of FPI for consistency.
4684 UnresolvedAncestorPad = &FPI;
4685 break;
4687 Value *ExitedParent = getParentPad(ExitedPad);
4688 if (ExitedParent == UnwindParent) {
4689 // ExitedPad is the ancestor-most pad which this unwind
4690 // edge exits, so we can resolve up to it, meaning that
4691 // ExitedParent is the first ancestor still unresolved.
4692 UnresolvedAncestorPad = ExitedParent;
4693 break;
4695 ExitedPad = ExitedParent;
4696 } while (!isa<ConstantTokenNone>(ExitedPad));
4697 } else {
4698 // Unwinding to caller exits all pads.
4699 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4700 ExitsFPI = true;
4701 UnresolvedAncestorPad = &FPI;
4704 if (ExitsFPI) {
4705 // This unwind edge exits FPI. Make sure it agrees with other
4706 // such edges.
4707 if (FirstUser) {
4708 Check(UnwindPad == FirstUnwindPad,
4709 "Unwind edges out of a funclet "
4710 "pad must have the same unwind "
4711 "dest",
4712 &FPI, U, FirstUser);
4713 } else {
4714 FirstUser = U;
4715 FirstUnwindPad = UnwindPad;
4716 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4717 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4718 getParentPad(UnwindPad) == getParentPad(&FPI))
4719 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4722 // Make sure we visit all uses of FPI, but for nested pads stop as
4723 // soon as we know where they unwind to.
4724 if (CurrentPad != &FPI)
4725 break;
4727 if (UnresolvedAncestorPad) {
4728 if (CurrentPad == UnresolvedAncestorPad) {
4729 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4730 // we've found an unwind edge that exits it, because we need to verify
4731 // all direct uses of FPI.
4732 assert(CurrentPad == &FPI);
4733 continue;
4735 // Pop off the worklist any nested pads that we've found an unwind
4736 // destination for. The pads on the worklist are the uncles,
4737 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4738 // for all ancestors of CurrentPad up to but not including
4739 // UnresolvedAncestorPad.
4740 Value *ResolvedPad = CurrentPad;
4741 while (!Worklist.empty()) {
4742 Value *UnclePad = Worklist.back();
4743 Value *AncestorPad = getParentPad(UnclePad);
4744 // Walk ResolvedPad up the ancestor list until we either find the
4745 // uncle's parent or the last resolved ancestor.
4746 while (ResolvedPad != AncestorPad) {
4747 Value *ResolvedParent = getParentPad(ResolvedPad);
4748 if (ResolvedParent == UnresolvedAncestorPad) {
4749 break;
4751 ResolvedPad = ResolvedParent;
4753 // If the resolved ancestor search didn't find the uncle's parent,
4754 // then the uncle is not yet resolved.
4755 if (ResolvedPad != AncestorPad)
4756 break;
4757 // This uncle is resolved, so pop it from the worklist.
4758 Worklist.pop_back();
4763 if (FirstUnwindPad) {
4764 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4765 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4766 Value *SwitchUnwindPad;
4767 if (SwitchUnwindDest)
4768 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4769 else
4770 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4771 Check(SwitchUnwindPad == FirstUnwindPad,
4772 "Unwind edges out of a catch must have the same unwind dest as "
4773 "the parent catchswitch",
4774 &FPI, FirstUser, CatchSwitch);
4778 visitInstruction(FPI);
4781 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4782 BasicBlock *BB = CatchSwitch.getParent();
4784 Function *F = BB->getParent();
4785 Check(F->hasPersonalityFn(),
4786 "CatchSwitchInst needs to be in a function with a personality.",
4787 &CatchSwitch);
4789 // The catchswitch instruction must be the first non-PHI instruction in the
4790 // block.
4791 Check(BB->getFirstNonPHI() == &CatchSwitch,
4792 "CatchSwitchInst not the first non-PHI instruction in the block.",
4793 &CatchSwitch);
4795 auto *ParentPad = CatchSwitch.getParentPad();
4796 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4797 "CatchSwitchInst has an invalid parent.", ParentPad);
4799 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4800 Instruction *I = UnwindDest->getFirstNonPHI();
4801 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4802 "CatchSwitchInst must unwind to an EH block which is not a "
4803 "landingpad.",
4804 &CatchSwitch);
4806 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4807 if (getParentPad(I) == ParentPad)
4808 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4811 Check(CatchSwitch.getNumHandlers() != 0,
4812 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4814 for (BasicBlock *Handler : CatchSwitch.handlers()) {
4815 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4816 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4819 visitEHPadPredecessors(CatchSwitch);
4820 visitTerminator(CatchSwitch);
4823 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4824 Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4825 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4826 CRI.getOperand(0));
4828 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4829 Instruction *I = UnwindDest->getFirstNonPHI();
4830 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4831 "CleanupReturnInst must unwind to an EH block which is not a "
4832 "landingpad.",
4833 &CRI);
4836 visitTerminator(CRI);
4839 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4840 Instruction *Op = cast<Instruction>(I.getOperand(i));
4841 // If the we have an invalid invoke, don't try to compute the dominance.
4842 // We already reject it in the invoke specific checks and the dominance
4843 // computation doesn't handle multiple edges.
4844 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4845 if (II->getNormalDest() == II->getUnwindDest())
4846 return;
4849 // Quick check whether the def has already been encountered in the same block.
4850 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4851 // uses are defined to happen on the incoming edge, not at the instruction.
4853 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4854 // wrapping an SSA value, assert that we've already encountered it. See
4855 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4856 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4857 return;
4859 const Use &U = I.getOperandUse(i);
4860 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4863 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4864 Check(I.getType()->isPointerTy(),
4865 "dereferenceable, dereferenceable_or_null "
4866 "apply only to pointer types",
4867 &I);
4868 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4869 "dereferenceable, dereferenceable_or_null apply only to load"
4870 " and inttoptr instructions, use attributes for calls or invokes",
4871 &I);
4872 Check(MD->getNumOperands() == 1,
4873 "dereferenceable, dereferenceable_or_null "
4874 "take one operand!",
4875 &I);
4876 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4877 Check(CI && CI->getType()->isIntegerTy(64),
4878 "dereferenceable, "
4879 "dereferenceable_or_null metadata value must be an i64!",
4880 &I);
4883 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4884 Check(MD->getNumOperands() >= 2,
4885 "!prof annotations should have no less than 2 operands", MD);
4887 // Check first operand.
4888 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4889 Check(isa<MDString>(MD->getOperand(0)),
4890 "expected string with name of the !prof annotation", MD);
4891 MDString *MDS = cast<MDString>(MD->getOperand(0));
4892 StringRef ProfName = MDS->getString();
4894 // Check consistency of !prof branch_weights metadata.
4895 if (ProfName == "branch_weights") {
4896 unsigned NumBranchWeights = getNumBranchWeights(*MD);
4897 if (isa<InvokeInst>(&I)) {
4898 Check(NumBranchWeights == 1 || NumBranchWeights == 2,
4899 "Wrong number of InvokeInst branch_weights operands", MD);
4900 } else {
4901 unsigned ExpectedNumOperands = 0;
4902 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4903 ExpectedNumOperands = BI->getNumSuccessors();
4904 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4905 ExpectedNumOperands = SI->getNumSuccessors();
4906 else if (isa<CallInst>(&I))
4907 ExpectedNumOperands = 1;
4908 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4909 ExpectedNumOperands = IBI->getNumDestinations();
4910 else if (isa<SelectInst>(&I))
4911 ExpectedNumOperands = 2;
4912 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4913 ExpectedNumOperands = CI->getNumSuccessors();
4914 else
4915 CheckFailed("!prof branch_weights are not allowed for this instruction",
4916 MD);
4918 Check(NumBranchWeights == ExpectedNumOperands, "Wrong number of operands",
4919 MD);
4921 for (unsigned i = getBranchWeightOffset(MD); i < MD->getNumOperands();
4922 ++i) {
4923 auto &MDO = MD->getOperand(i);
4924 Check(MDO, "second operand should not be null", MD);
4925 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4926 "!prof brunch_weights operand is not a const int");
4931 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4932 assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4933 bool ExpectedInstTy =
4934 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4935 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4936 I, MD);
4937 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4938 // only be found as DbgAssignIntrinsic operands.
4939 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4940 for (auto *User : AsValue->users()) {
4941 CheckDI(isa<DbgAssignIntrinsic>(User),
4942 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4943 MD, User);
4944 // All of the dbg.assign intrinsics should be in the same function as I.
4945 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4946 CheckDI(DAI->getFunction() == I.getFunction(),
4947 "dbg.assign not in same function as inst", DAI, &I);
4950 for (DbgVariableRecord *DVR :
4951 cast<DIAssignID>(MD)->getAllDbgVariableRecordUsers()) {
4952 CheckDI(DVR->isDbgAssign(),
4953 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
4954 CheckDI(DVR->getFunction() == I.getFunction(),
4955 "DVRAssign not in same function as inst", DVR, &I);
4959 void Verifier::visitMMRAMetadata(Instruction &I, MDNode *MD) {
4960 Check(canInstructionHaveMMRAs(I),
4961 "!mmra metadata attached to unexpected instruction kind", I, MD);
4963 // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a
4964 // list of tags such as !2 in the following example:
4965 // !0 = !{!"a", !"b"}
4966 // !1 = !{!"c", !"d"}
4967 // !2 = !{!0, !1}
4968 if (MMRAMetadata::isTagMD(MD))
4969 return;
4971 Check(isa<MDTuple>(MD), "!mmra expected to be a metadata tuple", I, MD);
4972 for (const MDOperand &MDOp : MD->operands())
4973 Check(MMRAMetadata::isTagMD(MDOp.get()),
4974 "!mmra metadata tuple operand is not an MMRA tag", I, MDOp.get());
4977 void Verifier::visitCallStackMetadata(MDNode *MD) {
4978 // Call stack metadata should consist of a list of at least 1 constant int
4979 // (representing a hash of the location).
4980 Check(MD->getNumOperands() >= 1,
4981 "call stack metadata should have at least 1 operand", MD);
4983 for (const auto &Op : MD->operands())
4984 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4985 "call stack metadata operand should be constant integer", Op);
4988 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4989 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4990 Check(MD->getNumOperands() >= 1,
4991 "!memprof annotations should have at least 1 metadata operand "
4992 "(MemInfoBlock)",
4993 MD);
4995 // Check each MIB
4996 for (auto &MIBOp : MD->operands()) {
4997 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4998 // The first operand of an MIB should be the call stack metadata.
4999 // There rest of the operands should be MDString tags, and there should be
5000 // at least one.
5001 Check(MIB->getNumOperands() >= 2,
5002 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
5004 // Check call stack metadata (first operand).
5005 Check(MIB->getOperand(0) != nullptr,
5006 "!memprof MemInfoBlock first operand should not be null", MIB);
5007 Check(isa<MDNode>(MIB->getOperand(0)),
5008 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
5009 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
5010 visitCallStackMetadata(StackMD);
5012 // The next set of 1 or more operands should be MDString.
5013 unsigned I = 1;
5014 for (; I < MIB->getNumOperands(); ++I) {
5015 if (!isa<MDString>(MIB->getOperand(I))) {
5016 Check(I > 1,
5017 "!memprof MemInfoBlock second operand should be an MDString",
5018 MIB);
5019 break;
5023 // Any remaining should be MDNode that are pairs of integers
5024 for (; I < MIB->getNumOperands(); ++I) {
5025 MDNode *OpNode = dyn_cast<MDNode>(MIB->getOperand(I));
5026 Check(OpNode, "Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5027 MIB);
5028 Check(OpNode->getNumOperands() == 2,
5029 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5030 "operands",
5031 MIB);
5032 // Check that all of Op's operands are ConstantInt.
5033 Check(llvm::all_of(OpNode->operands(),
5034 [](const MDOperand &Op) {
5035 return mdconst::hasa<ConstantInt>(Op);
5037 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5038 "ConstantInt operands",
5039 MIB);
5044 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
5045 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
5046 // Verify the partial callstack annotated from memprof profiles. This callsite
5047 // is a part of a profiled allocation callstack.
