[clang][bytecode] Fix reporting failed local constexpr initializers (#123588)
[llvm-project.git] / llvm / lib / Support / APInt.cpp
blob4e45416b4598f81ea434284eb6f3a20672bf9174
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/bit.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Alignment.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <optional>
30 using namespace llvm;
32 #define DEBUG_TYPE "apint"
34 /// A utility function for allocating memory, checking for allocation failures,
35 /// and ensuring the contents are zeroed.
36 inline static uint64_t* getClearedMemory(unsigned numWords) {
37 return new uint64_t[numWords]();
40 /// A utility function for allocating memory and checking for allocation
41 /// failure. The content is not zeroed.
42 inline static uint64_t* getMemory(unsigned numWords) {
43 return new uint64_t[numWords];
46 /// A utility function that converts a character to a digit.
47 inline static unsigned getDigit(char cdigit, uint8_t radix) {
48 unsigned r;
50 if (radix == 16 || radix == 36) {
51 r = cdigit - '0';
52 if (r <= 9)
53 return r;
55 r = cdigit - 'A';
56 if (r <= radix - 11U)
57 return r + 10;
59 r = cdigit - 'a';
60 if (r <= radix - 11U)
61 return r + 10;
63 radix = 10;
66 r = cdigit - '0';
67 if (r < radix)
68 return r;
70 return UINT_MAX;
74 void APInt::initSlowCase(uint64_t val, bool isSigned) {
75 if (isSigned && int64_t(val) < 0) {
76 U.pVal = getMemory(getNumWords());
77 U.pVal[0] = val;
78 memset(&U.pVal[1], 0xFF, APINT_WORD_SIZE * (getNumWords() - 1));
79 clearUnusedBits();
80 } else {
81 U.pVal = getClearedMemory(getNumWords());
82 U.pVal[0] = val;
86 void APInt::initSlowCase(const APInt& that) {
87 U.pVal = getMemory(getNumWords());
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92 assert(bigVal.data() && "Null pointer detected!");
93 if (isSingleWord())
94 U.VAL = bigVal[0];
95 else {
96 // Get memory, cleared to 0
97 U.pVal = getClearedMemory(getNumWords());
98 // Calculate the number of words to copy
99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
100 // Copy the words from bigVal to pVal
101 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
103 // Make sure unused high bits are cleared
104 clearUnusedBits();
107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
108 initFromArray(bigVal);
111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
112 : BitWidth(numBits) {
113 initFromArray(ArrayRef(bigVal, numWords));
116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
117 : BitWidth(numbits) {
118 fromString(numbits, Str, radix);
121 void APInt::reallocate(unsigned NewBitWidth) {
122 // If the number of words is the same we can just change the width and stop.
123 if (getNumWords() == getNumWords(NewBitWidth)) {
124 BitWidth = NewBitWidth;
125 return;
128 // If we have an allocation, delete it.
129 if (!isSingleWord())
130 delete [] U.pVal;
132 // Update BitWidth.
133 BitWidth = NewBitWidth;
135 // If we are supposed to have an allocation, create it.
136 if (!isSingleWord())
137 U.pVal = getMemory(getNumWords());
140 void APInt::assignSlowCase(const APInt &RHS) {
141 // Don't do anything for X = X
142 if (this == &RHS)
143 return;
145 // Adjust the bit width and handle allocations as necessary.
146 reallocate(RHS.getBitWidth());
148 // Copy the data.
149 if (isSingleWord())
150 U.VAL = RHS.U.VAL;
151 else
152 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
155 /// This method 'profiles' an APInt for use with FoldingSet.
156 void APInt::Profile(FoldingSetNodeID& ID) const {
157 ID.AddInteger(BitWidth);
159 if (isSingleWord()) {
160 ID.AddInteger(U.VAL);
161 return;
164 unsigned NumWords = getNumWords();
165 for (unsigned i = 0; i < NumWords; ++i)
166 ID.AddInteger(U.pVal[i]);
169 bool APInt::isAligned(Align A) const {
170 if (isZero())
171 return true;
172 const unsigned TrailingZeroes = countr_zero();
173 const unsigned MinimumTrailingZeroes = Log2(A);
174 return TrailingZeroes >= MinimumTrailingZeroes;
177 /// Prefix increment operator. Increments the APInt by one.
178 APInt& APInt::operator++() {
179 if (isSingleWord())
180 ++U.VAL;
181 else
182 tcIncrement(U.pVal, getNumWords());
183 return clearUnusedBits();
186 /// Prefix decrement operator. Decrements the APInt by one.
187 APInt& APInt::operator--() {
188 if (isSingleWord())
189 --U.VAL;
190 else
191 tcDecrement(U.pVal, getNumWords());
192 return clearUnusedBits();
195 /// Adds the RHS APInt to this APInt.
196 /// @returns this, after addition of RHS.
197 /// Addition assignment operator.
198 APInt& APInt::operator+=(const APInt& RHS) {
199 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
200 if (isSingleWord())
201 U.VAL += RHS.U.VAL;
202 else
203 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
204 return clearUnusedBits();
207 APInt& APInt::operator+=(uint64_t RHS) {
208 if (isSingleWord())
209 U.VAL += RHS;
210 else
211 tcAddPart(U.pVal, RHS, getNumWords());
212 return clearUnusedBits();
215 /// Subtracts the RHS APInt from this APInt
216 /// @returns this, after subtraction
217 /// Subtraction assignment operator.
218 APInt& APInt::operator-=(const APInt& RHS) {
219 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
220 if (isSingleWord())
221 U.VAL -= RHS.U.VAL;
222 else
223 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
224 return clearUnusedBits();
227 APInt& APInt::operator-=(uint64_t RHS) {
228 if (isSingleWord())
229 U.VAL -= RHS;
230 else
231 tcSubtractPart(U.pVal, RHS, getNumWords());
232 return clearUnusedBits();
235 APInt APInt::operator*(const APInt& RHS) const {
236 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
237 if (isSingleWord())
238 return APInt(BitWidth, U.VAL * RHS.U.VAL, /*isSigned=*/false,
239 /*implicitTrunc=*/true);
241 APInt Result(getMemory(getNumWords()), getBitWidth());
242 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
243 Result.clearUnusedBits();
244 return Result;
247 void APInt::andAssignSlowCase(const APInt &RHS) {
248 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
249 for (size_t i = 0, e = getNumWords(); i != e; ++i)
250 dst[i] &= rhs[i];
253 void APInt::orAssignSlowCase(const APInt &RHS) {
254 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
255 for (size_t i = 0, e = getNumWords(); i != e; ++i)
256 dst[i] |= rhs[i];
259 void APInt::xorAssignSlowCase(const APInt &RHS) {
260 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
261 for (size_t i = 0, e = getNumWords(); i != e; ++i)
262 dst[i] ^= rhs[i];
265 APInt &APInt::operator*=(const APInt &RHS) {
266 *this = *this * RHS;
267 return *this;
270 APInt& APInt::operator*=(uint64_t RHS) {
271 if (isSingleWord()) {
272 U.VAL *= RHS;
273 } else {
274 unsigned NumWords = getNumWords();
275 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
277 return clearUnusedBits();
280 bool APInt::equalSlowCase(const APInt &RHS) const {
281 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
284 int APInt::compare(const APInt& RHS) const {
285 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
286 if (isSingleWord())
287 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
289 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
292 int APInt::compareSigned(const APInt& RHS) const {
293 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
294 if (isSingleWord()) {
295 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
296 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
297 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
300 bool lhsNeg = isNegative();
301 bool rhsNeg = RHS.isNegative();
303 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
304 if (lhsNeg != rhsNeg)
305 return lhsNeg ? -1 : 1;
307 // Otherwise we can just use an unsigned comparison, because even negative
308 // numbers compare correctly this way if both have the same signed-ness.
309 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
312 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
313 unsigned loWord = whichWord(loBit);
314 unsigned hiWord = whichWord(hiBit);
316 // Create an initial mask for the low word with zeros below loBit.
317 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
319 // If hiBit is not aligned, we need a high mask.
320 unsigned hiShiftAmt = whichBit(hiBit);
321 if (hiShiftAmt != 0) {
322 // Create a high mask with zeros above hiBit.
323 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
324 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
325 // set the bits in hiWord.
326 if (hiWord == loWord)
327 loMask &= hiMask;
328 else
329 U.pVal[hiWord] |= hiMask;
331 // Apply the mask to the low word.
332 U.pVal[loWord] |= loMask;
334 // Fill any words between loWord and hiWord with all ones.
335 for (unsigned word = loWord + 1; word < hiWord; ++word)
336 U.pVal[word] = WORDTYPE_MAX;
339 // Complement a bignum in-place.
340 static void tcComplement(APInt::WordType *dst, unsigned parts) {
341 for (unsigned i = 0; i < parts; i++)
342 dst[i] = ~dst[i];
345 /// Toggle every bit to its opposite value.
346 void APInt::flipAllBitsSlowCase() {
347 tcComplement(U.pVal, getNumWords());
348 clearUnusedBits();
351 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
352 /// equivalent to:
353 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
354 /// In the slow case, we know the result is large.
355 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
356 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
357 APInt Result = NewLSB.zext(NewWidth);
358 Result.insertBits(*this, NewLSB.getBitWidth());
359 return Result;
362 /// Toggle a given bit to its opposite value whose position is given
363 /// as "bitPosition".
364 /// Toggles a given bit to its opposite value.
365 void APInt::flipBit(unsigned bitPosition) {
366 assert(bitPosition < BitWidth && "Out of the bit-width range!");
367 setBitVal(bitPosition, !(*this)[bitPosition]);
370 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
371 unsigned subBitWidth = subBits.getBitWidth();
372 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
374 // inserting no bits is a noop.
375 if (subBitWidth == 0)
376 return;
378 // Insertion is a direct copy.
379 if (subBitWidth == BitWidth) {
380 *this = subBits;
381 return;
384 // Single word result can be done as a direct bitmask.
385 if (isSingleWord()) {
386 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
387 U.VAL &= ~(mask << bitPosition);
388 U.VAL |= (subBits.U.VAL << bitPosition);
389 return;
392 unsigned loBit = whichBit(bitPosition);
393 unsigned loWord = whichWord(bitPosition);
394 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
396 // Insertion within a single word can be done as a direct bitmask.
397 if (loWord == hi1Word) {
398 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
399 U.pVal[loWord] &= ~(mask << loBit);
400 U.pVal[loWord] |= (subBits.U.VAL << loBit);
401 return;
404 // Insert on word boundaries.
405 if (loBit == 0) {
406 // Direct copy whole words.
407 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
408 memcpy(U.pVal + loWord, subBits.getRawData(),
409 numWholeSubWords * APINT_WORD_SIZE);
411 // Mask+insert remaining bits.
412 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
413 if (remainingBits != 0) {
414 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
415 U.pVal[hi1Word] &= ~mask;
416 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
418 return;
421 // General case - set/clear individual bits in dst based on src.
422 // TODO - there is scope for optimization here, but at the moment this code
423 // path is barely used so prefer readability over performance.
