[AArch64] Fix movk parsing with an .equ operand (#124428)
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64StackTagging.cpp
blob694ee17f8e5f11e58536a1c09f4491b8ee9135b0
1 //===- AArch64StackTagging.cpp - Stack tagging in IR --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //===----------------------------------------------------------------------===//
10 #include "AArch64.h"
11 #include "AArch64Subtarget.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/MapVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/StackSafetyAnalysis.h"
24 #include "llvm/BinaryFormat/Dwarf.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/IntrinsicsAArch64.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Transforms/Utils/MemoryTaggingSupport.h"
47 #include <cassert>
48 #include <memory>
49 #include <utility>
51 using namespace llvm;
53 #define DEBUG_TYPE "aarch64-stack-tagging"
55 static cl::opt<bool> ClMergeInit(
56 "stack-tagging-merge-init", cl::Hidden, cl::init(true),
57 cl::desc("merge stack variable initializers with tagging when possible"));
59 static cl::opt<bool>
60 ClUseStackSafety("stack-tagging-use-stack-safety", cl::Hidden,
61 cl::init(true),
62 cl::desc("Use Stack Safety analysis results"));
64 static cl::opt<unsigned> ClScanLimit("stack-tagging-merge-init-scan-limit",
65 cl::init(40), cl::Hidden);
67 static cl::opt<unsigned>
68 ClMergeInitSizeLimit("stack-tagging-merge-init-size-limit", cl::init(272),
69 cl::Hidden);
71 static cl::opt<size_t> ClMaxLifetimes(
72 "stack-tagging-max-lifetimes-for-alloca", cl::Hidden, cl::init(3),
73 cl::ReallyHidden,
74 cl::desc("How many lifetime ends to handle for a single alloca."),
75 cl::Optional);
77 // Mode for selecting how to insert frame record info into the stack ring
78 // buffer.
79 enum StackTaggingRecordStackHistoryMode {
80 // Do not record frame record info.
81 none,
83 // Insert instructions into the prologue for storing into the stack ring
84 // buffer directly.
85 instr,
88 static cl::opt<StackTaggingRecordStackHistoryMode> ClRecordStackHistory(
89 "stack-tagging-record-stack-history",
90 cl::desc("Record stack frames with tagged allocations in a thread-local "
91 "ring buffer"),
92 cl::values(clEnumVal(none, "Do not record stack ring history"),
93 clEnumVal(instr, "Insert instructions into the prologue for "
94 "storing into the stack ring buffer")),
95 cl::Hidden, cl::init(none));
97 static const Align kTagGranuleSize = Align(16);
99 namespace {
101 class InitializerBuilder {
102 uint64_t Size;
103 const DataLayout *DL;
104 Value *BasePtr;
105 Function *SetTagFn;
106 Function *SetTagZeroFn;
107 Function *StgpFn;
109 // List of initializers sorted by start offset.
110 struct Range {
111 uint64_t Start, End;
112 Instruction *Inst;
114 SmallVector<Range, 4> Ranges;
115 // 8-aligned offset => 8-byte initializer
116 // Missing keys are zero initialized.
117 std::map<uint64_t, Value *> Out;
119 public:
120 InitializerBuilder(uint64_t Size, const DataLayout *DL, Value *BasePtr,
121 Function *SetTagFn, Function *SetTagZeroFn,
122 Function *StgpFn)
123 : Size(Size), DL(DL), BasePtr(BasePtr), SetTagFn(SetTagFn),
124 SetTagZeroFn(SetTagZeroFn), StgpFn(StgpFn) {}
126 bool addRange(uint64_t Start, uint64_t End, Instruction *Inst) {
127 auto I =
128 llvm::lower_bound(Ranges, Start, [](const Range &LHS, uint64_t RHS) {
129 return LHS.End <= RHS;
131 if (I != Ranges.end() && End > I->Start) {
132 // Overlap - bail.