5048 visitCallStackMetadata(MD);
5051 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
5052 Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
5053 Check(Annotation->getNumOperands() >= 1,
5054 "annotation must have at least one operand");
5055 for (const MDOperand &Op : Annotation->operands()) {
5056 bool TupleOfStrings =
5057 isa<MDTuple>(Op.get()) &&
5058 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
5059 return isa<MDString>(Annotation.get());
5061 Check(isa<MDString>(Op.get()) || TupleOfStrings,
5062 "operands must be a string or a tuple of strings");
5066 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
5067 unsigned NumOps = MD->getNumOperands();
5068 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
5069 MD);
5070 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
5071 "first scope operand must be self-referential or string", MD);
5072 if (NumOps == 3)
5073 Check(isa<MDString>(MD->getOperand(2)),
5074 "third scope operand must be string (if used)", MD);
5076 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
5077 Check(Domain != nullptr, "second scope operand must be MDNode", MD);
5079 unsigned NumDomainOps = Domain->getNumOperands();
5080 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5081 "domain must have one or two operands", Domain);
5082 Check(Domain->getOperand(0).get() == Domain ||
5083 isa<MDString>(Domain->getOperand(0)),
5084 "first domain operand must be self-referential or string", Domain);
5085 if (NumDomainOps == 2)
5086 Check(isa<MDString>(Domain->getOperand(1)),
5087 "second domain operand must be string (if used)", Domain);
5090 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
5091 for (const MDOperand &Op : MD->operands()) {
5092 const MDNode *OpMD = dyn_cast<MDNode>(Op);
5093 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
5094 visitAliasScopeMetadata(OpMD);
5098 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
5099 auto IsValidAccessScope = [](const MDNode *MD) {
5100 return MD->getNumOperands() == 0 && MD->isDistinct();
5103 // It must be either an access scope itself...
5104 if (IsValidAccessScope(MD))
5105 return;
5107 // ...or a list of access scopes.
5108 for (const MDOperand &Op : MD->operands()) {
5109 const MDNode *OpMD = dyn_cast<MDNode>(Op);
5110 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
5111 Check(IsValidAccessScope(OpMD),
5112 "Access scope list contains invalid access scope", MD);
5116 /// verifyInstruction - Verify that an instruction is well formed.
5118 void Verifier::visitInstruction(Instruction &I) {
5119 BasicBlock *BB = I.getParent();
5120 Check(BB, "Instruction not embedded in basic block!", &I);
5122 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
5123 for (User *U : I.users()) {
5124 Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
5125 "Only PHI nodes may reference their own value!", &I);
5129 // Check that void typed values don't have names
5130 Check(!I.getType()->isVoidTy() || !I.hasName(),
5131 "Instruction has a name, but provides a void value!", &I);
5133 // Check that the return value of the instruction is either void or a legal
5134 // value type.
5135 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
5136 "Instruction returns a non-scalar type!", &I);
5138 // Check that the instruction doesn't produce metadata. Calls are already
5139 // checked against the callee type.
5140 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
5141 "Invalid use of metadata!", &I);
5143 // Check that all uses of the instruction, if they are instructions
5144 // themselves, actually have parent basic blocks. If the use is not an
5145 // instruction, it is an error!
5146 for (Use &U : I.uses()) {
5147 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
5148 Check(Used->getParent() != nullptr,
5149 "Instruction referencing"
5150 " instruction not embedded in a basic block!",
5151 &I, Used);
5152 else {
5153 CheckFailed("Use of instruction is not an instruction!", U);
5154 return;
5158 // Get a pointer to the call base of the instruction if it is some form of
5159 // call.
5160 const CallBase *CBI = dyn_cast<CallBase>(&I);
5162 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
5163 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
5165 // Check to make sure that only first-class-values are operands to
5166 // instructions.
5167 if (!I.getOperand(i)->getType()->isFirstClassType()) {
5168 Check(false, "Instruction operands must be first-class values!", &I);
5171 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
5172 // This code checks whether the function is used as the operand of a
5173 // clang_arc_attachedcall operand bundle.
5174 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
5175 int Idx) {
5176 return CBI && CBI->isOperandBundleOfType(
5177 LLVMContext::OB_clang_arc_attachedcall, Idx);
5180 // Check to make sure that the "address of" an intrinsic function is never
5181 // taken. Ignore cases where the address of the intrinsic function is used
5182 // as the argument of operand bundle "clang.arc.attachedcall" as those
5183 // cases are handled in verifyAttachedCallBundle.
5184 Check((!F->isIntrinsic() ||
5185 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
5186 IsAttachedCallOperand(F, CBI, i)),
5187 "Cannot take the address of an intrinsic!", &I);
5188 Check(!F->isIntrinsic() || isa<CallInst>(I) ||
5189 F->getIntrinsicID() == Intrinsic::donothing ||
5190 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5191 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5192 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5193 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5194 F->getIntrinsicID() == Intrinsic::coro_resume ||
5195 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5196 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5197 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5198 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5199 F->getIntrinsicID() ==
5200 Intrinsic::experimental_patchpoint_void ||
5201 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5202 F->getIntrinsicID() == Intrinsic::fake_use ||
5203 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5204 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5205 IsAttachedCallOperand(F, CBI, i),
5206 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5207 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
5208 &I);
5209 Check(F->getParent() == &M, "Referencing function in another module!", &I,
5210 &M, F, F->getParent());
5211 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
5212 Check(OpBB->getParent() == BB->getParent(),
5213 "Referring to a basic block in another function!", &I);
5214 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
5215 Check(OpArg->getParent() == BB->getParent(),
5216 "Referring to an argument in another function!", &I);
5217 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
5218 Check(GV->getParent() == &M, "Referencing global in another module!", &I,
5219 &M, GV, GV->getParent());
5220 } else if (Instruction *OpInst = dyn_cast<Instruction>(I.getOperand(i))) {
5221 Check(OpInst->getFunction() == BB->getParent(),
5222 "Referring to an instruction in another function!", &I);
5223 verifyDominatesUse(I, i);
5224 } else if (isa<InlineAsm>(I.getOperand(i))) {
5225 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
5226 "Cannot take the address of an inline asm!", &I);
5227 } else if (auto *CPA = dyn_cast<ConstantPtrAuth>(I.getOperand(i))) {
5228 visitConstantExprsRecursively(CPA);
5229 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
5230 if (CE->getType()->isPtrOrPtrVectorTy()) {
5231 // If we have a ConstantExpr pointer, we need to see if it came from an
5232 // illegal bitcast.
5233 visitConstantExprsRecursively(CE);
5238 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
5239 Check(I.getType()->isFPOrFPVectorTy(),
5240 "fpmath requires a floating point result!", &I);
5241 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
5242 if (ConstantFP *CFP0 =
5243 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
5244 const APFloat &Accuracy = CFP0->getValueAPF();
5245 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
5246 "fpmath accuracy must have float type", &I);
5247 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
5248 "fpmath accuracy not a positive number!", &I);
5249 } else {
5250 Check(false, "invalid fpmath accuracy!", &I);
5254 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
5255 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
5256 "Ranges are only for loads, calls and invokes!", &I);
5257 visitRangeMetadata(I, Range, I.getType());
5260 if (MDNode *Range = I.getMetadata(LLVMContext::MD_noalias_addrspace)) {
5261 Check(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<AtomicRMWInst>(I) ||
5262 isa<AtomicCmpXchgInst>(I) || isa<CallInst>(I),
5263 "noalias.addrspace are only for memory operations!", &I);
5264 visitNoaliasAddrspaceMetadata(I, Range, I.getType());
5267 if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
5268 Check(isa<LoadInst>(I) || isa<StoreInst>(I),
5269 "invariant.group metadata is only for loads and stores", &I);
5272 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
5273 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
5274 &I);
5275 Check(isa<LoadInst>(I),
5276 "nonnull applies only to load instructions, use attributes"
5277 " for calls or invokes",
5278 &I);
5279 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
5282 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
5283 visitDereferenceableMetadata(I, MD);
5285 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5286 visitDereferenceableMetadata(I, MD);
5288 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
5289 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
5291 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
5292 visitAliasScopeListMetadata(MD);
5293 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
5294 visitAliasScopeListMetadata(MD);
5296 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
5297 visitAccessGroupMetadata(MD);
5299 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
5300 Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5301 &I);
5302 Check(isa<LoadInst>(I),
5303 "align applies only to load instructions, "
5304 "use attributes for calls or invokes",
5305 &I);
5306 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5307 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5308 Check(CI && CI->getType()->isIntegerTy(64),
5309 "align metadata value must be an i64!", &I);
5310 uint64_t Align = CI->getZExtValue();
5311 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5312 &I);
5313 Check(Align <= Value::MaximumAlignment,
5314 "alignment is larger that implementation defined limit", &I);
5317 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5318 visitProfMetadata(I, MD);
5320 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5321 visitMemProfMetadata(I, MD);
5323 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5324 visitCallsiteMetadata(I, MD);
5326 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5327 visitDIAssignIDMetadata(I, MD);
5329 if (MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra))
5330 visitMMRAMetadata(I, MMRA);
5332 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5333 visitAnnotationMetadata(Annotation);
5335 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5336 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5337 visitMDNode(*N, AreDebugLocsAllowed::Yes);
5340 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5341 verifyFragmentExpression(*DII);
5342 verifyNotEntryValue(*DII);
5345 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5346 I.getAllMetadata(MDs);
5347 for (auto Attachment : MDs) {
5348 unsigned Kind = Attachment.first;
5349 auto AllowLocs =
5350 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5351 ? AreDebugLocsAllowed::Yes
5352 : AreDebugLocsAllowed::No;
5353 visitMDNode(*Attachment.second, AllowLocs);
5356 InstsInThisBlock.insert(&I);
5359 /// Allow intrinsics to be verified in different ways.
5360 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5361 Function *IF = Call.getCalledFunction();
5362 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5363 IF);
5365 // Verify that the intrinsic prototype lines up with what the .td files
5366 // describe.
5367 FunctionType *IFTy = IF->getFunctionType();
5368 bool IsVarArg = IFTy->isVarArg();
5370 SmallVector<Intrinsic::IITDescriptor, 8> Table;
5371 getIntrinsicInfoTableEntries(ID, Table);
5372 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5374 // Walk the descriptors to extract overloaded types.
5375 SmallVector<Type *, 4> ArgTys;
5376 Intrinsic::MatchIntrinsicTypesResult Res =
5377 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5378 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5379 "Intrinsic has incorrect return type!", IF);
5380 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5381 "Intrinsic has incorrect argument type!", IF);
5383 // Verify if the intrinsic call matches the vararg property.
5384 if (IsVarArg)
5385 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5386 "Intrinsic was not defined with variable arguments!", IF);
5387 else
5388 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5389 "Callsite was not defined with variable arguments!", IF);
5391 // All descriptors should be absorbed by now.
5392 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5394 // Now that we have the intrinsic ID and the actual argument types (and we
5395 // know they are legal for the intrinsic!) get the intrinsic name through the
5396 // usual means. This allows us to verify the mangling of argument types into
5397 // the name.
5398 const std::string ExpectedName =
5399 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5400 Check(ExpectedName == IF->getName(),
5401 "Intrinsic name not mangled correctly for type arguments! "
5402 "Should be: " +
5403 ExpectedName,
5404 IF);
5406 // If the intrinsic takes MDNode arguments, verify that they are either global
5407 // or are local to *this* function.
5408 for (Value *V : Call.args()) {
5409 if (auto *MD = dyn_cast<MetadataAsValue>(V))
5410 visitMetadataAsValue(*MD, Call.getCaller());
5411 if (auto *Const = dyn_cast<Constant>(V))
5412 Check(!Const->getType()->isX86_AMXTy(),
5413 "const x86_amx is not allowed in argument!");
5416 switch (ID) {
5417 default:
5418 break;
5419 case Intrinsic::assume: {
5420 for (auto &Elem : Call.bundle_op_infos()) {
5421 unsigned ArgCount = Elem.End - Elem.Begin;
5422 // Separate storage assumptions are special insofar as they're the only
5423 // operand bundles allowed on assumes that aren't parameter attributes.
