[clang] Add test for CWG190 "Layout-compatible POD-struct types" (#121668)
[llvm-project.git] / llvm / lib / LTO / LTO.cpp
blob0f53c6085121719e964e4f3aee305f0278609f5a
1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/StableHashing.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/StackSafetyAnalysis.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Bitcode/BitcodeReader.h"
24 #include "llvm/Bitcode/BitcodeWriter.h"
25 #include "llvm/CGData/CodeGenData.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMRemarkStreamer.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/RuntimeLibcalls.h"
36 #include "llvm/LTO/LTOBackend.h"
37 #include "llvm/Linker/IRMover.h"
38 #include "llvm/MC/TargetRegistry.h"
39 #include "llvm/Object/IRObjectFile.h"
40 #include "llvm/Support/Caching.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Error.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/MemoryBuffer.h"
45 #include "llvm/Support/Path.h"
46 #include "llvm/Support/SHA1.h"
47 #include "llvm/Support/SourceMgr.h"
48 #include "llvm/Support/ThreadPool.h"
49 #include "llvm/Support/Threading.h"
50 #include "llvm/Support/TimeProfiler.h"
51 #include "llvm/Support/ToolOutputFile.h"
52 #include "llvm/Support/VCSRevision.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/Transforms/IPO.h"
56 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
57 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
58 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
59 #include "llvm/Transforms/Utils/SplitModule.h"
61 #include <optional>
62 #include <set>
64 using namespace llvm;
65 using namespace lto;
66 using namespace object;
68 #define DEBUG_TYPE "lto"
70 extern cl::opt<bool> UseNewDbgInfoFormat;
72 static cl::opt<bool>
73 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
74 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
76 extern cl::opt<bool> CodeGenDataThinLTOTwoRounds;
78 namespace llvm {
79 /// Enable global value internalization in LTO.
80 cl::opt<bool> EnableLTOInternalization(
81 "enable-lto-internalization", cl::init(true), cl::Hidden,
82 cl::desc("Enable global value internalization in LTO"));
84 static cl::opt<bool>
85 LTOKeepSymbolCopies("lto-keep-symbol-copies", cl::init(false), cl::Hidden,
86 cl::desc("Keep copies of symbols in LTO indexing"));
88 /// Indicate we are linking with an allocator that supports hot/cold operator
89 /// new interfaces.
90 extern cl::opt<bool> SupportsHotColdNew;
92 /// Enable MemProf context disambiguation for thin link.
93 extern cl::opt<bool> EnableMemProfContextDisambiguation;
94 } // namespace llvm
96 // Computes a unique hash for the Module considering the current list of
97 // export/import and other global analysis results.
98 // Returns the hash in its hexadecimal representation.
99 std::string llvm::computeLTOCacheKey(
100 const Config &Conf, const ModuleSummaryIndex &Index, StringRef ModuleID,
101 const FunctionImporter::ImportMapTy &ImportList,
102 const FunctionImporter::ExportSetTy &ExportList,
103 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
104 const GVSummaryMapTy &DefinedGlobals,
105 const DenseSet<GlobalValue::GUID> &CfiFunctionDefs,
106 const DenseSet<GlobalValue::GUID> &CfiFunctionDecls) {
107 // Compute the unique hash for this entry.
108 // This is based on the current compiler version, the module itself, the
109 // export list, the hash for every single module in the import list, the
110 // list of ResolvedODR for the module, and the list of preserved symbols.
111 SHA1 Hasher;
113 // Start with the compiler revision
114 Hasher.update(LLVM_VERSION_STRING);
115 #ifdef LLVM_REVISION
116 Hasher.update(LLVM_REVISION);
117 #endif
119 // Include the parts of the LTO configuration that affect code generation.
120 auto AddString = [&](StringRef Str) {
121 Hasher.update(Str);
122 Hasher.update(ArrayRef<uint8_t>{0});
124 auto AddUnsigned = [&](unsigned I) {
125 uint8_t Data[4];
126 support::endian::write32le(Data, I);
127 Hasher.update(Data);
129 auto AddUint64 = [&](uint64_t I) {
130 uint8_t Data[8];
131 support::endian::write64le(Data, I);
132 Hasher.update(Data);
134 auto AddUint8 = [&](const uint8_t I) {
135 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&I, 1));
137 AddString(Conf.CPU);
138 // FIXME: Hash more of Options. For now all clients initialize Options from
139 // command-line flags (which is unsupported in production), but may set
140 // X86RelaxRelocations. The clang driver can also pass FunctionSections,
141 // DataSections and DebuggerTuning via command line flags.
142 AddUnsigned(Conf.Options.MCOptions.X86RelaxRelocations);
143 AddUnsigned(Conf.Options.FunctionSections);
144 AddUnsigned(Conf.Options.DataSections);
145 AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
146 for (auto &A : Conf.MAttrs)
147 AddString(A);
148 if (Conf.RelocModel)
149 AddUnsigned(*Conf.RelocModel);
150 else
151 AddUnsigned(-1);
152 if (Conf.CodeModel)
153 AddUnsigned(*Conf.CodeModel);
154 else
155 AddUnsigned(-1);
156 for (const auto &S : Conf.MllvmArgs)
157 AddString(S);
158 AddUnsigned(static_cast<int>(Conf.CGOptLevel));
159 AddUnsigned(static_cast<int>(Conf.CGFileType));
160 AddUnsigned(Conf.OptLevel);
161 AddUnsigned(Conf.Freestanding);
162 AddString(Conf.OptPipeline);
163 AddString(Conf.AAPipeline);
164 AddString(Conf.OverrideTriple);
165 AddString(Conf.DefaultTriple);
166 AddString(Conf.DwoDir);
168 // Include the hash for the current module
169 auto ModHash = Index.getModuleHash(ModuleID);
170 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
172 // TODO: `ExportList` is determined by `ImportList`. Since `ImportList` is
173 // used to compute cache key, we could omit hashing `ExportList` here.
174 std::vector<uint64_t> ExportsGUID;
175 ExportsGUID.reserve(ExportList.size());
176 for (const auto &VI : ExportList)
177 ExportsGUID.push_back(VI.getGUID());
179 // Sort the export list elements GUIDs.
180 llvm::sort(ExportsGUID);
181 for (auto GUID : ExportsGUID)
182 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID)));
184 // Order using module hash, to be both independent of module name and
185 // module order.
186 auto Comp = [&](const std::pair<StringRef, GlobalValue::GUID> &L,
187 const std::pair<StringRef, GlobalValue::GUID> &R) {
188 return std::make_pair(Index.getModule(L.first)->second, L.second) <
189 std::make_pair(Index.getModule(R.first)->second, R.second);
191 FunctionImporter::SortedImportList SortedImportList(ImportList, Comp);
193 // Count the number of imports for each source module.
194 DenseMap<StringRef, unsigned> ModuleToNumImports;
195 for (const auto &[FromModule, GUID, Type] : SortedImportList)
196 ++ModuleToNumImports[FromModule];
198 std::optional<StringRef> LastModule;
199 for (const auto &[FromModule, GUID, Type] : SortedImportList) {
200 if (LastModule != FromModule) {
201 // Include the hash for every module we import functions from. The set of
202 // imported symbols for each module may affect code generation and is
203 // sensitive to link order, so include that as well.
204 LastModule = FromModule;
205 auto ModHash = Index.getModule(FromModule)->second;
206 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
207 AddUint64(ModuleToNumImports[FromModule]);
209 AddUint64(GUID);
210 AddUint8(Type);
213 // Include the hash for the resolved ODR.
214 for (auto &Entry : ResolvedODR) {
215 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
216 sizeof(GlobalValue::GUID)));
217 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
218 sizeof(GlobalValue::LinkageTypes)));
221 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
222 // defined in this module.
223 std::set<GlobalValue::GUID> UsedCfiDefs;
224 std::set<GlobalValue::GUID> UsedCfiDecls;
226 // Typeids used in this module.
227 std::set<GlobalValue::GUID> UsedTypeIds;
229 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
230 if (CfiFunctionDefs.contains(ValueGUID))
231 UsedCfiDefs.insert(ValueGUID);
232 if (CfiFunctionDecls.contains(ValueGUID))
233 UsedCfiDecls.insert(ValueGUID);
236 auto AddUsedThings = [&](GlobalValueSummary *GS) {
237 if (!GS) return;
238 AddUnsigned(GS->getVisibility());
239 AddUnsigned(GS->isLive());
240 AddUnsigned(GS->canAutoHide());
241 for (const ValueInfo &VI : GS->refs()) {
242 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation()));
243 AddUsedCfiGlobal(VI.getGUID());
245 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
246 AddUnsigned(GVS->maybeReadOnly());
247 AddUnsigned(GVS->maybeWriteOnly());
249 if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
250 for (auto &TT : FS->type_tests())
251 UsedTypeIds.insert(TT);
252 for (auto &TT : FS->type_test_assume_vcalls())
253 UsedTypeIds.insert(TT.GUID);
254 for (auto &TT : FS->type_checked_load_vcalls())
255 UsedTypeIds.insert(TT.GUID);
256 for (auto &TT : FS->type_test_assume_const_vcalls())
257 UsedTypeIds.insert(TT.VFunc.GUID);
258 for (auto &TT : FS->type_checked_load_const_vcalls())
259 UsedTypeIds.insert(TT.VFunc.GUID);
260 for (auto &ET : FS->calls()) {
261 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation()));
262 AddUsedCfiGlobal(ET.first.getGUID());
267 // Include the hash for the linkage type to reflect internalization and weak
268 // resolution, and collect any used type identifier resolutions.
269 for (auto &GS : DefinedGlobals) {
270 GlobalValue::LinkageTypes Linkage = GS.second->linkage();
271 Hasher.update(
272 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
273 AddUsedCfiGlobal(GS.first);
274 AddUsedThings(GS.second);
277 // Imported functions may introduce new uses of type identifier resolutions,
278 // so we need to collect their used resolutions as well.
