1 //===- ELFObject.cpp ------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCELFExtras.h"
17 #include "llvm/MC/MCTargetOptions.h"
18 #include "llvm/Support/Compression.h"
19 #include "llvm/Support/Endian.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/Path.h"
26 #include <unordered_set>
31 using namespace llvm::ELF
;
32 using namespace llvm::objcopy::elf
;
33 using namespace llvm::object
;
34 using namespace llvm::support
;
36 template <class ELFT
> void ELFWriter
<ELFT
>::writePhdr(const Segment
&Seg
) {
37 uint8_t *B
= reinterpret_cast<uint8_t *>(Buf
->getBufferStart()) +
38 Obj
.ProgramHdrSegment
.Offset
+ Seg
.Index
* sizeof(Elf_Phdr
);
39 Elf_Phdr
&Phdr
= *reinterpret_cast<Elf_Phdr
*>(B
);
40 Phdr
.p_type
= Seg
.Type
;
41 Phdr
.p_flags
= Seg
.Flags
;
42 Phdr
.p_offset
= Seg
.Offset
;
43 Phdr
.p_vaddr
= Seg
.VAddr
;
44 Phdr
.p_paddr
= Seg
.PAddr
;
45 Phdr
.p_filesz
= Seg
.FileSize
;
46 Phdr
.p_memsz
= Seg
.MemSize
;
47 Phdr
.p_align
= Seg
.Align
;
50 Error
SectionBase::removeSectionReferences(
51 bool, function_ref
<bool(const SectionBase
*)>) {
52 return Error::success();
55 Error
SectionBase::removeSymbols(function_ref
<bool(const Symbol
&)>) {
56 return Error::success();
59 Error
SectionBase::initialize(SectionTableRef
) { return Error::success(); }
60 void SectionBase::finalize() {}
61 void SectionBase::markSymbols() {}
62 void SectionBase::replaceSectionReferences(
63 const DenseMap
<SectionBase
*, SectionBase
*> &) {}
64 void SectionBase::onRemove() {}
66 template <class ELFT
> void ELFWriter
<ELFT
>::writeShdr(const SectionBase
&Sec
) {
68 reinterpret_cast<uint8_t *>(Buf
->getBufferStart()) + Sec
.HeaderOffset
;
69 Elf_Shdr
&Shdr
= *reinterpret_cast<Elf_Shdr
*>(B
);
70 Shdr
.sh_name
= Sec
.NameIndex
;
71 Shdr
.sh_type
= Sec
.Type
;
72 Shdr
.sh_flags
= Sec
.Flags
;
73 Shdr
.sh_addr
= Sec
.Addr
;
74 Shdr
.sh_offset
= Sec
.Offset
;
75 Shdr
.sh_size
= Sec
.Size
;
76 Shdr
.sh_link
= Sec
.Link
;
77 Shdr
.sh_info
= Sec
.Info
;
78 Shdr
.sh_addralign
= Sec
.Align
;
79 Shdr
.sh_entsize
= Sec
.EntrySize
;
82 template <class ELFT
> Error ELFSectionSizer
<ELFT
>::visit(Section
&) {
83 return Error::success();
86 template <class ELFT
> Error ELFSectionSizer
<ELFT
>::visit(OwnedDataSection
&) {
87 return Error::success();
90 template <class ELFT
> Error ELFSectionSizer
<ELFT
>::visit(StringTableSection
&) {
91 return Error::success();
95 Error ELFSectionSizer
<ELFT
>::visit(DynamicRelocationSection
&) {
96 return Error::success();
100 Error ELFSectionSizer
<ELFT
>::visit(SymbolTableSection
&Sec
) {
101 Sec
.EntrySize
= sizeof(Elf_Sym
);
102 Sec
.Size
= Sec
.Symbols
.size() * Sec
.EntrySize
;
103 // Align to the largest field in Elf_Sym.
104 Sec
.Align
= ELFT::Is64Bits
? sizeof(Elf_Xword
) : sizeof(Elf_Word
);
105 return Error::success();
109 static SmallVector
<char, 0> encodeCrel(ArrayRef
<Relocation
> Relocations
) {
110 using uint
= std::conditional_t
<Is64
, uint64_t, uint32_t>;
111 SmallVector
<char, 0> Content
;
112 raw_svector_ostream
OS(Content
);
113 ELF::encodeCrel
<Is64
>(OS
, Relocations
, [&](const Relocation
&R
) {
114 uint32_t CurSymIdx
= R
.RelocSymbol
? R
.RelocSymbol
->Index
: 0;
115 return ELF::Elf_Crel
<Is64
>{static_cast<uint
>(R
.Offset
), CurSymIdx
, R
.Type
,
116 std::make_signed_t
<uint
>(R
.Addend
)};
121 template <class ELFT
>
122 Error ELFSectionSizer
<ELFT
>::visit(RelocationSection
&Sec
) {
123 if (Sec
.Type
== SHT_CREL
) {
124 Sec
.Size
= encodeCrel
<ELFT::Is64Bits
>(Sec
.Relocations
).size();
126 Sec
.EntrySize
= Sec
.Type
== SHT_REL
? sizeof(Elf_Rel
) : sizeof(Elf_Rela
);
127 Sec
.Size
= Sec
.Relocations
.size() * Sec
.EntrySize
;
128 // Align to the largest field in Elf_Rel(a).
129 Sec
.Align
= ELFT::Is64Bits
? sizeof(Elf_Xword
) : sizeof(Elf_Word
);
131 return Error::success();
134 template <class ELFT
>
135 Error ELFSectionSizer
<ELFT
>::visit(GnuDebugLinkSection
&) {
136 return Error::success();
139 template <class ELFT
> Error ELFSectionSizer
<ELFT
>::visit(GroupSection
&Sec
) {
140 Sec
.Size
= sizeof(Elf_Word
) + Sec
.GroupMembers
.size() * sizeof(Elf_Word
);
141 return Error::success();
144 template <class ELFT
>
145 Error ELFSectionSizer
<ELFT
>::visit(SectionIndexSection
&) {
146 return Error::success();
149 template <class ELFT
> Error ELFSectionSizer
<ELFT
>::visit(CompressedSection
&) {
150 return Error::success();
153 template <class ELFT
>
154 Error ELFSectionSizer
<ELFT
>::visit(DecompressedSection
&) {
155 return Error::success();
158 Error
BinarySectionWriter::visit(const SectionIndexSection
&Sec
) {
159 return createStringError(errc::operation_not_permitted
,
160 "cannot write symbol section index table '" +
164 Error
BinarySectionWriter::visit(const SymbolTableSection
&Sec
) {
165 return createStringError(errc::operation_not_permitted
,
166 "cannot write symbol table '" + Sec
.Name
+
170 Error
BinarySectionWriter::visit(const RelocationSection
&Sec
) {
171 return createStringError(errc::operation_not_permitted
,
172 "cannot write relocation section '" + Sec
.Name
+
176 Error
BinarySectionWriter::visit(const GnuDebugLinkSection
&Sec
) {
177 return createStringError(errc::operation_not_permitted
,
178 "cannot write '" + Sec
.Name
+ "' out to binary");
181 Error
BinarySectionWriter::visit(const GroupSection
&Sec
) {
182 return createStringError(errc::operation_not_permitted
,
183 "cannot write '" + Sec
.Name
+ "' out to binary");
186 Error
SectionWriter::visit(const Section
&Sec
) {
187 if (Sec
.Type
!= SHT_NOBITS
)
188 llvm::copy(Sec
.Contents
, Out
.getBufferStart() + Sec
.Offset
);
190 return Error::success();
193 static bool addressOverflows32bit(uint64_t Addr
) {
194 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
195 return Addr
> UINT32_MAX
&& Addr
+ 0x80000000 > UINT32_MAX
;
198 template <class T
> static T
checkedGetHex(StringRef S
) {
200 bool Fail
= S
.getAsInteger(16, Value
);
206 // Fills exactly Len bytes of buffer with hexadecimal characters
207 // representing value 'X'
208 template <class T
, class Iterator
>
209 static Iterator
toHexStr(T X
, Iterator It
, size_t Len
) {
210 // Fill range with '0'
211 std::fill(It
, It
+ Len
, '0');
213 for (long I
= Len
- 1; I
>= 0; --I
) {
214 unsigned char Mod
= static_cast<unsigned char>(X
) & 15;
215 *(It
+ I
) = hexdigit(Mod
, false);
222 uint8_t IHexRecord::getChecksum(StringRef S
) {
223 assert((S
.size() & 1) == 0);
224 uint8_t Checksum
= 0;
226 Checksum
+= checkedGetHex
<uint8_t>(S
.take_front(2));
232 IHexLineData
IHexRecord::getLine(uint8_t Type
, uint16_t Addr
,
233 ArrayRef
<uint8_t> Data
) {
234 IHexLineData
Line(getLineLength(Data
.size()));
236 auto Iter
= Line
.begin();
238 Iter
= toHexStr(Data
.size(), Iter
, 2);
239 Iter
= toHexStr(Addr
, Iter
, 4);
240 Iter
= toHexStr(Type
, Iter
, 2);
241 for (uint8_t X
: Data
)
242 Iter
= toHexStr(X
, Iter
, 2);
243 StringRef
S(Line
.data() + 1, std::distance(Line
.begin() + 1, Iter
));
244 Iter
= toHexStr(getChecksum(S
), Iter
, 2);
247 assert(Iter
== Line
.end());
251 static Error
checkRecord(const IHexRecord
&R
) {
253 case IHexRecord::Data
:
254 if (R
.HexData
.size() == 0)
255 return createStringError(
256 errc::invalid_argument
,
257 "zero data length is not allowed for data records");
259 case IHexRecord::EndOfFile
:
261 case IHexRecord::SegmentAddr
:
262 // 20-bit segment address. Data length must be 2 bytes
264 if (R
.HexData
.size() != 4)
265 return createStringError(
266 errc::invalid_argument
,
267 "segment address data should be 2 bytes in size");
269 case IHexRecord::StartAddr80x86
:
270 case IHexRecord::StartAddr
:
271 if (R
.HexData
.size() != 8)
272 return createStringError(errc::invalid_argument
,
273 "start address data should be 4 bytes in size");
274 // According to Intel HEX specification '03' record
275 // only specifies the code address within the 20-bit
276 // segmented address space of the 8086/80186. This
277 // means 12 high order bits should be zeroes.
278 if (R
.Type
== IHexRecord::StartAddr80x86
&&
279 R
.HexData
.take_front(3) != "000")
280 return createStringError(errc::invalid_argument
,
281 "start address exceeds 20 bit for 80x86");
283 case IHexRecord::ExtendedAddr
:
284 // 16-31 bits of linear base address
285 if (R
.HexData
.size() != 4)
286 return createStringError(
287 errc::invalid_argument
,
288 "extended address data should be 2 bytes in size");
291 // Unknown record type
292 return createStringError(errc::invalid_argument
, "unknown record type: %u",
293 static_cast<unsigned>(R
.Type
));
295 return Error::success();
298 // Checks that IHEX line contains valid characters.
299 // This allows converting hexadecimal data to integers
300 // without extra verification.
301 static Error
checkChars(StringRef Line
) {
302 assert(!Line
.empty());
304 return createStringError(errc::invalid_argument
,
305 "missing ':' in the beginning of line.");
307 for (size_t Pos
= 1; Pos
< Line
.size(); ++Pos
)
308 if (hexDigitValue(Line
[Pos
]) == -1U)
309 return createStringError(errc::invalid_argument
,
310 "invalid character at position %zu.", Pos
+ 1);
311 return Error::success();
314 Expected
<IHexRecord
> IHexRecord::parse(StringRef Line
) {
315 assert(!Line
.empty());
317 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
318 if (Line
.size() < 11)
319 return createStringError(errc::invalid_argument
,
320 "line is too short: %zu chars.", Line
.size());
322 if (Error E
= checkChars(Line
))
326 size_t DataLen
= checkedGetHex
<uint8_t>(Line
.substr(1, 2));
327 if (Line
.size() != getLength(DataLen
))
328 return createStringError(errc::invalid_argument
,
329 "invalid line length %zu (should be %zu)",
330 Line
.size(), getLength(DataLen
));
332 Rec
.Addr
= checkedGetHex
<uint16_t>(Line
.substr(3, 4));
333 Rec
.Type
= checkedGetHex
<uint8_t>(Line
.substr(7, 2));
334 Rec
.HexData
= Line
.substr(9, DataLen
* 2);
336 if (getChecksum(Line
.drop_front(1)) != 0)
337 return createStringError(errc::invalid_argument
, "incorrect checksum.");
338 if (Error E
= checkRecord(Rec
))
343 static uint64_t sectionPhysicalAddr(const SectionBase
*Sec
) {
344 Segment
*Seg
= Sec
->ParentSegment
;
345 if (Seg
&& Seg
->Type
!= ELF::PT_LOAD
)
347 return Seg
? Seg
->PAddr
+ Sec
->OriginalOffset
- Seg
->OriginalOffset
351 void IHexSectionWriterBase::writeSection(const SectionBase
*Sec
,
352 ArrayRef
<uint8_t> Data
) {
353 assert(Data
.size() == Sec
->Size
);
354 const uint32_t ChunkSize
= 16;
355 uint32_t Addr
= sectionPhysicalAddr(Sec
) & 0xFFFFFFFFU
;
356 while (!Data
.empty()) {
357 uint64_t DataSize
= std::min
<uint64_t>(Data
.size(), ChunkSize
);
358 if (Addr
> SegmentAddr
+ BaseAddr
+ 0xFFFFU
) {
359 if (Addr
> 0xFFFFFU
) {
360 // Write extended address record, zeroing segment address
362 if (SegmentAddr
!= 0)
363 SegmentAddr
= writeSegmentAddr(0U);
364 BaseAddr
= writeBaseAddr(Addr
);
366 // We can still remain 16-bit
367 SegmentAddr
= writeSegmentAddr(Addr
);
370 uint64_t SegOffset
= Addr
- BaseAddr
- SegmentAddr
;
371 assert(SegOffset
<= 0xFFFFU
);
372 DataSize
= std::min(DataSize
, 0x10000U
- SegOffset
);
373 writeData(0, SegOffset
, Data
.take_front(DataSize
));
375 Data
= Data
.drop_front(DataSize
);
379 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr
) {
380 assert(Addr
<= 0xFFFFFU
);
381 uint8_t Data
[] = {static_cast<uint8_t>((Addr
& 0xF0000U
) >> 12), 0};
382 writeData(2, 0, Data
);
383 return Addr
& 0xF0000U
;
386 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr
) {
387 assert(Addr
<= 0xFFFFFFFFU
);
388 uint64_t Base
= Addr
& 0xFFFF0000U
;
389 uint8_t Data
[] = {static_cast<uint8_t>(Base
>> 24),
390 static_cast<uint8_t>((Base
>> 16) & 0xFF)};
391 writeData(4, 0, Data
);
395 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
396 ArrayRef
<uint8_t> Data
) {
397 Offset
+= IHexRecord::getLineLength(Data
.size());
400 Error
IHexSectionWriterBase::visit(const Section
&Sec
) {
401 writeSection(&Sec
, Sec
.Contents
);
402 return Error::success();
405 Error
IHexSectionWriterBase::visit(const OwnedDataSection
&Sec
) {
406 writeSection(&Sec
, Sec
.Data
);
407 return Error::success();
410 Error
IHexSectionWriterBase::visit(const StringTableSection
&Sec
) {
411 // Check that sizer has already done its work
412 assert(Sec
.Size
== Sec
.StrTabBuilder
.getSize());
413 // We are free to pass an invalid pointer to writeSection as long
414 // as we don't actually write any data. The real writer class has
415 // to override this method .
