[Clang] ensure mangled names are valid identifiers before being suggested in ifunc...
[llvm-project.git] / llvm / lib / Target / AArch64 / GISel / AArch64InstructionSelector.cpp
blob5000078928a1d2c085d33bdc9432ecb2e2bcf3fb
1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
14 #include "AArch64GlobalISelUtils.h"
15 #include "AArch64InstrInfo.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64RegisterBankInfo.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "AArch64TargetMachine.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "MCTargetDesc/AArch64MCTargetDesc.h"
23 #include "llvm/BinaryFormat/Dwarf.h"
24 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
25 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
26 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
27 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
28 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
29 #include "llvm/CodeGen/GlobalISel/Utils.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <optional>
51 #define DEBUG_TYPE "aarch64-isel"
53 using namespace llvm;
54 using namespace MIPatternMatch;
55 using namespace AArch64GISelUtils;
57 namespace llvm {
58 class BlockFrequencyInfo;
59 class ProfileSummaryInfo;
62 namespace {
64 #define GET_GLOBALISEL_PREDICATE_BITSET
65 #include "AArch64GenGlobalISel.inc"
66 #undef GET_GLOBALISEL_PREDICATE_BITSET
69 class AArch64InstructionSelector : public InstructionSelector {
70 public:
71 AArch64InstructionSelector(const AArch64TargetMachine &TM,
72 const AArch64Subtarget &STI,
73 const AArch64RegisterBankInfo &RBI);
75 bool select(MachineInstr &I) override;
76 static const char *getName() { return DEBUG_TYPE; }
78 void setupMF(MachineFunction &MF, GISelKnownBits *KB,
79 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
80 BlockFrequencyInfo *BFI) override {
81 InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI);
82 MIB.setMF(MF);
84 // hasFnAttribute() is expensive to call on every BRCOND selection, so
85 // cache it here for each run of the selector.
86 ProduceNonFlagSettingCondBr =
87 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
88 MFReturnAddr = Register();
90 processPHIs(MF);
93 private:
94 /// tblgen-erated 'select' implementation, used as the initial selector for
95 /// the patterns that don't require complex C++.
96 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
98 // A lowering phase that runs before any selection attempts.
99 // Returns true if the instruction was modified.
100 bool preISelLower(MachineInstr &I);
102 // An early selection function that runs before the selectImpl() call.
103 bool earlySelect(MachineInstr &I);
105 /// Save state that is shared between select calls, call select on \p I and
106 /// then restore the saved state. This can be used to recursively call select
107 /// within a select call.
108 bool selectAndRestoreState(MachineInstr &I);
110 // Do some preprocessing of G_PHIs before we begin selection.
111 void processPHIs(MachineFunction &MF);
113 bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI);
115 /// Eliminate same-sized cross-bank copies into stores before selectImpl().
116 bool contractCrossBankCopyIntoStore(MachineInstr &I,
117 MachineRegisterInfo &MRI);
119 bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
121 bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
122 MachineRegisterInfo &MRI) const;
123 bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
124 MachineRegisterInfo &MRI) const;
126 ///@{
127 /// Helper functions for selectCompareBranch.
128 bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp,
129 MachineIRBuilder &MIB) const;
130 bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
131 MachineIRBuilder &MIB) const;
132 bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
133 MachineIRBuilder &MIB) const;
134 bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert,
135 MachineBasicBlock *DstMBB,
136 MachineIRBuilder &MIB) const;
137 ///@}
139 bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
140 MachineRegisterInfo &MRI);
142 bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI);
143 bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI);
145 // Helper to generate an equivalent of scalar_to_vector into a new register,
146 // returned via 'Dst'.
147 MachineInstr *emitScalarToVector(unsigned EltSize,
148 const TargetRegisterClass *DstRC,
149 Register Scalar,
150 MachineIRBuilder &MIRBuilder) const;
151 /// Helper to narrow vector that was widened by emitScalarToVector.
152 /// Copy lowest part of 128-bit or 64-bit vector to 64-bit or 32-bit
153 /// vector, correspondingly.
154 MachineInstr *emitNarrowVector(Register DstReg, Register SrcReg,
155 MachineIRBuilder &MIRBuilder,
156 MachineRegisterInfo &MRI) const;
158 /// Emit a lane insert into \p DstReg, or a new vector register if
159 /// std::nullopt is provided.
161 /// The lane inserted into is defined by \p LaneIdx. The vector source
162 /// register is given by \p SrcReg. The register containing the element is
163 /// given by \p EltReg.
164 MachineInstr *emitLaneInsert(std::optional<Register> DstReg, Register SrcReg,
165 Register EltReg, unsigned LaneIdx,
166 const RegisterBank &RB,
167 MachineIRBuilder &MIRBuilder) const;
169 /// Emit a sequence of instructions representing a constant \p CV for a
170 /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.)
172 /// \returns the last instruction in the sequence on success, and nullptr
173 /// otherwise.
174 MachineInstr *emitConstantVector(Register Dst, Constant *CV,
175 MachineIRBuilder &MIRBuilder,
176 MachineRegisterInfo &MRI);
178 MachineInstr *tryAdvSIMDModImm8(Register Dst, unsigned DstSize, APInt Bits,
179 MachineIRBuilder &MIRBuilder);
181 MachineInstr *tryAdvSIMDModImm16(Register Dst, unsigned DstSize, APInt Bits,
182 MachineIRBuilder &MIRBuilder, bool Inv);
184 MachineInstr *tryAdvSIMDModImm32(Register Dst, unsigned DstSize, APInt Bits,
185 MachineIRBuilder &MIRBuilder, bool Inv);
186 MachineInstr *tryAdvSIMDModImm64(Register Dst, unsigned DstSize, APInt Bits,
187 MachineIRBuilder &MIRBuilder);
188 MachineInstr *tryAdvSIMDModImm321s(Register Dst, unsigned DstSize, APInt Bits,
189 MachineIRBuilder &MIRBuilder, bool Inv);
190 MachineInstr *tryAdvSIMDModImmFP(Register Dst, unsigned DstSize, APInt Bits,
191 MachineIRBuilder &MIRBuilder);
193 bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
194 MachineRegisterInfo &MRI);
195 /// \returns true if a G_BUILD_VECTOR instruction \p MI can be selected as a
196 /// SUBREG_TO_REG.
197 bool tryOptBuildVecToSubregToReg(MachineInstr &MI, MachineRegisterInfo &MRI);
198 bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI);
199 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
200 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
202 bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI);
203 bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI);
204 bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI);
205 bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI);
207 /// Helper function to select vector load intrinsics like
208 /// @llvm.aarch64.neon.ld2.*, @llvm.aarch64.neon.ld4.*, etc.
209 /// \p Opc is the opcode that the selected instruction should use.
210 /// \p NumVecs is the number of vector destinations for the instruction.
211 /// \p I is the original G_INTRINSIC_W_SIDE_EFFECTS instruction.
212 bool selectVectorLoadIntrinsic(unsigned Opc, unsigned NumVecs,
213 MachineInstr &I);
214 bool selectVectorLoadLaneIntrinsic(unsigned Opc, unsigned NumVecs,
215 MachineInstr &I);
216 void selectVectorStoreIntrinsic(MachineInstr &I, unsigned NumVecs,
217 unsigned Opc);
218 bool selectVectorStoreLaneIntrinsic(MachineInstr &I, unsigned NumVecs,
219 unsigned Opc);
220 bool selectIntrinsicWithSideEffects(MachineInstr &I,
221 MachineRegisterInfo &MRI);
222 bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
223 bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI);
224 bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI);
225 bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI);
226 bool selectPtrAuthGlobalValue(MachineInstr &I,
227 MachineRegisterInfo &MRI) const;
228 bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI);
229 bool selectMOPS(MachineInstr &I, MachineRegisterInfo &MRI);
230 bool selectUSMovFromExtend(MachineInstr &I, MachineRegisterInfo &MRI);
231 void SelectTable(MachineInstr &I, MachineRegisterInfo &MRI, unsigned NumVecs,
232 unsigned Opc1, unsigned Opc2, bool isExt);
234 bool selectIndexedExtLoad(MachineInstr &I, MachineRegisterInfo &MRI);
235 bool selectIndexedLoad(MachineInstr &I, MachineRegisterInfo &MRI);
236 bool selectIndexedStore(GIndexedStore &I, MachineRegisterInfo &MRI);
238 unsigned emitConstantPoolEntry(const Constant *CPVal,
239 MachineFunction &MF) const;
240 MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
241 MachineIRBuilder &MIRBuilder) const;
243 // Emit a vector concat operation.
244 MachineInstr *emitVectorConcat(std::optional<Register> Dst, Register Op1,
245 Register Op2,
246 MachineIRBuilder &MIRBuilder) const;
248 // Emit an integer compare between LHS and RHS, which checks for Predicate.
249 MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
250 MachineOperand &Predicate,
251 MachineIRBuilder &MIRBuilder) const;
253 /// Emit a floating point comparison between \p LHS and \p RHS.
254 /// \p Pred if given is the intended predicate to use.
255 MachineInstr *
256 emitFPCompare(Register LHS, Register RHS, MachineIRBuilder &MIRBuilder,
257 std::optional<CmpInst::Predicate> = std::nullopt) const;
259 MachineInstr *
260 emitInstr(unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
261 std::initializer_list<llvm::SrcOp> SrcOps,
262 MachineIRBuilder &MIRBuilder,
263 const ComplexRendererFns &RenderFns = std::nullopt) const;
264 /// Helper function to emit an add or sub instruction.
266 /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above
267 /// in a specific order.
269 /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode.
271 /// \code
272 /// const std::array<std::array<unsigned, 2>, 4> Table {
273 /// {{AArch64::ADDXri, AArch64::ADDWri},
274 /// {AArch64::ADDXrs, AArch64::ADDWrs},
275 /// {AArch64::ADDXrr, AArch64::ADDWrr},
276 /// {AArch64::SUBXri, AArch64::SUBWri},
277 /// {AArch64::ADDXrx, AArch64::ADDWrx}}};
278 /// \endcode
280 /// Each row in the table corresponds to a different addressing mode. Each
281 /// column corresponds to a different register size.
283 /// \attention Rows must be structured as follows:
284 /// - Row 0: The ri opcode variants
285 /// - Row 1: The rs opcode variants
286 /// - Row 2: The rr opcode variants
287 /// - Row 3: The ri opcode variants for negative immediates
288 /// - Row 4: The rx opcode variants
290 /// \attention Columns must be structured as follows:
291 /// - Column 0: The 64-bit opcode variants
292 /// - Column 1: The 32-bit opcode variants
294 /// \p Dst is the destination register of the binop to emit.
295 /// \p LHS is the left-hand operand of the binop to emit.
296 /// \p RHS is the right-hand operand of the binop to emit.
297 MachineInstr *emitAddSub(
298 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
299 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
300 MachineIRBuilder &MIRBuilder) const;
301 MachineInstr *emitADD(Register DefReg, MachineOperand &LHS,
302 MachineOperand &RHS,
303 MachineIRBuilder &MIRBuilder) const;
304 MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
305 MachineIRBuilder &MIRBuilder) const;
306 MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
307 MachineIRBuilder &MIRBuilder) const;
308 MachineInstr *emitADCS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
309 MachineIRBuilder &MIRBuilder) const;
310 MachineInstr *emitSBCS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
311 MachineIRBuilder &MIRBuilder) const;
312 MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
313 MachineIRBuilder &MIRBuilder) const;
314 MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS,
315 MachineIRBuilder &MIRBuilder) const;
316 MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS,
317 AArch64CC::CondCode CC,
318 MachineIRBuilder &MIRBuilder) const;
319 MachineInstr *emitExtractVectorElt(std::optional<Register> DstReg,
320 const RegisterBank &DstRB, LLT ScalarTy,
321 Register VecReg, unsigned LaneIdx,
322 MachineIRBuilder &MIRBuilder) const;
323 MachineInstr *emitCSINC(Register Dst, Register Src1, Register Src2,
324 AArch64CC::CondCode Pred,
325 MachineIRBuilder &MIRBuilder) const;
326 /// Emit a CSet for a FP compare.
328 /// \p Dst is expected to be a 32-bit scalar register.
329 MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred,
330 MachineIRBuilder &MIRBuilder) const;
332 /// Emit an instruction that sets NZCV to the carry-in expected by \p I.
333 /// Might elide the instruction if the previous instruction already sets NZCV
334 /// correctly.
335 MachineInstr *emitCarryIn(MachineInstr &I, Register CarryReg);
337 /// Emit the overflow op for \p Opcode.
339 /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO,
340 /// G_USUBO, etc.
341 std::pair<MachineInstr *, AArch64CC::CondCode>
342 emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS,
343 MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const;
345 bool selectOverflowOp(MachineInstr &I, MachineRegisterInfo &MRI);
347 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
348 /// In some cases this is even possible with OR operations in the expression.
349 MachineInstr *emitConjunction(Register Val, AArch64CC::CondCode &OutCC,
350 MachineIRBuilder &MIB) const;
351 MachineInstr *emitConditionalComparison(Register LHS, Register RHS,
352 CmpInst::Predicate CC,
353 AArch64CC::CondCode Predicate,
354 AArch64CC::CondCode OutCC,
355 MachineIRBuilder &MIB) const;
356 MachineInstr *emitConjunctionRec(Register Val, AArch64CC::CondCode &OutCC,
357 bool Negate, Register CCOp,
358 AArch64CC::CondCode Predicate,
359 MachineIRBuilder &MIB) const;
361 /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
362 /// \p IsNegative is true if the test should be "not zero".
363 /// This will also optimize the test bit instruction when possible.
364 MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
365 MachineBasicBlock *DstMBB,
366 MachineIRBuilder &MIB) const;
368 /// Emit a CB(N)Z instruction which branches to \p DestMBB.
369 MachineInstr *emitCBZ(Register CompareReg, bool IsNegative,
370 MachineBasicBlock *DestMBB,
371 MachineIRBuilder &MIB) const;
373 // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
374 // We use these manually instead of using the importer since it doesn't
375 // support SDNodeXForm.
376 ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
377 ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
378 ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
379 ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
381 ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
382 ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
383 ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
385 ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
386 unsigned Size) const;
388 ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
389 return selectAddrModeUnscaled(Root, 1);
391 ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
392 return selectAddrModeUnscaled(Root, 2);
394 ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
395 return selectAddrModeUnscaled(Root, 4);
397 ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
398 return selectAddrModeUnscaled(Root, 8);
400 ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
401 return selectAddrModeUnscaled(Root, 16);
404 /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
405 /// from complex pattern matchers like selectAddrModeIndexed().
406 ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
407 MachineRegisterInfo &MRI) const;
409 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
410 unsigned Size) const;
411 template <int Width>
412 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
413 return selectAddrModeIndexed(Root, Width / 8);
416 std::optional<bool>
417 isWorthFoldingIntoAddrMode(MachineInstr &MI,
418 const MachineRegisterInfo &MRI) const;
420 bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
421 const MachineRegisterInfo &MRI,
422 bool IsAddrOperand) const;
423 ComplexRendererFns
424 selectAddrModeShiftedExtendXReg(MachineOperand &Root,
425 unsigned SizeInBytes) const;
427 /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
428 /// or not a shift + extend should be folded into an addressing mode. Returns
429 /// None when this is not profitable or possible.
430 ComplexRendererFns
431 selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
432 MachineOperand &Offset, unsigned SizeInBytes,
433 bool WantsExt) const;
434 ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
435 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
436 unsigned SizeInBytes) const;
437 template <int Width>
438 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
439 return selectAddrModeXRO(Root, Width / 8);
442 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
443 unsigned SizeInBytes) const;
444 template <int Width>
445 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
446 return selectAddrModeWRO(Root, Width / 8);
449 ComplexRendererFns selectShiftedRegister(MachineOperand &Root,
450 bool AllowROR = false) const;
452 ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
453 return selectShiftedRegister(Root);
456 ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
457 return selectShiftedRegister(Root, true);
460 /// Given an extend instruction, determine the correct shift-extend type for
461 /// that instruction.
463 /// If the instruction is going to be used in a load or store, pass
464 /// \p IsLoadStore = true.
465 AArch64_AM::ShiftExtendType
466 getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
467 bool IsLoadStore = false) const;
469 /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
471 /// \returns Either \p Reg if no change was necessary, or the new register
472 /// created by moving \p Reg.
474 /// Note: This uses emitCopy right now.
475 Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
476 MachineIRBuilder &MIB) const;
478 ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
480 ComplexRendererFns selectExtractHigh(MachineOperand &Root) const;
482 void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
483 int OpIdx = -1) const;
484 void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
485 int OpIdx = -1) const;
486 void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
487 int OpIdx = -1) const;
488 void renderUbsanTrap(MachineInstrBuilder &MIB, const MachineInstr &MI,
489 int OpIdx) const;
490 void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI,
491 int OpIdx = -1) const;
492 void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI,
493 int OpIdx = -1) const;
494 void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI,
495 int OpIdx = -1) const;
496 void renderFPImm32SIMDModImmType4(MachineInstrBuilder &MIB,
497 const MachineInstr &MI,
498 int OpIdx = -1) const;
500 // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
501 void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags);
503 // Optimization methods.
504 bool tryOptSelect(GSelect &Sel);
505 bool tryOptSelectConjunction(GSelect &Sel, MachineInstr &CondMI);
506 MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
507 MachineOperand &Predicate,
508 MachineIRBuilder &MIRBuilder) const;
510 /// Return true if \p MI is a load or store of \p NumBytes bytes.
511 bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
513 /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
514 /// register zeroed out. In other words, the result of MI has been explicitly
515 /// zero extended.
516 bool isDef32(const MachineInstr &MI) const;
518 const AArch64TargetMachine &TM;
519 const AArch64Subtarget &STI;
520 const AArch64InstrInfo &TII;
521 const AArch64RegisterInfo &TRI;
522 const AArch64RegisterBankInfo &RBI;
524 bool ProduceNonFlagSettingCondBr = false;
526 // Some cached values used during selection.
527 // We use LR as a live-in register, and we keep track of it here as it can be
528 // clobbered by calls.
529 Register MFReturnAddr;
531 MachineIRBuilder MIB;
533 #define GET_GLOBALISEL_PREDICATES_DECL
534 #include "AArch64GenGlobalISel.inc"
535 #undef GET_GLOBALISEL_PREDICATES_DECL
537 // We declare the temporaries used by selectImpl() in the class to minimize the
538 // cost of constructing placeholder values.
539 #define GET_GLOBALISEL_TEMPORARIES_DECL
540 #include "AArch64GenGlobalISel.inc"
541 #undef GET_GLOBALISEL_TEMPORARIES_DECL
544 } // end anonymous namespace
546 #define GET_GLOBALISEL_IMPL
547 #include "AArch64GenGlobalISel.inc"
548 #undef GET_GLOBALISEL_IMPL
550 AArch64InstructionSelector::AArch64InstructionSelector(
551 const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
552 const AArch64RegisterBankInfo &RBI)
553 : TM(TM), STI(STI), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()),
554 RBI(RBI),
555 #define GET_GLOBALISEL_PREDICATES_INIT
556 #include "AArch64GenGlobalISel.inc"
557 #undef GET_GLOBALISEL_PREDICATES_INIT
558 #define GET_GLOBALISEL_TEMPORARIES_INIT
559 #include "AArch64GenGlobalISel.inc"
560 #undef GET_GLOBALISEL_TEMPORARIES_INIT
564 // FIXME: This should be target-independent, inferred from the types declared
565 // for each class in the bank.
567 /// Given a register bank, and a type, return the smallest register class that
568 /// can represent that combination.
569 static const TargetRegisterClass *
570 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
571 bool GetAllRegSet = false) {
572 if (RB.getID() == AArch64::GPRRegBankID) {
573 if (Ty.getSizeInBits() <= 32)
574 return GetAllRegSet ? &AArch64::GPR32allRegClass
575 : &AArch64::GPR32RegClass;
576 if (Ty.getSizeInBits() == 64)
577 return GetAllRegSet ? &AArch64::GPR64allRegClass
578 : &AArch64::GPR64RegClass;
579 if (Ty.getSizeInBits() == 128)
580 return &AArch64::XSeqPairsClassRegClass;
581 return nullptr;
584 if (RB.getID() == AArch64::FPRRegBankID) {
585 switch (Ty.getSizeInBits()) {
586 case 8:
587 return &AArch64::FPR8RegClass;
588 case 16:
589 return &AArch64::FPR16RegClass;
590 case 32:
591 return &AArch64::FPR32RegClass;
592 case 64:
593 return &AArch64::FPR64RegClass;
594 case 128:
595 return &AArch64::FPR128RegClass;
597 return nullptr;
600 return nullptr;
603 /// Given a register bank, and size in bits, return the smallest register class
604 /// that can represent that combination.
605 static const TargetRegisterClass *
606 getMinClassForRegBank(const RegisterBank &RB, TypeSize SizeInBits,
607 bool GetAllRegSet = false) {
608 if (SizeInBits.isScalable()) {
609 assert(RB.getID() == AArch64::FPRRegBankID &&
610 "Expected FPR regbank for scalable type size");
611 return &AArch64::ZPRRegClass;
614 unsigned RegBankID = RB.getID();
616 if (RegBankID == AArch64::GPRRegBankID) {
617 assert(!SizeInBits.isScalable() && "Unexpected scalable register size");
618 if (SizeInBits <= 32)
619 return GetAllRegSet ? &AArch64::GPR32allRegClass
620 : &AArch64::GPR32RegClass;
621 if (SizeInBits == 64)
622 return GetAllRegSet ? &AArch64::GPR64allRegClass
623 : &AArch64::GPR64RegClass;
624 if (SizeInBits == 128)
625 return &AArch64::XSeqPairsClassRegClass;
628 if (RegBankID == AArch64::FPRRegBankID) {
629 if (SizeInBits.isScalable()) {
630 assert(SizeInBits == TypeSize::getScalable(128) &&
631 "Unexpected scalable register size");
632 return &AArch64::ZPRRegClass;
635 switch (SizeInBits) {
636 default:
637 return nullptr;
638 case 8:
639 return &AArch64::FPR8RegClass;
640 case 16:
641 return &AArch64::FPR16RegClass;
642 case 32:
643 return &AArch64::FPR32RegClass;
644 case 64:
645 return &AArch64::FPR64RegClass;
646 case 128:
647 return &AArch64::FPR128RegClass;
651 return nullptr;
654 /// Returns the correct subregister to use for a given register class.