424 for (unsigned i = 0; i != subBitWidth; ++i)
425 setBitVal(bitPosition + i, subBits[i]);
428 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
429 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
430 subBits &= maskBits;
431 if (isSingleWord()) {
432 U.VAL &= ~(maskBits << bitPosition);
433 U.VAL |= subBits << bitPosition;
434 return;
437 unsigned loBit = whichBit(bitPosition);
438 unsigned loWord = whichWord(bitPosition);
439 unsigned hiWord = whichWord(bitPosition + numBits - 1);
440 if (loWord == hiWord) {
441 U.pVal[loWord] &= ~(maskBits << loBit);
442 U.pVal[loWord] |= subBits << loBit;
443 return;
446 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
447 unsigned wordBits = 8 * sizeof(WordType);
448 U.pVal[loWord] &= ~(maskBits << loBit);
449 U.pVal[loWord] |= subBits << loBit;
451 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
452 U.pVal[hiWord] |= subBits >> (wordBits - loBit);
455 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
456 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
457 "Illegal bit extraction");
459 if (isSingleWord())
460 return APInt(numBits, U.VAL >> bitPosition, /*isSigned=*/false,
461 /*implicitTrunc=*/true);
463 unsigned loBit = whichBit(bitPosition);
464 unsigned loWord = whichWord(bitPosition);
465 unsigned hiWord = whichWord(bitPosition + numBits - 1);
467 // Single word result extracting bits from a single word source.
468 if (loWord == hiWord)
469 return APInt(numBits, U.pVal[loWord] >> loBit, /*isSigned=*/false,
470 /*implicitTrunc=*/true);
472 // Extracting bits that start on a source word boundary can be done
473 // as a fast memory copy.
474 if (loBit == 0)
475 return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
477 // General case - shift + copy source words directly into place.
478 APInt Result(numBits, 0);
479 unsigned NumSrcWords = getNumWords();
480 unsigned NumDstWords = Result.getNumWords();
482 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
483 for (unsigned word = 0; word < NumDstWords; ++word) {
484 uint64_t w0 = U.pVal[loWord + word];
485 uint64_t w1 =
486 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
487 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
490 return Result.clearUnusedBits();
493 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
494 unsigned bitPosition) const {
495 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
496 "Illegal bit extraction");
497 assert(numBits <= 64 && "Illegal bit extraction");
499 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
500 if (isSingleWord())
501 return (U.VAL >> bitPosition) & maskBits;
503 static_assert(APINT_BITS_PER_WORD >= 64,
504 "This code assumes only two words affected");
505 unsigned loBit = whichBit(bitPosition);
506 unsigned loWord = whichWord(bitPosition);
507 unsigned hiWord = whichWord(bitPosition + numBits - 1);
508 if (loWord == hiWord)
509 return (U.pVal[loWord] >> loBit) & maskBits;
511 uint64_t retBits = U.pVal[loWord] >> loBit;
512 retBits |= U.pVal[hiWord] << (APINT_BITS_PER_WORD - loBit);
513 retBits &= maskBits;
514 return retBits;
517 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
518 assert(!Str.empty() && "Invalid string length");
519 size_t StrLen = Str.size();
521 // Each computation below needs to know if it's negative.
522 unsigned IsNegative = false;
523 if (Str[0] == '-' || Str[0] == '+') {
524 IsNegative = Str[0] == '-';
525 StrLen--;
526 assert(StrLen && "String is only a sign, needs a value.");
529 // For radixes of power-of-two values, the bits required is accurately and
530 // easily computed.
531 if (Radix == 2)
532 return StrLen + IsNegative;
533 if (Radix == 8)
534 return StrLen * 3 + IsNegative;
535 if (Radix == 16)
536 return StrLen * 4 + IsNegative;
538 // Compute a sufficient number of bits that is always large enough but might
539 // be too large. This avoids the assertion in the constructor. This
540 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
541 // bits in that case.
542 if (Radix == 10)
543 return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
545 assert(Radix == 36);
546 return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
549 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
550 // Compute a sufficient number of bits that is always large enough but might
551 // be too large.
552 unsigned sufficient = getSufficientBitsNeeded(str, radix);
554 // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
555 // return the value directly. For bases 10 and 36, we need to do extra work.
556 if (radix == 2 || radix == 8 || radix == 16)
557 return sufficient;
559 // This is grossly inefficient but accurate. We could probably do something
560 // with a computation of roughly slen*64/20 and then adjust by the value of
561 // the first few digits. But, I'm not sure how accurate that could be.
562 size_t slen = str.size();
564 // Each computation below needs to know if it's negative.
565 StringRef::iterator p = str.begin();
566 unsigned isNegative = *p == '-';
567 if (*p == '-' || *p == '+') {
568 p++;
569 slen--;
570 assert(slen && "String is only a sign, needs a value.");
574 // Convert to the actual binary value.
575 APInt tmp(sufficient, StringRef(p, slen), radix);
577 // Compute how many bits are required. If the log is infinite, assume we need
578 // just bit. If the log is exact and value is negative, then the value is
579 // MinSignedValue with (log + 1) bits.
580 unsigned log = tmp.logBase2();
581 if (log == (unsigned)-1) {
582 return isNegative + 1;
583 } else if (isNegative && tmp.isPowerOf2()) {
584 return isNegative + log;
585 } else {
586 return isNegative + log + 1;
590 hash_code llvm::hash_value(const APInt &Arg) {
591 if (Arg.isSingleWord())
592 return hash_combine(Arg.BitWidth, Arg.U.VAL);
594 return hash_combine(
595 Arg.BitWidth,
596 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
599 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
600 return static_cast<unsigned>(hash_value(Key));
603 bool APInt::isSplat(unsigned SplatSizeInBits) const {
604 assert(getBitWidth() % SplatSizeInBits == 0 &&
605 "SplatSizeInBits must divide width!");
606 // We can check that all parts of an integer are equal by making use of a
607 // little trick: rotate and check if it's still the same value.
608 return *this == rotl(SplatSizeInBits);
611 /// This function returns the high "numBits" bits of this APInt.
612 APInt APInt::getHiBits(unsigned numBits) const {
613 return this->lshr(BitWidth - numBits);
616 /// This function returns the low "numBits" bits of this APInt.
617 APInt APInt::getLoBits(unsigned numBits) const {
618 APInt Result(getLowBitsSet(BitWidth, numBits));
619 Result &= *this;
620 return Result;
623 /// Return a value containing V broadcasted over NewLen bits.
624 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
625 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
627 APInt Val = V.zext(NewLen);
628 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
629 Val |= Val << I;
631 return Val;
634 unsigned APInt::countLeadingZerosSlowCase() const {
635 unsigned Count = 0;
636 for (int i = getNumWords()-1; i >= 0; --i) {
637 uint64_t V = U.pVal[i];
638 if (V == 0)
639 Count += APINT_BITS_PER_WORD;
640 else {
641 Count += llvm::countl_zero(V);
642 break;
645 // Adjust for unused bits in the most significant word (they are zero).
646 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
647 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
648 return Count;
651 unsigned APInt::countLeadingOnesSlowCase() const {
652 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
653 unsigned shift;
654 if (!highWordBits) {
655 highWordBits = APINT_BITS_PER_WORD;
656 shift = 0;
657 } else {
658 shift = APINT_BITS_PER_WORD - highWordBits;
660 int i = getNumWords() - 1;
661 unsigned Count = llvm::countl_one(U.pVal[i] << shift);
662 if (Count == highWordBits) {
663 for (i--; i >= 0; --i) {
664 if (U.pVal[i] == WORDTYPE_MAX)
665 Count += APINT_BITS_PER_WORD;
666 else {
667 Count += llvm::countl_one(U.pVal[i]);
668 break;
672 return Count;
675 unsigned APInt::countTrailingZerosSlowCase() const {
676 unsigned Count = 0;
677 unsigned i = 0;
678 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
679 Count += APINT_BITS_PER_WORD;
680 if (i < getNumWords())
681 Count += llvm::countr_zero(U.pVal[i]);
682 return std::min(Count, BitWidth);
685 unsigned APInt::countTrailingOnesSlowCase() const {
686 unsigned Count = 0;
687 unsigned i = 0;
688 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
689 Count += APINT_BITS_PER_WORD;
690 if (i < getNumWords())
691 Count += llvm::countr_one(U.pVal[i]);
692 assert(Count <= BitWidth);
693 return Count;
696 unsigned APInt::countPopulationSlowCase() const {
697 unsigned Count = 0;
698 for (unsigned i = 0; i < getNumWords(); ++i)
699 Count += llvm::popcount(U.pVal[i]);
700 return Count;
703 bool APInt::intersectsSlowCase(const APInt &RHS) const {
704 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
705 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
706 return true;
708 return false;
711 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
712 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
713 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
714 return false;
716 return true;
719 APInt APInt::byteSwap() const {
720 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
721 if (BitWidth == 16)
722 return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
723 if (BitWidth == 32)
724 return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
725 if (BitWidth <= 64) {
726 uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
727 Tmp1 >>= (64 - BitWidth);
728 return APInt(BitWidth, Tmp1);
731 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
732 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
733 Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
734 if (Result.BitWidth != BitWidth) {
735 Result.lshrInPlace(Result.BitWidth - BitWidth);
736 Result.BitWidth = BitWidth;
738 return Result;
741 APInt APInt::reverseBits() const {
742 switch (BitWidth) {
743 case 64:
744 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
745 case 32:
746 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
747 case 16:
748 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
749 case 8:
750 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
751 case 0:
752 return *this;
753 default:
754 break;
757 APInt Val(*this);
758 APInt Reversed(BitWidth, 0);
759 unsigned S = BitWidth;
761 for (; Val != 0; Val.lshrInPlace(1)) {
762 Reversed <<= 1;
763 Reversed |= Val[0];
764 --S;
767 Reversed <<= S;
768 return Reversed;
771 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
772 // Fast-path a common case.
773 if (A == B) return A;
775 // Corner cases: if either operand is zero, the other is the gcd.
776 if (!A) return B;
777 if (!B) return A;
779 // Count common powers of 2 and remove all other powers of 2.
780 unsigned Pow2;
782 unsigned Pow2_A = A.countr_zero();
783 unsigned Pow2_B = B.countr_zero();
784 if (Pow2_A > Pow2_B) {
785 A.lshrInPlace(Pow2_A - Pow2_B);
786 Pow2 = Pow2_B;
787 } else if (Pow2_B > Pow2_A) {
788 B.lshrInPlace(Pow2_B - Pow2_A);
789 Pow2 = Pow2_A;
790 } else {
791 Pow2 = Pow2_A;
795 // Both operands are odd multiples of 2^Pow_2:
797 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
799 // This is a modified version of Stein's algorithm, taking advantage of
800 // efficient countTrailingZeros().
801 while (A != B) {
802 if (A.ugt(B)) {
803 A -= B;
804 A.lshrInPlace(A.countr_zero() - Pow2);
805 } else {
806 B -= A;
807 B.lshrInPlace(B.countr_zero() - Pow2);
811 return A;
814 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
815 uint64_t I = bit_cast<uint64_t>(Double);
817 // Get the sign bit from the highest order bit
818 bool isNeg = I >> 63;
820 // Get the 11-bit exponent and adjust for the 1023 bit bias
821 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
823 // If the exponent is negative, the value is < 0 so just return 0.
