1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/StableHashing.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/StackSafetyAnalysis.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Bitcode/BitcodeReader.h"
24 #include "llvm/Bitcode/BitcodeWriter.h"
25 #include "llvm/CGData/CodeGenData.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMRemarkStreamer.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/RuntimeLibcalls.h"
36 #include "llvm/LTO/LTOBackend.h"
37 #include "llvm/Linker/IRMover.h"
38 #include "llvm/MC/TargetRegistry.h"
39 #include "llvm/Object/IRObjectFile.h"
40 #include "llvm/Support/Caching.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Error.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/MemoryBuffer.h"
45 #include "llvm/Support/Path.h"
46 #include "llvm/Support/SHA1.h"
47 #include "llvm/Support/SourceMgr.h"
48 #include "llvm/Support/ThreadPool.h"
49 #include "llvm/Support/Threading.h"
50 #include "llvm/Support/TimeProfiler.h"
51 #include "llvm/Support/ToolOutputFile.h"
52 #include "llvm/Support/VCSRevision.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/Transforms/IPO.h"
56 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
57 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
58 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
59 #include "llvm/Transforms/Utils/SplitModule.h"
66 using namespace object
;
68 #define DEBUG_TYPE "lto"
70 extern cl::opt
<bool> UseNewDbgInfoFormat
;
73 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden
,
74 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
76 extern cl::opt
<bool> CodeGenDataThinLTOTwoRounds
;
79 /// Enable global value internalization in LTO.
80 cl::opt
<bool> EnableLTOInternalization(
81 "enable-lto-internalization", cl::init(true), cl::Hidden
,
82 cl::desc("Enable global value internalization in LTO"));
85 LTOKeepSymbolCopies("lto-keep-symbol-copies", cl::init(false), cl::Hidden
,
86 cl::desc("Keep copies of symbols in LTO indexing"));
88 /// Indicate we are linking with an allocator that supports hot/cold operator
90 extern cl::opt
<bool> SupportsHotColdNew
;
92 /// Enable MemProf context disambiguation for thin link.
93 extern cl::opt
<bool> EnableMemProfContextDisambiguation
;
96 // Computes a unique hash for the Module considering the current list of
97 // export/import and other global analysis results.
98 // Returns the hash in its hexadecimal representation.
99 std::string
llvm::computeLTOCacheKey(
100 const Config
&Conf
, const ModuleSummaryIndex
&Index
, StringRef ModuleID
,
101 const FunctionImporter::ImportMapTy
&ImportList
,
102 const FunctionImporter::ExportSetTy
&ExportList
,
103 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
104 const GVSummaryMapTy
&DefinedGlobals
,
105 const DenseSet
<GlobalValue::GUID
> &CfiFunctionDefs
,
106 const DenseSet
<GlobalValue::GUID
> &CfiFunctionDecls
) {
107 // Compute the unique hash for this entry.
108 // This is based on the current compiler version, the module itself, the
109 // export list, the hash for every single module in the import list, the
110 // list of ResolvedODR for the module, and the list of preserved symbols.
113 // Start with the compiler revision
114 Hasher
.update(LLVM_VERSION_STRING
);
116 Hasher
.update(LLVM_REVISION
);
119 // Include the parts of the LTO configuration that affect code generation.
120 auto AddString
= [&](StringRef Str
) {
122 Hasher
.update(ArrayRef
<uint8_t>{0});
124 auto AddUnsigned
= [&](unsigned I
) {
126 support::endian::write32le(Data
, I
);
129 auto AddUint64
= [&](uint64_t I
) {
131 support::endian::write64le(Data
, I
);
134 auto AddUint8
= [&](const uint8_t I
) {
135 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&I
, 1));
138 // FIXME: Hash more of Options. For now all clients initialize Options from
139 // command-line flags (which is unsupported in production), but may set
140 // X86RelaxRelocations. The clang driver can also pass FunctionSections,
141 // DataSections and DebuggerTuning via command line flags.
142 AddUnsigned(Conf
.Options
.MCOptions
.X86RelaxRelocations
);
143 AddUnsigned(Conf
.Options
.FunctionSections
);
144 AddUnsigned(Conf
.Options
.DataSections
);
145 AddUnsigned((unsigned)Conf
.Options
.DebuggerTuning
);
146 for (auto &A
: Conf
.MAttrs
)
149 AddUnsigned(*Conf
.RelocModel
);
153 AddUnsigned(*Conf
.CodeModel
);
156 for (const auto &S
: Conf
.MllvmArgs
)
158 AddUnsigned(static_cast<int>(Conf
.CGOptLevel
));
159 AddUnsigned(static_cast<int>(Conf
.CGFileType
));
160 AddUnsigned(Conf
.OptLevel
);
161 AddUnsigned(Conf
.Freestanding
);
162 AddString(Conf
.OptPipeline
);
163 AddString(Conf
.AAPipeline
);
164 AddString(Conf
.OverrideTriple
);
165 AddString(Conf
.DefaultTriple
);
166 AddString(Conf
.DwoDir
);
168 // Include the hash for the current module
169 auto ModHash
= Index
.getModuleHash(ModuleID
);
170 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
172 // TODO: `ExportList` is determined by `ImportList`. Since `ImportList` is
173 // used to compute cache key, we could omit hashing `ExportList` here.
174 std::vector
<uint64_t> ExportsGUID
;
175 ExportsGUID
.reserve(ExportList
.size());
176 for (const auto &VI
: ExportList
)
177 ExportsGUID
.push_back(VI
.getGUID());
179 // Sort the export list elements GUIDs.
180 llvm::sort(ExportsGUID
);
181 for (auto GUID
: ExportsGUID
)
182 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&GUID
, sizeof(GUID
)));
184 // Order using module hash, to be both independent of module name and
186 auto Comp
= [&](const std::pair
<StringRef
, GlobalValue::GUID
> &L
,
187 const std::pair
<StringRef
, GlobalValue::GUID
> &R
) {
188 return std::make_pair(Index
.getModule(L
.first
)->second
, L
.second
) <
189 std::make_pair(Index
.getModule(R
.first
)->second
, R
.second
);
191 FunctionImporter::SortedImportList
SortedImportList(ImportList
, Comp
);
193 // Count the number of imports for each source module.
194 DenseMap
<StringRef
, unsigned> ModuleToNumImports
;
195 for (const auto &[FromModule
, GUID
, Type
] : SortedImportList
)
196 ++ModuleToNumImports
[FromModule
];
198 std::optional
<StringRef
> LastModule
;
199 for (const auto &[FromModule
, GUID
, Type
] : SortedImportList
) {
200 if (LastModule
!= FromModule
) {
201 // Include the hash for every module we import functions from. The set of
202 // imported symbols for each module may affect code generation and is
203 // sensitive to link order, so include that as well.
204 LastModule
= FromModule
;
205 auto ModHash
= Index
.getModule(FromModule
)->second
;
206 Hasher
.update(ArrayRef
<uint8_t>((uint8_t *)&ModHash
[0], sizeof(ModHash
)));
207 AddUint64(ModuleToNumImports
[FromModule
]);
213 // Include the hash for the resolved ODR.
214 for (auto &Entry
: ResolvedODR
) {
215 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.first
,
216 sizeof(GlobalValue::GUID
)));
217 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&Entry
.second
,
218 sizeof(GlobalValue::LinkageTypes
)));
221 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
222 // defined in this module.
223 std::set
<GlobalValue::GUID
> UsedCfiDefs
;
224 std::set
<GlobalValue::GUID
> UsedCfiDecls
;
226 // Typeids used in this module.
227 std::set
<GlobalValue::GUID
> UsedTypeIds
;
229 auto AddUsedCfiGlobal
= [&](GlobalValue::GUID ValueGUID
) {
230 if (CfiFunctionDefs
.contains(ValueGUID
))
231 UsedCfiDefs
.insert(ValueGUID
);
232 if (CfiFunctionDecls
.contains(ValueGUID
))
233 UsedCfiDecls
.insert(ValueGUID
);
236 auto AddUsedThings
= [&](GlobalValueSummary
*GS
) {
238 AddUnsigned(GS
->getVisibility());
239 AddUnsigned(GS
->isLive());
240 AddUnsigned(GS
->canAutoHide());
241 for (const ValueInfo
&VI
: GS
->refs()) {
242 AddUnsigned(VI
.isDSOLocal(Index
.withDSOLocalPropagation()));
243 AddUsedCfiGlobal(VI
.getGUID());
245 if (auto *GVS
= dyn_cast
<GlobalVarSummary
>(GS
)) {
246 AddUnsigned(GVS
->maybeReadOnly());
247 AddUnsigned(GVS
->maybeWriteOnly());
249 if (auto *FS
= dyn_cast
<FunctionSummary
>(GS
)) {
250 for (auto &TT
: FS
->type_tests())
251 UsedTypeIds
.insert(TT
);
252 for (auto &TT
: FS
->type_test_assume_vcalls())
253 UsedTypeIds
.insert(TT
.GUID
);
254 for (auto &TT
: FS
->type_checked_load_vcalls())
255 UsedTypeIds
.insert(TT
.GUID
);
256 for (auto &TT
: FS
->type_test_assume_const_vcalls())
257 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
258 for (auto &TT
: FS
->type_checked_load_const_vcalls())
259 UsedTypeIds
.insert(TT
.VFunc
.GUID
);
260 for (auto &ET
: FS
->calls()) {
261 AddUnsigned(ET
.first
.isDSOLocal(Index
.withDSOLocalPropagation()));
262 AddUsedCfiGlobal(ET
.first
.getGUID());
267 // Include the hash for the linkage type to reflect internalization and weak
268 // resolution, and collect any used type identifier resolutions.
269 for (auto &GS
: DefinedGlobals
) {
270 GlobalValue::LinkageTypes Linkage
= GS
.second
->linkage();
272 ArrayRef
<uint8_t>((const uint8_t *)&Linkage
, sizeof(Linkage
)));
273 AddUsedCfiGlobal(GS
.first
);
274 AddUsedThings(GS
.second
);
277 // Imported functions may introduce new uses of type identifier resolutions,
278 // so we need to collect their used resolutions as well.
279 for (const auto &[FromModule
, GUID
, Type
] : SortedImportList
) {
280 GlobalValueSummary
*S
= Index
.findSummaryInModule(GUID
, FromModule
);
282 // If this is an alias, we also care about any types/etc. that the aliasee
284 if (auto *AS
= dyn_cast_or_null
<AliasSummary
>(S
))
285 AddUsedThings(AS
->getBaseObject());
288 auto AddTypeIdSummary
= [&](StringRef TId
, const TypeIdSummary
&S
) {
291 AddUnsigned(S
.TTRes
.TheKind
);
292 AddUnsigned(S
.TTRes
.SizeM1BitWidth
);
294 AddUint64(S
.TTRes
.AlignLog2
);
295 AddUint64(S
.TTRes
.SizeM1
);
296 AddUint64(S
.TTRes
.BitMask
);
297 AddUint64(S
.TTRes
.InlineBits
);
299 AddUint64(S
.WPDRes
.size());
300 for (auto &WPD
: S
.WPDRes
) {
301 AddUnsigned(WPD
.first
);
302 AddUnsigned(WPD
.second
.TheKind
);
303 AddString(WPD
.second
.SingleImplName
);
305 AddUint64(WPD
.second
.ResByArg
.size());
306 for (auto &ByArg
: WPD
.second
.ResByArg
) {
307 AddUint64(ByArg
.first
.size());
308 for (uint64_t Arg
: ByArg
.first
)
310 AddUnsigned(ByArg
.second
.TheKind
);
311 AddUint64(ByArg
.second
.Info
);
312 AddUnsigned(ByArg
.second
.Byte
);
313 AddUnsigned(ByArg
.second
.Bit
);
318 // Include the hash for all type identifiers used by this module.