655 static bool getSubRegForClass(const TargetRegisterClass *RC,
656 const TargetRegisterInfo &TRI, unsigned &SubReg) {
657 switch (TRI.getRegSizeInBits(*RC)) {
658 case 8:
659 SubReg = AArch64::bsub;
660 break;
661 case 16:
662 SubReg = AArch64::hsub;
663 break;
664 case 32:
665 if (RC != &AArch64::FPR32RegClass)
666 SubReg = AArch64::sub_32;
667 else
668 SubReg = AArch64::ssub;
669 break;
670 case 64:
671 SubReg = AArch64::dsub;
672 break;
673 default:
674 LLVM_DEBUG(
675 dbgs() << "Couldn't find appropriate subregister for register class.");
676 return false;
679 return true;
682 /// Returns the minimum size the given register bank can hold.
683 static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
684 switch (RB.getID()) {
685 case AArch64::GPRRegBankID:
686 return 32;
687 case AArch64::FPRRegBankID:
688 return 8;
689 default:
690 llvm_unreachable("Tried to get minimum size for unknown register bank.");
694 /// Create a REG_SEQUENCE instruction using the registers in \p Regs.
695 /// Helper function for functions like createDTuple and createQTuple.
697 /// \p RegClassIDs - The list of register class IDs available for some tuple of
698 /// a scalar class. E.g. QQRegClassID, QQQRegClassID, QQQQRegClassID. This is
699 /// expected to contain between 2 and 4 tuple classes.
701 /// \p SubRegs - The list of subregister classes associated with each register
702 /// class ID in \p RegClassIDs. E.g., QQRegClassID should use the qsub0
703 /// subregister class. The index of each subregister class is expected to
704 /// correspond with the index of each register class.
706 /// \returns Either the destination register of REG_SEQUENCE instruction that
707 /// was created, or the 0th element of \p Regs if \p Regs contains a single
708 /// element.
709 static Register createTuple(ArrayRef<Register> Regs,
710 const unsigned RegClassIDs[],
711 const unsigned SubRegs[], MachineIRBuilder &MIB) {
712 unsigned NumRegs = Regs.size();
713 if (NumRegs == 1)
714 return Regs[0];
715 assert(NumRegs >= 2 && NumRegs <= 4 &&
716 "Only support between two and 4 registers in a tuple!");
717 const TargetRegisterInfo *TRI = MIB.getMF().getSubtarget().getRegisterInfo();
718 auto *DesiredClass = TRI->getRegClass(RegClassIDs[NumRegs - 2]);
719 auto RegSequence =
720 MIB.buildInstr(TargetOpcode::REG_SEQUENCE, {DesiredClass}, {});
721 for (unsigned I = 0, E = Regs.size(); I < E; ++I) {
722 RegSequence.addUse(Regs[I]);
723 RegSequence.addImm(SubRegs[I]);
725 return RegSequence.getReg(0);
728 /// Create a tuple of D-registers using the registers in \p Regs.
729 static Register createDTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) {
730 static const unsigned RegClassIDs[] = {
731 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
732 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
733 AArch64::dsub2, AArch64::dsub3};
734 return createTuple(Regs, RegClassIDs, SubRegs, MIB);
737 /// Create a tuple of Q-registers using the registers in \p Regs.
738 static Register createQTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) {
739 static const unsigned RegClassIDs[] = {
740 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
741 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
742 AArch64::qsub2, AArch64::qsub3};
743 return createTuple(Regs, RegClassIDs, SubRegs, MIB);
746 static std::optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
747 auto &MI = *Root.getParent();
748 auto &MBB = *MI.getParent();
749 auto &MF = *MBB.getParent();
750 auto &MRI = MF.getRegInfo();
751 uint64_t Immed;
752 if (Root.isImm())
753 Immed = Root.getImm();
754 else if (Root.isCImm())
755 Immed = Root.getCImm()->getZExtValue();
756 else if (Root.isReg()) {
757 auto ValAndVReg =
758 getIConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
759 if (!ValAndVReg)
760 return std::nullopt;
761 Immed = ValAndVReg->Value.getSExtValue();
762 } else
763 return std::nullopt;
764 return Immed;
767 /// Check whether \p I is a currently unsupported binary operation:
768 /// - it has an unsized type
769 /// - an operand is not a vreg
770 /// - all operands are not in the same bank
771 /// These are checks that should someday live in the verifier, but right now,
772 /// these are mostly limitations of the aarch64 selector.
773 static bool unsupportedBinOp(const MachineInstr &I,
774 const AArch64RegisterBankInfo &RBI,
775 const MachineRegisterInfo &MRI,
776 const AArch64RegisterInfo &TRI) {
777 LLT Ty = MRI.getType(I.getOperand(0).getReg());
778 if (!Ty.isValid()) {
779 LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
780 return true;
783 const RegisterBank *PrevOpBank = nullptr;
784 for (auto &MO : I.operands()) {
785 // FIXME: Support non-register operands.
786 if (!MO.isReg()) {
787 LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
788 return true;
791 // FIXME: Can generic operations have physical registers operands? If
792 // so, this will need to be taught about that, and we'll need to get the
793 // bank out of the minimal class for the register.
794 // Either way, this needs to be documented (and possibly verified).
795 if (!MO.getReg().isVirtual()) {
796 LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
797 return true;
800 const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
801 if (!OpBank) {
802 LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
803 return true;
806 if (PrevOpBank && OpBank != PrevOpBank) {
807 LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
808 return true;
810 PrevOpBank = OpBank;
812 return false;
815 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
816 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
817 /// and of size \p OpSize.
818 /// \returns \p GenericOpc if the combination is unsupported.
819 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
820 unsigned OpSize) {
821 switch (RegBankID) {
822 case AArch64::GPRRegBankID:
823 if (OpSize == 32) {
824 switch (GenericOpc) {
825 case TargetOpcode::G_SHL:
826 return AArch64::LSLVWr;
827 case TargetOpcode::G_LSHR:
828 return AArch64::LSRVWr;
829 case TargetOpcode::G_ASHR:
830 return AArch64::ASRVWr;
831 default:
832 return GenericOpc;
834 } else if (OpSize == 64) {
835 switch (GenericOpc) {
836 case TargetOpcode::G_PTR_ADD:
837 return AArch64::ADDXrr;
838 case TargetOpcode::G_SHL:
839 return AArch64::LSLVXr;
840 case TargetOpcode::G_LSHR:
841 return AArch64::LSRVXr;
842 case TargetOpcode::G_ASHR:
843 return AArch64::ASRVXr;
844 default:
845 return GenericOpc;
848 break;
849 case AArch64::FPRRegBankID:
850 switch (OpSize) {
851 case 32:
852 switch (GenericOpc) {
853 case TargetOpcode::G_FADD:
854 return AArch64::FADDSrr;
855 case TargetOpcode::G_FSUB:
856 return AArch64::FSUBSrr;
857 case TargetOpcode::G_FMUL:
858 return AArch64::FMULSrr;
859 case TargetOpcode::G_FDIV:
860 return AArch64::FDIVSrr;
861 default:
862 return GenericOpc;
864 case 64:
865 switch (GenericOpc) {
866 case TargetOpcode::G_FADD:
867 return AArch64::FADDDrr;
868 case TargetOpcode::G_FSUB:
869 return AArch64::FSUBDrr;
870 case TargetOpcode::G_FMUL:
871 return AArch64::FMULDrr;
872 case TargetOpcode::G_FDIV:
873 return AArch64::FDIVDrr;
874 case TargetOpcode::G_OR:
875 return AArch64::ORRv8i8;
876 default:
877 return GenericOpc;
880 break;
882 return GenericOpc;
885 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
886 /// appropriate for the (value) register bank \p RegBankID and of memory access
887 /// size \p OpSize. This returns the variant with the base+unsigned-immediate
888 /// addressing mode (e.g., LDRXui).
889 /// \returns \p GenericOpc if the combination is unsupported.
890 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
891 unsigned OpSize) {
892 const bool isStore = GenericOpc == TargetOpcode::G_STORE;
893 switch (RegBankID) {
894 case AArch64::GPRRegBankID:
895 switch (OpSize) {
896 case 8:
897 return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
898 case 16:
899 return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
900 case 32:
901 return isStore ? AArch64::STRWui : AArch64::LDRWui;
902 case 64:
903 return isStore ? AArch64::STRXui : AArch64::LDRXui;
905 break;
906 case AArch64::FPRRegBankID:
907 switch (OpSize) {
908 case 8:
909 return isStore ? AArch64::STRBui : AArch64::LDRBui;
910 case 16:
911 return isStore ? AArch64::STRHui : AArch64::LDRHui;
912 case 32:
913 return isStore ? AArch64::STRSui : AArch64::LDRSui;
914 case 64:
915 return isStore ? AArch64::STRDui : AArch64::LDRDui;
916 case 128:
917 return isStore ? AArch64::STRQui : AArch64::LDRQui;
919 break;
921 return GenericOpc;
924 /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
925 /// to \p *To.
927 /// E.g "To = COPY SrcReg:SubReg"
928 static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
929 const RegisterBankInfo &RBI, Register SrcReg,
930 const TargetRegisterClass *To, unsigned SubReg) {
931 assert(SrcReg.isValid() && "Expected a valid source register?");
932 assert(To && "Destination register class cannot be null");
933 assert(SubReg && "Expected a valid subregister");
935 MachineIRBuilder MIB(I);
936 auto SubRegCopy =
937 MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
938 MachineOperand &RegOp = I.getOperand(1);
939 RegOp.setReg(SubRegCopy.getReg(0));
941 // It's possible that the destination register won't be constrained. Make
942 // sure that happens.
943 if (!I.getOperand(0).getReg().isPhysical())
944 RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
946 return true;
949 /// Helper function to get the source and destination register classes for a
950 /// copy. Returns a std::pair containing the source register class for the
951 /// copy, and the destination register class for the copy. If a register class
952 /// cannot be determined, then it will be nullptr.
953 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
954 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
955 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
956 const RegisterBankInfo &RBI) {
957 Register DstReg = I.getOperand(0).getReg();
958 Register SrcReg = I.getOperand(1).getReg();
959 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
960 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
962 TypeSize DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
963 TypeSize SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
965 // Special casing for cross-bank copies of s1s. We can technically represent
966 // a 1-bit value with any size of register. The minimum size for a GPR is 32
967 // bits. So, we need to put the FPR on 32 bits as well.
969 // FIXME: I'm not sure if this case holds true outside of copies. If it does,
970 // then we can pull it into the helpers that get the appropriate class for a
971 // register bank. Or make a new helper that carries along some constraint
972 // information.
973 if (SrcRegBank != DstRegBank &&
974 (DstSize == TypeSize::getFixed(1) && SrcSize == TypeSize::getFixed(1)))
975 SrcSize = DstSize = TypeSize::getFixed(32);
977 return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
978 getMinClassForRegBank(DstRegBank, DstSize, true)};
981 // FIXME: We need some sort of API in RBI/TRI to allow generic code to
982 // constrain operands of simple instructions given a TargetRegisterClass
983 // and LLT
984 static bool selectDebugInstr(MachineInstr &I, MachineRegisterInfo &MRI,
985 const RegisterBankInfo &RBI) {
986 for (MachineOperand &MO : I.operands()) {
987 if (!MO.isReg())
988 continue;
989 Register Reg = MO.getReg();
990 if (!Reg)
991 continue;
992 if (Reg.isPhysical())
993 continue;
994 LLT Ty = MRI.getType(Reg);
995 const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
996 const TargetRegisterClass *RC =
997 dyn_cast<const TargetRegisterClass *>(RegClassOrBank);
998 if (!RC) {
999 const RegisterBank &RB = *cast<const RegisterBank *>(RegClassOrBank);
1000 RC = getRegClassForTypeOnBank(Ty, RB);
1001 if (!RC) {
1002 LLVM_DEBUG(
1003 dbgs() << "Warning: DBG_VALUE operand has unexpected size/bank\n");
1004 break;
1007 RBI.constrainGenericRegister(Reg, *RC, MRI);
1010 return true;
1013 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
1014 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
1015 const RegisterBankInfo &RBI) {
1016 Register DstReg = I.getOperand(0).getReg();
1017 Register SrcReg = I.getOperand(1).getReg();
1018 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
1019 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
1021 // Find the correct register classes for the source and destination registers.
1022 const TargetRegisterClass *SrcRC;
1023 const TargetRegisterClass *DstRC;
1024 std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
1026 if (!DstRC) {
1027 LLVM_DEBUG(dbgs() << "Unexpected dest size "
1028 << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
1029 return false;
1032 // Is this a copy? If so, then we may need to insert a subregister copy.
1033 if (I.isCopy()) {
1034 // Yes. Check if there's anything to fix up.
1035 if (!SrcRC) {
1036 LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
1037 return false;
1040 const TypeSize SrcSize = TRI.getRegSizeInBits(*SrcRC);
1041 const TypeSize DstSize = TRI.getRegSizeInBits(*DstRC);
1042 unsigned SubReg;
1044 // If the source bank doesn't support a subregister copy small enough,
1045 // then we first need to copy to the destination bank.
1046 if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
1047 const TargetRegisterClass *DstTempRC =
1048 getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
1049 getSubRegForClass(DstRC, TRI, SubReg);
1051 MachineIRBuilder MIB(I);
1052 auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
1053 copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
1054 } else if (SrcSize > DstSize) {
1055 // If the source register is bigger than the destination we need to
1056 // perform a subregister copy.
1057 const TargetRegisterClass *SubRegRC =
1058 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
1059 getSubRegForClass(SubRegRC, TRI, SubReg);
1060 copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
1061 } else if (DstSize > SrcSize) {
1062 // If the destination register is bigger than the source we need to do
1063 // a promotion using SUBREG_TO_REG.
1064 const TargetRegisterClass *PromotionRC =
1065 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
1066 getSubRegForClass(SrcRC, TRI, SubReg);
1068 Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
1069 BuildMI(*I.getParent(), I, I.getDebugLoc(),
1070 TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
1071 .addImm(0)
1072 .addUse(SrcReg)
1073 .addImm(SubReg);
1074 MachineOperand &RegOp = I.getOperand(1);
1075 RegOp.setReg(PromoteReg);
1078 // If the destination is a physical register, then there's nothing to
1079 // change, so we're done.
1080 if (DstReg.isPhysical())
1081 return true;
1084 // No need to constrain SrcReg. It will get constrained when we hit another
1085 // of its use or its defs. Copies do not have constraints.
1086 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
1087 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
1088 << " operand\n");
1089 return false;
1092 // If this a GPR ZEXT that we want to just reduce down into a copy.
1093 // The sizes will be mismatched with the source < 32b but that's ok.
1094 if (I.getOpcode() == TargetOpcode::G_ZEXT) {
1095 I.setDesc(TII.get(AArch64::COPY));
1096 assert(SrcRegBank.getID() == AArch64::GPRRegBankID);
1097 return selectCopy(I, TII, MRI, TRI, RBI);
1100 I.setDesc(TII.get(AArch64::COPY));
1101 return true;
1104 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
1105 if (!DstTy.isScalar() || !SrcTy.isScalar())
1106 return GenericOpc;
1108 const unsigned DstSize = DstTy.getSizeInBits();
1109 const unsigned SrcSize = SrcTy.getSizeInBits();
1111 switch (DstSize) {
1112 case 32:
1113 switch (SrcSize) {
1114 case 32:
1115 switch (GenericOpc) {
1116 case TargetOpcode::G_SITOFP:
1117 return AArch64::SCVTFUWSri;
1118 case TargetOpcode::G_UITOFP:
1119 return AArch64::UCVTFUWSri;
1120 case TargetOpcode::G_FPTOSI:
1121 return AArch64::FCVTZSUWSr;
1122 case TargetOpcode::G_FPTOUI:
1123 return AArch64::FCVTZUUWSr;
1124 default:
1125 return GenericOpc;
1127 case 64:
1128 switch (GenericOpc) {
1129 case TargetOpcode::G_SITOFP:
1130 return AArch64::SCVTFUXSri;
1131 case TargetOpcode::G_UITOFP:
1132 return AArch64::UCVTFUXSri;
1133 case TargetOpcode::G_FPTOSI:
1134 return AArch64::FCVTZSUWDr;
1135 case TargetOpcode::G_FPTOUI:
1136 return AArch64::FCVTZUUWDr;
1137 default:
1138 return GenericOpc;
1140 default:
1141 return GenericOpc;
1143 case 64:
1144 switch (SrcSize) {
1145 case 32:
1146 switch (GenericOpc) {
1147 case TargetOpcode::G_SITOFP:
1148 return AArch64::SCVTFUWDri;
1149 case TargetOpcode::G_UITOFP:
1150 return AArch64::UCVTFUWDri;
1151 case TargetOpcode::G_FPTOSI:
1152 return AArch64::FCVTZSUXSr;
1153 case TargetOpcode::G_FPTOUI:
1154 return AArch64::FCVTZUUXSr;
1155 default:
1156 return GenericOpc;
1158 case 64:
1159 switch (GenericOpc) {
1160 case TargetOpcode::G_SITOFP:
1161 return AArch64::SCVTFUXDri;
1162 case TargetOpcode::G_UITOFP:
1163 return AArch64::UCVTFUXDri;
1164 case TargetOpcode::G_FPTOSI:
1165 return AArch64::FCVTZSUXDr;
1166 case TargetOpcode::G_FPTOUI:
1167 return AArch64::FCVTZUUXDr;
1168 default:
1169 return GenericOpc;
1171 default:
1172 return GenericOpc;
1174 default:
1175 return GenericOpc;
1177 return GenericOpc;
1180 MachineInstr *
1181 AArch64InstructionSelector::emitSelect(Register Dst, Register True,
1182 Register False, AArch64CC::CondCode CC,
1183 MachineIRBuilder &MIB) const {
1184 MachineRegisterInfo &MRI = *MIB.getMRI();
1185 assert(RBI.getRegBank(False, MRI, TRI)->getID() ==
1186 RBI.getRegBank(True, MRI, TRI)->getID() &&
1187 "Expected both select operands to have the same regbank?");
1188 LLT Ty = MRI.getType(True);
1189 if (Ty.isVector())
1190 return nullptr;
1191 const unsigned Size = Ty.getSizeInBits();
1192 assert((Size == 32 || Size == 64) &&
1193 "Expected 32 bit or 64 bit select only?");
1194 const bool Is32Bit = Size == 32;
1195 if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) {
1196 unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr;
1197 auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1198 constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI);
1199 return &*FCSel;
1202 // By default, we'll try and emit a CSEL.
1203 unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr;
1204 bool Optimized = false;
1205 auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI,
1206 &Optimized](Register &Reg, Register &OtherReg,
1207 bool Invert) {
1208 if (Optimized)
1209 return false;
1211 // Attempt to fold:
1213 // %sub = G_SUB 0, %x
1214 // %select = G_SELECT cc, %reg, %sub
1216 // Into:
1217 // %select = CSNEG %reg, %x, cc
1218 Register MatchReg;
1219 if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) {
1220 Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr;
1221 Reg = MatchReg;
1222 if (Invert) {
1223 CC = AArch64CC::getInvertedCondCode(CC);
1224 std::swap(Reg, OtherReg);
1226 return true;
1229 // Attempt to fold:
1231 // %xor = G_XOR %x, -1
1232 // %select = G_SELECT cc, %reg, %xor
1234 // Into:
1235 // %select = CSINV %reg, %x, cc
1236 if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) {
1237 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1238 Reg = MatchReg;
1239 if (Invert) {
1240 CC = AArch64CC::getInvertedCondCode(CC);
1241 std::swap(Reg, OtherReg);
1243 return true;
1246 // Attempt to fold:
1248 // %add = G_ADD %x, 1
1249 // %select = G_SELECT cc, %reg, %add
1251 // Into:
1252 // %select = CSINC %reg, %x, cc
1253 if (mi_match(Reg, MRI,
1254 m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)),
1255 m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) {
1256 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1257 Reg = MatchReg;
1258 if (Invert) {
1259 CC = AArch64CC::getInvertedCondCode(CC);
1260 std::swap(Reg, OtherReg);
1262 return true;
1265 return false;
1268 // Helper lambda which tries to use CSINC/CSINV for the instruction when its
1269 // true/false values are constants.
1270 // FIXME: All of these patterns already exist in tablegen. We should be
1271 // able to import these.
1272 auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI,
1273 &Optimized]() {
1274 if (Optimized)
1275 return false;
1276 auto TrueCst = getIConstantVRegValWithLookThrough(True, MRI);
1277 auto FalseCst = getIConstantVRegValWithLookThrough(False, MRI);
1278 if (!TrueCst && !FalseCst)
1279 return false;
1281 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
1282 if (TrueCst && FalseCst) {
1283 int64_t T = TrueCst->Value.getSExtValue();
1284 int64_t F = FalseCst->Value.getSExtValue();
1286 if (T == 0 && F == 1) {
1287 // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc
1288 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1289 True = ZReg;
1290 False = ZReg;
1291 return true;
1294 if (T == 0 && F == -1) {
1295 // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc
1296 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1297 True = ZReg;
1298 False = ZReg;
1299 return true;
1303 if (TrueCst) {
1304 int64_t T = TrueCst->Value.getSExtValue();
1305 if (T == 1) {
1306 // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc
1307 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1308 True = False;
1309 False = ZReg;
1310 CC = AArch64CC::getInvertedCondCode(CC);
1311 return true;
1314 if (T == -1) {
1315 // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc
1316 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1317 True = False;
1318 False = ZReg;
1319 CC = AArch64CC::getInvertedCondCode(CC);
1320 return true;
1324 if (FalseCst) {
1325 int64_t F = FalseCst->Value.getSExtValue();
1326 if (F == 1) {
1327 // G_SELECT cc, t, 1 -> CSINC t, zreg, cc
1328 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1329 False = ZReg;
1330 return true;
1333 if (F == -1) {
1334 // G_SELECT cc, t, -1 -> CSINC t, zreg, cc
1335 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1336 False = ZReg;
1337 return true;
1340 return false;
1343 Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false);
1344 Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true);
1345 Optimized |= TryOptSelectCst();
1346 auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1347 constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI);
1348 return &*SelectInst;
1351 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
1352 switch (P) {
1353 default:
1354 llvm_unreachable("Unknown condition code!");
1355 case CmpInst::ICMP_NE:
1356 return AArch64CC::NE;
1357 case CmpInst::ICMP_EQ:
1358 return AArch64CC::EQ;
1359 case CmpInst::ICMP_SGT:
1360 return AArch64CC::GT;
1361 case CmpInst::ICMP_SGE:
1362 return AArch64CC::GE;
1363 case CmpInst::ICMP_SLT:
1364 return AArch64CC::LT;
1365 case CmpInst::ICMP_SLE:
1366 return AArch64CC::LE;
1367 case CmpInst::ICMP_UGT:
1368 return AArch64CC::HI;
1369 case CmpInst::ICMP_UGE:
1370 return AArch64CC::HS;
1371 case CmpInst::ICMP_ULT:
1372 return AArch64CC::LO;
1373 case CmpInst::ICMP_ULE:
1374 return AArch64CC::LS;
1378 /// changeFPCCToORAArch64CC - Convert an IR fp condition code to an AArch64 CC.