133 return false;
135 Ranges.insert(I, {Start, End, Inst});
136 return true;
139 bool addStore(uint64_t Offset, StoreInst *SI, const DataLayout *DL) {
140 int64_t StoreSize = DL->getTypeStoreSize(SI->getOperand(0)->getType());
141 if (!addRange(Offset, Offset + StoreSize, SI))
142 return false;
143 IRBuilder<> IRB(SI);
144 applyStore(IRB, Offset, Offset + StoreSize, SI->getOperand(0));
145 return true;
148 bool addMemSet(uint64_t Offset, MemSetInst *MSI) {
149 uint64_t StoreSize = cast<ConstantInt>(MSI->getLength())->getZExtValue();
150 if (!addRange(Offset, Offset + StoreSize, MSI))
151 return false;
152 IRBuilder<> IRB(MSI);
153 applyMemSet(IRB, Offset, Offset + StoreSize,
154 cast<ConstantInt>(MSI->getValue()));
155 return true;
158 void applyMemSet(IRBuilder<> &IRB, int64_t Start, int64_t End,
159 ConstantInt *V) {
160 // Out[] does not distinguish between zero and undef, and we already know
161 // that this memset does not overlap with any other initializer. Nothing to
162 // do for memset(0).
163 if (V->isZero())
164 return;
165 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
166 uint64_t Cst = 0x0101010101010101UL;
167 int LowBits = Offset < Start ? (Start - Offset) * 8 : 0;
168 if (LowBits)
169 Cst = (Cst >> LowBits) << LowBits;
170 int HighBits = End - Offset < 8 ? (8 - (End - Offset)) * 8 : 0;
171 if (HighBits)
172 Cst = (Cst << HighBits) >> HighBits;
173 ConstantInt *C =
174 ConstantInt::get(IRB.getInt64Ty(), Cst * V->getZExtValue());
176 Value *&CurrentV = Out[Offset];
177 if (!CurrentV) {
178 CurrentV = C;
179 } else {
180 CurrentV = IRB.CreateOr(CurrentV, C);
185 // Take a 64-bit slice of the value starting at the given offset (in bytes).
186 // Offset can be negative. Pad with zeroes on both sides when necessary.
187 Value *sliceValue(IRBuilder<> &IRB, Value *V, int64_t Offset) {
188 if (Offset > 0) {
189 V = IRB.CreateLShr(V, Offset * 8);
190 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
191 } else if (Offset < 0) {
192 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
193 V = IRB.CreateShl(V, -Offset * 8);
194 } else {
195 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
197 return V;
200 void applyStore(IRBuilder<> &IRB, int64_t Start, int64_t End,
201 Value *StoredValue) {
202 StoredValue = flatten(IRB, StoredValue);
203 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
204 Value *V = sliceValue(IRB, StoredValue, Offset - Start);
205 Value *&CurrentV = Out[Offset];
206 if (!CurrentV) {
207 CurrentV = V;
208 } else {
209 CurrentV = IRB.CreateOr(CurrentV, V);
214 void generate(IRBuilder<> &IRB) {
215 LLVM_DEBUG(dbgs() << "Combined initializer\n");
216 // No initializers => the entire allocation is undef.
217 if (Ranges.empty()) {
218 emitUndef(IRB, 0, Size);
219 return;
222 // Look through 8-byte initializer list 16 bytes at a time;
223 // If one of the two 8-byte halfs is non-zero non-undef, emit STGP.
224 // Otherwise, emit zeroes up to next available item.
225 uint64_t LastOffset = 0;
226 for (uint64_t Offset = 0; Offset < Size; Offset += 16) {
227 auto I1 = Out.find(Offset);
228 auto I2 = Out.find(Offset + 8);
229 if (I1 == Out.end() && I2 == Out.end())
230 continue;
232 if (Offset > LastOffset)
233 emitZeroes(IRB, LastOffset, Offset - LastOffset);
235 Value *Store1 = I1 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
236 : I1->second;
237 Value *Store2 = I2 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
238 : I2->second;
239 emitPair(IRB, Offset, Store1, Store2);
240 LastOffset = Offset + 16;
243 // memset(0) does not update Out[], therefore the tail can be either undef
244 // or zero.