5424 if (Elem.Tag->getKey() == "separate_storage") {
5425 Check(ArgCount == 2,
5426 "separate_storage assumptions should have 2 arguments", Call);
5427 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5428 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5429 "arguments to separate_storage assumptions should be pointers",
5430 Call);
5431 return;
5433 Check(Elem.Tag->getKey() == "ignore" ||
5434 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5435 "tags must be valid attribute names", Call);
5436 Attribute::AttrKind Kind =
5437 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5438 if (Kind == Attribute::Alignment) {
5439 Check(ArgCount <= 3 && ArgCount >= 2,
5440 "alignment assumptions should have 2 or 3 arguments", Call);
5441 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5442 "first argument should be a pointer", Call);
5443 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5444 "second argument should be an integer", Call);
5445 if (ArgCount == 3)
5446 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5447 "third argument should be an integer if present", Call);
5448 return;
5450 Check(ArgCount <= 2, "too many arguments", Call);
5451 if (Kind == Attribute::None)
5452 break;
5453 if (Attribute::isIntAttrKind(Kind)) {
5454 Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5455 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5456 "the second argument should be a constant integral value", Call);
5457 } else if (Attribute::canUseAsParamAttr(Kind)) {
5458 Check((ArgCount) == 1, "this attribute should have one argument", Call);
5459 } else if (Attribute::canUseAsFnAttr(Kind)) {
5460 Check((ArgCount) == 0, "this attribute has no argument", Call);
5463 break;
5465 case Intrinsic::ucmp:
5466 case Intrinsic::scmp: {
5467 Type *SrcTy = Call.getOperand(0)->getType();
5468 Type *DestTy = Call.getType();
5470 Check(DestTy->getScalarSizeInBits() >= 2,
5471 "result type must be at least 2 bits wide", Call);
5473 bool IsDestTypeVector = DestTy->isVectorTy();
5474 Check(SrcTy->isVectorTy() == IsDestTypeVector,
5475 "ucmp/scmp argument and result types must both be either vector or "
5476 "scalar types",
5477 Call);
5478 if (IsDestTypeVector) {
5479 auto SrcVecLen = cast<VectorType>(SrcTy)->getElementCount();
5480 auto DestVecLen = cast<VectorType>(DestTy)->getElementCount();
5481 Check(SrcVecLen == DestVecLen,
5482 "return type and arguments must have the same number of "
5483 "elements",
5484 Call);
5486 break;
5488 case Intrinsic::coro_id: {
5489 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5490 if (isa<ConstantPointerNull>(InfoArg))
5491 break;
5492 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5493 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5494 "info argument of llvm.coro.id must refer to an initialized "
5495 "constant");
5496 Constant *Init = GV->getInitializer();
5497 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5498 "info argument of llvm.coro.id must refer to either a struct or "
5499 "an array");
5500 break;
5502 case Intrinsic::is_fpclass: {
5503 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5504 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5505 "unsupported bits for llvm.is.fpclass test mask");
5506 break;
5508 case Intrinsic::fptrunc_round: {
5509 // Check the rounding mode
5510 Metadata *MD = nullptr;
5511 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5512 if (MAV)
5513 MD = MAV->getMetadata();
5515 Check(MD != nullptr, "missing rounding mode argument", Call);
5517 Check(isa<MDString>(MD),
5518 ("invalid value for llvm.fptrunc.round metadata operand"
5519 " (the operand should be a string)"),
5520 MD);
5522 std::optional<RoundingMode> RoundMode =
5523 convertStrToRoundingMode(cast<MDString>(MD)->getString());
5524 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5525 "unsupported rounding mode argument", Call);
5526 break;
5528 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5529 #include "llvm/IR/VPIntrinsics.def"
5530 #undef BEGIN_REGISTER_VP_INTRINSIC
5531 visitVPIntrinsic(cast<VPIntrinsic>(Call));
5532 break;
5533 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5534 case Intrinsic::INTRINSIC:
5535 #include "llvm/IR/ConstrainedOps.def"
5536 #undef INSTRUCTION
5537 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5538 break;
5539 case Intrinsic::dbg_declare: // llvm.dbg.declare
5540 Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5541 "invalid llvm.dbg.declare intrinsic call 1", Call);
5542 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5543 break;
5544 case Intrinsic::dbg_value: // llvm.dbg.value
5545 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5546 break;
5547 case Intrinsic::dbg_assign: // llvm.dbg.assign
5548 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5549 break;
5550 case Intrinsic::dbg_label: // llvm.dbg.label
5551 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5552 break;
5553 case Intrinsic::memcpy:
5554 case Intrinsic::memcpy_inline:
5555 case Intrinsic::memmove:
5556 case Intrinsic::memset:
5557 case Intrinsic::memset_inline:
5558 case Intrinsic::experimental_memset_pattern: {
5559 break;
5561 case Intrinsic::memcpy_element_unordered_atomic:
5562 case Intrinsic::memmove_element_unordered_atomic:
5563 case Intrinsic::memset_element_unordered_atomic: {
5564 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5566 ConstantInt *ElementSizeCI =
5567 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5568 const APInt &ElementSizeVal = ElementSizeCI->getValue();
5569 Check(ElementSizeVal.isPowerOf2(),
5570 "element size of the element-wise atomic memory intrinsic "
5571 "must be a power of 2",
5572 Call);
5574 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5575 return Alignment && ElementSizeVal.ule(Alignment->value());
5577 Check(IsValidAlignment(AMI->getDestAlign()),
5578 "incorrect alignment of the destination argument", Call);
5579 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5580 Check(IsValidAlignment(AMT->getSourceAlign()),
5581 "incorrect alignment of the source argument", Call);
5583 break;
5585 case Intrinsic::call_preallocated_setup: {
5586 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5587 Check(NumArgs != nullptr,
5588 "llvm.call.preallocated.setup argument must be a constant");
5589 bool FoundCall = false;
5590 for (User *U : Call.users()) {
5591 auto *UseCall = dyn_cast<CallBase>(U);
5592 Check(UseCall != nullptr,
5593 "Uses of llvm.call.preallocated.setup must be calls");
5594 const Function *Fn = UseCall->getCalledFunction();
5595 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5596 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5597 Check(AllocArgIndex != nullptr,
5598 "llvm.call.preallocated.alloc arg index must be a constant");
5599 auto AllocArgIndexInt = AllocArgIndex->getValue();
5600 Check(AllocArgIndexInt.sge(0) &&
5601 AllocArgIndexInt.slt(NumArgs->getValue()),
5602 "llvm.call.preallocated.alloc arg index must be between 0 and "
5603 "corresponding "
5604 "llvm.call.preallocated.setup's argument count");
5605 } else if (Fn && Fn->getIntrinsicID() ==
5606 Intrinsic::call_preallocated_teardown) {
5607 // nothing to do
5608 } else {
5609 Check(!FoundCall, "Can have at most one call corresponding to a "
5610 "llvm.call.preallocated.setup");
5611 FoundCall = true;
5612 size_t NumPreallocatedArgs = 0;
5613 for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5614 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5615 ++NumPreallocatedArgs;
5618 Check(NumPreallocatedArgs != 0,
5619 "cannot use preallocated intrinsics on a call without "
5620 "preallocated arguments");
5621 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5622 "llvm.call.preallocated.setup arg size must be equal to number "
5623 "of preallocated arguments "
5624 "at call site",
5625 Call, *UseCall);
5626 // getOperandBundle() cannot be called if more than one of the operand
5627 // bundle exists. There is already a check elsewhere for this, so skip
5628 // here if we see more than one.
5629 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5630 1) {
5631 return;
5633 auto PreallocatedBundle =
5634 UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5635 Check(PreallocatedBundle,
5636 "Use of llvm.call.preallocated.setup outside intrinsics "
5637 "must be in \"preallocated\" operand bundle");
5638 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5639 "preallocated bundle must have token from corresponding "
5640 "llvm.call.preallocated.setup");
5643 break;
5645 case Intrinsic::call_preallocated_arg: {
5646 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5647 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5648 Intrinsic::call_preallocated_setup,
5649 "llvm.call.preallocated.arg token argument must be a "
5650 "llvm.call.preallocated.setup");
5651 Check(Call.hasFnAttr(Attribute::Preallocated),
5652 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5653 "call site attribute");
5654 break;
5656 case Intrinsic::call_preallocated_teardown: {
5657 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5658 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5659 Intrinsic::call_preallocated_setup,
5660 "llvm.call.preallocated.teardown token argument must be a "
5661 "llvm.call.preallocated.setup");
5662 break;
5664 case Intrinsic::gcroot:
5665 case Intrinsic::gcwrite:
5666 case Intrinsic::gcread:
5667 if (ID == Intrinsic::gcroot) {
5668 AllocaInst *AI =
5669 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5670 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5671 Check(isa<Constant>(Call.getArgOperand(1)),
5672 "llvm.gcroot parameter #2 must be a constant.", Call);
5673 if (!AI->getAllocatedType()->isPointerTy()) {
5674 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5675 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5676 "or argument #2 must be a non-null constant.",
5677 Call);
5681 Check(Call.getParent()->getParent()->hasGC(),
5682 "Enclosing function does not use GC.", Call);
5683 break;
5684 case Intrinsic::init_trampoline:
5685 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5686 "llvm.init_trampoline parameter #2 must resolve to a function.",
5687 Call);
5688 break;
5689 case Intrinsic::prefetch:
5690 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5691 "rw argument to llvm.prefetch must be 0-1", Call);
5692 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5693 "locality argument to llvm.prefetch must be 0-3", Call);
5694 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5695 "cache type argument to llvm.prefetch must be 0-1", Call);
5696 break;
5697 case Intrinsic::stackprotector:
5698 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5699 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5700 break;
5701 case Intrinsic::localescape: {
5702 BasicBlock *BB = Call.getParent();
5703 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5704 Call);
5705 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5706 Call);
5707 for (Value *Arg : Call.args()) {
5708 if (isa<ConstantPointerNull>(Arg))
5709 continue; // Null values are allowed as placeholders.
5710 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5711 Check(AI && AI->isStaticAlloca(),
5712 "llvm.localescape only accepts static allocas", Call);
5714 FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5715 SawFrameEscape = true;
5716 break;
5718 case Intrinsic::localrecover: {
5719 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5720 Function *Fn = dyn_cast<Function>(FnArg);
5721 Check(Fn && !Fn->isDeclaration(),
5722 "llvm.localrecover first "
5723 "argument must be function defined in this module",
5724 Call);
5725 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5726 auto &Entry = FrameEscapeInfo[Fn];
5727 Entry.second = unsigned(
5728 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5729 break;
5732 case Intrinsic::experimental_gc_statepoint:
5733 if (auto *CI = dyn_cast<CallInst>(&Call))
5734 Check(!CI->isInlineAsm(),
5735 "gc.statepoint support for inline assembly unimplemented", CI);
5736 Check(Call.getParent()->getParent()->hasGC(),
5737 "Enclosing function does not use GC.", Call);
5739 verifyStatepoint(Call);
5740 break;
5741 case Intrinsic::experimental_gc_result: {
5742 Check(Call.getParent()->getParent()->hasGC(),
5743 "Enclosing function does not use GC.", Call);
5745 auto *Statepoint = Call.getArgOperand(0);
5746 if (isa<UndefValue>(Statepoint))
5747 break;
5749 // Are we tied to a statepoint properly?
5750 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5751 const Function *StatepointFn =
5752 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5753 Check(StatepointFn && StatepointFn->isDeclaration() &&
5754 StatepointFn->getIntrinsicID() ==
5755 Intrinsic::experimental_gc_statepoint,
5756 "gc.result operand #1 must be from a statepoint", Call,
5757 Call.getArgOperand(0));
5759 // Check that result type matches wrapped callee.
5760 auto *TargetFuncType =
5761 cast<FunctionType>(StatepointCall->getParamElementType(2));
5762 Check(Call.getType() == TargetFuncType->getReturnType(),
5763 "gc.result result type does not match wrapped callee", Call);
5764 break;
5766 case Intrinsic::experimental_gc_relocate: {
5767 Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5769 Check(isa<PointerType>(Call.getType()->getScalarType()),
5770 "gc.relocate must return a pointer or a vector of pointers", Call);
5772 // Check that this relocate is correctly tied to the statepoint
5774 // This is case for relocate on the unwinding path of an invoke statepoint
5775 if (LandingPadInst *LandingPad =
5776 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5778 const BasicBlock *InvokeBB =
5779 LandingPad->getParent()->getUniquePredecessor();
5781 // Landingpad relocates should have only one predecessor with invoke
5782 // statepoint terminator
5783 Check(InvokeBB, "safepoints should have unique landingpads",
5784 LandingPad->getParent());
5785 Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5786 InvokeBB);
5787 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5788 "gc relocate should be linked to a statepoint", InvokeBB);
5789 } else {
5790 // In all other cases relocate should be tied to the statepoint directly.
5791 // This covers relocates on a normal return path of invoke statepoint and
5792 // relocates of a call statepoint.
5793 auto *Token = Call.getArgOperand(0);
5794 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5795 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5798 // Verify rest of the relocate arguments.
5799 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5801 // Both the base and derived must be piped through the safepoint.