319 for (GlobalValue::GUID TId
: UsedTypeIds
) {
320 auto TidIter
= Index
.typeIds().equal_range(TId
);
321 for (const auto &I
: make_range(TidIter
))
322 AddTypeIdSummary(I
.second
.first
, I
.second
.second
);
325 AddUnsigned(UsedCfiDefs
.size());
326 for (auto &V
: UsedCfiDefs
)
329 AddUnsigned(UsedCfiDecls
.size());
330 for (auto &V
: UsedCfiDecls
)
333 if (!Conf
.SampleProfile
.empty()) {
334 auto FileOrErr
= MemoryBuffer::getFile(Conf
.SampleProfile
);
336 Hasher
.update(FileOrErr
.get()->getBuffer());
338 if (!Conf
.ProfileRemapping
.empty()) {
339 FileOrErr
= MemoryBuffer::getFile(Conf
.ProfileRemapping
);
341 Hasher
.update(FileOrErr
.get()->getBuffer());
346 return toHex(Hasher
.result());
349 std::string
llvm::recomputeLTOCacheKey(const std::string
&Key
,
353 auto AddString
= [&](StringRef Str
) {
355 Hasher
.update(ArrayRef
<uint8_t>{0});
360 return toHex(Hasher
.result());
363 static void thinLTOResolvePrevailingGUID(
364 const Config
&C
, ValueInfo VI
,
365 DenseSet
<GlobalValueSummary
*> &GlobalInvolvedWithAlias
,
366 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
368 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
370 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
371 GlobalValue::VisibilityTypes Visibility
=
372 C
.VisibilityScheme
== Config::ELF
? VI
.getELFVisibility()
373 : GlobalValue::DefaultVisibility
;
374 for (auto &S
: VI
.getSummaryList()) {
375 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
376 // Ignore local and appending linkage values since the linker
377 // doesn't resolve them.
378 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
379 GlobalValue::isAppendingLinkage(S
->linkage()))
381 // We need to emit only one of these. The prevailing module will keep it,
382 // but turned into a weak, while the others will drop it when possible.
383 // This is both a compile-time optimization and a correctness
384 // transformation. This is necessary for correctness when we have exported
385 // a reference - we need to convert the linkonce to weak to
386 // ensure a copy is kept to satisfy the exported reference.
387 // FIXME: We may want to split the compile time and correctness
388 // aspects into separate routines.
389 if (isPrevailing(VI
.getGUID(), S
.get())) {
390 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
)) {
391 S
->setLinkage(GlobalValue::getWeakLinkage(
392 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
393 // The kept copy is eligible for auto-hiding (hidden visibility) if all
394 // copies were (i.e. they were all linkonce_odr global unnamed addr).
395 // If any copy is not (e.g. it was originally weak_odr), then the symbol
396 // must remain externally available (e.g. a weak_odr from an explicitly
397 // instantiated template). Additionally, if it is in the
398 // GUIDPreservedSymbols set, that means that it is visibile outside
399 // the summary (e.g. in a native object or a bitcode file without
400 // summary), and in that case we cannot hide it as it isn't possible to
402 S
->setCanAutoHide(VI
.canAutoHide() &&
403 !GUIDPreservedSymbols
.count(VI
.getGUID()));
405 if (C
.VisibilityScheme
== Config::FromPrevailing
)
406 Visibility
= S
->getVisibility();
408 // Alias and aliasee can't be turned into available_externally.
409 else if (!isa
<AliasSummary
>(S
.get()) &&
410 !GlobalInvolvedWithAlias
.count(S
.get()))
411 S
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
413 // For ELF, set visibility to the computed visibility from summaries. We
414 // don't track visibility from declarations so this may be more relaxed than
415 // the most constraining one.
416 if (C
.VisibilityScheme
== Config::ELF
)
417 S
->setVisibility(Visibility
);
419 if (S
->linkage() != OriginalLinkage
)
420 recordNewLinkage(S
->modulePath(), VI
.getGUID(), S
->linkage());
423 if (C
.VisibilityScheme
== Config::FromPrevailing
) {
424 for (auto &S
: VI
.getSummaryList()) {
425 GlobalValue::LinkageTypes OriginalLinkage
= S
->linkage();
426 if (GlobalValue::isLocalLinkage(OriginalLinkage
) ||
427 GlobalValue::isAppendingLinkage(S
->linkage()))
429 S
->setVisibility(Visibility
);
434 /// Resolve linkage for prevailing symbols in the \p Index.
436 // We'd like to drop these functions if they are no longer referenced in the
437 // current module. However there is a chance that another module is still
438 // referencing them because of the import. We make sure we always emit at least
440 void llvm::thinLTOResolvePrevailingInIndex(
441 const Config
&C
, ModuleSummaryIndex
&Index
,
442 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
444 function_ref
<void(StringRef
, GlobalValue::GUID
, GlobalValue::LinkageTypes
)>
446 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
447 // We won't optimize the globals that are referenced by an alias for now
448 // Ideally we should turn the alias into a global and duplicate the definition
450 DenseSet
<GlobalValueSummary
*> GlobalInvolvedWithAlias
;
451 for (auto &I
: Index
)
452 for (auto &S
: I
.second
.SummaryList
)
453 if (auto AS
= dyn_cast
<AliasSummary
>(S
.get()))
454 GlobalInvolvedWithAlias
.insert(&AS
->getAliasee());
456 for (auto &I
: Index
)
457 thinLTOResolvePrevailingGUID(C
, Index
.getValueInfo(I
),
458 GlobalInvolvedWithAlias
, isPrevailing
,
459 recordNewLinkage
, GUIDPreservedSymbols
);
462 static void thinLTOInternalizeAndPromoteGUID(
463 ValueInfo VI
, function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
464 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
466 auto ExternallyVisibleCopies
=
467 llvm::count_if(VI
.getSummaryList(),
468 [](const std::unique_ptr
<GlobalValueSummary
> &Summary
) {
469 return !GlobalValue::isLocalLinkage(Summary
->linkage());
472 for (auto &S
: VI
.getSummaryList()) {
473 // First see if we need to promote an internal value because it is not
475 if (isExported(S
->modulePath(), VI
)) {
476 if (GlobalValue::isLocalLinkage(S
->linkage()))
477 S
->setLinkage(GlobalValue::ExternalLinkage
);
481 // Otherwise, see if we can internalize.
482 if (!EnableLTOInternalization
)
485 // Non-exported values with external linkage can be internalized.
486 if (GlobalValue::isExternalLinkage(S
->linkage())) {
487 S
->setLinkage(GlobalValue::InternalLinkage
);
491 // Non-exported function and variable definitions with a weak-for-linker
492 // linkage can be internalized in certain cases. The minimum legality
493 // requirements would be that they are not address taken to ensure that we
494 // don't break pointer equality checks, and that variables are either read-
495 // or write-only. For functions, this is the case if either all copies are
496 // [local_]unnamed_addr, or we can propagate reference edge attributes
497 // (which is how this is guaranteed for variables, when analyzing whether
498 // they are read or write-only).
500 // However, we only get to this code for weak-for-linkage values in one of
502 // 1) The prevailing copy is not in IR (it is in native code).
503 // 2) The prevailing copy in IR is not exported from its module.
504 // Additionally, at least for the new LTO API, case 2 will only happen if
505 // there is exactly one definition of the value (i.e. in exactly one
506 // module), as duplicate defs are result in the value being marked exported.
507 // Likely, users of the legacy LTO API are similar, however, currently there
508 // are llvm-lto based tests of the legacy LTO API that do not mark
509 // duplicate linkonce_odr copies as exported via the tool, so we need
510 // to handle that case below by checking the number of copies.
512 // Generally, we only want to internalize a weak-for-linker value in case
513 // 2, because in case 1 we cannot see how the value is used to know if it
514 // is read or write-only. We also don't want to bloat the binary with
515 // multiple internalized copies of non-prevailing linkonce/weak functions.
516 // Note if we don't internalize, we will convert non-prevailing copies to
517 // available_externally anyway, so that we drop them after inlining. The
518 // only reason to internalize such a function is if we indeed have a single
519 // copy, because internalizing it won't increase binary size, and enables
520 // use of inliner heuristics that are more aggressive in the face of a
521 // single call to a static (local). For variables, internalizing a read or
522 // write only variable can enable more aggressive optimization. However, we
523 // already perform this elsewhere in the ThinLTO backend handling for
524 // read or write-only variables (processGlobalForThinLTO).
526 // Therefore, only internalize linkonce/weak if there is a single copy, that
527 // is prevailing in this IR module. We can do so aggressively, without
528 // requiring the address to be insignificant, or that a variable be read or
530 if (!GlobalValue::isWeakForLinker(S
->linkage()) ||
531 GlobalValue::isExternalWeakLinkage(S
->linkage()))
534 if (isPrevailing(VI
.getGUID(), S
.get()) && ExternallyVisibleCopies
== 1)
535 S
->setLinkage(GlobalValue::InternalLinkage
);
539 // Update the linkages in the given \p Index to mark exported values
540 // as external and non-exported values as internal.
541 void llvm::thinLTOInternalizeAndPromoteInIndex(
542 ModuleSummaryIndex
&Index
,
543 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
544 function_ref
<bool(GlobalValue::GUID
, const GlobalValueSummary
*)>
546 for (auto &I
: Index
)
547 thinLTOInternalizeAndPromoteGUID(Index
.getValueInfo(I
), isExported
,
551 // Requires a destructor for std::vector<InputModule>.
552 InputFile::~InputFile() = default;
554 Expected
<std::unique_ptr
<InputFile
>> InputFile::create(MemoryBufferRef Object
) {
555 std::unique_ptr
<InputFile
> File(new InputFile
);
557 Expected
<IRSymtabFile
> FOrErr
= readIRSymtab(Object
);
559 return FOrErr
.takeError();
561 File
->TargetTriple
= FOrErr
->TheReader
.getTargetTriple();
562 File
->SourceFileName
= FOrErr
->TheReader
.getSourceFileName();
563 File
->COFFLinkerOpts
= FOrErr
->TheReader
.getCOFFLinkerOpts();
564 File
->DependentLibraries
= FOrErr
->TheReader
.getDependentLibraries();
565 File
->ComdatTable
= FOrErr
->TheReader
.getComdatTable();
567 for (unsigned I
= 0; I
!= FOrErr
->Mods
.size(); ++I
) {
568 size_t Begin
= File
->Symbols
.size();
569 for (const irsymtab::Reader::SymbolRef
&Sym
:
570 FOrErr
->TheReader
.module_symbols(I
))
571 // Skip symbols that are irrelevant to LTO. Note that this condition needs
572 // to match the one in Skip() in LTO::addRegularLTO().
573 if (Sym
.isGlobal() && !Sym
.isFormatSpecific())
574 File
->Symbols
.push_back(Sym
);
575 File
->ModuleSymIndices
.push_back({Begin
, File
->Symbols
.size()});
578 File
->Mods
= FOrErr
->Mods
;
579 File
->Strtab
= std::move(FOrErr
->Strtab
);
580 return std::move(File
);
583 StringRef
InputFile::getName() const {
584 return Mods
[0].getModuleIdentifier();
587 BitcodeModule
&InputFile::getSingleBitcodeModule() {
588 assert(Mods
.size() == 1 && "Expect only one bitcode module");
592 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel
,
594 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel
),
595 Ctx(Conf
), CombinedModule(std::make_unique
<Module
>("ld-temp.o", Ctx
)),
596 Mover(std::make_unique
<IRMover
>(*CombinedModule
)) {
597 CombinedModule
->IsNewDbgInfoFormat
= UseNewDbgInfoFormat
;
600 LTO::ThinLTOState::ThinLTOState(ThinBackend BackendParam
)
601 : Backend(std::move(BackendParam
)), CombinedIndex(/*HaveGVs*/ false) {
602 if (!Backend
.isValid())
604 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
607 LTO::LTO(Config Conf
, ThinBackend Backend
,
608 unsigned ParallelCodeGenParallelismLevel
, LTOKind LTOMode
)
609 : Conf(std::move(Conf
)),
610 RegularLTO(ParallelCodeGenParallelismLevel
, this->Conf
),
611 ThinLTO(std::move(Backend
)),
613 std::make_unique
<DenseMap
<StringRef
, GlobalResolution
>>()),
615 if (Conf
.KeepSymbolNameCopies
|| LTOKeepSymbolCopies
) {
616 Alloc
= std::make_unique
<BumpPtrAllocator
>();
617 GlobalResolutionSymbolSaver
= std::make_unique
<llvm::StringSaver
>(*Alloc
);
621 // Requires a destructor for MapVector<BitcodeModule>.