1379 static void changeFPCCToORAArch64CC(CmpInst::Predicate CC,
1380 AArch64CC::CondCode &CondCode,
1381 AArch64CC::CondCode &CondCode2) {
1382 CondCode2 = AArch64CC::AL;
1383 switch (CC) {
1384 default:
1385 llvm_unreachable("Unknown FP condition!");
1386 case CmpInst::FCMP_OEQ:
1387 CondCode = AArch64CC::EQ;
1388 break;
1389 case CmpInst::FCMP_OGT:
1390 CondCode = AArch64CC::GT;
1391 break;
1392 case CmpInst::FCMP_OGE:
1393 CondCode = AArch64CC::GE;
1394 break;
1395 case CmpInst::FCMP_OLT:
1396 CondCode = AArch64CC::MI;
1397 break;
1398 case CmpInst::FCMP_OLE:
1399 CondCode = AArch64CC::LS;
1400 break;
1401 case CmpInst::FCMP_ONE:
1402 CondCode = AArch64CC::MI;
1403 CondCode2 = AArch64CC::GT;
1404 break;
1405 case CmpInst::FCMP_ORD:
1406 CondCode = AArch64CC::VC;
1407 break;
1408 case CmpInst::FCMP_UNO:
1409 CondCode = AArch64CC::VS;
1410 break;
1411 case CmpInst::FCMP_UEQ:
1412 CondCode = AArch64CC::EQ;
1413 CondCode2 = AArch64CC::VS;
1414 break;
1415 case CmpInst::FCMP_UGT:
1416 CondCode = AArch64CC::HI;
1417 break;
1418 case CmpInst::FCMP_UGE:
1419 CondCode = AArch64CC::PL;
1420 break;
1421 case CmpInst::FCMP_ULT:
1422 CondCode = AArch64CC::LT;
1423 break;
1424 case CmpInst::FCMP_ULE:
1425 CondCode = AArch64CC::LE;
1426 break;
1427 case CmpInst::FCMP_UNE:
1428 CondCode = AArch64CC::NE;
1429 break;
1433 /// Convert an IR fp condition code to an AArch64 CC.
1434 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1435 /// should be AND'ed instead of OR'ed.
1436 static void changeFPCCToANDAArch64CC(CmpInst::Predicate CC,
1437 AArch64CC::CondCode &CondCode,
1438 AArch64CC::CondCode &CondCode2) {
1439 CondCode2 = AArch64CC::AL;
1440 switch (CC) {
1441 default:
1442 changeFPCCToORAArch64CC(CC, CondCode, CondCode2);
1443 assert(CondCode2 == AArch64CC::AL);
1444 break;
1445 case CmpInst::FCMP_ONE:
1446 // (a one b)
1447 // == ((a olt b) || (a ogt b))
1448 // == ((a ord b) && (a une b))
1449 CondCode = AArch64CC::VC;
1450 CondCode2 = AArch64CC::NE;
1451 break;
1452 case CmpInst::FCMP_UEQ:
1453 // (a ueq b)
1454 // == ((a uno b) || (a oeq b))
1455 // == ((a ule b) && (a uge b))
1456 CondCode = AArch64CC::PL;
1457 CondCode2 = AArch64CC::LE;
1458 break;
1462 /// Return a register which can be used as a bit to test in a TB(N)Z.
1463 static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
1464 MachineRegisterInfo &MRI) {
1465 assert(Reg.isValid() && "Expected valid register!");
1466 bool HasZext = false;
1467 while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
1468 unsigned Opc = MI->getOpcode();
1470 if (!MI->getOperand(0).isReg() ||
1471 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1472 break;
1474 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
1476 // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
1477 // on the truncated x is the same as the bit number on x.
1478 if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
1479 Opc == TargetOpcode::G_TRUNC) {
1480 if (Opc == TargetOpcode::G_ZEXT)
1481 HasZext = true;
1483 Register NextReg = MI->getOperand(1).getReg();
1484 // Did we find something worth folding?
1485 if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
1486 break;
1488 // NextReg is worth folding. Keep looking.
1489 Reg = NextReg;
1490 continue;
1493 // Attempt to find a suitable operation with a constant on one side.
1494 std::optional<uint64_t> C;
1495 Register TestReg;
1496 switch (Opc) {
1497 default:
1498 break;
1499 case TargetOpcode::G_AND:
1500 case TargetOpcode::G_XOR: {
1501 TestReg = MI->getOperand(1).getReg();
1502 Register ConstantReg = MI->getOperand(2).getReg();
1503 auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
1504 if (!VRegAndVal) {
1505 // AND commutes, check the other side for a constant.
1506 // FIXME: Can we canonicalize the constant so that it's always on the
1507 // same side at some point earlier?
1508 std::swap(ConstantReg, TestReg);
1509 VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
1511 if (VRegAndVal) {
1512 if (HasZext)
1513 C = VRegAndVal->Value.getZExtValue();
1514 else
1515 C = VRegAndVal->Value.getSExtValue();
1517 break;
1519 case TargetOpcode::G_ASHR:
1520 case TargetOpcode::G_LSHR:
1521 case TargetOpcode::G_SHL: {
1522 TestReg = MI->getOperand(1).getReg();
1523 auto VRegAndVal =
1524 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1525 if (VRegAndVal)
1526 C = VRegAndVal->Value.getSExtValue();
1527 break;
1531 // Didn't find a constant or viable register. Bail out of the loop.
1532 if (!C || !TestReg.isValid())
1533 break;
1535 // We found a suitable instruction with a constant. Check to see if we can
1536 // walk through the instruction.
1537 Register NextReg;
1538 unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
1539 switch (Opc) {
1540 default:
1541 break;
1542 case TargetOpcode::G_AND:
1543 // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
1544 if ((*C >> Bit) & 1)
1545 NextReg = TestReg;
1546 break;
1547 case TargetOpcode::G_SHL:
1548 // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
1549 // the type of the register.
1550 if (*C <= Bit && (Bit - *C) < TestRegSize) {
1551 NextReg = TestReg;
1552 Bit = Bit - *C;
1554 break;
1555 case TargetOpcode::G_ASHR:
1556 // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
1557 // in x
1558 NextReg = TestReg;
1559 Bit = Bit + *C;
1560 if (Bit >= TestRegSize)
1561 Bit = TestRegSize - 1;
1562 break;
1563 case TargetOpcode::G_LSHR:
1564 // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
1565 if ((Bit + *C) < TestRegSize) {
1566 NextReg = TestReg;
1567 Bit = Bit + *C;
1569 break;
1570 case TargetOpcode::G_XOR:
1571 // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
1572 // appropriate.
1574 // e.g. If x' = xor x, c, and the b-th bit is set in c then
1576 // tbz x', b -> tbnz x, b
1578 // Because x' only has the b-th bit set if x does not.
1579 if ((*C >> Bit) & 1)
1580 Invert = !Invert;
1581 NextReg = TestReg;
1582 break;
1585 // Check if we found anything worth folding.
1586 if (!NextReg.isValid())
1587 return Reg;
1588 Reg = NextReg;
1591 return Reg;
1594 MachineInstr *AArch64InstructionSelector::emitTestBit(
1595 Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
1596 MachineIRBuilder &MIB) const {
1597 assert(TestReg.isValid());
1598 assert(ProduceNonFlagSettingCondBr &&
1599 "Cannot emit TB(N)Z with speculation tracking!");
1600 MachineRegisterInfo &MRI = *MIB.getMRI();
1602 // Attempt to optimize the test bit by walking over instructions.
1603 TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
1604 LLT Ty = MRI.getType(TestReg);
1605 unsigned Size = Ty.getSizeInBits();
1606 assert(!Ty.isVector() && "Expected a scalar!");
1607 assert(Bit < 64 && "Bit is too large!");
1609 // When the test register is a 64-bit register, we have to narrow to make
1610 // TBNZW work.
1611 bool UseWReg = Bit < 32;
1612 unsigned NecessarySize = UseWReg ? 32 : 64;
1613 if (Size != NecessarySize)
1614 TestReg = moveScalarRegClass(
1615 TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
1616 MIB);
1618 static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
1619 {AArch64::TBZW, AArch64::TBNZW}};
1620 unsigned Opc = OpcTable[UseWReg][IsNegative];
1621 auto TestBitMI =
1622 MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
1623 constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
1624 return &*TestBitMI;
1627 bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
1628 MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB,
1629 MachineIRBuilder &MIB) const {
1630 assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?");
1631 // Given something like this:
1633 // %x = ...Something...
1634 // %one = G_CONSTANT i64 1
1635 // %zero = G_CONSTANT i64 0
1636 // %and = G_AND %x, %one
1637 // %cmp = G_ICMP intpred(ne), %and, %zero
1638 // %cmp_trunc = G_TRUNC %cmp
1639 // G_BRCOND %cmp_trunc, %bb.3
1641 // We want to try and fold the AND into the G_BRCOND and produce either a
1642 // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
1644 // In this case, we'd get
1646 // TBNZ %x %bb.3
1649 // Check if the AND has a constant on its RHS which we can use as a mask.
1650 // If it's a power of 2, then it's the same as checking a specific bit.
1651 // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
1652 auto MaybeBit = getIConstantVRegValWithLookThrough(
1653 AndInst.getOperand(2).getReg(), *MIB.getMRI());
1654 if (!MaybeBit)
1655 return false;
1657 int32_t Bit = MaybeBit->Value.exactLogBase2();
1658 if (Bit < 0)
1659 return false;
1661 Register TestReg = AndInst.getOperand(1).getReg();
1663 // Emit a TB(N)Z.
1664 emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
1665 return true;
1668 MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg,
1669 bool IsNegative,
1670 MachineBasicBlock *DestMBB,
1671 MachineIRBuilder &MIB) const {
1672 assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!");
1673 MachineRegisterInfo &MRI = *MIB.getMRI();
1674 assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() ==
1675 AArch64::GPRRegBankID &&
1676 "Expected GPRs only?");
1677 auto Ty = MRI.getType(CompareReg);
1678 unsigned Width = Ty.getSizeInBits();
1679 assert(!Ty.isVector() && "Expected scalar only?");
1680 assert(Width <= 64 && "Expected width to be at most 64?");
1681 static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX},
1682 {AArch64::CBNZW, AArch64::CBNZX}};
1683 unsigned Opc = OpcTable[IsNegative][Width == 64];
1684 auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB);
1685 constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI);
1686 return &*BranchMI;
1689 bool AArch64InstructionSelector::selectCompareBranchFedByFCmp(
1690 MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const {
1691 assert(FCmp.getOpcode() == TargetOpcode::G_FCMP);
1692 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1693 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
1694 // totally clean. Some of them require two branches to implement.
1695 auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate();
1696 emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB,
1697 Pred);
1698 AArch64CC::CondCode CC1, CC2;
1699 changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2);
1700 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1701 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB);
1702 if (CC2 != AArch64CC::AL)
1703 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB);
1704 I.eraseFromParent();
1705 return true;
1708 bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp(
1709 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1710 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1711 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1712 // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z.
1714 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1715 // instructions will not be produced, as they are conditional branch
1716 // instructions that do not set flags.
1717 if (!ProduceNonFlagSettingCondBr)
1718 return false;
1720 MachineRegisterInfo &MRI = *MIB.getMRI();
1721 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1722 auto Pred =
1723 static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate());
1724 Register LHS = ICmp.getOperand(2).getReg();
1725 Register RHS = ICmp.getOperand(3).getReg();
1727 // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that.
1728 auto VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1729 MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1731 // When we can emit a TB(N)Z, prefer that.
1733 // Handle non-commutative condition codes first.
1734 // Note that we don't want to do this when we have a G_AND because it can
1735 // become a tst. The tst will make the test bit in the TB(N)Z redundant.
1736 if (VRegAndVal && !AndInst) {
1737 int64_t C = VRegAndVal->Value.getSExtValue();
1739 // When we have a greater-than comparison, we can just test if the msb is
1740 // zero.
1741 if (C == -1 && Pred == CmpInst::ICMP_SGT) {
1742 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1743 emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1744 I.eraseFromParent();
1745 return true;
1748 // When we have a less than comparison, we can just test if the msb is not
1749 // zero.
1750 if (C == 0 && Pred == CmpInst::ICMP_SLT) {
1751 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1752 emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
1753 I.eraseFromParent();
1754 return true;
1757 // Inversely, if we have a signed greater-than-or-equal comparison to zero,
1758 // we can test if the msb is zero.
1759 if (C == 0 && Pred == CmpInst::ICMP_SGE) {
1760 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1761 emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1762 I.eraseFromParent();
1763 return true;
1767 // Attempt to handle commutative condition codes. Right now, that's only
1768 // eq/ne.
1769 if (ICmpInst::isEquality(Pred)) {
1770 if (!VRegAndVal) {
1771 std::swap(RHS, LHS);
1772 VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1773 AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1776 if (VRegAndVal && VRegAndVal->Value == 0) {
1777 // If there's a G_AND feeding into this branch, try to fold it away by
1778 // emitting a TB(N)Z instead.
1780 // Note: If we have LT, then it *is* possible to fold, but it wouldn't be
1781 // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding
1782 // would be redundant.
1783 if (AndInst &&
1784 tryOptAndIntoCompareBranch(
1785 *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) {
1786 I.eraseFromParent();
1787 return true;
1790 // Otherwise, try to emit a CB(N)Z instead.
1791 auto LHSTy = MRI.getType(LHS);
1792 if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) {
1793 emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB);
1794 I.eraseFromParent();
1795 return true;
1800 return false;
1803 bool AArch64InstructionSelector::selectCompareBranchFedByICmp(
1804 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1805 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1806 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1807 if (tryOptCompareBranchFedByICmp(I, ICmp, MIB))
1808 return true;
1810 // Couldn't optimize. Emit a compare + a Bcc.
1811 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1812 auto PredOp = ICmp.getOperand(1);
1813 emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB);
1814 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
1815 static_cast<CmpInst::Predicate>(PredOp.getPredicate()));
1816 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
1817 I.eraseFromParent();
1818 return true;
1821 bool AArch64InstructionSelector::selectCompareBranch(
1822 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) {
1823 Register CondReg = I.getOperand(0).getReg();
1824 MachineInstr *CCMI = MRI.getVRegDef(CondReg);
1825 // Try to select the G_BRCOND using whatever is feeding the condition if
1826 // possible.
1827 unsigned CCMIOpc = CCMI->getOpcode();
1828 if (CCMIOpc == TargetOpcode::G_FCMP)
1829 return selectCompareBranchFedByFCmp(I, *CCMI, MIB);
1830 if (CCMIOpc == TargetOpcode::G_ICMP)
1831 return selectCompareBranchFedByICmp(I, *CCMI, MIB);
1833 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1834 // instructions will not be produced, as they are conditional branch
1835 // instructions that do not set flags.
1836 if (ProduceNonFlagSettingCondBr) {
1837 emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true,
1838 I.getOperand(1).getMBB(), MIB);
1839 I.eraseFromParent();
1840 return true;
1843 // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead.
1844 auto TstMI =
1845 MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1);
1846 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
1847 auto Bcc = MIB.buildInstr(AArch64::Bcc)
1848 .addImm(AArch64CC::NE)
1849 .addMBB(I.getOperand(1).getMBB());
1850 I.eraseFromParent();
1851 return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI);
1854 /// Returns the element immediate value of a vector shift operand if found.
1855 /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
1856 static std::optional<int64_t> getVectorShiftImm(Register Reg,
1857 MachineRegisterInfo &MRI) {
1858 assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
1859 MachineInstr *OpMI = MRI.getVRegDef(Reg);
1860 return getAArch64VectorSplatScalar(*OpMI, MRI);
1863 /// Matches and returns the shift immediate value for a SHL instruction given
1864 /// a shift operand.
1865 static std::optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg,
1866 MachineRegisterInfo &MRI) {
1867 std::optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
1868 if (!ShiftImm)
1869 return std::nullopt;
1870 // Check the immediate is in range for a SHL.
1871 int64_t Imm = *ShiftImm;
1872 if (Imm < 0)
1873 return std::nullopt;
1874 switch (SrcTy.getElementType().getSizeInBits()) {
1875 default:
1876 LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
1877 return std::nullopt;
1878 case 8:
1879 if (Imm > 7)
1880 return std::nullopt;
1881 break;
1882 case 16:
1883 if (Imm > 15)
1884 return std::nullopt;
1885 break;
1886 case 32:
1887 if (Imm > 31)
1888 return std::nullopt;
1889 break;
1890 case 64:
1891 if (Imm > 63)
1892 return std::nullopt;
1893 break;
1895 return Imm;
1898 bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I,
1899 MachineRegisterInfo &MRI) {
1900 assert(I.getOpcode() == TargetOpcode::G_SHL);
1901 Register DstReg = I.getOperand(0).getReg();
1902 const LLT Ty = MRI.getType(DstReg);
1903 Register Src1Reg = I.getOperand(1).getReg();
1904 Register Src2Reg = I.getOperand(2).getReg();
1906 if (!Ty.isVector())
1907 return false;
1909 // Check if we have a vector of constants on RHS that we can select as the
1910 // immediate form.
1911 std::optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
1913 unsigned Opc = 0;
1914 if (Ty == LLT::fixed_vector(2, 64)) {
1915 Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
1916 } else if (Ty == LLT::fixed_vector(4, 32)) {
1917 Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
1918 } else if (Ty == LLT::fixed_vector(2, 32)) {
1919 Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
1920 } else if (Ty == LLT::fixed_vector(4, 16)) {
1921 Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16;
1922 } else if (Ty == LLT::fixed_vector(8, 16)) {
1923 Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16;
1924 } else if (Ty == LLT::fixed_vector(16, 8)) {
1925 Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8;
1926 } else if (Ty == LLT::fixed_vector(8, 8)) {
1927 Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8;
1928 } else {
1929 LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1930 return false;
1933 auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
1934 if (ImmVal)
1935 Shl.addImm(*ImmVal);
1936 else
1937 Shl.addUse(Src2Reg);
1938 constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
1939 I.eraseFromParent();
1940 return true;
1943 bool AArch64InstructionSelector::selectVectorAshrLshr(
1944 MachineInstr &I, MachineRegisterInfo &MRI) {
1945 assert(I.getOpcode() == TargetOpcode::G_ASHR ||
1946 I.getOpcode() == TargetOpcode::G_LSHR);
1947 Register DstReg = I.getOperand(0).getReg();
1948 const LLT Ty = MRI.getType(DstReg);
1949 Register Src1Reg = I.getOperand(1).getReg();
1950 Register Src2Reg = I.getOperand(2).getReg();
1952 if (!Ty.isVector())
1953 return false;
1955 bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR;
1957 // We expect the immediate case to be lowered in the PostLegalCombiner to
1958 // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents.
1960 // There is not a shift right register instruction, but the shift left
1961 // register instruction takes a signed value, where negative numbers specify a
1962 // right shift.
1964 unsigned Opc = 0;
1965 unsigned NegOpc = 0;
1966 const TargetRegisterClass *RC =
1967 getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID));
1968 if (Ty == LLT::fixed_vector(2, 64)) {
1969 Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64;
1970 NegOpc = AArch64::NEGv2i64;
1971 } else if (Ty == LLT::fixed_vector(4, 32)) {
1972 Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32;
1973 NegOpc = AArch64::NEGv4i32;
1974 } else if (Ty == LLT::fixed_vector(2, 32)) {
1975 Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32;
1976 NegOpc = AArch64::NEGv2i32;
1977 } else if (Ty == LLT::fixed_vector(4, 16)) {
1978 Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16;
1979 NegOpc = AArch64::NEGv4i16;
1980 } else if (Ty == LLT::fixed_vector(8, 16)) {
1981 Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16;
1982 NegOpc = AArch64::NEGv8i16;
1983 } else if (Ty == LLT::fixed_vector(16, 8)) {
1984 Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8;
1985 NegOpc = AArch64::NEGv16i8;
1986 } else if (Ty == LLT::fixed_vector(8, 8)) {
1987 Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8;
1988 NegOpc = AArch64::NEGv8i8;
1989 } else {
1990 LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1991 return false;
1994 auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1995 constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1996 auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1997 constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1998 I.eraseFromParent();
1999 return true;
2002 bool AArch64InstructionSelector::selectVaStartAAPCS(
2003 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
2005 if (STI.isCallingConvWin64(MF.getFunction().getCallingConv(),
2006 MF.getFunction().isVarArg()))
2007 return false;
2009 // The layout of the va_list struct is specified in the AArch64 Procedure Call
2010 // Standard, section 10.1.5.
2012 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2013 const unsigned PtrSize = STI.isTargetILP32() ? 4 : 8;
2014 const auto *PtrRegClass =
2015 STI.isTargetILP32() ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
2017 const MCInstrDesc &MCIDAddAddr =
2018 TII.get(STI.isTargetILP32() ? AArch64::ADDWri : AArch64::ADDXri);
2019 const MCInstrDesc &MCIDStoreAddr =
2020 TII.get(STI.isTargetILP32() ? AArch64::STRWui : AArch64::STRXui);
2023 * typedef struct va_list {
2024 * void * stack; // next stack param
2025 * void * gr_top; // end of GP arg reg save area
2026 * void * vr_top; // end of FP/SIMD arg reg save area
2027 * int gr_offs; // offset from gr_top to next GP register arg
2028 * int vr_offs; // offset from vr_top to next FP/SIMD register arg
2029 * } va_list;
2031 const auto VAList = I.getOperand(0).getReg();
2033 // Our current offset in bytes from the va_list struct (VAList).