245 if (LastOffset < Size)
246 emitZeroes(IRB, LastOffset, Size - LastOffset);
248 for (const auto &R : Ranges) {
249 R.Inst->eraseFromParent();
253 void emitZeroes(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
254 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
255 << ") zero\n");
256 Value *Ptr = BasePtr;
257 if (Offset)
258 Ptr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), Ptr, Offset);
259 IRB.CreateCall(SetTagZeroFn,
260 {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
263 void emitUndef(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
264 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
265 << ") undef\n");
266 Value *Ptr = BasePtr;
267 if (Offset)
268 Ptr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), Ptr, Offset);
269 IRB.CreateCall(SetTagFn, {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
272 void emitPair(IRBuilder<> &IRB, uint64_t Offset, Value *A, Value *B) {
273 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + 16 << "):\n");
274 LLVM_DEBUG(dbgs() << " " << *A << "\n " << *B << "\n");
275 Value *Ptr = BasePtr;
276 if (Offset)
277 Ptr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), Ptr, Offset);
278 IRB.CreateCall(StgpFn, {Ptr, A, B});
281 Value *flatten(IRBuilder<> &IRB, Value *V) {
282 if (V->getType()->isIntegerTy())
283 return V;
284 // vector of pointers -> vector of ints
285 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) {
286 LLVMContext &Ctx = IRB.getContext();
287 Type *EltTy = VecTy->getElementType();
288 if (EltTy->isPointerTy()) {
289 uint32_t EltSize = DL->getTypeSizeInBits(EltTy);
290 auto *NewTy = FixedVectorType::get(
291 IntegerType::get(Ctx, EltSize),
292 cast<FixedVectorType>(VecTy)->getNumElements());
293 V = IRB.CreatePointerCast(V, NewTy);
296 return IRB.CreateBitOrPointerCast(
297 V, IRB.getIntNTy(DL->getTypeStoreSize(V->getType()) * 8));
301 class AArch64StackTagging : public FunctionPass {
302 const bool MergeInit;
303 const bool UseStackSafety;
305 public:
306 static char ID; // Pass ID, replacement for typeid
308 AArch64StackTagging(bool IsOptNone = false)
309 : FunctionPass(ID),
310 MergeInit(ClMergeInit.getNumOccurrences() ? ClMergeInit : !IsOptNone),
311 UseStackSafety(ClUseStackSafety.getNumOccurrences() ? ClUseStackSafety
312 : !IsOptNone) {
313 initializeAArch64StackTaggingPass(*PassRegistry::getPassRegistry());
316 void tagAlloca(AllocaInst *AI, Instruction *InsertBefore, Value *Ptr,
317 uint64_t Size);
318 void untagAlloca(AllocaInst *AI, Instruction *InsertBefore, uint64_t Size);
320 Instruction *collectInitializers(Instruction *StartInst, Value *StartPtr,
321 uint64_t Size, InitializerBuilder &IB);
323 Instruction *insertBaseTaggedPointer(
324 const Module &M,
325 const MapVector<AllocaInst *, memtag::AllocaInfo> &Allocas,
326 const DominatorTree *DT);
327 bool runOnFunction(Function &F) override;
329 StringRef getPassName() const override { return "AArch64 Stack Tagging"; }
331 private:
332 Function *F = nullptr;
333 Function *SetTagFunc = nullptr;
334 const DataLayout *DL = nullptr;
335 AAResults *AA = nullptr;
336 const StackSafetyGlobalInfo *SSI = nullptr;
338 void getAnalysisUsage(AnalysisUsage &AU) const override {
339 AU.setPreservesCFG();
340 if (UseStackSafety)
341 AU.addRequired<StackSafetyGlobalInfoWrapperPass>();
342 if (MergeInit)
343 AU.addRequired<AAResultsWrapperPass>();
344 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
348 } // end anonymous namespace
350 char AArch64StackTagging::ID = 0;
352 INITIALIZE_PASS_BEGIN(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