279 for (const auto &[FromModule, GUID, Type] : SortedImportList) {
280 GlobalValueSummary *S = Index.findSummaryInModule(GUID, FromModule);
281 AddUsedThings(S);
282 // If this is an alias, we also care about any types/etc. that the aliasee
283 // may reference.
284 if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
285 AddUsedThings(AS->getBaseObject());
288 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
289 AddString(TId);
291 AddUnsigned(S.TTRes.TheKind);
292 AddUnsigned(S.TTRes.SizeM1BitWidth);
294 AddUint64(S.TTRes.AlignLog2);
295 AddUint64(S.TTRes.SizeM1);
296 AddUint64(S.TTRes.BitMask);
297 AddUint64(S.TTRes.InlineBits);
299 AddUint64(S.WPDRes.size());
300 for (auto &WPD : S.WPDRes) {
301 AddUnsigned(WPD.first);
302 AddUnsigned(WPD.second.TheKind);
303 AddString(WPD.second.SingleImplName);
305 AddUint64(WPD.second.ResByArg.size());
306 for (auto &ByArg : WPD.second.ResByArg) {
307 AddUint64(ByArg.first.size());
308 for (uint64_t Arg : ByArg.first)
309 AddUint64(Arg);
310 AddUnsigned(ByArg.second.TheKind);
311 AddUint64(ByArg.second.Info);
312 AddUnsigned(ByArg.second.Byte);
313 AddUnsigned(ByArg.second.Bit);
318 // Include the hash for all type identifiers used by this module.
319 for (GlobalValue::GUID TId : UsedTypeIds) {
320 auto TidIter = Index.typeIds().equal_range(TId);
321 for (const auto &I : make_range(TidIter))
322 AddTypeIdSummary(I.second.first, I.second.second);
325 AddUnsigned(UsedCfiDefs.size());
326 for (auto &V : UsedCfiDefs)
327 AddUint64(V);
329 AddUnsigned(UsedCfiDecls.size());
330 for (auto &V : UsedCfiDecls)
331 AddUint64(V);
333 if (!Conf.SampleProfile.empty()) {
334 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
335 if (FileOrErr) {
336 Hasher.update(FileOrErr.get()->getBuffer());
338 if (!Conf.ProfileRemapping.empty()) {
339 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
340 if (FileOrErr)
341 Hasher.update(FileOrErr.get()->getBuffer());
346 return toHex(Hasher.result());
349 std::string llvm::recomputeLTOCacheKey(const std::string &Key,
350 StringRef ExtraID) {
351 SHA1 Hasher;
353 auto AddString = [&](StringRef Str) {
354 Hasher.update(Str);
355 Hasher.update(ArrayRef<uint8_t>{0});
357 AddString(Key);
358 AddString(ExtraID);
360 return toHex(Hasher.result());
363 static void thinLTOResolvePrevailingGUID(
364 const Config &C, ValueInfo VI,
365 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
366 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
367 isPrevailing,
368 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
369 recordNewLinkage,
370 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
371 GlobalValue::VisibilityTypes Visibility =
372 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility()
373 : GlobalValue::DefaultVisibility;
374 for (auto &S : VI.getSummaryList()) {
375 GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
376 // Ignore local and appending linkage values since the linker
377 // doesn't resolve them.
378 if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
379 GlobalValue::isAppendingLinkage(S->linkage()))
380 continue;
381 // We need to emit only one of these. The prevailing module will keep it,
382 // but turned into a weak, while the others will drop it when possible.
383 // This is both a compile-time optimization and a correctness
384 // transformation. This is necessary for correctness when we have exported
385 // a reference - we need to convert the linkonce to weak to
386 // ensure a copy is kept to satisfy the exported reference.
387 // FIXME: We may want to split the compile time and correctness
388 // aspects into separate routines.
389 if (isPrevailing(VI.getGUID(), S.get())) {
390 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
391 S->setLinkage(GlobalValue::getWeakLinkage(
392 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
393 // The kept copy is eligible for auto-hiding (hidden visibility) if all
394 // copies were (i.e. they were all linkonce_odr global unnamed addr).
395 // If any copy is not (e.g. it was originally weak_odr), then the symbol
396 // must remain externally available (e.g. a weak_odr from an explicitly
397 // instantiated template). Additionally, if it is in the
398 // GUIDPreservedSymbols set, that means that it is visibile outside
399 // the summary (e.g. in a native object or a bitcode file without
400 // summary), and in that case we cannot hide it as it isn't possible to
401 // check all copies.
402 S->setCanAutoHide(VI.canAutoHide() &&
403 !GUIDPreservedSymbols.count(VI.getGUID()));
405 if (C.VisibilityScheme == Config::FromPrevailing)
406 Visibility = S->getVisibility();
408 // Alias and aliasee can't be turned into available_externally.
409 else if (!isa<AliasSummary>(S.get()) &&
410 !GlobalInvolvedWithAlias.count(S.get()))
411 S->setLinkage(GlobalValue::AvailableExternallyLinkage);
413 // For ELF, set visibility to the computed visibility from summaries. We
414 // don't track visibility from declarations so this may be more relaxed than
415 // the most constraining one.
416 if (C.VisibilityScheme == Config::ELF)
417 S->setVisibility(Visibility);
419 if (S->linkage() != OriginalLinkage)
420 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
423 if (C.VisibilityScheme == Config::FromPrevailing) {
424 for (auto &S : VI.getSummaryList()) {
425 GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
426 if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
427 GlobalValue::isAppendingLinkage(S->linkage()))
428 continue;
429 S->setVisibility(Visibility);
434 /// Resolve linkage for prevailing symbols in the \p Index.
436 // We'd like to drop these functions if they are no longer referenced in the
437 // current module. However there is a chance that another module is still
438 // referencing them because of the import. We make sure we always emit at least
439 // one copy.
440 void llvm::thinLTOResolvePrevailingInIndex(
441 const Config &C, ModuleSummaryIndex &Index,
442 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
443 isPrevailing,
444 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
445 recordNewLinkage,
446 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
447 // We won't optimize the globals that are referenced by an alias for now
448 // Ideally we should turn the alias into a global and duplicate the definition
449 // when needed.
450 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
451 for (auto &I : Index)
452 for (auto &S : I.second.SummaryList)
453 if (auto AS = dyn_cast<AliasSummary>(S.get()))
454 GlobalInvolvedWithAlias.insert(&AS->getAliasee());
456 for (auto &I : Index)
457 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I),
458 GlobalInvolvedWithAlias, isPrevailing,
459 recordNewLinkage, GUIDPreservedSymbols);
462 static void thinLTOInternalizeAndPromoteGUID(
463 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported,
464 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
465 isPrevailing) {
466 auto ExternallyVisibleCopies =
467 llvm::count_if(VI.getSummaryList(),
468 [](const std::unique_ptr<GlobalValueSummary> &Summary) {
469 return !GlobalValue::isLocalLinkage(Summary->linkage());
472 for (auto &S : VI.getSummaryList()) {
473 // First see if we need to promote an internal value because it is not
474 // exported.
475 if (isExported(S->modulePath(), VI)) {
476 if (GlobalValue::isLocalLinkage(S->linkage()))
477 S->setLinkage(GlobalValue::ExternalLinkage);
478 continue;
481 // Otherwise, see if we can internalize.
482 if (!EnableLTOInternalization)
483 continue;
485 // Non-exported values with external linkage can be internalized.
486 if (GlobalValue::isExternalLinkage(S->linkage())) {
487 S->setLinkage(GlobalValue::InternalLinkage);
488 continue;
491 // Non-exported function and variable definitions with a weak-for-linker
492 // linkage can be internalized in certain cases. The minimum legality
493 // requirements would be that they are not address taken to ensure that we
494 // don't break pointer equality checks, and that variables are either read-
495 // or write-only. For functions, this is the case if either all copies are
496 // [local_]unnamed_addr, or we can propagate reference edge attributes
497 // (which is how this is guaranteed for variables, when analyzing whether
498 // they are read or write-only).
500 // However, we only get to this code for weak-for-linkage values in one of
501 // two cases:
502 // 1) The prevailing copy is not in IR (it is in native code).
503 // 2) The prevailing copy in IR is not exported from its module.
504 // Additionally, at least for the new LTO API, case 2 will only happen if
505 // there is exactly one definition of the value (i.e. in exactly one
506 // module), as duplicate defs are result in the value being marked exported.
507 // Likely, users of the legacy LTO API are similar, however, currently there
508 // are llvm-lto based tests of the legacy LTO API that do not mark
509 // duplicate linkonce_odr copies as exported via the tool, so we need
510 // to handle that case below by checking the number of copies.
512 // Generally, we only want to internalize a weak-for-linker value in case
513 // 2, because in case 1 we cannot see how the value is used to know if it
514 // is read or write-only. We also don't want to bloat the binary with
515 // multiple internalized copies of non-prevailing linkonce/weak functions.
516 // Note if we don't internalize, we will convert non-prevailing copies to
517 // available_externally anyway, so that we drop them after inlining. The
518 // only reason to internalize such a function is if we indeed have a single
519 // copy, because internalizing it won't increase binary size, and enables
520 // use of inliner heuristics that are more aggressive in the face of a
521 // single call to a static (local). For variables, internalizing a read or
522 // write only variable can enable more aggressive optimization. However, we
523 // already perform this elsewhere in the ThinLTO backend handling for
524 // read or write-only variables (processGlobalForThinLTO).
526 // Therefore, only internalize linkonce/weak if there is a single copy, that
527 // is prevailing in this IR module. We can do so aggressively, without
528 // requiring the address to be insignificant, or that a variable be read or
529 // write-only.
530 if (!GlobalValue::isWeakForLinker(S->linkage()) ||
531 GlobalValue::isExternalWeakLinkage(S->linkage()))
532 continue;
534 if (isPrevailing(VI.getGUID(), S.get()) && ExternallyVisibleCopies == 1)
535 S->setLinkage(GlobalValue::InternalLinkage);
539 // Update the linkages in the given \p Index to mark exported values
540 // as external and non-exported values as internal.
