[llvm][NFC] Rework Timer.cpp globals to ensure valid lifetimes (#121663)
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64SchedA53.td
blobc714bad92b7fbb62529ba655c9d7788e7b355129
1 //==- AArch64SchedA53.td - Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the itinerary class data for the ARM Cortex A53 processors.
11 //===----------------------------------------------------------------------===//
13 // ===---------------------------------------------------------------------===//
14 // The following definitions describe the simpler per-operand machine model.
15 // This works with MachineScheduler. See MCSchedule.h for details.
17 // Cortex-A53 machine model for scheduling and other instruction cost heuristics.
18 def CortexA53Model : SchedMachineModel {
19   let MicroOpBufferSize = 0; // Explicitly set to zero since A53 is in-order.
20   let IssueWidth = 2;        // 2 micro-ops are dispatched per cycle.
21   let LoadLatency = 3;       // Optimistic load latency assuming bypass.
22                              // This is overriden by OperandCycles if the
23                              // Itineraries are queried instead.
24   let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
25                              // Specification - Instruction Timings"
26                              // v 1.0 Spreadsheet
27   let CompleteModel = 1;
29   list<Predicate> UnsupportedFeatures = !listconcat(SVEUnsupported.F,
30                                                     PAUnsupported.F,
31                                                     SMEUnsupported.F,
32                                                     [HasMTE, HasCSSC]);
36 //===----------------------------------------------------------------------===//
37 // Define each kind of processor resource and number available.
39 // Modeling each pipeline as a ProcResource using the BufferSize = 0 since
40 // Cortex-A53 is in-order.
42 def A53UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU
43 def A53UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC
44 def A53UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division
45 def A53UnitLdSt   : ProcResource<1> { let BufferSize = 0; } // Load/Store
46 def A53UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch
47 def A53UnitFPALU  : ProcResource<1> { let BufferSize = 0; } // FP ALU
48 def A53UnitFPMDS  : ProcResource<1> { let BufferSize = 0; } // FP Mult/Div/Sqrt
51 //===----------------------------------------------------------------------===//
52 // Subtarget-specific SchedWrite types which both map the ProcResources and
53 // set the latency.
55 let SchedModel = CortexA53Model in {
57 // ALU - Despite having a full latency of 4, most of the ALU instructions can
58 //       forward a cycle earlier and then two cycles earlier in the case of a
59 //       shift-only instruction. These latencies will be incorrect when the
60 //       result cannot be forwarded, but modeling isn't rocket surgery.
61 def : WriteRes<WriteImm, [A53UnitALU]> { let Latency = 3; }
62 def : WriteRes<WriteI, [A53UnitALU]> { let Latency = 3; }
63 def : WriteRes<WriteISReg, [A53UnitALU]> { let Latency = 3; }
64 def : WriteRes<WriteIEReg, [A53UnitALU]> { let Latency = 3; }
65 def : WriteRes<WriteIS, [A53UnitALU]> { let Latency = 2; }
66 def : WriteRes<WriteExtr, [A53UnitALU]> { let Latency = 3; }
68 // MAC
69 def : WriteRes<WriteIM32, [A53UnitMAC]> { let Latency = 4; }
70 def : WriteRes<WriteIM64, [A53UnitMAC]> { let Latency = 4; }
72 // Div
73 def : WriteRes<WriteID32, [A53UnitDiv]> { let Latency = 4; }
74 def : WriteRes<WriteID64, [A53UnitDiv]> { let Latency = 4; }
76 // Load
77 def : WriteRes<WriteLD, [A53UnitLdSt]> { let Latency = 4; }
78 def : WriteRes<WriteLDIdx, [A53UnitLdSt]> { let Latency = 4; }
79 def : WriteRes<WriteLDHi, [A53UnitLdSt]> { let Latency = 4; }
81 // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
82 //               below, choosing the median of 3 which makes the latency 6.
83 //               May model this more carefully in the future. The remaining
84 //               A53WriteVLD# types represent the 1-5 cycle issues explicitly.