353 false, false)
354 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
355 INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass)
356 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
357 INITIALIZE_PASS_END(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
358 false, false)
360 FunctionPass *llvm::createAArch64StackTaggingPass(bool IsOptNone) {
361 return new AArch64StackTagging(IsOptNone);
364 Instruction *AArch64StackTagging::collectInitializers(Instruction *StartInst,
365 Value *StartPtr,
366 uint64_t Size,
367 InitializerBuilder &IB) {
368 MemoryLocation AllocaLoc{StartPtr, Size};
369 Instruction *LastInst = StartInst;
370 BasicBlock::iterator BI(StartInst);
372 unsigned Count = 0;
373 for (; Count < ClScanLimit && !BI->isTerminator(); ++BI) {
374 if (!isa<DbgInfoIntrinsic>(*BI))
375 ++Count;
377 if (isNoModRef(AA->getModRefInfo(&*BI, AllocaLoc)))
378 continue;
380 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
381 // If the instruction is readnone, ignore it, otherwise bail out. We
382 // don't even allow readonly here because we don't want something like:
383 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
384 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
385 break;
386 continue;
389 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
390 if (!NextStore->isSimple())
391 break;
393 // Check to see if this store is to a constant offset from the start ptr.
394 std::optional<int64_t> Offset =
395 NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, *DL);
396 if (!Offset)
397 break;
399 if (!IB.addStore(*Offset, NextStore, DL))
400 break;
401 LastInst = NextStore;
402 } else {
403 MemSetInst *MSI = cast<MemSetInst>(BI);
405 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
406 break;
408 if (!isa<ConstantInt>(MSI->getValue()))
409 break;
411 // Check to see if this store is to a constant offset from the start ptr.
412 std::optional<int64_t> Offset =
413 MSI->getDest()->getPointerOffsetFrom(StartPtr, *DL);
414 if (!Offset)
415 break;
417 if (!IB.addMemSet(*Offset, MSI))
418 break;
419 LastInst = MSI;
422 return LastInst;
425 void AArch64StackTagging::tagAlloca(AllocaInst *AI, Instruction *InsertBefore,
426 Value *Ptr, uint64_t Size) {
427 auto SetTagZeroFunc = Intrinsic::getOrInsertDeclaration(
428 F->getParent(), Intrinsic::aarch64_settag_zero);
429 auto StgpFunc = Intrinsic::getOrInsertDeclaration(F->getParent(),
430 Intrinsic::aarch64_stgp);
432 InitializerBuilder IB(Size, DL, Ptr, SetTagFunc, SetTagZeroFunc, StgpFunc);
433 bool LittleEndian =
434 Triple(AI->getModule()->getTargetTriple()).isLittleEndian();
435 // Current implementation of initializer merging assumes little endianness.
436 if (MergeInit && !F->hasOptNone() && LittleEndian &&
437 Size < ClMergeInitSizeLimit) {
438 LLVM_DEBUG(dbgs() << "collecting initializers for " << *AI
439 << ", size = " << Size << "\n");
440 InsertBefore = collectInitializers(InsertBefore, Ptr, Size, IB);
443 IRBuilder<> IRB(InsertBefore);
444 IB.generate(IRB);
447 void AArch64StackTagging::untagAlloca(AllocaInst *AI, Instruction *InsertBefore,
448 uint64_t Size) {
449 IRBuilder<> IRB(InsertBefore);
450 IRB.CreateCall(SetTagFunc, {IRB.CreatePointerCast(AI, IRB.getPtrTy()),
451 ConstantInt::get(IRB.getInt64Ty(), Size)});
454 Instruction *AArch64StackTagging::insertBaseTaggedPointer(
455 const Module &M,
456 const MapVector<AllocaInst *, memtag::AllocaInfo> &AllocasToInstrument,
457 const DominatorTree *DT) {
458 BasicBlock *PrologueBB = nullptr;
459 // Try sinking IRG as deep as possible to avoid hurting shrink wrap.