416 writeSection(&Sec
, {nullptr, static_cast<size_t>(Sec
.Size
)});
417 return Error::success();
420 Error
IHexSectionWriterBase::visit(const DynamicRelocationSection
&Sec
) {
421 writeSection(&Sec
, Sec
.Contents
);
422 return Error::success();
425 void IHexSectionWriter::writeData(uint8_t Type
, uint16_t Addr
,
426 ArrayRef
<uint8_t> Data
) {
427 IHexLineData HexData
= IHexRecord::getLine(Type
, Addr
, Data
);
428 memcpy(Out
.getBufferStart() + Offset
, HexData
.data(), HexData
.size());
429 Offset
+= HexData
.size();
432 Error
IHexSectionWriter::visit(const StringTableSection
&Sec
) {
433 assert(Sec
.Size
== Sec
.StrTabBuilder
.getSize());
434 std::vector
<uint8_t> Data(Sec
.Size
);
435 Sec
.StrTabBuilder
.write(Data
.data());
436 writeSection(&Sec
, Data
);
437 return Error::success();
440 Error
Section::accept(SectionVisitor
&Visitor
) const {
441 return Visitor
.visit(*this);
444 Error
Section::accept(MutableSectionVisitor
&Visitor
) {
445 return Visitor
.visit(*this);
448 void Section::restoreSymTabLink(SymbolTableSection
&SymTab
) {
450 assert(LinkSection
== nullptr);
451 LinkSection
= &SymTab
;
455 Error
SectionWriter::visit(const OwnedDataSection
&Sec
) {
456 llvm::copy(Sec
.Data
, Out
.getBufferStart() + Sec
.Offset
);
457 return Error::success();
460 template <class ELFT
>
461 Error ELFSectionWriter
<ELFT
>::visit(const DecompressedSection
&Sec
) {
462 ArrayRef
<uint8_t> Compressed
=
463 Sec
.OriginalData
.slice(sizeof(Elf_Chdr_Impl
<ELFT
>));
464 SmallVector
<uint8_t, 128> Decompressed
;
465 DebugCompressionType Type
;
466 switch (Sec
.ChType
) {
467 case ELFCOMPRESS_ZLIB
:
468 Type
= DebugCompressionType::Zlib
;
470 case ELFCOMPRESS_ZSTD
:
471 Type
= DebugCompressionType::Zstd
;
474 return createStringError(errc::invalid_argument
,
475 "--decompress-debug-sections: ch_type (" +
476 Twine(Sec
.ChType
) + ") of section '" +
477 Sec
.Name
+ "' is unsupported");
480 compression::getReasonIfUnsupported(compression::formatFor(Type
)))
481 return createStringError(errc::invalid_argument
,
482 "failed to decompress section '" + Sec
.Name
+
484 if (Error E
= compression::decompress(Type
, Compressed
, Decompressed
,
485 static_cast<size_t>(Sec
.Size
)))
486 return createStringError(errc::invalid_argument
,
487 "failed to decompress section '" + Sec
.Name
+
488 "': " + toString(std::move(E
)));
490 uint8_t *Buf
= reinterpret_cast<uint8_t *>(Out
.getBufferStart()) + Sec
.Offset
;
491 std::copy(Decompressed
.begin(), Decompressed
.end(), Buf
);
493 return Error::success();
496 Error
BinarySectionWriter::visit(const DecompressedSection
&Sec
) {
497 return createStringError(errc::operation_not_permitted
,
498 "cannot write compressed section '" + Sec
.Name
+
502 Error
DecompressedSection::accept(SectionVisitor
&Visitor
) const {
503 return Visitor
.visit(*this);
506 Error
DecompressedSection::accept(MutableSectionVisitor
&Visitor
) {
507 return Visitor
.visit(*this);
510 Error
OwnedDataSection::accept(SectionVisitor
&Visitor
) const {
511 return Visitor
.visit(*this);
514 Error
OwnedDataSection::accept(MutableSectionVisitor
&Visitor
) {
515 return Visitor
.visit(*this);
518 void OwnedDataSection::appendHexData(StringRef HexData
) {
519 assert((HexData
.size() & 1) == 0);
520 while (!HexData
.empty()) {
521 Data
.push_back(checkedGetHex
<uint8_t>(HexData
.take_front(2)));
522 HexData
= HexData
.drop_front(2);
527 Error
BinarySectionWriter::visit(const CompressedSection
&Sec
) {
528 return createStringError(errc::operation_not_permitted
,
529 "cannot write compressed section '" + Sec
.Name
+
533 template <class ELFT
>
534 Error ELFSectionWriter
<ELFT
>::visit(const CompressedSection
&Sec
) {
535 uint8_t *Buf
= reinterpret_cast<uint8_t *>(Out
.getBufferStart()) + Sec
.Offset
;
536 Elf_Chdr_Impl
<ELFT
> Chdr
= {};
537 switch (Sec
.CompressionType
) {
538 case DebugCompressionType::None
:
539 std::copy(Sec
.OriginalData
.begin(), Sec
.OriginalData
.end(), Buf
);
540 return Error::success();
541 case DebugCompressionType::Zlib
:
542 Chdr
.ch_type
= ELF::ELFCOMPRESS_ZLIB
;
544 case DebugCompressionType::Zstd
:
545 Chdr
.ch_type
= ELF::ELFCOMPRESS_ZSTD
;
548 Chdr
.ch_size
= Sec
.DecompressedSize
;
549 Chdr
.ch_addralign
= Sec
.DecompressedAlign
;
550 memcpy(Buf
, &Chdr
, sizeof(Chdr
));
553 std::copy(Sec
.CompressedData
.begin(), Sec
.CompressedData
.end(), Buf
);
554 return Error::success();
557 CompressedSection::CompressedSection(const SectionBase
&Sec
,
558 DebugCompressionType CompressionType
,
560 : SectionBase(Sec
), CompressionType(CompressionType
),
561 DecompressedSize(Sec
.OriginalData
.size()), DecompressedAlign(Sec
.Align
) {
562 compression::compress(compression::Params(CompressionType
), OriginalData
,
565 Flags
|= ELF::SHF_COMPRESSED
;
566 OriginalFlags
|= ELF::SHF_COMPRESSED
;
567 size_t ChdrSize
= Is64Bits
? sizeof(object::Elf_Chdr_Impl
<object::ELF64LE
>)
568 : sizeof(object::Elf_Chdr_Impl
<object::ELF32LE
>);
569 Size
= ChdrSize
+ CompressedData
.size();
573 CompressedSection::CompressedSection(ArrayRef
<uint8_t> CompressedData
,
574 uint32_t ChType
, uint64_t DecompressedSize
,
575 uint64_t DecompressedAlign
)
576 : ChType(ChType
), CompressionType(DebugCompressionType::None
),
577 DecompressedSize(DecompressedSize
), DecompressedAlign(DecompressedAlign
) {
578 OriginalData
= CompressedData
;
581 Error
CompressedSection::accept(SectionVisitor
&Visitor
) const {
582 return Visitor
.visit(*this);
585 Error
CompressedSection::accept(MutableSectionVisitor
&Visitor
) {
586 return Visitor
.visit(*this);
589 void StringTableSection::addString(StringRef Name
) { StrTabBuilder
.add(Name
); }
591 uint32_t StringTableSection::findIndex(StringRef Name
) const {
592 return StrTabBuilder
.getOffset(Name
);
595 void StringTableSection::prepareForLayout() {
596 StrTabBuilder
.finalize();
597 Size
= StrTabBuilder
.getSize();
600 Error
SectionWriter::visit(const StringTableSection
&Sec
) {
601 Sec
.StrTabBuilder
.write(reinterpret_cast<uint8_t *>(Out
.getBufferStart()) +
603 return Error::success();
606 Error
StringTableSection::accept(SectionVisitor
&Visitor
) const {
607 return Visitor
.visit(*this);
610 Error
StringTableSection::accept(MutableSectionVisitor
&Visitor
) {
611 return Visitor
.visit(*this);
614 template <class ELFT
>
615 Error ELFSectionWriter
<ELFT
>::visit(const SectionIndexSection
&Sec
) {
616 uint8_t *Buf
= reinterpret_cast<uint8_t *>(Out
.getBufferStart()) + Sec
.Offset
;
617 llvm::copy(Sec
.Indexes
, reinterpret_cast<Elf_Word
*>(Buf
));
618 return Error::success();
621 Error
SectionIndexSection::initialize(SectionTableRef SecTable
) {
623 Expected
<SymbolTableSection
*> Sec
=
624 SecTable
.getSectionOfType
<SymbolTableSection
>(
626 "Link field value " + Twine(Link
) + " in section " + Name
+
628 "Link field value " + Twine(Link
) + " in section " + Name
+
629 " is not a symbol table");
631 return Sec
.takeError();
634 Symbols
->setShndxTable(this);
635 return Error::success();
638 void SectionIndexSection::finalize() { Link
= Symbols
->Index
; }
640 Error
SectionIndexSection::accept(SectionVisitor
&Visitor
) const {
641 return Visitor
.visit(*this);
644 Error
SectionIndexSection::accept(MutableSectionVisitor
&Visitor
) {
645 return Visitor
.visit(*this);
648 static bool isValidReservedSectionIndex(uint16_t Index
, uint16_t Machine
) {
655 if (Machine
== EM_AMDGPU
) {
656 return Index
== SHN_AMDGPU_LDS
;
659 if (Machine
== EM_MIPS
) {
661 case SHN_MIPS_ACOMMON
:
662 case SHN_MIPS_SCOMMON
:
663 case SHN_MIPS_SUNDEFINED
:
668 if (Machine
== EM_HEXAGON
) {
670 case SHN_HEXAGON_SCOMMON
:
671 case SHN_HEXAGON_SCOMMON_1
:
672 case SHN_HEXAGON_SCOMMON_2
:
673 case SHN_HEXAGON_SCOMMON_4
:
674 case SHN_HEXAGON_SCOMMON_8
:
681 // Large indexes force us to clarify exactly what this function should do. This
682 // function should return the value that will appear in st_shndx when written
684 uint16_t Symbol::getShndx() const {
685 if (DefinedIn
!= nullptr) {
686 if (DefinedIn
->Index
>= SHN_LORESERVE
)
688 return DefinedIn
->Index
;
691 if (ShndxType
== SYMBOL_SIMPLE_INDEX
) {
692 // This means that we don't have a defined section but we do need to
693 // output a legitimate section index.
697 assert(ShndxType
== SYMBOL_ABS
|| ShndxType
== SYMBOL_COMMON
||
698 (ShndxType
>= SYMBOL_LOPROC
&& ShndxType
<= SYMBOL_HIPROC
) ||
699 (ShndxType
>= SYMBOL_LOOS
&& ShndxType
<= SYMBOL_HIOS
));
700 return static_cast<uint16_t>(ShndxType
);
703 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON
; }
705 void SymbolTableSection::assignIndices() {
707 for (auto &Sym
: Symbols
) {
708 if (Sym
->Index
!= Index
)
709 IndicesChanged
= true;
710 Sym
->Index
= Index
++;
714 void SymbolTableSection::addSymbol(Twine Name
, uint8_t Bind
, uint8_t Type
,
715 SectionBase
*DefinedIn
, uint64_t Value
,
716 uint8_t Visibility
, uint16_t Shndx
,
717 uint64_t SymbolSize
) {
719 Sym
.Name
= Name
.str();
722 Sym
.DefinedIn
= DefinedIn
;
723 if (DefinedIn
!= nullptr)
724 DefinedIn
->HasSymbol
= true;
725 if (DefinedIn
== nullptr) {
726 if (Shndx
>= SHN_LORESERVE
)
727 Sym
.ShndxType
= static_cast<SymbolShndxType
>(Shndx
);
729 Sym
.ShndxType
= SYMBOL_SIMPLE_INDEX
;
732 Sym
.Visibility
= Visibility
;
733 Sym
.Size
= SymbolSize
;
734 Sym
.Index
= Symbols
.size();
735 Symbols
.emplace_back(std::make_unique
<Symbol
>(Sym
));
736 Size
+= this->EntrySize
;
739 Error
SymbolTableSection::removeSectionReferences(
740 bool AllowBrokenLinks
, function_ref
<bool(const SectionBase
*)> ToRemove
) {
741 if (ToRemove(SectionIndexTable
))
742 SectionIndexTable
= nullptr;
743 if (ToRemove(SymbolNames
)) {
744 if (!AllowBrokenLinks
)
745 return createStringError(
746 llvm::errc::invalid_argument
,
747 "string table '%s' cannot be removed because it is "
748 "referenced by the symbol table '%s'",
749 SymbolNames
->Name
.data(), this->Name
.data());
750 SymbolNames
= nullptr;
752 return removeSymbols(
753 [ToRemove
](const Symbol
&Sym
) { return ToRemove(Sym
.DefinedIn
); });
756 void SymbolTableSection::updateSymbols(function_ref
<void(Symbol
&)> Callable
) {
757 for (SymPtr
&Sym
: llvm::drop_begin(Symbols
))
759 std::stable_partition(
760 std::begin(Symbols
), std::end(Symbols
),
761 [](const SymPtr
&Sym
) { return Sym
->Binding
== STB_LOCAL
; });
765 Error
SymbolTableSection::removeSymbols(
766 function_ref
<bool(const Symbol
&)> ToRemove
) {
768 std::remove_if(std::begin(Symbols
) + 1, std::end(Symbols
),
769 [ToRemove
](const SymPtr
&Sym
) { return ToRemove(*Sym
); }),
771 auto PrevSize
= Size
;
772 Size
= Symbols
.size() * EntrySize
;
774 IndicesChanged
= true;
776 return Error::success();
779 void SymbolTableSection::replaceSectionReferences(
780 const DenseMap
<SectionBase
*, SectionBase
*> &FromTo
) {
781 for (std::unique_ptr
<Symbol
> &Sym
: Symbols
)
782 if (SectionBase
*To
= FromTo
.lookup(Sym
->DefinedIn
))
786 Error
SymbolTableSection::initialize(SectionTableRef SecTable
) {
788 Expected
<StringTableSection
*> Sec
=
789 SecTable
.getSectionOfType
<StringTableSection
>(
791 "Symbol table has link index of " + Twine(Link
) +
792 " which is not a valid index",
793 "Symbol table has link index of " + Twine(Link
) +
794 " which is not a string table");
796 return Sec
.takeError();
799 return Error::success();
802 void SymbolTableSection::finalize() {
803 uint32_t MaxLocalIndex
= 0;
804 for (std::unique_ptr
<Symbol
> &Sym
: Symbols
) {
806 SymbolNames
== nullptr ? 0 : SymbolNames
->findIndex(Sym
->Name
);
807 if (Sym
->Binding
== STB_LOCAL
)
808 MaxLocalIndex
= std::max(MaxLocalIndex
, Sym
->Index
);
810 // Now we need to set the Link and Info fields.
811 Link
= SymbolNames
== nullptr ? 0 : SymbolNames
->Index
;
812 Info
= MaxLocalIndex
+ 1;
815 void SymbolTableSection::prepareForLayout() {
816 // Reserve proper amount of space in section index table, so we can
817 // layout sections correctly. We will fill the table with correct
818 // indexes later in fillShdnxTable.
819 if (SectionIndexTable
)
820 SectionIndexTable
->reserve(Symbols
.size());
822 // Add all of our strings to SymbolNames so that SymbolNames has the right
823 // size before layout is decided.
824 // If the symbol names section has been removed, don't try to add strings to
826 if (SymbolNames
!= nullptr)
827 for (std::unique_ptr
<Symbol
> &Sym
: Symbols
)
828 SymbolNames
->addString(Sym
->Name
);
831 void SymbolTableSection::fillShndxTable() {
832 if (SectionIndexTable
== nullptr)
834 // Fill section index table with real section indexes. This function must
835 // be called after assignOffsets.