5802 Value *Base = Call.getArgOperand(1);
5803 Check(isa<ConstantInt>(Base),
5804 "gc.relocate operand #2 must be integer offset", Call);
5806 Value *Derived = Call.getArgOperand(2);
5807 Check(isa<ConstantInt>(Derived),
5808 "gc.relocate operand #3 must be integer offset", Call);
5810 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5811 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5813 // Check the bounds
5814 if (isa<UndefValue>(StatepointCall))
5815 break;
5816 if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5817 .getOperandBundle(LLVMContext::OB_gc_live)) {
5818 Check(BaseIndex < Opt->Inputs.size(),
5819 "gc.relocate: statepoint base index out of bounds", Call);
5820 Check(DerivedIndex < Opt->Inputs.size(),
5821 "gc.relocate: statepoint derived index out of bounds", Call);
5824 // Relocated value must be either a pointer type or vector-of-pointer type,
5825 // but gc_relocate does not need to return the same pointer type as the
5826 // relocated pointer. It can be casted to the correct type later if it's
5827 // desired. However, they must have the same address space and 'vectorness'
5828 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5829 auto *ResultType = Call.getType();
5830 auto *DerivedType = Relocate.getDerivedPtr()->getType();
5831 auto *BaseType = Relocate.getBasePtr()->getType();
5833 Check(BaseType->isPtrOrPtrVectorTy(),
5834 "gc.relocate: relocated value must be a pointer", Call);
5835 Check(DerivedType->isPtrOrPtrVectorTy(),
5836 "gc.relocate: relocated value must be a pointer", Call);
5838 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5839 "gc.relocate: vector relocates to vector and pointer to pointer",
5840 Call);
5841 Check(
5842 ResultType->getPointerAddressSpace() ==
5843 DerivedType->getPointerAddressSpace(),
5844 "gc.relocate: relocating a pointer shouldn't change its address space",
5845 Call);
5847 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5848 Check(GC, "gc.relocate: calling function must have GCStrategy",
5849 Call.getFunction());
5850 if (GC) {
5851 auto isGCPtr = [&GC](Type *PTy) {
5852 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5854 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5855 Check(isGCPtr(BaseType),
5856 "gc.relocate: relocated value must be a gc pointer", Call);
5857 Check(isGCPtr(DerivedType),
5858 "gc.relocate: relocated value must be a gc pointer", Call);
5860 break;
5862 case Intrinsic::experimental_patchpoint: {
5863 if (Call.getCallingConv() == CallingConv::AnyReg) {
5864 Check(Call.getType()->isSingleValueType(),
5865 "patchpoint: invalid return type used with anyregcc", Call);
5867 break;
5869 case Intrinsic::eh_exceptioncode:
5870 case Intrinsic::eh_exceptionpointer: {
5871 Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5872 "eh.exceptionpointer argument must be a catchpad", Call);
5873 break;
5875 case Intrinsic::get_active_lane_mask: {
5876 Check(Call.getType()->isVectorTy(),
5877 "get_active_lane_mask: must return a "
5878 "vector",
5879 Call);
5880 auto *ElemTy = Call.getType()->getScalarType();
5881 Check(ElemTy->isIntegerTy(1),
5882 "get_active_lane_mask: element type is not "
5883 "i1",
5884 Call);
5885 break;
5887 case Intrinsic::experimental_get_vector_length: {
5888 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5889 Check(!VF->isNegative() && !VF->isZero(),
5890 "get_vector_length: VF must be positive", Call);
5891 break;
5893 case Intrinsic::masked_load: {
5894 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5895 Call);
5897 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5898 Value *Mask = Call.getArgOperand(2);
5899 Value *PassThru = Call.getArgOperand(3);
5900 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5901 Call);
5902 Check(Alignment->getValue().isPowerOf2(),
5903 "masked_load: alignment must be a power of 2", Call);
5904 Check(PassThru->getType() == Call.getType(),
5905 "masked_load: pass through and return type must match", Call);
5906 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5907 cast<VectorType>(Call.getType())->getElementCount(),
5908 "masked_load: vector mask must be same length as return", Call);
5909 break;
5911 case Intrinsic::masked_store: {
5912 Value *Val = Call.getArgOperand(0);
5913 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5914 Value *Mask = Call.getArgOperand(3);
5915 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5916 Call);
5917 Check(Alignment->getValue().isPowerOf2(),
5918 "masked_store: alignment must be a power of 2", Call);
5919 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5920 cast<VectorType>(Val->getType())->getElementCount(),
5921 "masked_store: vector mask must be same length as value", Call);
5922 break;
5925 case Intrinsic::masked_gather: {
5926 const APInt &Alignment =
5927 cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5928 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5929 "masked_gather: alignment must be 0 or a power of 2", Call);
5930 break;
5932 case Intrinsic::masked_scatter: {
5933 const APInt &Alignment =
5934 cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5935 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5936 "masked_scatter: alignment must be 0 or a power of 2", Call);
5937 break;
5940 case Intrinsic::experimental_guard: {
5941 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5942 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5943 "experimental_guard must have exactly one "
5944 "\"deopt\" operand bundle");
5945 break;
5948 case Intrinsic::experimental_deoptimize: {
5949 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5950 Call);
5951 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5952 "experimental_deoptimize must have exactly one "
5953 "\"deopt\" operand bundle");
5954 Check(Call.getType() == Call.getFunction()->getReturnType(),
5955 "experimental_deoptimize return type must match caller return type");
5957 if (isa<CallInst>(Call)) {
5958 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5959 Check(RI,
5960 "calls to experimental_deoptimize must be followed by a return");
5962 if (!Call.getType()->isVoidTy() && RI)
5963 Check(RI->getReturnValue() == &Call,
5964 "calls to experimental_deoptimize must be followed by a return "
5965 "of the value computed by experimental_deoptimize");
5968 break;
5970 case Intrinsic::vastart: {
5971 Check(Call.getFunction()->isVarArg(),
5972 "va_start called in a non-varargs function");
5973 break;
5975 case Intrinsic::vector_reduce_and:
5976 case Intrinsic::vector_reduce_or:
5977 case Intrinsic::vector_reduce_xor:
5978 case Intrinsic::vector_reduce_add:
5979 case Intrinsic::vector_reduce_mul:
5980 case Intrinsic::vector_reduce_smax:
5981 case Intrinsic::vector_reduce_smin:
5982 case Intrinsic::vector_reduce_umax:
5983 case Intrinsic::vector_reduce_umin: {
5984 Type *ArgTy = Call.getArgOperand(0)->getType();
5985 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5986 "Intrinsic has incorrect argument type!");
5987 break;
5989 case Intrinsic::vector_reduce_fmax:
5990 case Intrinsic::vector_reduce_fmin: {
5991 Type *ArgTy = Call.getArgOperand(0)->getType();
5992 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5993 "Intrinsic has incorrect argument type!");
5994 break;
5996 case Intrinsic::vector_reduce_fadd:
5997 case Intrinsic::vector_reduce_fmul: {
5998 // Unlike the other reductions, the first argument is a start value. The
5999 // second argument is the vector to be reduced.
6000 Type *ArgTy = Call.getArgOperand(1)->getType();
6001 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
6002 "Intrinsic has incorrect argument type!");
6003 break;
6005 case Intrinsic::smul_fix:
6006 case Intrinsic::smul_fix_sat:
6007 case Intrinsic::umul_fix:
6008 case Intrinsic::umul_fix_sat:
6009 case Intrinsic::sdiv_fix:
6010 case Intrinsic::sdiv_fix_sat:
6011 case Intrinsic::udiv_fix:
6012 case Intrinsic::udiv_fix_sat: {
6013 Value *Op1 = Call.getArgOperand(0);
6014 Value *Op2 = Call.getArgOperand(1);
6015 Check(Op1->getType()->isIntOrIntVectorTy(),
6016 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6017 "vector of ints");
6018 Check(Op2->getType()->isIntOrIntVectorTy(),
6019 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6020 "vector of ints");
6022 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
6023 Check(Op3->getType()->isIntegerTy(),
6024 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6025 Check(Op3->getBitWidth() <= 32,
6026 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6028 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
6029 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
6030 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
6031 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6032 "the operands");
6033 } else {
6034 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
6035 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6036 "to the width of the operands");
6038 break;
6040 case Intrinsic::lrint:
6041 case Intrinsic::llrint:
6042 case Intrinsic::lround:
6043 case Intrinsic::llround: {
6044 Type *ValTy = Call.getArgOperand(0)->getType();
6045 Type *ResultTy = Call.getType();
6046 auto *VTy = dyn_cast<VectorType>(ValTy);
6047 auto *RTy = dyn_cast<VectorType>(ResultTy);
6048 Check(ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
6049 ExpectedName + ": argument must be floating-point or vector "
6050 "of floating-points, and result must be integer or "
6051 "vector of integers",
6052 &Call);
6053 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
6054 ExpectedName + ": argument and result disagree on vector use", &Call);
6055 if (VTy) {
6056 Check(VTy->getElementCount() == RTy->getElementCount(),
6057 ExpectedName + ": argument must be same length as result", &Call);
6059 break;
6061 case Intrinsic::bswap: {
6062 Type *Ty = Call.getType();
6063 unsigned Size = Ty->getScalarSizeInBits();
6064 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
6065 break;
6067 case Intrinsic::invariant_start: {
6068 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
6069 Check(InvariantSize &&
6070 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
6071 "invariant_start parameter must be -1, 0 or a positive number",
6072 &Call);
6073 break;
6075 case Intrinsic::matrix_multiply:
6076 case Intrinsic::matrix_transpose:
6077 case Intrinsic::matrix_column_major_load:
6078 case Intrinsic::matrix_column_major_store: {
6079 Function *IF = Call.getCalledFunction();
6080 ConstantInt *Stride = nullptr;
6081 ConstantInt *NumRows;
6082 ConstantInt *NumColumns;
6083 VectorType *ResultTy;
6084 Type *Op0ElemTy = nullptr;
6085 Type *Op1ElemTy = nullptr;
6086 switch (ID) {
6087 case Intrinsic::matrix_multiply: {
6088 NumRows = cast<ConstantInt>(Call.getArgOperand(2));
6089 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
6090 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
6091 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
6092 ->getNumElements() ==
6093 NumRows->getZExtValue() * N->getZExtValue(),
6094 "First argument of a matrix operation does not match specified "
6095 "shape!");
6096 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
6097 ->getNumElements() ==
6098 N->getZExtValue() * NumColumns->getZExtValue(),
6099 "Second argument of a matrix operation does not match specified "
6100 "shape!");
6102 ResultTy = cast<VectorType>(Call.getType());
6103 Op0ElemTy =
6104 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6105 Op1ElemTy =
6106 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
6107 break;
6109 case Intrinsic::matrix_transpose:
6110 NumRows = cast<ConstantInt>(Call.getArgOperand(1));
6111 NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
6112 ResultTy = cast<VectorType>(Call.getType());
6113 Op0ElemTy =
6114 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6115 break;
6116 case Intrinsic::matrix_column_major_load: {
6117 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
6118 NumRows = cast<ConstantInt>(Call.getArgOperand(3));
6119 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
6120 ResultTy = cast<VectorType>(Call.getType());
6121 break;
6123 case Intrinsic::matrix_column_major_store: {
6124 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
6125 NumRows = cast<ConstantInt>(Call.getArgOperand(4));
6126 NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
6127 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
6128 Op0ElemTy =
6129 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
6130 break;
6132 default:
6133 llvm_unreachable("unexpected intrinsic");
6136 Check(ResultTy->getElementType()->isIntegerTy() ||
6137 ResultTy->getElementType()->isFloatingPointTy(),
6138 "Result type must be an integer or floating-point type!", IF);
6140 if (Op0ElemTy)
6141 Check(ResultTy->getElementType() == Op0ElemTy,
6142 "Vector element type mismatch of the result and first operand "
6143 "vector!",
6144 IF);
6146 if (Op1ElemTy)
6147 Check(ResultTy->getElementType() == Op1ElemTy,
6148 "Vector element type mismatch of the result and second operand "
6149 "vector!",
6150 IF);
6152 Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
6153 NumRows->getZExtValue() * NumColumns->getZExtValue(),
6154 "Result of a matrix operation does not fit in the returned vector!");
6156 if (Stride)
6157 Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
6158 "Stride must be greater or equal than the number of rows!", IF);
6160 break;
6162 case Intrinsic::vector_splice: {
6163 VectorType *VecTy = cast<VectorType>(Call.getType());
6164 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
6165 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6166 if (Call.getParent() && Call.getParent()->getParent()) {
6167 AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
6168 if (Attrs.hasFnAttr(Attribute::VScaleRange))
6169 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
6171 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6172 (Idx >= 0 && Idx < KnownMinNumElements),
6173 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6174 "known minimum number of elements in the vector. For scalable "
6175 "vectors the minimum number of elements is determined from "
6176 "vscale_range.",
6177 &Call);
6178 break;
6180 case Intrinsic::stepvector: {
6181 VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
6182 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6183 VecTy->getScalarSizeInBits() >= 8,
6184 "stepvector only supported for vectors of integers "
6185 "with a bitwidth of at least 8.",
6186 &Call);
6187 break;
6189 case Intrinsic::experimental_vector_match: {
6190 Value *Op1 = Call.getArgOperand(0);
6191 Value *Op2 = Call.getArgOperand(1);
6192 Value *Mask = Call.getArgOperand(2);
6194 VectorType *Op1Ty = dyn_cast<VectorType>(Op1->getType());
6195 VectorType *Op2Ty = dyn_cast<VectorType>(Op2->getType());
6196 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
6198 Check(Op1Ty && Op2Ty && MaskTy, "Operands must be vectors.", &Call);
6199 Check(isa<FixedVectorType>(Op2Ty),
6200 "Second operand must be a fixed length vector.", &Call);
6201 Check(Op1Ty->getElementType()->isIntegerTy(),
6202 "First operand must be a vector of integers.", &Call);
6203 Check(Op1Ty->getElementType() == Op2Ty->getElementType(),
6204 "First two operands must have the same element type.", &Call);
6205 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(),
6206 "First operand and mask must have the same number of elements.",
6207 &Call);
6208 Check(MaskTy->getElementType()->isIntegerTy(1),
6209 "Mask must be a vector of i1's.", &Call);
6210 Check(Call.getType() == MaskTy, "Return type must match the mask type.",
6211 &Call);
6212 break;
6214 case Intrinsic::vector_insert: {
6215 Value *Vec = Call.getArgOperand(0);
6216 Value *SubVec = Call.getArgOperand(1);
6217 Value *Idx = Call.getArgOperand(2);
6218 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6220 VectorType *VecTy = cast<VectorType>(Vec->getType());
6221 VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
6223 ElementCount VecEC = VecTy->getElementCount();
6224 ElementCount SubVecEC = SubVecTy->getElementCount();
6225 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6226 "vector_insert parameters must have the same element "
6227 "type.",
6228 &Call);
6229 Check(IdxN % SubVecEC.getKnownMinValue() == 0,
6230 "vector_insert index must be a constant multiple of "
6231 "the subvector's known minimum vector length.");
6233 // If this insertion is not the 'mixed' case where a fixed vector is
6234 // inserted into a scalable vector, ensure that the insertion of the
6235 // subvector does not overrun the parent vector.