622 LTO::~LTO() = default;
624 // Add the symbols in the given module to the GlobalResolutions map, and resolve
626 void LTO::addModuleToGlobalRes(ArrayRef
<InputFile::Symbol
> Syms
,
627 ArrayRef
<SymbolResolution
> Res
,
628 unsigned Partition
, bool InSummary
) {
629 auto *ResI
= Res
.begin();
630 auto *ResE
= Res
.end();
632 const Triple
TT(RegularLTO
.CombinedModule
->getTargetTriple());
633 for (const InputFile::Symbol
&Sym
: Syms
) {
634 assert(ResI
!= ResE
);
635 SymbolResolution Res
= *ResI
++;
637 StringRef SymbolName
= Sym
.getName();
638 // Keep copies of symbols if the client of LTO says so.
639 if (GlobalResolutionSymbolSaver
&& !GlobalResolutions
->contains(SymbolName
))
640 SymbolName
= GlobalResolutionSymbolSaver
->save(SymbolName
);
642 auto &GlobalRes
= (*GlobalResolutions
)[SymbolName
];
643 GlobalRes
.UnnamedAddr
&= Sym
.isUnnamedAddr();
644 if (Res
.Prevailing
) {
645 assert(!GlobalRes
.Prevailing
&&
646 "Multiple prevailing defs are not allowed");
647 GlobalRes
.Prevailing
= true;
648 GlobalRes
.IRName
= std::string(Sym
.getIRName());
649 } else if (!GlobalRes
.Prevailing
&& GlobalRes
.IRName
.empty()) {
650 // Sometimes it can be two copies of symbol in a module and prevailing
651 // symbol can have no IR name. That might happen if symbol is defined in
652 // module level inline asm block. In case we have multiple modules with
653 // the same symbol we want to use IR name of the prevailing symbol.
654 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
655 // we can later use it to check if there is any prevailing copy in IR.
656 GlobalRes
.IRName
= std::string(Sym
.getIRName());
659 // In rare occasion, the symbol used to initialize GlobalRes has a different
660 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a
661 // symbol is referenced through its mangled name, say @"\01_symbol" while
662 // the IRName is @symbol (the prefix underscore comes from MachO mangling).
663 // In that case, we have the same actual Symbol that can get two different
664 // GUID, leading to some invalid internalization. Workaround this by marking
665 // the GlobalRes external.
667 // FIXME: instead of this check, it would be desirable to compute GUIDs
668 // based on mangled name, but this requires an access to the Target Triple
669 // and would be relatively invasive on the codebase.
670 if (GlobalRes
.IRName
!= Sym
.getIRName()) {
671 GlobalRes
.Partition
= GlobalResolution::External
;
672 GlobalRes
.VisibleOutsideSummary
= true;
675 // Set the partition to external if we know it is re-defined by the linker
676 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
677 // regular object, is referenced from llvm.compiler.used/llvm.used, or was
678 // already recorded as being referenced from a different partition.
679 if (Res
.LinkerRedefined
|| Res
.VisibleToRegularObj
|| Sym
.isUsed() ||
680 (GlobalRes
.Partition
!= GlobalResolution::Unknown
&&
681 GlobalRes
.Partition
!= Partition
)) {
682 GlobalRes
.Partition
= GlobalResolution::External
;
684 // First recorded reference, save the current partition.
685 GlobalRes
.Partition
= Partition
;
687 // Flag as visible outside of summary if visible from a regular object or
688 // from a module that does not have a summary.
689 GlobalRes
.VisibleOutsideSummary
|=
690 (Res
.VisibleToRegularObj
|| Sym
.isUsed() || !InSummary
);
692 GlobalRes
.ExportDynamic
|= Res
.ExportDynamic
;
696 void LTO::releaseGlobalResolutionsMemory() {
697 // Release GlobalResolutions dense-map itself.
698 GlobalResolutions
.reset();
699 // Release the string saver memory.
700 GlobalResolutionSymbolSaver
.reset();
704 static void writeToResolutionFile(raw_ostream
&OS
, InputFile
*Input
,
705 ArrayRef
<SymbolResolution
> Res
) {
706 StringRef Path
= Input
->getName();
708 auto ResI
= Res
.begin();
709 for (const InputFile::Symbol
&Sym
: Input
->symbols()) {
710 assert(ResI
!= Res
.end());
711 SymbolResolution Res
= *ResI
++;
713 OS
<< "-r=" << Path
<< ',' << Sym
.getName() << ',';
716 if (Res
.FinalDefinitionInLinkageUnit
)
718 if (Res
.VisibleToRegularObj
)
720 if (Res
.LinkerRedefined
)
725 assert(ResI
== Res
.end());
728 Error
LTO::add(std::unique_ptr
<InputFile
> Input
,
729 ArrayRef
<SymbolResolution
> Res
) {
730 assert(!CalledGetMaxTasks
);
732 if (Conf
.ResolutionFile
)
733 writeToResolutionFile(*Conf
.ResolutionFile
, Input
.get(), Res
);
735 if (RegularLTO
.CombinedModule
->getTargetTriple().empty()) {
736 RegularLTO
.CombinedModule
->setTargetTriple(Input
->getTargetTriple());
737 if (Triple(Input
->getTargetTriple()).isOSBinFormatELF())
738 Conf
.VisibilityScheme
= Config::ELF
;
741 const SymbolResolution
*ResI
= Res
.begin();
742 for (unsigned I
= 0; I
!= Input
->Mods
.size(); ++I
)
743 if (Error Err
= addModule(*Input
, I
, ResI
, Res
.end()))
746 assert(ResI
== Res
.end());
747 return Error::success();
750 Error
LTO::addModule(InputFile
&Input
, unsigned ModI
,
751 const SymbolResolution
*&ResI
,
752 const SymbolResolution
*ResE
) {
753 Expected
<BitcodeLTOInfo
> LTOInfo
= Input
.Mods
[ModI
].getLTOInfo();
755 return LTOInfo
.takeError();
757 if (EnableSplitLTOUnit
) {
758 // If only some modules were split, flag this in the index so that
759 // we can skip or error on optimizations that need consistently split
760 // modules (whole program devirt and lower type tests).
761 if (*EnableSplitLTOUnit
!= LTOInfo
->EnableSplitLTOUnit
)
762 ThinLTO
.CombinedIndex
.setPartiallySplitLTOUnits();
764 EnableSplitLTOUnit
= LTOInfo
->EnableSplitLTOUnit
;
766 BitcodeModule BM
= Input
.Mods
[ModI
];
768 if ((LTOMode
== LTOK_UnifiedRegular
|| LTOMode
== LTOK_UnifiedThin
) &&
769 !LTOInfo
->UnifiedLTO
)
770 return make_error
<StringError
>(
771 "unified LTO compilation must use "
772 "compatible bitcode modules (use -funified-lto)",
773 inconvertibleErrorCode());
775 if (LTOInfo
->UnifiedLTO
&& LTOMode
== LTOK_Default
)
776 LTOMode
= LTOK_UnifiedThin
;
778 bool IsThinLTO
= LTOInfo
->IsThinLTO
&& (LTOMode
!= LTOK_UnifiedRegular
);
780 auto ModSyms
= Input
.module_symbols(ModI
);
781 addModuleToGlobalRes(ModSyms
, {ResI
, ResE
},
782 IsThinLTO
? ThinLTO
.ModuleMap
.size() + 1 : 0,
783 LTOInfo
->HasSummary
);
786 return addThinLTO(BM
, ModSyms
, ResI
, ResE
);
788 RegularLTO
.EmptyCombinedModule
= false;
789 Expected
<RegularLTOState::AddedModule
> ModOrErr
=
790 addRegularLTO(BM
, ModSyms
, ResI
, ResE
);
792 return ModOrErr
.takeError();
794 if (!LTOInfo
->HasSummary
)
795 return linkRegularLTO(std::move(*ModOrErr
), /*LivenessFromIndex=*/false);
797 // Regular LTO module summaries are added to a dummy module that represents
798 // the combined regular LTO module.
799 if (Error Err
= BM
.readSummary(ThinLTO
.CombinedIndex
, ""))
801 RegularLTO
.ModsWithSummaries
.push_back(std::move(*ModOrErr
));
802 return Error::success();
805 // Checks whether the given global value is in a non-prevailing comdat
806 // (comdat containing values the linker indicated were not prevailing,
807 // which we then dropped to available_externally), and if so, removes
808 // it from the comdat. This is called for all global values to ensure the
809 // comdat is empty rather than leaving an incomplete comdat. It is needed for
810 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
811 // and thin LTO modules) compilation. Since the regular LTO module will be
812 // linked first in the final native link, we want to make sure the linker
813 // doesn't select any of these incomplete comdats that would be left
814 // in the regular LTO module without this cleanup.
816 handleNonPrevailingComdat(GlobalValue
&GV
,
817 std::set
<const Comdat
*> &NonPrevailingComdats
) {
818 Comdat
*C
= GV
.getComdat();
822 if (!NonPrevailingComdats
.count(C
))
825 // Additionally need to drop all global values from the comdat to
826 // available_externally, to satisfy the COMDAT requirement that all members
827 // are discarded as a unit. The non-local linkage global values avoid
828 // duplicate definition linker errors.
829 GV
.setLinkage(GlobalValue::AvailableExternallyLinkage
);
831 if (auto GO
= dyn_cast
<GlobalObject
>(&GV
))
832 GO
->setComdat(nullptr);
835 // Add a regular LTO object to the link.
836 // The resulting module needs to be linked into the combined LTO module with
838 Expected
<LTO::RegularLTOState::AddedModule
>
839 LTO::addRegularLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
840 const SymbolResolution
*&ResI
,
841 const SymbolResolution
*ResE
) {
842 RegularLTOState::AddedModule Mod
;
843 Expected
<std::unique_ptr
<Module
>> MOrErr
=
844 BM
.getLazyModule(RegularLTO
.Ctx
, /*ShouldLazyLoadMetadata*/ true,
845 /*IsImporting*/ false);
847 return MOrErr
.takeError();
848 Module
&M
= **MOrErr
;
849 Mod
.M
= std::move(*MOrErr
);
851 if (Error Err
= M
.materializeMetadata())
852 return std::move(Err
);
854 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests
855 // will rename local functions in the merged module as "<function name>.1".
856 // This causes linking errors, since other parts of the module expect the
857 // original function name.
858 if (LTOMode
== LTOK_UnifiedRegular
)
859 if (NamedMDNode
*CfiFunctionsMD
= M
.getNamedMetadata("cfi.functions"))
860 M
.eraseNamedMetadata(CfiFunctionsMD
);
864 ModuleSymbolTable SymTab
;
865 SymTab
.addModule(&M
);
867 for (GlobalVariable
&GV
: M
.globals())
868 if (GV
.hasAppendingLinkage())
869 Mod
.Keep
.push_back(&GV
);
871 DenseSet
<GlobalObject
*> AliasedGlobals
;
872 for (auto &GA
: M
.aliases())
873 if (GlobalObject
*GO
= GA
.getAliaseeObject())
874 AliasedGlobals
.insert(GO
);
876 // In this function we need IR GlobalValues matching the symbols in Syms
877 // (which is not backed by a module), so we need to enumerate them in the same
878 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
879 // matches the order of an irsymtab, but when we read the irsymtab in
880 // InputFile::create we omit some symbols that are irrelevant to LTO. The
881 // Skip() function skips the same symbols from the module as InputFile does
882 // from the symbol table.