836 for (const std::unique_ptr
<Symbol
> &Sym
: Symbols
) {
837 if (Sym
->DefinedIn
!= nullptr && Sym
->DefinedIn
->Index
>= SHN_LORESERVE
)
838 SectionIndexTable
->addIndex(Sym
->DefinedIn
->Index
);
840 SectionIndexTable
->addIndex(SHN_UNDEF
);
844 Expected
<const Symbol
*>
845 SymbolTableSection::getSymbolByIndex(uint32_t Index
) const {
846 if (Symbols
.size() <= Index
)
847 return createStringError(errc::invalid_argument
,
848 "invalid symbol index: " + Twine(Index
));
849 return Symbols
[Index
].get();
852 Expected
<Symbol
*> SymbolTableSection::getSymbolByIndex(uint32_t Index
) {
853 Expected
<const Symbol
*> Sym
=
854 static_cast<const SymbolTableSection
*>(this)->getSymbolByIndex(Index
);
856 return Sym
.takeError();
858 return const_cast<Symbol
*>(*Sym
);
861 template <class ELFT
>
862 Error ELFSectionWriter
<ELFT
>::visit(const SymbolTableSection
&Sec
) {
863 Elf_Sym
*Sym
= reinterpret_cast<Elf_Sym
*>(Out
.getBufferStart() + Sec
.Offset
);
864 // Loop though symbols setting each entry of the symbol table.
865 for (const std::unique_ptr
<Symbol
> &Symbol
: Sec
.Symbols
) {
866 Sym
->st_name
= Symbol
->NameIndex
;
867 Sym
->st_value
= Symbol
->Value
;
868 Sym
->st_size
= Symbol
->Size
;
869 Sym
->st_other
= Symbol
->Visibility
;
870 Sym
->setBinding(Symbol
->Binding
);
871 Sym
->setType(Symbol
->Type
);
872 Sym
->st_shndx
= Symbol
->getShndx();
875 return Error::success();
878 Error
SymbolTableSection::accept(SectionVisitor
&Visitor
) const {
879 return Visitor
.visit(*this);
882 Error
SymbolTableSection::accept(MutableSectionVisitor
&Visitor
) {
883 return Visitor
.visit(*this);
886 StringRef
RelocationSectionBase::getNamePrefix() const {
895 llvm_unreachable("not a relocation section");
899 Error
RelocationSection::removeSectionReferences(
900 bool AllowBrokenLinks
, function_ref
<bool(const SectionBase
*)> ToRemove
) {
901 if (ToRemove(Symbols
)) {
902 if (!AllowBrokenLinks
)
903 return createStringError(
904 llvm::errc::invalid_argument
,
905 "symbol table '%s' cannot be removed because it is "
906 "referenced by the relocation section '%s'",
907 Symbols
->Name
.data(), this->Name
.data());
911 for (const Relocation
&R
: Relocations
) {
912 if (!R
.RelocSymbol
|| !R
.RelocSymbol
->DefinedIn
||
913 !ToRemove(R
.RelocSymbol
->DefinedIn
))
915 return createStringError(llvm::errc::invalid_argument
,
916 "section '%s' cannot be removed: (%s+0x%" PRIx64
917 ") has relocation against symbol '%s'",
918 R
.RelocSymbol
->DefinedIn
->Name
.data(),
919 SecToApplyRel
->Name
.data(), R
.Offset
,
920 R
.RelocSymbol
->Name
.c_str());
923 return Error::success();
926 template <class SymTabType
>
927 Error RelocSectionWithSymtabBase
<SymTabType
>::initialize(
928 SectionTableRef SecTable
) {
929 if (Link
!= SHN_UNDEF
) {
930 Expected
<SymTabType
*> Sec
= SecTable
.getSectionOfType
<SymTabType
>(
932 "Link field value " + Twine(Link
) + " in section " + Name
+
934 "Link field value " + Twine(Link
) + " in section " + Name
+
935 " is not a symbol table");
937 return Sec
.takeError();
942 if (Info
!= SHN_UNDEF
) {
943 Expected
<SectionBase
*> Sec
=
944 SecTable
.getSection(Info
, "Info field value " + Twine(Info
) +
945 " in section " + Name
+ " is invalid");
947 return Sec
.takeError();
953 return Error::success();
956 template <class SymTabType
>
957 void RelocSectionWithSymtabBase
<SymTabType
>::finalize() {
958 this->Link
= Symbols
? Symbols
->Index
: 0;
960 if (SecToApplyRel
!= nullptr)
961 this->Info
= SecToApplyRel
->Index
;
964 template <class ELFT
>
965 static void setAddend(Elf_Rel_Impl
<ELFT
, false> &, uint64_t) {}
967 template <class ELFT
>
968 static void setAddend(Elf_Rel_Impl
<ELFT
, true> &Rela
, uint64_t Addend
) {
969 Rela
.r_addend
= Addend
;
972 template <class RelRange
, class T
>
973 static void writeRel(const RelRange
&Relocations
, T
*Buf
, bool IsMips64EL
) {
974 for (const auto &Reloc
: Relocations
) {
975 Buf
->r_offset
= Reloc
.Offset
;
976 setAddend(*Buf
, Reloc
.Addend
);
977 Buf
->setSymbolAndType(Reloc
.RelocSymbol
? Reloc
.RelocSymbol
->Index
: 0,
978 Reloc
.Type
, IsMips64EL
);
983 template <class ELFT
>
984 Error ELFSectionWriter
<ELFT
>::visit(const RelocationSection
&Sec
) {
985 uint8_t *Buf
= reinterpret_cast<uint8_t *>(Out
.getBufferStart()) + Sec
.Offset
;
986 if (Sec
.Type
== SHT_CREL
) {
987 auto Content
= encodeCrel
<ELFT::Is64Bits
>(Sec
.Relocations
);
988 memcpy(Buf
, Content
.data(), Content
.size());
989 } else if (Sec
.Type
== SHT_REL
) {
990 writeRel(Sec
.Relocations
, reinterpret_cast<Elf_Rel
*>(Buf
),
991 Sec
.getObject().IsMips64EL
);
993 writeRel(Sec
.Relocations
, reinterpret_cast<Elf_Rela
*>(Buf
),
994 Sec
.getObject().IsMips64EL
);
996 return Error::success();
999 Error
RelocationSection::accept(SectionVisitor
&Visitor
) const {
1000 return Visitor
.visit(*this);
1003 Error
RelocationSection::accept(MutableSectionVisitor
&Visitor
) {
1004 return Visitor
.visit(*this);
1007 Error
RelocationSection::removeSymbols(
1008 function_ref
<bool(const Symbol
&)> ToRemove
) {
1009 for (const Relocation
&Reloc
: Relocations
)
1010 if (Reloc
.RelocSymbol
&& ToRemove(*Reloc
.RelocSymbol
))
1011 return createStringError(
1012 llvm::errc::invalid_argument
,
1013 "not stripping symbol '%s' because it is named in a relocation",
1014 Reloc
.RelocSymbol
->Name
.data());
1015 return Error::success();
1018 void RelocationSection::markSymbols() {
1019 for (const Relocation
&Reloc
: Relocations
)
1020 if (Reloc
.RelocSymbol
)
1021 Reloc
.RelocSymbol
->Referenced
= true;
1024 void RelocationSection::replaceSectionReferences(
1025 const DenseMap
<SectionBase
*, SectionBase
*> &FromTo
) {
1026 // Update the target section if it was replaced.
1027 if (SectionBase
*To
= FromTo
.lookup(SecToApplyRel
))
1031 Error
SectionWriter::visit(const DynamicRelocationSection
&Sec
) {
1032 llvm::copy(Sec
.Contents
, Out
.getBufferStart() + Sec
.Offset
);
1033 return Error::success();
1036 Error
DynamicRelocationSection::accept(SectionVisitor
&Visitor
) const {
1037 return Visitor
.visit(*this);
1040 Error
DynamicRelocationSection::accept(MutableSectionVisitor
&Visitor
) {
1041 return Visitor
.visit(*this);
1044 Error
DynamicRelocationSection::removeSectionReferences(
1045 bool AllowBrokenLinks
, function_ref
<bool(const SectionBase
*)> ToRemove
) {
1046 if (ToRemove(Symbols
)) {
1047 if (!AllowBrokenLinks
)
1048 return createStringError(
1049 llvm::errc::invalid_argument
,
1050 "symbol table '%s' cannot be removed because it is "
1051 "referenced by the relocation section '%s'",
1052 Symbols
->Name
.data(), this->Name
.data());
1056 // SecToApplyRel contains a section referenced by sh_info field. It keeps
1057 // a section to which the relocation section applies. When we remove any
1058 // sections we also remove their relocation sections. Since we do that much
1059 // earlier, this assert should never be triggered.
1060 assert(!SecToApplyRel
|| !ToRemove(SecToApplyRel
));
1061 return Error::success();
1064 Error
Section::removeSectionReferences(
1065 bool AllowBrokenDependency
,
1066 function_ref
<bool(const SectionBase
*)> ToRemove
) {
1067 if (ToRemove(LinkSection
)) {
1068 if (!AllowBrokenDependency
)
1069 return createStringError(llvm::errc::invalid_argument
,
1070 "section '%s' cannot be removed because it is "
1071 "referenced by the section '%s'",
1072 LinkSection
->Name
.data(), this->Name
.data());
1073 LinkSection
= nullptr;
1075 return Error::success();
1078 void GroupSection::finalize() {
1079 this->Info
= Sym
? Sym
->Index
: 0;
1080 this->Link
= SymTab
? SymTab
->Index
: 0;
1081 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1082 // status is not part of the equation. If Sym is localized, the intention is
1083 // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1084 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1085 if ((FlagWord
& GRP_COMDAT
) && Sym
&& Sym
->Binding
== STB_LOCAL
)
1086 this->FlagWord
&= ~GRP_COMDAT
;
1089 Error
GroupSection::removeSectionReferences(
1090 bool AllowBrokenLinks
, function_ref
<bool(const SectionBase
*)> ToRemove
) {
1091 if (ToRemove(SymTab
)) {
1092 if (!AllowBrokenLinks
)
1093 return createStringError(
1094 llvm::errc::invalid_argument
,
1095 "section '.symtab' cannot be removed because it is "
1096 "referenced by the group section '%s'",
1101 llvm::erase_if(GroupMembers
, ToRemove
);
1102 return Error::success();
1105 Error
GroupSection::removeSymbols(function_ref
<bool(const Symbol
&)> ToRemove
) {
1107 return createStringError(llvm::errc::invalid_argument
,
1108 "symbol '%s' cannot be removed because it is "
1109 "referenced by the section '%s[%d]'",
1110 Sym
->Name
.data(), this->Name
.data(), this->Index
);
1111 return Error::success();
1114 void GroupSection::markSymbols() {
1116 Sym
->Referenced
= true;
1119 void GroupSection::replaceSectionReferences(
1120 const DenseMap
<SectionBase
*, SectionBase
*> &FromTo
) {
1121 for (SectionBase
*&Sec
: GroupMembers
)
1122 if (SectionBase
*To
= FromTo
.lookup(Sec
))
1126 void GroupSection::onRemove() {
1127 // As the header section of the group is removed, drop the Group flag in its
1129 for (SectionBase
*Sec
: GroupMembers
)
1130 Sec
->Flags
&= ~SHF_GROUP
;
1133 Error
Section::initialize(SectionTableRef SecTable
) {
1134 if (Link
== ELF::SHN_UNDEF
)
1135 return Error::success();
1137 Expected
<SectionBase
*> Sec
=
1138 SecTable
.getSection(Link
, "Link field value " + Twine(Link
) +
1139 " in section " + Name
+ " is invalid");
1141 return Sec
.takeError();
1145 if (LinkSection
->Type
== ELF::SHT_SYMTAB
) {
1146 HasSymTabLink
= true;
1147 LinkSection
= nullptr;
1150 return Error::success();
1153 void Section::finalize() { this->Link
= LinkSection
? LinkSection
->Index
: 0; }
1155 void GnuDebugLinkSection::init(StringRef File
) {
1156 FileName
= sys::path::filename(File
);
1157 // The format for the .gnu_debuglink starts with the file name and is
1158 // followed by a null terminator and then the CRC32 of the file. The CRC32
1159 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1160 // byte, and then finally push the size to alignment and add 4.
1161 Size
= alignTo(FileName
.size() + 1, 4) + 4;
1162 // The CRC32 will only be aligned if we align the whole section.
1164 Type
= OriginalType
= ELF::SHT_PROGBITS
;
1165 Name
= ".gnu_debuglink";
1166 // For sections not found in segments, OriginalOffset is only used to
1167 // establish the order that sections should go in. By using the maximum
1168 // possible offset we cause this section to wind up at the end.
1169 OriginalOffset
= std::numeric_limits
<uint64_t>::max();
1172 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File
,
1173 uint32_t PrecomputedCRC
)
1174 : FileName(File
), CRC32(PrecomputedCRC
) {
1178 template <class ELFT
>
1179 Error ELFSectionWriter
<ELFT
>::visit(const GnuDebugLinkSection
&Sec
) {
1180 unsigned char *Buf
=
1181 reinterpret_cast<uint8_t *>(Out
.getBufferStart()) + Sec
.Offset
;
1183 reinterpret_cast<Elf_Word
*>(Buf
+ Sec
.Size
- sizeof(Elf_Word
));
1185 llvm::copy(Sec
.FileName
, Buf
);
1186 return Error::success();
1189 Error
GnuDebugLinkSection::accept(SectionVisitor
&Visitor
) const {
1190 return Visitor
.visit(*this);
1193 Error
GnuDebugLinkSection::accept(MutableSectionVisitor
&Visitor
) {
1194 return Visitor
.visit(*this);
1197 template <class ELFT
>
1198 Error ELFSectionWriter
<ELFT
>::visit(const GroupSection
&Sec
) {
1199 ELF::Elf32_Word
*Buf
=
1200 reinterpret_cast<ELF::Elf32_Word
*>(Out
.getBufferStart() + Sec
.Offset
);
1201 endian::write32
<ELFT::Endianness
>(Buf
++, Sec
.FlagWord
);
1202 for (SectionBase
*S
: Sec
.GroupMembers
)
1203 endian::write32
<ELFT::Endianness
>(Buf
++, S
->Index
);
1204 return Error::success();
1207 Error
GroupSection::accept(SectionVisitor
&Visitor
) const {
1208 return Visitor
.visit(*this);
1211 Error
GroupSection::accept(MutableSectionVisitor
&Visitor
) {
1212 return Visitor
.visit(*this);
1215 // Returns true IFF a section is wholly inside the range of a segment
1216 static bool sectionWithinSegment(const SectionBase
&Sec
, const Segment
&Seg
) {
1217 // If a section is empty it should be treated like it has a size of 1. This is
1218 // to clarify the case when an empty section lies on a boundary between two
1219 // segments and ensures that the section "belongs" to the second segment and
1221 uint64_t SecSize
= Sec
.Size
? Sec
.Size
: 1;
1223 // Ignore just added sections.