6236 if (VecEC.isScalable() == SubVecEC.isScalable()) {
6237 Check(IdxN < VecEC.getKnownMinValue() &&
6238 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6239 "subvector operand of vector_insert would overrun the "
6240 "vector being inserted into.");
6242 break;
6244 case Intrinsic::vector_extract: {
6245 Value *Vec = Call.getArgOperand(0);
6246 Value *Idx = Call.getArgOperand(1);
6247 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6249 VectorType *ResultTy = cast<VectorType>(Call.getType());
6250 VectorType *VecTy = cast<VectorType>(Vec->getType());
6252 ElementCount VecEC = VecTy->getElementCount();
6253 ElementCount ResultEC = ResultTy->getElementCount();
6255 Check(ResultTy->getElementType() == VecTy->getElementType(),
6256 "vector_extract result must have the same element "
6257 "type as the input vector.",
6258 &Call);
6259 Check(IdxN % ResultEC.getKnownMinValue() == 0,
6260 "vector_extract index must be a constant multiple of "
6261 "the result type's known minimum vector length.");
6263 // If this extraction is not the 'mixed' case where a fixed vector is
6264 // extracted from a scalable vector, ensure that the extraction does not
6265 // overrun the parent vector.
6266 if (VecEC.isScalable() == ResultEC.isScalable()) {
6267 Check(IdxN < VecEC.getKnownMinValue() &&
6268 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6269 "vector_extract would overrun.");
6271 break;
6273 case Intrinsic::experimental_vector_partial_reduce_add: {
6274 VectorType *AccTy = cast<VectorType>(Call.getArgOperand(0)->getType());
6275 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(1)->getType());
6277 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6278 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6280 Check((VecWidth % AccWidth) == 0,
6281 "Invalid vector widths for partial "
6282 "reduction. The width of the input vector "
6283 "must be a positive integer multiple of "
6284 "the width of the accumulator vector.");
6285 break;
6287 case Intrinsic::experimental_noalias_scope_decl: {
6288 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
6289 break;
6291 case Intrinsic::preserve_array_access_index:
6292 case Intrinsic::preserve_struct_access_index:
6293 case Intrinsic::aarch64_ldaxr:
6294 case Intrinsic::aarch64_ldxr:
6295 case Intrinsic::arm_ldaex:
6296 case Intrinsic::arm_ldrex: {
6297 Type *ElemTy = Call.getParamElementType(0);
6298 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
6299 &Call);
6300 break;
6302 case Intrinsic::aarch64_stlxr:
6303 case Intrinsic::aarch64_stxr:
6304 case Intrinsic::arm_stlex:
6305 case Intrinsic::arm_strex: {
6306 Type *ElemTy = Call.getAttributes().getParamElementType(1);
6307 Check(ElemTy,
6308 "Intrinsic requires elementtype attribute on second argument.",
6309 &Call);
6310 break;
6312 case Intrinsic::aarch64_prefetch: {
6313 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
6314 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6315 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
6316 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
6317 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
6318 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6319 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
6320 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6321 break;
6323 case Intrinsic::callbr_landingpad: {
6324 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
6325 Check(CBR, "intrinstic requires callbr operand", &Call);
6326 if (!CBR)
6327 break;
6329 const BasicBlock *LandingPadBB = Call.getParent();
6330 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
6331 if (!PredBB) {
6332 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
6333 break;
6335 if (!isa<CallBrInst>(PredBB->getTerminator())) {
6336 CheckFailed("Intrinsic must have corresponding callbr in predecessor",
6337 &Call);
6338 break;
6340 Check(llvm::is_contained(CBR->getIndirectDests(), LandingPadBB),
6341 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6342 "block in indirect destination list",
6343 &Call);
6344 const Instruction &First = *LandingPadBB->begin();
6345 Check(&First == &Call, "No other instructions may proceed intrinsic",
6346 &Call);
6347 break;
6349 case Intrinsic::amdgcn_cs_chain: {
6350 auto CallerCC = Call.getCaller()->getCallingConv();
6351 switch (CallerCC) {
6352 case CallingConv::AMDGPU_CS:
6353 case CallingConv::AMDGPU_CS_Chain:
6354 case CallingConv::AMDGPU_CS_ChainPreserve:
6355 break;
6356 default:
6357 CheckFailed("Intrinsic can only be used from functions with the "
6358 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6359 "calling conventions",
6360 &Call);
6361 break;
6364 Check(Call.paramHasAttr(2, Attribute::InReg),
6365 "SGPR arguments must have the `inreg` attribute", &Call);
6366 Check(!Call.paramHasAttr(3, Attribute::InReg),
6367 "VGPR arguments must not have the `inreg` attribute", &Call);
6368 break;
6370 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6371 auto CallerCC = Call.getCaller()->getCallingConv();
6372 switch (CallerCC) {
6373 case CallingConv::AMDGPU_CS_Chain:
6374 case CallingConv::AMDGPU_CS_ChainPreserve:
6375 break;
6376 default:
6377 CheckFailed("Intrinsic can only be used from functions with the "
6378 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6379 "calling conventions",
6380 &Call);
6381 break;
6384 unsigned InactiveIdx = 1;
6385 Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6386 "Value for inactive lanes must not have the `inreg` attribute",
6387 &Call);
6388 Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6389 "Value for inactive lanes must be a function argument", &Call);
6390 Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6391 "Value for inactive lanes must be a VGPR function argument", &Call);
6392 break;
6394 case Intrinsic::amdgcn_s_prefetch_data: {
6395 Check(
6396 AMDGPU::isFlatGlobalAddrSpace(
6397 Call.getArgOperand(0)->getType()->getPointerAddressSpace()),
6398 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6399 break;
6401 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4:
6402 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: {
6403 Value *Src0 = Call.getArgOperand(0);
6404 Value *Src1 = Call.getArgOperand(1);
6406 uint64_t CBSZ = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
6407 uint64_t BLGP = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
6408 Check(CBSZ <= 4, "invalid value for cbsz format", Call,
6409 Call.getArgOperand(3));
6410 Check(BLGP <= 4, "invalid value for blgp format", Call,
6411 Call.getArgOperand(4));
6413 // AMDGPU::MFMAScaleFormats values
6414 auto getFormatNumRegs = [](unsigned FormatVal) {
6415 switch (FormatVal) {
6416 case 0:
6417 case 1:
6418 return 8u;
6419 case 2:
6420 case 3:
6421 return 6u;
6422 case 4:
6423 return 4u;
6424 default:
6425 llvm_unreachable("invalid format value");
6429 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6430 if (!Ty || !Ty->getElementType()->isIntegerTy(32))
6431 return false;
6432 unsigned NumElts = Ty->getNumElements();
6433 return NumElts == 4 || NumElts == 6 || NumElts == 8;
6436 auto *Src0Ty = dyn_cast<FixedVectorType>(Src0->getType());
6437 auto *Src1Ty = dyn_cast<FixedVectorType>(Src1->getType());
6438 Check(isValidSrcASrcBVector(Src0Ty),
6439 "operand 0 must be 4, 6 or 8 element i32 vector", &Call, Src0);
6440 Check(isValidSrcASrcBVector(Src1Ty),
6441 "operand 1 must be 4, 6 or 8 element i32 vector", &Call, Src1);
6443 // Permit excess registers for the format.
6444 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ),
6445 "invalid vector type for format", &Call, Src0, Call.getArgOperand(3));
6446 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP),
6447 "invalid vector type for format", &Call, Src1, Call.getArgOperand(5));
6448 break;
6450 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6451 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6452 Value *V = Call.getArgOperand(0);
6453 unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6454 Check(RegCount % 8 == 0,
6455 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6456 Check((RegCount >= 24 && RegCount <= 256),
6457 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6458 break;
6460 case Intrinsic::experimental_convergence_entry:
6461 case Intrinsic::experimental_convergence_anchor:
6462 break;
6463 case Intrinsic::experimental_convergence_loop:
6464 break;
6465 case Intrinsic::ptrmask: {
6466 Type *Ty0 = Call.getArgOperand(0)->getType();
6467 Type *Ty1 = Call.getArgOperand(1)->getType();
6468 Check(Ty0->isPtrOrPtrVectorTy(),
6469 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6470 "of pointers",
6471 &Call);
6472 Check(
6473 Ty0->isVectorTy() == Ty1->isVectorTy(),
6474 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6475 &Call);
6476 if (Ty0->isVectorTy())
6477 Check(cast<VectorType>(Ty0)->getElementCount() ==
6478 cast<VectorType>(Ty1)->getElementCount(),
6479 "llvm.ptrmask intrinsic arguments must have the same number of "
6480 "elements",
6481 &Call);
6482 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6483 "llvm.ptrmask intrinsic second argument bitwidth must match "
6484 "pointer index type size of first argument",
6485 &Call);
6486 break;
6488 case Intrinsic::threadlocal_address: {
6489 const Value &Arg0 = *Call.getArgOperand(0);
6490 Check(isa<GlobalValue>(Arg0),
6491 "llvm.threadlocal.address first argument must be a GlobalValue");
6492 Check(cast<GlobalValue>(Arg0).isThreadLocal(),
6493 "llvm.threadlocal.address operand isThreadLocal() must be true");
6494 break;
6496 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cta:
6497 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cluster:
6498 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_gpu:
6499 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_sys: {
6500 unsigned size = cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue();
6501 Check(size == 128, " The only supported value for size operand is 128");
6502 break;
6506 // Verify that there aren't any unmediated control transfers between funclets.
6507 if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6508 Function *F = Call.getParent()->getParent();
6509 if (F->hasPersonalityFn() &&
6510 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6511 // Run EH funclet coloring on-demand and cache results for other intrinsic
6512 // calls in this function
6513 if (BlockEHFuncletColors.empty())
6514 BlockEHFuncletColors = colorEHFunclets(*F);
6516 // Check for catch-/cleanup-pad in first funclet block
6517 bool InEHFunclet = false;
6518 BasicBlock *CallBB = Call.getParent();
6519 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6520 assert(CV.size() > 0 && "Uncolored block");
6521 for (BasicBlock *ColorFirstBB : CV)
6522 if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6523 InEHFunclet = true;
6525 // Check for funclet operand bundle
6526 bool HasToken = false;
6527 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6528 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6529 HasToken = true;
6531 // This would cause silent code truncation in WinEHPrepare
6532 if (InEHFunclet)
6533 Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6538 /// Carefully grab the subprogram from a local scope.