541 void llvm::thinLTOInternalizeAndPromoteInIndex(
542 ModuleSummaryIndex &Index,
543 function_ref<bool(StringRef, ValueInfo)> isExported,
544 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
545 isPrevailing) {
546 for (auto &I : Index)
547 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported,
548 isPrevailing);
551 // Requires a destructor for std::vector<InputModule>.
552 InputFile::~InputFile() = default;
554 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
555 std::unique_ptr<InputFile> File(new InputFile);
557 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
558 if (!FOrErr)
559 return FOrErr.takeError();
561 File->TargetTriple = FOrErr->TheReader.getTargetTriple();
562 File->SourceFileName = FOrErr->TheReader.getSourceFileName();
563 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
564 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
565 File->ComdatTable = FOrErr->TheReader.getComdatTable();
567 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
568 size_t Begin = File->Symbols.size();
569 for (const irsymtab::Reader::SymbolRef &Sym :
570 FOrErr->TheReader.module_symbols(I))
571 // Skip symbols that are irrelevant to LTO. Note that this condition needs
572 // to match the one in Skip() in LTO::addRegularLTO().
573 if (Sym.isGlobal() && !Sym.isFormatSpecific())
574 File->Symbols.push_back(Sym);
575 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
578 File->Mods = FOrErr->Mods;
579 File->Strtab = std::move(FOrErr->Strtab);
580 return std::move(File);
583 StringRef InputFile::getName() const {
584 return Mods[0].getModuleIdentifier();
587 BitcodeModule &InputFile::getSingleBitcodeModule() {
588 assert(Mods.size() == 1 && "Expect only one bitcode module");
589 return Mods[0];
592 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
593 const Config &Conf)
594 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
595 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
596 Mover(std::make_unique<IRMover>(*CombinedModule)) {
597 CombinedModule->IsNewDbgInfoFormat = UseNewDbgInfoFormat;
600 LTO::ThinLTOState::ThinLTOState(ThinBackend BackendParam)
601 : Backend(std::move(BackendParam)), CombinedIndex(/*HaveGVs*/ false) {
602 if (!Backend.isValid())
603 Backend =
604 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
607 LTO::LTO(Config Conf, ThinBackend Backend,
608 unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode)
609 : Conf(std::move(Conf)),
610 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
611 ThinLTO(std::move(Backend)),
612 GlobalResolutions(
613 std::make_unique<DenseMap<StringRef, GlobalResolution>>()),
614 LTOMode(LTOMode) {
615 if (Conf.KeepSymbolNameCopies || LTOKeepSymbolCopies) {
616 Alloc = std::make_unique<BumpPtrAllocator>();
617 GlobalResolutionSymbolSaver = std::make_unique<llvm::StringSaver>(*Alloc);
621 // Requires a destructor for MapVector<BitcodeModule>.
622 LTO::~LTO() = default;
624 // Add the symbols in the given module to the GlobalResolutions map, and resolve
625 // their partitions.
626 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
627 ArrayRef<SymbolResolution> Res,
628 unsigned Partition, bool InSummary) {
629 auto *ResI = Res.begin();
630 auto *ResE = Res.end();
631 (void)ResE;
632 const Triple TT(RegularLTO.CombinedModule->getTargetTriple());
633 for (const InputFile::Symbol &Sym : Syms) {
634 assert(ResI != ResE);
635 SymbolResolution Res = *ResI++;
637 StringRef SymbolName = Sym.getName();
638 // Keep copies of symbols if the client of LTO says so.
639 if (GlobalResolutionSymbolSaver && !GlobalResolutions->contains(SymbolName))
640 SymbolName = GlobalResolutionSymbolSaver->save(SymbolName);
642 auto &GlobalRes = (*GlobalResolutions)[SymbolName];
643 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
644 if (Res.Prevailing) {
645 assert(!GlobalRes.Prevailing &&
646 "Multiple prevailing defs are not allowed");
647 GlobalRes.Prevailing = true;
648 GlobalRes.IRName = std::string(Sym.getIRName());
649 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
650 // Sometimes it can be two copies of symbol in a module and prevailing
651 // symbol can have no IR name. That might happen if symbol is defined in
652 // module level inline asm block. In case we have multiple modules with
653 // the same symbol we want to use IR name of the prevailing symbol.
654 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
655 // we can later use it to check if there is any prevailing copy in IR.
656 GlobalRes.IRName = std::string(Sym.getIRName());
659 // In rare occasion, the symbol used to initialize GlobalRes has a different
660 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a
661 // symbol is referenced through its mangled name, say @"\01_symbol" while
662 // the IRName is @symbol (the prefix underscore comes from MachO mangling).
663 // In that case, we have the same actual Symbol that can get two different
664 // GUID, leading to some invalid internalization. Workaround this by marking
665 // the GlobalRes external.
667 // FIXME: instead of this check, it would be desirable to compute GUIDs
668 // based on mangled name, but this requires an access to the Target Triple
669 // and would be relatively invasive on the codebase.
670 if (GlobalRes.IRName != Sym.getIRName()) {
671 GlobalRes.Partition = GlobalResolution::External;
672 GlobalRes.VisibleOutsideSummary = true;
675 // Set the partition to external if we know it is re-defined by the linker
676 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
677 // regular object, is referenced from llvm.compiler.used/llvm.used, or was
678 // already recorded as being referenced from a different partition.
679 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
680 (GlobalRes.Partition != GlobalResolution::Unknown &&
681 GlobalRes.Partition != Partition)) {
682 GlobalRes.Partition = GlobalResolution::External;
683 } else
684 // First recorded reference, save the current partition.
685 GlobalRes.Partition = Partition;
687 // Flag as visible outside of summary if visible from a regular object or
688 // from a module that does not have a summary.
689 GlobalRes.VisibleOutsideSummary |=
690 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
692 GlobalRes.ExportDynamic |= Res.ExportDynamic;
696 void LTO::releaseGlobalResolutionsMemory() {
697 // Release GlobalResolutions dense-map itself.
698 GlobalResolutions.reset();
699 // Release the string saver memory.
700 GlobalResolutionSymbolSaver.reset();
701 Alloc.reset();
704 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
705 ArrayRef<SymbolResolution> Res) {
706 StringRef Path = Input->getName();
707 OS << Path << '\n';
708 auto ResI = Res.begin();
709 for (const InputFile::Symbol &Sym : Input->symbols()) {
710 assert(ResI != Res.end());
711 SymbolResolution Res = *ResI++;
713 OS << "-r=" << Path << ',' << Sym.getName() << ',';
714 if (Res.Prevailing)
715 OS << 'p';
716 if (Res.FinalDefinitionInLinkageUnit)
717 OS << 'l';
718 if (Res.VisibleToRegularObj)
719 OS << 'x';
720 if (Res.LinkerRedefined)
721 OS << 'r';
722 OS << '\n';
724 OS.flush();
725 assert(ResI == Res.end());
728 Error LTO::add(std::unique_ptr<InputFile> Input,
729 ArrayRef<SymbolResolution> Res) {
730 assert(!CalledGetMaxTasks);
732 if (Conf.ResolutionFile)
733 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
735 if (RegularLTO.CombinedModule->getTargetTriple().empty()) {
736 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
737 if (Triple(Input->getTargetTriple()).isOSBinFormatELF())
738 Conf.VisibilityScheme = Config::ELF;
741 const SymbolResolution *ResI = Res.begin();
742 for (unsigned I = 0; I != Input->Mods.size(); ++I)
743 if (Error Err = addModule(*Input, I, ResI, Res.end()))
744 return Err;
746 assert(ResI == Res.end());
747 return Error::success();
750 Error LTO::addModule(InputFile &Input, unsigned ModI,
751 const SymbolResolution *&ResI,
752 const SymbolResolution *ResE) {
753 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
754 if (!LTOInfo)
755 return LTOInfo.takeError();
757 if (EnableSplitLTOUnit) {
758 // If only some modules were split, flag this in the index so that
759 // we can skip or error on optimizations that need consistently split
760 // modules (whole program devirt and lower type tests).
761 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit)
762 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
763 } else
764 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
766 BitcodeModule BM = Input.Mods[ModI];
768 if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) &&
769 !LTOInfo->UnifiedLTO)
770 return make_error<StringError>(
771 "unified LTO compilation must use "
772 "compatible bitcode modules (use -funified-lto)",
773 inconvertibleErrorCode());
775 if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default)
776 LTOMode = LTOK_UnifiedThin;
778 bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular);
780 auto ModSyms = Input.module_symbols(ModI);
781 addModuleToGlobalRes(ModSyms, {ResI, ResE},
782 IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
783 LTOInfo->HasSummary);
785 if (IsThinLTO)
786 return addThinLTO(BM, ModSyms, ResI, ResE);
788 RegularLTO.EmptyCombinedModule = false;
789 Expected<RegularLTOState::AddedModule> ModOrErr =
790 addRegularLTO(BM, ModSyms, ResI, ResE);
791 if (!ModOrErr)
792 return ModOrErr.takeError();
794 if (!LTOInfo->HasSummary)
795 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
797 // Regular LTO module summaries are added to a dummy module that represents
798 // the combined regular LTO module.
799 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, ""))
800 return Err;
801 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
802 return Error::success();
805 // Checks whether the given global value is in a non-prevailing comdat
806 // (comdat containing values the linker indicated were not prevailing,
807 // which we then dropped to available_externally), and if so, removes
808 // it from the comdat. This is called for all global values to ensure the
809 // comdat is empty rather than leaving an incomplete comdat. It is needed for
810 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
811 // and thin LTO modules) compilation. Since the regular LTO module will be
812 // linked first in the final native link, we want to make sure the linker
813 // doesn't select any of these incomplete comdats that would be left
814 // in the regular LTO module without this cleanup.
815 static void
816 handleNonPrevailingComdat(GlobalValue &GV,
817 std::set<const Comdat *> &NonPrevailingComdats) {
818 Comdat *C = GV.getComdat();
819 if (!C)
820 return;
822 if (!NonPrevailingComdats.count(C))
823 return;
825 // Additionally need to drop all global values from the comdat to
826 // available_externally, to satisfy the COMDAT requirement that all members
827 // are discarded as a unit. The non-local linkage global values avoid
828 // duplicate definition linker errors.