2034 unsigned OffsetBytes = 0;
2036 // Helper function to store (FrameIndex + Imm) to VAList at offset OffsetBytes
2037 // and increment OffsetBytes by PtrSize.
2038 const auto PushAddress = [&](const int FrameIndex, const int64_t Imm) {
2039 const Register Top = MRI.createVirtualRegister(PtrRegClass);
2040 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), MCIDAddAddr)
2041 .addDef(Top)
2042 .addFrameIndex(FrameIndex)
2043 .addImm(Imm)
2044 .addImm(0);
2045 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2047 const auto *MMO = *I.memoperands_begin();
2048 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), MCIDStoreAddr)
2049 .addUse(Top)
2050 .addUse(VAList)
2051 .addImm(OffsetBytes / PtrSize)
2052 .addMemOperand(MF.getMachineMemOperand(
2053 MMO->getPointerInfo().getWithOffset(OffsetBytes),
2054 MachineMemOperand::MOStore, PtrSize, MMO->getBaseAlign()));
2055 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2057 OffsetBytes += PtrSize;
2060 // void* stack at offset 0
2061 PushAddress(FuncInfo->getVarArgsStackIndex(), 0);
2063 // void* gr_top at offset 8 (4 on ILP32)
2064 const unsigned GPRSize = FuncInfo->getVarArgsGPRSize();
2065 PushAddress(FuncInfo->getVarArgsGPRIndex(), GPRSize);
2067 // void* vr_top at offset 16 (8 on ILP32)
2068 const unsigned FPRSize = FuncInfo->getVarArgsFPRSize();
2069 PushAddress(FuncInfo->getVarArgsFPRIndex(), FPRSize);
2071 // Helper function to store a 4-byte integer constant to VAList at offset
2072 // OffsetBytes, and increment OffsetBytes by 4.
2073 const auto PushIntConstant = [&](const int32_t Value) {
2074 constexpr int IntSize = 4;
2075 const Register Temp = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2076 auto MIB =
2077 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::MOVi32imm))
2078 .addDef(Temp)
2079 .addImm(Value);
2080 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2082 const auto *MMO = *I.memoperands_begin();
2083 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRWui))
2084 .addUse(Temp)
2085 .addUse(VAList)
2086 .addImm(OffsetBytes / IntSize)
2087 .addMemOperand(MF.getMachineMemOperand(
2088 MMO->getPointerInfo().getWithOffset(OffsetBytes),
2089 MachineMemOperand::MOStore, IntSize, MMO->getBaseAlign()));
2090 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2091 OffsetBytes += IntSize;
2094 // int gr_offs at offset 24 (12 on ILP32)
2095 PushIntConstant(-static_cast<int32_t>(GPRSize));
2097 // int vr_offs at offset 28 (16 on ILP32)
2098 PushIntConstant(-static_cast<int32_t>(FPRSize));
2100 assert(OffsetBytes == (STI.isTargetILP32() ? 20 : 32) && "Unexpected offset");
2102 I.eraseFromParent();
2103 return true;
2106 bool AArch64InstructionSelector::selectVaStartDarwin(
2107 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
2108 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2109 Register ListReg = I.getOperand(0).getReg();
2111 Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2113 int FrameIdx = FuncInfo->getVarArgsStackIndex();
2114 if (MF.getSubtarget<AArch64Subtarget>().isCallingConvWin64(
2115 MF.getFunction().getCallingConv(), MF.getFunction().isVarArg())) {
2116 FrameIdx = FuncInfo->getVarArgsGPRSize() > 0
2117 ? FuncInfo->getVarArgsGPRIndex()
2118 : FuncInfo->getVarArgsStackIndex();
2121 auto MIB =
2122 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
2123 .addDef(ArgsAddrReg)
2124 .addFrameIndex(FrameIdx)
2125 .addImm(0)
2126 .addImm(0);
2128 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2130 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
2131 .addUse(ArgsAddrReg)
2132 .addUse(ListReg)
2133 .addImm(0)
2134 .addMemOperand(*I.memoperands_begin());
2136 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2137 I.eraseFromParent();
2138 return true;
2141 void AArch64InstructionSelector::materializeLargeCMVal(
2142 MachineInstr &I, const Value *V, unsigned OpFlags) {
2143 MachineBasicBlock &MBB = *I.getParent();
2144 MachineFunction &MF = *MBB.getParent();
2145 MachineRegisterInfo &MRI = MF.getRegInfo();
2147 auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
2148 MovZ->addOperand(MF, I.getOperand(1));
2149 MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
2150 AArch64II::MO_NC);
2151 MovZ->addOperand(MF, MachineOperand::CreateImm(0));
2152 constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
2154 auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
2155 Register ForceDstReg) {
2156 Register DstReg = ForceDstReg
2157 ? ForceDstReg
2158 : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2159 auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
2160 if (auto *GV = dyn_cast<GlobalValue>(V)) {
2161 MovI->addOperand(MF, MachineOperand::CreateGA(
2162 GV, MovZ->getOperand(1).getOffset(), Flags));
2163 } else {
2164 MovI->addOperand(
2165 MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
2166 MovZ->getOperand(1).getOffset(), Flags));
2168 MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
2169 constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
2170 return DstReg;
2172 Register DstReg = BuildMovK(MovZ.getReg(0),
2173 AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
2174 DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
2175 BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
2178 bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
2179 MachineBasicBlock &MBB = *I.getParent();
2180 MachineFunction &MF = *MBB.getParent();
2181 MachineRegisterInfo &MRI = MF.getRegInfo();
2183 switch (I.getOpcode()) {
2184 case TargetOpcode::G_STORE: {
2185 bool Changed = contractCrossBankCopyIntoStore(I, MRI);
2186 MachineOperand &SrcOp = I.getOperand(0);
2187 if (MRI.getType(SrcOp.getReg()).isPointer()) {
2188 // Allow matching with imported patterns for stores of pointers. Unlike
2189 // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy
2190 // and constrain.
2191 auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp);
2192 Register NewSrc = Copy.getReg(0);
2193 SrcOp.setReg(NewSrc);
2194 RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI);
2195 Changed = true;
2197 return Changed;
2199 case TargetOpcode::G_PTR_ADD:
2200 return convertPtrAddToAdd(I, MRI);
2201 case TargetOpcode::G_LOAD: {
2202 // For scalar loads of pointers, we try to convert the dest type from p0
2203 // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
2204 // conversion, this should be ok because all users should have been
2205 // selected already, so the type doesn't matter for them.
2206 Register DstReg = I.getOperand(0).getReg();
2207 const LLT DstTy = MRI.getType(DstReg);
2208 if (!DstTy.isPointer())
2209 return false;
2210 MRI.setType(DstReg, LLT::scalar(64));
2211 return true;
2213 case AArch64::G_DUP: {
2214 // Convert the type from p0 to s64 to help selection.
2215 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2216 if (!DstTy.isPointerVector())
2217 return false;
2218 auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg());
2219 MRI.setType(I.getOperand(0).getReg(),
2220 DstTy.changeElementType(LLT::scalar(64)));
2221 MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass);
2222 I.getOperand(1).setReg(NewSrc.getReg(0));
2223 return true;
2225 case AArch64::G_INSERT_VECTOR_ELT: {
2226 // Convert the type from p0 to s64 to help selection.
2227 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2228 LLT SrcVecTy = MRI.getType(I.getOperand(1).getReg());
2229 if (!SrcVecTy.isPointerVector())
2230 return false;
2231 auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(2).getReg());
2232 MRI.setType(I.getOperand(1).getReg(),
2233 DstTy.changeElementType(LLT::scalar(64)));
2234 MRI.setType(I.getOperand(0).getReg(),
2235 DstTy.changeElementType(LLT::scalar(64)));
2236 MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass);
2237 I.getOperand(2).setReg(NewSrc.getReg(0));
2238 return true;
2240 case TargetOpcode::G_UITOFP:
2241 case TargetOpcode::G_SITOFP: {
2242 // If both source and destination regbanks are FPR, then convert the opcode
2243 // to G_SITOF so that the importer can select it to an fpr variant.
2244 // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank
2245 // copy.
2246 Register SrcReg = I.getOperand(1).getReg();
2247 LLT SrcTy = MRI.getType(SrcReg);
2248 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2249 if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits())
2250 return false;
2252 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) {
2253 if (I.getOpcode() == TargetOpcode::G_SITOFP)
2254 I.setDesc(TII.get(AArch64::G_SITOF));
2255 else
2256 I.setDesc(TII.get(AArch64::G_UITOF));
2257 return true;
2259 return false;
2261 default:
2262 return false;
2266 /// This lowering tries to look for G_PTR_ADD instructions and then converts
2267 /// them to a standard G_ADD with a COPY on the source.
2269 /// The motivation behind this is to expose the add semantics to the imported
2270 /// tablegen patterns. We shouldn't need to check for uses being loads/stores,
2271 /// because the selector works bottom up, uses before defs. By the time we
2272 /// end up trying to select a G_PTR_ADD, we should have already attempted to
2273 /// fold this into addressing modes and were therefore unsuccessful.
2274 bool AArch64InstructionSelector::convertPtrAddToAdd(
2275 MachineInstr &I, MachineRegisterInfo &MRI) {
2276 assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
2277 Register DstReg = I.getOperand(0).getReg();
2278 Register AddOp1Reg = I.getOperand(1).getReg();
2279 const LLT PtrTy = MRI.getType(DstReg);
2280 if (PtrTy.getAddressSpace() != 0)
2281 return false;
2283 const LLT CastPtrTy =
2284 PtrTy.isVector() ? LLT::fixed_vector(2, 64) : LLT::scalar(64);
2285 auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
2286 // Set regbanks on the registers.
2287 if (PtrTy.isVector())
2288 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
2289 else
2290 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
2292 // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
2293 // %dst(intty) = G_ADD %intbase, off
2294 I.setDesc(TII.get(TargetOpcode::G_ADD));
2295 MRI.setType(DstReg, CastPtrTy);
2296 I.getOperand(1).setReg(PtrToInt.getReg(0));
2297 if (!select(*PtrToInt)) {
2298 LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
2299 return false;
2302 // Also take the opportunity here to try to do some optimization.
2303 // Try to convert this into a G_SUB if the offset is a 0-x negate idiom.
2304 Register NegatedReg;
2305 if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg))))
2306 return true;
2307 I.getOperand(2).setReg(NegatedReg);
2308 I.setDesc(TII.get(TargetOpcode::G_SUB));
2309 return true;
2312 bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I,
2313 MachineRegisterInfo &MRI) {
2314 // We try to match the immediate variant of LSL, which is actually an alias
2315 // for a special case of UBFM. Otherwise, we fall back to the imported
2316 // selector which will match the register variant.
2317 assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
2318 const auto &MO = I.getOperand(2);
2319 auto VRegAndVal = getIConstantVRegVal(MO.getReg(), MRI);
2320 if (!VRegAndVal)
2321 return false;
2323 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2324 if (DstTy.isVector())
2325 return false;
2326 bool Is64Bit = DstTy.getSizeInBits() == 64;
2327 auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
2328 auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
2330 if (!Imm1Fn || !Imm2Fn)
2331 return false;
2333 auto NewI =
2334 MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
2335 {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
2337 for (auto &RenderFn : *Imm1Fn)
2338 RenderFn(NewI);
2339 for (auto &RenderFn : *Imm2Fn)
2340 RenderFn(NewI);
2342 I.eraseFromParent();
2343 return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
2346 bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
2347 MachineInstr &I, MachineRegisterInfo &MRI) {
2348 assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
2349 // If we're storing a scalar, it doesn't matter what register bank that
2350 // scalar is on. All that matters is the size.
2352 // So, if we see something like this (with a 32-bit scalar as an example):
2354 // %x:gpr(s32) = ... something ...
2355 // %y:fpr(s32) = COPY %x:gpr(s32)
2356 // G_STORE %y:fpr(s32)
2358 // We can fix this up into something like this:
2360 // G_STORE %x:gpr(s32)
2362 // And then continue the selection process normally.
2363 Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
2364 if (!DefDstReg.isValid())
2365 return false;
2366 LLT DefDstTy = MRI.getType(DefDstReg);
2367 Register StoreSrcReg = I.getOperand(0).getReg();
2368 LLT StoreSrcTy = MRI.getType(StoreSrcReg);
2370 // If we get something strange like a physical register, then we shouldn't
2371 // go any further.
2372 if (!DefDstTy.isValid())
2373 return false;
2375 // Are the source and dst types the same size?
2376 if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
2377 return false;
2379 if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
2380 RBI.getRegBank(DefDstReg, MRI, TRI))
2381 return false;
2383 // We have a cross-bank copy, which is entering a store. Let's fold it.
2384 I.getOperand(0).setReg(DefDstReg);
2385 return true;
2388 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) {
2389 assert(I.getParent() && "Instruction should be in a basic block!");
2390 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2392 MachineBasicBlock &MBB = *I.getParent();
2393 MachineFunction &MF = *MBB.getParent();
2394 MachineRegisterInfo &MRI = MF.getRegInfo();
2396 switch (I.getOpcode()) {
2397 case AArch64::G_DUP: {
2398 // Before selecting a DUP instruction, check if it is better selected as a
2399 // MOV or load from a constant pool.
2400 Register Src = I.getOperand(1).getReg();
2401 auto ValAndVReg = getAnyConstantVRegValWithLookThrough(Src, MRI);
2402 if (!ValAndVReg)
2403 return false;
2404 LLVMContext &Ctx = MF.getFunction().getContext();
2405 Register Dst = I.getOperand(0).getReg();
2406 auto *CV = ConstantDataVector::getSplat(
2407 MRI.getType(Dst).getNumElements(),
2408 ConstantInt::get(
2409 Type::getIntNTy(Ctx, MRI.getType(Dst).getScalarSizeInBits()),
2410 ValAndVReg->Value.trunc(MRI.getType(Dst).getScalarSizeInBits())));
2411 if (!emitConstantVector(Dst, CV, MIB, MRI))
2412 return false;
2413 I.eraseFromParent();
2414 return true;
2416 case TargetOpcode::G_SEXT:
2417 // Check for i64 sext(i32 vector_extract) prior to tablegen to select SMOV
2418 // over a normal extend.
2419 if (selectUSMovFromExtend(I, MRI))
2420 return true;
2421 return false;
2422 case TargetOpcode::G_BR:
2423 return false;
2424 case TargetOpcode::G_SHL:
2425 return earlySelectSHL(I, MRI);
2426 case TargetOpcode::G_CONSTANT: {
2427 bool IsZero = false;
2428 if (I.getOperand(1).isCImm())
2429 IsZero = I.getOperand(1).getCImm()->isZero();
2430 else if (I.getOperand(1).isImm())
2431 IsZero = I.getOperand(1).getImm() == 0;
2433 if (!IsZero)
2434 return false;
2436 Register DefReg = I.getOperand(0).getReg();
2437 LLT Ty = MRI.getType(DefReg);
2438 if (Ty.getSizeInBits() == 64) {
2439 I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
2440 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
2441 } else if (Ty.getSizeInBits() == 32) {
2442 I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
2443 RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
2444 } else
2445 return false;
2447 I.setDesc(TII.get(TargetOpcode::COPY));
2448 return true;
2451 case TargetOpcode::G_ADD: {
2452 // Check if this is being fed by a G_ICMP on either side.
2454 // (cmp pred, x, y) + z
2456 // In the above case, when the cmp is true, we increment z by 1. So, we can
2457 // fold the add into the cset for the cmp by using cinc.
2459 // FIXME: This would probably be a lot nicer in PostLegalizerLowering.
2460 Register AddDst = I.getOperand(0).getReg();
2461 Register AddLHS = I.getOperand(1).getReg();
2462 Register AddRHS = I.getOperand(2).getReg();
2463 // Only handle scalars.
2464 LLT Ty = MRI.getType(AddLHS);
2465 if (Ty.isVector())
2466 return false;
2467 // Since G_ICMP is modeled as ADDS/SUBS/ANDS, we can handle 32 bits or 64
2468 // bits.
2469 unsigned Size = Ty.getSizeInBits();
2470 if (Size != 32 && Size != 64)
2471 return false;
2472 auto MatchCmp = [&](Register Reg) -> MachineInstr * {
2473 if (!MRI.hasOneNonDBGUse(Reg))
2474 return nullptr;
2475 // If the LHS of the add is 32 bits, then we want to fold a 32-bit
2476 // compare.
2477 if (Size == 32)
2478 return getOpcodeDef(TargetOpcode::G_ICMP, Reg, MRI);
2479 // We model scalar compares using 32-bit destinations right now.
2480 // If it's a 64-bit compare, it'll have 64-bit sources.
2481 Register ZExt;
2482 if (!mi_match(Reg, MRI,
2483 m_OneNonDBGUse(m_GZExt(m_OneNonDBGUse(m_Reg(ZExt))))))
2484 return nullptr;
2485 auto *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, ZExt, MRI);
2486 if (!Cmp ||
2487 MRI.getType(Cmp->getOperand(2).getReg()).getSizeInBits() != 64)
2488 return nullptr;
2489 return Cmp;
2491 // Try to match
2492 // z + (cmp pred, x, y)
2493 MachineInstr *Cmp = MatchCmp(AddRHS);
2494 if (!Cmp) {
2495 // (cmp pred, x, y) + z
2496 std::swap(AddLHS, AddRHS);
2497 Cmp = MatchCmp(AddRHS);
2498 if (!Cmp)
2499 return false;
2501 auto &PredOp = Cmp->getOperand(1);
2502 auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate());
2503 const AArch64CC::CondCode InvCC =
2504 changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred));
2505 MIB.setInstrAndDebugLoc(I);
2506 emitIntegerCompare(/*LHS=*/Cmp->getOperand(2),
2507 /*RHS=*/Cmp->getOperand(3), PredOp, MIB);
2508 emitCSINC(/*Dst=*/AddDst, /*Src =*/AddLHS, /*Src2=*/AddLHS, InvCC, MIB);
2509 I.eraseFromParent();
2510 return true;
2512 case TargetOpcode::G_OR: {
2513 // Look for operations that take the lower `Width=Size-ShiftImm` bits of
2514 // `ShiftSrc` and insert them into the upper `Width` bits of `MaskSrc` via
2515 // shifting and masking that we can replace with a BFI (encoded as a BFM).
2516 Register Dst = I.getOperand(0).getReg();
2517 LLT Ty = MRI.getType(Dst);
2519 if (!Ty.isScalar())
2520 return false;
2522 unsigned Size = Ty.getSizeInBits();
2523 if (Size != 32 && Size != 64)
2524 return false;
2526 Register ShiftSrc;
2527 int64_t ShiftImm;
2528 Register MaskSrc;
2529 int64_t MaskImm;
2530 if (!mi_match(
2531 Dst, MRI,
2532 m_GOr(m_OneNonDBGUse(m_GShl(m_Reg(ShiftSrc), m_ICst(ShiftImm))),
2533 m_OneNonDBGUse(m_GAnd(m_Reg(MaskSrc), m_ICst(MaskImm))))))
2534 return false;
2536 if (ShiftImm > Size || ((1ULL << ShiftImm) - 1ULL) != uint64_t(MaskImm))
2537 return false;
2539 int64_t Immr = Size - ShiftImm;
2540 int64_t Imms = Size - ShiftImm - 1;
2541 unsigned Opc = Size == 32 ? AArch64::BFMWri : AArch64::BFMXri;
2542 emitInstr(Opc, {Dst}, {MaskSrc, ShiftSrc, Immr, Imms}, MIB);
2543 I.eraseFromParent();
2544 return true;
2546 case TargetOpcode::G_FENCE: {
2547 if (I.getOperand(1).getImm() == 0)
2548 BuildMI(MBB, I, MIMetadata(I), TII.get(TargetOpcode::MEMBARRIER));
2549 else
2550 BuildMI(MBB, I, MIMetadata(I), TII.get(AArch64::DMB))
2551 .addImm(I.getOperand(0).getImm() == 4 ? 0x9 : 0xb);
2552 I.eraseFromParent();
2553 return true;
2555 default:
2556 return false;
2560 bool AArch64InstructionSelector::select(MachineInstr &I) {
2561 assert(I.getParent() && "Instruction should be in a basic block!");
2562 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2564 MachineBasicBlock &MBB = *I.getParent();
2565 MachineFunction &MF = *MBB.getParent();
2566 MachineRegisterInfo &MRI = MF.getRegInfo();
2568 const AArch64Subtarget *Subtarget = &MF.getSubtarget<AArch64Subtarget>();
2569 if (Subtarget->requiresStrictAlign()) {
2570 // We don't support this feature yet.
2571 LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
2572 return false;
2575 MIB.setInstrAndDebugLoc(I);
2577 unsigned Opcode = I.getOpcode();
2578 // G_PHI requires same handling as PHI
2579 if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
2580 // Certain non-generic instructions also need some special handling.
2582 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
2583 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2585 if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
2586 const Register DefReg = I.getOperand(0).getReg();
2587 const LLT DefTy = MRI.getType(DefReg);
2589 const RegClassOrRegBank &RegClassOrBank =
2590 MRI.getRegClassOrRegBank(DefReg);
2592 const TargetRegisterClass *DefRC =
2593 dyn_cast<const TargetRegisterClass *>(RegClassOrBank);
2594 if (!DefRC) {
2595 if (!DefTy.isValid()) {
2596 LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
2597 return false;
2599 const RegisterBank &RB = *cast<const RegisterBank *>(RegClassOrBank);
2600 DefRC = getRegClassForTypeOnBank(DefTy, RB);
2601 if (!DefRC) {
2602 LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
2603 return false;
2607 I.setDesc(TII.get(TargetOpcode::PHI));
2609 return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
2612 if (I.isCopy())
2613 return selectCopy(I, TII, MRI, TRI, RBI);
2615 if (I.isDebugInstr())
2616 return selectDebugInstr(I, MRI, RBI);
2618 return true;
2622 if (I.getNumOperands() != I.getNumExplicitOperands()) {
2623 LLVM_DEBUG(
2624 dbgs() << "Generic instruction has unexpected implicit operands\n");
2625 return false;
2628 // Try to do some lowering before we start instruction selecting. These
2629 // lowerings are purely transformations on the input G_MIR and so selection
2630 // must continue after any modification of the instruction.