6540 /// This carefully grabs the subprogram from a local scope, avoiding the
6541 /// built-in assertions that would typically fire.
6542 static DISubprogram *getSubprogram(Metadata *LocalScope) {
6543 if (!LocalScope)
6544 return nullptr;
6546 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6547 return SP;
6549 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6550 return getSubprogram(LB->getRawScope());
6552 // Just return null; broken scope chains are checked elsewhere.
6553 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6554 return nullptr;
6557 void Verifier::visit(DbgLabelRecord &DLR) {
6558 CheckDI(isa<DILabel>(DLR.getRawLabel()),
6559 "invalid #dbg_label intrinsic variable", &DLR, DLR.getRawLabel());
6561 // Ignore broken !dbg attachments; they're checked elsewhere.
6562 if (MDNode *N = DLR.getDebugLoc().getAsMDNode())
6563 if (!isa<DILocation>(N))
6564 return;
6566 BasicBlock *BB = DLR.getParent();
6567 Function *F = BB ? BB->getParent() : nullptr;
6569 // The scopes for variables and !dbg attachments must agree.
6570 DILabel *Label = DLR.getLabel();
6571 DILocation *Loc = DLR.getDebugLoc();
6572 CheckDI(Loc, "#dbg_label record requires a !dbg attachment", &DLR, BB, F);
6574 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6575 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6576 if (!LabelSP || !LocSP)
6577 return;
6579 CheckDI(LabelSP == LocSP,
6580 "mismatched subprogram between #dbg_label label and !dbg attachment",
6581 &DLR, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6582 Loc->getScope()->getSubprogram());
6585 void Verifier::visit(DbgVariableRecord &DVR) {
6586 BasicBlock *BB = DVR.getParent();
6587 Function *F = BB->getParent();
6589 CheckDI(DVR.getType() == DbgVariableRecord::LocationType::Value ||
6590 DVR.getType() == DbgVariableRecord::LocationType::Declare ||
6591 DVR.getType() == DbgVariableRecord::LocationType::Assign,
6592 "invalid #dbg record type", &DVR, DVR.getType());
6594 // The location for a DbgVariableRecord must be either a ValueAsMetadata,
6595 // DIArgList, or an empty MDNode (which is a legacy representation for an
6596 // "undef" location).
6597 auto *MD = DVR.getRawLocation();
6598 CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6599 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())),
6600 "invalid #dbg record address/value", &DVR, MD);
6601 if (auto *VAM = dyn_cast<ValueAsMetadata>(MD))
6602 visitValueAsMetadata(*VAM, F);
6603 else if (auto *AL = dyn_cast<DIArgList>(MD))
6604 visitDIArgList(*AL, F);
6606 CheckDI(isa_and_nonnull<DILocalVariable>(DVR.getRawVariable()),
6607 "invalid #dbg record variable", &DVR, DVR.getRawVariable());
6608 visitMDNode(*DVR.getRawVariable(), AreDebugLocsAllowed::No);
6610 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawExpression()),
6611 "invalid #dbg record expression", &DVR, DVR.getRawExpression());
6612 visitMDNode(*DVR.getExpression(), AreDebugLocsAllowed::No);
6614 if (DVR.isDbgAssign()) {
6615 CheckDI(isa_and_nonnull<DIAssignID>(DVR.getRawAssignID()),
6616 "invalid #dbg_assign DIAssignID", &DVR, DVR.getRawAssignID());
6617 visitMDNode(*cast<DIAssignID>(DVR.getRawAssignID()),
6618 AreDebugLocsAllowed::No);
6620 const auto *RawAddr = DVR.getRawAddress();
6621 // Similarly to the location above, the address for an assign
6622 // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which
6623 // represents an undef address.
6624 CheckDI(
6625 isa<ValueAsMetadata>(RawAddr) ||
6626 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6627 "invalid #dbg_assign address", &DVR, DVR.getRawAddress());
6628 if (auto *VAM = dyn_cast<ValueAsMetadata>(RawAddr))
6629 visitValueAsMetadata(*VAM, F);
6631 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawAddressExpression()),
6632 "invalid #dbg_assign address expression", &DVR,
6633 DVR.getRawAddressExpression());
6634 visitMDNode(*DVR.getAddressExpression(), AreDebugLocsAllowed::No);
6636 // All of the linked instructions should be in the same function as DVR.
6637 for (Instruction *I : at::getAssignmentInsts(&DVR))
6638 CheckDI(DVR.getFunction() == I->getFunction(),
6639 "inst not in same function as #dbg_assign", I, &DVR);
6642 // This check is redundant with one in visitLocalVariable().
6643 DILocalVariable *Var = DVR.getVariable();
6644 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6645 Var->getRawType());
6647 auto *DLNode = DVR.getDebugLoc().getAsMDNode();
6648 CheckDI(isa_and_nonnull<DILocation>(DLNode), "invalid #dbg record DILocation",
6649 &DVR, DLNode);
6650 DILocation *Loc = DVR.getDebugLoc();
6652 // The scopes for variables and !dbg attachments must agree.
6653 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6654 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6655 if (!VarSP || !LocSP)
6656 return; // Broken scope chains are checked elsewhere.
6658 CheckDI(VarSP == LocSP,
6659 "mismatched subprogram between #dbg record variable and DILocation",
6660 &DVR, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6661 Loc->getScope()->getSubprogram());
6663 verifyFnArgs(DVR);
6666 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6667 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6668 auto *RetTy = cast<VectorType>(VPCast->getType());
6669 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6670 Check(RetTy->getElementCount() == ValTy->getElementCount(),
6671 "VP cast intrinsic first argument and result vector lengths must be "
6672 "equal",
6673 *VPCast);
6675 switch (VPCast->getIntrinsicID()) {
6676 default:
6677 llvm_unreachable("Unknown VP cast intrinsic");
6678 case Intrinsic::vp_trunc:
6679 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6680 "llvm.vp.trunc intrinsic first argument and result element type "
6681 "must be integer",
6682 *VPCast);
6683 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6684 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6685 "larger than the bit size of the return type",
6686 *VPCast);
6687 break;
6688 case Intrinsic::vp_zext:
6689 case Intrinsic::vp_sext:
6690 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6691 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6692 "element type must be integer",
6693 *VPCast);
6694 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6695 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6696 "argument must be smaller than the bit size of the return type",
6697 *VPCast);
6698 break;
6699 case Intrinsic::vp_fptoui:
6700 case Intrinsic::vp_fptosi:
6701 case Intrinsic::vp_lrint:
6702 case Intrinsic::vp_llrint:
6703 Check(
6704 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6705 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
6706 "type must be floating-point and result element type must be integer",
6707 *VPCast);
6708 break;
6709 case Intrinsic::vp_uitofp:
6710 case Intrinsic::vp_sitofp:
6711 Check(
6712 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6713 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6714 "type must be integer and result element type must be floating-point",
6715 *VPCast);
6716 break;
6717 case Intrinsic::vp_fptrunc:
6718 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6719 "llvm.vp.fptrunc intrinsic first argument and result element type "
6720 "must be floating-point",
6721 *VPCast);
6722 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6723 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6724 "larger than the bit size of the return type",
6725 *VPCast);
6726 break;
6727 case Intrinsic::vp_fpext:
6728 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6729 "llvm.vp.fpext intrinsic first argument and result element type "
6730 "must be floating-point",
6731 *VPCast);
6732 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6733 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6734 "smaller than the bit size of the return type",
6735 *VPCast);
6736 break;
6737 case Intrinsic::vp_ptrtoint:
6738 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6739 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6740 "pointer and result element type must be integer",
6741 *VPCast);
6742 break;
6743 case Intrinsic::vp_inttoptr:
6744 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6745 "llvm.vp.inttoptr intrinsic first argument element type must be "
6746 "integer and result element type must be pointer",
6747 *VPCast);
6748 break;
6751 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6752 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6753 Check(CmpInst::isFPPredicate(Pred),
6754 "invalid predicate for VP FP comparison intrinsic", &VPI);
6756 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6757 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6758 Check(CmpInst::isIntPredicate(Pred),
6759 "invalid predicate for VP integer comparison intrinsic", &VPI);
6761 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6762 auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6763 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6764 "unsupported bits for llvm.vp.is.fpclass test mask");
6768 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6769 unsigned NumOperands = FPI.getNonMetadataArgCount();
6770 bool HasRoundingMD =
6771 Intrinsic::hasConstrainedFPRoundingModeOperand(FPI.getIntrinsicID());
6773 // Add the expected number of metadata operands.
6774 NumOperands += (1 + HasRoundingMD);
6776 // Compare intrinsics carry an extra predicate metadata operand.
6777 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6778 NumOperands += 1;
6779 Check((FPI.arg_size() == NumOperands),
6780 "invalid arguments for constrained FP intrinsic", &FPI);
6782 switch (FPI.getIntrinsicID()) {
6783 case Intrinsic::experimental_constrained_lrint:
6784 case Intrinsic::experimental_constrained_llrint: {
6785 Type *ValTy = FPI.getArgOperand(0)->getType();
6786 Type *ResultTy = FPI.getType();
6787 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6788 "Intrinsic does not support vectors", &FPI);
6789 break;
6792 case Intrinsic::experimental_constrained_lround:
6793 case Intrinsic::experimental_constrained_llround: {
6794 Type *ValTy = FPI.getArgOperand(0)->getType();
6795 Type *ResultTy = FPI.getType();
6796 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6797 "Intrinsic does not support vectors", &FPI);
6798 break;
6801 case Intrinsic::experimental_constrained_fcmp:
6802 case Intrinsic::experimental_constrained_fcmps: {
6803 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6804 Check(CmpInst::isFPPredicate(Pred),
6805 "invalid predicate for constrained FP comparison intrinsic", &FPI);
6806 break;
6809 case Intrinsic::experimental_constrained_fptosi:
6810 case Intrinsic::experimental_constrained_fptoui: {
6811 Value *Operand = FPI.getArgOperand(0);
6812 ElementCount SrcEC;
6813 Check(Operand->getType()->isFPOrFPVectorTy(),
6814 "Intrinsic first argument must be floating point", &FPI);
6815 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6816 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6819 Operand = &FPI;
6820 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6821 "Intrinsic first argument and result disagree on vector use", &FPI);
6822 Check(Operand->getType()->isIntOrIntVectorTy(),
6823 "Intrinsic result must be an integer", &FPI);
6824 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6825 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6826 "Intrinsic first argument and result vector lengths must be equal",
6827 &FPI);
6829 break;
6832 case Intrinsic::experimental_constrained_sitofp:
6833 case Intrinsic::experimental_constrained_uitofp: {
6834 Value *Operand = FPI.getArgOperand(0);
6835 ElementCount SrcEC;
6836 Check(Operand->getType()->isIntOrIntVectorTy(),
6837 "Intrinsic first argument must be integer", &FPI);
6838 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6839 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6842 Operand = &FPI;
6843 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6844 "Intrinsic first argument and result disagree on vector use", &FPI);
6845 Check(Operand->getType()->isFPOrFPVectorTy(),
6846 "Intrinsic result must be a floating point", &FPI);
6847 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6848 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6849 "Intrinsic first argument and result vector lengths must be equal",
6850 &FPI);
6852 break;
6855 case Intrinsic::experimental_constrained_fptrunc:
6856 case Intrinsic::experimental_constrained_fpext: {
6857 Value *Operand = FPI.getArgOperand(0);
6858 Type *OperandTy = Operand->getType();
6859 Value *Result = &FPI;
6860 Type *ResultTy = Result->getType();
6861 Check(OperandTy->isFPOrFPVectorTy(),
6862 "Intrinsic first argument must be FP or FP vector", &FPI);
6863 Check(ResultTy->isFPOrFPVectorTy(),
6864 "Intrinsic result must be FP or FP vector", &FPI);
6865 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6866 "Intrinsic first argument and result disagree on vector use", &FPI);
6867 if (OperandTy->isVectorTy()) {
6868 Check(cast<VectorType>(OperandTy)->getElementCount() ==
6869 cast<VectorType>(ResultTy)->getElementCount(),
6870 "Intrinsic first argument and result vector lengths must be equal",
6871 &FPI);
6873 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6874 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6875 "Intrinsic first argument's type must be larger than result type",
6876 &FPI);
6877 } else {
6878 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6879 "Intrinsic first argument's type must be smaller than result type",
6880 &FPI);
6882 break;
6885 default:
6886 break;
6889 // If a non-metadata argument is passed in a metadata slot then the
6890 // error will be caught earlier when the incorrect argument doesn't
6891 // match the specification in the intrinsic call table. Thus, no
6892 // argument type check is needed here.