829 GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
831 if (auto GO = dyn_cast<GlobalObject>(&GV))
832 GO->setComdat(nullptr);
835 // Add a regular LTO object to the link.
836 // The resulting module needs to be linked into the combined LTO module with
837 // linkRegularLTO.
838 Expected<LTO::RegularLTOState::AddedModule>
839 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
840 const SymbolResolution *&ResI,
841 const SymbolResolution *ResE) {
842 RegularLTOState::AddedModule Mod;
843 Expected<std::unique_ptr<Module>> MOrErr =
844 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
845 /*IsImporting*/ false);
846 if (!MOrErr)
847 return MOrErr.takeError();
848 Module &M = **MOrErr;
849 Mod.M = std::move(*MOrErr);
851 if (Error Err = M.materializeMetadata())
852 return std::move(Err);
854 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests
855 // will rename local functions in the merged module as "<function name>.1".
856 // This causes linking errors, since other parts of the module expect the
857 // original function name.
858 if (LTOMode == LTOK_UnifiedRegular)
859 if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions"))
860 M.eraseNamedMetadata(CfiFunctionsMD);
862 UpgradeDebugInfo(M);
864 ModuleSymbolTable SymTab;
865 SymTab.addModule(&M);
867 for (GlobalVariable &GV : M.globals())
868 if (GV.hasAppendingLinkage())
869 Mod.Keep.push_back(&GV);
871 DenseSet<GlobalObject *> AliasedGlobals;
872 for (auto &GA : M.aliases())
873 if (GlobalObject *GO = GA.getAliaseeObject())
874 AliasedGlobals.insert(GO);
876 // In this function we need IR GlobalValues matching the symbols in Syms
877 // (which is not backed by a module), so we need to enumerate them in the same
878 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
879 // matches the order of an irsymtab, but when we read the irsymtab in
880 // InputFile::create we omit some symbols that are irrelevant to LTO. The
881 // Skip() function skips the same symbols from the module as InputFile does
882 // from the symbol table.
883 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
884 auto Skip = [&]() {
885 while (MsymI != MsymE) {
886 auto Flags = SymTab.getSymbolFlags(*MsymI);
887 if ((Flags & object::BasicSymbolRef::SF_Global) &&
888 !(Flags & object::BasicSymbolRef::SF_FormatSpecific))
889 return;
890 ++MsymI;
893 Skip();
895 std::set<const Comdat *> NonPrevailingComdats;
896 SmallSet<StringRef, 2> NonPrevailingAsmSymbols;
897 for (const InputFile::Symbol &Sym : Syms) {
898 assert(ResI != ResE);
899 SymbolResolution Res = *ResI++;
901 assert(MsymI != MsymE);
902 ModuleSymbolTable::Symbol Msym = *MsymI++;
903 Skip();
905 if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) {
906 if (Res.Prevailing) {
907 if (Sym.isUndefined())
908 continue;
909 Mod.Keep.push_back(GV);
910 // For symbols re-defined with linker -wrap and -defsym options,
911 // set the linkage to weak to inhibit IPO. The linkage will be
912 // restored by the linker.
913 if (Res.LinkerRedefined)
914 GV->setLinkage(GlobalValue::WeakAnyLinkage);
916 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
917 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
918 GV->setLinkage(GlobalValue::getWeakLinkage(
919 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
920 } else if (isa<GlobalObject>(GV) &&
921 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
922 GV->hasAvailableExternallyLinkage()) &&
923 !AliasedGlobals.count(cast<GlobalObject>(GV))) {
924 // Any of the above three types of linkage indicates that the
925 // chosen prevailing symbol will have the same semantics as this copy of
926 // the symbol, so we may be able to link it with available_externally
927 // linkage. We will decide later whether to do that when we link this
928 // module (in linkRegularLTO), based on whether it is undefined.
929 Mod.Keep.push_back(GV);
930 GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
931 if (GV->hasComdat())
932 NonPrevailingComdats.insert(GV->getComdat());
933 cast<GlobalObject>(GV)->setComdat(nullptr);
936 // Set the 'local' flag based on the linker resolution for this symbol.
937 if (Res.FinalDefinitionInLinkageUnit) {
938 GV->setDSOLocal(true);
939 if (GV->hasDLLImportStorageClass())
940 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
941 DefaultStorageClass);
943 } else if (auto *AS =
944 dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) {
945 // Collect non-prevailing symbols.
946 if (!Res.Prevailing)
947 NonPrevailingAsmSymbols.insert(AS->first);
948 } else {
949 llvm_unreachable("unknown symbol type");
952 // Common resolution: collect the maximum size/alignment over all commons.
953 // We also record if we see an instance of a common as prevailing, so that
954 // if none is prevailing we can ignore it later.
955 if (Sym.isCommon()) {
956 // FIXME: We should figure out what to do about commons defined by asm.
957 // For now they aren't reported correctly by ModuleSymbolTable.
958 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())];
959 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
960 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) {
961 CommonRes.Alignment =
962 std::max(Align(SymAlignValue), CommonRes.Alignment);
964 CommonRes.Prevailing |= Res.Prevailing;
968 if (!M.getComdatSymbolTable().empty())
969 for (GlobalValue &GV : M.global_values())
970 handleNonPrevailingComdat(GV, NonPrevailingComdats);
972 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
973 // block.
974 if (!M.getModuleInlineAsm().empty()) {
975 std::string NewIA = ".lto_discard";
976 if (!NonPrevailingAsmSymbols.empty()) {
977 // Don't dicard a symbol if there is a live .symver for it.
978 ModuleSymbolTable::CollectAsmSymvers(
979 M, [&](StringRef Name, StringRef Alias) {
980 if (!NonPrevailingAsmSymbols.count(Alias))
981 NonPrevailingAsmSymbols.erase(Name);
983 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", ");
985 NewIA += "\n";
986 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm());
989 assert(MsymI == MsymE);
990 return std::move(Mod);
993 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
994 bool LivenessFromIndex) {
995 std::vector<GlobalValue *> Keep;
996 for (GlobalValue *GV : Mod.Keep) {
997 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) {
998 if (Function *F = dyn_cast<Function>(GV)) {
999 if (DiagnosticOutputFile) {
1000 if (Error Err = F->materialize())
1001 return Err;
1002 OptimizationRemarkEmitter ORE(F, nullptr);
1003 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F)
1004 << ore::NV("Function", F)
1005 << " not added to the combined module ");
1008 continue;
1011 if (!GV->hasAvailableExternallyLinkage()) {
1012 Keep.push_back(GV);
1013 continue;
1016 // Only link available_externally definitions if we don't already have a
1017 // definition.
1018 GlobalValue *CombinedGV =
1019 RegularLTO.CombinedModule->getNamedValue(GV->getName());
1020 if (CombinedGV && !CombinedGV->isDeclaration())
1021 continue;
1023 Keep.push_back(GV);
1026 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr,
1027 /* IsPerformingImport */ false);
1030 // Add a ThinLTO module to the link.
1031 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
1032 const SymbolResolution *&ResI,
1033 const SymbolResolution *ResE) {
1034 const SymbolResolution *ResITmp = ResI;
1035 for (const InputFile::Symbol &Sym : Syms) {
1036 assert(ResITmp != ResE);
1037 SymbolResolution Res = *ResITmp++;
1039 if (!Sym.getIRName().empty()) {
1040 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1041 Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
1042 if (Res.Prevailing)
1043 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
1047 if (Error Err =
1048 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
1049 [&](GlobalValue::GUID GUID) {
1050 return ThinLTO.PrevailingModuleForGUID[GUID] ==
1051 BM.getModuleIdentifier();
1053 return Err;
1054 LLVM_DEBUG(dbgs() << "Module " << BM.getModuleIdentifier() << "\n");
1056 for (const InputFile::Symbol &Sym : Syms) {
1057 assert(ResI != ResE);
1058 SymbolResolution Res = *ResI++;
1060 if (!Sym.getIRName().empty()) {
1061 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1062 Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
1063 if (Res.Prevailing) {
1064 assert(ThinLTO.PrevailingModuleForGUID[GUID] ==
1065 BM.getModuleIdentifier());
1067 // For linker redefined symbols (via --wrap or --defsym) we want to
1068 // switch the linkage to `weak` to prevent IPOs from happening.
1069 // Find the summary in the module for this very GV and record the new
1070 // linkage so that we can switch it when we import the GV.
1071 if (Res.LinkerRedefined)
1072 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
1073 GUID, BM.getModuleIdentifier()))
1074 S->setLinkage(GlobalValue::WeakAnyLinkage);
1077 // If the linker resolved the symbol to a local definition then mark it
1078 // as local in the summary for the module we are adding.
1079 if (Res.FinalDefinitionInLinkageUnit) {
1080 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
1081 GUID, BM.getModuleIdentifier())) {
1082 S->setDSOLocal(true);
1088 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
1089 return make_error<StringError>(
1090 "Expected at most one ThinLTO module per bitcode file",
1091 inconvertibleErrorCode());
1093 if (!Conf.ThinLTOModulesToCompile.empty()) {
1094 if (!ThinLTO.ModulesToCompile)
1095 ThinLTO.ModulesToCompile = ModuleMapType();
1096 // This is a fuzzy name matching where only modules with name containing the
1097 // specified switch values are going to be compiled.
1098 for (const std::string &Name : Conf.ThinLTOModulesToCompile) {
1099 if (BM.getModuleIdentifier().contains(Name)) {
1100 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM});
1101 LLVM_DEBUG(dbgs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier()
1102 << " to compile\n");
1107 return Error::success();
1110 unsigned LTO::getMaxTasks() const {
1111 CalledGetMaxTasks = true;
1112 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size()
1113 : ThinLTO.ModuleMap.size();
1114 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount;
1117 // If only some of the modules were split, we cannot correctly handle
1118 // code that contains type tests or type checked loads.