460 for (auto &I : AllocasToInstrument) {
461 const memtag::AllocaInfo &Info = I.second;
462 AllocaInst *AI = Info.AI;
463 if (!PrologueBB) {
464 PrologueBB = AI->getParent();
465 continue;
467 PrologueBB = DT->findNearestCommonDominator(PrologueBB, AI->getParent());
469 assert(PrologueBB);
471 IRBuilder<> IRB(&PrologueBB->front());
472 Instruction *Base =
473 IRB.CreateIntrinsic(Intrinsic::aarch64_irg_sp, {},
474 {Constant::getNullValue(IRB.getInt64Ty())});
475 Base->setName("basetag");
476 auto TargetTriple = Triple(M.getTargetTriple());
477 // This ABI will make it into Android API level 35.
478 // The ThreadLong format is the same as with HWASan, but the entries for
479 // stack MTE take two slots (16 bytes).
480 if (ClRecordStackHistory == instr && TargetTriple.isAndroid() &&
481 TargetTriple.isAArch64() && !TargetTriple.isAndroidVersionLT(35) &&
482 !AllocasToInstrument.empty()) {
483 constexpr int StackMteSlot = -3;
484 constexpr uint64_t TagMask = 0xFULL << 56;
486 auto *IntptrTy = IRB.getIntPtrTy(M.getDataLayout());
487 Value *SlotPtr = memtag::getAndroidSlotPtr(IRB, StackMteSlot);
488 auto *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
489 Value *FP = memtag::getFP(IRB);
490 Value *Tag = IRB.CreateAnd(IRB.CreatePtrToInt(Base, IntptrTy), TagMask);
491 Value *TaggedFP = IRB.CreateOr(FP, Tag);
492 Value *PC = memtag::getPC(TargetTriple, IRB);
493 Value *RecordPtr = IRB.CreateIntToPtr(ThreadLong, IRB.getPtrTy(0));
494 IRB.CreateStore(PC, RecordPtr);
495 IRB.CreateStore(TaggedFP, IRB.CreateConstGEP1_64(IntptrTy, RecordPtr, 1));
497 IRB.CreateStore(memtag::incrementThreadLong(IRB, ThreadLong, 16), SlotPtr);
499 return Base;
502 // FIXME: check for MTE extension
503 bool AArch64StackTagging::runOnFunction(Function &Fn) {
504 if (!Fn.hasFnAttribute(Attribute::SanitizeMemTag))
505 return false;
507 if (UseStackSafety)
508 SSI = &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult();
509 F = &Fn;
510 DL = &Fn.getDataLayout();
511 if (MergeInit)
512 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
513 OptimizationRemarkEmitter &ORE =
514 getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
516 memtag::StackInfoBuilder SIB(SSI, DEBUG_TYPE);
517 for (Instruction &I : instructions(F))
518 SIB.visit(ORE, I);
519 memtag::StackInfo &SInfo = SIB.get();
521 if (SInfo.AllocasToInstrument.empty())
522 return false;
524 std::unique_ptr<DominatorTree> DeleteDT;
525 DominatorTree *DT = nullptr;
526 if (auto *P = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
527 DT = &P->getDomTree();
529 if (DT == nullptr) {
530 DeleteDT = std::make_unique<DominatorTree>(*F);
531 DT = DeleteDT.get();
534 std::unique_ptr<PostDominatorTree> DeletePDT;
535 PostDominatorTree *PDT = nullptr;
536 if (auto *P = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>())
537 PDT = &P->getPostDomTree();
539 if (PDT == nullptr) {
540 DeletePDT = std::make_unique<PostDominatorTree>(*F);
541 PDT = DeletePDT.get();
544 std::unique_ptr<LoopInfo> DeleteLI;
545 LoopInfo *LI = nullptr;
546 if (auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>()) {
547 LI = &LIWP->getLoopInfo();
548 } else {
549 DeleteLI = std::make_unique<LoopInfo>(*DT);
550 LI = DeleteLI.get();
553 SetTagFunc = Intrinsic::getOrInsertDeclaration(F->getParent(),
554 Intrinsic::aarch64_settag);
556 Instruction *Base =
557 insertBaseTaggedPointer(*Fn.getParent(), SInfo.AllocasToInstrument, DT);
559 unsigned int NextTag = 0;
560 for (auto &I : SInfo.AllocasToInstrument) {
561 memtag::AllocaInfo &Info = I.second;
562 assert(Info.AI && SIB.getAllocaInterestingness(*Info.AI) ==
563 llvm::memtag::AllocaInterestingness::kInteresting);
564 memtag::alignAndPadAlloca(Info, kTagGranuleSize);
565 AllocaInst *AI = Info.AI;
566 unsigned int Tag = NextTag;
567 NextTag = (NextTag + 1) % 16;
568 // Replace alloca with tagp(alloca).