2631 if (preISelLower(I)) {
2632 Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
2635 // There may be patterns where the importer can't deal with them optimally,
2636 // but does select it to a suboptimal sequence so our custom C++ selection
2637 // code later never has a chance to work on it. Therefore, we have an early
2638 // selection attempt here to give priority to certain selection routines
2639 // over the imported ones.
2640 if (earlySelect(I))
2641 return true;
2643 if (selectImpl(I, *CoverageInfo))
2644 return true;
2646 LLT Ty =
2647 I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
2649 switch (Opcode) {
2650 case TargetOpcode::G_SBFX:
2651 case TargetOpcode::G_UBFX: {
2652 static const unsigned OpcTable[2][2] = {
2653 {AArch64::UBFMWri, AArch64::UBFMXri},
2654 {AArch64::SBFMWri, AArch64::SBFMXri}};
2655 bool IsSigned = Opcode == TargetOpcode::G_SBFX;
2656 unsigned Size = Ty.getSizeInBits();
2657 unsigned Opc = OpcTable[IsSigned][Size == 64];
2658 auto Cst1 =
2659 getIConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI);
2660 assert(Cst1 && "Should have gotten a constant for src 1?");
2661 auto Cst2 =
2662 getIConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI);
2663 assert(Cst2 && "Should have gotten a constant for src 2?");
2664 auto LSB = Cst1->Value.getZExtValue();
2665 auto Width = Cst2->Value.getZExtValue();
2666 auto BitfieldInst =
2667 MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)})
2668 .addImm(LSB)
2669 .addImm(LSB + Width - 1);
2670 I.eraseFromParent();
2671 return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI);
2673 case TargetOpcode::G_BRCOND:
2674 return selectCompareBranch(I, MF, MRI);
2676 case TargetOpcode::G_BRINDIRECT: {
2677 const Function &Fn = MF.getFunction();
2678 if (std::optional<uint16_t> BADisc =
2679 STI.getPtrAuthBlockAddressDiscriminatorIfEnabled(Fn)) {
2680 auto MI = MIB.buildInstr(AArch64::BRA, {}, {I.getOperand(0).getReg()});
2681 MI.addImm(AArch64PACKey::IA);
2682 MI.addImm(*BADisc);
2683 MI.addReg(/*AddrDisc=*/AArch64::XZR);
2684 I.eraseFromParent();
2685 return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
2687 I.setDesc(TII.get(AArch64::BR));
2688 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2691 case TargetOpcode::G_BRJT:
2692 return selectBrJT(I, MRI);
2694 case AArch64::G_ADD_LOW: {
2695 // This op may have been separated from it's ADRP companion by the localizer
2696 // or some other code motion pass. Given that many CPUs will try to
2697 // macro fuse these operations anyway, select this into a MOVaddr pseudo
2698 // which will later be expanded into an ADRP+ADD pair after scheduling.
2699 MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
2700 if (BaseMI->getOpcode() != AArch64::ADRP) {
2701 I.setDesc(TII.get(AArch64::ADDXri));
2702 I.addOperand(MachineOperand::CreateImm(0));
2703 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2705 assert(TM.getCodeModel() == CodeModel::Small &&
2706 "Expected small code model");
2707 auto Op1 = BaseMI->getOperand(1);
2708 auto Op2 = I.getOperand(2);
2709 auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
2710 .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
2711 Op1.getTargetFlags())
2712 .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
2713 Op2.getTargetFlags());
2714 I.eraseFromParent();
2715 return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
2718 case TargetOpcode::G_FCONSTANT:
2719 case TargetOpcode::G_CONSTANT: {
2720 const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
2722 const LLT s8 = LLT::scalar(8);
2723 const LLT s16 = LLT::scalar(16);
2724 const LLT s32 = LLT::scalar(32);
2725 const LLT s64 = LLT::scalar(64);
2726 const LLT s128 = LLT::scalar(128);
2727 const LLT p0 = LLT::pointer(0, 64);
2729 const Register DefReg = I.getOperand(0).getReg();
2730 const LLT DefTy = MRI.getType(DefReg);
2731 const unsigned DefSize = DefTy.getSizeInBits();
2732 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2734 // FIXME: Redundant check, but even less readable when factored out.
2735 if (isFP) {
2736 if (Ty != s16 && Ty != s32 && Ty != s64 && Ty != s128) {
2737 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2738 << " constant, expected: " << s16 << " or " << s32
2739 << " or " << s64 << " or " << s128 << '\n');
2740 return false;
2743 if (RB.getID() != AArch64::FPRRegBankID) {
2744 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2745 << " constant on bank: " << RB
2746 << ", expected: FPR\n");
2747 return false;
2750 // The case when we have 0.0 is covered by tablegen. Reject it here so we
2751 // can be sure tablegen works correctly and isn't rescued by this code.
2752 // 0.0 is not covered by tablegen for FP128. So we will handle this
2753 // scenario in the code here.
2754 if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0))
2755 return false;
2756 } else {
2757 // s32 and s64 are covered by tablegen.
2758 if (Ty != p0 && Ty != s8 && Ty != s16) {
2759 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2760 << " constant, expected: " << s32 << ", " << s64
2761 << ", or " << p0 << '\n');
2762 return false;
2765 if (RB.getID() != AArch64::GPRRegBankID) {
2766 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2767 << " constant on bank: " << RB
2768 << ", expected: GPR\n");
2769 return false;
2773 if (isFP) {
2774 const TargetRegisterClass &FPRRC = *getRegClassForTypeOnBank(DefTy, RB);
2775 // For 16, 64, and 128b values, emit a constant pool load.
2776 switch (DefSize) {
2777 default:
2778 llvm_unreachable("Unexpected destination size for G_FCONSTANT?");
2779 case 32:
2780 case 64: {
2781 bool OptForSize = shouldOptForSize(&MF);
2782 const auto &TLI = MF.getSubtarget().getTargetLowering();
2783 // If TLI says that this fpimm is illegal, then we'll expand to a
2784 // constant pool load.
2785 if (TLI->isFPImmLegal(I.getOperand(1).getFPImm()->getValueAPF(),
2786 EVT::getFloatingPointVT(DefSize), OptForSize))
2787 break;
2788 [[fallthrough]];
2790 case 16:
2791 case 128: {
2792 auto *FPImm = I.getOperand(1).getFPImm();
2793 auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
2794 if (!LoadMI) {
2795 LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
2796 return false;
2798 MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
2799 I.eraseFromParent();
2800 return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
2804 assert((DefSize == 32 || DefSize == 64) && "Unexpected const def size");
2805 // Either emit a FMOV, or emit a copy to emit a normal mov.
2806 const Register DefGPRReg = MRI.createVirtualRegister(
2807 DefSize == 32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
2808 MachineOperand &RegOp = I.getOperand(0);
2809 RegOp.setReg(DefGPRReg);
2810 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2811 MIB.buildCopy({DefReg}, {DefGPRReg});
2813 if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
2814 LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
2815 return false;
2818 MachineOperand &ImmOp = I.getOperand(1);
2819 // FIXME: Is going through int64_t always correct?
2820 ImmOp.ChangeToImmediate(
2821 ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
2822 } else if (I.getOperand(1).isCImm()) {
2823 uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
2824 I.getOperand(1).ChangeToImmediate(Val);
2825 } else if (I.getOperand(1).isImm()) {
2826 uint64_t Val = I.getOperand(1).getImm();
2827 I.getOperand(1).ChangeToImmediate(Val);
2830 const unsigned MovOpc =
2831 DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
2832 I.setDesc(TII.get(MovOpc));
2833 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2834 return true;
2836 case TargetOpcode::G_EXTRACT: {
2837 Register DstReg = I.getOperand(0).getReg();
2838 Register SrcReg = I.getOperand(1).getReg();
2839 LLT SrcTy = MRI.getType(SrcReg);
2840 LLT DstTy = MRI.getType(DstReg);
2841 (void)DstTy;
2842 unsigned SrcSize = SrcTy.getSizeInBits();
2844 if (SrcTy.getSizeInBits() > 64) {
2845 // This should be an extract of an s128, which is like a vector extract.
2846 if (SrcTy.getSizeInBits() != 128)
2847 return false;
2848 // Only support extracting 64 bits from an s128 at the moment.
2849 if (DstTy.getSizeInBits() != 64)
2850 return false;
2852 unsigned Offset = I.getOperand(2).getImm();
2853 if (Offset % 64 != 0)
2854 return false;
2856 // Check we have the right regbank always.
2857 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2858 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2859 assert(SrcRB.getID() == DstRB.getID() && "Wrong extract regbank!");
2861 if (SrcRB.getID() == AArch64::GPRRegBankID) {
2862 auto NewI =
2863 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
2864 .addUse(SrcReg, 0,
2865 Offset == 0 ? AArch64::sube64 : AArch64::subo64);
2866 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, *NewI,
2867 AArch64::GPR64RegClass, NewI->getOperand(0));
2868 I.eraseFromParent();
2869 return true;
2872 // Emit the same code as a vector extract.
2873 // Offset must be a multiple of 64.
2874 unsigned LaneIdx = Offset / 64;
2875 MachineInstr *Extract = emitExtractVectorElt(
2876 DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
2877 if (!Extract)
2878 return false;
2879 I.eraseFromParent();
2880 return true;
2883 I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
2884 MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
2885 Ty.getSizeInBits() - 1);
2887 if (SrcSize < 64) {
2888 assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
2889 "unexpected G_EXTRACT types");
2890 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2893 DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2894 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2895 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
2896 .addReg(DstReg, 0, AArch64::sub_32);
2897 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
2898 AArch64::GPR32RegClass, MRI);
2899 I.getOperand(0).setReg(DstReg);
2901 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2904 case TargetOpcode::G_INSERT: {
2905 LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
2906 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2907 unsigned DstSize = DstTy.getSizeInBits();
2908 // Larger inserts are vectors, same-size ones should be something else by
2909 // now (split up or turned into COPYs).
2910 if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
2911 return false;
2913 I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
2914 unsigned LSB = I.getOperand(3).getImm();
2915 unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
2916 I.getOperand(3).setImm((DstSize - LSB) % DstSize);
2917 MachineInstrBuilder(MF, I).addImm(Width - 1);
2919 if (DstSize < 64) {
2920 assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
2921 "unexpected G_INSERT types");
2922 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2925 Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2926 BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
2927 TII.get(AArch64::SUBREG_TO_REG))
2928 .addDef(SrcReg)
2929 .addImm(0)
2930 .addUse(I.getOperand(2).getReg())
2931 .addImm(AArch64::sub_32);
2932 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
2933 AArch64::GPR32RegClass, MRI);
2934 I.getOperand(2).setReg(SrcReg);
2936 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2938 case TargetOpcode::G_FRAME_INDEX: {
2939 // allocas and G_FRAME_INDEX are only supported in addrspace(0).
2940 if (Ty != LLT::pointer(0, 64)) {
2941 LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
2942 << ", expected: " << LLT::pointer(0, 64) << '\n');
2943 return false;
2945 I.setDesc(TII.get(AArch64::ADDXri));
2947 // MOs for a #0 shifted immediate.
2948 I.addOperand(MachineOperand::CreateImm(0));
2949 I.addOperand(MachineOperand::CreateImm(0));
2951 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2954 case TargetOpcode::G_GLOBAL_VALUE: {
2955 const GlobalValue *GV = nullptr;
2956 unsigned OpFlags;
2957 if (I.getOperand(1).isSymbol()) {
2958 OpFlags = I.getOperand(1).getTargetFlags();
2959 // Currently only used by "RtLibUseGOT".
2960 assert(OpFlags == AArch64II::MO_GOT);
2961 } else {
2962 GV = I.getOperand(1).getGlobal();
2963 if (GV->isThreadLocal())
2964 return selectTLSGlobalValue(I, MRI);
2965 OpFlags = STI.ClassifyGlobalReference(GV, TM);
2968 if (OpFlags & AArch64II::MO_GOT) {
2969 I.setDesc(TII.get(MF.getInfo<AArch64FunctionInfo>()->hasELFSignedGOT()
2970 ? AArch64::LOADgotAUTH
2971 : AArch64::LOADgot));
2972 I.getOperand(1).setTargetFlags(OpFlags);
2973 } else if (TM.getCodeModel() == CodeModel::Large &&
2974 !TM.isPositionIndependent()) {
2975 // Materialize the global using movz/movk instructions.
2976 materializeLargeCMVal(I, GV, OpFlags);
2977 I.eraseFromParent();
2978 return true;
2979 } else if (TM.getCodeModel() == CodeModel::Tiny) {
2980 I.setDesc(TII.get(AArch64::ADR));
2981 I.getOperand(1).setTargetFlags(OpFlags);
2982 } else {
2983 I.setDesc(TII.get(AArch64::MOVaddr));
2984 I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
2985 MachineInstrBuilder MIB(MF, I);
2986 MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
2987 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2989 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2992 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE:
2993 return selectPtrAuthGlobalValue(I, MRI);
2995 case TargetOpcode::G_ZEXTLOAD:
2996 case TargetOpcode::G_LOAD:
2997 case TargetOpcode::G_STORE: {
2998 GLoadStore &LdSt = cast<GLoadStore>(I);
2999 bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
3000 LLT PtrTy = MRI.getType(LdSt.getPointerReg());
3002 if (PtrTy != LLT::pointer(0, 64)) {
3003 LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
3004 << ", expected: " << LLT::pointer(0, 64) << '\n');
3005 return false;
3008 uint64_t MemSizeInBytes = LdSt.getMemSize().getValue();
3009 unsigned MemSizeInBits = LdSt.getMemSizeInBits().getValue();
3010 AtomicOrdering Order = LdSt.getMMO().getSuccessOrdering();
3012 // Need special instructions for atomics that affect ordering.
3013 if (Order != AtomicOrdering::NotAtomic &&
3014 Order != AtomicOrdering::Unordered &&
3015 Order != AtomicOrdering::Monotonic) {
3016 assert(!isa<GZExtLoad>(LdSt));
3017 assert(MemSizeInBytes <= 8 &&
3018 "128-bit atomics should already be custom-legalized");
3020 if (isa<GLoad>(LdSt)) {
3021 static constexpr unsigned LDAPROpcodes[] = {
3022 AArch64::LDAPRB, AArch64::LDAPRH, AArch64::LDAPRW, AArch64::LDAPRX};
3023 static constexpr unsigned LDAROpcodes[] = {
3024 AArch64::LDARB, AArch64::LDARH, AArch64::LDARW, AArch64::LDARX};
3025 ArrayRef<unsigned> Opcodes =
3026 STI.hasRCPC() && Order != AtomicOrdering::SequentiallyConsistent
3027 ? LDAPROpcodes
3028 : LDAROpcodes;
3029 I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)]));
3030 } else {
3031 static constexpr unsigned Opcodes[] = {AArch64::STLRB, AArch64::STLRH,
3032 AArch64::STLRW, AArch64::STLRX};
3033 Register ValReg = LdSt.getReg(0);
3034 if (MRI.getType(ValReg).getSizeInBits() == 64 && MemSizeInBits != 64) {
3035 // Emit a subreg copy of 32 bits.
3036 Register NewVal = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3037 MIB.buildInstr(TargetOpcode::COPY, {NewVal}, {})
3038 .addReg(I.getOperand(0).getReg(), 0, AArch64::sub_32);
3039 I.getOperand(0).setReg(NewVal);
3041 I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)]));
3043 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3044 return true;
3047 #ifndef NDEBUG
3048 const Register PtrReg = LdSt.getPointerReg();
3049 const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
3050 // Check that the pointer register is valid.
3051 assert(PtrRB.getID() == AArch64::GPRRegBankID &&
3052 "Load/Store pointer operand isn't a GPR");
3053 assert(MRI.getType(PtrReg).isPointer() &&
3054 "Load/Store pointer operand isn't a pointer");
3055 #endif
3057 const Register ValReg = LdSt.getReg(0);
3058 const LLT ValTy = MRI.getType(ValReg);
3059 const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
3061 // The code below doesn't support truncating stores, so we need to split it
3062 // again.
3063 if (isa<GStore>(LdSt) && ValTy.getSizeInBits() > MemSizeInBits) {
3064 unsigned SubReg;
3065 LLT MemTy = LdSt.getMMO().getMemoryType();
3066 auto *RC = getRegClassForTypeOnBank(MemTy, RB);
3067 if (!getSubRegForClass(RC, TRI, SubReg))
3068 return false;
3070 // Generate a subreg copy.
3071 auto Copy = MIB.buildInstr(TargetOpcode::COPY, {MemTy}, {})
3072 .addReg(ValReg, 0, SubReg)
3073 .getReg(0);
3074 RBI.constrainGenericRegister(Copy, *RC, MRI);
3075 LdSt.getOperand(0).setReg(Copy);
3076 } else if (isa<GLoad>(LdSt) && ValTy.getSizeInBits() > MemSizeInBits) {
3077 // If this is an any-extending load from the FPR bank, split it into a regular
3078 // load + extend.
3079 if (RB.getID() == AArch64::FPRRegBankID) {
3080 unsigned SubReg;
3081 LLT MemTy = LdSt.getMMO().getMemoryType();
3082 auto *RC = getRegClassForTypeOnBank(MemTy, RB);
3083 if (!getSubRegForClass(RC, TRI, SubReg))
3084 return false;
3085 Register OldDst = LdSt.getReg(0);
3086 Register NewDst =
3087 MRI.createGenericVirtualRegister(LdSt.getMMO().getMemoryType());
3088 LdSt.getOperand(0).setReg(NewDst);
3089 MRI.setRegBank(NewDst, RB);
3090 // Generate a SUBREG_TO_REG to extend it.
3091 MIB.setInsertPt(MIB.getMBB(), std::next(LdSt.getIterator()));
3092 MIB.buildInstr(AArch64::SUBREG_TO_REG, {OldDst}, {})
3093 .addImm(0)
3094 .addUse(NewDst)
3095 .addImm(SubReg);
3096 auto SubRegRC = getRegClassForTypeOnBank(MRI.getType(OldDst), RB);
3097 RBI.constrainGenericRegister(OldDst, *SubRegRC, MRI);
3098 MIB.setInstr(LdSt);
3102 // Helper lambda for partially selecting I. Either returns the original
3103 // instruction with an updated opcode, or a new instruction.
3104 auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
3105 bool IsStore = isa<GStore>(I);
3106 const unsigned NewOpc =
3107 selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
3108 if (NewOpc == I.getOpcode())
3109 return nullptr;
3110 // Check if we can fold anything into the addressing mode.
3111 auto AddrModeFns =
3112 selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes);
3113 if (!AddrModeFns) {
3114 // Can't fold anything. Use the original instruction.
3115 I.setDesc(TII.get(NewOpc));
3116 I.addOperand(MachineOperand::CreateImm(0));
3117 return &I;
3120 // Folded something. Create a new instruction and return it.
3121 auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags());
3122 Register CurValReg = I.getOperand(0).getReg();
3123 IsStore ? NewInst.addUse(CurValReg) : NewInst.addDef(CurValReg);
3124 NewInst.cloneMemRefs(I);
3125 for (auto &Fn : *AddrModeFns)
3126 Fn(NewInst);
3127 I.eraseFromParent();
3128 return &*NewInst;
3131 MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
3132 if (!LoadStore)
3133 return false;
3135 // If we're storing a 0, use WZR/XZR.
3136 if (Opcode == TargetOpcode::G_STORE) {
3137 auto CVal = getIConstantVRegValWithLookThrough(
3138 LoadStore->getOperand(0).getReg(), MRI);
3139 if (CVal && CVal->Value == 0) {
3140 switch (LoadStore->getOpcode()) {
3141 case AArch64::STRWui:
3142 case AArch64::STRHHui:
3143 case AArch64::STRBBui:
3144 LoadStore->getOperand(0).setReg(AArch64::WZR);
3145 break;
3146 case AArch64::STRXui:
3147 LoadStore->getOperand(0).setReg(AArch64::XZR);
3148 break;
3153 if (IsZExtLoad || (Opcode == TargetOpcode::G_LOAD &&
3154 ValTy == LLT::scalar(64) && MemSizeInBits == 32)) {
3155 // The any/zextload from a smaller type to i32 should be handled by the
3156 // importer.
3157 if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64)
3158 return false;
3159 // If we have an extending load then change the load's type to be a
3160 // narrower reg and zero_extend with SUBREG_TO_REG.
3161 Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3162 Register DstReg = LoadStore->getOperand(0).getReg();
3163 LoadStore->getOperand(0).setReg(LdReg);
3165 MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator()));
3166 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
3167 .addImm(0)
3168 .addUse(LdReg)
3169 .addImm(AArch64::sub_32);
3170 constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
3171 return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
3172 MRI);
3174 return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
3177 case TargetOpcode::G_INDEXED_ZEXTLOAD:
3178 case TargetOpcode::G_INDEXED_SEXTLOAD:
3179 return selectIndexedExtLoad(I, MRI);
3180 case TargetOpcode::G_INDEXED_LOAD:
3181 return selectIndexedLoad(I, MRI);
3182 case TargetOpcode::G_INDEXED_STORE:
3183 return selectIndexedStore(cast<GIndexedStore>(I), MRI);
3185 case TargetOpcode::G_LSHR:
3186 case TargetOpcode::G_ASHR:
3187 if (MRI.getType(I.getOperand(0).getReg()).isVector())
3188 return selectVectorAshrLshr(I, MRI);
3189 [[fallthrough]];
3190 case TargetOpcode::G_SHL:
3191 if (Opcode == TargetOpcode::G_SHL &&
3192 MRI.getType(I.getOperand(0).getReg()).isVector())
3193 return selectVectorSHL(I, MRI);
3195 // These shifts were legalized to have 64 bit shift amounts because we
3196 // want to take advantage of the selection patterns that assume the
3197 // immediates are s64s, however, selectBinaryOp will assume both operands
3198 // will have the same bit size.
3200 Register SrcReg = I.getOperand(1).getReg();
3201 Register ShiftReg = I.getOperand(2).getReg();
3202 const LLT ShiftTy = MRI.getType(ShiftReg);
3203 const LLT SrcTy = MRI.getType(SrcReg);
3204 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
3205 ShiftTy.getSizeInBits() == 64) {
3206 assert(!ShiftTy.isVector() && "unexpected vector shift ty");
3207 // Insert a subregister copy to implement a 64->32 trunc
3208 auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
3209 .addReg(ShiftReg, 0, AArch64::sub_32);
3210 MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
3211 I.getOperand(2).setReg(Trunc.getReg(0));
3214 [[fallthrough]];
3215 case TargetOpcode::G_OR: {
3216 // Reject the various things we don't support yet.