85 def : WriteRes<WriteVLD, [A53UnitLdSt]> { let Latency = 6;
86                                           let ReleaseAtCycles = [3]; }
87 def A53WriteVLD1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
88 def A53WriteVLD2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
89                                                   let ReleaseAtCycles = [2]; }
90 def A53WriteVLD3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
91                                                   let ReleaseAtCycles = [3]; }
92 def A53WriteVLD4 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 7;
93                                                   let ReleaseAtCycles = [4]; }
94 def A53WriteVLD5 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 8;
95                                                   let ReleaseAtCycles = [5]; }
97 // Pre/Post Indexing - Performed as part of address generation which is already
98 //                     accounted for in the WriteST* latencies below
99 def : WriteRes<WriteAdr, []> { let Latency = 0; }
101 // Store
102 def : WriteRes<WriteST, [A53UnitLdSt]> { let Latency = 4; }
103 def : WriteRes<WriteSTP, [A53UnitLdSt]> { let Latency = 4; }
104 def : WriteRes<WriteSTIdx, [A53UnitLdSt]> { let Latency = 4; }
105 def : WriteRes<WriteSTX, [A53UnitLdSt]> { let Latency = 4; }
107 // Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
108 def : WriteRes<WriteVST, [A53UnitLdSt]> { let Latency = 5;
109                                           let ReleaseAtCycles = [2];}
110 def A53WriteVST1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
111 def A53WriteVST2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
112                                                   let ReleaseAtCycles = [2]; }
113 def A53WriteVST3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
114                                                   let ReleaseAtCycles = [3]; }
116 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
118 // Branch
119 def : WriteRes<WriteBr, [A53UnitB]>;
120 def : WriteRes<WriteBrReg, [A53UnitB]>;
121 def : WriteRes<WriteSys, [A53UnitB]>;
122 def : WriteRes<WriteBarrier, [A53UnitB]>;
123 def : WriteRes<WriteHint, [A53UnitB]>;
125 // FP ALU
126 def : WriteRes<WriteF, [A53UnitFPALU]> { let Latency = 6; }
127 def : WriteRes<WriteFCmp, [A53UnitFPALU]> { let Latency = 6; }
128 def : WriteRes<WriteFCvt, [A53UnitFPALU]> { let Latency = 6; }
129 def : WriteRes<WriteFCopy, [A53UnitFPALU]> { let Latency = 6; }
130 def : WriteRes<WriteFImm, [A53UnitFPALU]> { let Latency = 6; }
131 def : WriteRes<WriteVd, [A53UnitFPALU]> { let Latency = 6; }
132 def : WriteRes<WriteVq, [A53UnitFPALU]> { let Latency = 6; }
134 // FP Mul, Div, Sqrt
135 def : WriteRes<WriteFMul, [A53UnitFPMDS]> { let Latency = 6; }
136 def : WriteRes<WriteFDiv, [A53UnitFPMDS]> { let Latency = 33;
137                                             let ReleaseAtCycles = [29]; }
138 def A53WriteFMAC : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 10; }
139 def A53WriteFDivSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 18;
140                                                      let ReleaseAtCycles = [14]; }
141 def A53WriteFDivDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 33;
142                                                      let ReleaseAtCycles = [29]; }
143 def A53WriteFSqrtSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 17;
144                                                       let ReleaseAtCycles = [13]; }
145 def A53WriteFSqrtDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 32;
146                                                       let ReleaseAtCycles = [28]; }
148 //===----------------------------------------------------------------------===//
149 // Subtarget-specific SchedRead types.
151 // No forwarding for these reads.
152 def : ReadAdvance<ReadExtrHi, 0>;
153 def : ReadAdvance<ReadAdrBase, 0>;
154 def : ReadAdvance<ReadST, 0>;
155 def : ReadAdvance<ReadVLD, 0>;
157 // ALU - Most operands in the ALU pipes are not needed for two cycles. Shiftable
158 //       operands are needed one cycle later if and only if they are to be
159 //       shifted. Otherwise, they too are needed two cycles later. This same
160 //       ReadAdvance applies to Extended registers as well, even though there is
161 //       a separate SchedPredicate for them.
162 def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
163                              WriteISReg, WriteIEReg,WriteIS,
164                              WriteID32,WriteID64,
165                              WriteIM32,WriteIM64]>;
166 def A53ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
167                                           WriteISReg, WriteIEReg,WriteIS,
168                                           WriteID32,WriteID64,
169                                           WriteIM32,WriteIM64]>;
170 def A53ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
171                                              WriteISReg, WriteIEReg,WriteIS,
172                                              WriteID32,WriteID64,
173                                              WriteIM32,WriteIM64]>;
174 def A53ReadISReg : SchedReadVariant<[
175         SchedVar<RegShiftedPred, [A53ReadShifted]>,
176         SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
177 def : SchedAlias<ReadISReg, A53ReadISReg>;
179 def A53ReadIEReg : SchedReadVariant<[
180         SchedVar<RegExtendedPred, [A53ReadShifted]>,
181         SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
182 def : SchedAlias<ReadIEReg, A53ReadIEReg>;
184 // MAC - Operands are generally needed one cycle later in the MAC pipe.
185 //       Accumulator operands are needed two cycles later.
186 def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
187                               WriteISReg, WriteIEReg,WriteIS,
188                               WriteID32,WriteID64,
189                               WriteIM32,WriteIM64]>;
190 def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
191                                WriteISReg, WriteIEReg,WriteIS,
192                                WriteID32,WriteID64,
193                                WriteIM32,WriteIM64]>;
195 // Div
196 def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
197                               WriteISReg, WriteIEReg,WriteIS,
198                               WriteID32,WriteID64,
199                               WriteIM32,WriteIM64]>;
201 //===----------------------------------------------------------------------===//
202 // Subtarget-specific InstRWs.