569 IRBuilder<> IRB(Info.AI->getNextNode());
570 Instruction *TagPCall =
571 IRB.CreateIntrinsic(Intrinsic::aarch64_tagp, {Info.AI->getType()},
572 {Constant::getNullValue(Info.AI->getType()), Base,
573 ConstantInt::get(IRB.getInt64Ty(), Tag)});
574 if (Info.AI->hasName())
575 TagPCall->setName(Info.AI->getName() + ".tag");
576 // Does not replace metadata, so we don't have to handle DbgVariableRecords.
577 Info.AI->replaceUsesWithIf(TagPCall, [&](const Use &U) {
578 return !memtag::isLifetimeIntrinsic(U.getUser());
580 TagPCall->setOperand(0, Info.AI);
582 // Calls to functions that may return twice (e.g. setjmp) confuse the
583 // postdominator analysis, and will leave us to keep memory tagged after
584 // function return. Work around this by always untagging at every return
585 // statement if return_twice functions are called.
586 bool StandardLifetime =
587 !SInfo.CallsReturnTwice &&
588 SInfo.UnrecognizedLifetimes.empty() &&
589 memtag::isStandardLifetime(Info.LifetimeStart, Info.LifetimeEnd, DT, LI,
590 ClMaxLifetimes);
591 if (StandardLifetime) {
592 IntrinsicInst *Start = Info.LifetimeStart[0];
593 uint64_t Size =
594 cast<ConstantInt>(Start->getArgOperand(0))->getZExtValue();
595 Size = alignTo(Size, kTagGranuleSize);
596 tagAlloca(AI, Start->getNextNode(), TagPCall, Size);
598 auto TagEnd = [&](Instruction *Node) { untagAlloca(AI, Node, Size); };
599 if (!DT || !PDT ||
600 !memtag::forAllReachableExits(*DT, *PDT, *LI, Start, Info.LifetimeEnd,
601 SInfo.RetVec, TagEnd)) {
602 for (auto *End : Info.LifetimeEnd)
603 End->eraseFromParent();
605 } else {
606 uint64_t Size = *Info.AI->getAllocationSize(*DL);
607 Value *Ptr = IRB.CreatePointerCast(TagPCall, IRB.getPtrTy());
608 tagAlloca(AI, &*IRB.GetInsertPoint(), Ptr, Size);
609 for (auto *RI : SInfo.RetVec) {
610 untagAlloca(AI, RI, Size);
612 // We may have inserted tag/untag outside of any lifetime interval.
613 // Remove all lifetime intrinsics for this alloca.
614 for (auto *II : Info.LifetimeStart)
615 II->eraseFromParent();
616 for (auto *II : Info.LifetimeEnd)
617 II->eraseFromParent();
620 memtag::annotateDebugRecords(Info, Tag);
623 // If we have instrumented at least one alloca, all unrecognized lifetime
624 // intrinsics have to go.
625 for (auto *I : SInfo.UnrecognizedLifetimes)
626 I->eraseFromParent();
628 return true;