3217 if (unsupportedBinOp(I, RBI, MRI, TRI))
3218 return false;
3220 const unsigned OpSize = Ty.getSizeInBits();
3222 const Register DefReg = I.getOperand(0).getReg();
3223 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
3225 const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
3226 if (NewOpc == I.getOpcode())
3227 return false;
3229 I.setDesc(TII.get(NewOpc));
3230 // FIXME: Should the type be always reset in setDesc?
3232 // Now that we selected an opcode, we need to constrain the register
3233 // operands to use appropriate classes.
3234 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3237 case TargetOpcode::G_PTR_ADD: {
3238 emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2), MIB);
3239 I.eraseFromParent();
3240 return true;
3243 case TargetOpcode::G_SADDE:
3244 case TargetOpcode::G_UADDE:
3245 case TargetOpcode::G_SSUBE:
3246 case TargetOpcode::G_USUBE:
3247 case TargetOpcode::G_SADDO:
3248 case TargetOpcode::G_UADDO:
3249 case TargetOpcode::G_SSUBO:
3250 case TargetOpcode::G_USUBO:
3251 return selectOverflowOp(I, MRI);
3253 case TargetOpcode::G_PTRMASK: {
3254 Register MaskReg = I.getOperand(2).getReg();
3255 std::optional<int64_t> MaskVal = getIConstantVRegSExtVal(MaskReg, MRI);
3256 // TODO: Implement arbitrary cases
3257 if (!MaskVal || !isShiftedMask_64(*MaskVal))
3258 return false;
3260 uint64_t Mask = *MaskVal;
3261 I.setDesc(TII.get(AArch64::ANDXri));
3262 I.getOperand(2).ChangeToImmediate(
3263 AArch64_AM::encodeLogicalImmediate(Mask, 64));
3265 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3267 case TargetOpcode::G_PTRTOINT:
3268 case TargetOpcode::G_TRUNC: {
3269 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3270 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3272 const Register DstReg = I.getOperand(0).getReg();
3273 const Register SrcReg = I.getOperand(1).getReg();
3275 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3276 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
3278 if (DstRB.getID() != SrcRB.getID()) {
3279 LLVM_DEBUG(
3280 dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
3281 return false;
3284 if (DstRB.getID() == AArch64::GPRRegBankID) {
3285 const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
3286 if (!DstRC)
3287 return false;
3289 const TargetRegisterClass *SrcRC = getRegClassForTypeOnBank(SrcTy, SrcRB);
3290 if (!SrcRC)
3291 return false;
3293 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
3294 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
3295 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
3296 return false;
3299 if (DstRC == SrcRC) {
3300 // Nothing to be done
3301 } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
3302 SrcTy == LLT::scalar(64)) {
3303 llvm_unreachable("TableGen can import this case");
3304 return false;
3305 } else if (DstRC == &AArch64::GPR32RegClass &&
3306 SrcRC == &AArch64::GPR64RegClass) {
3307 I.getOperand(1).setSubReg(AArch64::sub_32);
3308 } else {
3309 LLVM_DEBUG(
3310 dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
3311 return false;
3314 I.setDesc(TII.get(TargetOpcode::COPY));
3315 return true;
3316 } else if (DstRB.getID() == AArch64::FPRRegBankID) {
3317 if (DstTy == LLT::fixed_vector(4, 16) &&
3318 SrcTy == LLT::fixed_vector(4, 32)) {
3319 I.setDesc(TII.get(AArch64::XTNv4i16));
3320 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3321 return true;
3324 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
3325 MachineInstr *Extract = emitExtractVectorElt(
3326 DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
3327 if (!Extract)
3328 return false;
3329 I.eraseFromParent();
3330 return true;
3333 // We might have a vector G_PTRTOINT, in which case just emit a COPY.
3334 if (Opcode == TargetOpcode::G_PTRTOINT) {
3335 assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
3336 I.setDesc(TII.get(TargetOpcode::COPY));
3337 return selectCopy(I, TII, MRI, TRI, RBI);
3341 return false;
3344 case TargetOpcode::G_ANYEXT: {
3345 if (selectUSMovFromExtend(I, MRI))
3346 return true;
3348 const Register DstReg = I.getOperand(0).getReg();
3349 const Register SrcReg = I.getOperand(1).getReg();
3351 const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
3352 if (RBDst.getID() != AArch64::GPRRegBankID) {
3353 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
3354 << ", expected: GPR\n");
3355 return false;
3358 const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
3359 if (RBSrc.getID() != AArch64::GPRRegBankID) {
3360 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
3361 << ", expected: GPR\n");
3362 return false;
3365 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
3367 if (DstSize == 0) {
3368 LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
3369 return false;
3372 if (DstSize != 64 && DstSize > 32) {
3373 LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
3374 << ", expected: 32 or 64\n");
3375 return false;
3377 // At this point G_ANYEXT is just like a plain COPY, but we need
3378 // to explicitly form the 64-bit value if any.
3379 if (DstSize > 32) {
3380 Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
3381 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
3382 .addDef(ExtSrc)
3383 .addImm(0)
3384 .addUse(SrcReg)
3385 .addImm(AArch64::sub_32);
3386 I.getOperand(1).setReg(ExtSrc);
3388 return selectCopy(I, TII, MRI, TRI, RBI);
3391 case TargetOpcode::G_ZEXT:
3392 case TargetOpcode::G_SEXT_INREG:
3393 case TargetOpcode::G_SEXT: {
3394 if (selectUSMovFromExtend(I, MRI))
3395 return true;
3397 unsigned Opcode = I.getOpcode();
3398 const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
3399 const Register DefReg = I.getOperand(0).getReg();
3400 Register SrcReg = I.getOperand(1).getReg();
3401 const LLT DstTy = MRI.getType(DefReg);
3402 const LLT SrcTy = MRI.getType(SrcReg);
3403 unsigned DstSize = DstTy.getSizeInBits();
3404 unsigned SrcSize = SrcTy.getSizeInBits();
3406 // SEXT_INREG has the same src reg size as dst, the size of the value to be
3407 // extended is encoded in the imm.
3408 if (Opcode == TargetOpcode::G_SEXT_INREG)
3409 SrcSize = I.getOperand(2).getImm();
3411 if (DstTy.isVector())
3412 return false; // Should be handled by imported patterns.
3414 assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
3415 AArch64::GPRRegBankID &&
3416 "Unexpected ext regbank");
3418 MachineInstr *ExtI;
3420 // First check if we're extending the result of a load which has a dest type
3421 // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
3422 // GPR register on AArch64 and all loads which are smaller automatically
3423 // zero-extend the upper bits. E.g.
3424 // %v(s8) = G_LOAD %p, :: (load 1)
3425 // %v2(s32) = G_ZEXT %v(s8)
3426 if (!IsSigned) {
3427 auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
3428 bool IsGPR =
3429 RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
3430 if (LoadMI && IsGPR) {
3431 const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
3432 unsigned BytesLoaded = MemOp->getSize().getValue();
3433 if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
3434 return selectCopy(I, TII, MRI, TRI, RBI);
3437 // For the 32-bit -> 64-bit case, we can emit a mov (ORRWrs)
3438 // + SUBREG_TO_REG.
3439 if (IsGPR && SrcSize == 32 && DstSize == 64) {
3440 Register SubregToRegSrc =
3441 MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3442 const Register ZReg = AArch64::WZR;
3443 MIB.buildInstr(AArch64::ORRWrs, {SubregToRegSrc}, {ZReg, SrcReg})
3444 .addImm(0);
3446 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
3447 .addImm(0)
3448 .addUse(SubregToRegSrc)
3449 .addImm(AArch64::sub_32);
3451 if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
3452 MRI)) {
3453 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
3454 return false;
3457 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3458 MRI)) {
3459 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
3460 return false;
3463 I.eraseFromParent();
3464 return true;
3468 if (DstSize == 64) {
3469 if (Opcode != TargetOpcode::G_SEXT_INREG) {
3470 // FIXME: Can we avoid manually doing this?
3471 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3472 MRI)) {
3473 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
3474 << " operand\n");
3475 return false;
3477 SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
3478 {&AArch64::GPR64RegClass}, {})
3479 .addImm(0)
3480 .addUse(SrcReg)
3481 .addImm(AArch64::sub_32)
3482 .getReg(0);
3485 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
3486 {DefReg}, {SrcReg})
3487 .addImm(0)
3488 .addImm(SrcSize - 1);
3489 } else if (DstSize <= 32) {
3490 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
3491 {DefReg}, {SrcReg})
3492 .addImm(0)
3493 .addImm(SrcSize - 1);
3494 } else {
3495 return false;
3498 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
3499 I.eraseFromParent();
3500 return true;
3503 case TargetOpcode::G_SITOFP:
3504 case TargetOpcode::G_UITOFP:
3505 case TargetOpcode::G_FPTOSI:
3506 case TargetOpcode::G_FPTOUI: {
3507 const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
3508 SrcTy = MRI.getType(I.getOperand(1).getReg());
3509 const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
3510 if (NewOpc == Opcode)
3511 return false;
3513 I.setDesc(TII.get(NewOpc));
3514 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3515 I.setFlags(MachineInstr::NoFPExcept);
3517 return true;
3520 case TargetOpcode::G_FREEZE:
3521 return selectCopy(I, TII, MRI, TRI, RBI);
3523 case TargetOpcode::G_INTTOPTR:
3524 // The importer is currently unable to import pointer types since they
3525 // didn't exist in SelectionDAG.
3526 return selectCopy(I, TII, MRI, TRI, RBI);
3528 case TargetOpcode::G_BITCAST:
3529 // Imported SelectionDAG rules can handle every bitcast except those that
3530 // bitcast from a type to the same type. Ideally, these shouldn't occur
3531 // but we might not run an optimizer that deletes them. The other exception
3532 // is bitcasts involving pointer types, as SelectionDAG has no knowledge
3533 // of them.
3534 return selectCopy(I, TII, MRI, TRI, RBI);
3536 case TargetOpcode::G_SELECT: {
3537 auto &Sel = cast<GSelect>(I);
3538 const Register CondReg = Sel.getCondReg();
3539 const Register TReg = Sel.getTrueReg();
3540 const Register FReg = Sel.getFalseReg();
3542 if (tryOptSelect(Sel))
3543 return true;
3545 // Make sure to use an unused vreg instead of wzr, so that the peephole
3546 // optimizations will be able to optimize these.
3547 Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3548 auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg})
3549 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
3550 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3551 if (!emitSelect(Sel.getReg(0), TReg, FReg, AArch64CC::NE, MIB))
3552 return false;
3553 Sel.eraseFromParent();
3554 return true;
3556 case TargetOpcode::G_ICMP: {
3557 if (Ty.isVector())
3558 return false;
3560 if (Ty != LLT::scalar(32)) {
3561 LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
3562 << ", expected: " << LLT::scalar(32) << '\n');
3563 return false;
3566 auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3567 const AArch64CC::CondCode InvCC =
3568 changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred));
3569 emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1), MIB);
3570 emitCSINC(/*Dst=*/I.getOperand(0).getReg(), /*Src1=*/AArch64::WZR,
3571 /*Src2=*/AArch64::WZR, InvCC, MIB);
3572 I.eraseFromParent();
3573 return true;
3576 case TargetOpcode::G_FCMP: {
3577 CmpInst::Predicate Pred =
3578 static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3579 if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(), MIB,
3580 Pred) ||
3581 !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIB))
3582 return false;
3583 I.eraseFromParent();
3584 return true;
3586 case TargetOpcode::G_VASTART:
3587 return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
3588 : selectVaStartAAPCS(I, MF, MRI);
3589 case TargetOpcode::G_INTRINSIC:
3590 return selectIntrinsic(I, MRI);
3591 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
3592 return selectIntrinsicWithSideEffects(I, MRI);
3593 case TargetOpcode::G_IMPLICIT_DEF: {
3594 I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
3595 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3596 const Register DstReg = I.getOperand(0).getReg();
3597 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3598 const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
3599 RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
3600 return true;
3602 case TargetOpcode::G_BLOCK_ADDR: {
3603 Function *BAFn = I.getOperand(1).getBlockAddress()->getFunction();
3604 if (std::optional<uint16_t> BADisc =
3605 STI.getPtrAuthBlockAddressDiscriminatorIfEnabled(*BAFn)) {
3606 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X16}, {});
3607 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
3608 MIB.buildInstr(AArch64::MOVaddrPAC)
3609 .addBlockAddress(I.getOperand(1).getBlockAddress())
3610 .addImm(AArch64PACKey::IA)
3611 .addReg(/*AddrDisc=*/AArch64::XZR)
3612 .addImm(*BADisc)
3613 .constrainAllUses(TII, TRI, RBI);
3614 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X16));
3615 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
3616 AArch64::GPR64RegClass, MRI);
3617 I.eraseFromParent();
3618 return true;
3620 if (TM.getCodeModel() == CodeModel::Large && !TM.isPositionIndependent()) {
3621 materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
3622 I.eraseFromParent();
3623 return true;
3624 } else {
3625 I.setDesc(TII.get(AArch64::MOVaddrBA));
3626 auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
3627 I.getOperand(0).getReg())
3628 .addBlockAddress(I.getOperand(1).getBlockAddress(),
3629 /* Offset */ 0, AArch64II::MO_PAGE)
3630 .addBlockAddress(
3631 I.getOperand(1).getBlockAddress(), /* Offset */ 0,
3632 AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3633 I.eraseFromParent();
3634 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3637 case AArch64::G_DUP: {
3638 // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by
3639 // imported patterns. Do it manually here. Avoiding generating s16 gpr is
3640 // difficult because at RBS we may end up pessimizing the fpr case if we
3641 // decided to add an anyextend to fix this. Manual selection is the most
3642 // robust solution for now.
3643 if (RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3644 AArch64::GPRRegBankID)
3645 return false; // We expect the fpr regbank case to be imported.
3646 LLT VecTy = MRI.getType(I.getOperand(0).getReg());
3647 if (VecTy == LLT::fixed_vector(8, 8))
3648 I.setDesc(TII.get(AArch64::DUPv8i8gpr));
3649 else if (VecTy == LLT::fixed_vector(16, 8))
3650 I.setDesc(TII.get(AArch64::DUPv16i8gpr));
3651 else if (VecTy == LLT::fixed_vector(4, 16))
3652 I.setDesc(TII.get(AArch64::DUPv4i16gpr));
3653 else if (VecTy == LLT::fixed_vector(8, 16))
3654 I.setDesc(TII.get(AArch64::DUPv8i16gpr));
3655 else
3656 return false;
3657 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3659 case TargetOpcode::G_BUILD_VECTOR:
3660 return selectBuildVector(I, MRI);
3661 case TargetOpcode::G_MERGE_VALUES:
3662 return selectMergeValues(I, MRI);
3663 case TargetOpcode::G_UNMERGE_VALUES:
3664 return selectUnmergeValues(I, MRI);
3665 case TargetOpcode::G_SHUFFLE_VECTOR:
3666 return selectShuffleVector(I, MRI);
3667 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3668 return selectExtractElt(I, MRI);
3669 case TargetOpcode::G_CONCAT_VECTORS:
3670 return selectConcatVectors(I, MRI);
3671 case TargetOpcode::G_JUMP_TABLE:
3672 return selectJumpTable(I, MRI);
3673 case TargetOpcode::G_MEMCPY:
3674 case TargetOpcode::G_MEMCPY_INLINE:
3675 case TargetOpcode::G_MEMMOVE:
3676 case TargetOpcode::G_MEMSET:
3677 assert(STI.hasMOPS() && "Shouldn't get here without +mops feature");
3678 return selectMOPS(I, MRI);
3681 return false;
3684 bool AArch64InstructionSelector::selectAndRestoreState(MachineInstr &I) {
3685 MachineIRBuilderState OldMIBState = MIB.getState();
3686 bool Success = select(I);
3687 MIB.setState(OldMIBState);
3688 return Success;
3691 bool AArch64InstructionSelector::selectMOPS(MachineInstr &GI,
3692 MachineRegisterInfo &MRI) {
3693 unsigned Mopcode;
3694 switch (GI.getOpcode()) {
3695 case TargetOpcode::G_MEMCPY:
3696 case TargetOpcode::G_MEMCPY_INLINE:
3697 Mopcode = AArch64::MOPSMemoryCopyPseudo;
3698 break;
3699 case TargetOpcode::G_MEMMOVE:
3700 Mopcode = AArch64::MOPSMemoryMovePseudo;
3701 break;
3702 case TargetOpcode::G_MEMSET:
3703 // For tagged memset see llvm.aarch64.mops.memset.tag
3704 Mopcode = AArch64::MOPSMemorySetPseudo;
3705 break;
3708 auto &DstPtr = GI.getOperand(0);
3709 auto &SrcOrVal = GI.getOperand(1);
3710 auto &Size = GI.getOperand(2);
3712 // Create copies of the registers that can be clobbered.
3713 const Register DstPtrCopy = MRI.cloneVirtualRegister(DstPtr.getReg());
3714 const Register SrcValCopy = MRI.cloneVirtualRegister(SrcOrVal.getReg());
3715 const Register SizeCopy = MRI.cloneVirtualRegister(Size.getReg());
3717 const bool IsSet = Mopcode == AArch64::MOPSMemorySetPseudo;
3718 const auto &SrcValRegClass =
3719 IsSet ? AArch64::GPR64RegClass : AArch64::GPR64commonRegClass;
3721 // Constrain to specific registers
3722 RBI.constrainGenericRegister(DstPtrCopy, AArch64::GPR64commonRegClass, MRI);
3723 RBI.constrainGenericRegister(SrcValCopy, SrcValRegClass, MRI);
3724 RBI.constrainGenericRegister(SizeCopy, AArch64::GPR64RegClass, MRI);
3726 MIB.buildCopy(DstPtrCopy, DstPtr);
3727 MIB.buildCopy(SrcValCopy, SrcOrVal);
3728 MIB.buildCopy(SizeCopy, Size);
3730 // New instruction uses the copied registers because it must update them.
3731 // The defs are not used since they don't exist in G_MEM*. They are still
3732 // tied.
3733 // Note: order of operands is different from G_MEMSET, G_MEMCPY, G_MEMMOVE
3734 Register DefDstPtr = MRI.createVirtualRegister(&AArch64::GPR64commonRegClass);
3735 Register DefSize = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3736 if (IsSet) {
3737 MIB.buildInstr(Mopcode, {DefDstPtr, DefSize},
3738 {DstPtrCopy, SizeCopy, SrcValCopy});
3739 } else {
3740 Register DefSrcPtr = MRI.createVirtualRegister(&SrcValRegClass);
3741 MIB.buildInstr(Mopcode, {DefDstPtr, DefSrcPtr, DefSize},
3742 {DstPtrCopy, SrcValCopy, SizeCopy});
3745 GI.eraseFromParent();
3746 return true;
3749 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
3750 MachineRegisterInfo &MRI) {
3751 assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
3752 Register JTAddr = I.getOperand(0).getReg();
3753 unsigned JTI = I.getOperand(1).getIndex();
3754 Register Index = I.getOperand(2).getReg();
3756 MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr);
3758 // With aarch64-jump-table-hardening, we only expand the jump table dispatch
3759 // sequence later, to guarantee the integrity of the intermediate values.
3760 if (MF->getFunction().hasFnAttribute("aarch64-jump-table-hardening")) {
3761 CodeModel::Model CM = TM.getCodeModel();
3762 if (STI.isTargetMachO()) {
3763 if (CM != CodeModel::Small && CM != CodeModel::Large)
3764 report_fatal_error("Unsupported code-model for hardened jump-table");
3765 } else {
3766 // Note that COFF support would likely also need JUMP_TABLE_DEBUG_INFO.
3767 assert(STI.isTargetELF() &&
3768 "jump table hardening only supported on MachO/ELF");
3769 if (CM != CodeModel::Small)
3770 report_fatal_error("Unsupported code-model for hardened jump-table");
3773 MIB.buildCopy({AArch64::X16}, I.getOperand(2).getReg());
3774 MIB.buildInstr(AArch64::BR_JumpTable)
3775 .addJumpTableIndex(I.getOperand(1).getIndex());
3776 I.eraseFromParent();
3777 return true;
3780 Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3781 Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
3783 auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
3784 {TargetReg, ScratchReg}, {JTAddr, Index})
3785 .addJumpTableIndex(JTI);
3786 // Save the jump table info.
3787 MIB.buildInstr(TargetOpcode::JUMP_TABLE_DEBUG_INFO, {},
3788 {static_cast<int64_t>(JTI)});
3789 // Build the indirect branch.
3790 MIB.buildInstr(AArch64::BR, {}, {TargetReg});
3791 I.eraseFromParent();
3792 return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
3795 bool AArch64InstructionSelector::selectJumpTable(MachineInstr &I,
3796 MachineRegisterInfo &MRI) {
3797 assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
3798 assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
3800 Register DstReg = I.getOperand(0).getReg();
3801 unsigned JTI = I.getOperand(1).getIndex();
3802 // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
3803 auto MovMI =
3804 MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
3805 .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
3806 .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3807 I.eraseFromParent();
3808 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3811 bool AArch64InstructionSelector::selectTLSGlobalValue(
3812 MachineInstr &I, MachineRegisterInfo &MRI) {
3813 if (!STI.isTargetMachO())
3814 return false;
3815 MachineFunction &MF = *I.getParent()->getParent();
3816 MF.getFrameInfo().setAdjustsStack(true);
3818 const auto &GlobalOp = I.getOperand(1);
3819 assert(GlobalOp.getOffset() == 0 &&
3820 "Shouldn't have an offset on TLS globals!");
3821 const GlobalValue &GV = *GlobalOp.getGlobal();
3823 auto LoadGOT =
3824 MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {})
3825 .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
3827 auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
3828 {LoadGOT.getReg(0)})
3829 .addImm(0);
3831 MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0));
3832 // TLS calls preserve all registers except those that absolutely must be
3833 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3834 // silly).
3835 unsigned Opcode = getBLRCallOpcode(MF);
3837 // With ptrauth-calls, the tlv access thunk pointer is authenticated (IA, 0).