204 //---
205 // Miscellaneous
206 //---
207 def : InstRW<[WriteI], (instrs COPY)>;
209 //---
210 // Vector Loads
211 //---
212 def : InstRW<[A53WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;
213 def : InstRW<[A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
214 def : InstRW<[A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
215 def : InstRW<[A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
216 def : InstRW<[A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
217 def : InstRW<[A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
218 def : InstRW<[WriteAdr, A53WriteVLD1], (instregex "LD1i(8|16|32|64)_POST$")>;
219 def : InstRW<[WriteAdr, A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
220 def : InstRW<[WriteAdr, A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
221 def : InstRW<[WriteAdr, A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
222 def : InstRW<[WriteAdr, A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
223 def : InstRW<[WriteAdr, A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
225 def : InstRW<[A53WriteVLD1], (instregex "LD2i(8|16|32|64)$")>;
226 def : InstRW<[A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
227 def : InstRW<[A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
228 def : InstRW<[A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
229 def : InstRW<[WriteAdr, A53WriteVLD1], (instregex "LD2i(8|16|32|64)_POST$")>;
230 def : InstRW<[WriteAdr, A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
231 def : InstRW<[WriteAdr, A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)_POST$")>;
232 def : InstRW<[WriteAdr, A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)_POST$")>;
234 def : InstRW<[A53WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
235 def : InstRW<[A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
236 def : InstRW<[A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
237 def : InstRW<[A53WriteVLD3], (instregex "LD3Threev2d$")>;
238 def : InstRW<[WriteAdr, A53WriteVLD2], (instregex "LD3i(8|16|32|64)_POST$")>;
239 def : InstRW<[WriteAdr, A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
240 def : InstRW<[WriteAdr, A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
241 def : InstRW<[WriteAdr, A53WriteVLD3], (instregex "LD3Threev2d_POST$")>;
243 def : InstRW<[A53WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;
244 def : InstRW<[A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
245 def : InstRW<[A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
246 def : InstRW<[A53WriteVLD4], (instregex "LD4Fourv(2d)$")>;
247 def : InstRW<[WriteAdr, A53WriteVLD2], (instregex "LD4i(8|16|32|64)_POST$")>;
248 def : InstRW<[WriteAdr, A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
249 def : InstRW<[WriteAdr, A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
250 def : InstRW<[WriteAdr, A53WriteVLD4], (instregex "LD4Fourv(2d)_POST$")>;
252 //---
253 // Vector Stores
254 //---
255 def : InstRW<[A53WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
256 def : InstRW<[A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
257 def : InstRW<[A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
258 def : InstRW<[A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
259 def : InstRW<[A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
260 def : InstRW<[WriteAdr, A53WriteVST1], (instregex "ST1i(8|16|32|64)_POST$")>;
261 def : InstRW<[WriteAdr, A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
262 def : InstRW<[WriteAdr, A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
263 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
264 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
266 def : InstRW<[A53WriteVST1], (instregex "ST2i(8|16|32|64)$")>;
267 def : InstRW<[A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)$")>;
268 def : InstRW<[A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
269 def : InstRW<[WriteAdr, A53WriteVST1], (instregex "ST2i(8|16|32|64)_POST$")>;
270 def : InstRW<[WriteAdr, A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
271 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;
273 def : InstRW<[A53WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
274 def : InstRW<[A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
275 def : InstRW<[A53WriteVST2], (instregex "ST3Threev(2d)$")>;
276 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST3i(8|16|32|64)_POST$")>;
277 def : InstRW<[WriteAdr, A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
278 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST3Threev(2d)_POST$")>;
280 def : InstRW<[A53WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
281 def : InstRW<[A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
282 def : InstRW<[A53WriteVST2], (instregex "ST4Fourv(2d)$")>;
283 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST4i(8|16|32|64)_POST$")>;
284 def : InstRW<[WriteAdr, A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
285 def : InstRW<[WriteAdr, A53WriteVST2], (instregex "ST4Fourv(2d)_POST$")>;
287 //---
288 // Floating Point MAC, DIV, SQRT
289 //---
290 def : InstRW<[A53WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
291 def : InstRW<[A53WriteFMAC], (instregex "^FML(A|S).*")>;
292 def : InstRW<[A53WriteFDivSP], (instrs FDIVSrr)>;
293 def : InstRW<[A53WriteFDivDP], (instrs FDIVDrr)>;
294 def : InstRW<[A53WriteFDivSP], (instregex "^FDIVv.*32$")>;
295 def : InstRW<[A53WriteFDivDP], (instregex "^FDIVv.*64$")>;
296 def : InstRW<[A53WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
297 def : InstRW<[A53WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;