6894 Check(FPI.getExceptionBehavior().has_value(),
6895 "invalid exception behavior argument", &FPI);
6896 if (HasRoundingMD) {
6897 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6898 &FPI);
6902 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6903 auto *MD = DII.getRawLocation();
6904 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6905 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6906 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6907 CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6908 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6909 DII.getRawVariable());
6910 CheckDI(isa<DIExpression>(DII.getRawExpression()),
6911 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6912 DII.getRawExpression());
6914 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6915 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6916 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6917 DAI->getRawAssignID());
6918 const auto *RawAddr = DAI->getRawAddress();
6919 CheckDI(
6920 isa<ValueAsMetadata>(RawAddr) ||
6921 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6922 "invalid llvm.dbg.assign intrinsic address", &DII,
6923 DAI->getRawAddress());
6924 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6925 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6926 DAI->getRawAddressExpression());
6927 // All of the linked instructions should be in the same function as DII.
6928 for (Instruction *I : at::getAssignmentInsts(DAI))
6929 CheckDI(DAI->getFunction() == I->getFunction(),
6930 "inst not in same function as dbg.assign", I, DAI);
6933 // Ignore broken !dbg attachments; they're checked elsewhere.
6934 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6935 if (!isa<DILocation>(N))
6936 return;
6938 BasicBlock *BB = DII.getParent();
6939 Function *F = BB ? BB->getParent() : nullptr;
6941 // The scopes for variables and !dbg attachments must agree.
6942 DILocalVariable *Var = DII.getVariable();
6943 DILocation *Loc = DII.getDebugLoc();
6944 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6945 &DII, BB, F);
6947 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6948 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6949 if (!VarSP || !LocSP)
6950 return; // Broken scope chains are checked elsewhere.
6952 CheckDI(VarSP == LocSP,
6953 "mismatched subprogram between llvm.dbg." + Kind +
6954 " variable and !dbg attachment",
6955 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6956 Loc->getScope()->getSubprogram());
6958 // This check is redundant with one in visitLocalVariable().
6959 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6960 Var->getRawType());
6961 verifyFnArgs(DII);
6964 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6965 CheckDI(isa<DILabel>(DLI.getRawLabel()),
6966 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6967 DLI.getRawLabel());
6969 // Ignore broken !dbg attachments; they're checked elsewhere.
6970 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6971 if (!isa<DILocation>(N))
6972 return;
6974 BasicBlock *BB = DLI.getParent();
6975 Function *F = BB ? BB->getParent() : nullptr;
6977 // The scopes for variables and !dbg attachments must agree.
6978 DILabel *Label = DLI.getLabel();
6979 DILocation *Loc = DLI.getDebugLoc();
6980 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6981 BB, F);
6983 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6984 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6985 if (!LabelSP || !LocSP)
6986 return;
6988 CheckDI(LabelSP == LocSP,
6989 "mismatched subprogram between llvm.dbg." + Kind +
6990 " label and !dbg attachment",
6991 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6992 Loc->getScope()->getSubprogram());
6995 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6996 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6997 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6999 // We don't know whether this intrinsic verified correctly.
7000 if (!V || !E || !E->isValid())
7001 return;
7003 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
7004 auto Fragment = E->getFragmentInfo();
7005 if (!Fragment)
7006 return;
7008 // The frontend helps out GDB by emitting the members of local anonymous
7009 // unions as artificial local variables with shared storage. When SROA splits
7010 // the storage for artificial local variables that are smaller than the entire
7011 // union, the overhang piece will be outside of the allotted space for the
7012 // variable and this check fails.
7013 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
7014 if (V->isArtificial())
7015 return;
7017 verifyFragmentExpression(*V, *Fragment, &I);
7019 void Verifier::verifyFragmentExpression(const DbgVariableRecord &DVR) {
7020 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(DVR.getRawVariable());
7021 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression());
7023 // We don't know whether this intrinsic verified correctly.
7024 if (!V || !E || !E->isValid())
7025 return;
7027 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
7028 auto Fragment = E->getFragmentInfo();
7029 if (!Fragment)
7030 return;
7032 // The frontend helps out GDB by emitting the members of local anonymous
7033 // unions as artificial local variables with shared storage. When SROA splits
7034 // the storage for artificial local variables that are smaller than the entire
7035 // union, the overhang piece will be outside of the allotted space for the
7036 // variable and this check fails.
7037 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
7038 if (V->isArtificial())
7039 return;
7041 verifyFragmentExpression(*V, *Fragment, &DVR);
7044 template <typename ValueOrMetadata>
7045 void Verifier::verifyFragmentExpression(const DIVariable &V,
7046 DIExpression::FragmentInfo Fragment,
7047 ValueOrMetadata *Desc) {
7048 // If there's no size, the type is broken, but that should be checked
7049 // elsewhere.
7050 auto VarSize = V.getSizeInBits();
7051 if (!VarSize)
7052 return;
7054 unsigned FragSize = Fragment.SizeInBits;
7055 unsigned FragOffset = Fragment.OffsetInBits;
7056 CheckDI(FragSize + FragOffset <= *VarSize,
7057 "fragment is larger than or outside of variable", Desc, &V);
7058 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
7061 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
7062 // This function does not take the scope of noninlined function arguments into
7063 // account. Don't run it if current function is nodebug, because it may
7064 // contain inlined debug intrinsics.
7065 if (!HasDebugInfo)
7066 return;
7068 // For performance reasons only check non-inlined ones.
7069 if (I.getDebugLoc()->getInlinedAt())
7070 return;
7072 DILocalVariable *Var = I.getVariable();
7073 CheckDI(Var, "dbg intrinsic without variable");
7075 unsigned ArgNo = Var->getArg();
7076 if (!ArgNo)
7077 return;
7079 // Verify there are no duplicate function argument debug info entries.
7080 // These will cause hard-to-debug assertions in the DWARF backend.
7081 if (DebugFnArgs.size() < ArgNo)
7082 DebugFnArgs.resize(ArgNo, nullptr);
7084 auto *Prev = DebugFnArgs[ArgNo - 1];
7085 DebugFnArgs[ArgNo - 1] = Var;
7086 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
7087 Prev, Var);
7089 void Verifier::verifyFnArgs(const DbgVariableRecord &DVR) {
7090 // This function does not take the scope of noninlined function arguments into
7091 // account. Don't run it if current function is nodebug, because it may
7092 // contain inlined debug intrinsics.
7093 if (!HasDebugInfo)
7094 return;
7096 // For performance reasons only check non-inlined ones.
7097 if (DVR.getDebugLoc()->getInlinedAt())
7098 return;
7100 DILocalVariable *Var = DVR.getVariable();
7101 CheckDI(Var, "#dbg record without variable");
7103 unsigned ArgNo = Var->getArg();
7104 if (!ArgNo)
7105 return;
7107 // Verify there are no duplicate function argument debug info entries.
7108 // These will cause hard-to-debug assertions in the DWARF backend.
7109 if (DebugFnArgs.size() < ArgNo)
7110 DebugFnArgs.resize(ArgNo, nullptr);
7112 auto *Prev = DebugFnArgs[ArgNo - 1];
7113 DebugFnArgs[ArgNo - 1] = Var;
7114 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &DVR,
7115 Prev, Var);
7118 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
7119 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
7121 // We don't know whether this intrinsic verified correctly.
7122 if (!E || !E->isValid())
7123 return;
7125 if (isa<ValueAsMetadata>(I.getRawLocation())) {
7126 Value *VarValue = I.getVariableLocationOp(0);
7127 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
7128 return;
7129 // We allow EntryValues for swift async arguments, as they have an
7130 // ABI-guarantee to be turned into a specific register.
7131 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
7132 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7133 return;
7136 CheckDI(!E->isEntryValue(),
7137 "Entry values are only allowed in MIR unless they target a "
7138 "swiftasync Argument",
7139 &I);
7141 void Verifier::verifyNotEntryValue(const DbgVariableRecord &DVR) {
7142 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression());
7144 // We don't know whether this intrinsic verified correctly.
7145 if (!E || !E->isValid())
7146 return;
7148 if (isa<ValueAsMetadata>(DVR.getRawLocation())) {
7149 Value *VarValue = DVR.getVariableLocationOp(0);
7150 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
7151 return;
7152 // We allow EntryValues for swift async arguments, as they have an
7153 // ABI-guarantee to be turned into a specific register.
7154 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
7155 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7156 return;
7159 CheckDI(!E->isEntryValue(),
7160 "Entry values are only allowed in MIR unless they target a "
7161 "swiftasync Argument",
7162 &DVR);
7165 void Verifier::verifyCompileUnits() {
7166 // When more than one Module is imported into the same context, such as during
7167 // an LTO build before linking the modules, ODR type uniquing may cause types
7168 // to point to a different CU. This check does not make sense in this case.
7169 if (M.getContext().isODRUniquingDebugTypes())
7170 return;
7171 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
7172 SmallPtrSet<const Metadata *, 2> Listed;
7173 if (CUs)
7174 Listed.insert(CUs->op_begin(), CUs->op_end());
7175 for (const auto *CU : CUVisited)
7176 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
7177 CUVisited.clear();
7180 void Verifier::verifyDeoptimizeCallingConvs() {
7181 if (DeoptimizeDeclarations.empty())
7182 return;
7184 const Function *First = DeoptimizeDeclarations[0];
7185 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
7186 Check(First->getCallingConv() == F->getCallingConv(),
7187 "All llvm.experimental.deoptimize declarations must have the same "
7188 "calling convention",
7189 First, F);
7193 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
7194 const OperandBundleUse &BU) {
7195 FunctionType *FTy = Call.getFunctionType();
7197 Check((FTy->getReturnType()->isPointerTy() ||
7198 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
7199 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7200 "function returning a pointer or a non-returning function that has a "
7201 "void return type",
7202 Call);
7204 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
7205 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7206 "an argument",
7207 Call);
7209 auto *Fn = cast<Function>(BU.Inputs.front());
7210 Intrinsic::ID IID = Fn->getIntrinsicID();
7212 if (IID) {
7213 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7214 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7215 "invalid function argument", Call);
7216 } else {
7217 StringRef FnName = Fn->getName();
7218 Check((FnName == "objc_retainAutoreleasedReturnValue" ||
7219 FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
7220 "invalid function argument", Call);
7224 void Verifier::verifyNoAliasScopeDecl() {
7225 if (NoAliasScopeDecls.empty())
7226 return;
7228 // only a single scope must be declared at a time.
7229 for (auto *II : NoAliasScopeDecls) {
7230 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7231 "Not a llvm.experimental.noalias.scope.decl ?");
7232 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
7233 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
7234 Check(ScopeListMV != nullptr,
7235 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7236 "argument",
7237 II);
7239 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
7240 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
7241 Check(ScopeListMD->getNumOperands() == 1,
7242 "!id.scope.list must point to a list with a single scope", II);
7243 visitAliasScopeListMetadata(ScopeListMD);
7246 // Only check the domination rule when requested. Once all passes have been
7247 // adapted this option can go away.
7248 if (!VerifyNoAliasScopeDomination)
7249 return;
7251 // Now sort the intrinsics based on the scope MDNode so that declarations of
7252 // the same scopes are next to each other.
7253 auto GetScope = [](IntrinsicInst *II) {
7254 const auto *ScopeListMV = cast<MetadataAsValue>(
7255 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
7256 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7259 // We are sorting on MDNode pointers here. For valid input IR this is ok.
7260 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
7261 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7262 return GetScope(Lhs) < GetScope(Rhs);
7265 llvm::sort(NoAliasScopeDecls, Compare);
7267 // Go over the intrinsics and check that for the same scope, they are not
7268 // dominating each other.
7269 auto ItCurrent = NoAliasScopeDecls.begin();
7270 while (ItCurrent != NoAliasScopeDecls.end()) {
7271 auto CurScope = GetScope(*ItCurrent);
7272 auto ItNext = ItCurrent;
7273 do {
7274 ++ItNext;
7275 } while (ItNext != NoAliasScopeDecls.end() &&
7276 GetScope(*ItNext) == CurScope);
7278 // [ItCurrent, ItNext) represents the declarations for the same scope.
7279 // Ensure they are not dominating each other.. but only if it is not too
7280 // expensive.