1119 Error LTO::checkPartiallySplit() {
1120 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
1121 return Error::success();
1123 const Module *Combined = RegularLTO.CombinedModule.get();
1124 Function *TypeTestFunc =
1125 Intrinsic::getDeclarationIfExists(Combined, Intrinsic::type_test);
1126 Function *TypeCheckedLoadFunc =
1127 Intrinsic::getDeclarationIfExists(Combined, Intrinsic::type_checked_load);
1128 Function *TypeCheckedLoadRelativeFunc = Intrinsic::getDeclarationIfExists(
1129 Combined, Intrinsic::type_checked_load_relative);
1131 // First check if there are type tests / type checked loads in the
1132 // merged regular LTO module IR.
1133 if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
1134 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) ||
1135 (TypeCheckedLoadRelativeFunc &&
1136 !TypeCheckedLoadRelativeFunc->use_empty()))
1137 return make_error<StringError>(
1138 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1139 inconvertibleErrorCode());
1141 // Otherwise check if there are any recorded in the combined summary from the
1142 // ThinLTO modules.
1143 for (auto &P : ThinLTO.CombinedIndex) {
1144 for (auto &S : P.second.SummaryList) {
1145 auto *FS = dyn_cast<FunctionSummary>(S.get());
1146 if (!FS)
1147 continue;
1148 if (!FS->type_test_assume_vcalls().empty() ||
1149 !FS->type_checked_load_vcalls().empty() ||
1150 !FS->type_test_assume_const_vcalls().empty() ||
1151 !FS->type_checked_load_const_vcalls().empty() ||
1152 !FS->type_tests().empty())
1153 return make_error<StringError>(
1154 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1155 inconvertibleErrorCode());
1158 return Error::success();
1161 Error LTO::run(AddStreamFn AddStream, FileCache Cache) {
1162 // Compute "dead" symbols, we don't want to import/export these!
1163 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
1164 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
1165 for (auto &Res : *GlobalResolutions) {
1166 // Normally resolution have IR name of symbol. We can do nothing here
1167 // otherwise. See comments in GlobalResolution struct for more details.
1168 if (Res.second.IRName.empty())
1169 continue;
1171 GlobalValue::GUID GUID = GlobalValue::getGUID(
1172 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1174 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
1175 GUIDPreservedSymbols.insert(GUID);
1177 if (Res.second.ExportDynamic)
1178 DynamicExportSymbols.insert(GUID);
1180 GUIDPrevailingResolutions[GUID] =
1181 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
1184 auto isPrevailing = [&](GlobalValue::GUID G) {
1185 auto It = GUIDPrevailingResolutions.find(G);
1186 if (It == GUIDPrevailingResolutions.end())
1187 return PrevailingType::Unknown;
1188 return It->second;
1190 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
1191 isPrevailing, Conf.OptLevel > 0);
1193 // Setup output file to emit statistics.
1194 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
1195 if (!StatsFileOrErr)
1196 return StatsFileOrErr.takeError();
1197 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
1199 // TODO: Ideally this would be controlled automatically by detecting that we
1200 // are linking with an allocator that supports these interfaces, rather than
1201 // an internal option (which would still be needed for tests, however). For
1202 // example, if the library exported a symbol like __malloc_hot_cold the linker
1203 // could recognize that and set a flag in the lto::Config.
1204 if (SupportsHotColdNew)
1205 ThinLTO.CombinedIndex.setWithSupportsHotColdNew();
1207 Error Result = runRegularLTO(AddStream);
1208 if (!Result)
1209 // This will reset the GlobalResolutions optional once done with it to
1210 // reduce peak memory before importing.
1211 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
1213 if (StatsFile)
1214 PrintStatisticsJSON(StatsFile->os());
1216 return Result;
1219 void lto::updateMemProfAttributes(Module &Mod,
1220 const ModuleSummaryIndex &Index) {
1221 if (Index.withSupportsHotColdNew())
1222 return;
1224 // The profile matcher applies hotness attributes directly for allocations,
1225 // and those will cause us to generate calls to the hot/cold interfaces
1226 // unconditionally. If supports-hot-cold-new was not enabled in the LTO
1227 // link then assume we don't want these calls (e.g. not linking with
1228 // the appropriate library, or otherwise trying to disable this behavior).
1229 for (auto &F : Mod) {
1230 for (auto &BB : F) {
1231 for (auto &I : BB) {
1232 auto *CI = dyn_cast<CallBase>(&I);
1233 if (!CI)
1234 continue;
1235 if (CI->hasFnAttr("memprof"))
1236 CI->removeFnAttr("memprof");
1237 // Strip off all memprof metadata as it is no longer needed.
1238 // Importantly, this avoids the addition of new memprof attributes
1239 // after inlining propagation.
1240 // TODO: If we support additional types of MemProf metadata beyond hot
1241 // and cold, we will need to update the metadata based on the allocator
1242 // APIs supported instead of completely stripping all.
1243 CI->setMetadata(LLVMContext::MD_memprof, nullptr);
1244 CI->setMetadata(LLVMContext::MD_callsite, nullptr);
1250 Error LTO::runRegularLTO(AddStreamFn AddStream) {
1251 // Setup optimization remarks.
1252 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
1253 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename,
1254 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness,
1255 Conf.RemarksHotnessThreshold);
1256 LLVM_DEBUG(dbgs() << "Running regular LTO\n");
1257 if (!DiagFileOrErr)
1258 return DiagFileOrErr.takeError();
1259 DiagnosticOutputFile = std::move(*DiagFileOrErr);
1261 // Finalize linking of regular LTO modules containing summaries now that
1262 // we have computed liveness information.
1263 for (auto &M : RegularLTO.ModsWithSummaries)
1264 if (Error Err = linkRegularLTO(std::move(M),
1265 /*LivenessFromIndex=*/true))
1266 return Err;
1268 // Ensure we don't have inconsistently split LTO units with type tests.
1269 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1270 // this path both cases but eventually this should be split into two and
1271 // do the ThinLTO checks in `runThinLTO`.
1272 if (Error Err = checkPartiallySplit())
1273 return Err;
1275 // Make sure commons have the right size/alignment: we kept the largest from
1276 // all the prevailing when adding the inputs, and we apply it here.
1277 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
1278 for (auto &I : RegularLTO.Commons) {
1279 if (!I.second.Prevailing)
1280 // Don't do anything if no instance of this common was prevailing.
1281 continue;
1282 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
1283 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
1284 // Don't create a new global if the type is already correct, just make
1285 // sure the alignment is correct.
1286 OldGV->setAlignment(I.second.Alignment);
1287 continue;
1289 ArrayType *Ty =
1290 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
1291 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
1292 GlobalValue::CommonLinkage,
1293 ConstantAggregateZero::get(Ty), "");
1294 GV->setAlignment(I.second.Alignment);
1295 if (OldGV) {
1296 OldGV->replaceAllUsesWith(GV);
1297 GV->takeName(OldGV);
1298 OldGV->eraseFromParent();
1299 } else {
1300 GV->setName(I.first);
1304 updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex);
1306 bool WholeProgramVisibilityEnabledInLTO =
1307 Conf.HasWholeProgramVisibility &&
1308 // If validation is enabled, upgrade visibility only when all vtables
1309 // have typeinfos.
1310 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos);
1312 // This returns true when the name is local or not defined. Locals are
1313 // expected to be handled separately.
1314 auto IsVisibleToRegularObj = [&](StringRef name) {
1315 auto It = GlobalResolutions->find(name);
1316 return (It == GlobalResolutions->end() || It->second.VisibleOutsideSummary);
1319 // If allowed, upgrade public vcall visibility metadata to linkage unit
1320 // visibility before whole program devirtualization in the optimizer.
1321 updateVCallVisibilityInModule(
1322 *RegularLTO.CombinedModule, WholeProgramVisibilityEnabledInLTO,
1323 DynamicExportSymbols, Conf.ValidateAllVtablesHaveTypeInfos,
1324 IsVisibleToRegularObj);
1325 updatePublicTypeTestCalls(*RegularLTO.CombinedModule,
1326 WholeProgramVisibilityEnabledInLTO);
1328 if (Conf.PreOptModuleHook &&
1329 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
1330 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
1332 if (!Conf.CodeGenOnly) {
1333 for (const auto &R : *GlobalResolutions) {
1334 GlobalValue *GV =
1335 RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
1336 if (!R.second.isPrevailingIRSymbol())
1337 continue;
1338 if (R.second.Partition != 0 &&
1339 R.second.Partition != GlobalResolution::External)
1340 continue;
1342 // Ignore symbols defined in other partitions.
1343 // Also skip declarations, which are not allowed to have internal linkage.
1344 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
1345 continue;
1347 // Symbols that are marked DLLImport or DLLExport should not be
1348 // internalized, as they are either externally visible or referencing
1349 // external symbols. Symbols that have AvailableExternally or Appending
1350 // linkage might be used by future passes and should be kept as is.
1351 // These linkages are seen in Unified regular LTO, because the process
1352 // of creating split LTO units introduces symbols with that linkage into
1353 // one of the created modules. Normally, only the ThinLTO backend would
1354 // compile this module, but Unified Regular LTO processes both
1355 // modules created by the splitting process as regular LTO modules.