1224 if (Sec
.OriginalOffset
== std::numeric_limits
<uint64_t>::max())
1227 if (Sec
.Type
== SHT_NOBITS
) {
1228 if (!(Sec
.Flags
& SHF_ALLOC
))
1231 bool SectionIsTLS
= Sec
.Flags
& SHF_TLS
;
1232 bool SegmentIsTLS
= Seg
.Type
== PT_TLS
;
1233 if (SectionIsTLS
!= SegmentIsTLS
)
1236 return Seg
.VAddr
<= Sec
.Addr
&&
1237 Seg
.VAddr
+ Seg
.MemSize
>= Sec
.Addr
+ SecSize
;
1240 return Seg
.Offset
<= Sec
.OriginalOffset
&&
1241 Seg
.Offset
+ Seg
.FileSize
>= Sec
.OriginalOffset
+ SecSize
;
1244 // Returns true IFF a segment's original offset is inside of another segment's
1246 static bool segmentOverlapsSegment(const Segment
&Child
,
1247 const Segment
&Parent
) {
1249 return Parent
.OriginalOffset
<= Child
.OriginalOffset
&&
1250 Parent
.OriginalOffset
+ Parent
.FileSize
> Child
.OriginalOffset
;
1253 static bool compareSegmentsByOffset(const Segment
*A
, const Segment
*B
) {
1254 // Any segment without a parent segment should come before a segment
1255 // that has a parent segment.
1256 if (A
->OriginalOffset
< B
->OriginalOffset
)
1258 if (A
->OriginalOffset
> B
->OriginalOffset
)
1260 // If alignments are different, the one with a smaller alignment cannot be the
1261 // parent; otherwise, layoutSegments will not respect the larger alignment
1262 // requirement. This rule ensures that PT_LOAD/PT_INTERP/PT_GNU_RELRO/PT_TLS
1263 // segments at the same offset will be aligned correctly.
1264 if (A
->Align
!= B
->Align
)
1265 return A
->Align
> B
->Align
;
1266 return A
->Index
< B
->Index
;
1269 void BasicELFBuilder::initFileHeader() {
1272 Obj
->OSABI
= ELFOSABI_NONE
;
1273 Obj
->ABIVersion
= 0;
1275 Obj
->Machine
= EM_NONE
;
1279 void BasicELFBuilder::initHeaderSegment() { Obj
->ElfHdrSegment
.Index
= 0; }
1281 StringTableSection
*BasicELFBuilder::addStrTab() {
1282 auto &StrTab
= Obj
->addSection
<StringTableSection
>();
1283 StrTab
.Name
= ".strtab";
1285 Obj
->SectionNames
= &StrTab
;
1289 SymbolTableSection
*BasicELFBuilder::addSymTab(StringTableSection
*StrTab
) {
1290 auto &SymTab
= Obj
->addSection
<SymbolTableSection
>();
1292 SymTab
.Name
= ".symtab";
1293 SymTab
.Link
= StrTab
->Index
;
1295 // The symbol table always needs a null symbol
1296 SymTab
.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1298 Obj
->SymbolTable
= &SymTab
;
1302 Error
BasicELFBuilder::initSections() {
1303 for (SectionBase
&Sec
: Obj
->sections())
1304 if (Error Err
= Sec
.initialize(Obj
->sections()))
1307 return Error::success();
1310 void BinaryELFBuilder::addData(SymbolTableSection
*SymTab
) {
1311 auto Data
= ArrayRef
<uint8_t>(
1312 reinterpret_cast<const uint8_t *>(MemBuf
->getBufferStart()),
1313 MemBuf
->getBufferSize());
1314 auto &DataSection
= Obj
->addSection
<Section
>(Data
);
1315 DataSection
.Name
= ".data";
1316 DataSection
.Type
= ELF::SHT_PROGBITS
;
1317 DataSection
.Size
= Data
.size();
1318 DataSection
.Flags
= ELF::SHF_ALLOC
| ELF::SHF_WRITE
;
1320 std::string SanitizedFilename
= MemBuf
->getBufferIdentifier().str();
1322 std::begin(SanitizedFilename
), std::end(SanitizedFilename
),
1323 [](char C
) { return !isAlnum(C
); }, '_');
1324 Twine Prefix
= Twine("_binary_") + SanitizedFilename
;
1326 SymTab
->addSymbol(Prefix
+ "_start", STB_GLOBAL
, STT_NOTYPE
, &DataSection
,
1327 /*Value=*/0, NewSymbolVisibility
, 0, 0);
1328 SymTab
->addSymbol(Prefix
+ "_end", STB_GLOBAL
, STT_NOTYPE
, &DataSection
,
1329 /*Value=*/DataSection
.Size
, NewSymbolVisibility
, 0, 0);
1330 SymTab
->addSymbol(Prefix
+ "_size", STB_GLOBAL
, STT_NOTYPE
, nullptr,
1331 /*Value=*/DataSection
.Size
, NewSymbolVisibility
, SHN_ABS
,
1335 Expected
<std::unique_ptr
<Object
>> BinaryELFBuilder::build() {
1337 initHeaderSegment();
1339 SymbolTableSection
*SymTab
= addSymTab(addStrTab());
1340 if (Error Err
= initSections())
1341 return std::move(Err
);
1344 return std::move(Obj
);
1347 // Adds sections from IHEX data file. Data should have been
1348 // fully validated by this time.
1349 void IHexELFBuilder::addDataSections() {
1350 OwnedDataSection
*Section
= nullptr;
1351 uint64_t SegmentAddr
= 0, BaseAddr
= 0;
1354 for (const IHexRecord
&R
: Records
) {
1357 case IHexRecord::Data
:
1358 // Ignore empty data records
1359 if (R
.HexData
.empty())
1361 RecAddr
= R
.Addr
+ SegmentAddr
+ BaseAddr
;
1362 if (!Section
|| Section
->Addr
+ Section
->Size
!= RecAddr
) {
1363 // OriginalOffset field is only used to sort sections before layout, so
1364 // instead of keeping track of real offsets in IHEX file, and as
1365 // layoutSections() and layoutSectionsForOnlyKeepDebug() use
1366 // llvm::stable_sort(), we can just set it to a constant (zero).
1367 Section
= &Obj
->addSection
<OwnedDataSection
>(
1368 ".sec" + std::to_string(SecNo
), RecAddr
,
1369 ELF::SHF_ALLOC
| ELF::SHF_WRITE
, 0);
1372 Section
->appendHexData(R
.HexData
);
1374 case IHexRecord::EndOfFile
:
1376 case IHexRecord::SegmentAddr
:
1377 // 20-bit segment address.
1378 SegmentAddr
= checkedGetHex
<uint16_t>(R
.HexData
) << 4;
1380 case IHexRecord::StartAddr80x86
:
1381 case IHexRecord::StartAddr
:
1382 Obj
->Entry
= checkedGetHex
<uint32_t>(R
.HexData
);
1383 assert(Obj
->Entry
<= 0xFFFFFU
);
1385 case IHexRecord::ExtendedAddr
:
1386 // 16-31 bits of linear base address
1387 BaseAddr
= checkedGetHex
<uint16_t>(R
.HexData
) << 16;
1390 llvm_unreachable("unknown record type");
1395 Expected
<std::unique_ptr
<Object
>> IHexELFBuilder::build() {
1397 initHeaderSegment();
1398 StringTableSection
*StrTab
= addStrTab();
1400 if (Error Err
= initSections())
1401 return std::move(Err
);
1404 return std::move(Obj
);
1407 template <class ELFT
>
1408 ELFBuilder
<ELFT
>::ELFBuilder(const ELFObjectFile
<ELFT
> &ElfObj
, Object
&Obj
,
1409 std::optional
<StringRef
> ExtractPartition
)
1410 : ElfFile(ElfObj
.getELFFile()), Obj(Obj
),
1411 ExtractPartition(ExtractPartition
) {
1412 Obj
.IsMips64EL
= ElfFile
.isMips64EL();
1415 template <class ELFT
> void ELFBuilder
<ELFT
>::setParentSegment(Segment
&Child
) {
1416 for (Segment
&Parent
: Obj
.segments()) {
1417 // Every segment will overlap with itself but we don't want a segment to
1418 // be its own parent so we avoid that situation.
1419 if (&Child
!= &Parent
&& segmentOverlapsSegment(Child
, Parent
)) {
1420 // We want a canonical "most parental" segment but this requires
1421 // inspecting the ParentSegment.
1422 if (compareSegmentsByOffset(&Parent
, &Child
))
1423 if (Child
.ParentSegment
== nullptr ||
1424 compareSegmentsByOffset(&Parent
, Child
.ParentSegment
)) {
1425 Child
.ParentSegment
= &Parent
;
1431 template <class ELFT
> Error ELFBuilder
<ELFT
>::findEhdrOffset() {
1432 if (!ExtractPartition
)
1433 return Error::success();
1435 for (const SectionBase
&Sec
: Obj
.sections()) {
1436 if (Sec
.Type
== SHT_LLVM_PART_EHDR
&& Sec
.Name
== *ExtractPartition
) {
1437 EhdrOffset
= Sec
.Offset
;
1438 return Error::success();
1441 return createStringError(errc::invalid_argument
,
1442 "could not find partition named '" +
1443 *ExtractPartition
+ "'");
1446 template <class ELFT
>
1447 Error ELFBuilder
<ELFT
>::readProgramHeaders(const ELFFile
<ELFT
> &HeadersFile
) {
1450 Expected
<typename ELFFile
<ELFT
>::Elf_Phdr_Range
> Headers
=
1451 HeadersFile
.program_headers();
1453 return Headers
.takeError();
1455 for (const typename ELFFile
<ELFT
>::Elf_Phdr
&Phdr
: *Headers
) {
1456 if (Phdr
.p_offset
+ Phdr
.p_filesz
> HeadersFile
.getBufSize())
1457 return createStringError(
1458 errc::invalid_argument
,
1459 "program header with offset 0x" + Twine::utohexstr(Phdr
.p_offset
) +
1460 " and file size 0x" + Twine::utohexstr(Phdr
.p_filesz
) +
1461 " goes past the end of the file");
1463 ArrayRef
<uint8_t> Data
{HeadersFile
.base() + Phdr
.p_offset
,
1464 (size_t)Phdr
.p_filesz
};
1465 Segment
&Seg
= Obj
.addSegment(Data
);
1466 Seg
.Type
= Phdr
.p_type
;
1467 Seg
.Flags
= Phdr
.p_flags
;
1468 Seg
.OriginalOffset
= Phdr
.p_offset
+ EhdrOffset
;
1469 Seg
.Offset
= Phdr
.p_offset
+ EhdrOffset
;
1470 Seg
.VAddr
= Phdr
.p_vaddr
;
1471 Seg
.PAddr
= Phdr
.p_paddr
;
1472 Seg
.FileSize
= Phdr
.p_filesz
;
1473 Seg
.MemSize
= Phdr
.p_memsz
;
1474 Seg
.Align
= Phdr
.p_align
;
1475 Seg
.Index
= Index
++;
1476 for (SectionBase
&Sec
: Obj
.sections())
1477 if (sectionWithinSegment(Sec
, Seg
)) {
1478 Seg
.addSection(&Sec
);
1479 if (!Sec
.ParentSegment
|| Sec
.ParentSegment
->Offset
> Seg
.Offset
)
1480 Sec
.ParentSegment
= &Seg
;
1484 auto &ElfHdr
= Obj
.ElfHdrSegment
;
1485 ElfHdr
.Index
= Index
++;
1486 ElfHdr
.OriginalOffset
= ElfHdr
.Offset
= EhdrOffset
;
1488 const typename
ELFT::Ehdr
&Ehdr
= HeadersFile
.getHeader();
1489 auto &PrHdr
= Obj
.ProgramHdrSegment
;
1490 PrHdr
.Type
= PT_PHDR
;
1492 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1493 // Whereas this works automatically for ElfHdr, here OriginalOffset is
1494 // always non-zero and to ensure the equation we assign the same value to
1496 PrHdr
.OriginalOffset
= PrHdr
.Offset
= PrHdr
.VAddr
= EhdrOffset
+ Ehdr
.e_phoff
;
1498 PrHdr
.FileSize
= PrHdr
.MemSize
= Ehdr
.e_phentsize
* Ehdr
.e_phnum
;
1499 // The spec requires us to naturally align all the fields.