883 auto MsymI
= SymTab
.symbols().begin(), MsymE
= SymTab
.symbols().end();
885 while (MsymI
!= MsymE
) {
886 auto Flags
= SymTab
.getSymbolFlags(*MsymI
);
887 if ((Flags
& object::BasicSymbolRef::SF_Global
) &&
888 !(Flags
& object::BasicSymbolRef::SF_FormatSpecific
))
895 std::set
<const Comdat
*> NonPrevailingComdats
;
896 SmallSet
<StringRef
, 2> NonPrevailingAsmSymbols
;
897 for (const InputFile::Symbol
&Sym
: Syms
) {
898 assert(ResI
!= ResE
);
899 SymbolResolution Res
= *ResI
++;
901 assert(MsymI
!= MsymE
);
902 ModuleSymbolTable::Symbol Msym
= *MsymI
++;
905 if (GlobalValue
*GV
= dyn_cast_if_present
<GlobalValue
*>(Msym
)) {
906 if (Res
.Prevailing
) {
907 if (Sym
.isUndefined())
909 Mod
.Keep
.push_back(GV
);
910 // For symbols re-defined with linker -wrap and -defsym options,
911 // set the linkage to weak to inhibit IPO. The linkage will be
912 // restored by the linker.
913 if (Res
.LinkerRedefined
)
914 GV
->setLinkage(GlobalValue::WeakAnyLinkage
);
916 GlobalValue::LinkageTypes OriginalLinkage
= GV
->getLinkage();
917 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage
))
918 GV
->setLinkage(GlobalValue::getWeakLinkage(
919 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage
)));
920 } else if (isa
<GlobalObject
>(GV
) &&
921 (GV
->hasLinkOnceODRLinkage() || GV
->hasWeakODRLinkage() ||
922 GV
->hasAvailableExternallyLinkage()) &&
923 !AliasedGlobals
.count(cast
<GlobalObject
>(GV
))) {
924 // Any of the above three types of linkage indicates that the
925 // chosen prevailing symbol will have the same semantics as this copy of
926 // the symbol, so we may be able to link it with available_externally
927 // linkage. We will decide later whether to do that when we link this
928 // module (in linkRegularLTO), based on whether it is undefined.
929 Mod
.Keep
.push_back(GV
);
930 GV
->setLinkage(GlobalValue::AvailableExternallyLinkage
);
932 NonPrevailingComdats
.insert(GV
->getComdat());
933 cast
<GlobalObject
>(GV
)->setComdat(nullptr);
936 // Set the 'local' flag based on the linker resolution for this symbol.
937 if (Res
.FinalDefinitionInLinkageUnit
) {
938 GV
->setDSOLocal(true);
939 if (GV
->hasDLLImportStorageClass())
940 GV
->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
941 DefaultStorageClass
);
943 } else if (auto *AS
=
944 dyn_cast_if_present
<ModuleSymbolTable::AsmSymbol
*>(Msym
)) {
945 // Collect non-prevailing symbols.
947 NonPrevailingAsmSymbols
.insert(AS
->first
);
949 llvm_unreachable("unknown symbol type");
952 // Common resolution: collect the maximum size/alignment over all commons.
953 // We also record if we see an instance of a common as prevailing, so that
954 // if none is prevailing we can ignore it later.
955 if (Sym
.isCommon()) {
956 // FIXME: We should figure out what to do about commons defined by asm.
957 // For now they aren't reported correctly by ModuleSymbolTable.
958 auto &CommonRes
= RegularLTO
.Commons
[std::string(Sym
.getIRName())];
959 CommonRes
.Size
= std::max(CommonRes
.Size
, Sym
.getCommonSize());
960 if (uint32_t SymAlignValue
= Sym
.getCommonAlignment()) {
961 CommonRes
.Alignment
=
962 std::max(Align(SymAlignValue
), CommonRes
.Alignment
);
964 CommonRes
.Prevailing
|= Res
.Prevailing
;
968 if (!M
.getComdatSymbolTable().empty())
969 for (GlobalValue
&GV
: M
.global_values())
970 handleNonPrevailingComdat(GV
, NonPrevailingComdats
);
972 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
974 if (!M
.getModuleInlineAsm().empty()) {
975 std::string NewIA
= ".lto_discard";
976 if (!NonPrevailingAsmSymbols
.empty()) {
977 // Don't dicard a symbol if there is a live .symver for it.
978 ModuleSymbolTable::CollectAsmSymvers(
979 M
, [&](StringRef Name
, StringRef Alias
) {
980 if (!NonPrevailingAsmSymbols
.count(Alias
))
981 NonPrevailingAsmSymbols
.erase(Name
);
983 NewIA
+= " " + llvm::join(NonPrevailingAsmSymbols
, ", ");
986 M
.setModuleInlineAsm(NewIA
+ M
.getModuleInlineAsm());
989 assert(MsymI
== MsymE
);
990 return std::move(Mod
);
993 Error
LTO::linkRegularLTO(RegularLTOState::AddedModule Mod
,
994 bool LivenessFromIndex
) {
995 std::vector
<GlobalValue
*> Keep
;
996 for (GlobalValue
*GV
: Mod
.Keep
) {
997 if (LivenessFromIndex
&& !ThinLTO
.CombinedIndex
.isGUIDLive(GV
->getGUID())) {
998 if (Function
*F
= dyn_cast
<Function
>(GV
)) {
999 if (DiagnosticOutputFile
) {
1000 if (Error Err
= F
->materialize())
1002 OptimizationRemarkEmitter
ORE(F
, nullptr);
1003 ORE
.emit(OptimizationRemark(DEBUG_TYPE
, "deadfunction", F
)
1004 << ore::NV("Function", F
)
1005 << " not added to the combined module ");
1011 if (!GV
->hasAvailableExternallyLinkage()) {
1016 // Only link available_externally definitions if we don't already have a
1018 GlobalValue
*CombinedGV
=
1019 RegularLTO
.CombinedModule
->getNamedValue(GV
->getName());
1020 if (CombinedGV
&& !CombinedGV
->isDeclaration())
1026 return RegularLTO
.Mover
->move(std::move(Mod
.M
), Keep
, nullptr,
1027 /* IsPerformingImport */ false);
1030 // Add a ThinLTO module to the link.
1031 Error
LTO::addThinLTO(BitcodeModule BM
, ArrayRef
<InputFile::Symbol
> Syms
,
1032 const SymbolResolution
*&ResI
,
1033 const SymbolResolution
*ResE
) {
1034 const SymbolResolution
*ResITmp
= ResI
;
1035 for (const InputFile::Symbol
&Sym
: Syms
) {
1036 assert(ResITmp
!= ResE
);
1037 SymbolResolution Res
= *ResITmp
++;
1039 if (!Sym
.getIRName().empty()) {
1040 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1041 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
1043 ThinLTO
.PrevailingModuleForGUID
[GUID
] = BM
.getModuleIdentifier();
1048 BM
.readSummary(ThinLTO
.CombinedIndex
, BM
.getModuleIdentifier(),
1049 [&](GlobalValue::GUID GUID
) {
1050 return ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
1051 BM
.getModuleIdentifier();
1054 LLVM_DEBUG(dbgs() << "Module " << BM
.getModuleIdentifier() << "\n");
1056 for (const InputFile::Symbol
&Sym
: Syms
) {
1057 assert(ResI
!= ResE
);
1058 SymbolResolution Res
= *ResI
++;
1060 if (!Sym
.getIRName().empty()) {
1061 auto GUID
= GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1062 Sym
.getIRName(), GlobalValue::ExternalLinkage
, ""));
1063 if (Res
.Prevailing
) {
1064 assert(ThinLTO
.PrevailingModuleForGUID
[GUID
] ==
1065 BM
.getModuleIdentifier());
1067 // For linker redefined symbols (via --wrap or --defsym) we want to
1068 // switch the linkage to `weak` to prevent IPOs from happening.
1069 // Find the summary in the module for this very GV and record the new
1070 // linkage so that we can switch it when we import the GV.
1071 if (Res
.LinkerRedefined
)
1072 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
1073 GUID
, BM
.getModuleIdentifier()))
1074 S
->setLinkage(GlobalValue::WeakAnyLinkage
);
1077 // If the linker resolved the symbol to a local definition then mark it
1078 // as local in the summary for the module we are adding.
1079 if (Res
.FinalDefinitionInLinkageUnit
) {
1080 if (auto S
= ThinLTO
.CombinedIndex
.findSummaryInModule(
1081 GUID
, BM
.getModuleIdentifier())) {
1082 S
->setDSOLocal(true);
1088 if (!ThinLTO
.ModuleMap
.insert({BM
.getModuleIdentifier(), BM
}).second
)
1089 return make_error
<StringError
>(
1090 "Expected at most one ThinLTO module per bitcode file",
1091 inconvertibleErrorCode());
1093 if (!Conf
.ThinLTOModulesToCompile
.empty()) {
1094 if (!ThinLTO
.ModulesToCompile
)
1095 ThinLTO
.ModulesToCompile
= ModuleMapType();
1096 // This is a fuzzy name matching where only modules with name containing the
1097 // specified switch values are going to be compiled.
1098 for (const std::string
&Name
: Conf
.ThinLTOModulesToCompile
) {
1099 if (BM
.getModuleIdentifier().contains(Name
)) {
1100 ThinLTO
.ModulesToCompile
->insert({BM
.getModuleIdentifier(), BM
});
1101 LLVM_DEBUG(dbgs() << "[ThinLTO] Selecting " << BM
.getModuleIdentifier()
1102 << " to compile\n");
1107 return Error::success();
1110 unsigned LTO::getMaxTasks() const {
1111 CalledGetMaxTasks
= true;
1112 auto ModuleCount
= ThinLTO
.ModulesToCompile
? ThinLTO
.ModulesToCompile
->size()
1113 : ThinLTO
.ModuleMap
.size();
1114 return RegularLTO
.ParallelCodeGenParallelismLevel
+ ModuleCount
;
1117 // If only some of the modules were split, we cannot correctly handle
1118 // code that contains type tests or type checked loads.
1119 Error
LTO::checkPartiallySplit() {
1120 if (!ThinLTO
.CombinedIndex
.partiallySplitLTOUnits())
1121 return Error::success();
1123 const Module
*Combined
= RegularLTO
.CombinedModule
.get();
1124 Function
*TypeTestFunc
=
1125 Intrinsic::getDeclarationIfExists(Combined
, Intrinsic::type_test
);
1126 Function
*TypeCheckedLoadFunc
=
1127 Intrinsic::getDeclarationIfExists(Combined
, Intrinsic::type_checked_load
);
1128 Function
*TypeCheckedLoadRelativeFunc
= Intrinsic::getDeclarationIfExists(
1129 Combined
, Intrinsic::type_checked_load_relative
);
1131 // First check if there are type tests / type checked loads in the
1132 // merged regular LTO module IR.
1133 if ((TypeTestFunc
&& !TypeTestFunc
->use_empty()) ||
1134 (TypeCheckedLoadFunc
&& !TypeCheckedLoadFunc
->use_empty()) ||
1135 (TypeCheckedLoadRelativeFunc
&&
1136 !TypeCheckedLoadRelativeFunc
->use_empty()))
1137 return make_error
<StringError
>(
1138 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1139 inconvertibleErrorCode());
1141 // Otherwise check if there are any recorded in the combined summary from the
1143 for (auto &P
: ThinLTO
.CombinedIndex
) {
1144 for (auto &S
: P
.second
.SummaryList
) {
1145 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1148 if (!FS
->type_test_assume_vcalls().empty() ||
1149 !FS
->type_checked_load_vcalls().empty() ||
1150 !FS
->type_test_assume_const_vcalls().empty() ||
1151 !FS
->type_checked_load_const_vcalls().empty() ||
1152 !FS
->type_tests().empty())
1153 return make_error
<StringError
>(
1154 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1155 inconvertibleErrorCode());
1158 return Error::success();
1161 Error
LTO::run(AddStreamFn AddStream
, FileCache Cache
) {
1162 // Compute "dead" symbols, we don't want to import/export these!