824 if (exp < 0)
825 return APInt(width, 0u);
827 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
828 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
830 // If the exponent doesn't shift all bits out of the mantissa
831 if (exp < 52)
832 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
833 APInt(width, mantissa >> (52 - exp));
835 // If the client didn't provide enough bits for us to shift the mantissa into
836 // then the result is undefined, just return 0
837 if (width <= exp - 52)
838 return APInt(width, 0);
840 // Otherwise, we have to shift the mantissa bits up to the right location
841 APInt Tmp(width, mantissa);
842 Tmp <<= (unsigned)exp - 52;
843 return isNeg ? -Tmp : Tmp;
846 /// This function converts this APInt to a double.
847 /// The layout for double is as following (IEEE Standard 754):
848 /// --------------------------------------
849 /// | Sign Exponent Fraction Bias |
850 /// |-------------------------------------- |
851 /// | 1[63] 11[62-52] 52[51-00] 1023 |
852 /// --------------------------------------
853 double APInt::roundToDouble(bool isSigned) const {
855 // Handle the simple case where the value is contained in one uint64_t.
856 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
857 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
858 if (isSigned) {
859 int64_t sext = SignExtend64(getWord(0), BitWidth);
860 return double(sext);
861 } else
862 return double(getWord(0));
865 // Determine if the value is negative.
866 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
868 // Construct the absolute value if we're negative.
869 APInt Tmp(isNeg ? -(*this) : (*this));
871 // Figure out how many bits we're using.
872 unsigned n = Tmp.getActiveBits();
874 // The exponent (without bias normalization) is just the number of bits
875 // we are using. Note that the sign bit is gone since we constructed the
876 // absolute value.
877 uint64_t exp = n;
879 // Return infinity for exponent overflow
880 if (exp > 1023) {
881 if (!isSigned || !isNeg)
882 return std::numeric_limits<double>::infinity();
883 else
884 return -std::numeric_limits<double>::infinity();
886 exp += 1023; // Increment for 1023 bias
888 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
889 // extract the high 52 bits from the correct words in pVal.
890 uint64_t mantissa;
891 unsigned hiWord = whichWord(n-1);
892 if (hiWord == 0) {
893 mantissa = Tmp.U.pVal[0];
894 if (n > 52)
895 mantissa >>= n - 52; // shift down, we want the top 52 bits.
896 } else {
897 assert(hiWord > 0 && "huh?");
898 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
899 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
900 mantissa = hibits | lobits;
903 // The leading bit of mantissa is implicit, so get rid of it.
904 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
905 uint64_t I = sign | (exp << 52) | mantissa;
906 return bit_cast<double>(I);
909 // Truncate to new width.
910 APInt APInt::trunc(unsigned width) const {
911 assert(width <= BitWidth && "Invalid APInt Truncate request");
913 if (width <= APINT_BITS_PER_WORD)
914 return APInt(width, getRawData()[0], /*isSigned=*/false,
915 /*implicitTrunc=*/true);
917 if (width == BitWidth)
918 return *this;
920 APInt Result(getMemory(getNumWords(width)), width);
922 // Copy full words.
923 unsigned i;
924 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
925 Result.U.pVal[i] = U.pVal[i];
927 // Truncate and copy any partial word.
928 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
929 if (bits != 0)
930 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
932 return Result;
935 // Truncate to new width with unsigned saturation.
936 APInt APInt::truncUSat(unsigned width) const {
937 assert(width <= BitWidth && "Invalid APInt Truncate request");
939 // Can we just losslessly truncate it?
940 if (isIntN(width))
941 return trunc(width);
942 // If not, then just return the new limit.
943 return APInt::getMaxValue(width);
946 // Truncate to new width with signed saturation.
947 APInt APInt::truncSSat(unsigned width) const {
948 assert(width <= BitWidth && "Invalid APInt Truncate request");
950 // Can we just losslessly truncate it?
951 if (isSignedIntN(width))
952 return trunc(width);
953 // If not, then just return the new limits.
954 return isNegative() ? APInt::getSignedMinValue(width)
955 : APInt::getSignedMaxValue(width);
958 // Sign extend to a new width.
959 APInt APInt::sext(unsigned Width) const {
960 assert(Width >= BitWidth && "Invalid APInt SignExtend request");
962 if (Width <= APINT_BITS_PER_WORD)
963 return APInt(Width, SignExtend64(U.VAL, BitWidth), /*isSigned=*/true);
965 if (Width == BitWidth)
966 return *this;
968 APInt Result(getMemory(getNumWords(Width)), Width);
970 // Copy words.
971 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
973 // Sign extend the last word since there may be unused bits in the input.
974 Result.U.pVal[getNumWords() - 1] =
975 SignExtend64(Result.U.pVal[getNumWords() - 1],
976 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
978 // Fill with sign bits.
979 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
980 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
981 Result.clearUnusedBits();
982 return Result;
985 // Zero extend to a new width.
986 APInt APInt::zext(unsigned width) const {
987 assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
989 if (width <= APINT_BITS_PER_WORD)
990 return APInt(width, U.VAL);
992 if (width == BitWidth)
993 return *this;
995 APInt Result(getMemory(getNumWords(width)), width);
997 // Copy words.
998 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
1000 // Zero remaining words.
1001 std::memset(Result.U.pVal + getNumWords(), 0,
1002 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
1004 return Result;
1007 APInt APInt::zextOrTrunc(unsigned width) const {
1008 if (BitWidth < width)
1009 return zext(width);
1010 if (BitWidth > width)
1011 return trunc(width);
1012 return *this;
1015 APInt APInt::sextOrTrunc(unsigned width) const {
1016 if (BitWidth < width)
1017 return sext(width);
1018 if (BitWidth > width)
1019 return trunc(width);
1020 return *this;
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 /// Arithmetic right-shift function.
1025 void APInt::ashrInPlace(const APInt &shiftAmt) {
1026 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1029 /// Arithmetic right-shift this APInt by shiftAmt.
1030 /// Arithmetic right-shift function.
1031 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1032 // Don't bother performing a no-op shift.
1033 if (!ShiftAmt)
1034 return;
1036 // Save the original sign bit for later.
1037 bool Negative = isNegative();
1039 // WordShift is the inter-part shift; BitShift is intra-part shift.
1040 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1041 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1043 unsigned WordsToMove = getNumWords() - WordShift;
1044 if (WordsToMove != 0) {
1045 // Sign extend the last word to fill in the unused bits.
1046 U.pVal[getNumWords() - 1] = SignExtend64(
1047 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1049 // Fastpath for moving by whole words.
1050 if (BitShift == 0) {
1051 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1052 } else {
1053 // Move the words containing significant bits.
1054 for (unsigned i = 0; i != WordsToMove - 1; ++i)
1055 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1056 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1058 // Handle the last word which has no high bits to copy. Use an arithmetic
1059 // shift to preserve the sign bit.
1060 U.pVal[WordsToMove - 1] =
1061 (int64_t)U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1065 // Fill in the remainder based on the original sign.
1066 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1067 WordShift * APINT_WORD_SIZE);
1068 clearUnusedBits();
1071 /// Logical right-shift this APInt by shiftAmt.
1072 /// Logical right-shift function.
1073 void APInt::lshrInPlace(const APInt &shiftAmt) {
1074 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1077 /// Logical right-shift this APInt by shiftAmt.
1078 /// Logical right-shift function.
1079 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1080 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1083 /// Left-shift this APInt by shiftAmt.
1084 /// Left-shift function.
1085 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1086 // It's undefined behavior in C to shift by BitWidth or greater.
1087 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1088 return *this;
1091 void APInt::shlSlowCase(unsigned ShiftAmt) {
1092 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1093 clearUnusedBits();
1096 // Calculate the rotate amount modulo the bit width.
1097 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1098 if (LLVM_UNLIKELY(BitWidth == 0))
1099 return 0;
1100 unsigned rotBitWidth = rotateAmt.getBitWidth();
1101 APInt rot = rotateAmt;
1102 if (rotBitWidth < BitWidth) {
1103 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1104 // e.g. APInt(1, 32) would give APInt(1, 0).
1105 rot = rotateAmt.zext(BitWidth);
1107 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1108 return rot.getLimitedValue(BitWidth);
1111 APInt APInt::rotl(const APInt &rotateAmt) const {
1112 return rotl(rotateModulo(BitWidth, rotateAmt));
1115 APInt APInt::rotl(unsigned rotateAmt) const {
1116 if (LLVM_UNLIKELY(BitWidth == 0))
1117 return *this;
1118 rotateAmt %= BitWidth;
1119 if (rotateAmt == 0)
1120 return *this;
1121 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1124 APInt APInt::rotr(const APInt &rotateAmt) const {
1125 return rotr(rotateModulo(BitWidth, rotateAmt));
1128 APInt APInt::rotr(unsigned rotateAmt) const {
1129 if (BitWidth == 0)
1130 return *this;
1131 rotateAmt %= BitWidth;
1132 if (rotateAmt == 0)
1133 return *this;
1134 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1137 /// \returns the nearest log base 2 of this APInt. Ties round up.
1139 /// NOTE: When we have a BitWidth of 1, we define:
1141 /// log2(0) = UINT32_MAX
1142 /// log2(1) = 0
1144 /// to get around any mathematical concerns resulting from
1145 /// referencing 2 in a space where 2 does no exist.
1146 unsigned APInt::nearestLogBase2() const {
1147 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1148 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1149 // UINT32_MAX.
1150 if (BitWidth == 1)
1151 return U.VAL - 1;
1153 // Handle the zero case.
1154 if (isZero())
1155 return UINT32_MAX;
1157 // The non-zero case is handled by computing:
1159 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1161 // where x[i] is referring to the value of the ith bit of x.
1162 unsigned lg = logBase2();
1163 return lg + unsigned((*this)[lg - 1]);
1166 // Square Root - this method computes and returns the square root of "this".
1167 // Three mechanisms are used for computation. For small values (<= 5 bits),
1168 // a table lookup is done. This gets some performance for common cases. For
1169 // values using less than 52 bits, the value is converted to double and then
1170 // the libc sqrt function is called. The result is rounded and then converted
1171 // back to a uint64_t which is then used to construct the result. Finally,
1172 // the Babylonian method for computing square roots is used.
1173 APInt APInt::sqrt() const {
1175 // Determine the magnitude of the value.
1176 unsigned magnitude = getActiveBits();
1178 // Use a fast table for some small values. This also gets rid of some
1179 // rounding errors in libc sqrt for small values.
1180 if (magnitude <= 5) {
1181 static const uint8_t results[32] = {
1182 /* 0 */ 0,
1183 /* 1- 2 */ 1, 1,
1184 /* 3- 6 */ 2, 2, 2, 2,
1185 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1186 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1187 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1188 /* 31 */ 6
1190 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1193 // If the magnitude of the value fits in less than 52 bits (the precision of
1194 // an IEEE double precision floating point value), then we can use the
1195 // libc sqrt function which will probably use a hardware sqrt computation.
1196 // This should be faster than the algorithm below.
1197 if (magnitude < 52) {
1198 return APInt(BitWidth,
1199 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1200 : U.pVal[0])))));
1203 // Okay, all the short cuts are exhausted. We must compute it. The following
1204 // is a classical Babylonian method for computing the square root. This code
1205 // was adapted to APInt from a wikipedia article on such computations.
1206 // See http://www.wikipedia.org/ and go to the page named
1207 // Calculate_an_integer_square_root.
1208 unsigned nbits = BitWidth, i = 4;
1209 APInt testy(BitWidth, 16);
1210 APInt x_old(BitWidth, 1);
1211 APInt x_new(BitWidth, 0);
1212 APInt two(BitWidth, 2);
1214 // Select a good starting value using binary logarithms.