1500 PrHdr
.Align
= sizeof(Elf_Addr
);
1501 PrHdr
.Index
= Index
++;
1503 // Now we do an O(n^2) loop through the segments in order to match up
1505 for (Segment
&Child
: Obj
.segments())
1506 setParentSegment(Child
);
1507 setParentSegment(ElfHdr
);
1508 setParentSegment(PrHdr
);
1510 return Error::success();
1513 template <class ELFT
>
1514 Error ELFBuilder
<ELFT
>::initGroupSection(GroupSection
*GroupSec
) {
1515 if (GroupSec
->Align
% sizeof(ELF::Elf32_Word
) != 0)
1516 return createStringError(errc::invalid_argument
,
1517 "invalid alignment " + Twine(GroupSec
->Align
) +
1518 " of group section '" + GroupSec
->Name
+ "'");
1519 SectionTableRef SecTable
= Obj
.sections();
1520 if (GroupSec
->Link
!= SHN_UNDEF
) {
1521 auto SymTab
= SecTable
.template getSectionOfType
<SymbolTableSection
>(
1523 "link field value '" + Twine(GroupSec
->Link
) + "' in section '" +
1524 GroupSec
->Name
+ "' is invalid",
1525 "link field value '" + Twine(GroupSec
->Link
) + "' in section '" +
1526 GroupSec
->Name
+ "' is not a symbol table");
1528 return SymTab
.takeError();
1530 Expected
<Symbol
*> Sym
= (*SymTab
)->getSymbolByIndex(GroupSec
->Info
);
1532 return createStringError(errc::invalid_argument
,
1533 "info field value '" + Twine(GroupSec
->Info
) +
1534 "' in section '" + GroupSec
->Name
+
1535 "' is not a valid symbol index");
1536 GroupSec
->setSymTab(*SymTab
);
1537 GroupSec
->setSymbol(*Sym
);
1539 if (GroupSec
->Contents
.size() % sizeof(ELF::Elf32_Word
) ||
1540 GroupSec
->Contents
.empty())
1541 return createStringError(errc::invalid_argument
,
1542 "the content of the section " + GroupSec
->Name
+
1544 const ELF::Elf32_Word
*Word
=
1545 reinterpret_cast<const ELF::Elf32_Word
*>(GroupSec
->Contents
.data());
1546 const ELF::Elf32_Word
*End
=
1547 Word
+ GroupSec
->Contents
.size() / sizeof(ELF::Elf32_Word
);
1548 GroupSec
->setFlagWord(endian::read32
<ELFT::Endianness
>(Word
++));
1549 for (; Word
!= End
; ++Word
) {
1550 uint32_t Index
= support::endian::read32
<ELFT::Endianness
>(Word
);
1551 Expected
<SectionBase
*> Sec
= SecTable
.getSection(
1552 Index
, "group member index " + Twine(Index
) + " in section '" +
1553 GroupSec
->Name
+ "' is invalid");
1555 return Sec
.takeError();
1557 GroupSec
->addMember(*Sec
);
1560 return Error::success();
1563 template <class ELFT
>
1564 Error ELFBuilder
<ELFT
>::initSymbolTable(SymbolTableSection
*SymTab
) {
1565 Expected
<const Elf_Shdr
*> Shdr
= ElfFile
.getSection(SymTab
->Index
);
1567 return Shdr
.takeError();
1569 Expected
<StringRef
> StrTabData
= ElfFile
.getStringTableForSymtab(**Shdr
);
1571 return StrTabData
.takeError();
1573 ArrayRef
<Elf_Word
> ShndxData
;
1575 Expected
<typename ELFFile
<ELFT
>::Elf_Sym_Range
> Symbols
=
1576 ElfFile
.symbols(*Shdr
);
1578 return Symbols
.takeError();
1580 for (const typename ELFFile
<ELFT
>::Elf_Sym
&Sym
: *Symbols
) {
1581 SectionBase
*DefSection
= nullptr;
1583 Expected
<StringRef
> Name
= Sym
.getName(*StrTabData
);
1585 return Name
.takeError();
1587 if (Sym
.st_shndx
== SHN_XINDEX
) {
1588 if (SymTab
->getShndxTable() == nullptr)
1589 return createStringError(errc::invalid_argument
,
1590 "symbol '" + *Name
+
1591 "' has index SHN_XINDEX but no "
1592 "SHT_SYMTAB_SHNDX section exists");
1593 if (ShndxData
.data() == nullptr) {
1594 Expected
<const Elf_Shdr
*> ShndxSec
=
1595 ElfFile
.getSection(SymTab
->getShndxTable()->Index
);
1597 return ShndxSec
.takeError();
1599 Expected
<ArrayRef
<Elf_Word
>> Data
=
1600 ElfFile
.template getSectionContentsAsArray
<Elf_Word
>(**ShndxSec
);
1602 return Data
.takeError();
1605 if (ShndxData
.size() != Symbols
->size())
1606 return createStringError(
1607 errc::invalid_argument
,
1608 "symbol section index table does not have the same number of "
1609 "entries as the symbol table");
1611 Elf_Word Index
= ShndxData
[&Sym
- Symbols
->begin()];
1612 Expected
<SectionBase
*> Sec
= Obj
.sections().getSection(
1614 "symbol '" + *Name
+ "' has invalid section index " + Twine(Index
));
1616 return Sec
.takeError();
1619 } else if (Sym
.st_shndx
>= SHN_LORESERVE
) {
1620 if (!isValidReservedSectionIndex(Sym
.st_shndx
, Obj
.Machine
)) {
1621 return createStringError(
1622 errc::invalid_argument
,
1623 "symbol '" + *Name
+
1624 "' has unsupported value greater than or equal "
1625 "to SHN_LORESERVE: " +
1626 Twine(Sym
.st_shndx
));
1628 } else if (Sym
.st_shndx
!= SHN_UNDEF
) {
1629 Expected
<SectionBase
*> Sec
= Obj
.sections().getSection(
1630 Sym
.st_shndx
, "symbol '" + *Name
+
1631 "' is defined has invalid section index " +
1632 Twine(Sym
.st_shndx
));
1634 return Sec
.takeError();
1639 SymTab
->addSymbol(*Name
, Sym
.getBinding(), Sym
.getType(), DefSection
,
1640 Sym
.getValue(), Sym
.st_other
, Sym
.st_shndx
, Sym
.st_size
);
1643 return Error::success();
1646 template <class ELFT
>
1647 static void getAddend(uint64_t &, const Elf_Rel_Impl
<ELFT
, false> &) {}
1649 template <class ELFT
>
1650 static void getAddend(uint64_t &ToSet
, const Elf_Rel_Impl
<ELFT
, true> &Rela
) {
1651 ToSet
= Rela
.r_addend
;
1655 static Error
initRelocations(RelocationSection
*Relocs
, T RelRange
) {
1656 for (const auto &Rel
: RelRange
) {
1658 ToAdd
.Offset
= Rel
.r_offset
;
1659 getAddend(ToAdd
.Addend
, Rel
);
1660 ToAdd
.Type
= Rel
.getType(Relocs
->getObject().IsMips64EL
);
1662 if (uint32_t Sym
= Rel
.getSymbol(Relocs
->getObject().IsMips64EL
)) {
1663 if (!Relocs
->getObject().SymbolTable
)
1664 return createStringError(
1665 errc::invalid_argument
,
1666 "'" + Relocs
->Name
+ "': relocation references symbol with index " +
1667 Twine(Sym
) + ", but there is no symbol table");
1668 Expected
<Symbol
*> SymByIndex
=
1669 Relocs
->getObject().SymbolTable
->getSymbolByIndex(Sym
);
1671 return SymByIndex
.takeError();
1673 ToAdd
.RelocSymbol
= *SymByIndex
;
1676 Relocs
->addRelocation(ToAdd
);
1679 return Error::success();
1682 Expected
<SectionBase
*> SectionTableRef::getSection(uint32_t Index
,
1684 if (Index
== SHN_UNDEF
|| Index
> Sections
.size())
1685 return createStringError(errc::invalid_argument
, ErrMsg
);
1686 return Sections
[Index
- 1].get();
1690 Expected
<T
*> SectionTableRef::getSectionOfType(uint32_t Index
,
1693 Expected
<SectionBase
*> BaseSec
= getSection(Index
, IndexErrMsg
);
1695 return BaseSec
.takeError();
1697 if (T
*Sec
= dyn_cast
<T
>(*BaseSec
))
1700 return createStringError(errc::invalid_argument
, TypeErrMsg
);
1703 template <class ELFT
>
1704 Expected
<SectionBase
&> ELFBuilder
<ELFT
>::makeSection(const Elf_Shdr
&Shdr
) {
1705 switch (Shdr
.sh_type
) {
1709 if (Shdr
.sh_flags
& SHF_ALLOC
) {
1710 if (Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
))
1711 return Obj
.addSection
<DynamicRelocationSection
>(*Data
);
1713 return Data
.takeError();
1715 return Obj
.addSection
<RelocationSection
>(Obj
);
1717 // If a string table is allocated we don't want to mess with it. That would
1718 // mean altering the memory image. There are no special link types or
1719 // anything so we can just use a Section.
1720 if (Shdr
.sh_flags
& SHF_ALLOC
) {
1721 if (Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
))
1722 return Obj
.addSection
<Section
>(*Data
);
1724 return Data
.takeError();
1726 return Obj
.addSection
<StringTableSection
>();
1729 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1730 // Because of this we don't need to mess with the hash tables either.
1731 if (Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
))
1732 return Obj
.addSection
<Section
>(*Data
);
1734 return Data
.takeError();
1736 if (Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
))
1737 return Obj
.addSection
<GroupSection
>(*Data
);
1739 return Data
.takeError();
1741 if (Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
))
1742 return Obj
.addSection
<DynamicSymbolTableSection
>(*Data
);
1744 return Data
.takeError();
1746 if (Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
))
1747 return Obj
.addSection
<DynamicSection
>(*Data
);
1749 return Data
.takeError();
1751 // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI.
1752 if (Obj
.SymbolTable
!= nullptr)
1753 return createStringError(llvm::errc::invalid_argument
,
1754 "found multiple SHT_SYMTAB sections");
1755 auto &SymTab
= Obj
.addSection
<SymbolTableSection
>();
1756 Obj
.SymbolTable
= &SymTab
;
1759 case SHT_SYMTAB_SHNDX
: {
1760 auto &ShndxSection
= Obj
.addSection
<SectionIndexSection
>();
1761 Obj
.SectionIndexTable
= &ShndxSection
;
1762 return ShndxSection
;
1765 return Obj
.addSection
<Section
>(ArrayRef
<uint8_t>());
1767 Expected
<ArrayRef
<uint8_t>> Data
= ElfFile
.getSectionContents(Shdr
);
1769 return Data
.takeError();
1771 Expected
<StringRef
> Name
= ElfFile
.getSectionName(Shdr
);
1773 return Name
.takeError();
1775 if (!(Shdr
.sh_flags
& ELF::SHF_COMPRESSED
))
1776 return Obj
.addSection
<Section
>(*Data
);
1777 auto *Chdr
= reinterpret_cast<const Elf_Chdr_Impl
<ELFT
> *>(Data
->data());
1778 return Obj
.addSection
<CompressedSection
>(CompressedSection(
1779 *Data
, Chdr
->ch_type
, Chdr
->ch_size
, Chdr
->ch_addralign
));
1784 template <class ELFT
> Error ELFBuilder
<ELFT
>::readSectionHeaders() {
1786 Expected
<typename ELFFile
<ELFT
>::Elf_Shdr_Range
> Sections
=
1789 return Sections
.takeError();
1791 for (const typename ELFFile
<ELFT
>::Elf_Shdr
&Shdr
: *Sections
) {
1796 Expected
<SectionBase
&> Sec
= makeSection(Shdr
);
1798 return Sec
.takeError();
1800 Expected
<StringRef
> SecName
= ElfFile
.getSectionName(Shdr
);
1802 return SecName
.takeError();
1803 Sec
->Name
= SecName
->str();
1804 Sec
->Type
= Sec
->OriginalType
= Shdr
.sh_type
;
1805 Sec
->Flags
= Sec
->OriginalFlags
= Shdr
.sh_flags
;
1806 Sec
->Addr
= Shdr
.sh_addr
;
1807 Sec
->Offset
= Shdr
.sh_offset
;
1808 Sec
->OriginalOffset
= Shdr
.sh_offset
;
1809 Sec
->Size
= Shdr
.sh_size
;
1810 Sec
->Link
= Shdr
.sh_link
;
1811 Sec
->Info
= Shdr
.sh_info
;
1812 Sec
->Align
= Shdr
.sh_addralign
;
1813 Sec
->EntrySize
= Shdr
.sh_entsize
;
1814 Sec
->Index
= Index
++;
1815 Sec
->OriginalIndex
= Sec
->Index
;
1816 Sec
->OriginalData
= ArrayRef
<uint8_t>(
1817 ElfFile
.base() + Shdr
.sh_offset
,
1818 (Shdr
.sh_type
== SHT_NOBITS
) ? (size_t)0 : Shdr
.sh_size
);
1821 return Error::success();
1824 template <class ELFT
> Error ELFBuilder
<ELFT
>::readSections(bool EnsureSymtab
) {
1825 uint32_t ShstrIndex
= ElfFile
.getHeader().e_shstrndx
;
1826 if (ShstrIndex
== SHN_XINDEX
) {
1827 Expected
<const Elf_Shdr
*> Sec
= ElfFile
.getSection(0);
1829 return Sec
.takeError();
1831 ShstrIndex
= (*Sec
)->sh_link
;
1834 if (ShstrIndex
== SHN_UNDEF
)
1835 Obj
.HadShdrs
= false;
1837 Expected
<StringTableSection
*> Sec
=
1838 Obj
.sections().template getSectionOfType
<StringTableSection
>(
1840 "e_shstrndx field value " + Twine(ShstrIndex
) + " in elf header " +
1842 "e_shstrndx field value " + Twine(ShstrIndex
) + " in elf header " +
1843 " does not reference a string table");
1845 return Sec
.takeError();
1847 Obj
.SectionNames
= *Sec
;
1850 // If a section index table exists we'll need to initialize it before we
1851 // initialize the symbol table because the symbol table might need to
1853 if (Obj
.SectionIndexTable
)
1854 if (Error Err
= Obj
.SectionIndexTable
->initialize(Obj
.sections()))
1857 // Now that all of the sections have been added we can fill out some extra
1858 // details about symbol tables. We need the symbol table filled out before
1860 if (Obj
.SymbolTable
) {
1861 if (Error Err
= Obj
.SymbolTable
->initialize(Obj
.sections()))
1863 if (Error Err
= initSymbolTable(Obj
.SymbolTable
))
1865 } else if (EnsureSymtab
) {
1866 if (Error Err
= Obj
.addNewSymbolTable())
1870 // Now that all sections and symbols have been added we can add
1871 // relocations that reference symbols and set the link and info fields for
1872 // relocation sections.
1873 for (SectionBase
&Sec
: Obj
.sections()) {
1874 if (&Sec
== Obj
.SymbolTable
)
1876 if (Error Err
= Sec
.initialize(Obj
.sections()))
1878 if (auto RelSec
= dyn_cast
<RelocationSection
>(&Sec
)) {
1879 Expected
<typename ELFFile
<ELFT
>::Elf_Shdr_Range
> Sections
=
1882 return Sections
.takeError();
1884 const typename ELFFile
<ELFT
>::Elf_Shdr
*Shdr
=
1885 Sections
->begin() + RelSec
->Index
;
1886 if (RelSec
->Type
== SHT_CREL
) {
1887 auto RelsOrRelas
= ElfFile
.crels(*Shdr
);
1889 return RelsOrRelas
.takeError();
1890 if (Error Err
= initRelocations(RelSec
, RelsOrRelas
->first
))
1892 if (Error Err
= initRelocations(RelSec
, RelsOrRelas
->second
))
1894 } else if (RelSec
->Type
== SHT_REL
) {
1895 Expected
<typename ELFFile
<ELFT
>::Elf_Rel_Range
> Rels
=
1896 ElfFile
.rels(*Shdr
);
1898 return Rels
.takeError();
1900 if (Error Err
= initRelocations(RelSec
, *Rels
))
1903 Expected
<typename ELFFile
<ELFT
>::Elf_Rela_Range
> Relas
=
1904 ElfFile
.relas(*Shdr
);
1906 return Relas
.takeError();
1908 if (Error Err
= initRelocations(RelSec
, *Relas
))
1911 } else if (auto GroupSec
= dyn_cast
<GroupSection
>(&Sec
)) {
1912 if (Error Err
= initGroupSection(GroupSec
))
1917 return Error::success();
1920 template <class ELFT
> Error ELFBuilder
<ELFT
>::build(bool EnsureSymtab
) {
1921 if (Error E
= readSectionHeaders())
1923 if (Error E
= findEhdrOffset())
1926 // The ELFFile whose ELF headers and program headers are copied into the
1927 // output file. Normally the same as ElfFile, but if we're extracting a
1928 // loadable partition it will point to the partition's headers.