1163 DenseSet
<GlobalValue::GUID
> GUIDPreservedSymbols
;
1164 DenseMap
<GlobalValue::GUID
, PrevailingType
> GUIDPrevailingResolutions
;
1165 for (auto &Res
: *GlobalResolutions
) {
1166 // Normally resolution have IR name of symbol. We can do nothing here
1167 // otherwise. See comments in GlobalResolution struct for more details.
1168 if (Res
.second
.IRName
.empty())
1171 GlobalValue::GUID GUID
= GlobalValue::getGUID(
1172 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1174 if (Res
.second
.VisibleOutsideSummary
&& Res
.second
.Prevailing
)
1175 GUIDPreservedSymbols
.insert(GUID
);
1177 if (Res
.second
.ExportDynamic
)
1178 DynamicExportSymbols
.insert(GUID
);
1180 GUIDPrevailingResolutions
[GUID
] =
1181 Res
.second
.Prevailing
? PrevailingType::Yes
: PrevailingType::No
;
1184 auto isPrevailing
= [&](GlobalValue::GUID G
) {
1185 auto It
= GUIDPrevailingResolutions
.find(G
);
1186 if (It
== GUIDPrevailingResolutions
.end())
1187 return PrevailingType::Unknown
;
1190 computeDeadSymbolsWithConstProp(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
,
1191 isPrevailing
, Conf
.OptLevel
> 0);
1193 // Setup output file to emit statistics.
1194 auto StatsFileOrErr
= setupStatsFile(Conf
.StatsFile
);
1195 if (!StatsFileOrErr
)
1196 return StatsFileOrErr
.takeError();
1197 std::unique_ptr
<ToolOutputFile
> StatsFile
= std::move(StatsFileOrErr
.get());
1199 // TODO: Ideally this would be controlled automatically by detecting that we
1200 // are linking with an allocator that supports these interfaces, rather than
1201 // an internal option (which would still be needed for tests, however). For
1202 // example, if the library exported a symbol like __malloc_hot_cold the linker
1203 // could recognize that and set a flag in the lto::Config.
1204 if (SupportsHotColdNew
)
1205 ThinLTO
.CombinedIndex
.setWithSupportsHotColdNew();
1207 Error Result
= runRegularLTO(AddStream
);
1209 // This will reset the GlobalResolutions optional once done with it to
1210 // reduce peak memory before importing.
1211 Result
= runThinLTO(AddStream
, Cache
, GUIDPreservedSymbols
);
1214 PrintStatisticsJSON(StatsFile
->os());
1219 void lto::updateMemProfAttributes(Module
&Mod
,
1220 const ModuleSummaryIndex
&Index
) {
1221 if (Index
.withSupportsHotColdNew())
1224 // The profile matcher applies hotness attributes directly for allocations,
1225 // and those will cause us to generate calls to the hot/cold interfaces
1226 // unconditionally. If supports-hot-cold-new was not enabled in the LTO
1227 // link then assume we don't want these calls (e.g. not linking with
1228 // the appropriate library, or otherwise trying to disable this behavior).
1229 for (auto &F
: Mod
) {
1230 for (auto &BB
: F
) {
1231 for (auto &I
: BB
) {
1232 auto *CI
= dyn_cast
<CallBase
>(&I
);
1235 if (CI
->hasFnAttr("memprof"))
1236 CI
->removeFnAttr("memprof");
1237 // Strip off all memprof metadata as it is no longer needed.
1238 // Importantly, this avoids the addition of new memprof attributes
1239 // after inlining propagation.
1240 // TODO: If we support additional types of MemProf metadata beyond hot
1241 // and cold, we will need to update the metadata based on the allocator
1242 // APIs supported instead of completely stripping all.
1243 CI
->setMetadata(LLVMContext::MD_memprof
, nullptr);
1244 CI
->setMetadata(LLVMContext::MD_callsite
, nullptr);
1250 Error
LTO::runRegularLTO(AddStreamFn AddStream
) {
1251 // Setup optimization remarks.
1252 auto DiagFileOrErr
= lto::setupLLVMOptimizationRemarks(
1253 RegularLTO
.CombinedModule
->getContext(), Conf
.RemarksFilename
,
1254 Conf
.RemarksPasses
, Conf
.RemarksFormat
, Conf
.RemarksWithHotness
,
1255 Conf
.RemarksHotnessThreshold
);
1256 LLVM_DEBUG(dbgs() << "Running regular LTO\n");
1258 return DiagFileOrErr
.takeError();
1259 DiagnosticOutputFile
= std::move(*DiagFileOrErr
);
1261 // Finalize linking of regular LTO modules containing summaries now that
1262 // we have computed liveness information.
1263 for (auto &M
: RegularLTO
.ModsWithSummaries
)
1264 if (Error Err
= linkRegularLTO(std::move(M
),
1265 /*LivenessFromIndex=*/true))
1268 // Ensure we don't have inconsistently split LTO units with type tests.
1269 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1270 // this path both cases but eventually this should be split into two and
1271 // do the ThinLTO checks in `runThinLTO`.
1272 if (Error Err
= checkPartiallySplit())
1275 // Make sure commons have the right size/alignment: we kept the largest from
1276 // all the prevailing when adding the inputs, and we apply it here.
1277 const DataLayout
&DL
= RegularLTO
.CombinedModule
->getDataLayout();
1278 for (auto &I
: RegularLTO
.Commons
) {
1279 if (!I
.second
.Prevailing
)
1280 // Don't do anything if no instance of this common was prevailing.
1282 GlobalVariable
*OldGV
= RegularLTO
.CombinedModule
->getNamedGlobal(I
.first
);
1283 if (OldGV
&& DL
.getTypeAllocSize(OldGV
->getValueType()) == I
.second
.Size
) {
1284 // Don't create a new global if the type is already correct, just make
1285 // sure the alignment is correct.
1286 OldGV
->setAlignment(I
.second
.Alignment
);
1290 ArrayType::get(Type::getInt8Ty(RegularLTO
.Ctx
), I
.second
.Size
);
1291 auto *GV
= new GlobalVariable(*RegularLTO
.CombinedModule
, Ty
, false,
1292 GlobalValue::CommonLinkage
,
1293 ConstantAggregateZero::get(Ty
), "");
1294 GV
->setAlignment(I
.second
.Alignment
);
1296 OldGV
->replaceAllUsesWith(GV
);
1297 GV
->takeName(OldGV
);
1298 OldGV
->eraseFromParent();
1300 GV
->setName(I
.first
);
1304 updateMemProfAttributes(*RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
);
1306 bool WholeProgramVisibilityEnabledInLTO
=
1307 Conf
.HasWholeProgramVisibility
&&
1308 // If validation is enabled, upgrade visibility only when all vtables
1310 (!Conf
.ValidateAllVtablesHaveTypeInfos
|| Conf
.AllVtablesHaveTypeInfos
);
1312 // This returns true when the name is local or not defined. Locals are
1313 // expected to be handled separately.
1314 auto IsVisibleToRegularObj
= [&](StringRef name
) {
1315 auto It
= GlobalResolutions
->find(name
);
1316 return (It
== GlobalResolutions
->end() || It
->second
.VisibleOutsideSummary
);
1319 // If allowed, upgrade public vcall visibility metadata to linkage unit
1320 // visibility before whole program devirtualization in the optimizer.
1321 updateVCallVisibilityInModule(
1322 *RegularLTO
.CombinedModule
, WholeProgramVisibilityEnabledInLTO
,
1323 DynamicExportSymbols
, Conf
.ValidateAllVtablesHaveTypeInfos
,
1324 IsVisibleToRegularObj
);
1325 updatePublicTypeTestCalls(*RegularLTO
.CombinedModule
,
1326 WholeProgramVisibilityEnabledInLTO
);
1328 if (Conf
.PreOptModuleHook
&&
1329 !Conf
.PreOptModuleHook(0, *RegularLTO
.CombinedModule
))
1330 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1332 if (!Conf
.CodeGenOnly
) {
1333 for (const auto &R
: *GlobalResolutions
) {
1335 RegularLTO
.CombinedModule
->getNamedValue(R
.second
.IRName
);
1336 if (!R
.second
.isPrevailingIRSymbol())
1338 if (R
.second
.Partition
!= 0 &&
1339 R
.second
.Partition
!= GlobalResolution::External
)
1342 // Ignore symbols defined in other partitions.
1343 // Also skip declarations, which are not allowed to have internal linkage.
1344 if (!GV
|| GV
->hasLocalLinkage() || GV
->isDeclaration())
1347 // Symbols that are marked DLLImport or DLLExport should not be
1348 // internalized, as they are either externally visible or referencing
1349 // external symbols. Symbols that have AvailableExternally or Appending
1350 // linkage might be used by future passes and should be kept as is.
1351 // These linkages are seen in Unified regular LTO, because the process
1352 // of creating split LTO units introduces symbols with that linkage into
1353 // one of the created modules. Normally, only the ThinLTO backend would
1354 // compile this module, but Unified Regular LTO processes both
1355 // modules created by the splitting process as regular LTO modules.