1215 for (;; i += 2, testy = testy.shl(2))
1216 if (i >= nbits || this->ule(testy)) {
1217 x_old = x_old.shl(i / 2);
1218 break;
1221 // Use the Babylonian method to arrive at the integer square root:
1222 for (;;) {
1223 x_new = (this->udiv(x_old) + x_old).udiv(two);
1224 if (x_old.ule(x_new))
1225 break;
1226 x_old = x_new;
1229 // Make sure we return the closest approximation
1230 // NOTE: The rounding calculation below is correct. It will produce an
1231 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1232 // determined to be a rounding issue with pari/gp as it begins to use a
1233 // floating point representation after 192 bits. There are no discrepancies
1234 // between this algorithm and pari/gp for bit widths < 192 bits.
1235 APInt square(x_old * x_old);
1236 APInt nextSquare((x_old + 1) * (x_old +1));
1237 if (this->ult(square))
1238 return x_old;
1239 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1240 APInt midpoint((nextSquare - square).udiv(two));
1241 APInt offset(*this - square);
1242 if (offset.ult(midpoint))
1243 return x_old;
1244 return x_old + 1;
1247 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1248 APInt APInt::multiplicativeInverse() const {
1249 assert((*this)[0] &&
1250 "multiplicative inverse is only defined for odd numbers!");
1252 // Use Newton's method.
1253 APInt Factor = *this;
1254 APInt T;
1255 while (!(T = *this * Factor).isOne())
1256 Factor *= 2 - std::move(T);
1257 return Factor;
1260 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1261 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1262 /// variables here have the same names as in the algorithm. Comments explain
1263 /// the algorithm and any deviation from it.
1264 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1265 unsigned m, unsigned n) {
1266 assert(u && "Must provide dividend");
1267 assert(v && "Must provide divisor");
1268 assert(q && "Must provide quotient");
1269 assert(u != v && u != q && v != q && "Must use different memory");
1270 assert(n>1 && "n must be > 1");
1272 // b denotes the base of the number system. In our case b is 2^32.
1273 const uint64_t b = uint64_t(1) << 32;
1275 // The DEBUG macros here tend to be spam in the debug output if you're not
1276 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1277 #ifdef KNUTH_DEBUG
1278 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1279 #else
1280 #define DEBUG_KNUTH(X) do {} while(false)
1281 #endif
1283 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1284 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1285 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1286 DEBUG_KNUTH(dbgs() << " by");
1287 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1288 DEBUG_KNUTH(dbgs() << '\n');
1289 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1290 // u and v by d. Note that we have taken Knuth's advice here to use a power
1291 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1292 // 2 allows us to shift instead of multiply and it is easy to determine the
1293 // shift amount from the leading zeros. We are basically normalizing the u
1294 // and v so that its high bits are shifted to the top of v's range without
1295 // overflow. Note that this can require an extra word in u so that u must
1296 // be of length m+n+1.
1297 unsigned shift = llvm::countl_zero(v[n - 1]);
1298 uint32_t v_carry = 0;
1299 uint32_t u_carry = 0;
1300 if (shift) {
1301 for (unsigned i = 0; i < m+n; ++i) {
1302 uint32_t u_tmp = u[i] >> (32 - shift);
1303 u[i] = (u[i] << shift) | u_carry;
1304 u_carry = u_tmp;
1306 for (unsigned i = 0; i < n; ++i) {
1307 uint32_t v_tmp = v[i] >> (32 - shift);
1308 v[i] = (v[i] << shift) | v_carry;
1309 v_carry = v_tmp;
1312 u[m+n] = u_carry;
1314 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1315 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1316 DEBUG_KNUTH(dbgs() << " by");
1317 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1318 DEBUG_KNUTH(dbgs() << '\n');
1320 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1321 int j = m;
1322 do {
1323 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1324 // D3. [Calculate q'.].
1325 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1326 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1327 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1328 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1329 // on v[n-2] determines at high speed most of the cases in which the trial
1330 // value qp is one too large, and it eliminates all cases where qp is two
1331 // too large.
1332 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1333 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1334 uint64_t qp = dividend / v[n-1];
1335 uint64_t rp = dividend % v[n-1];
1336 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1337 qp--;
1338 rp += v[n-1];
1339 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1340 qp--;
1342 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1344 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1345 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1346 // consists of a simple multiplication by a one-place number, combined with
1347 // a subtraction.
1348 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1349 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1350 // true value plus b**(n+1), namely as the b's complement of
1351 // the true value, and a "borrow" to the left should be remembered.
1352 int64_t borrow = 0;
1353 for (unsigned i = 0; i < n; ++i) {
1354 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1355 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1356 u[j+i] = Lo_32(subres);
1357 borrow = Hi_32(p) - Hi_32(subres);
1358 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1359 << ", borrow = " << borrow << '\n');
1361 bool isNeg = u[j+n] < borrow;
1362 u[j+n] -= Lo_32(borrow);
1364 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1365 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1366 DEBUG_KNUTH(dbgs() << '\n');
1368 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1369 // negative, go to step D6; otherwise go on to step D7.
1370 q[j] = Lo_32(qp);
1371 if (isNeg) {
1372 // D6. [Add back]. The probability that this step is necessary is very
1373 // small, on the order of only 2/b. Make sure that test data accounts for
1374 // this possibility. Decrease q[j] by 1
1375 q[j]--;
1376 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1377 // A carry will occur to the left of u[j+n], and it should be ignored
1378 // since it cancels with the borrow that occurred in D4.
1379 bool carry = false;
1380 for (unsigned i = 0; i < n; i++) {
1381 uint32_t limit = std::min(u[j+i],v[i]);
1382 u[j+i] += v[i] + carry;
1383 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1385 u[j+n] += carry;
1387 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1388 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1389 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1391 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1392 } while (--j >= 0);
1394 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1395 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1396 DEBUG_KNUTH(dbgs() << '\n');
1398 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1399 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1400 // compute the remainder (urem uses this).
1401 if (r) {
1402 // The value d is expressed by the "shift" value above since we avoided
1403 // multiplication by d by using a shift left. So, all we have to do is
1404 // shift right here.
1405 if (shift) {
1406 uint32_t carry = 0;
1407 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1408 for (int i = n-1; i >= 0; i--) {
1409 r[i] = (u[i] >> shift) | carry;
1410 carry = u[i] << (32 - shift);
1411 DEBUG_KNUTH(dbgs() << " " << r[i]);
1413 } else {
1414 for (int i = n-1; i >= 0; i--) {
1415 r[i] = u[i];
1416 DEBUG_KNUTH(dbgs() << " " << r[i]);
1419 DEBUG_KNUTH(dbgs() << '\n');
1421 DEBUG_KNUTH(dbgs() << '\n');
1424 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1425 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1426 assert(lhsWords >= rhsWords && "Fractional result");
1428 // First, compose the values into an array of 32-bit words instead of
1429 // 64-bit words. This is a necessity of both the "short division" algorithm
1430 // and the Knuth "classical algorithm" which requires there to be native
1431 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1432 // can't use 64-bit operands here because we don't have native results of
1433 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1434 // work on large-endian machines.
1435 unsigned n = rhsWords * 2;
1436 unsigned m = (lhsWords * 2) - n;
1438 // Allocate space for the temporary values we need either on the stack, if
1439 // it will fit, or on the heap if it won't.
1440 uint32_t SPACE[128];
1441 uint32_t *U = nullptr;
1442 uint32_t *V = nullptr;
1443 uint32_t *Q = nullptr;
1444 uint32_t *R = nullptr;
1445 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1446 U = &SPACE[0];
1447 V = &SPACE[m+n+1];
1448 Q = &SPACE[(m+n+1) + n];
1449 if (Remainder)
1450 R = &SPACE[(m+n+1) + n + (m+n)];
1451 } else {
1452 U = new uint32_t[m + n + 1];
1453 V = new uint32_t[n];
1454 Q = new uint32_t[m+n];
1455 if (Remainder)
1456 R = new uint32_t[n];
1459 // Initialize the dividend
1460 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1461 for (unsigned i = 0; i < lhsWords; ++i) {
1462 uint64_t tmp = LHS[i];
1463 U[i * 2] = Lo_32(tmp);
1464 U[i * 2 + 1] = Hi_32(tmp);
1466 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1468 // Initialize the divisor
1469 memset(V, 0, (n)*sizeof(uint32_t));
1470 for (unsigned i = 0; i < rhsWords; ++i) {
1471 uint64_t tmp = RHS[i];
1472 V[i * 2] = Lo_32(tmp);
1473 V[i * 2 + 1] = Hi_32(tmp);
1476 // initialize the quotient and remainder
1477 memset(Q, 0, (m+n) * sizeof(uint32_t));
1478 if (Remainder)
1479 memset(R, 0, n * sizeof(uint32_t));
1481 // Now, adjust m and n for the Knuth division. n is the number of words in
1482 // the divisor. m is the number of words by which the dividend exceeds the
1483 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1484 // contain any zero words or the Knuth algorithm fails.
1485 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1486 n--;
1487 m++;
1489 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1490 m--;
1492 // If we're left with only a single word for the divisor, Knuth doesn't work
1493 // so we implement the short division algorithm here. This is much simpler
1494 // and faster because we are certain that we can divide a 64-bit quantity
1495 // by a 32-bit quantity at hardware speed and short division is simply a
1496 // series of such operations. This is just like doing short division but we
1497 // are using base 2^32 instead of base 10.
1498 assert(n != 0 && "Divide by zero?");
1499 if (n == 1) {
1500 uint32_t divisor = V[0];
1501 uint32_t remainder = 0;
1502 for (int i = m; i >= 0; i--) {
1503 uint64_t partial_dividend = Make_64(remainder, U[i]);
1504 if (partial_dividend == 0) {
1505 Q[i] = 0;
1506 remainder = 0;
1507 } else if (partial_dividend < divisor) {
1508 Q[i] = 0;
1509 remainder = Lo_32(partial_dividend);
1510 } else if (partial_dividend == divisor) {
1511 Q[i] = 1;
1512 remainder = 0;
1513 } else {
1514 Q[i] = Lo_32(partial_dividend / divisor);
1515 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1518 if (R)
1519 R[0] = remainder;
1520 } else {
1521 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1522 // case n > 1.
1523 KnuthDiv(U, V, Q, R, m, n);
1526 // If the caller wants the quotient
1527 if (Quotient) {
1528 for (unsigned i = 0; i < lhsWords; ++i)
1529 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1532 // If the caller wants the remainder
1533 if (Remainder) {
1534 for (unsigned i = 0; i < rhsWords; ++i)
1535 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1538 // Clean up the memory we allocated.