1929 Expected
<ELFFile
<ELFT
>> HeadersFile
= ELFFile
<ELFT
>::create(toStringRef(
1930 {ElfFile
.base() + EhdrOffset
, ElfFile
.getBufSize() - EhdrOffset
}));
1932 return HeadersFile
.takeError();
1934 const typename ELFFile
<ELFT
>::Elf_Ehdr
&Ehdr
= HeadersFile
->getHeader();
1935 Obj
.Is64Bits
= Ehdr
.e_ident
[EI_CLASS
] == ELFCLASS64
;
1936 Obj
.OSABI
= Ehdr
.e_ident
[EI_OSABI
];
1937 Obj
.ABIVersion
= Ehdr
.e_ident
[EI_ABIVERSION
];
1938 Obj
.Type
= Ehdr
.e_type
;
1939 Obj
.Machine
= Ehdr
.e_machine
;
1940 Obj
.Version
= Ehdr
.e_version
;
1941 Obj
.Entry
= Ehdr
.e_entry
;
1942 Obj
.Flags
= Ehdr
.e_flags
;
1944 if (Error E
= readSections(EnsureSymtab
))
1946 return readProgramHeaders(*HeadersFile
);
1949 Writer::~Writer() = default;
1951 Reader::~Reader() = default;
1953 Expected
<std::unique_ptr
<Object
>>
1954 BinaryReader::create(bool /*EnsureSymtab*/) const {
1955 return BinaryELFBuilder(MemBuf
, NewSymbolVisibility
).build();
1958 Expected
<std::vector
<IHexRecord
>> IHexReader::parse() const {
1959 SmallVector
<StringRef
, 16> Lines
;
1960 std::vector
<IHexRecord
> Records
;
1961 bool HasSections
= false;
1963 MemBuf
->getBuffer().split(Lines
, '\n');
1964 Records
.reserve(Lines
.size());
1965 for (size_t LineNo
= 1; LineNo
<= Lines
.size(); ++LineNo
) {
1966 StringRef Line
= Lines
[LineNo
- 1].trim();
1970 Expected
<IHexRecord
> R
= IHexRecord::parse(Line
);
1972 return parseError(LineNo
, R
.takeError());
1973 if (R
->Type
== IHexRecord::EndOfFile
)
1975 HasSections
|= (R
->Type
== IHexRecord::Data
);
1976 Records
.push_back(*R
);
1979 return parseError(-1U, "no sections");
1981 return std::move(Records
);
1984 Expected
<std::unique_ptr
<Object
>>
1985 IHexReader::create(bool /*EnsureSymtab*/) const {
1986 Expected
<std::vector
<IHexRecord
>> Records
= parse();
1988 return Records
.takeError();
1990 return IHexELFBuilder(*Records
).build();
1993 Expected
<std::unique_ptr
<Object
>> ELFReader::create(bool EnsureSymtab
) const {
1994 auto Obj
= std::make_unique
<Object
>();
1995 if (auto *O
= dyn_cast
<ELFObjectFile
<ELF32LE
>>(Bin
)) {
1996 ELFBuilder
<ELF32LE
> Builder(*O
, *Obj
, ExtractPartition
);
1997 if (Error Err
= Builder
.build(EnsureSymtab
))
1998 return std::move(Err
);
1999 return std::move(Obj
);
2000 } else if (auto *O
= dyn_cast
<ELFObjectFile
<ELF64LE
>>(Bin
)) {
2001 ELFBuilder
<ELF64LE
> Builder(*O
, *Obj
, ExtractPartition
);
2002 if (Error Err
= Builder
.build(EnsureSymtab
))
2003 return std::move(Err
);
2004 return std::move(Obj
);
2005 } else if (auto *O
= dyn_cast
<ELFObjectFile
<ELF32BE
>>(Bin
)) {
2006 ELFBuilder
<ELF32BE
> Builder(*O
, *Obj
, ExtractPartition
);
2007 if (Error Err
= Builder
.build(EnsureSymtab
))
2008 return std::move(Err
);
2009 return std::move(Obj
);
2010 } else if (auto *O
= dyn_cast
<ELFObjectFile
<ELF64BE
>>(Bin
)) {
2011 ELFBuilder
<ELF64BE
> Builder(*O
, *Obj
, ExtractPartition
);
2012 if (Error Err
= Builder
.build(EnsureSymtab
))
2013 return std::move(Err
);
2014 return std::move(Obj
);
2016 return createStringError(errc::invalid_argument
, "invalid file type");
2019 template <class ELFT
> void ELFWriter
<ELFT
>::writeEhdr() {
2020 Elf_Ehdr
&Ehdr
= *reinterpret_cast<Elf_Ehdr
*>(Buf
->getBufferStart());
2021 std::fill(Ehdr
.e_ident
, Ehdr
.e_ident
+ 16, 0);
2022 Ehdr
.e_ident
[EI_MAG0
] = 0x7f;
2023 Ehdr
.e_ident
[EI_MAG1
] = 'E';
2024 Ehdr
.e_ident
[EI_MAG2
] = 'L';
2025 Ehdr
.e_ident
[EI_MAG3
] = 'F';
2026 Ehdr
.e_ident
[EI_CLASS
] = ELFT::Is64Bits
? ELFCLASS64
: ELFCLASS32
;
2027 Ehdr
.e_ident
[EI_DATA
] =
2028 ELFT::Endianness
== llvm::endianness::big
? ELFDATA2MSB
: ELFDATA2LSB
;
2029 Ehdr
.e_ident
[EI_VERSION
] = EV_CURRENT
;
2030 Ehdr
.e_ident
[EI_OSABI
] = Obj
.OSABI
;
2031 Ehdr
.e_ident
[EI_ABIVERSION
] = Obj
.ABIVersion
;
2033 Ehdr
.e_type
= Obj
.Type
;
2034 Ehdr
.e_machine
= Obj
.Machine
;
2035 Ehdr
.e_version
= Obj
.Version
;
2036 Ehdr
.e_entry
= Obj
.Entry
;
2037 // We have to use the fully-qualified name llvm::size
2038 // since some compilers complain on ambiguous resolution.
2039 Ehdr
.e_phnum
= llvm::size(Obj
.segments());
2040 Ehdr
.e_phoff
= (Ehdr
.e_phnum
!= 0) ? Obj
.ProgramHdrSegment
.Offset
: 0;
2041 Ehdr
.e_phentsize
= (Ehdr
.e_phnum
!= 0) ? sizeof(Elf_Phdr
) : 0;
2042 Ehdr
.e_flags
= Obj
.Flags
;
2043 Ehdr
.e_ehsize
= sizeof(Elf_Ehdr
);
2044 if (WriteSectionHeaders
&& Obj
.sections().size() != 0) {
2045 Ehdr
.e_shentsize
= sizeof(Elf_Shdr
);
2046 Ehdr
.e_shoff
= Obj
.SHOff
;
2048 // If the number of sections is greater than or equal to
2049 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2050 // number of section header table entries is contained in the sh_size field
2051 // of the section header at index 0.
2053 auto Shnum
= Obj
.sections().size() + 1;
2054 if (Shnum
>= SHN_LORESERVE
)
2057 Ehdr
.e_shnum
= Shnum
;
2059 // If the section name string table section index is greater than or equal
2060 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2061 // and the actual index of the section name string table section is
2062 // contained in the sh_link field of the section header at index 0.
2064 if (Obj
.SectionNames
->Index
>= SHN_LORESERVE
)
2065 Ehdr
.e_shstrndx
= SHN_XINDEX
;
2067 Ehdr
.e_shstrndx
= Obj
.SectionNames
->Index
;
2069 Ehdr
.e_shentsize
= 0;
2072 Ehdr
.e_shstrndx
= 0;
2076 template <class ELFT
> void ELFWriter
<ELFT
>::writePhdrs() {
2077 for (auto &Seg
: Obj
.segments())
2081 template <class ELFT
> void ELFWriter
<ELFT
>::writeShdrs() {
2082 // This reference serves to write the dummy section header at the begining
2083 // of the file. It is not used for anything else
2085 *reinterpret_cast<Elf_Shdr
*>(Buf
->getBufferStart() + Obj
.SHOff
);
2087 Shdr
.sh_type
= SHT_NULL
;
2091 // See writeEhdr for why we do this.
2092 uint64_t Shnum
= Obj
.sections().size() + 1;
2093 if (Shnum
>= SHN_LORESERVE
)
2094 Shdr
.sh_size
= Shnum
;
2097 // See writeEhdr for why we do this.
2098 if (Obj
.SectionNames
!= nullptr && Obj
.SectionNames
->Index
>= SHN_LORESERVE
)
2099 Shdr
.sh_link
= Obj
.SectionNames
->Index
;
2103 Shdr
.sh_addralign
= 0;
2104 Shdr
.sh_entsize
= 0;
2106 for (SectionBase
&Sec
: Obj
.sections())
2110 template <class ELFT
> Error ELFWriter
<ELFT
>::writeSectionData() {
2111 for (SectionBase
&Sec
: Obj
.sections())
2112 // Segments are responsible for writing their contents, so only write the
2113 // section data if the section is not in a segment. Note that this renders
2114 // sections in segments effectively immutable.
2115 if (Sec
.ParentSegment
== nullptr)
2116 if (Error Err
= Sec
.accept(*SecWriter
))
2119 return Error::success();
2122 template <class ELFT
> void ELFWriter
<ELFT
>::writeSegmentData() {
2123 for (Segment
&Seg
: Obj
.segments()) {
2124 size_t Size
= std::min
<size_t>(Seg
.FileSize
, Seg
.getContents().size());
2125 std::memcpy(Buf
->getBufferStart() + Seg
.Offset
, Seg
.getContents().data(),
2129 for (const auto &it
: Obj
.getUpdatedSections()) {
2130 SectionBase
*Sec
= it
.first
;
2131 ArrayRef
<uint8_t> Data
= it
.second
;
2133 auto *Parent
= Sec
->ParentSegment
;
2134 assert(Parent
&& "This section should've been part of a segment.");
2136 Sec
->OriginalOffset
- Parent
->OriginalOffset
+ Parent
->Offset
;
2137 llvm::copy(Data
, Buf
->getBufferStart() + Offset
);
2140 // Iterate over removed sections and overwrite their old data with zeroes.
2141 for (auto &Sec
: Obj
.removedSections()) {
2142 Segment
*Parent
= Sec
.ParentSegment
;
2143 if (Parent
== nullptr || Sec
.Type
== SHT_NOBITS
|| Sec
.Size
== 0)
2146 Sec
.OriginalOffset
- Parent
->OriginalOffset
+ Parent
->Offset
;
2147 std::memset(Buf
->getBufferStart() + Offset
, 0, Sec
.Size
);
2151 template <class ELFT
>
2152 ELFWriter
<ELFT
>::ELFWriter(Object
&Obj
, raw_ostream
&Buf
, bool WSH
,
2154 : Writer(Obj
, Buf
), WriteSectionHeaders(WSH
&& Obj
.HadShdrs
),
2155 OnlyKeepDebug(OnlyKeepDebug
) {}
2157 Error
Object::updateSection(StringRef Name
, ArrayRef
<uint8_t> Data
) {
2158 auto It
= llvm::find_if(Sections
,
2159 [&](const SecPtr
&Sec
) { return Sec
->Name
== Name
; });
2160 if (It
== Sections
.end())
2161 return createStringError(errc::invalid_argument
, "section '%s' not found",
2162 Name
.str().c_str());
2164 auto *OldSec
= It
->get();
2165 if (!OldSec
->hasContents())
2166 return createStringError(
2167 errc::invalid_argument
,
2168 "section '%s' cannot be updated because it does not have contents",
2169 Name
.str().c_str());
2171 if (Data
.size() > OldSec
->Size
&& OldSec
->ParentSegment
)
2172 return createStringError(errc::invalid_argument
,
2173 "cannot fit data of size %zu into section '%s' "
2174 "with size %" PRIu64
" that is part of a segment",
2175 Data
.size(), Name
.str().c_str(), OldSec
->Size
);
2177 if (!OldSec
->ParentSegment
) {
2178 *It
= std::make_unique
<OwnedDataSection
>(*OldSec
, Data
);
2180 // The segment writer will be in charge of updating these contents.
2181 OldSec
->Size
= Data
.size();
2182 UpdatedSections
[OldSec
] = Data
;
2185 return Error::success();
2188 Error
Object::removeSections(
2189 bool AllowBrokenLinks
, std::function
<bool(const SectionBase
&)> ToRemove
) {
2191 auto Iter
= std::stable_partition(
2192 std::begin(Sections
), std::end(Sections
), [=](const SecPtr
&Sec
) {
2195 // TODO: A compressed relocation section may be recognized as
2196 // RelocationSectionBase. We don't want such a section to be removed.
2197 if (isa
<CompressedSection
>(Sec
))
2199 if (auto RelSec
= dyn_cast
<RelocationSectionBase
>(Sec
.get())) {
2200 if (auto ToRelSec
= RelSec
->getSection())
2201 return !ToRemove(*ToRelSec
);
2203 // Remove empty group sections.
2204 if (Sec
->Type
== ELF::SHT_GROUP
) {
2205 auto GroupSec
= cast
<GroupSection
>(Sec
.get());
2206 return !llvm::all_of(GroupSec
->members(), ToRemove
);
2210 if (SymbolTable
!= nullptr && ToRemove(*SymbolTable
))
2211 SymbolTable
= nullptr;
2212 if (SectionNames
!= nullptr && ToRemove(*SectionNames
))
2213 SectionNames
= nullptr;
2214 if (SectionIndexTable
!= nullptr && ToRemove(*SectionIndexTable
))
2215 SectionIndexTable
= nullptr;
2216 // Now make sure there are no remaining references to the sections that will
2217 // be removed. Sometimes it is impossible to remove a reference so we emit
2218 // an error here instead.
2219 std::unordered_set
<const SectionBase
*> RemoveSections
;
2220 RemoveSections
.reserve(std::distance(Iter
, std::end(Sections
)));
2221 for (auto &RemoveSec
: make_range(Iter
, std::end(Sections
))) {
2222 for (auto &Segment
: Segments
)
2223 Segment
->removeSection(RemoveSec
.get());
2224 RemoveSec
->onRemove();
2225 RemoveSections
.insert(RemoveSec
.get());
2228 // For each section that remains alive, we want to remove the dead references.
2229 // This either might update the content of the section (e.g. remove symbols
2230 // from symbol table that belongs to removed section) or trigger an error if
2231 // a live section critically depends on a section being removed somehow
2232 // (e.g. the removed section is referenced by a relocation).
2233 for (auto &KeepSec
: make_range(std::begin(Sections
), Iter
)) {
2234 if (Error E
= KeepSec
->removeSectionReferences(
2235 AllowBrokenLinks
, [&RemoveSections
](const SectionBase
*Sec
) {
2236 return RemoveSections
.find(Sec
) != RemoveSections
.end();
2241 // Transfer removed sections into the Object RemovedSections container for use
2243 std::move(Iter
, Sections
.end(), std::back_inserter(RemovedSections
));
2244 // Now finally get rid of them all together.
2245 Sections
.erase(Iter
, std::end(Sections
));
2246 return Error::success();
2249 Error
Object::replaceSections(
2250 const DenseMap
<SectionBase
*, SectionBase
*> &FromTo
) {
2251 auto SectionIndexLess
= [](const SecPtr
&Lhs
, const SecPtr
&Rhs
) {
2252 return Lhs
->Index
< Rhs
->Index
;
2254 assert(llvm::is_sorted(Sections
, SectionIndexLess
) &&
2255 "Sections are expected to be sorted by Index");
2256 // Set indices of new sections so that they can be later sorted into positions
2258 for (auto &I
: FromTo
)
2259 I
.second
->Index
= I
.first
->Index
;
2261 // Notify all sections about the replacement.
2262 for (auto &Sec
: Sections
)
2263 Sec
->replaceSectionReferences(FromTo
);
2265 if (Error E
= removeSections(
2266 /*AllowBrokenLinks=*/false,
2267 [=](const SectionBase
&Sec
) { return FromTo
.count(&Sec
) > 0; }))
2269 llvm::sort(Sections
, SectionIndexLess
);
2270 return Error::success();
2273 Error
Object::removeSymbols(function_ref
<bool(const Symbol
&)> ToRemove
) {
2275 for (const SecPtr
&Sec
: Sections
)
2276 if (Error E
= Sec
->removeSymbols(ToRemove
))
2278 return Error::success();
2281 Error
Object::addNewSymbolTable() {
2282 assert(!SymbolTable
&& "Object must not has a SymbolTable.");
2284 // Reuse an existing SHT_STRTAB section if it exists.
2285 StringTableSection
*StrTab
= nullptr;
2286 for (SectionBase
&Sec
: sections()) {
2287 if (Sec
.Type
== ELF::SHT_STRTAB
&& !(Sec
.Flags
& SHF_ALLOC
)) {
2288 StrTab
= static_cast<StringTableSection
*>(&Sec
);
2290 // Prefer a string table that is not the section header string table, if
2291 // such a table exists.
2292 if (SectionNames
!= &Sec
)
2297 StrTab
= &addSection
<StringTableSection
>();
2299 SymbolTableSection
&SymTab
= addSection
<SymbolTableSection
>();
2300 SymTab
.Name
= ".symtab";
2301 SymTab
.Link
= StrTab
->Index
;
2302 if (Error Err
= SymTab
.initialize(sections()))
2304 SymTab
.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2306 SymbolTable
= &SymTab
;
2308 return Error::success();
2311 // Orders segments such that if x = y->ParentSegment then y comes before x.
2312 static void orderSegments(std::vector
<Segment
*> &Segments
) {
2313 llvm::stable_sort(Segments
, compareSegmentsByOffset
);
2316 // This function finds a consistent layout for a list of segments starting from
2317 // an Offset. It assumes that Segments have been sorted by orderSegments and
2318 // returns an Offset one past the end of the last segment.
2319 static uint64_t layoutSegments(std::vector
<Segment
*> &Segments
,
2321 assert(llvm::is_sorted(Segments
, compareSegmentsByOffset
));
2322 // The only way a segment should move is if a section was between two
2323 // segments and that section was removed. If that section isn't in a segment
2324 // then it's acceptable, but not ideal, to simply move it to after the
2325 // segments. So we can simply layout segments one after the other accounting
2327 for (Segment
*Seg
: Segments
) {
2328 // We assume that segments have been ordered by OriginalOffset and Index
2329 // such that a parent segment will always come before a child segment in
2330 // OrderedSegments. This means that the Offset of the ParentSegment should
2331 // already be set and we can set our offset relative to it.