3838 if (MF.getFunction().hasFnAttribute("ptrauth-calls")) {
3839 assert(Opcode == AArch64::BLR);
3840 Opcode = AArch64::BLRAAZ;
3843 MIB.buildInstr(Opcode, {}, {Load})
3844 .addUse(AArch64::X0, RegState::Implicit)
3845 .addDef(AArch64::X0, RegState::Implicit)
3846 .addRegMask(TRI.getTLSCallPreservedMask());
3848 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
3849 RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
3850 MRI);
3851 I.eraseFromParent();
3852 return true;
3855 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
3856 unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
3857 MachineIRBuilder &MIRBuilder) const {
3858 auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
3860 auto BuildFn = [&](unsigned SubregIndex) {
3861 auto Ins =
3862 MIRBuilder
3863 .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
3864 .addImm(SubregIndex);
3865 constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
3866 constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
3867 return &*Ins;
3870 switch (EltSize) {
3871 case 8:
3872 return BuildFn(AArch64::bsub);
3873 case 16:
3874 return BuildFn(AArch64::hsub);
3875 case 32:
3876 return BuildFn(AArch64::ssub);
3877 case 64:
3878 return BuildFn(AArch64::dsub);
3879 default:
3880 return nullptr;
3884 MachineInstr *
3885 AArch64InstructionSelector::emitNarrowVector(Register DstReg, Register SrcReg,
3886 MachineIRBuilder &MIB,
3887 MachineRegisterInfo &MRI) const {
3888 LLT DstTy = MRI.getType(DstReg);
3889 const TargetRegisterClass *RC =
3890 getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(SrcReg, MRI, TRI));
3891 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
3892 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
3893 return nullptr;
3895 unsigned SubReg = 0;
3896 if (!getSubRegForClass(RC, TRI, SubReg))
3897 return nullptr;
3898 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
3899 LLVM_DEBUG(dbgs() << "Unsupported destination size! ("
3900 << DstTy.getSizeInBits() << "\n");
3901 return nullptr;
3903 auto Copy = MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3904 .addReg(SrcReg, 0, SubReg);
3905 RBI.constrainGenericRegister(DstReg, *RC, MRI);
3906 return Copy;
3909 bool AArch64InstructionSelector::selectMergeValues(
3910 MachineInstr &I, MachineRegisterInfo &MRI) {
3911 assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
3912 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3913 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3914 assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
3915 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
3917 if (I.getNumOperands() != 3)
3918 return false;
3920 // Merging 2 s64s into an s128.
3921 if (DstTy == LLT::scalar(128)) {
3922 if (SrcTy.getSizeInBits() != 64)
3923 return false;
3924 Register DstReg = I.getOperand(0).getReg();
3925 Register Src1Reg = I.getOperand(1).getReg();
3926 Register Src2Reg = I.getOperand(2).getReg();
3927 auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
3928 MachineInstr *InsMI = emitLaneInsert(std::nullopt, Tmp.getReg(0), Src1Reg,
3929 /* LaneIdx */ 0, RB, MIB);
3930 if (!InsMI)
3931 return false;
3932 MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
3933 Src2Reg, /* LaneIdx */ 1, RB, MIB);
3934 if (!Ins2MI)
3935 return false;
3936 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
3937 constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
3938 I.eraseFromParent();
3939 return true;
3942 if (RB.getID() != AArch64::GPRRegBankID)
3943 return false;
3945 if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
3946 return false;
3948 auto *DstRC = &AArch64::GPR64RegClass;
3949 Register SubToRegDef = MRI.createVirtualRegister(DstRC);
3950 MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3951 TII.get(TargetOpcode::SUBREG_TO_REG))
3952 .addDef(SubToRegDef)
3953 .addImm(0)
3954 .addUse(I.getOperand(1).getReg())
3955 .addImm(AArch64::sub_32);
3956 Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
3957 // Need to anyext the second scalar before we can use bfm
3958 MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3959 TII.get(TargetOpcode::SUBREG_TO_REG))
3960 .addDef(SubToRegDef2)
3961 .addImm(0)
3962 .addUse(I.getOperand(2).getReg())
3963 .addImm(AArch64::sub_32);
3964 MachineInstr &BFM =
3965 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
3966 .addDef(I.getOperand(0).getReg())
3967 .addUse(SubToRegDef)
3968 .addUse(SubToRegDef2)
3969 .addImm(32)
3970 .addImm(31);
3971 constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
3972 constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
3973 constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
3974 I.eraseFromParent();
3975 return true;
3978 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
3979 const unsigned EltSize) {
3980 // Choose a lane copy opcode and subregister based off of the size of the
3981 // vector's elements.
3982 switch (EltSize) {
3983 case 8:
3984 CopyOpc = AArch64::DUPi8;
3985 ExtractSubReg = AArch64::bsub;
3986 break;
3987 case 16:
3988 CopyOpc = AArch64::DUPi16;
3989 ExtractSubReg = AArch64::hsub;
3990 break;
3991 case 32:
3992 CopyOpc = AArch64::DUPi32;
3993 ExtractSubReg = AArch64::ssub;
3994 break;
3995 case 64:
3996 CopyOpc = AArch64::DUPi64;
3997 ExtractSubReg = AArch64::dsub;
3998 break;
3999 default:
4000 // Unknown size, bail out.
4001 LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
4002 return false;
4004 return true;
4007 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
4008 std::optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
4009 Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
4010 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4011 unsigned CopyOpc = 0;
4012 unsigned ExtractSubReg = 0;
4013 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
4014 LLVM_DEBUG(
4015 dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
4016 return nullptr;
4019 const TargetRegisterClass *DstRC =
4020 getRegClassForTypeOnBank(ScalarTy, DstRB, true);
4021 if (!DstRC) {
4022 LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
4023 return nullptr;
4026 const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
4027 const LLT &VecTy = MRI.getType(VecReg);
4028 const TargetRegisterClass *VecRC =
4029 getRegClassForTypeOnBank(VecTy, VecRB, true);
4030 if (!VecRC) {
4031 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
4032 return nullptr;
4035 // The register that we're going to copy into.
4036 Register InsertReg = VecReg;
4037 if (!DstReg)
4038 DstReg = MRI.createVirtualRegister(DstRC);
4039 // If the lane index is 0, we just use a subregister COPY.
4040 if (LaneIdx == 0) {
4041 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
4042 .addReg(VecReg, 0, ExtractSubReg);
4043 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
4044 return &*Copy;
4047 // Lane copies require 128-bit wide registers. If we're dealing with an
4048 // unpacked vector, then we need to move up to that width. Insert an implicit
4049 // def and a subregister insert to get us there.
4050 if (VecTy.getSizeInBits() != 128) {
4051 MachineInstr *ScalarToVector = emitScalarToVector(
4052 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
4053 if (!ScalarToVector)
4054 return nullptr;
4055 InsertReg = ScalarToVector->getOperand(0).getReg();
4058 MachineInstr *LaneCopyMI =
4059 MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
4060 constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
4062 // Make sure that we actually constrain the initial copy.
4063 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
4064 return LaneCopyMI;
4067 bool AArch64InstructionSelector::selectExtractElt(
4068 MachineInstr &I, MachineRegisterInfo &MRI) {
4069 assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
4070 "unexpected opcode!");
4071 Register DstReg = I.getOperand(0).getReg();
4072 const LLT NarrowTy = MRI.getType(DstReg);
4073 const Register SrcReg = I.getOperand(1).getReg();
4074 const LLT WideTy = MRI.getType(SrcReg);
4075 (void)WideTy;
4076 assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
4077 "source register size too small!");
4078 assert(!NarrowTy.isVector() && "cannot extract vector into vector!");
4080 // Need the lane index to determine the correct copy opcode.
4081 MachineOperand &LaneIdxOp = I.getOperand(2);
4082 assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
4084 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
4085 LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
4086 return false;
4089 // Find the index to extract from.
4090 auto VRegAndVal = getIConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
4091 if (!VRegAndVal)
4092 return false;
4093 unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
4096 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
4097 MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
4098 LaneIdx, MIB);
4099 if (!Extract)
4100 return false;
4102 I.eraseFromParent();
4103 return true;
4106 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
4107 MachineInstr &I, MachineRegisterInfo &MRI) {
4108 unsigned NumElts = I.getNumOperands() - 1;
4109 Register SrcReg = I.getOperand(NumElts).getReg();
4110 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
4111 const LLT SrcTy = MRI.getType(SrcReg);
4113 assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
4114 if (SrcTy.getSizeInBits() > 128) {
4115 LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
4116 return false;
4119 // We implement a split vector operation by treating the sub-vectors as
4120 // scalars and extracting them.
4121 const RegisterBank &DstRB =
4122 *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
4123 for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
4124 Register Dst = I.getOperand(OpIdx).getReg();
4125 MachineInstr *Extract =
4126 emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
4127 if (!Extract)
4128 return false;
4130 I.eraseFromParent();
4131 return true;
4134 bool AArch64InstructionSelector::selectUnmergeValues(MachineInstr &I,
4135 MachineRegisterInfo &MRI) {
4136 assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
4137 "unexpected opcode");
4139 // TODO: Handle unmerging into GPRs and from scalars to scalars.
4140 if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
4141 AArch64::FPRRegBankID ||
4142 RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
4143 AArch64::FPRRegBankID) {
4144 LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
4145 "currently unsupported.\n");
4146 return false;
4149 // The last operand is the vector source register, and every other operand is
4150 // a register to unpack into.
4151 unsigned NumElts = I.getNumOperands() - 1;
4152 Register SrcReg = I.getOperand(NumElts).getReg();
4153 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
4154 const LLT WideTy = MRI.getType(SrcReg);
4155 (void)WideTy;
4156 assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
4157 "can only unmerge from vector or s128 types!");
4158 assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
4159 "source register size too small!");
4161 if (!NarrowTy.isScalar())
4162 return selectSplitVectorUnmerge(I, MRI);
4164 // Choose a lane copy opcode and subregister based off of the size of the
4165 // vector's elements.
4166 unsigned CopyOpc = 0;
4167 unsigned ExtractSubReg = 0;
4168 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
4169 return false;
4171 // Set up for the lane copies.
4172 MachineBasicBlock &MBB = *I.getParent();
4174 // Stores the registers we'll be copying from.
4175 SmallVector<Register, 4> InsertRegs;
4177 // We'll use the first register twice, so we only need NumElts-1 registers.
4178 unsigned NumInsertRegs = NumElts - 1;
4180 // If our elements fit into exactly 128 bits, then we can copy from the source
4181 // directly. Otherwise, we need to do a bit of setup with some subregister
4182 // inserts.
4183 if (NarrowTy.getSizeInBits() * NumElts == 128) {
4184 InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
4185 } else {
4186 // No. We have to perform subregister inserts. For each insert, create an
4187 // implicit def and a subregister insert, and save the register we create.
4188 const TargetRegisterClass *RC = getRegClassForTypeOnBank(
4189 LLT::fixed_vector(NumElts, WideTy.getScalarSizeInBits()),
4190 *RBI.getRegBank(SrcReg, MRI, TRI));
4191 unsigned SubReg = 0;
4192 bool Found = getSubRegForClass(RC, TRI, SubReg);
4193 (void)Found;
4194 assert(Found && "expected to find last operand's subeg idx");
4195 for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
4196 Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
4197 MachineInstr &ImpDefMI =
4198 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
4199 ImpDefReg);
4201 // Now, create the subregister insert from SrcReg.
4202 Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
4203 MachineInstr &InsMI =
4204 *BuildMI(MBB, I, I.getDebugLoc(),
4205 TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
4206 .addUse(ImpDefReg)
4207 .addUse(SrcReg)
4208 .addImm(SubReg);
4210 constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
4211 constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
4213 // Save the register so that we can copy from it after.
4214 InsertRegs.push_back(InsertReg);
4218 // Now that we've created any necessary subregister inserts, we can
4219 // create the copies.
4221 // Perform the first copy separately as a subregister copy.
4222 Register CopyTo = I.getOperand(0).getReg();
4223 auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
4224 .addReg(InsertRegs[0], 0, ExtractSubReg);
4225 constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
4227 // Now, perform the remaining copies as vector lane copies.
4228 unsigned LaneIdx = 1;
4229 for (Register InsReg : InsertRegs) {
4230 Register CopyTo = I.getOperand(LaneIdx).getReg();
4231 MachineInstr &CopyInst =
4232 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
4233 .addUse(InsReg)
4234 .addImm(LaneIdx);
4235 constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
4236 ++LaneIdx;
4239 // Separately constrain the first copy's destination. Because of the
4240 // limitation in constrainOperandRegClass, we can't guarantee that this will
4241 // actually be constrained. So, do it ourselves using the second operand.
4242 const TargetRegisterClass *RC =
4243 MRI.getRegClassOrNull(I.getOperand(1).getReg());
4244 if (!RC) {
4245 LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
4246 return false;
4249 RBI.constrainGenericRegister(CopyTo, *RC, MRI);
4250 I.eraseFromParent();
4251 return true;
4254 bool AArch64InstructionSelector::selectConcatVectors(
4255 MachineInstr &I, MachineRegisterInfo &MRI) {
4256 assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
4257 "Unexpected opcode");
4258 Register Dst = I.getOperand(0).getReg();
4259 Register Op1 = I.getOperand(1).getReg();
4260 Register Op2 = I.getOperand(2).getReg();
4261 MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIB);
4262 if (!ConcatMI)
4263 return false;
4264 I.eraseFromParent();
4265 return true;
4268 unsigned
4269 AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
4270 MachineFunction &MF) const {
4271 Type *CPTy = CPVal->getType();
4272 Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);
4274 MachineConstantPool *MCP = MF.getConstantPool();
4275 return MCP->getConstantPoolIndex(CPVal, Alignment);
4278 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
4279 const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
4280 const TargetRegisterClass *RC;
4281 unsigned Opc;
4282 bool IsTiny = TM.getCodeModel() == CodeModel::Tiny;
4283 unsigned Size = MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType());
4284 switch (Size) {
4285 case 16:
4286 RC = &AArch64::FPR128RegClass;
4287 Opc = IsTiny ? AArch64::LDRQl : AArch64::LDRQui;
4288 break;
4289 case 8:
4290 RC = &AArch64::FPR64RegClass;
4291 Opc = IsTiny ? AArch64::LDRDl : AArch64::LDRDui;
4292 break;
4293 case 4:
4294 RC = &AArch64::FPR32RegClass;
4295 Opc = IsTiny ? AArch64::LDRSl : AArch64::LDRSui;
4296 break;
4297 case 2:
4298 RC = &AArch64::FPR16RegClass;
4299 Opc = AArch64::LDRHui;
4300 break;
4301 default:
4302 LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
4303 << *CPVal->getType());
4304 return nullptr;
4307 MachineInstr *LoadMI = nullptr;
4308 auto &MF = MIRBuilder.getMF();
4309 unsigned CPIdx = emitConstantPoolEntry(CPVal, MF);
4310 if (IsTiny && (Size == 16 || Size == 8 || Size == 4)) {
4311 // Use load(literal) for tiny code model.
4312 LoadMI = &*MIRBuilder.buildInstr(Opc, {RC}, {}).addConstantPoolIndex(CPIdx);
4313 } else {
4314 auto Adrp =
4315 MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
4316 .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
4318 LoadMI = &*MIRBuilder.buildInstr(Opc, {RC}, {Adrp})
4319 .addConstantPoolIndex(
4320 CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4322 constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
4325 MachinePointerInfo PtrInfo = MachinePointerInfo::getConstantPool(MF);
4326 LoadMI->addMemOperand(MF, MF.getMachineMemOperand(PtrInfo,
4327 MachineMemOperand::MOLoad,
4328 Size, Align(Size)));
4329 constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
4330 return LoadMI;
4333 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
4334 /// size and RB.
4335 static std::pair<unsigned, unsigned>
4336 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
4337 unsigned Opc, SubregIdx;
4338 if (RB.getID() == AArch64::GPRRegBankID) {
4339 if (EltSize == 8) {
4340 Opc = AArch64::INSvi8gpr;
4341 SubregIdx = AArch64::bsub;
4342 } else if (EltSize == 16) {
4343 Opc = AArch64::INSvi16gpr;
4344 SubregIdx = AArch64::ssub;
4345 } else if (EltSize == 32) {
4346 Opc = AArch64::INSvi32gpr;
4347 SubregIdx = AArch64::ssub;
4348 } else if (EltSize == 64) {
4349 Opc = AArch64::INSvi64gpr;
4350 SubregIdx = AArch64::dsub;
4351 } else {
4352 llvm_unreachable("invalid elt size!");
4354 } else {
4355 if (EltSize == 8) {
4356 Opc = AArch64::INSvi8lane;
4357 SubregIdx = AArch64::bsub;
4358 } else if (EltSize == 16) {
4359 Opc = AArch64::INSvi16lane;
4360 SubregIdx = AArch64::hsub;
4361 } else if (EltSize == 32) {
4362 Opc = AArch64::INSvi32lane;
4363 SubregIdx = AArch64::ssub;
4364 } else if (EltSize == 64) {
4365 Opc = AArch64::INSvi64lane;
4366 SubregIdx = AArch64::dsub;
4367 } else {
4368 llvm_unreachable("invalid elt size!");
4371 return std::make_pair(Opc, SubregIdx);
4374 MachineInstr *AArch64InstructionSelector::emitInstr(
4375 unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
4376 std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder,
4377 const ComplexRendererFns &RenderFns) const {
4378 assert(Opcode && "Expected an opcode?");
4379 assert(!isPreISelGenericOpcode(Opcode) &&
4380 "Function should only be used to produce selected instructions!");
4381 auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps);
4382 if (RenderFns)
4383 for (auto &Fn : *RenderFns)
4384 Fn(MI);
4385 constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
4386 return &*MI;
4389 MachineInstr *AArch64InstructionSelector::emitAddSub(
4390 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
4391 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
4392 MachineIRBuilder &MIRBuilder) const {
4393 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4394 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4395 auto Ty = MRI.getType(LHS.getReg());
4396 assert(!Ty.isVector() && "Expected a scalar or pointer?");
4397 unsigned Size = Ty.getSizeInBits();
4398 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only");
4399 bool Is32Bit = Size == 32;
4401 // INSTRri form with positive arithmetic immediate.
4402 if (auto Fns = selectArithImmed(RHS))
4403 return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS},
4404 MIRBuilder, Fns);
4406 // INSTRri form with negative arithmetic immediate.
4407 if (auto Fns = selectNegArithImmed(RHS))
4408 return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS},
4409 MIRBuilder, Fns);
4411 // INSTRrx form.
4412 if (auto Fns = selectArithExtendedRegister(RHS))
4413 return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS},
4414 MIRBuilder, Fns);
4416 // INSTRrs form.
4417 if (auto Fns = selectShiftedRegister(RHS))
4418 return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS},
4419 MIRBuilder, Fns);
4420 return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS},
4421 MIRBuilder);
4424 MachineInstr *
4425 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
4426 MachineOperand &RHS,
4427 MachineIRBuilder &MIRBuilder) const {
4428 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4429 {{AArch64::ADDXri, AArch64::ADDWri},
4430 {AArch64::ADDXrs, AArch64::ADDWrs},
4431 {AArch64::ADDXrr, AArch64::ADDWrr},
4432 {AArch64::SUBXri, AArch64::SUBWri},
4433 {AArch64::ADDXrx, AArch64::ADDWrx}}};
4434 return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder);
4437 MachineInstr *
4438 AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS,
4439 MachineOperand &RHS,
4440 MachineIRBuilder &MIRBuilder) const {
4441 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4442 {{AArch64::ADDSXri, AArch64::ADDSWri},
4443 {AArch64::ADDSXrs, AArch64::ADDSWrs},
4444 {AArch64::ADDSXrr, AArch64::ADDSWrr},
4445 {AArch64::SUBSXri, AArch64::SUBSWri},
4446 {AArch64::ADDSXrx, AArch64::ADDSWrx}}};
4447 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4450 MachineInstr *
4451 AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS,
4452 MachineOperand &RHS,
4453 MachineIRBuilder &MIRBuilder) const {
4454 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4455 {{AArch64::SUBSXri, AArch64::SUBSWri},
4456 {AArch64::SUBSXrs, AArch64::SUBSWrs},
4457 {AArch64::SUBSXrr, AArch64::SUBSWrr},
4458 {AArch64::ADDSXri, AArch64::ADDSWri},
4459 {AArch64::SUBSXrx, AArch64::SUBSWrx}}};
4460 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4463 MachineInstr *
4464 AArch64InstructionSelector::emitADCS(Register Dst, MachineOperand &LHS,
4465 MachineOperand &RHS,
4466 MachineIRBuilder &MIRBuilder) const {
4467 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4468 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4469 bool Is32Bit = (MRI->getType(LHS.getReg()).getSizeInBits() == 32);
4470 static const unsigned OpcTable[2] = {AArch64::ADCSXr, AArch64::ADCSWr};
4471 return emitInstr(OpcTable[Is32Bit], {Dst}, {LHS, RHS}, MIRBuilder);
4474 MachineInstr *
4475 AArch64InstructionSelector::emitSBCS(Register Dst, MachineOperand &LHS,
4476 MachineOperand &RHS,
4477 MachineIRBuilder &MIRBuilder) const {
4478 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4479 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4480 bool Is32Bit = (MRI->getType(LHS.getReg()).getSizeInBits() == 32);
4481 static const unsigned OpcTable[2] = {AArch64::SBCSXr, AArch64::SBCSWr};
4482 return emitInstr(OpcTable[Is32Bit], {Dst}, {LHS, RHS}, MIRBuilder);
4485 MachineInstr *
4486 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
4487 MachineIRBuilder &MIRBuilder) const {
4488 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4489 bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
4490 auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
4491 return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder);
4494 MachineInstr *
4495 AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS,
4496 MachineIRBuilder &MIRBuilder) const {
4497 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4498 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4499 LLT Ty = MRI.getType(LHS.getReg());
4500 unsigned RegSize = Ty.getSizeInBits();
4501 bool Is32Bit = (RegSize == 32);
4502 const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri},
4503 {AArch64::ANDSXrs, AArch64::ANDSWrs},
4504 {AArch64::ANDSXrr, AArch64::ANDSWrr}};
4505 // ANDS needs a logical immediate for its immediate form. Check if we can
4506 // fold one in.