1356 if ((LTOMode == LTOKind::LTOK_UnifiedRegular) &&
1357 ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) ||
1358 GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage()))
1359 continue;
1361 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
1362 : GlobalValue::UnnamedAddr::None);
1363 if (EnableLTOInternalization && R.second.Partition == 0)
1364 GV->setLinkage(GlobalValue::InternalLinkage);
1367 if (Conf.PostInternalizeModuleHook &&
1368 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1369 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
1372 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) {
1373 if (Error Err =
1374 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1375 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex))
1376 return Err;
1379 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
1382 SmallVector<const char *> LTO::getRuntimeLibcallSymbols(const Triple &TT) {
1383 RTLIB::RuntimeLibcallsInfo Libcalls(TT);
1384 SmallVector<const char *> LibcallSymbols;
1385 copy_if(Libcalls.getLibcallNames(), std::back_inserter(LibcallSymbols),
1386 [](const char *Name) { return Name; });
1387 return LibcallSymbols;
1390 Error ThinBackendProc::emitFiles(
1391 const FunctionImporter::ImportMapTy &ImportList, llvm::StringRef ModulePath,
1392 const std::string &NewModulePath) const {
1393 ModuleToSummariesForIndexTy ModuleToSummariesForIndex;
1394 GVSummaryPtrSet DeclarationSummaries;
1396 std::error_code EC;
1397 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1398 ImportList, ModuleToSummariesForIndex,
1399 DeclarationSummaries);
1401 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1402 sys::fs::OpenFlags::OF_None);
1403 if (EC)
1404 return createFileError("cannot open " + NewModulePath + ".thinlto.bc", EC);
1406 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex,
1407 &DeclarationSummaries);
1409 if (ShouldEmitImportsFiles) {
1410 Error ImportFilesError = EmitImportsFiles(
1411 ModulePath, NewModulePath + ".imports", ModuleToSummariesForIndex);
1412 if (ImportFilesError)
1413 return ImportFilesError;
1415 return Error::success();
1418 namespace {
1419 class InProcessThinBackend : public ThinBackendProc {
1420 protected:
1421 AddStreamFn AddStream;
1422 FileCache Cache;
1423 DenseSet<GlobalValue::GUID> CfiFunctionDefs;
1424 DenseSet<GlobalValue::GUID> CfiFunctionDecls;
1426 bool ShouldEmitIndexFiles;
1428 public:
1429 InProcessThinBackend(
1430 const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1431 ThreadPoolStrategy ThinLTOParallelism,
1432 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1433 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite,
1434 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles)
1435 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries,
1436 OnWrite, ShouldEmitImportsFiles, ThinLTOParallelism),
1437 AddStream(std::move(AddStream)), Cache(std::move(Cache)),
1438 ShouldEmitIndexFiles(ShouldEmitIndexFiles) {
1439 for (auto &Name : CombinedIndex.cfiFunctionDefs())
1440 CfiFunctionDefs.insert(
1441 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1442 for (auto &Name : CombinedIndex.cfiFunctionDecls())
1443 CfiFunctionDecls.insert(
1444 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1447 virtual Error runThinLTOBackendThread(
1448 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM,
1449 ModuleSummaryIndex &CombinedIndex,
1450 const FunctionImporter::ImportMapTy &ImportList,
1451 const FunctionImporter::ExportSetTy &ExportList,
1452 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1453 const GVSummaryMapTy &DefinedGlobals,
1454 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1455 auto RunThinBackend = [&](AddStreamFn AddStream) {
1456 LTOLLVMContext BackendContext(Conf);
1457 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1458 if (!MOrErr)
1459 return MOrErr.takeError();
1461 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1462 ImportList, DefinedGlobals, &ModuleMap,
1463 Conf.CodeGenOnly);
1466 auto ModuleID = BM.getModuleIdentifier();
1468 if (ShouldEmitIndexFiles) {
1469 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str()))
1470 return E;
1473 if (!Cache.isValid() || !CombinedIndex.modulePaths().count(ModuleID) ||
1474 all_of(CombinedIndex.getModuleHash(ModuleID),
1475 [](uint32_t V) { return V == 0; }))
1476 // Cache disabled or no entry for this module in the combined index or
1477 // no module hash.
1478 return RunThinBackend(AddStream);
1480 // The module may be cached, this helps handling it.
1481 std::string Key = computeLTOCacheKey(
1482 Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR,
1483 DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls);
1484 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID);
1485 if (Error Err = CacheAddStreamOrErr.takeError())
1486 return Err;
1487 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr;
1488 if (CacheAddStream)
1489 return RunThinBackend(CacheAddStream);
1491 return Error::success();
1494 Error start(
1495 unsigned Task, BitcodeModule BM,
1496 const FunctionImporter::ImportMapTy &ImportList,
1497 const FunctionImporter::ExportSetTy &ExportList,
1498 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1499 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1500 StringRef ModulePath = BM.getModuleIdentifier();
1501 assert(ModuleToDefinedGVSummaries.count(ModulePath));
1502 const GVSummaryMapTy &DefinedGlobals =
1503 ModuleToDefinedGVSummaries.find(ModulePath)->second;
1504 BackendThreadPool.async(
1505 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1506 const FunctionImporter::ImportMapTy &ImportList,
1507 const FunctionImporter::ExportSetTy &ExportList,
1508 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1509 &ResolvedODR,
1510 const GVSummaryMapTy &DefinedGlobals,
1511 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1512 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
1513 timeTraceProfilerInitialize(Conf.TimeTraceGranularity,
1514 "thin backend");
1515 Error E = runThinLTOBackendThread(
1516 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1517 ResolvedODR, DefinedGlobals, ModuleMap);
1518 if (E) {
1519 std::unique_lock<std::mutex> L(ErrMu);
1520 if (Err)
1521 Err = joinErrors(std::move(*Err), std::move(E));
1522 else
1523 Err = std::move(E);
1525 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
1526 timeTraceProfilerFinishThread();
1528 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1529 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1531 if (OnWrite)
1532 OnWrite(std::string(ModulePath));
1533 return Error::success();
1537 /// This backend is utilized in the first round of a two-codegen round process.
1538 /// It first saves optimized bitcode files to disk before the codegen process
1539 /// begins. After codegen, it stores the resulting object files in a scratch
1540 /// buffer. Note the codegen data stored in the scratch buffer will be extracted
1541 /// and merged in the subsequent step.
1542 class FirstRoundThinBackend : public InProcessThinBackend {
1543 AddStreamFn IRAddStream;
1544 FileCache IRCache;
1546 public:
1547 FirstRoundThinBackend(
1548 const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1549 ThreadPoolStrategy ThinLTOParallelism,
1550 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1551 AddStreamFn CGAddStream, FileCache CGCache, AddStreamFn IRAddStream,
1552 FileCache IRCache)
1553 : InProcessThinBackend(Conf, CombinedIndex, ThinLTOParallelism,
1554 ModuleToDefinedGVSummaries, std::move(CGAddStream),
1555 std::move(CGCache), /*OnWrite=*/nullptr,
1556 /*ShouldEmitIndexFiles=*/false,
1557 /*ShouldEmitImportsFiles=*/false),
1558 IRAddStream(std::move(IRAddStream)), IRCache(std::move(IRCache)) {}
1560 Error runThinLTOBackendThread(
1561 AddStreamFn CGAddStream, FileCache CGCache, unsigned Task,
1562 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1563 const FunctionImporter::ImportMapTy &ImportList,
1564 const FunctionImporter::ExportSetTy &ExportList,
1565 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1566 const GVSummaryMapTy &DefinedGlobals,
1567 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1568 auto RunThinBackend = [&](AddStreamFn CGAddStream,
1569 AddStreamFn IRAddStream) {
1570 LTOLLVMContext BackendContext(Conf);
1571 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1572 if (!MOrErr)
1573 return MOrErr.takeError();
1575 return thinBackend(Conf, Task, CGAddStream, **MOrErr, CombinedIndex,
1576 ImportList, DefinedGlobals, &ModuleMap,
1577 Conf.CodeGenOnly, IRAddStream);
1580 auto ModuleID = BM.getModuleIdentifier();
1581 // Like InProcessThinBackend, we produce index files as needed for
1582 // FirstRoundThinBackend. However, these files are not generated for
1583 // SecondRoundThinBackend.
1584 if (ShouldEmitIndexFiles) {
1585 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str()))
1586 return E;
1589 assert((CGCache.isValid() == IRCache.isValid()) &&
1590 "Both caches for CG and IR should have matching availability");
1591 if (!CGCache.isValid() || !CombinedIndex.modulePaths().count(ModuleID) ||
1592 all_of(CombinedIndex.getModuleHash(ModuleID),
1593 [](uint32_t V) { return V == 0; }))
1594 // Cache disabled or no entry for this module in the combined index or
1595 // no module hash.
1596 return RunThinBackend(CGAddStream, IRAddStream);
1598 // Get CGKey for caching object in CGCache.
1599 std::string CGKey = computeLTOCacheKey(
1600 Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR,
1601 DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls);
1602 Expected<AddStreamFn> CacheCGAddStreamOrErr =
1603 CGCache(Task, CGKey, ModuleID);
1604 if (Error Err = CacheCGAddStreamOrErr.takeError())
1605 return Err;
1606 AddStreamFn &CacheCGAddStream = *CacheCGAddStreamOrErr;
1608 // Get IRKey for caching (optimized) IR in IRCache with an extra ID.
1609 std::string IRKey = recomputeLTOCacheKey(CGKey, /*ExtraID=*/"IR");
1610 Expected<AddStreamFn> CacheIRAddStreamOrErr =
1611 IRCache(Task, IRKey, ModuleID);
1612 if (Error Err = CacheIRAddStreamOrErr.takeError())
1613 return Err;
1614 AddStreamFn &CacheIRAddStream = *CacheIRAddStreamOrErr;
1616 // Ideally, both CG and IR caching should be synchronized. However, in
1617 // practice, their availability may differ due to different expiration
1618 // times. Therefore, if either cache is missing, the backend process is
1619 // triggered.
1620 if (CacheCGAddStream || CacheIRAddStream) {
1621 LLVM_DEBUG(dbgs() << "[FirstRound] Cache Miss for "
1622 << BM.getModuleIdentifier() << "\n");
1623 return RunThinBackend(CacheCGAddStream ? CacheCGAddStream : CGAddStream,
1624 CacheIRAddStream ? CacheIRAddStream : IRAddStream);
1627 return Error::success();
1631 /// This backend operates in the second round of a two-codegen round process.
1632 /// It starts by reading the optimized bitcode files that were saved during the
1633 /// first round. The backend then executes the codegen only to further optimize
1634 /// the code, utilizing the codegen data merged from the first round. Finally,
1635 /// it writes the resulting object files as usual.