1356 if ((LTOMode
== LTOKind::LTOK_UnifiedRegular
) &&
1357 ((GV
->getDLLStorageClass() != GlobalValue::DefaultStorageClass
) ||
1358 GV
->hasAvailableExternallyLinkage() || GV
->hasAppendingLinkage()))
1361 GV
->setUnnamedAddr(R
.second
.UnnamedAddr
? GlobalValue::UnnamedAddr::Global
1362 : GlobalValue::UnnamedAddr::None
);
1363 if (EnableLTOInternalization
&& R
.second
.Partition
== 0)
1364 GV
->setLinkage(GlobalValue::InternalLinkage
);
1367 if (Conf
.PostInternalizeModuleHook
&&
1368 !Conf
.PostInternalizeModuleHook(0, *RegularLTO
.CombinedModule
))
1369 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1372 if (!RegularLTO
.EmptyCombinedModule
|| Conf
.AlwaysEmitRegularLTOObj
) {
1374 backend(Conf
, AddStream
, RegularLTO
.ParallelCodeGenParallelismLevel
,
1375 *RegularLTO
.CombinedModule
, ThinLTO
.CombinedIndex
))
1379 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile
));
1382 SmallVector
<const char *> LTO::getRuntimeLibcallSymbols(const Triple
&TT
) {
1383 RTLIB::RuntimeLibcallsInfo
Libcalls(TT
);
1384 SmallVector
<const char *> LibcallSymbols
;
1385 copy_if(Libcalls
.getLibcallNames(), std::back_inserter(LibcallSymbols
),
1386 [](const char *Name
) { return Name
; });
1387 return LibcallSymbols
;
1390 Error
ThinBackendProc::emitFiles(
1391 const FunctionImporter::ImportMapTy
&ImportList
, llvm::StringRef ModulePath
,
1392 const std::string
&NewModulePath
) const {
1393 ModuleToSummariesForIndexTy ModuleToSummariesForIndex
;
1394 GVSummaryPtrSet DeclarationSummaries
;
1397 gatherImportedSummariesForModule(ModulePath
, ModuleToDefinedGVSummaries
,
1398 ImportList
, ModuleToSummariesForIndex
,
1399 DeclarationSummaries
);
1401 raw_fd_ostream
OS(NewModulePath
+ ".thinlto.bc", EC
,
1402 sys::fs::OpenFlags::OF_None
);
1404 return createFileError("cannot open " + NewModulePath
+ ".thinlto.bc", EC
);
1406 writeIndexToFile(CombinedIndex
, OS
, &ModuleToSummariesForIndex
,
1407 &DeclarationSummaries
);
1409 if (ShouldEmitImportsFiles
) {
1410 Error ImportFilesError
= EmitImportsFiles(
1411 ModulePath
, NewModulePath
+ ".imports", ModuleToSummariesForIndex
);
1412 if (ImportFilesError
)
1413 return ImportFilesError
;
1415 return Error::success();
1419 class InProcessThinBackend
: public ThinBackendProc
{
1421 AddStreamFn AddStream
;
1423 DenseSet
<GlobalValue::GUID
> CfiFunctionDefs
;
1424 DenseSet
<GlobalValue::GUID
> CfiFunctionDecls
;
1426 bool ShouldEmitIndexFiles
;
1429 InProcessThinBackend(
1430 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1431 ThreadPoolStrategy ThinLTOParallelism
,
1432 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1433 AddStreamFn AddStream
, FileCache Cache
, lto::IndexWriteCallback OnWrite
,
1434 bool ShouldEmitIndexFiles
, bool ShouldEmitImportsFiles
)
1435 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1436 OnWrite
, ShouldEmitImportsFiles
, ThinLTOParallelism
),
1437 AddStream(std::move(AddStream
)), Cache(std::move(Cache
)),
1438 ShouldEmitIndexFiles(ShouldEmitIndexFiles
) {
1439 for (auto &Name
: CombinedIndex
.cfiFunctionDefs())
1440 CfiFunctionDefs
.insert(
1441 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1442 for (auto &Name
: CombinedIndex
.cfiFunctionDecls())
1443 CfiFunctionDecls
.insert(
1444 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name
)));
1447 virtual Error
runThinLTOBackendThread(
1448 AddStreamFn AddStream
, FileCache Cache
, unsigned Task
, BitcodeModule BM
,
1449 ModuleSummaryIndex
&CombinedIndex
,
1450 const FunctionImporter::ImportMapTy
&ImportList
,
1451 const FunctionImporter::ExportSetTy
&ExportList
,
1452 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1453 const GVSummaryMapTy
&DefinedGlobals
,
1454 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1455 auto RunThinBackend
= [&](AddStreamFn AddStream
) {
1456 LTOLLVMContext
BackendContext(Conf
);
1457 Expected
<std::unique_ptr
<Module
>> MOrErr
= BM
.parseModule(BackendContext
);
1459 return MOrErr
.takeError();
1461 return thinBackend(Conf
, Task
, AddStream
, **MOrErr
, CombinedIndex
,
1462 ImportList
, DefinedGlobals
, &ModuleMap
,
1466 auto ModuleID
= BM
.getModuleIdentifier();
1468 if (ShouldEmitIndexFiles
) {
1469 if (auto E
= emitFiles(ImportList
, ModuleID
, ModuleID
.str()))
1473 if (!Cache
.isValid() || !CombinedIndex
.modulePaths().count(ModuleID
) ||
1474 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1475 [](uint32_t V
) { return V
== 0; }))
1476 // Cache disabled or no entry for this module in the combined index or
1478 return RunThinBackend(AddStream
);
1480 // The module may be cached, this helps handling it.
1481 std::string Key
= computeLTOCacheKey(
1482 Conf
, CombinedIndex
, ModuleID
, ImportList
, ExportList
, ResolvedODR
,
1483 DefinedGlobals
, CfiFunctionDefs
, CfiFunctionDecls
);
1484 Expected
<AddStreamFn
> CacheAddStreamOrErr
= Cache(Task
, Key
, ModuleID
);
1485 if (Error Err
= CacheAddStreamOrErr
.takeError())
1487 AddStreamFn
&CacheAddStream
= *CacheAddStreamOrErr
;
1489 return RunThinBackend(CacheAddStream
);
1491 return Error::success();
1495 unsigned Task
, BitcodeModule BM
,
1496 const FunctionImporter::ImportMapTy
&ImportList
,
1497 const FunctionImporter::ExportSetTy
&ExportList
,
1498 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1499 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1500 StringRef ModulePath
= BM
.getModuleIdentifier();
1501 assert(ModuleToDefinedGVSummaries
.count(ModulePath
));
1502 const GVSummaryMapTy
&DefinedGlobals
=
1503 ModuleToDefinedGVSummaries
.find(ModulePath
)->second
;
1504 BackendThreadPool
.async(
1505 [=](BitcodeModule BM
, ModuleSummaryIndex
&CombinedIndex
,
1506 const FunctionImporter::ImportMapTy
&ImportList
,
1507 const FunctionImporter::ExportSetTy
&ExportList
,
1508 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>
1510 const GVSummaryMapTy
&DefinedGlobals
,
1511 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) {
1512 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1513 timeTraceProfilerInitialize(Conf
.TimeTraceGranularity
,
1515 Error E
= runThinLTOBackendThread(
1516 AddStream
, Cache
, Task
, BM
, CombinedIndex
, ImportList
, ExportList
,
1517 ResolvedODR
, DefinedGlobals
, ModuleMap
);
1519 std::unique_lock
<std::mutex
> L(ErrMu
);
1521 Err
= joinErrors(std::move(*Err
), std::move(E
));
1525 if (LLVM_ENABLE_THREADS
&& Conf
.TimeTraceEnabled
)
1526 timeTraceProfilerFinishThread();
1528 BM
, std::ref(CombinedIndex
), std::ref(ImportList
), std::ref(ExportList
),
1529 std::ref(ResolvedODR
), std::ref(DefinedGlobals
), std::ref(ModuleMap
));
1532 OnWrite(std::string(ModulePath
));
1533 return Error::success();
1537 /// This backend is utilized in the first round of a two-codegen round process.
1538 /// It first saves optimized bitcode files to disk before the codegen process
1539 /// begins. After codegen, it stores the resulting object files in a scratch
1540 /// buffer. Note the codegen data stored in the scratch buffer will be extracted
1541 /// and merged in the subsequent step.
1542 class FirstRoundThinBackend
: public InProcessThinBackend
{
1543 AddStreamFn IRAddStream
;
1547 FirstRoundThinBackend(
1548 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1549 ThreadPoolStrategy ThinLTOParallelism
,
1550 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1551 AddStreamFn CGAddStream
, FileCache CGCache
, AddStreamFn IRAddStream
,
1553 : InProcessThinBackend(Conf
, CombinedIndex
, ThinLTOParallelism
,
1554 ModuleToDefinedGVSummaries
, std::move(CGAddStream
),
1555 std::move(CGCache
), /*OnWrite=*/nullptr,
1556 /*ShouldEmitIndexFiles=*/false,
1557 /*ShouldEmitImportsFiles=*/false),
1558 IRAddStream(std::move(IRAddStream
)), IRCache(std::move(IRCache
)) {}
1560 Error
runThinLTOBackendThread(
1561 AddStreamFn CGAddStream
, FileCache CGCache
, unsigned Task
,
1562 BitcodeModule BM
, ModuleSummaryIndex
&CombinedIndex
,
1563 const FunctionImporter::ImportMapTy
&ImportList
,
1564 const FunctionImporter::ExportSetTy
&ExportList
,
1565 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1566 const GVSummaryMapTy
&DefinedGlobals
,
1567 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1568 auto RunThinBackend
= [&](AddStreamFn CGAddStream
,
1569 AddStreamFn IRAddStream
) {
1570 LTOLLVMContext
BackendContext(Conf
);
1571 Expected
<std::unique_ptr
<Module
>> MOrErr
= BM
.parseModule(BackendContext
);
1573 return MOrErr
.takeError();
1575 return thinBackend(Conf
, Task
, CGAddStream
, **MOrErr
, CombinedIndex
,
1576 ImportList
, DefinedGlobals
, &ModuleMap
,
1577 Conf
.CodeGenOnly
, IRAddStream
);
1580 auto ModuleID
= BM
.getModuleIdentifier();
1581 // Like InProcessThinBackend, we produce index files as needed for
1582 // FirstRoundThinBackend. However, these files are not generated for
1583 // SecondRoundThinBackend.
1584 if (ShouldEmitIndexFiles
) {
1585 if (auto E
= emitFiles(ImportList
, ModuleID
, ModuleID
.str()))
1589 assert((CGCache
.isValid() == IRCache
.isValid()) &&
1590 "Both caches for CG and IR should have matching availability");
1591 if (!CGCache
.isValid() || !CombinedIndex
.modulePaths().count(ModuleID
) ||
1592 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1593 [](uint32_t V
) { return V
== 0; }))
1594 // Cache disabled or no entry for this module in the combined index or
1596 return RunThinBackend(CGAddStream
, IRAddStream
);
1598 // Get CGKey for caching object in CGCache.
1599 std::string CGKey
= computeLTOCacheKey(
1600 Conf
, CombinedIndex
, ModuleID
, ImportList
, ExportList
, ResolvedODR
,
1601 DefinedGlobals
, CfiFunctionDefs
, CfiFunctionDecls
);
1602 Expected
<AddStreamFn
> CacheCGAddStreamOrErr
=
1603 CGCache(Task
, CGKey
, ModuleID
);
1604 if (Error Err
= CacheCGAddStreamOrErr
.takeError())
1606 AddStreamFn
&CacheCGAddStream
= *CacheCGAddStreamOrErr
;
1608 // Get IRKey for caching (optimized) IR in IRCache with an extra ID.
1609 std::string IRKey
= recomputeLTOCacheKey(CGKey
, /*ExtraID=*/"IR");
1610 Expected
<AddStreamFn
> CacheIRAddStreamOrErr
=
1611 IRCache(Task
, IRKey
, ModuleID
);
1612 if (Error Err
= CacheIRAddStreamOrErr
.takeError())
1614 AddStreamFn
&CacheIRAddStream
= *CacheIRAddStreamOrErr
;
1616 // Ideally, both CG and IR caching should be synchronized. However, in
1617 // practice, their availability may differ due to different expiration
1618 // times. Therefore, if either cache is missing, the backend process is
1620 if (CacheCGAddStream
|| CacheIRAddStream
) {
1621 LLVM_DEBUG(dbgs() << "[FirstRound] Cache Miss for "
1622 << BM
.getModuleIdentifier() << "\n");
1623 return RunThinBackend(CacheCGAddStream
? CacheCGAddStream
: CGAddStream
,
1624 CacheIRAddStream
? CacheIRAddStream
: IRAddStream
);
1627 return Error::success();
1631 /// This backend operates in the second round of a two-codegen round process.
1632 /// It starts by reading the optimized bitcode files that were saved during the
1633 /// first round. The backend then executes the codegen only to further optimize
1634 /// the code, utilizing the codegen data merged from the first round. Finally,
1635 /// it writes the resulting object files as usual.