7281 if (ItNext - ItCurrent < 32)
7282 for (auto *I : llvm::make_range(ItCurrent, ItNext))
7283 for (auto *J : llvm::make_range(ItCurrent, ItNext))
7284 if (I != J)
7285 Check(!DT.dominates(I, J),
7286 "llvm.experimental.noalias.scope.decl dominates another one "
7287 "with the same scope",
7289 ItCurrent = ItNext;
7293 //===----------------------------------------------------------------------===//
7294 // Implement the public interfaces to this file...
7295 //===----------------------------------------------------------------------===//
7297 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
7298 Function &F = const_cast<Function &>(f);
7300 // Don't use a raw_null_ostream. Printing IR is expensive.
7301 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
7303 // Note that this function's return value is inverted from what you would
7304 // expect of a function called "verify".
7305 return !V.verify(F);
7308 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
7309 bool *BrokenDebugInfo) {
7310 // Don't use a raw_null_ostream. Printing IR is expensive.
7311 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
7313 bool Broken = false;
7314 for (const Function &F : M)
7315 Broken |= !V.verify(F);
7317 Broken |= !V.verify();
7318 if (BrokenDebugInfo)
7319 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7320 // Note that this function's return value is inverted from what you would
7321 // expect of a function called "verify".
7322 return Broken;
7325 namespace {
7327 struct VerifierLegacyPass : public FunctionPass {
7328 static char ID;
7330 std::unique_ptr<Verifier> V;
7331 bool FatalErrors = true;
7333 VerifierLegacyPass() : FunctionPass(ID) {
7334 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7336 explicit VerifierLegacyPass(bool FatalErrors)
7337 : FunctionPass(ID),
7338 FatalErrors(FatalErrors) {
7339 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7342 bool doInitialization(Module &M) override {
7343 V = std::make_unique<Verifier>(
7344 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
7345 return false;
7348 bool runOnFunction(Function &F) override {
7349 if (!V->verify(F) && FatalErrors) {
7350 errs() << "in function " << F.getName() << '\n';
7351 report_fatal_error("Broken function found, compilation aborted!");
7353 return false;
7356 bool doFinalization(Module &M) override {
7357 bool HasErrors = false;
7358 for (Function &F : M)
7359 if (F.isDeclaration())
7360 HasErrors |= !V->verify(F);
7362 HasErrors |= !V->verify();
7363 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
7364 report_fatal_error("Broken module found, compilation aborted!");
7365 return false;
7368 void getAnalysisUsage(AnalysisUsage &AU) const override {
7369 AU.setPreservesAll();
7373 } // end anonymous namespace
7375 /// Helper to issue failure from the TBAA verification
7376 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
7377 if (Diagnostic)
7378 return Diagnostic->CheckFailed(Args...);
7381 #define CheckTBAA(C, ...) \
7382 do { \
7383 if (!(C)) { \
7384 CheckFailed(__VA_ARGS__); \
7385 return false; \
7387 } while (false)
7389 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
7390 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
7391 /// struct-type node describing an aggregate data structure (like a struct).
7392 TBAAVerifier::TBAABaseNodeSummary
7393 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
7394 bool IsNewFormat) {
7395 if (BaseNode->getNumOperands() < 2) {
7396 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
7397 return {true, ~0u};
7400 auto Itr = TBAABaseNodes.find(BaseNode);
7401 if (Itr != TBAABaseNodes.end())
7402 return Itr->second;
7404 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
7405 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7406 (void)InsertResult;
7407 assert(InsertResult.second && "We just checked!");
7408 return Result;
7411 TBAAVerifier::TBAABaseNodeSummary
7412 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
7413 bool IsNewFormat) {
7414 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
7416 if (BaseNode->getNumOperands() == 2) {
7417 // Scalar nodes can only be accessed at offset 0.
7418 return isValidScalarTBAANode(BaseNode)
7419 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
7420 : InvalidNode;
7423 if (IsNewFormat) {
7424 if (BaseNode->getNumOperands() % 3 != 0) {
7425 CheckFailed("Access tag nodes must have the number of operands that is a "
7426 "multiple of 3!", BaseNode);
7427 return InvalidNode;
7429 } else {
7430 if (BaseNode->getNumOperands() % 2 != 1) {
7431 CheckFailed("Struct tag nodes must have an odd number of operands!",
7432 BaseNode);
7433 return InvalidNode;
7437 // Check the type size field.
7438 if (IsNewFormat) {
7439 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7440 BaseNode->getOperand(1));
7441 if (!TypeSizeNode) {
7442 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
7443 return InvalidNode;
7447 // Check the type name field. In the new format it can be anything.
7448 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
7449 CheckFailed("Struct tag nodes have a string as their first operand",
7450 BaseNode);
7451 return InvalidNode;
7454 bool Failed = false;
7456 std::optional<APInt> PrevOffset;
7457 unsigned BitWidth = ~0u;
7459 // We've already checked that BaseNode is not a degenerate root node with one
7460 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
7461 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7462 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7463 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7464 Idx += NumOpsPerField) {
7465 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
7466 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
7467 if (!isa<MDNode>(FieldTy)) {
7468 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
7469 Failed = true;
7470 continue;
7473 auto *OffsetEntryCI =
7474 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
7475 if (!OffsetEntryCI) {
7476 CheckFailed("Offset entries must be constants!", &I, BaseNode);
7477 Failed = true;
7478 continue;
7481 if (BitWidth == ~0u)
7482 BitWidth = OffsetEntryCI->getBitWidth();
7484 if (OffsetEntryCI->getBitWidth() != BitWidth) {
7485 CheckFailed(
7486 "Bitwidth between the offsets and struct type entries must match", &I,
7487 BaseNode);
7488 Failed = true;
7489 continue;
7492 // NB! As far as I can tell, we generate a non-strictly increasing offset
7493 // sequence only from structs that have zero size bit fields. When
7494 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
7495 // pick the field lexically the latest in struct type metadata node. This
7496 // mirrors the actual behavior of the alias analysis implementation.
7497 bool IsAscending =
7498 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7500 if (!IsAscending) {
7501 CheckFailed("Offsets must be increasing!", &I, BaseNode);
7502 Failed = true;
7505 PrevOffset = OffsetEntryCI->getValue();
7507 if (IsNewFormat) {
7508 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7509 BaseNode->getOperand(Idx + 2));
7510 if (!MemberSizeNode) {
7511 CheckFailed("Member size entries must be constants!", &I, BaseNode);
7512 Failed = true;
7513 continue;
7518 return Failed ? InvalidNode
7519 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
7522 static bool IsRootTBAANode(const MDNode *MD) {
7523 return MD->getNumOperands() < 2;
7526 static bool IsScalarTBAANodeImpl(const MDNode *MD,
7527 SmallPtrSetImpl<const MDNode *> &Visited) {
7528 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
7529 return false;
7531 if (!isa<MDString>(MD->getOperand(0)))
7532 return false;
7534 if (MD->getNumOperands() == 3) {
7535 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
7536 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
7537 return false;
7540 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7541 return Parent && Visited.insert(Parent).second &&
7542 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
7545 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
7546 auto ResultIt = TBAAScalarNodes.find(MD);
7547 if (ResultIt != TBAAScalarNodes.end())
7548 return ResultIt->second;
7550 SmallPtrSet<const MDNode *, 4> Visited;
7551 bool Result = IsScalarTBAANodeImpl(MD, Visited);
7552 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
7553 (void)InsertResult;
7554 assert(InsertResult.second && "Just checked!");
7556 return Result;
7559 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
7560 /// Offset in place to be the offset within the field node returned.
7562 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
7563 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
7564 const MDNode *BaseNode,
7565 APInt &Offset,
7566 bool IsNewFormat) {
7567 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
7569 // Scalar nodes have only one possible "field" -- their parent in the access
7570 // hierarchy. Offset must be zero at this point, but our caller is supposed
7571 // to check that.
7572 if (BaseNode->getNumOperands() == 2)
7573 return cast<MDNode>(BaseNode->getOperand(1));
7575 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7576 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7577 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7578 Idx += NumOpsPerField) {
7579 auto *OffsetEntryCI =
7580 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
7581 if (OffsetEntryCI->getValue().ugt(Offset)) {
7582 if (Idx == FirstFieldOpNo) {
7583 CheckFailed("Could not find TBAA parent in struct type node", &I,
7584 BaseNode, &Offset);
7585 return nullptr;
7588 unsigned PrevIdx = Idx - NumOpsPerField;
7589 auto *PrevOffsetEntryCI =
7590 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
7591 Offset -= PrevOffsetEntryCI->getValue();
7592 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
7596 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
7597 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7598 BaseNode->getOperand(LastIdx + 1));
7599 Offset -= LastOffsetEntryCI->getValue();
7600 return cast<MDNode>(BaseNode->getOperand(LastIdx));
7603 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
7604 if (!Type || Type->getNumOperands() < 3)
7605 return false;
7607 // In the new format type nodes shall have a reference to the parent type as
7608 // its first operand.
7609 return isa_and_nonnull<MDNode>(Type->getOperand(0));
7612 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7613 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7614 &I, MD);
7616 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7617 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7618 isa<AtomicCmpXchgInst>(I),
7619 "This instruction shall not have a TBAA access tag!", &I);
7621 bool IsStructPathTBAA =
7622 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
7624 CheckTBAA(IsStructPathTBAA,
7625 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7626 &I);
7628 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
7629 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7631 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
7633 if (IsNewFormat) {
7634 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7635 "Access tag metadata must have either 4 or 5 operands", &I, MD);
7636 } else {
7637 CheckTBAA(MD->getNumOperands() < 5,
7638 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7641 // Check the access size field.
7642 if (IsNewFormat) {
7643 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7644 MD->getOperand(3));
7645 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7648 // Check the immutability flag.
7649 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7650 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7651 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7652 MD->getOperand(ImmutabilityFlagOpNo));
7653 CheckTBAA(IsImmutableCI,
7654 "Immutability tag on struct tag metadata must be a constant", &I,
7655 MD);
7656 CheckTBAA(
7657 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7658 "Immutability part of the struct tag metadata must be either 0 or 1",
7659 &I, MD);
7662 CheckTBAA(BaseNode && AccessType,
7663 "Malformed struct tag metadata: base and access-type "
7664 "should be non-null and point to Metadata nodes",
7665 &I, MD, BaseNode, AccessType);
7667 if (!IsNewFormat) {
7668 CheckTBAA(isValidScalarTBAANode(AccessType),
7669 "Access type node must be a valid scalar type", &I, MD,
7670 AccessType);
7673 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7674 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7676 APInt Offset = OffsetCI->getValue();
7677 bool SeenAccessTypeInPath = false;
7679 SmallPtrSet<MDNode *, 4> StructPath;
7681 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7682 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7683 IsNewFormat)) {
7684 if (!StructPath.insert(BaseNode).second) {
7685 CheckFailed("Cycle detected in struct path", &I, MD);
7686 return false;
7689 bool Invalid;
7690 unsigned BaseNodeBitWidth;
7691 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7692 IsNewFormat);
7694 // If the base node is invalid in itself, then we've already printed all the
7695 // errors we wanted to print.
7696 if (Invalid)
7697 return false;
7699 SeenAccessTypeInPath |= BaseNode == AccessType;
7701 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7702 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7703 &I, MD, &Offset);
7705 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7706 (BaseNodeBitWidth == 0 && Offset == 0) ||
7707 (IsNewFormat && BaseNodeBitWidth == ~0u),
7708 "Access bit-width not the same as description bit-width", &I, MD,
7709 BaseNodeBitWidth, Offset.getBitWidth());
7711 if (IsNewFormat && SeenAccessTypeInPath)
7712 break;
7715 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7716 MD);
7717 return true;
7720 char VerifierLegacyPass::ID = 0;
7721 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7723 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7724 return new VerifierLegacyPass(FatalErrors);
7727 AnalysisKey VerifierAnalysis::Key;
7728 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7729 ModuleAnalysisManager &) {
7730 Result Res;
7731 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7732 return Res;
7735 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7736 FunctionAnalysisManager &) {
7737 return { llvm::verifyFunction(F, &dbgs()), false };
7740 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7741 auto Res = AM.getResult<VerifierAnalysis>(M);
7742 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7743 report_fatal_error("Broken module found, compilation aborted!");
7745 return PreservedAnalyses::all();
7748 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7749 auto res = AM.getResult<VerifierAnalysis>(F);
7750 if (res.IRBroken && FatalErrors)
7751 report_fatal_error("Broken function found, compilation aborted!");
7753 return PreservedAnalyses::all();