2332 if (Seg
->ParentSegment
!= nullptr) {
2333 Segment
*Parent
= Seg
->ParentSegment
;
2335 Parent
->Offset
+ Seg
->OriginalOffset
- Parent
->OriginalOffset
;
2338 alignTo(Offset
, std::max
<uint64_t>(Seg
->Align
, 1), Seg
->VAddr
);
2340 Offset
= std::max(Offset
, Seg
->Offset
+ Seg
->FileSize
);
2345 // This function finds a consistent layout for a list of sections. It assumes
2346 // that the ->ParentSegment of each section has already been laid out. The
2347 // supplied starting Offset is used for the starting offset of any section that
2348 // does not have a ParentSegment. It returns either the offset given if all
2349 // sections had a ParentSegment or an offset one past the last section if there
2350 // was a section that didn't have a ParentSegment.
2351 template <class Range
>
2352 static uint64_t layoutSections(Range Sections
, uint64_t Offset
) {
2353 // Now the offset of every segment has been set we can assign the offsets
2354 // of each section. For sections that are covered by a segment we should use
2355 // the segment's original offset and the section's original offset to compute
2356 // the offset from the start of the segment. Using the offset from the start
2357 // of the segment we can assign a new offset to the section. For sections not
2358 // covered by segments we can just bump Offset to the next valid location.
2359 // While it is not necessary, layout the sections in the order based on their
2360 // original offsets to resemble the input file as close as possible.
2361 std::vector
<SectionBase
*> OutOfSegmentSections
;
2363 for (auto &Sec
: Sections
) {
2364 Sec
.Index
= Index
++;
2365 if (Sec
.ParentSegment
!= nullptr) {
2366 const Segment
&Segment
= *Sec
.ParentSegment
;
2368 Segment
.Offset
+ (Sec
.OriginalOffset
- Segment
.OriginalOffset
);
2370 OutOfSegmentSections
.push_back(&Sec
);
2373 llvm::stable_sort(OutOfSegmentSections
,
2374 [](const SectionBase
*Lhs
, const SectionBase
*Rhs
) {
2375 return Lhs
->OriginalOffset
< Rhs
->OriginalOffset
;
2377 for (auto *Sec
: OutOfSegmentSections
) {
2378 Offset
= alignTo(Offset
, Sec
->Align
== 0 ? 1 : Sec
->Align
);
2379 Sec
->Offset
= Offset
;
2380 if (Sec
->Type
!= SHT_NOBITS
)
2381 Offset
+= Sec
->Size
;
2386 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2387 // occupy no space in the file.
2388 static uint64_t layoutSectionsForOnlyKeepDebug(Object
&Obj
, uint64_t Off
) {
2389 // The layout algorithm requires the sections to be handled in the order of
2390 // their offsets in the input file, at least inside segments.
2391 std::vector
<SectionBase
*> Sections
;
2392 Sections
.reserve(Obj
.sections().size());
2394 for (auto &Sec
: Obj
.sections()) {
2395 Sec
.Index
= Index
++;
2396 Sections
.push_back(&Sec
);
2398 llvm::stable_sort(Sections
,
2399 [](const SectionBase
*Lhs
, const SectionBase
*Rhs
) {
2400 return Lhs
->OriginalOffset
< Rhs
->OriginalOffset
;
2403 for (auto *Sec
: Sections
) {
2404 auto *FirstSec
= Sec
->ParentSegment
&& Sec
->ParentSegment
->Type
== PT_LOAD
2405 ? Sec
->ParentSegment
->firstSection()
2408 // The first section in a PT_LOAD has to have congruent offset and address
2409 // modulo the alignment, which usually equals the maximum page size.
2410 if (FirstSec
&& FirstSec
== Sec
)
2411 Off
= alignTo(Off
, Sec
->ParentSegment
->Align
, Sec
->Addr
);
2413 // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2414 // rule must be followed if it is the first section in a PT_LOAD. Do not
2416 if (Sec
->Type
== SHT_NOBITS
) {
2422 // FirstSec being nullptr generally means that Sec does not have the
2424 Off
= Sec
->Align
? alignTo(Off
, Sec
->Align
) : Off
;
2425 } else if (FirstSec
!= Sec
) {
2426 // The offset is relative to the first section in the PT_LOAD segment. Use
2427 // sh_offset for non-SHF_ALLOC sections.
2428 Off
= Sec
->OriginalOffset
- FirstSec
->OriginalOffset
+ FirstSec
->Offset
;
2436 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2437 // have been updated.
2438 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector
<Segment
*> &Segments
,
2440 uint64_t MaxOffset
= 0;
2441 for (Segment
*Seg
: Segments
) {
2442 if (Seg
->Type
== PT_PHDR
)
2445 // The segment offset is generally the offset of the first section.
2447 // For a segment containing no section (see sectionWithinSegment), if it has
2448 // a parent segment, copy the parent segment's offset field. This works for
2449 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2450 // debugging anyway.
2451 const SectionBase
*FirstSec
= Seg
->firstSection();
2453 FirstSec
? FirstSec
->Offset
2454 : (Seg
->ParentSegment
? Seg
->ParentSegment
->Offset
: 0);
2455 uint64_t FileSize
= 0;
2456 for (const SectionBase
*Sec
: Seg
->Sections
) {
2457 uint64_t Size
= Sec
->Type
== SHT_NOBITS
? 0 : Sec
->Size
;
2458 if (Sec
->Offset
+ Size
> Offset
)
2459 FileSize
= std::max(FileSize
, Sec
->Offset
+ Size
- Offset
);
2462 // If the segment includes EHDR and program headers, don't make it smaller
2463 // than the headers.
2464 if (Seg
->Offset
< HdrEnd
&& HdrEnd
<= Seg
->Offset
+ Seg
->FileSize
) {
2465 FileSize
+= Offset
- Seg
->Offset
;
2466 Offset
= Seg
->Offset
;
2467 FileSize
= std::max(FileSize
, HdrEnd
- Offset
);
2470 Seg
->Offset
= Offset
;
2471 Seg
->FileSize
= FileSize
;
2472 MaxOffset
= std::max(MaxOffset
, Offset
+ FileSize
);
2477 template <class ELFT
> void ELFWriter
<ELFT
>::initEhdrSegment() {
2478 Segment
&ElfHdr
= Obj
.ElfHdrSegment
;
2479 ElfHdr
.Type
= PT_PHDR
;
2483 ElfHdr
.FileSize
= ElfHdr
.MemSize
= sizeof(Elf_Ehdr
);
2487 template <class ELFT
> void ELFWriter
<ELFT
>::assignOffsets() {
2488 // We need a temporary list of segments that has a special order to it
2489 // so that we know that anytime ->ParentSegment is set that segment has
2490 // already had its offset properly set.
2491 std::vector
<Segment
*> OrderedSegments
;
2492 for (Segment
&Segment
: Obj
.segments())
2493 OrderedSegments
.push_back(&Segment
);
2494 OrderedSegments
.push_back(&Obj
.ElfHdrSegment
);
2495 OrderedSegments
.push_back(&Obj
.ProgramHdrSegment
);
2496 orderSegments(OrderedSegments
);
2499 if (OnlyKeepDebug
) {
2500 // For --only-keep-debug, the sections that did not preserve contents were
2501 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2502 // then rewrite p_offset/p_filesz of program headers.
2504 sizeof(Elf_Ehdr
) + llvm::size(Obj
.segments()) * sizeof(Elf_Phdr
);
2505 Offset
= layoutSectionsForOnlyKeepDebug(Obj
, HdrEnd
);
2506 Offset
= std::max(Offset
,
2507 layoutSegmentsForOnlyKeepDebug(OrderedSegments
, HdrEnd
));
2509 // Offset is used as the start offset of the first segment to be laid out.
2510 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2511 // we start at offset 0.
2512 Offset
= layoutSegments(OrderedSegments
, 0);
2513 Offset
= layoutSections(Obj
.sections(), Offset
);
2515 // If we need to write the section header table out then we need to align the
2516 // Offset so that SHOffset is valid.
2517 if (WriteSectionHeaders
)
2518 Offset
= alignTo(Offset
, sizeof(Elf_Addr
));
2522 template <class ELFT
> size_t ELFWriter
<ELFT
>::totalSize() const {
2523 // We already have the section header offset so we can calculate the total
2524 // size by just adding up the size of each section header.
2525 if (!WriteSectionHeaders
)
2527 size_t ShdrCount
= Obj
.sections().size() + 1; // Includes null shdr.
2528 return Obj
.SHOff
+ ShdrCount
* sizeof(Elf_Shdr
);
2531 template <class ELFT
> Error ELFWriter
<ELFT
>::write() {
2532 // Segment data must be written first, so that the ELF header and program
2533 // header tables can overwrite it, if covered by a segment.
2537 if (Error E
= writeSectionData())
2539 if (WriteSectionHeaders
)
2542 // TODO: Implement direct writing to the output stream (without intermediate
2543 // memory buffer Buf).
2544 Out
.write(Buf
->getBufferStart(), Buf
->getBufferSize());
2545 return Error::success();
2548 static Error
removeUnneededSections(Object
&Obj
) {
2549 // We can remove an empty symbol table from non-relocatable objects.
2550 // Relocatable objects typically have relocation sections whose
2551 // sh_link field points to .symtab, so we can't remove .symtab
2552 // even if it is empty.
2553 if (Obj
.isRelocatable() || Obj
.SymbolTable
== nullptr ||
2554 !Obj
.SymbolTable
->empty())
2555 return Error::success();
2557 // .strtab can be used for section names. In such a case we shouldn't
2559 auto *StrTab
= Obj
.SymbolTable
->getStrTab() == Obj
.SectionNames
2561 : Obj
.SymbolTable
->getStrTab();
2562 return Obj
.removeSections(false, [&](const SectionBase
&Sec
) {
2563 return &Sec
== Obj
.SymbolTable
|| &Sec
== StrTab
;
2567 template <class ELFT
> Error ELFWriter
<ELFT
>::finalize() {
2568 // It could happen that SectionNames has been removed and yet the user wants
2569 // a section header table output. We need to throw an error if a user tries
2571 if (Obj
.SectionNames
== nullptr && WriteSectionHeaders
)
2572 return createStringError(llvm::errc::invalid_argument
,
2573 "cannot write section header table because "
2574 "section header string table was removed");
2576 if (Error E
= removeUnneededSections(Obj
))
2579 // If the .symtab indices have not been changed, restore the sh_link to
2580 // .symtab for sections that were linked to .symtab.
2581 if (Obj
.SymbolTable
&& !Obj
.SymbolTable
->indicesChanged())
2582 for (SectionBase
&Sec
: Obj
.sections())
2583 Sec
.restoreSymTabLink(*Obj
.SymbolTable
);
2585 // We need to assign indexes before we perform layout because we need to know
2586 // if we need large indexes or not. We can assign indexes first and check as
2587 // we go to see if we will actully need large indexes.
2588 bool NeedsLargeIndexes
= false;
2589 if (Obj
.sections().size() >= SHN_LORESERVE
) {
2590 SectionTableRef Sections
= Obj
.sections();
2591 // Sections doesn't include the null section header, so account for this
2592 // when skipping the first N sections.
2594 any_of(drop_begin(Sections
, SHN_LORESERVE
- 1),
2595 [](const SectionBase
&Sec
) { return Sec
.HasSymbol
; });
2596 // TODO: handle case where only one section needs the large index table but
2597 // only needs it because the large index table hasn't been removed yet.
2600 if (NeedsLargeIndexes
) {
2601 // This means we definitely need to have a section index table but if we
2602 // already have one then we should use it instead of making a new one.
2603 if (Obj
.SymbolTable
!= nullptr && Obj
.SectionIndexTable
== nullptr) {
2604 // Addition of a section to the end does not invalidate the indexes of
2605 // other sections and assigns the correct index to the new section.
2606 auto &Shndx
= Obj
.addSection
<SectionIndexSection
>();
2607 Obj
.SymbolTable
->setShndxTable(&Shndx
);
2608 Shndx
.setSymTab(Obj
.SymbolTable
);
2611 // Since we don't need SectionIndexTable we should remove it and all
2612 // references to it.
2613 if (Obj
.SectionIndexTable
!= nullptr) {
2614 // We do not support sections referring to the section index table.
2615 if (Error E
= Obj
.removeSections(false /*AllowBrokenLinks*/,
2616 [this](const SectionBase
&Sec
) {
2617 return &Sec
== Obj
.SectionIndexTable
;
2623 // Make sure we add the names of all the sections. Importantly this must be
2624 // done after we decide to add or remove SectionIndexes.
2625 if (Obj
.SectionNames
!= nullptr)
2626 for (const SectionBase
&Sec
: Obj
.sections())
2627 Obj
.SectionNames
->addString(Sec
.Name
);
2631 // Before we can prepare for layout the indexes need to be finalized.
2632 // Also, the output arch may not be the same as the input arch, so fix up
2633 // size-related fields before doing layout calculations.
2635 auto SecSizer
= std::make_unique
<ELFSectionSizer
<ELFT
>>();
2636 for (SectionBase
&Sec
: Obj
.sections()) {
2637 Sec
.Index
= Index
++;
2638 if (Error Err
= Sec
.accept(*SecSizer
))
2642 // The symbol table does not update all other sections on update. For
2643 // instance, symbol names are not added as new symbols are added. This means
2644 // that some sections, like .strtab, don't yet have their final size.
2645 if (Obj
.SymbolTable
!= nullptr)
2646 Obj
.SymbolTable
->prepareForLayout();
2648 // Now that all strings are added we want to finalize string table builders,
2649 // because that affects section sizes which in turn affects section offsets.
2650 for (SectionBase
&Sec
: Obj
.sections())
2651 if (auto StrTab
= dyn_cast
<StringTableSection
>(&Sec
))
2652 StrTab
->prepareForLayout();
2656 // layoutSections could have modified section indexes, so we need
2657 // to fill the index table after assignOffsets.
2658 if (Obj
.SymbolTable
!= nullptr)
2659 Obj
.SymbolTable
->fillShndxTable();
2661 // Finally now that all offsets and indexes have been set we can finalize any
2662 // remaining issues.
2663 uint64_t Offset
= Obj
.SHOff
+ sizeof(Elf_Shdr
);
2664 for (SectionBase
&Sec
: Obj
.sections()) {
2665 Sec
.HeaderOffset
= Offset
;
2666 Offset
+= sizeof(Elf_Shdr
);
2667 if (WriteSectionHeaders
)
2668 Sec
.NameIndex
= Obj
.SectionNames
->findIndex(Sec
.Name
);
2672 size_t TotalSize
= totalSize();
2673 Buf
= WritableMemoryBuffer::getNewMemBuffer(TotalSize
);
2675 return createStringError(errc::not_enough_memory
,
2676 "failed to allocate memory buffer of " +
2677 Twine::utohexstr(TotalSize
) + " bytes");
2679 SecWriter
= std::make_unique
<ELFSectionWriter
<ELFT
>>(*Buf
);
2680 return Error::success();
2683 Error
BinaryWriter::write() {
2684 SmallVector
<const SectionBase
*, 30> SectionsToWrite
;
2685 for (const SectionBase
&Sec
: Obj
.allocSections()) {
2686 if (Sec
.Type
!= SHT_NOBITS
&& Sec
.Size
> 0)
2687 SectionsToWrite
.push_back(&Sec
);
2690 if (SectionsToWrite
.empty())
2691 return Error::success();
2693 llvm::stable_sort(SectionsToWrite
,
2694 [](const SectionBase
*LHS
, const SectionBase
*RHS
) {
2695 return LHS
->Offset
< RHS
->Offset
;
2698 assert(SectionsToWrite
.front()->Offset
== 0);
2700 for (size_t i
= 0; i
!= SectionsToWrite
.size(); ++i
) {
2701 const SectionBase
&Sec
= *SectionsToWrite
[i
];
2702 if (Error Err
= Sec
.accept(*SecWriter
))
2706 uint64_t PadOffset
= (i
< SectionsToWrite
.size() - 1)
2707 ? SectionsToWrite
[i
+ 1]->Offset
2708 : Buf
->getBufferSize();
2709 assert(PadOffset
<= Buf
->getBufferSize());
2710 assert(Sec
.Offset
+ Sec
.Size
<= PadOffset
);
2711 std::fill(Buf
->getBufferStart() + Sec
.Offset
+ Sec
.Size
,
2712 Buf
->getBufferStart() + PadOffset
, GapFill
);
2715 // TODO: Implement direct writing to the output stream (without intermediate
2716 // memory buffer Buf).