1539 if (U != &SPACE[0]) {
1540 delete [] U;
1541 delete [] V;
1542 delete [] Q;
1543 delete [] R;
1547 APInt APInt::udiv(const APInt &RHS) const {
1548 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1550 // First, deal with the easy case
1551 if (isSingleWord()) {
1552 assert(RHS.U.VAL != 0 && "Divide by zero?");
1553 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1556 // Get some facts about the LHS and RHS number of bits and words
1557 unsigned lhsWords = getNumWords(getActiveBits());
1558 unsigned rhsBits = RHS.getActiveBits();
1559 unsigned rhsWords = getNumWords(rhsBits);
1560 assert(rhsWords && "Divided by zero???");
1562 // Deal with some degenerate cases
1563 if (!lhsWords)
1564 // 0 / X ===> 0
1565 return APInt(BitWidth, 0);
1566 if (rhsBits == 1)
1567 // X / 1 ===> X
1568 return *this;
1569 if (lhsWords < rhsWords || this->ult(RHS))
1570 // X / Y ===> 0, iff X < Y
1571 return APInt(BitWidth, 0);
1572 if (*this == RHS)
1573 // X / X ===> 1
1574 return APInt(BitWidth, 1);
1575 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1576 // All high words are zero, just use native divide
1577 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1579 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1580 APInt Quotient(BitWidth, 0); // to hold result.
1581 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1582 return Quotient;
1585 APInt APInt::udiv(uint64_t RHS) const {
1586 assert(RHS != 0 && "Divide by zero?");
1588 // First, deal with the easy case
1589 if (isSingleWord())
1590 return APInt(BitWidth, U.VAL / RHS);
1592 // Get some facts about the LHS words.
1593 unsigned lhsWords = getNumWords(getActiveBits());
1595 // Deal with some degenerate cases
1596 if (!lhsWords)
1597 // 0 / X ===> 0
1598 return APInt(BitWidth, 0);
1599 if (RHS == 1)
1600 // X / 1 ===> X
1601 return *this;
1602 if (this->ult(RHS))
1603 // X / Y ===> 0, iff X < Y
1604 return APInt(BitWidth, 0);
1605 if (*this == RHS)
1606 // X / X ===> 1
1607 return APInt(BitWidth, 1);
1608 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1609 // All high words are zero, just use native divide
1610 return APInt(BitWidth, this->U.pVal[0] / RHS);
1612 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1613 APInt Quotient(BitWidth, 0); // to hold result.
1614 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1615 return Quotient;
1618 APInt APInt::sdiv(const APInt &RHS) const {
1619 if (isNegative()) {
1620 if (RHS.isNegative())
1621 return (-(*this)).udiv(-RHS);
1622 return -((-(*this)).udiv(RHS));
1624 if (RHS.isNegative())
1625 return -(this->udiv(-RHS));
1626 return this->udiv(RHS);
1629 APInt APInt::sdiv(int64_t RHS) const {
1630 if (isNegative()) {
1631 if (RHS < 0)
1632 return (-(*this)).udiv(-RHS);
1633 return -((-(*this)).udiv(RHS));
1635 if (RHS < 0)
1636 return -(this->udiv(-RHS));
1637 return this->udiv(RHS);
1640 APInt APInt::urem(const APInt &RHS) const {
1641 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1642 if (isSingleWord()) {
1643 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1644 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1647 // Get some facts about the LHS
1648 unsigned lhsWords = getNumWords(getActiveBits());
1650 // Get some facts about the RHS
1651 unsigned rhsBits = RHS.getActiveBits();
1652 unsigned rhsWords = getNumWords(rhsBits);
1653 assert(rhsWords && "Performing remainder operation by zero ???");
1655 // Check the degenerate cases
1656 if (lhsWords == 0)
1657 // 0 % Y ===> 0
1658 return APInt(BitWidth, 0);
1659 if (rhsBits == 1)
1660 // X % 1 ===> 0
1661 return APInt(BitWidth, 0);
1662 if (lhsWords < rhsWords || this->ult(RHS))
1663 // X % Y ===> X, iff X < Y
1664 return *this;
1665 if (*this == RHS)
1666 // X % X == 0;
1667 return APInt(BitWidth, 0);
1668 if (lhsWords == 1)
1669 // All high words are zero, just use native remainder
1670 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1672 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1673 APInt Remainder(BitWidth, 0);
1674 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1675 return Remainder;
1678 uint64_t APInt::urem(uint64_t RHS) const {
1679 assert(RHS != 0 && "Remainder by zero?");
1681 if (isSingleWord())
1682 return U.VAL % RHS;
1684 // Get some facts about the LHS
1685 unsigned lhsWords = getNumWords(getActiveBits());
1687 // Check the degenerate cases
1688 if (lhsWords == 0)
1689 // 0 % Y ===> 0
1690 return 0;
1691 if (RHS == 1)
1692 // X % 1 ===> 0
1693 return 0;
1694 if (this->ult(RHS))
1695 // X % Y ===> X, iff X < Y
1696 return getZExtValue();
1697 if (*this == RHS)
1698 // X % X == 0;
1699 return 0;
1700 if (lhsWords == 1)
1701 // All high words are zero, just use native remainder
1702 return U.pVal[0] % RHS;
1704 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1705 uint64_t Remainder;
1706 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1707 return Remainder;
1710 APInt APInt::srem(const APInt &RHS) const {
1711 if (isNegative()) {
1712 if (RHS.isNegative())
1713 return -((-(*this)).urem(-RHS));
1714 return -((-(*this)).urem(RHS));
1716 if (RHS.isNegative())
1717 return this->urem(-RHS);
1718 return this->urem(RHS);
1721 int64_t APInt::srem(int64_t RHS) const {
1722 if (isNegative()) {
1723 if (RHS < 0)
1724 return -((-(*this)).urem(-RHS));
1725 return -((-(*this)).urem(RHS));
1727 if (RHS < 0)
1728 return this->urem(-RHS);
1729 return this->urem(RHS);
1732 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1733 APInt &Quotient, APInt &Remainder) {
1734 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1735 unsigned BitWidth = LHS.BitWidth;
1737 // First, deal with the easy case
1738 if (LHS.isSingleWord()) {
1739 assert(RHS.U.VAL != 0 && "Divide by zero?");
1740 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1741 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1742 Quotient = APInt(BitWidth, QuotVal);
1743 Remainder = APInt(BitWidth, RemVal);
1744 return;
1747 // Get some size facts about the dividend and divisor
1748 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1749 unsigned rhsBits = RHS.getActiveBits();
1750 unsigned rhsWords = getNumWords(rhsBits);
1751 assert(rhsWords && "Performing divrem operation by zero ???");
1753 // Check the degenerate cases
1754 if (lhsWords == 0) {
1755 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1756 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1757 return;
1760 if (rhsBits == 1) {
1761 Quotient = LHS; // X / 1 ===> X
1762 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1765 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1766 Remainder = LHS; // X % Y ===> X, iff X < Y
1767 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1768 return;
1771 if (LHS == RHS) {
1772 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1773 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1774 return;
1777 // Make sure there is enough space to hold the results.
1778 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1779 // change the size. This is necessary if Quotient or Remainder is aliased
1780 // with LHS or RHS.
1781 Quotient.reallocate(BitWidth);
1782 Remainder.reallocate(BitWidth);
1784 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1785 // There is only one word to consider so use the native versions.
1786 uint64_t lhsValue = LHS.U.pVal[0];
1787 uint64_t rhsValue = RHS.U.pVal[0];
1788 Quotient = lhsValue / rhsValue;
1789 Remainder = lhsValue % rhsValue;
1790 return;
1793 // Okay, lets do it the long way
1794 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1795 Remainder.U.pVal);
1796 // Clear the rest of the Quotient and Remainder.
1797 std::memset(Quotient.U.pVal + lhsWords, 0,
1798 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1799 std::memset(Remainder.U.pVal + rhsWords, 0,
1800 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1803 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1804 uint64_t &Remainder) {
1805 assert(RHS != 0 && "Divide by zero?");
1806 unsigned BitWidth = LHS.BitWidth;
1808 // First, deal with the easy case
1809 if (LHS.isSingleWord()) {
1810 uint64_t QuotVal = LHS.U.VAL / RHS;
1811 Remainder = LHS.U.VAL % RHS;
1812 Quotient = APInt(BitWidth, QuotVal);
1813 return;
1816 // Get some size facts about the dividend and divisor
1817 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1819 // Check the degenerate cases
1820 if (lhsWords == 0) {
1821 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1822 Remainder = 0; // 0 % Y ===> 0
1823 return;
1826 if (RHS == 1) {
1827 Quotient = LHS; // X / 1 ===> X
1828 Remainder = 0; // X % 1 ===> 0
1829 return;
1832 if (LHS.ult(RHS)) {
1833 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1834 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1835 return;
1838 if (LHS == RHS) {
1839 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1840 Remainder = 0; // X % X ===> 0;
1841 return;
1844 // Make sure there is enough space to hold the results.
1845 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1846 // change the size. This is necessary if Quotient is aliased with LHS.
1847 Quotient.reallocate(BitWidth);
1849 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1850 // There is only one word to consider so use the native versions.
1851 uint64_t lhsValue = LHS.U.pVal[0];
1852 Quotient = lhsValue / RHS;
1853 Remainder = lhsValue % RHS;
1854 return;
1857 // Okay, lets do it the long way
1858 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1859 // Clear the rest of the Quotient.
1860 std::memset(Quotient.U.pVal + lhsWords, 0,
1861 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1864 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1865 APInt &Quotient, APInt &Remainder) {
1866 if (LHS.isNegative()) {
1867 if (RHS.isNegative())
1868 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1869 else {
1870 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1871 Quotient.negate();
1873 Remainder.negate();
1874 } else if (RHS.isNegative()) {
1875 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1876 Quotient.negate();
1877 } else {
1878 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1882 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1883 APInt &Quotient, int64_t &Remainder) {
1884 uint64_t R = Remainder;
1885 if (LHS.isNegative()) {
1886 if (RHS < 0)
1887 APInt::udivrem(-LHS, -RHS, Quotient, R);
1888 else {
1889 APInt::udivrem(-LHS, RHS, Quotient, R);
1890 Quotient.negate();
1892 R = -R;
1893 } else if (RHS < 0) {
1894 APInt::udivrem(LHS, -RHS, Quotient, R);
1895 Quotient.negate();
1896 } else {
1897 APInt::udivrem(LHS, RHS, Quotient, R);
1899 Remainder = R;
1902 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1903 APInt Res = *this+RHS;
1904 Overflow = isNonNegative() == RHS.isNonNegative() &&
1905 Res.isNonNegative() != isNonNegative();
1906 return Res;
1909 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1910 APInt Res = *this+RHS;
1911 Overflow = Res.ult(RHS);
1912 return Res;
1915 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1916 APInt Res = *this - RHS;
1917 Overflow = isNonNegative() != RHS.isNonNegative() &&
1918 Res.isNonNegative() != isNonNegative();
1919 return Res;
1922 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1923 APInt Res = *this-RHS;
1924 Overflow = Res.ugt(*this);
1925 return Res;
1928 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1929 // MININT/-1 --> overflow.
1930 Overflow = isMinSignedValue() && RHS.isAllOnes();
1931 return sdiv(RHS);
1934 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1935 APInt Res = *this * RHS;
1937 if (RHS != 0)
1938 Overflow = Res.sdiv(RHS) != *this ||
1939 (isMinSignedValue() && RHS.isAllOnes());
1940 else
1941 Overflow = false;
1942 return Res;
1945 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1946 if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1947 Overflow = true;
1948 return *this * RHS;
1951 APInt Res = lshr(1) * RHS;
1952 Overflow = Res.isNegative();
1953 Res <<= 1;
1954 if ((*this)[0]) {
1955 Res += RHS;
1956 if (Res.ult(RHS))
1957 Overflow = true;
1959 return Res;
1962 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1963 return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1966 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1967 Overflow = ShAmt >= getBitWidth();
1968 if (Overflow)
1969 return APInt(BitWidth, 0);
1971 if (isNonNegative()) // Don't allow sign change.