1636 class SecondRoundThinBackend : public InProcessThinBackend {
1637 std::unique_ptr<SmallVector<StringRef>> IRFiles;
1638 stable_hash CombinedCGDataHash;
1640 public:
1641 SecondRoundThinBackend(
1642 const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1643 ThreadPoolStrategy ThinLTOParallelism,
1644 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1645 AddStreamFn AddStream, FileCache Cache,
1646 std::unique_ptr<SmallVector<StringRef>> IRFiles,
1647 stable_hash CombinedCGDataHash)
1648 : InProcessThinBackend(Conf, CombinedIndex, ThinLTOParallelism,
1649 ModuleToDefinedGVSummaries, std::move(AddStream),
1650 std::move(Cache),
1651 /*OnWrite=*/nullptr,
1652 /*ShouldEmitIndexFiles=*/false,
1653 /*ShouldEmitImportsFiles=*/false),
1654 IRFiles(std::move(IRFiles)), CombinedCGDataHash(CombinedCGDataHash) {}
1656 virtual Error runThinLTOBackendThread(
1657 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM,
1658 ModuleSummaryIndex &CombinedIndex,
1659 const FunctionImporter::ImportMapTy &ImportList,
1660 const FunctionImporter::ExportSetTy &ExportList,
1661 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1662 const GVSummaryMapTy &DefinedGlobals,
1663 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1664 auto RunThinBackend = [&](AddStreamFn AddStream) {
1665 LTOLLVMContext BackendContext(Conf);
1666 std::unique_ptr<Module> LoadedModule =
1667 cgdata::loadModuleForTwoRounds(BM, Task, BackendContext, *IRFiles);
1669 return thinBackend(Conf, Task, AddStream, *LoadedModule, CombinedIndex,
1670 ImportList, DefinedGlobals, &ModuleMap,
1671 /*CodeGenOnly=*/true);
1674 auto ModuleID = BM.getModuleIdentifier();
1675 if (!Cache.isValid() || !CombinedIndex.modulePaths().count(ModuleID) ||
1676 all_of(CombinedIndex.getModuleHash(ModuleID),
1677 [](uint32_t V) { return V == 0; }))
1678 // Cache disabled or no entry for this module in the combined index or
1679 // no module hash.
1680 return RunThinBackend(AddStream);
1682 // Get Key for caching the final object file in Cache with the combined
1683 // CGData hash.
1684 std::string Key = computeLTOCacheKey(
1685 Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR,
1686 DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls);
1687 Key = recomputeLTOCacheKey(Key,
1688 /*ExtraID=*/std::to_string(CombinedCGDataHash));
1689 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID);
1690 if (Error Err = CacheAddStreamOrErr.takeError())
1691 return Err;
1692 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr;
1694 if (CacheAddStream) {
1695 LLVM_DEBUG(dbgs() << "[SecondRound] Cache Miss for "
1696 << BM.getModuleIdentifier() << "\n");
1697 return RunThinBackend(CacheAddStream);
1700 return Error::success();
1703 } // end anonymous namespace
1705 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism,
1706 lto::IndexWriteCallback OnWrite,
1707 bool ShouldEmitIndexFiles,
1708 bool ShouldEmitImportsFiles) {
1709 auto Func =
1710 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1711 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1712 AddStreamFn AddStream, FileCache Cache) {
1713 return std::make_unique<InProcessThinBackend>(
1714 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries,
1715 AddStream, Cache, OnWrite, ShouldEmitIndexFiles,
1716 ShouldEmitImportsFiles);
1718 return ThinBackend(Func, Parallelism);
1721 StringLiteral lto::getThinLTODefaultCPU(const Triple &TheTriple) {
1722 if (!TheTriple.isOSDarwin())
1723 return "";
1724 if (TheTriple.getArch() == Triple::x86_64)
1725 return "core2";
1726 if (TheTriple.getArch() == Triple::x86)
1727 return "yonah";
1728 if (TheTriple.isArm64e())
1729 return "apple-a12";
1730 if (TheTriple.getArch() == Triple::aarch64 ||
1731 TheTriple.getArch() == Triple::aarch64_32)
1732 return "cyclone";
1733 return "";
1736 // Given the original \p Path to an output file, replace any path
1737 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1738 // resulting directory if it does not yet exist.
1739 std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix,
1740 StringRef NewPrefix) {
1741 if (OldPrefix.empty() && NewPrefix.empty())
1742 return std::string(Path);
1743 SmallString<128> NewPath(Path);
1744 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1745 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1746 if (!ParentPath.empty()) {
1747 // Make sure the new directory exists, creating it if necessary.
1748 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1749 llvm::errs() << "warning: could not create directory '" << ParentPath
1750 << "': " << EC.message() << '\n';
1752 return std::string(NewPath);
1755 namespace {
1756 class WriteIndexesThinBackend : public ThinBackendProc {
1757 std::string OldPrefix, NewPrefix, NativeObjectPrefix;
1758 raw_fd_ostream *LinkedObjectsFile;
1760 public:
1761 WriteIndexesThinBackend(
1762 const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1763 ThreadPoolStrategy ThinLTOParallelism,
1764 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1765 std::string OldPrefix, std::string NewPrefix,
1766 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles,
1767 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1768 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries,
1769 OnWrite, ShouldEmitImportsFiles, ThinLTOParallelism),
1770 OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1771 NativeObjectPrefix(NativeObjectPrefix),
1772 LinkedObjectsFile(LinkedObjectsFile) {}
1774 Error start(
1775 unsigned Task, BitcodeModule BM,
1776 const FunctionImporter::ImportMapTy &ImportList,
1777 const FunctionImporter::ExportSetTy &ExportList,
1778 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1779 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1780 StringRef ModulePath = BM.getModuleIdentifier();
1782 // The contents of this file may be used as input to a native link, and must
1783 // therefore contain the processed modules in a determinstic order that
1784 // match the order they are provided on the command line. For that reason,
1785 // we cannot include this in the asynchronously executed lambda below.
1786 if (LinkedObjectsFile) {
1787 std::string ObjectPrefix =
1788 NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix;
1789 std::string LinkedObjectsFilePath =
1790 getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix);
1791 *LinkedObjectsFile << LinkedObjectsFilePath << '\n';
1794 BackendThreadPool.async(
1795 [this](const StringRef ModulePath,
1796 const FunctionImporter::ImportMapTy &ImportList,
1797 const std::string &OldPrefix, const std::string &NewPrefix) {
1798 std::string NewModulePath =
1799 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix);
1800 auto E = emitFiles(ImportList, ModulePath, NewModulePath);
1801 if (E) {
1802 std::unique_lock<std::mutex> L(ErrMu);
1803 if (Err)
1804 Err = joinErrors(std::move(*Err), std::move(E));
1805 else
1806 Err = std::move(E);
1807 return;
1810 ModulePath, ImportList, OldPrefix, NewPrefix);
1812 if (OnWrite)
1813 OnWrite(std::string(ModulePath));
1814 return Error::success();
1817 bool isSensitiveToInputOrder() override {
1818 // The order which modules are written to LinkedObjectsFile should be
1819 // deterministic and match the order they are passed on the command line.
1820 return true;
1823 } // end anonymous namespace
1825 ThinBackend lto::createWriteIndexesThinBackend(
1826 ThreadPoolStrategy Parallelism, std::string OldPrefix,
1827 std::string NewPrefix, std::string NativeObjectPrefix,
1828 bool ShouldEmitImportsFiles, raw_fd_ostream *LinkedObjectsFile,
1829 IndexWriteCallback OnWrite) {
1830 auto Func =
1831 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1832 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1833 AddStreamFn AddStream, FileCache Cache) {
1834 return std::make_unique<WriteIndexesThinBackend>(
1835 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries,
1836 OldPrefix, NewPrefix, NativeObjectPrefix, ShouldEmitImportsFiles,
1837 LinkedObjectsFile, OnWrite);
1839 return ThinBackend(Func, Parallelism);
1842 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache,
1843 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1844 LLVM_DEBUG(dbgs() << "Running ThinLTO\n");
1845 ThinLTO.CombinedIndex.releaseTemporaryMemory();
1846 timeTraceProfilerBegin("ThinLink", StringRef(""));
1847 auto TimeTraceScopeExit = llvm::make_scope_exit([]() {
1848 if (llvm::timeTraceProfilerEnabled())
1849 llvm::timeTraceProfilerEnd();
1851 if (ThinLTO.ModuleMap.empty())
1852 return Error::success();
1854 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) {
1855 llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1856 return Error::success();
1859 if (Conf.CombinedIndexHook &&
1860 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols))
1861 return Error::success();
1863 // Collect for each module the list of function it defines (GUID ->
1864 // Summary).
1865 DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries(
1866 ThinLTO.ModuleMap.size());
1867 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1868 ModuleToDefinedGVSummaries);
1869 // Create entries for any modules that didn't have any GV summaries
1870 // (either they didn't have any GVs to start with, or we suppressed
1871 // generation of the summaries because they e.g. had inline assembly
1872 // uses that couldn't be promoted/renamed on export). This is so
1873 // InProcessThinBackend::start can still launch a backend thread, which
1874 // is passed the map of summaries for the module, without any special
1875 // handling for this case.
1876 for (auto &Mod : ThinLTO.ModuleMap)
1877 if (!ModuleToDefinedGVSummaries.count(Mod.first))
1878 ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1880 FunctionImporter::ImportListsTy ImportLists(ThinLTO.ModuleMap.size());
1881 DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists(
1882 ThinLTO.ModuleMap.size());
1883 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1885 if (DumpThinCGSCCs)
1886 ThinLTO.CombinedIndex.dumpSCCs(outs());
1888 std::set<GlobalValue::GUID> ExportedGUIDs;
1890 bool WholeProgramVisibilityEnabledInLTO =
1891 Conf.HasWholeProgramVisibility &&
1892 // If validation is enabled, upgrade visibility only when all vtables
1893 // have typeinfos.