1636 class SecondRoundThinBackend
: public InProcessThinBackend
{
1637 std::unique_ptr
<SmallVector
<StringRef
>> IRFiles
;
1638 stable_hash CombinedCGDataHash
;
1641 SecondRoundThinBackend(
1642 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1643 ThreadPoolStrategy ThinLTOParallelism
,
1644 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1645 AddStreamFn AddStream
, FileCache Cache
,
1646 std::unique_ptr
<SmallVector
<StringRef
>> IRFiles
,
1647 stable_hash CombinedCGDataHash
)
1648 : InProcessThinBackend(Conf
, CombinedIndex
, ThinLTOParallelism
,
1649 ModuleToDefinedGVSummaries
, std::move(AddStream
),
1651 /*OnWrite=*/nullptr,
1652 /*ShouldEmitIndexFiles=*/false,
1653 /*ShouldEmitImportsFiles=*/false),
1654 IRFiles(std::move(IRFiles
)), CombinedCGDataHash(CombinedCGDataHash
) {}
1656 virtual Error
runThinLTOBackendThread(
1657 AddStreamFn AddStream
, FileCache Cache
, unsigned Task
, BitcodeModule BM
,
1658 ModuleSummaryIndex
&CombinedIndex
,
1659 const FunctionImporter::ImportMapTy
&ImportList
,
1660 const FunctionImporter::ExportSetTy
&ExportList
,
1661 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1662 const GVSummaryMapTy
&DefinedGlobals
,
1663 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1664 auto RunThinBackend
= [&](AddStreamFn AddStream
) {
1665 LTOLLVMContext
BackendContext(Conf
);
1666 std::unique_ptr
<Module
> LoadedModule
=
1667 cgdata::loadModuleForTwoRounds(BM
, Task
, BackendContext
, *IRFiles
);
1669 return thinBackend(Conf
, Task
, AddStream
, *LoadedModule
, CombinedIndex
,
1670 ImportList
, DefinedGlobals
, &ModuleMap
,
1671 /*CodeGenOnly=*/true);
1674 auto ModuleID
= BM
.getModuleIdentifier();
1675 if (!Cache
.isValid() || !CombinedIndex
.modulePaths().count(ModuleID
) ||
1676 all_of(CombinedIndex
.getModuleHash(ModuleID
),
1677 [](uint32_t V
) { return V
== 0; }))
1678 // Cache disabled or no entry for this module in the combined index or
1680 return RunThinBackend(AddStream
);
1682 // Get Key for caching the final object file in Cache with the combined
1684 std::string Key
= computeLTOCacheKey(
1685 Conf
, CombinedIndex
, ModuleID
, ImportList
, ExportList
, ResolvedODR
,
1686 DefinedGlobals
, CfiFunctionDefs
, CfiFunctionDecls
);
1687 Key
= recomputeLTOCacheKey(Key
,
1688 /*ExtraID=*/std::to_string(CombinedCGDataHash
));
1689 Expected
<AddStreamFn
> CacheAddStreamOrErr
= Cache(Task
, Key
, ModuleID
);
1690 if (Error Err
= CacheAddStreamOrErr
.takeError())
1692 AddStreamFn
&CacheAddStream
= *CacheAddStreamOrErr
;
1694 if (CacheAddStream
) {
1695 LLVM_DEBUG(dbgs() << "[SecondRound] Cache Miss for "
1696 << BM
.getModuleIdentifier() << "\n");
1697 return RunThinBackend(CacheAddStream
);
1700 return Error::success();
1703 } // end anonymous namespace
1705 ThinBackend
lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism
,
1706 lto::IndexWriteCallback OnWrite
,
1707 bool ShouldEmitIndexFiles
,
1708 bool ShouldEmitImportsFiles
) {
1710 [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1711 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1712 AddStreamFn AddStream
, FileCache Cache
) {
1713 return std::make_unique
<InProcessThinBackend
>(
1714 Conf
, CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
,
1715 AddStream
, Cache
, OnWrite
, ShouldEmitIndexFiles
,
1716 ShouldEmitImportsFiles
);
1718 return ThinBackend(Func
, Parallelism
);
1721 StringLiteral
lto::getThinLTODefaultCPU(const Triple
&TheTriple
) {
1722 if (!TheTriple
.isOSDarwin())
1724 if (TheTriple
.getArch() == Triple::x86_64
)
1726 if (TheTriple
.getArch() == Triple::x86
)
1728 if (TheTriple
.isArm64e())
1730 if (TheTriple
.getArch() == Triple::aarch64
||
1731 TheTriple
.getArch() == Triple::aarch64_32
)
1736 // Given the original \p Path to an output file, replace any path
1737 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1738 // resulting directory if it does not yet exist.
1739 std::string
lto::getThinLTOOutputFile(StringRef Path
, StringRef OldPrefix
,
1740 StringRef NewPrefix
) {
1741 if (OldPrefix
.empty() && NewPrefix
.empty())
1742 return std::string(Path
);
1743 SmallString
<128> NewPath(Path
);
1744 llvm::sys::path::replace_path_prefix(NewPath
, OldPrefix
, NewPrefix
);
1745 StringRef ParentPath
= llvm::sys::path::parent_path(NewPath
.str());
1746 if (!ParentPath
.empty()) {
1747 // Make sure the new directory exists, creating it if necessary.
1748 if (std::error_code EC
= llvm::sys::fs::create_directories(ParentPath
))
1749 llvm::errs() << "warning: could not create directory '" << ParentPath
1750 << "': " << EC
.message() << '\n';
1752 return std::string(NewPath
);
1756 class WriteIndexesThinBackend
: public ThinBackendProc
{
1757 std::string OldPrefix
, NewPrefix
, NativeObjectPrefix
;
1758 raw_fd_ostream
*LinkedObjectsFile
;
1761 WriteIndexesThinBackend(
1762 const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1763 ThreadPoolStrategy ThinLTOParallelism
,
1764 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1765 std::string OldPrefix
, std::string NewPrefix
,
1766 std::string NativeObjectPrefix
, bool ShouldEmitImportsFiles
,
1767 raw_fd_ostream
*LinkedObjectsFile
, lto::IndexWriteCallback OnWrite
)
1768 : ThinBackendProc(Conf
, CombinedIndex
, ModuleToDefinedGVSummaries
,
1769 OnWrite
, ShouldEmitImportsFiles
, ThinLTOParallelism
),
1770 OldPrefix(OldPrefix
), NewPrefix(NewPrefix
),
1771 NativeObjectPrefix(NativeObjectPrefix
),
1772 LinkedObjectsFile(LinkedObjectsFile
) {}
1775 unsigned Task
, BitcodeModule BM
,
1776 const FunctionImporter::ImportMapTy
&ImportList
,
1777 const FunctionImporter::ExportSetTy
&ExportList
,
1778 const std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
> &ResolvedODR
,
1779 MapVector
<StringRef
, BitcodeModule
> &ModuleMap
) override
{
1780 StringRef ModulePath
= BM
.getModuleIdentifier();
1782 // The contents of this file may be used as input to a native link, and must
1783 // therefore contain the processed modules in a determinstic order that
1784 // match the order they are provided on the command line. For that reason,
1785 // we cannot include this in the asynchronously executed lambda below.
1786 if (LinkedObjectsFile
) {
1787 std::string ObjectPrefix
=
1788 NativeObjectPrefix
.empty() ? NewPrefix
: NativeObjectPrefix
;
1789 std::string LinkedObjectsFilePath
=
1790 getThinLTOOutputFile(ModulePath
, OldPrefix
, ObjectPrefix
);
1791 *LinkedObjectsFile
<< LinkedObjectsFilePath
<< '\n';
1794 BackendThreadPool
.async(
1795 [this](const StringRef ModulePath
,
1796 const FunctionImporter::ImportMapTy
&ImportList
,
1797 const std::string
&OldPrefix
, const std::string
&NewPrefix
) {
1798 std::string NewModulePath
=
1799 getThinLTOOutputFile(ModulePath
, OldPrefix
, NewPrefix
);
1800 auto E
= emitFiles(ImportList
, ModulePath
, NewModulePath
);
1802 std::unique_lock
<std::mutex
> L(ErrMu
);
1804 Err
= joinErrors(std::move(*Err
), std::move(E
));
1810 ModulePath
, ImportList
, OldPrefix
, NewPrefix
);
1813 OnWrite(std::string(ModulePath
));
1814 return Error::success();
1817 bool isSensitiveToInputOrder() override
{
1818 // The order which modules are written to LinkedObjectsFile should be
1819 // deterministic and match the order they are passed on the command line.
1823 } // end anonymous namespace
1825 ThinBackend
lto::createWriteIndexesThinBackend(
1826 ThreadPoolStrategy Parallelism
, std::string OldPrefix
,
1827 std::string NewPrefix
, std::string NativeObjectPrefix
,
1828 bool ShouldEmitImportsFiles
, raw_fd_ostream
*LinkedObjectsFile
,
1829 IndexWriteCallback OnWrite
) {
1831 [=](const Config
&Conf
, ModuleSummaryIndex
&CombinedIndex
,
1832 const DenseMap
<StringRef
, GVSummaryMapTy
> &ModuleToDefinedGVSummaries
,
1833 AddStreamFn AddStream
, FileCache Cache
) {
1834 return std::make_unique
<WriteIndexesThinBackend
>(
1835 Conf
, CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
,
1836 OldPrefix
, NewPrefix
, NativeObjectPrefix
, ShouldEmitImportsFiles
,
1837 LinkedObjectsFile
, OnWrite
);
1839 return ThinBackend(Func
, Parallelism
);
1842 Error
LTO::runThinLTO(AddStreamFn AddStream
, FileCache Cache
,
1843 const DenseSet
<GlobalValue::GUID
> &GUIDPreservedSymbols
) {
1844 LLVM_DEBUG(dbgs() << "Running ThinLTO\n");
1845 ThinLTO
.CombinedIndex
.releaseTemporaryMemory();
1846 timeTraceProfilerBegin("ThinLink", StringRef(""));
1847 auto TimeTraceScopeExit
= llvm::make_scope_exit([]() {
1848 if (llvm::timeTraceProfilerEnabled())
1849 llvm::timeTraceProfilerEnd();
1851 if (ThinLTO
.ModuleMap
.empty())
1852 return Error::success();
1854 if (ThinLTO
.ModulesToCompile
&& ThinLTO
.ModulesToCompile
->empty()) {
1855 llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1856 return Error::success();
1859 if (Conf
.CombinedIndexHook
&&
1860 !Conf
.CombinedIndexHook(ThinLTO
.CombinedIndex
, GUIDPreservedSymbols
))
1861 return Error::success();
1863 // Collect for each module the list of function it defines (GUID ->
1865 DenseMap
<StringRef
, GVSummaryMapTy
> ModuleToDefinedGVSummaries(
1866 ThinLTO
.ModuleMap
.size());
1867 ThinLTO
.CombinedIndex
.collectDefinedGVSummariesPerModule(
1868 ModuleToDefinedGVSummaries
);
1869 // Create entries for any modules that didn't have any GV summaries
1870 // (either they didn't have any GVs to start with, or we suppressed
1871 // generation of the summaries because they e.g. had inline assembly
1872 // uses that couldn't be promoted/renamed on export). This is so
1873 // InProcessThinBackend::start can still launch a backend thread, which
1874 // is passed the map of summaries for the module, without any special
1875 // handling for this case.
1876 for (auto &Mod
: ThinLTO
.ModuleMap
)
1877 if (!ModuleToDefinedGVSummaries
.count(Mod
.first
))
1878 ModuleToDefinedGVSummaries
.try_emplace(Mod
.first
);
1880 FunctionImporter::ImportListsTy
ImportLists(ThinLTO
.ModuleMap
.size());
1881 DenseMap
<StringRef
, FunctionImporter::ExportSetTy
> ExportLists(
1882 ThinLTO
.ModuleMap
.size());
1883 StringMap
<std::map
<GlobalValue::GUID
, GlobalValue::LinkageTypes
>> ResolvedODR
;
1886 ThinLTO
.CombinedIndex
.dumpSCCs(outs());
1888 std::set
<GlobalValue::GUID
> ExportedGUIDs
;
1890 bool WholeProgramVisibilityEnabledInLTO
=
1891 Conf
.HasWholeProgramVisibility
&&
1892 // If validation is enabled, upgrade visibility only when all vtables
1894 (!Conf
.ValidateAllVtablesHaveTypeInfos
|| Conf
.AllVtablesHaveTypeInfos
);
1895 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
1896 ThinLTO
.CombinedIndex
.setWithWholeProgramVisibility();
1898 // If we're validating, get the vtable symbols that should not be
1899 // upgraded because they correspond to typeIDs outside of index-based
1901 DenseSet
<GlobalValue::GUID
> VisibleToRegularObjSymbols
;
1902 if (WholeProgramVisibilityEnabledInLTO
&&
1903 Conf
.ValidateAllVtablesHaveTypeInfos
) {
1904 // This returns true when the name is local or not defined. Locals are
1905 // expected to be handled separately.