1972 Overflow = ShAmt >= countl_zero();
1973 else
1974 Overflow = ShAmt >= countl_one();
1976 return *this << ShAmt;
1979 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1980 return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1983 APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
1984 Overflow = ShAmt >= getBitWidth();
1985 if (Overflow)
1986 return APInt(BitWidth, 0);
1988 Overflow = ShAmt > countl_zero();
1990 return *this << ShAmt;
1993 APInt APInt::sfloordiv_ov(const APInt &RHS, bool &Overflow) const {
1994 APInt quotient = sdiv_ov(RHS, Overflow);
1995 if ((quotient * RHS != *this) && (isNegative() != RHS.isNegative()))
1996 return quotient - 1;
1997 return quotient;
2000 APInt APInt::sadd_sat(const APInt &RHS) const {
2001 bool Overflow;
2002 APInt Res = sadd_ov(RHS, Overflow);
2003 if (!Overflow)
2004 return Res;
2006 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2007 : APInt::getSignedMaxValue(BitWidth);
2010 APInt APInt::uadd_sat(const APInt &RHS) const {
2011 bool Overflow;
2012 APInt Res = uadd_ov(RHS, Overflow);
2013 if (!Overflow)
2014 return Res;
2016 return APInt::getMaxValue(BitWidth);
2019 APInt APInt::ssub_sat(const APInt &RHS) const {
2020 bool Overflow;
2021 APInt Res = ssub_ov(RHS, Overflow);
2022 if (!Overflow)
2023 return Res;
2025 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2026 : APInt::getSignedMaxValue(BitWidth);
2029 APInt APInt::usub_sat(const APInt &RHS) const {
2030 bool Overflow;
2031 APInt Res = usub_ov(RHS, Overflow);
2032 if (!Overflow)
2033 return Res;
2035 return APInt(BitWidth, 0);
2038 APInt APInt::smul_sat(const APInt &RHS) const {
2039 bool Overflow;
2040 APInt Res = smul_ov(RHS, Overflow);
2041 if (!Overflow)
2042 return Res;
2044 // The result is negative if one and only one of inputs is negative.
2045 bool ResIsNegative = isNegative() ^ RHS.isNegative();
2047 return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2048 : APInt::getSignedMaxValue(BitWidth);
2051 APInt APInt::umul_sat(const APInt &RHS) const {
2052 bool Overflow;
2053 APInt Res = umul_ov(RHS, Overflow);
2054 if (!Overflow)
2055 return Res;
2057 return APInt::getMaxValue(BitWidth);
2060 APInt APInt::sshl_sat(const APInt &RHS) const {
2061 return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2064 APInt APInt::sshl_sat(unsigned RHS) const {
2065 bool Overflow;
2066 APInt Res = sshl_ov(RHS, Overflow);
2067 if (!Overflow)
2068 return Res;
2070 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2071 : APInt::getSignedMaxValue(BitWidth);
2074 APInt APInt::ushl_sat(const APInt &RHS) const {
2075 return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2078 APInt APInt::ushl_sat(unsigned RHS) const {
2079 bool Overflow;
2080 APInt Res = ushl_ov(RHS, Overflow);
2081 if (!Overflow)
2082 return Res;
2084 return APInt::getMaxValue(BitWidth);
2087 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2088 // Check our assumptions here
2089 assert(!str.empty() && "Invalid string length");
2090 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2091 radix == 36) &&
2092 "Radix should be 2, 8, 10, 16, or 36!");
2094 StringRef::iterator p = str.begin();
2095 size_t slen = str.size();
2096 bool isNeg = *p == '-';
2097 if (*p == '-' || *p == '+') {
2098 p++;
2099 slen--;
2100 assert(slen && "String is only a sign, needs a value.");
2102 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2103 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2104 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2105 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2106 "Insufficient bit width");
2108 // Allocate memory if needed
2109 if (isSingleWord())
2110 U.VAL = 0;
2111 else
2112 U.pVal = getClearedMemory(getNumWords());
2114 // Figure out if we can shift instead of multiply
2115 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2117 // Enter digit traversal loop
2118 for (StringRef::iterator e = str.end(); p != e; ++p) {
2119 unsigned digit = getDigit(*p, radix);
2120 assert(digit < radix && "Invalid character in digit string");
2122 // Shift or multiply the value by the radix
2123 if (slen > 1) {
2124 if (shift)
2125 *this <<= shift;
2126 else
2127 *this *= radix;
2130 // Add in the digit we just interpreted
2131 *this += digit;
2133 // If its negative, put it in two's complement form
2134 if (isNeg)
2135 this->negate();
2138 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2139 bool formatAsCLiteral, bool UpperCase,
2140 bool InsertSeparators) const {
2141 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2142 Radix == 36) &&
2143 "Radix should be 2, 8, 10, 16, or 36!");
2145 const char *Prefix = "";
2146 if (formatAsCLiteral) {
2147 switch (Radix) {
2148 case 2:
2149 // Binary literals are a non-standard extension added in gcc 4.3:
2150 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2151 Prefix = "0b";
2152 break;
2153 case 8:
2154 Prefix = "0";
2155 break;
2156 case 10:
2157 break; // No prefix
2158 case 16:
2159 Prefix = "0x";
2160 break;
2161 default:
2162 llvm_unreachable("Invalid radix!");
2166 // Number of digits in a group between separators.
2167 unsigned Grouping = (Radix == 8 || Radix == 10) ? 3 : 4;
2169 // First, check for a zero value and just short circuit the logic below.
2170 if (isZero()) {
2171 while (*Prefix) {
2172 Str.push_back(*Prefix);
2173 ++Prefix;
2175 Str.push_back('0');
2176 return;
2179 static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2180 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2181 const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2183 if (isSingleWord()) {
2184 char Buffer[65];
2185 char *BufPtr = std::end(Buffer);
2187 uint64_t N;
2188 if (!Signed) {
2189 N = getZExtValue();
2190 } else {
2191 int64_t I = getSExtValue();
2192 if (I >= 0) {
2193 N = I;
2194 } else {
2195 Str.push_back('-');
2196 N = -(uint64_t)I;
2200 while (*Prefix) {
2201 Str.push_back(*Prefix);
2202 ++Prefix;
2205 int Pos = 0;
2206 while (N) {
2207 if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2208 *--BufPtr = '\'';
2209 *--BufPtr = Digits[N % Radix];
2210 N /= Radix;
2211 Pos++;
2213 Str.append(BufPtr, std::end(Buffer));
2214 return;
2217 APInt Tmp(*this);
2219 if (Signed && isNegative()) {
2220 // They want to print the signed version and it is a negative value
2221 // Flip the bits and add one to turn it into the equivalent positive
2222 // value and put a '-' in the result.
2223 Tmp.negate();
2224 Str.push_back('-');
2227 while (*Prefix) {
2228 Str.push_back(*Prefix);
2229 ++Prefix;
2232 // We insert the digits backward, then reverse them to get the right order.
2233 unsigned StartDig = Str.size();
2235 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2236 // because the number of bits per digit (1, 3 and 4 respectively) divides
2237 // equally. We just shift until the value is zero.
2238 if (Radix == 2 || Radix == 8 || Radix == 16) {
2239 // Just shift tmp right for each digit width until it becomes zero
2240 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2241 unsigned MaskAmt = Radix - 1;
2243 int Pos = 0;
2244 while (Tmp.getBoolValue()) {
2245 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2246 if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2247 Str.push_back('\'');
2249 Str.push_back(Digits[Digit]);
2250 Tmp.lshrInPlace(ShiftAmt);
2251 Pos++;
2253 } else {
2254 int Pos = 0;
2255 while (Tmp.getBoolValue()) {
2256 uint64_t Digit;
2257 udivrem(Tmp, Radix, Tmp, Digit);
2258 assert(Digit < Radix && "divide failed");
2259 if (InsertSeparators && Pos % Grouping == 0 && Pos > 0)
2260 Str.push_back('\'');
2262 Str.push_back(Digits[Digit]);
2263 Pos++;
2267 // Reverse the digits before returning.
2268 std::reverse(Str.begin()+StartDig, Str.end());
2271 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2272 LLVM_DUMP_METHOD void APInt::dump() const {
2273 SmallString<40> S, U;
2274 this->toStringUnsigned(U);
2275 this->toStringSigned(S);
2276 dbgs() << "APInt(" << BitWidth << "b, "
2277 << U << "u " << S << "s)\n";
2279 #endif
2281 void APInt::print(raw_ostream &OS, bool isSigned) const {
2282 SmallString<40> S;
2283 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2284 OS << S;
2287 // This implements a variety of operations on a representation of
2288 // arbitrary precision, two's-complement, bignum integer values.
2290 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2291 // and unrestricting assumption.
2292 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2293 "Part width must be divisible by 2!");
2295 // Returns the integer part with the least significant BITS set.
2296 // BITS cannot be zero.
2297 static inline APInt::WordType lowBitMask(unsigned bits) {
2298 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2299 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2302 /// Returns the value of the lower half of PART.
2303 static inline APInt::WordType lowHalf(APInt::WordType part) {
2304 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2307 /// Returns the value of the upper half of PART.
2308 static inline APInt::WordType highHalf(APInt::WordType part) {
2309 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2312 /// Sets the least significant part of a bignum to the input value, and zeroes
2313 /// out higher parts.
2314 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2315 assert(parts > 0);
2316 dst[0] = part;
2317 for (unsigned i = 1; i < parts; i++)
2318 dst[i] = 0;
2321 /// Assign one bignum to another.
2322 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2323 for (unsigned i = 0; i < parts; i++)
2324 dst[i] = src[i];
2327 /// Returns true if a bignum is zero, false otherwise.
2328 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2329 for (unsigned i = 0; i < parts; i++)
2330 if (src[i])
2331 return false;
2333 return true;
2336 /// Extract the given bit of a bignum; returns 0 or 1.
2337 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2338 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2341 /// Set the given bit of a bignum.
2342 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2343 parts[whichWord(bit)] |= maskBit(bit);
2346 /// Clears the given bit of a bignum.
2347 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2348 parts[whichWord(bit)] &= ~maskBit(bit);
2351 /// Returns the bit number of the least significant set bit of a number. If the
2352 /// input number has no bits set UINT_MAX is returned.
2353 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2354 for (unsigned i = 0; i < n; i++) {
2355 if (parts[i] != 0) {
2356 unsigned lsb = llvm::countr_zero(parts[i]);
2357 return lsb + i * APINT_BITS_PER_WORD;
2361 return UINT_MAX;
2364 /// Returns the bit number of the most significant set bit of a number.
2365 /// If the input number has no bits set UINT_MAX is returned.
2366 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2367 do {
2368 --n;
2370 if (parts[n] != 0) {
2371 static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2372 unsigned msb = llvm::Log2_64(parts[n]);
2374 return msb + n * APINT_BITS_PER_WORD;
2376 } while (n);
2378 return UINT_MAX;
2381 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2382 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2383 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled.