1894 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos);
1895 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
1896 ThinLTO.CombinedIndex.setWithWholeProgramVisibility();
1898 // If we're validating, get the vtable symbols that should not be
1899 // upgraded because they correspond to typeIDs outside of index-based
1900 // WPD info.
1901 DenseSet<GlobalValue::GUID> VisibleToRegularObjSymbols;
1902 if (WholeProgramVisibilityEnabledInLTO &&
1903 Conf.ValidateAllVtablesHaveTypeInfos) {
1904 // This returns true when the name is local or not defined. Locals are
1905 // expected to be handled separately.
1906 auto IsVisibleToRegularObj = [&](StringRef name) {
1907 auto It = GlobalResolutions->find(name);
1908 return (It == GlobalResolutions->end() ||
1909 It->second.VisibleOutsideSummary);
1912 getVisibleToRegularObjVtableGUIDs(ThinLTO.CombinedIndex,
1913 VisibleToRegularObjSymbols,
1914 IsVisibleToRegularObj);
1917 // If allowed, upgrade public vcall visibility to linkage unit visibility in
1918 // the summaries before whole program devirtualization below.
1919 updateVCallVisibilityInIndex(
1920 ThinLTO.CombinedIndex, WholeProgramVisibilityEnabledInLTO,
1921 DynamicExportSymbols, VisibleToRegularObjSymbols);
1923 // Perform index-based WPD. This will return immediately if there are
1924 // no index entries in the typeIdMetadata map (e.g. if we are instead
1925 // performing IR-based WPD in hybrid regular/thin LTO mode).
1926 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
1927 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
1928 LocalWPDTargetsMap);
1930 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
1931 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1933 if (EnableMemProfContextDisambiguation) {
1934 MemProfContextDisambiguation ContextDisambiguation;
1935 ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing);
1938 // Figure out which symbols need to be internalized. This also needs to happen
1939 // at -O0 because summary-based DCE is implemented using internalization, and
1940 // we must apply DCE consistently with the full LTO module in order to avoid
1941 // undefined references during the final link.
1942 for (auto &Res : *GlobalResolutions) {
1943 // If the symbol does not have external references or it is not prevailing,
1944 // then not need to mark it as exported from a ThinLTO partition.
1945 if (Res.second.Partition != GlobalResolution::External ||
1946 !Res.second.isPrevailingIRSymbol())
1947 continue;
1948 auto GUID = GlobalValue::getGUID(
1949 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1950 // Mark exported unless index-based analysis determined it to be dead.
1951 if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1952 ExportedGUIDs.insert(GUID);
1955 // Reset the GlobalResolutions to deallocate the associated memory, as there
1956 // are no further accesses. We specifically want to do this before computing
1957 // cross module importing, which adds to peak memory via the computed import
1958 // and export lists.
1959 releaseGlobalResolutionsMemory();
1961 if (Conf.OptLevel > 0)
1962 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1963 isPrevailing, ImportLists, ExportLists);
1965 // Any functions referenced by the jump table in the regular LTO object must
1966 // be exported.
1967 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1968 ExportedGUIDs.insert(
1969 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1970 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls())
1971 ExportedGUIDs.insert(
1972 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl)));
1974 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
1975 const auto &ExportList = ExportLists.find(ModuleIdentifier);
1976 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
1977 ExportedGUIDs.count(VI.getGUID());
1980 // Update local devirtualized targets that were exported by cross-module
1981 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1982 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
1983 LocalWPDTargetsMap);
1985 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
1986 isPrevailing);
1988 auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1989 GlobalValue::GUID GUID,
1990 GlobalValue::LinkageTypes NewLinkage) {
1991 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1993 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing,
1994 recordNewLinkage, GUIDPreservedSymbols);
1996 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing);
1998 generateParamAccessSummary(ThinLTO.CombinedIndex);
2000 if (llvm::timeTraceProfilerEnabled())
2001 llvm::timeTraceProfilerEnd();
2003 TimeTraceScopeExit.release();
2005 auto &ModuleMap =
2006 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap;
2008 auto RunBackends = [&](ThinBackendProc *BackendProcess) -> Error {
2009 auto ProcessOneModule = [&](int I) -> Error {
2010 auto &Mod = *(ModuleMap.begin() + I);
2011 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
2012 // combined module and parallel code generation partitions.
2013 return BackendProcess->start(
2014 RegularLTO.ParallelCodeGenParallelismLevel + I, Mod.second,
2015 ImportLists[Mod.first], ExportLists[Mod.first],
2016 ResolvedODR[Mod.first], ThinLTO.ModuleMap);
2019 if (BackendProcess->getThreadCount() == 1 ||
2020 BackendProcess->isSensitiveToInputOrder()) {
2021 // Process the modules in the order they were provided on the
2022 // command-line. It is important for this codepath to be used for
2023 // WriteIndexesThinBackend, to ensure the emitted LinkedObjectsFile lists
2024 // ThinLTO objects in the same order as the inputs, which otherwise would
2025 // affect the final link order.
2026 for (int I = 0, E = ModuleMap.size(); I != E; ++I)
2027 if (Error E = ProcessOneModule(I))
2028 return E;
2029 } else {
2030 // When executing in parallel, process largest bitsize modules first to
2031 // improve parallelism, and avoid starving the thread pool near the end.
2032 // This saves about 15 sec on a 36-core machine while link `clang.exe`
2033 // (out of 100 sec).
2034 std::vector<BitcodeModule *> ModulesVec;
2035 ModulesVec.reserve(ModuleMap.size());
2036 for (auto &Mod : ModuleMap)
2037 ModulesVec.push_back(&Mod.second);
2038 for (int I : generateModulesOrdering(ModulesVec))
2039 if (Error E = ProcessOneModule(I))
2040 return E;
2042 return BackendProcess->wait();
2045 if (!CodeGenDataThinLTOTwoRounds) {
2046 std::unique_ptr<ThinBackendProc> BackendProc =
2047 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
2048 AddStream, Cache);
2049 return RunBackends(BackendProc.get());
2052 // Perform two rounds of code generation for ThinLTO:
2053 // 1. First round: Perform optimization and code generation, outputting to
2054 // temporary scratch objects.
2055 // 2. Merge code generation data extracted from the temporary scratch objects.
2056 // 3. Second round: Execute code generation again using the merged data.
2057 LLVM_DEBUG(dbgs() << "[TwoRounds] Initializing ThinLTO two-codegen rounds\n");
2059 unsigned MaxTasks = getMaxTasks();
2060 auto Parallelism = ThinLTO.Backend.getParallelism();
2061 // Set up two additional streams and caches for storing temporary scratch
2062 // objects and optimized IRs, using the same cache directory as the original.
2063 cgdata::StreamCacheData CG(MaxTasks, Cache, "CG"), IR(MaxTasks, Cache, "IR");
2065 // First round: Execute optimization and code generation, outputting to
2066 // temporary scratch objects. Serialize the optimized IRs before initiating
2067 // code generation.
2068 LLVM_DEBUG(dbgs() << "[TwoRounds] Running the first round of codegen\n");
2069 auto FirstRoundLTO = std::make_unique<FirstRoundThinBackend>(
2070 Conf, ThinLTO.CombinedIndex, Parallelism, ModuleToDefinedGVSummaries,
2071 CG.AddStream, CG.Cache, IR.AddStream, IR.Cache);
2072 if (Error E = RunBackends(FirstRoundLTO.get()))
2073 return E;
2075 LLVM_DEBUG(dbgs() << "[TwoRounds] Merging codegen data\n");
2076 auto CombinedHashOrErr = cgdata::mergeCodeGenData(*CG.getResult());
2077 if (Error E = CombinedHashOrErr.takeError())
2078 return E;
2079 auto CombinedHash = *CombinedHashOrErr;
2080 LLVM_DEBUG(dbgs() << "[TwoRounds] CGData hash: " << CombinedHash << "\n");
2082 // Second round: Read the optimized IRs and execute code generation using the
2083 // merged data.
2084 LLVM_DEBUG(dbgs() << "[TwoRounds] Running the second round of codegen\n");
2085 auto SecondRoundLTO = std::make_unique<SecondRoundThinBackend>(
2086 Conf, ThinLTO.CombinedIndex, Parallelism, ModuleToDefinedGVSummaries,
2087 AddStream, Cache, IR.getResult(), CombinedHash);
2088 return RunBackends(SecondRoundLTO.get());
2091 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks(
2092 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
2093 StringRef RemarksFormat, bool RemarksWithHotness,
2094 std::optional<uint64_t> RemarksHotnessThreshold, int Count) {
2095 std::string Filename = std::string(RemarksFilename);
2096 // For ThinLTO, file.opt.<format> becomes
2097 // file.opt.<format>.thin.<num>.<format>.
2098 if (!Filename.empty() && Count != -1)
2099 Filename =
2100 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat)
2101 .str();
2103 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks(
2104 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness,
2105 RemarksHotnessThreshold);
2106 if (Error E = ResultOrErr.takeError())
2107 return std::move(E);
2109 if (*ResultOrErr)
2110 (*ResultOrErr)->keep();
2112 return ResultOrErr;
2115 Expected<std::unique_ptr<ToolOutputFile>>
2116 lto::setupStatsFile(StringRef StatsFilename) {
2117 // Setup output file to emit statistics.
2118 if (StatsFilename.empty())
2119 return nullptr;
2121 llvm::EnableStatistics(false);
2122 std::error_code EC;
2123 auto StatsFile =
2124 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
2125 if (EC)
2126 return errorCodeToError(EC);
2128 StatsFile->keep();
2129 return std::move(StatsFile);
2132 // Compute the ordering we will process the inputs: the rough heuristic here
2133 // is to sort them per size so that the largest module get schedule as soon as
2134 // possible. This is purely a compile-time optimization.
2135 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) {
2136 auto Seq = llvm::seq<int>(0, R.size());
2137 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end());
2138 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) {
2139 auto LSize = R[LeftIndex]->getBuffer().size();
2140 auto RSize = R[RightIndex]->getBuffer().size();
2141 return LSize > RSize;
2143 return ModulesOrdering;