1906 auto IsVisibleToRegularObj
= [&](StringRef name
) {
1907 auto It
= GlobalResolutions
->find(name
);
1908 return (It
== GlobalResolutions
->end() ||
1909 It
->second
.VisibleOutsideSummary
);
1912 getVisibleToRegularObjVtableGUIDs(ThinLTO
.CombinedIndex
,
1913 VisibleToRegularObjSymbols
,
1914 IsVisibleToRegularObj
);
1917 // If allowed, upgrade public vcall visibility to linkage unit visibility in
1918 // the summaries before whole program devirtualization below.
1919 updateVCallVisibilityInIndex(
1920 ThinLTO
.CombinedIndex
, WholeProgramVisibilityEnabledInLTO
,
1921 DynamicExportSymbols
, VisibleToRegularObjSymbols
);
1923 // Perform index-based WPD. This will return immediately if there are
1924 // no index entries in the typeIdMetadata map (e.g. if we are instead
1925 // performing IR-based WPD in hybrid regular/thin LTO mode).
1926 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> LocalWPDTargetsMap
;
1927 runWholeProgramDevirtOnIndex(ThinLTO
.CombinedIndex
, ExportedGUIDs
,
1928 LocalWPDTargetsMap
);
1930 auto isPrevailing
= [&](GlobalValue::GUID GUID
, const GlobalValueSummary
*S
) {
1931 return ThinLTO
.PrevailingModuleForGUID
[GUID
] == S
->modulePath();
1933 if (EnableMemProfContextDisambiguation
) {
1934 MemProfContextDisambiguation ContextDisambiguation
;
1935 ContextDisambiguation
.run(ThinLTO
.CombinedIndex
, isPrevailing
);
1938 // Figure out which symbols need to be internalized. This also needs to happen
1939 // at -O0 because summary-based DCE is implemented using internalization, and
1940 // we must apply DCE consistently with the full LTO module in order to avoid
1941 // undefined references during the final link.
1942 for (auto &Res
: *GlobalResolutions
) {
1943 // If the symbol does not have external references or it is not prevailing,
1944 // then not need to mark it as exported from a ThinLTO partition.
1945 if (Res
.second
.Partition
!= GlobalResolution::External
||
1946 !Res
.second
.isPrevailingIRSymbol())
1948 auto GUID
= GlobalValue::getGUID(
1949 GlobalValue::dropLLVMManglingEscape(Res
.second
.IRName
));
1950 // Mark exported unless index-based analysis determined it to be dead.
1951 if (ThinLTO
.CombinedIndex
.isGUIDLive(GUID
))
1952 ExportedGUIDs
.insert(GUID
);
1955 // Reset the GlobalResolutions to deallocate the associated memory, as there
1956 // are no further accesses. We specifically want to do this before computing
1957 // cross module importing, which adds to peak memory via the computed import
1958 // and export lists.
1959 releaseGlobalResolutionsMemory();
1961 if (Conf
.OptLevel
> 0)
1962 ComputeCrossModuleImport(ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
1963 isPrevailing
, ImportLists
, ExportLists
);
1965 // Any functions referenced by the jump table in the regular LTO object must
1967 for (auto &Def
: ThinLTO
.CombinedIndex
.cfiFunctionDefs())
1968 ExportedGUIDs
.insert(
1969 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def
)));
1970 for (auto &Decl
: ThinLTO
.CombinedIndex
.cfiFunctionDecls())
1971 ExportedGUIDs
.insert(
1972 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl
)));
1974 auto isExported
= [&](StringRef ModuleIdentifier
, ValueInfo VI
) {
1975 const auto &ExportList
= ExportLists
.find(ModuleIdentifier
);
1976 return (ExportList
!= ExportLists
.end() && ExportList
->second
.count(VI
)) ||
1977 ExportedGUIDs
.count(VI
.getGUID());
1980 // Update local devirtualized targets that were exported by cross-module
1981 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1982 updateIndexWPDForExports(ThinLTO
.CombinedIndex
, isExported
,
1983 LocalWPDTargetsMap
);
1985 thinLTOInternalizeAndPromoteInIndex(ThinLTO
.CombinedIndex
, isExported
,
1988 auto recordNewLinkage
= [&](StringRef ModuleIdentifier
,
1989 GlobalValue::GUID GUID
,
1990 GlobalValue::LinkageTypes NewLinkage
) {
1991 ResolvedODR
[ModuleIdentifier
][GUID
] = NewLinkage
;
1993 thinLTOResolvePrevailingInIndex(Conf
, ThinLTO
.CombinedIndex
, isPrevailing
,
1994 recordNewLinkage
, GUIDPreservedSymbols
);
1996 thinLTOPropagateFunctionAttrs(ThinLTO
.CombinedIndex
, isPrevailing
);
1998 generateParamAccessSummary(ThinLTO
.CombinedIndex
);
2000 if (llvm::timeTraceProfilerEnabled())
2001 llvm::timeTraceProfilerEnd();
2003 TimeTraceScopeExit
.release();
2006 ThinLTO
.ModulesToCompile
? *ThinLTO
.ModulesToCompile
: ThinLTO
.ModuleMap
;
2008 auto RunBackends
= [&](ThinBackendProc
*BackendProcess
) -> Error
{
2009 auto ProcessOneModule
= [&](int I
) -> Error
{
2010 auto &Mod
= *(ModuleMap
.begin() + I
);
2011 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
2012 // combined module and parallel code generation partitions.
2013 return BackendProcess
->start(
2014 RegularLTO
.ParallelCodeGenParallelismLevel
+ I
, Mod
.second
,
2015 ImportLists
[Mod
.first
], ExportLists
[Mod
.first
],
2016 ResolvedODR
[Mod
.first
], ThinLTO
.ModuleMap
);
2019 if (BackendProcess
->getThreadCount() == 1 ||
2020 BackendProcess
->isSensitiveToInputOrder()) {
2021 // Process the modules in the order they were provided on the
2022 // command-line. It is important for this codepath to be used for
2023 // WriteIndexesThinBackend, to ensure the emitted LinkedObjectsFile lists
2024 // ThinLTO objects in the same order as the inputs, which otherwise would
2025 // affect the final link order.
2026 for (int I
= 0, E
= ModuleMap
.size(); I
!= E
; ++I
)
2027 if (Error E
= ProcessOneModule(I
))
2030 // When executing in parallel, process largest bitsize modules first to
2031 // improve parallelism, and avoid starving the thread pool near the end.
2032 // This saves about 15 sec on a 36-core machine while link `clang.exe`
2033 // (out of 100 sec).
2034 std::vector
<BitcodeModule
*> ModulesVec
;
2035 ModulesVec
.reserve(ModuleMap
.size());
2036 for (auto &Mod
: ModuleMap
)
2037 ModulesVec
.push_back(&Mod
.second
);
2038 for (int I
: generateModulesOrdering(ModulesVec
))
2039 if (Error E
= ProcessOneModule(I
))
2042 return BackendProcess
->wait();
2045 if (!CodeGenDataThinLTOTwoRounds
) {
2046 std::unique_ptr
<ThinBackendProc
> BackendProc
=
2047 ThinLTO
.Backend(Conf
, ThinLTO
.CombinedIndex
, ModuleToDefinedGVSummaries
,
2049 return RunBackends(BackendProc
.get());
2052 // Perform two rounds of code generation for ThinLTO:
2053 // 1. First round: Perform optimization and code generation, outputting to
2054 // temporary scratch objects.
2055 // 2. Merge code generation data extracted from the temporary scratch objects.
2056 // 3. Second round: Execute code generation again using the merged data.
2057 LLVM_DEBUG(dbgs() << "[TwoRounds] Initializing ThinLTO two-codegen rounds\n");
2059 unsigned MaxTasks
= getMaxTasks();
2060 auto Parallelism
= ThinLTO
.Backend
.getParallelism();
2061 // Set up two additional streams and caches for storing temporary scratch
2062 // objects and optimized IRs, using the same cache directory as the original.
2063 cgdata::StreamCacheData
CG(MaxTasks
, Cache
, "CG"), IR(MaxTasks
, Cache
, "IR");
2065 // First round: Execute optimization and code generation, outputting to
2066 // temporary scratch objects. Serialize the optimized IRs before initiating
2068 LLVM_DEBUG(dbgs() << "[TwoRounds] Running the first round of codegen\n");
2069 auto FirstRoundLTO
= std::make_unique
<FirstRoundThinBackend
>(
2070 Conf
, ThinLTO
.CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
,
2071 CG
.AddStream
, CG
.Cache
, IR
.AddStream
, IR
.Cache
);
2072 if (Error E
= RunBackends(FirstRoundLTO
.get()))
2075 LLVM_DEBUG(dbgs() << "[TwoRounds] Merging codegen data\n");
2076 auto CombinedHashOrErr
= cgdata::mergeCodeGenData(*CG
.getResult());
2077 if (Error E
= CombinedHashOrErr
.takeError())
2079 auto CombinedHash
= *CombinedHashOrErr
;
2080 LLVM_DEBUG(dbgs() << "[TwoRounds] CGData hash: " << CombinedHash
<< "\n");
2082 // Second round: Read the optimized IRs and execute code generation using the
2084 LLVM_DEBUG(dbgs() << "[TwoRounds] Running the second round of codegen\n");
2085 auto SecondRoundLTO
= std::make_unique
<SecondRoundThinBackend
>(
2086 Conf
, ThinLTO
.CombinedIndex
, Parallelism
, ModuleToDefinedGVSummaries
,
2087 AddStream
, Cache
, IR
.getResult(), CombinedHash
);
2088 return RunBackends(SecondRoundLTO
.get());
2091 Expected
<std::unique_ptr
<ToolOutputFile
>> lto::setupLLVMOptimizationRemarks(
2092 LLVMContext
&Context
, StringRef RemarksFilename
, StringRef RemarksPasses
,
2093 StringRef RemarksFormat
, bool RemarksWithHotness
,
2094 std::optional
<uint64_t> RemarksHotnessThreshold
, int Count
) {
2095 std::string Filename
= std::string(RemarksFilename
);
2096 // For ThinLTO, file.opt.<format> becomes
2097 // file.opt.<format>.thin.<num>.<format>.
2098 if (!Filename
.empty() && Count
!= -1)
2100 (Twine(Filename
) + ".thin." + llvm::utostr(Count
) + "." + RemarksFormat
)
2103 auto ResultOrErr
= llvm::setupLLVMOptimizationRemarks(
2104 Context
, Filename
, RemarksPasses
, RemarksFormat
, RemarksWithHotness
,
2105 RemarksHotnessThreshold
);
2106 if (Error E
= ResultOrErr
.takeError())
2107 return std::move(E
);
2110 (*ResultOrErr
)->keep();
2115 Expected
<std::unique_ptr
<ToolOutputFile
>>
2116 lto::setupStatsFile(StringRef StatsFilename
) {
2117 // Setup output file to emit statistics.
2118 if (StatsFilename
.empty())
2121 llvm::EnableStatistics(false);
2124 std::make_unique
<ToolOutputFile
>(StatsFilename
, EC
, sys::fs::OF_None
);
2126 return errorCodeToError(EC
);
2129 return std::move(StatsFile
);
2132 // Compute the ordering we will process the inputs: the rough heuristic here
2133 // is to sort them per size so that the largest module get schedule as soon as
2134 // possible. This is purely a compile-time optimization.
2135 std::vector
<int> lto::generateModulesOrdering(ArrayRef
<BitcodeModule
*> R
) {
2136 auto Seq
= llvm::seq
<int>(0, R
.size());
2137 std::vector
<int> ModulesOrdering(Seq
.begin(), Seq
.end());
2138 llvm::sort(ModulesOrdering
, [&](int LeftIndex
, int RightIndex
) {
2139 auto LSize
= R
[LeftIndex
]->getBuffer().size();
2140 auto RSize
= R
[RightIndex
]->getBuffer().size();
2141 return LSize
> RSize
;
2143 return ModulesOrdering
;