2384 /// */
2385 void
2386 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2387 unsigned srcBits, unsigned srcLSB) {
2388 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2389 assert(dstParts <= dstCount);
2391 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2392 tcAssign(dst, src + firstSrcPart, dstParts);
2394 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2395 tcShiftRight(dst, dstParts, shift);
2397 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2398 // in DST. If this is less that srcBits, append the rest, else
2399 // clear the high bits.
2400 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2401 if (n < srcBits) {
2402 WordType mask = lowBitMask (srcBits - n);
2403 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2404 << n % APINT_BITS_PER_WORD);
2405 } else if (n > srcBits) {
2406 if (srcBits % APINT_BITS_PER_WORD)
2407 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2410 // Clear high parts.
2411 while (dstParts < dstCount)
2412 dst[dstParts++] = 0;
2415 //// DST += RHS + C where C is zero or one. Returns the carry flag.
2416 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2417 WordType c, unsigned parts) {
2418 assert(c <= 1);
2420 for (unsigned i = 0; i < parts; i++) {
2421 WordType l = dst[i];
2422 if (c) {
2423 dst[i] += rhs[i] + 1;
2424 c = (dst[i] <= l);
2425 } else {
2426 dst[i] += rhs[i];
2427 c = (dst[i] < l);
2431 return c;
2434 /// This function adds a single "word" integer, src, to the multiple
2435 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2436 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2437 /// @returns the carry of the addition.
2438 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2439 unsigned parts) {
2440 for (unsigned i = 0; i < parts; ++i) {
2441 dst[i] += src;
2442 if (dst[i] >= src)
2443 return 0; // No need to carry so exit early.
2444 src = 1; // Carry one to next digit.
2447 return 1;
2450 /// DST -= RHS + C where C is zero or one. Returns the carry flag.
2451 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2452 WordType c, unsigned parts) {
2453 assert(c <= 1);
2455 for (unsigned i = 0; i < parts; i++) {
2456 WordType l = dst[i];
2457 if (c) {
2458 dst[i] -= rhs[i] + 1;
2459 c = (dst[i] >= l);
2460 } else {
2461 dst[i] -= rhs[i];
2462 c = (dst[i] > l);
2466 return c;
2469 /// This function subtracts a single "word" (64-bit word), src, from
2470 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2471 /// no further borrowing is needed or it runs out of "words" in dst. The result
2472 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2473 /// exhausted. In other words, if src > dst then this function returns 1,
2474 /// otherwise 0.
2475 /// @returns the borrow out of the subtraction
2476 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2477 unsigned parts) {
2478 for (unsigned i = 0; i < parts; ++i) {
2479 WordType Dst = dst[i];
2480 dst[i] -= src;
2481 if (src <= Dst)
2482 return 0; // No need to borrow so exit early.
2483 src = 1; // We have to "borrow 1" from next "word"
2486 return 1;
2489 /// Negate a bignum in-place.
2490 void APInt::tcNegate(WordType *dst, unsigned parts) {
2491 tcComplement(dst, parts);
2492 tcIncrement(dst, parts);
2495 /// DST += SRC * MULTIPLIER + CARRY if add is true
2496 /// DST = SRC * MULTIPLIER + CARRY if add is false
2497 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2498 /// they must start at the same point, i.e. DST == SRC.
2499 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2500 /// returned. Otherwise DST is filled with the least significant
2501 /// DSTPARTS parts of the result, and if all of the omitted higher
2502 /// parts were zero return zero, otherwise overflow occurred and
2503 /// return one.
2504 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2505 WordType multiplier, WordType carry,
2506 unsigned srcParts, unsigned dstParts,
2507 bool add) {
2508 // Otherwise our writes of DST kill our later reads of SRC.
2509 assert(dst <= src || dst >= src + srcParts);
2510 assert(dstParts <= srcParts + 1);
2512 // N loops; minimum of dstParts and srcParts.
2513 unsigned n = std::min(dstParts, srcParts);
2515 for (unsigned i = 0; i < n; i++) {
2516 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2517 // This cannot overflow, because:
2518 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2519 // which is less than n^2.
2520 WordType srcPart = src[i];
2521 WordType low, mid, high;
2522 if (multiplier == 0 || srcPart == 0) {
2523 low = carry;
2524 high = 0;
2525 } else {
2526 low = lowHalf(srcPart) * lowHalf(multiplier);
2527 high = highHalf(srcPart) * highHalf(multiplier);
2529 mid = lowHalf(srcPart) * highHalf(multiplier);
2530 high += highHalf(mid);
2531 mid <<= APINT_BITS_PER_WORD / 2;
2532 if (low + mid < low)
2533 high++;
2534 low += mid;
2536 mid = highHalf(srcPart) * lowHalf(multiplier);
2537 high += highHalf(mid);
2538 mid <<= APINT_BITS_PER_WORD / 2;
2539 if (low + mid < low)
2540 high++;
2541 low += mid;
2543 // Now add carry.
2544 if (low + carry < low)
2545 high++;
2546 low += carry;
2549 if (add) {
2550 // And now DST[i], and store the new low part there.
2551 if (low + dst[i] < low)
2552 high++;
2553 dst[i] += low;
2554 } else
2555 dst[i] = low;
2557 carry = high;
2560 if (srcParts < dstParts) {
2561 // Full multiplication, there is no overflow.
2562 assert(srcParts + 1 == dstParts);
2563 dst[srcParts] = carry;
2564 return 0;
2567 // We overflowed if there is carry.
2568 if (carry)
2569 return 1;
2571 // We would overflow if any significant unwritten parts would be
2572 // non-zero. This is true if any remaining src parts are non-zero
2573 // and the multiplier is non-zero.
2574 if (multiplier)
2575 for (unsigned i = dstParts; i < srcParts; i++)
2576 if (src[i])
2577 return 1;
2579 // We fitted in the narrow destination.
2580 return 0;
2583 /// DST = LHS * RHS, where DST has the same width as the operands and
2584 /// is filled with the least significant parts of the result. Returns
2585 /// one if overflow occurred, otherwise zero. DST must be disjoint
2586 /// from both operands.
2587 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2588 const WordType *rhs, unsigned parts) {
2589 assert(dst != lhs && dst != rhs);
2591 int overflow = 0;
2593 for (unsigned i = 0; i < parts; i++) {
2594 // Don't accumulate on the first iteration so we don't need to initalize
2595 // dst to 0.
2596 overflow |=
2597 tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, parts - i, i != 0);
2600 return overflow;
2603 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2604 /// operands. No overflow occurs. DST must be disjoint from both operands.
2605 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2606 const WordType *rhs, unsigned lhsParts,
2607 unsigned rhsParts) {
2608 // Put the narrower number on the LHS for less loops below.
2609 if (lhsParts > rhsParts)
2610 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2612 assert(dst != lhs && dst != rhs);
2614 for (unsigned i = 0; i < lhsParts; i++) {
2615 // Don't accumulate on the first iteration so we don't need to initalize
2616 // dst to 0.
2617 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, i != 0);
2621 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2622 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2623 // set REMAINDER to the remainder, return zero. i.e.
2625 // OLD_LHS = RHS * LHS + REMAINDER
2627 // SCRATCH is a bignum of the same size as the operands and result for
2628 // use by the routine; its contents need not be initialized and are
2629 // destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2630 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2631 WordType *remainder, WordType *srhs,
2632 unsigned parts) {
2633 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2635 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2636 if (shiftCount == 0)
2637 return true;
2639 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2640 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2641 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2643 tcAssign(srhs, rhs, parts);
2644 tcShiftLeft(srhs, parts, shiftCount);
2645 tcAssign(remainder, lhs, parts);
2646 tcSet(lhs, 0, parts);
2648 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2649 // total.
2650 for (;;) {
2651 int compare = tcCompare(remainder, srhs, parts);
2652 if (compare >= 0) {
2653 tcSubtract(remainder, srhs, 0, parts);
2654 lhs[n] |= mask;
2657 if (shiftCount == 0)
2658 break;
2659 shiftCount--;
2660 tcShiftRight(srhs, parts, 1);
2661 if ((mask >>= 1) == 0) {
2662 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2663 n--;
2667 return false;
2670 /// Shift a bignum left Count bits in-place. Shifted in bits are zero. There are
2671 /// no restrictions on Count.
2672 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2673 // Don't bother performing a no-op shift.
2674 if (!Count)
2675 return;
2677 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2678 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2679 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2681 // Fastpath for moving by whole words.
2682 if (BitShift == 0) {
2683 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2684 } else {
2685 while (Words-- > WordShift) {
2686 Dst[Words] = Dst[Words - WordShift] << BitShift;
2687 if (Words > WordShift)
2688 Dst[Words] |=
2689 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2693 // Fill in the remainder with 0s.
2694 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2697 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2698 /// are no restrictions on Count.
2699 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2700 // Don't bother performing a no-op shift.
2701 if (!Count)
2702 return;
2704 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2705 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2706 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2708 unsigned WordsToMove = Words - WordShift;
2709 // Fastpath for moving by whole words.
2710 if (BitShift == 0) {
2711 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2712 } else {
2713 for (unsigned i = 0; i != WordsToMove; ++i) {
2714 Dst[i] = Dst[i + WordShift] >> BitShift;
2715 if (i + 1 != WordsToMove)
2716 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2720 // Fill in the remainder with 0s.
2721 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2724 // Comparison (unsigned) of two bignums.
2725 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2726 unsigned parts) {
2727 while (parts) {
2728 parts--;
2729 if (lhs[parts] != rhs[parts])
2730 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2733 return 0;
2736 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2737 APInt::Rounding RM) {
2738 // Currently udivrem always rounds down.
2739 switch (RM) {
2740 case APInt::Rounding::DOWN:
2741 case APInt::Rounding::TOWARD_ZERO:
2742 return A.udiv(B);
2743 case APInt::Rounding::UP: {
2744 APInt Quo, Rem;
2745 APInt::udivrem(A, B, Quo, Rem);
2746 if (Rem.isZero())
2747 return Quo;
2748 return Quo + 1;
2751 llvm_unreachable("Unknown APInt::Rounding enum");
2754 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2755 APInt::Rounding RM) {
2756 switch (RM) {
2757 case APInt::Rounding::DOWN:
2758 case APInt::Rounding::UP: {
2759 APInt Quo, Rem;
2760 APInt::sdivrem(A, B, Quo, Rem);
2761 if (Rem.isZero())
2762 return Quo;
2763 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2764 // We want to check whether the non-integer part of the mathematical value
2765 // is negative or not. If the non-integer part is negative, we need to round
2766 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2767 // already rounded down.
2768 if (RM == APInt::Rounding::DOWN) {
2769 if (Rem.isNegative() != B.isNegative())
2770 return Quo - 1;
2771 return Quo;
2773 if (Rem.isNegative() != B.isNegative())
2774 return Quo;
2775 return Quo + 1;
2777 // Currently sdiv rounds towards zero.
2778 case APInt::Rounding::TOWARD_ZERO:
2779 return A.sdiv(B);
2781 llvm_unreachable("Unknown APInt::Rounding enum");
2784 std::optional<APInt>
2785 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2786 unsigned RangeWidth) {
2787 unsigned CoeffWidth = A.getBitWidth();
2788 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2789 assert(RangeWidth <= CoeffWidth &&
2790 "Value range width should be less than coefficient width");
2791 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2793 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2794 << "x + " << C << ", rw:" << RangeWidth << '\n');
2796 // Identify 0 as a (non)solution immediately.