2717 Out
.write(Buf
->getBufferStart(), Buf
->getBufferSize());
2718 return Error::success();
2721 Error
BinaryWriter::finalize() {
2722 // Compute the section LMA based on its sh_offset and the containing segment's
2723 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2724 // sections as MinAddr. In the output, the contents between address 0 and
2725 // MinAddr will be skipped.
2726 uint64_t MinAddr
= UINT64_MAX
;
2727 for (SectionBase
&Sec
: Obj
.allocSections()) {
2728 if (Sec
.ParentSegment
!= nullptr)
2730 Sec
.Offset
- Sec
.ParentSegment
->Offset
+ Sec
.ParentSegment
->PAddr
;
2731 if (Sec
.Type
!= SHT_NOBITS
&& Sec
.Size
> 0)
2732 MinAddr
= std::min(MinAddr
, Sec
.Addr
);
2735 // Now that every section has been laid out we just need to compute the total
2736 // file size. This might not be the same as the offset returned by
2737 // layoutSections, because we want to truncate the last segment to the end of
2738 // its last non-empty section, to match GNU objcopy's behaviour.
2739 TotalSize
= PadTo
> MinAddr
? PadTo
- MinAddr
: 0;
2740 for (SectionBase
&Sec
: Obj
.allocSections())
2741 if (Sec
.Type
!= SHT_NOBITS
&& Sec
.Size
> 0) {
2742 Sec
.Offset
= Sec
.Addr
- MinAddr
;
2743 TotalSize
= std::max(TotalSize
, Sec
.Offset
+ Sec
.Size
);
2746 Buf
= WritableMemoryBuffer::getNewMemBuffer(TotalSize
);
2748 return createStringError(errc::not_enough_memory
,
2749 "failed to allocate memory buffer of " +
2750 Twine::utohexstr(TotalSize
) + " bytes");
2751 SecWriter
= std::make_unique
<BinarySectionWriter
>(*Buf
);
2752 return Error::success();
2755 Error
ASCIIHexWriter::checkSection(const SectionBase
&S
) const {
2756 if (addressOverflows32bit(S
.Addr
) ||
2757 addressOverflows32bit(S
.Addr
+ S
.Size
- 1))
2758 return createStringError(
2759 errc::invalid_argument
,
2760 "section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2761 S
.Name
.c_str(), S
.Addr
, S
.Addr
+ S
.Size
- 1);
2762 return Error::success();
2765 Error
ASCIIHexWriter::finalize() {
2766 // We can't write 64-bit addresses.
2767 if (addressOverflows32bit(Obj
.Entry
))
2768 return createStringError(errc::invalid_argument
,
2769 "entry point address 0x%llx overflows 32 bits",
2772 for (const SectionBase
&S
: Obj
.sections()) {
2773 if ((S
.Flags
& ELF::SHF_ALLOC
) && S
.Type
!= ELF::SHT_NOBITS
&& S
.Size
> 0) {
2774 if (Error E
= checkSection(S
))
2776 Sections
.push_back(&S
);
2780 llvm::sort(Sections
, [](const SectionBase
*A
, const SectionBase
*B
) {
2781 return sectionPhysicalAddr(A
) < sectionPhysicalAddr(B
);
2784 std::unique_ptr
<WritableMemoryBuffer
> EmptyBuffer
=
2785 WritableMemoryBuffer::getNewMemBuffer(0);
2787 return createStringError(errc::not_enough_memory
,
2788 "failed to allocate memory buffer of 0 bytes");
2790 Expected
<size_t> ExpTotalSize
= getTotalSize(*EmptyBuffer
);
2792 return ExpTotalSize
.takeError();
2793 TotalSize
= *ExpTotalSize
;
2795 Buf
= WritableMemoryBuffer::getNewMemBuffer(TotalSize
);
2797 return createStringError(errc::not_enough_memory
,
2798 "failed to allocate memory buffer of 0x" +
2799 Twine::utohexstr(TotalSize
) + " bytes");
2800 return Error::success();
2803 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf
) {
2804 IHexLineData HexData
;
2805 uint8_t Data
[4] = {};
2806 // We don't write entry point record if entry is zero.
2810 if (Obj
.Entry
<= 0xFFFFFU
) {
2811 Data
[0] = ((Obj
.Entry
& 0xF0000U
) >> 12) & 0xFF;
2812 support::endian::write(&Data
[2], static_cast<uint16_t>(Obj
.Entry
),
2813 llvm::endianness::big
);
2814 HexData
= IHexRecord::getLine(IHexRecord::StartAddr80x86
, 0, Data
);
2816 support::endian::write(Data
, static_cast<uint32_t>(Obj
.Entry
),
2817 llvm::endianness::big
);
2818 HexData
= IHexRecord::getLine(IHexRecord::StartAddr
, 0, Data
);
2820 memcpy(Buf
, HexData
.data(), HexData
.size());
2821 return HexData
.size();
2824 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf
) {
2825 IHexLineData HexData
= IHexRecord::getLine(IHexRecord::EndOfFile
, 0, {});
2826 memcpy(Buf
, HexData
.data(), HexData
.size());
2827 return HexData
.size();
2831 IHexWriter::getTotalSize(WritableMemoryBuffer
&EmptyBuffer
) const {
2832 IHexSectionWriterBase
LengthCalc(EmptyBuffer
);
2833 for (const SectionBase
*Sec
: Sections
)
2834 if (Error Err
= Sec
->accept(LengthCalc
))
2835 return std::move(Err
);
2837 // We need space to write section records + StartAddress record
2838 // (if start adress is not zero) + EndOfFile record.
2839 return LengthCalc
.getBufferOffset() +
2840 (Obj
.Entry
? IHexRecord::getLineLength(4) : 0) +
2841 IHexRecord::getLineLength(0);
2844 Error
IHexWriter::write() {
2845 IHexSectionWriter
Writer(*Buf
);
2847 for (const SectionBase
*Sec
: Sections
)
2848 if (Error Err
= Sec
->accept(Writer
))
2851 uint64_t Offset
= Writer
.getBufferOffset();
2852 // Write entry point address.
2853 Offset
+= writeEntryPointRecord(
2854 reinterpret_cast<uint8_t *>(Buf
->getBufferStart()) + Offset
);
2856 Offset
+= writeEndOfFileRecord(
2857 reinterpret_cast<uint8_t *>(Buf
->getBufferStart()) + Offset
);
2858 assert(Offset
== TotalSize
);
2860 // TODO: Implement direct writing to the output stream (without intermediate
2861 // memory buffer Buf).
2862 Out
.write(Buf
->getBufferStart(), Buf
->getBufferSize());
2863 return Error::success();
2866 Error
SRECSectionWriterBase::visit(const StringTableSection
&Sec
) {
2867 // Check that the sizer has already done its work.
2868 assert(Sec
.Size
== Sec
.StrTabBuilder
.getSize() &&
2869 "Expected section size to have been finalized");
2870 // We don't need to write anything here because the real writer has already
2872 return Error::success();
2875 Error
SRECSectionWriterBase::visit(const Section
&Sec
) {
2876 writeSection(Sec
, Sec
.Contents
);
2877 return Error::success();
2880 Error
SRECSectionWriterBase::visit(const OwnedDataSection
&Sec
) {
2881 writeSection(Sec
, Sec
.Data
);
2882 return Error::success();
2885 Error
SRECSectionWriterBase::visit(const DynamicRelocationSection
&Sec
) {
2886 writeSection(Sec
, Sec
.Contents
);
2887 return Error::success();
2890 void SRECSectionWriter::writeRecord(SRecord
&Record
, uint64_t Off
) {
2891 SRecLineData Data
= Record
.toString();
2892 memcpy(Out
.getBufferStart() + Off
, Data
.data(), Data
.size());
2895 void SRECSectionWriterBase::writeRecords(uint32_t Entry
) {
2896 // The ELF header could contain an entry point outside of the sections we have
2897 // seen that does not fit the current record Type.
2898 Type
= std::max(Type
, SRecord::getType(Entry
));
2899 uint64_t Off
= HeaderSize
;
2900 for (SRecord
&Record
: Records
) {
2902 writeRecord(Record
, Off
);
2903 Off
+= Record
.getSize();
2908 void SRECSectionWriterBase::writeSection(const SectionBase
&S
,
2909 ArrayRef
<uint8_t> Data
) {
2910 const uint32_t ChunkSize
= 16;
2911 uint32_t Address
= sectionPhysicalAddr(&S
);
2912 uint32_t EndAddr
= Address
+ S
.Size
- 1;
2913 Type
= std::max(SRecord::getType(EndAddr
), Type
);
2914 while (!Data
.empty()) {
2915 uint64_t DataSize
= std::min
<uint64_t>(Data
.size(), ChunkSize
);
2916 SRecord Record
{Type
, Address
, Data
.take_front(DataSize
)};
2917 Records
.push_back(Record
);
2918 Data
= Data
.drop_front(DataSize
);
2919 Address
+= DataSize
;
2923 Error
SRECSectionWriter::visit(const StringTableSection
&Sec
) {
2924 assert(Sec
.Size
== Sec
.StrTabBuilder
.getSize() &&
2925 "Section size does not match the section's string table builder size");
2926 std::vector
<uint8_t> Data(Sec
.Size
);
2927 Sec
.StrTabBuilder
.write(Data
.data());
2928 writeSection(Sec
, Data
);
2929 return Error::success();
2932 SRecLineData
SRecord::toString() const {
2933 SRecLineData
Line(getSize());
2934 auto *Iter
= Line
.begin();
2936 *Iter
++ = '0' + Type
;
2937 // Write 1 byte (2 hex characters) record count.
2938 Iter
= toHexStr(getCount(), Iter
, 2);
2939 // Write the address field with length depending on record type.
2940 Iter
= toHexStr(Address
, Iter
, getAddressSize());
2941 // Write data byte by byte.
2942 for (uint8_t X
: Data
)
2943 Iter
= toHexStr(X
, Iter
, 2);
2944 // Write the 1 byte checksum.
2945 Iter
= toHexStr(getChecksum(), Iter
, 2);
2948 assert(Iter
== Line
.end());
2952 uint8_t SRecord::getChecksum() const {
2953 uint32_t Sum
= getCount();
2954 Sum
+= (Address
>> 24) & 0xFF;
2955 Sum
+= (Address
>> 16) & 0xFF;
2956 Sum
+= (Address
>> 8) & 0xFF;
2957 Sum
+= Address
& 0xFF;
2958 for (uint8_t Byte
: Data
)
2960 return 0xFF - (Sum
& 0xFF);
2963 size_t SRecord::getSize() const {
2964 // Type, Count, Checksum, and CRLF are two characters each.
2965 return 2 + 2 + getAddressSize() + Data
.size() * 2 + 2 + 2;
2968 uint8_t SRecord::getAddressSize() const {
2983 uint8_t SRecord::getCount() const {
2984 uint8_t DataSize
= Data
.size();
2985 uint8_t ChecksumSize
= 1;
2986 return getAddressSize() / 2 + DataSize
+ ChecksumSize
;
2989 uint8_t SRecord::getType(uint32_t Address
) {
2990 if (isUInt
<16>(Address
))
2992 if (isUInt
<24>(Address
))
2997 SRecord
SRecord::getHeader(StringRef FileName
) {
2998 // Header is a record with Type S0, Address 0, and Data that is a
2999 // vendor-specific text comment. For the comment we will use the output file
3000 // name truncated to 40 characters to match the behavior of GNU objcopy.
3001 StringRef HeaderContents
= FileName
.slice(0, 40);
3002 ArrayRef
<uint8_t> Data(
3003 reinterpret_cast<const uint8_t *>(HeaderContents
.data()),
3004 HeaderContents
.size());
3005 return {SRecord::S0
, 0, Data
};
3008 size_t SRECWriter::writeHeader(uint8_t *Buf
) {
3009 SRecLineData Record
= SRecord::getHeader(OutputFileName
).toString();
3010 memcpy(Buf
, Record
.data(), Record
.size());
3011 return Record
.size();
3014 size_t SRECWriter::writeTerminator(uint8_t *Buf
, uint8_t Type
) {
3015 assert(Type
>= SRecord::S7
&& Type
<= SRecord::S9
&&
3016 "Invalid record type for terminator");
3017 uint32_t Entry
= Obj
.Entry
;
3018 SRecLineData Data
= SRecord
{Type
, Entry
, {}}.toString();
3019 memcpy(Buf
, Data
.data(), Data
.size());
3024 SRECWriter::getTotalSize(WritableMemoryBuffer
&EmptyBuffer
) const {
3025 SRECSizeCalculator
SizeCalc(EmptyBuffer
, 0);
3026 for (const SectionBase
*Sec
: Sections
)
3027 if (Error Err
= Sec
->accept(SizeCalc
))
3028 return std::move(Err
);
3030 SizeCalc
.writeRecords(Obj
.Entry
);
3031 // We need to add the size of the Header and Terminator records.
3032 SRecord Header
= SRecord::getHeader(OutputFileName
);
3033 uint8_t TerminatorType
= 10 - SizeCalc
.getType();
3034 SRecord Terminator
= {TerminatorType
, static_cast<uint32_t>(Obj
.Entry
), {}};
3035 return Header
.getSize() + SizeCalc
.getBufferOffset() + Terminator
.getSize();
3038 Error
SRECWriter::write() {
3039 uint32_t HeaderSize
=
3040 writeHeader(reinterpret_cast<uint8_t *>(Buf
->getBufferStart()));
3041 SRECSectionWriter
Writer(*Buf
, HeaderSize
);
3042 for (const SectionBase
*S
: Sections
) {
3043 if (Error E
= S
->accept(Writer
))
3046 Writer
.writeRecords(Obj
.Entry
);
3047 uint64_t Offset
= Writer
.getBufferOffset();
3049 // An S1 record terminates with an S9 record, S2 with S8, and S3 with S7.
3050 uint8_t TerminatorType
= 10 - Writer
.getType();
3051 Offset
+= writeTerminator(
3052 reinterpret_cast<uint8_t *>(Buf
->getBufferStart() + Offset
),
3054 assert(Offset
== TotalSize
);
3055 Out
.write(Buf
->getBufferStart(), Buf
->getBufferSize());
3056 return Error::success();
3063 template class ELFBuilder
<ELF64LE
>;
3064 template class ELFBuilder
<ELF64BE
>;
3065 template class ELFBuilder
<ELF32LE
>;
3066 template class ELFBuilder
<ELF32BE
>;
3068 template class ELFWriter
<ELF64LE
>;
3069 template class ELFWriter
<ELF64BE
>;
3070 template class ELFWriter
<ELF32LE
>;
3071 template class ELFWriter
<ELF32BE
>;
3073 } // end namespace elf
3074 } // end namespace objcopy
3075 } // end namespace llvm