2797 if (C.sextOrTrunc(RangeWidth).isZero()) {
2798 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2799 return APInt(CoeffWidth, 0);
2802 // The result of APInt arithmetic has the same bit width as the operands,
2803 // so it can actually lose high bits. A product of two n-bit integers needs
2804 // 2n-1 bits to represent the full value.
2805 // The operation done below (on quadratic coefficients) that can produce
2806 // the largest value is the evaluation of the equation during bisection,
2807 // which needs 3 times the bitwidth of the coefficient, so the total number
2808 // of required bits is 3n.
2810 // The purpose of this extension is to simulate the set Z of all integers,
2811 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2812 // and negative numbers (not so much in a modulo arithmetic). The method
2813 // used to solve the equation is based on the standard formula for real
2814 // numbers, and uses the concepts of "positive" and "negative" with their
2815 // usual meanings.
2816 CoeffWidth *= 3;
2817 A = A.sext(CoeffWidth);
2818 B = B.sext(CoeffWidth);
2819 C = C.sext(CoeffWidth);
2821 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2822 // the bit width has increased.
2823 if (A.isNegative()) {
2824 A.negate();
2825 B.negate();
2826 C.negate();
2829 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2830 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2831 // and R = 2^BitWidth.
2832 // Since we're trying not only to find exact solutions, but also values
2833 // that "wrap around", such a set will always have a solution, i.e. an x
2834 // that satisfies at least one of the equations, or such that |q(x)|
2835 // exceeds kR, while |q(x-1)| for the same k does not.
2837 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2838 // positive solution n (in the above sense), and also such that the n
2839 // will be the least among all solutions corresponding to k = 0, 1, ...
2840 // (more precisely, the least element in the set
2841 // { n(k) | k is such that a solution n(k) exists }).
2843 // Consider the parabola (over real numbers) that corresponds to the
2844 // quadratic equation. Since A > 0, the arms of the parabola will point
2845 // up. Picking different values of k will shift it up and down by R.
2847 // We want to shift the parabola in such a way as to reduce the problem
2848 // of solving q(x) = kR to solving shifted_q(x) = 0.
2849 // (The interesting solutions are the ceilings of the real number
2850 // solutions.)
2851 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2852 APInt TwoA = 2 * A;
2853 APInt SqrB = B * B;
2854 bool PickLow;
2856 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2857 assert(A.isStrictlyPositive());
2858 APInt T = V.abs().urem(A);
2859 if (T.isZero())
2860 return V;
2861 return V.isNegative() ? V+T : V+(A-T);
2864 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2865 // iff B is positive.
2866 if (B.isNonNegative()) {
2867 // If B >= 0, the vertex it at a negative location (or at 0), so in
2868 // order to have a non-negative solution we need to pick k that makes
2869 // C-kR negative. To satisfy all the requirements for the solution
2870 // that we are looking for, it needs to be closest to 0 of all k.
2871 C = C.srem(R);
2872 if (C.isStrictlyPositive())
2873 C -= R;
2874 // Pick the greater solution.
2875 PickLow = false;
2876 } else {
2877 // If B < 0, the vertex is at a positive location. For any solution
2878 // to exist, the discriminant must be non-negative. This means that
2879 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2880 // lower bound on values of k: kR >= C - B^2/4A.
2881 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2882 // Round LowkR up (towards +inf) to the nearest kR.
2883 LowkR = RoundUp(LowkR, R);
2885 // If there exists k meeting the condition above, and such that
2886 // C-kR > 0, there will be two positive real number solutions of
2887 // q(x) = kR. Out of all such values of k, pick the one that makes
2888 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2889 // In other words, find maximum k such that LowkR <= kR < C.
2890 if (C.sgt(LowkR)) {
2891 // If LowkR < C, then such a k is guaranteed to exist because
2892 // LowkR itself is a multiple of R.
2893 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2894 // Pick the smaller solution.
2895 PickLow = true;
2896 } else {
2897 // If C-kR < 0 for all potential k's, it means that one solution
2898 // will be negative, while the other will be positive. The positive
2899 // solution will shift towards 0 if the parabola is moved up.
2900 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2901 // to 0, or in other words, out of all parabolas that have solutions,
2902 // pick the one that is the farthest "up").
2903 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2904 C -= LowkR;
2905 // Pick the greater solution.
2906 PickLow = false;
2910 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2911 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2913 APInt D = SqrB - 4*A*C;
2914 assert(D.isNonNegative() && "Negative discriminant");
2915 APInt SQ = D.sqrt();
2917 APInt Q = SQ * SQ;
2918 bool InexactSQ = Q != D;
2919 // The calculated SQ may actually be greater than the exact (non-integer)
2920 // value. If that's the case, decrement SQ to get a value that is lower.
2921 if (Q.sgt(D))
2922 SQ -= 1;
2924 APInt X;
2925 APInt Rem;
2927 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2928 // When using the quadratic formula directly, the calculated low root
2929 // may be greater than the exact one, since we would be subtracting SQ.
2930 // To make sure that the calculated root is not greater than the exact
2931 // one, subtract SQ+1 when calculating the low root (for inexact value
2932 // of SQ).
2933 if (PickLow)
2934 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2935 else
2936 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2938 // The updated coefficients should be such that the (exact) solution is
2939 // positive. Since APInt division rounds towards 0, the calculated one
2940 // can be 0, but cannot be negative.
2941 assert(X.isNonNegative() && "Solution should be non-negative");
2943 if (!InexactSQ && Rem.isZero()) {
2944 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2945 return X;
2948 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2949 // The exact value of the square root of D should be between SQ and SQ+1.
2950 // This implies that the solution should be between that corresponding to
2951 // SQ (i.e. X) and that corresponding to SQ+1.
2953 // The calculated X cannot be greater than the exact (real) solution.
2954 // Actually it must be strictly less than the exact solution, while
2955 // X+1 will be greater than or equal to it.
2957 APInt VX = (A*X + B)*X + C;
2958 APInt VY = VX + TwoA*X + A + B;
2959 bool SignChange =
2960 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2961 // If the sign did not change between X and X+1, X is not a valid solution.
2962 // This could happen when the actual (exact) roots don't have an integer
2963 // between them, so they would both be contained between X and X+1.
2964 if (!SignChange) {
2965 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2966 return std::nullopt;
2969 X += 1;
2970 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2971 return X;
2974 std::optional<unsigned>
2975 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2976 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2977 if (A == B)
2978 return std::nullopt;
2979 return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2982 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2983 bool MatchAllBits) {
2984 unsigned OldBitWidth = A.getBitWidth();
2985 assert((((OldBitWidth % NewBitWidth) == 0) ||
2986 ((NewBitWidth % OldBitWidth) == 0)) &&
2987 "One size should be a multiple of the other one. "
2988 "Can't do fractional scaling.");
2990 // Check for matching bitwidths.
2991 if (OldBitWidth == NewBitWidth)
2992 return A;
2994 APInt NewA = APInt::getZero(NewBitWidth);
2996 // Check for null input.
2997 if (A.isZero())
2998 return NewA;
3000 if (NewBitWidth > OldBitWidth) {
3001 // Repeat bits.
3002 unsigned Scale = NewBitWidth / OldBitWidth;
3003 for (unsigned i = 0; i != OldBitWidth; ++i)
3004 if (A[i])
3005 NewA.setBits(i * Scale, (i + 1) * Scale);
3006 } else {
3007 unsigned Scale = OldBitWidth / NewBitWidth;
3008 for (unsigned i = 0; i != NewBitWidth; ++i) {
3009 if (MatchAllBits) {
3010 if (A.extractBits(Scale, i * Scale).isAllOnes())
3011 NewA.setBit(i);
3012 } else {
3013 if (!A.extractBits(Scale, i * Scale).isZero())
3014 NewA.setBit(i);
3019 return NewA;
3022 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3023 /// with the integer held in IntVal.
3024 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3025 unsigned StoreBytes) {
3026 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3027 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3029 if (sys::IsLittleEndianHost) {
3030 // Little-endian host - the source is ordered from LSB to MSB. Order the
3031 // destination from LSB to MSB: Do a straight copy.
3032 memcpy(Dst, Src, StoreBytes);
3033 } else {
3034 // Big-endian host - the source is an array of 64 bit words ordered from
3035 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
3036 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3037 while (StoreBytes > sizeof(uint64_t)) {
3038 StoreBytes -= sizeof(uint64_t);
3039 // May not be aligned so use memcpy.
3040 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3041 Src += sizeof(uint64_t);
3044 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3048 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3049 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3050 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3051 unsigned LoadBytes) {
3052 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3053 uint8_t *Dst = reinterpret_cast<uint8_t *>(
3054 const_cast<uint64_t *>(IntVal.getRawData()));
3056 if (sys::IsLittleEndianHost)
3057 // Little-endian host - the destination must be ordered from LSB to MSB.
3058 // The source is ordered from LSB to MSB: Do a straight copy.
3059 memcpy(Dst, Src, LoadBytes);
3060 else {
3061 // Big-endian - the destination is an array of 64 bit words ordered from
3062 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
3063 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3064 // a word.
3065 while (LoadBytes > sizeof(uint64_t)) {
3066 LoadBytes -= sizeof(uint64_t);
3067 // May not be aligned so use memcpy.
3068 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3069 Dst += sizeof(uint64_t);
3072 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3076 APInt APIntOps::avgFloorS(const APInt &C1, const APInt &C2) {
3077 // Return floor((C1 + C2) / 2)
3078 return (C1 & C2) + (C1 ^ C2).ashr(1);
3081 APInt APIntOps::avgFloorU(const APInt &C1, const APInt &C2) {
3082 // Return floor((C1 + C2) / 2)
3083 return (C1 & C2) + (C1 ^ C2).lshr(1);
3086 APInt APIntOps::avgCeilS(const APInt &C1, const APInt &C2) {
3087 // Return ceil((C1 + C2) / 2)
3088 return (C1 | C2) - (C1 ^ C2).ashr(1);
3091 APInt APIntOps::avgCeilU(const APInt &C1, const APInt &C2) {
3092 // Return ceil((C1 + C2) / 2)
3093 return (C1 | C2) - (C1 ^ C2).lshr(1);
3096 APInt APIntOps::mulhs(const APInt &C1, const APInt &C2) {
3097 assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths");
3098 unsigned FullWidth = C1.getBitWidth() * 2;
3099 APInt C1Ext = C1.sext(FullWidth);
3100 APInt C2Ext = C2.sext(FullWidth);
3101 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
3104 APInt APIntOps::mulhu(const APInt &C1, const APInt &C2) {
3105 assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths");
3106 unsigned FullWidth = C1.getBitWidth() * 2;
3107 APInt C1Ext = C1.zext(FullWidth);
3108 APInt C2Ext = C2.zext(FullWidth);
3109 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
3112 APInt APIntOps::pow(const APInt &X, int64_t N) {
3113 assert(N >= 0 && "negative exponents not supported.");
3114 APInt Acc = APInt(X.getBitWidth(), 1);
3115 if (N == 0)
3116 return Acc;
3117 APInt Base = X;
3118 int64_t RemainingExponent = N;
3119 while (RemainingExponent > 0) {
3120 while (RemainingExponent % 2 == 0) {
3121 Base *= Base;
3122 RemainingExponent /= 2;
3124 --RemainingExponent;
3125 Acc *= Base;
3127 return Acc;