4507 if (auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS.getReg(), MRI)) {
4508 int64_t Imm = ValAndVReg->Value.getSExtValue();
4510 if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) {
4511 auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS});
4512 TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
4513 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
4514 return &*TstMI;
4518 if (auto Fns = selectLogicalShiftedRegister(RHS))
4519 return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns);
4520 return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder);
4523 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
4524 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4525 MachineIRBuilder &MIRBuilder) const {
4526 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
4527 assert(Predicate.isPredicate() && "Expected predicate?");
4528 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4529 LLT CmpTy = MRI.getType(LHS.getReg());
4530 assert(!CmpTy.isVector() && "Expected scalar or pointer");
4531 unsigned Size = CmpTy.getSizeInBits();
4532 (void)Size;
4533 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?");
4534 // Fold the compare into a cmn or tst if possible.
4535 if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder))
4536 return FoldCmp;
4537 auto Dst = MRI.cloneVirtualRegister(LHS.getReg());
4538 return emitSUBS(Dst, LHS, RHS, MIRBuilder);
4541 MachineInstr *AArch64InstructionSelector::emitCSetForFCmp(
4542 Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const {
4543 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4544 #ifndef NDEBUG
4545 LLT Ty = MRI.getType(Dst);
4546 assert(!Ty.isVector() && Ty.getSizeInBits() == 32 &&
4547 "Expected a 32-bit scalar register?");
4548 #endif
4549 const Register ZReg = AArch64::WZR;
4550 AArch64CC::CondCode CC1, CC2;
4551 changeFCMPPredToAArch64CC(Pred, CC1, CC2);
4552 auto InvCC1 = AArch64CC::getInvertedCondCode(CC1);
4553 if (CC2 == AArch64CC::AL)
4554 return emitCSINC(/*Dst=*/Dst, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC1,
4555 MIRBuilder);
4556 const TargetRegisterClass *RC = &AArch64::GPR32RegClass;
4557 Register Def1Reg = MRI.createVirtualRegister(RC);
4558 Register Def2Reg = MRI.createVirtualRegister(RC);
4559 auto InvCC2 = AArch64CC::getInvertedCondCode(CC2);
4560 emitCSINC(/*Dst=*/Def1Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC1, MIRBuilder);
4561 emitCSINC(/*Dst=*/Def2Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC2, MIRBuilder);
4562 auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg});
4563 constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI);
4564 return &*OrMI;
4567 MachineInstr *AArch64InstructionSelector::emitFPCompare(
4568 Register LHS, Register RHS, MachineIRBuilder &MIRBuilder,
4569 std::optional<CmpInst::Predicate> Pred) const {
4570 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4571 LLT Ty = MRI.getType(LHS);
4572 if (Ty.isVector())
4573 return nullptr;
4574 unsigned OpSize = Ty.getSizeInBits();
4575 assert(OpSize == 16 || OpSize == 32 || OpSize == 64);
4577 // If this is a compare against +0.0, then we don't have
4578 // to explicitly materialize a constant.
4579 const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI);
4580 bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
4582 auto IsEqualityPred = [](CmpInst::Predicate P) {
4583 return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE ||
4584 P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE;
4586 if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) {
4587 // Try commutating the operands.
4588 const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI);
4589 if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) {
4590 ShouldUseImm = true;
4591 std::swap(LHS, RHS);
4594 unsigned CmpOpcTbl[2][3] = {
4595 {AArch64::FCMPHrr, AArch64::FCMPSrr, AArch64::FCMPDrr},
4596 {AArch64::FCMPHri, AArch64::FCMPSri, AArch64::FCMPDri}};
4597 unsigned CmpOpc =
4598 CmpOpcTbl[ShouldUseImm][OpSize == 16 ? 0 : (OpSize == 32 ? 1 : 2)];
4600 // Partially build the compare. Decide if we need to add a use for the
4601 // third operand based off whether or not we're comparing against 0.0.
4602 auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS);
4603 CmpMI.setMIFlags(MachineInstr::NoFPExcept);
4604 if (!ShouldUseImm)
4605 CmpMI.addUse(RHS);
4606 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
4607 return &*CmpMI;
4610 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
4611 std::optional<Register> Dst, Register Op1, Register Op2,
4612 MachineIRBuilder &MIRBuilder) const {
4613 // We implement a vector concat by:
4614 // 1. Use scalar_to_vector to insert the lower vector into the larger dest
4615 // 2. Insert the upper vector into the destination's upper element
4616 // TODO: some of this code is common with G_BUILD_VECTOR handling.
4617 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4619 const LLT Op1Ty = MRI.getType(Op1);
4620 const LLT Op2Ty = MRI.getType(Op2);
4622 if (Op1Ty != Op2Ty) {
4623 LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
4624 return nullptr;
4626 assert(Op1Ty.isVector() && "Expected a vector for vector concat");
4628 if (Op1Ty.getSizeInBits() >= 128) {
4629 LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
4630 return nullptr;
4633 // At the moment we just support 64 bit vector concats.
4634 if (Op1Ty.getSizeInBits() != 64) {
4635 LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
4636 return nullptr;
4639 const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
4640 const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
4641 const TargetRegisterClass *DstRC =
4642 getRegClassForTypeOnBank(Op1Ty.multiplyElements(2), FPRBank);
4644 MachineInstr *WidenedOp1 =
4645 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
4646 MachineInstr *WidenedOp2 =
4647 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
4648 if (!WidenedOp1 || !WidenedOp2) {
4649 LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
4650 return nullptr;
4653 // Now do the insert of the upper element.
4654 unsigned InsertOpc, InsSubRegIdx;
4655 std::tie(InsertOpc, InsSubRegIdx) =
4656 getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
4658 if (!Dst)
4659 Dst = MRI.createVirtualRegister(DstRC);
4660 auto InsElt =
4661 MIRBuilder
4662 .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
4663 .addImm(1) /* Lane index */
4664 .addUse(WidenedOp2->getOperand(0).getReg())
4665 .addImm(0);
4666 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4667 return &*InsElt;
4670 MachineInstr *
4671 AArch64InstructionSelector::emitCSINC(Register Dst, Register Src1,
4672 Register Src2, AArch64CC::CondCode Pred,
4673 MachineIRBuilder &MIRBuilder) const {
4674 auto &MRI = *MIRBuilder.getMRI();
4675 const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Dst);
4676 // If we used a register class, then this won't necessarily have an LLT.
4677 // Compute the size based off whether or not we have a class or bank.
4678 unsigned Size;
4679 if (const auto *RC = dyn_cast<const TargetRegisterClass *>(RegClassOrBank))
4680 Size = TRI.getRegSizeInBits(*RC);
4681 else
4682 Size = MRI.getType(Dst).getSizeInBits();
4683 // Some opcodes use s1.
4684 assert(Size <= 64 && "Expected 64 bits or less only!");
4685 static const unsigned OpcTable[2] = {AArch64::CSINCWr, AArch64::CSINCXr};
4686 unsigned Opc = OpcTable[Size == 64];
4687 auto CSINC = MIRBuilder.buildInstr(Opc, {Dst}, {Src1, Src2}).addImm(Pred);
4688 constrainSelectedInstRegOperands(*CSINC, TII, TRI, RBI);
4689 return &*CSINC;
4692 MachineInstr *AArch64InstructionSelector::emitCarryIn(MachineInstr &I,
4693 Register CarryReg) {
4694 MachineRegisterInfo *MRI = MIB.getMRI();
4695 unsigned Opcode = I.getOpcode();
4697 // If the instruction is a SUB, we need to negate the carry,
4698 // because borrowing is indicated by carry-flag == 0.
4699 bool NeedsNegatedCarry =
4700 (Opcode == TargetOpcode::G_USUBE || Opcode == TargetOpcode::G_SSUBE);
4702 // If the previous instruction will already produce the correct carry, do not
4703 // emit a carry generating instruction. E.g. for G_UADDE/G_USUBE sequences
4704 // generated during legalization of wide add/sub. This optimization depends on
4705 // these sequences not being interrupted by other instructions.
4706 // We have to select the previous instruction before the carry-using
4707 // instruction is deleted by the calling function, otherwise the previous
4708 // instruction might become dead and would get deleted.
4709 MachineInstr *SrcMI = MRI->getVRegDef(CarryReg);
4710 if (SrcMI == I.getPrevNode()) {
4711 if (auto *CarrySrcMI = dyn_cast<GAddSubCarryOut>(SrcMI)) {
4712 bool ProducesNegatedCarry = CarrySrcMI->isSub();
4713 if (NeedsNegatedCarry == ProducesNegatedCarry &&
4714 CarrySrcMI->isUnsigned() &&
4715 CarrySrcMI->getCarryOutReg() == CarryReg &&
4716 selectAndRestoreState(*SrcMI))
4717 return nullptr;
4721 Register DeadReg = MRI->createVirtualRegister(&AArch64::GPR32RegClass);
4723 if (NeedsNegatedCarry) {
4724 // (0 - Carry) sets !C in NZCV when Carry == 1
4725 Register ZReg = AArch64::WZR;
4726 return emitInstr(AArch64::SUBSWrr, {DeadReg}, {ZReg, CarryReg}, MIB);
4729 // (Carry - 1) sets !C in NZCV when Carry == 0
4730 auto Fns = select12BitValueWithLeftShift(1);
4731 return emitInstr(AArch64::SUBSWri, {DeadReg}, {CarryReg}, MIB, Fns);
4734 bool AArch64InstructionSelector::selectOverflowOp(MachineInstr &I,
4735 MachineRegisterInfo &MRI) {
4736 auto &CarryMI = cast<GAddSubCarryOut>(I);
4738 if (auto *CarryInMI = dyn_cast<GAddSubCarryInOut>(&I)) {
4739 // Set NZCV carry according to carry-in VReg
4740 emitCarryIn(I, CarryInMI->getCarryInReg());
4743 // Emit the operation and get the correct condition code.
4744 auto OpAndCC = emitOverflowOp(I.getOpcode(), CarryMI.getDstReg(),
4745 CarryMI.getLHS(), CarryMI.getRHS(), MIB);
4747 Register CarryOutReg = CarryMI.getCarryOutReg();
4749 // Don't convert carry-out to VReg if it is never used
4750 if (!MRI.use_nodbg_empty(CarryOutReg)) {
4751 // Now, put the overflow result in the register given by the first operand
4752 // to the overflow op. CSINC increments the result when the predicate is
4753 // false, so to get the increment when it's true, we need to use the
4754 // inverse. In this case, we want to increment when carry is set.
4755 Register ZReg = AArch64::WZR;
4756 emitCSINC(/*Dst=*/CarryOutReg, /*Src1=*/ZReg, /*Src2=*/ZReg,
4757 getInvertedCondCode(OpAndCC.second), MIB);
4760 I.eraseFromParent();
4761 return true;
4764 std::pair<MachineInstr *, AArch64CC::CondCode>
4765 AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst,
4766 MachineOperand &LHS,
4767 MachineOperand &RHS,
4768 MachineIRBuilder &MIRBuilder) const {
4769 switch (Opcode) {
4770 default:
4771 llvm_unreachable("Unexpected opcode!");
4772 case TargetOpcode::G_SADDO:
4773 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4774 case TargetOpcode::G_UADDO:
4775 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4776 case TargetOpcode::G_SSUBO:
4777 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4778 case TargetOpcode::G_USUBO:
4779 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4780 case TargetOpcode::G_SADDE:
4781 return std::make_pair(emitADCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4782 case TargetOpcode::G_UADDE:
4783 return std::make_pair(emitADCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4784 case TargetOpcode::G_SSUBE:
4785 return std::make_pair(emitSBCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4786 case TargetOpcode::G_USUBE:
4787 return std::make_pair(emitSBCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4791 /// Returns true if @p Val is a tree of AND/OR/CMP operations that can be
4792 /// expressed as a conjunction.
4793 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
4794 /// changing the conditions on the CMP tests.
4795 /// (this means we can call emitConjunctionRec() with
4796 /// Negate==true on this sub-tree)
4797 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
4798 /// cannot do the negation naturally. We are required to
4799 /// emit the subtree first in this case.
4800 /// \param WillNegate Is true if are called when the result of this
4801 /// subexpression must be negated. This happens when the
4802 /// outer expression is an OR. We can use this fact to know
4803 /// that we have a double negation (or (or ...) ...) that
4804 /// can be implemented for free.
4805 static bool canEmitConjunction(Register Val, bool &CanNegate, bool &MustBeFirst,
4806 bool WillNegate, MachineRegisterInfo &MRI,
4807 unsigned Depth = 0) {
4808 if (!MRI.hasOneNonDBGUse(Val))
4809 return false;
4810 MachineInstr *ValDef = MRI.getVRegDef(Val);
4811 unsigned Opcode = ValDef->getOpcode();
4812 if (isa<GAnyCmp>(ValDef)) {
4813 CanNegate = true;
4814 MustBeFirst = false;
4815 return true;
4817 // Protect against exponential runtime and stack overflow.
4818 if (Depth > 6)
4819 return false;
4820 if (Opcode == TargetOpcode::G_AND || Opcode == TargetOpcode::G_OR) {
4821 bool IsOR = Opcode == TargetOpcode::G_OR;
4822 Register O0 = ValDef->getOperand(1).getReg();
4823 Register O1 = ValDef->getOperand(2).getReg();
4824 bool CanNegateL;
4825 bool MustBeFirstL;
4826 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, MRI, Depth + 1))
4827 return false;
4828 bool CanNegateR;
4829 bool MustBeFirstR;
4830 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, MRI, Depth + 1))
4831 return false;
4833 if (MustBeFirstL && MustBeFirstR)
4834 return false;
4836 if (IsOR) {
4837 // For an OR expression we need to be able to naturally negate at least
4838 // one side or we cannot do the transformation at all.
4839 if (!CanNegateL && !CanNegateR)
4840 return false;
4841 // If we the result of the OR will be negated and we can naturally negate
4842 // the leaves, then this sub-tree as a whole negates naturally.
4843 CanNegate = WillNegate && CanNegateL && CanNegateR;
4844 // If we cannot naturally negate the whole sub-tree, then this must be
4845 // emitted first.
4846 MustBeFirst = !CanNegate;
4847 } else {
4848 assert(Opcode == TargetOpcode::G_AND && "Must be G_AND");
4849 // We cannot naturally negate an AND operation.
4850 CanNegate = false;
4851 MustBeFirst = MustBeFirstL || MustBeFirstR;
4853 return true;
4855 return false;
4858 MachineInstr *AArch64InstructionSelector::emitConditionalComparison(
4859 Register LHS, Register RHS, CmpInst::Predicate CC,
4860 AArch64CC::CondCode Predicate, AArch64CC::CondCode OutCC,
4861 MachineIRBuilder &MIB) const {
4862 auto &MRI = *MIB.getMRI();
4863 LLT OpTy = MRI.getType(LHS);
4864 unsigned CCmpOpc;
4865 std::optional<ValueAndVReg> C;
4866 if (CmpInst::isIntPredicate(CC)) {
4867 assert(OpTy.getSizeInBits() == 32 || OpTy.getSizeInBits() == 64);
4868 C = getIConstantVRegValWithLookThrough(RHS, MRI);
4869 if (!C || C->Value.sgt(31) || C->Value.slt(-31))
4870 CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWr : AArch64::CCMPXr;
4871 else if (C->Value.ule(31))
4872 CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWi : AArch64::CCMPXi;
4873 else
4874 CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMNWi : AArch64::CCMNXi;
4875 } else {
4876 assert(OpTy.getSizeInBits() == 16 || OpTy.getSizeInBits() == 32 ||
4877 OpTy.getSizeInBits() == 64);
4878 switch (OpTy.getSizeInBits()) {
4879 case 16:
4880 assert(STI.hasFullFP16() && "Expected Full FP16 for fp16 comparisons");
4881 CCmpOpc = AArch64::FCCMPHrr;
4882 break;
4883 case 32:
4884 CCmpOpc = AArch64::FCCMPSrr;
4885 break;
4886 case 64:
4887 CCmpOpc = AArch64::FCCMPDrr;
4888 break;
4889 default:
4890 return nullptr;
4893 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
4894 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
4895 auto CCmp =
4896 MIB.buildInstr(CCmpOpc, {}, {LHS});
4897 if (CCmpOpc == AArch64::CCMPWi || CCmpOpc == AArch64::CCMPXi)
4898 CCmp.addImm(C->Value.getZExtValue());
4899 else if (CCmpOpc == AArch64::CCMNWi || CCmpOpc == AArch64::CCMNXi)
4900 CCmp.addImm(C->Value.abs().getZExtValue());
4901 else
4902 CCmp.addReg(RHS);
4903 CCmp.addImm(NZCV).addImm(Predicate);
4904 constrainSelectedInstRegOperands(*CCmp, TII, TRI, RBI);
4905 return &*CCmp;
4908 MachineInstr *AArch64InstructionSelector::emitConjunctionRec(
4909 Register Val, AArch64CC::CondCode &OutCC, bool Negate, Register CCOp,
4910 AArch64CC::CondCode Predicate, MachineIRBuilder &MIB) const {
4911 // We're at a tree leaf, produce a conditional comparison operation.
4912 auto &MRI = *MIB.getMRI();
4913 MachineInstr *ValDef = MRI.getVRegDef(Val);
4914 unsigned Opcode = ValDef->getOpcode();
4915 if (auto *Cmp = dyn_cast<GAnyCmp>(ValDef)) {
4916 Register LHS = Cmp->getLHSReg();
4917 Register RHS = Cmp->getRHSReg();
4918 CmpInst::Predicate CC = Cmp->getCond();
4919 if (Negate)
4920 CC = CmpInst::getInversePredicate(CC);
4921 if (isa<GICmp>(Cmp)) {
4922 OutCC = changeICMPPredToAArch64CC(CC);
4923 } else {
4924 // Handle special FP cases.
4925 AArch64CC::CondCode ExtraCC;
4926 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
4927 // Some floating point conditions can't be tested with a single condition
4928 // code. Construct an additional comparison in this case.
4929 if (ExtraCC != AArch64CC::AL) {
4930 MachineInstr *ExtraCmp;
4931 if (!CCOp)
4932 ExtraCmp = emitFPCompare(LHS, RHS, MIB, CC);
4933 else
4934 ExtraCmp =
4935 emitConditionalComparison(LHS, RHS, CC, Predicate, ExtraCC, MIB);
4936 CCOp = ExtraCmp->getOperand(0).getReg();
4937 Predicate = ExtraCC;
4941 // Produce a normal comparison if we are first in the chain
4942 if (!CCOp) {
4943 auto Dst = MRI.cloneVirtualRegister(LHS);
4944 if (isa<GICmp>(Cmp))
4945 return emitSUBS(Dst, Cmp->getOperand(2), Cmp->getOperand(3), MIB);
4946 return emitFPCompare(Cmp->getOperand(2).getReg(),
4947 Cmp->getOperand(3).getReg(), MIB);
4949 // Otherwise produce a ccmp.
4950 return emitConditionalComparison(LHS, RHS, CC, Predicate, OutCC, MIB);
4952 assert(MRI.hasOneNonDBGUse(Val) && "Valid conjunction/disjunction tree");
4954 bool IsOR = Opcode == TargetOpcode::G_OR;
4956 Register LHS = ValDef->getOperand(1).getReg();
4957 bool CanNegateL;
4958 bool MustBeFirstL;
4959 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR, MRI);
4960 assert(ValidL && "Valid conjunction/disjunction tree");
4961 (void)ValidL;
4963 Register RHS = ValDef->getOperand(2).getReg();
4964 bool CanNegateR;
4965 bool MustBeFirstR;
4966 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR, MRI);
4967 assert(ValidR && "Valid conjunction/disjunction tree");
4968 (void)ValidR;
4970 // Swap sub-tree that must come first to the right side.
4971 if (MustBeFirstL) {
4972 assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
4973 std::swap(LHS, RHS);
4974 std::swap(CanNegateL, CanNegateR);
4975 std::swap(MustBeFirstL, MustBeFirstR);
4978 bool NegateR;
4979 bool NegateAfterR;
4980 bool NegateL;
4981 bool NegateAfterAll;
4982 if (Opcode == TargetOpcode::G_OR) {
4983 // Swap the sub-tree that we can negate naturally to the left.
4984 if (!CanNegateL) {
4985 assert(CanNegateR && "at least one side must be negatable");
4986 assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
4987 assert(!Negate);
4988 std::swap(LHS, RHS);
4989 NegateR = false;
4990 NegateAfterR = true;
4991 } else {
4992 // Negate the left sub-tree if possible, otherwise negate the result.
4993 NegateR = CanNegateR;
4994 NegateAfterR = !CanNegateR;
4996 NegateL = true;
4997 NegateAfterAll = !Negate;
4998 } else {
4999 assert(Opcode == TargetOpcode::G_AND &&
5000 "Valid conjunction/disjunction tree");
5001 assert(!Negate && "Valid conjunction/disjunction tree");
5003 NegateL = false;
5004 NegateR = false;
5005 NegateAfterR = false;
5006 NegateAfterAll = false;
5009 // Emit sub-trees.
5010 AArch64CC::CondCode RHSCC;
5011 MachineInstr *CmpR =
5012 emitConjunctionRec(RHS, RHSCC, NegateR, CCOp, Predicate, MIB);
5013 if (NegateAfterR)
5014 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
5015 MachineInstr *CmpL = emitConjunctionRec(
5016 LHS, OutCC, NegateL, CmpR->getOperand(0).getReg(), RHSCC, MIB);
5017 if (NegateAfterAll)
5018 OutCC = AArch64CC::getInvertedCondCode(OutCC);
5019 return CmpL;
5022 MachineInstr *AArch64InstructionSelector::emitConjunction(
5023 Register Val, AArch64CC::CondCode &OutCC, MachineIRBuilder &MIB) const {
5024 bool DummyCanNegate;
5025 bool DummyMustBeFirst;
5026 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false,
5027 *MIB.getMRI()))
5028 return nullptr;
5029 return emitConjunctionRec(Val, OutCC, false, Register(), AArch64CC::AL, MIB);
5032 bool AArch64InstructionSelector::tryOptSelectConjunction(GSelect &SelI,
5033 MachineInstr &CondMI) {
5034 AArch64CC::CondCode AArch64CC;
5035 MachineInstr *ConjMI = emitConjunction(SelI.getCondReg(), AArch64CC, MIB);
5036 if (!ConjMI)
5037 return false;
5039 emitSelect(SelI.getReg(0), SelI.getTrueReg(), SelI.getFalseReg(), AArch64CC, MIB);
5040 SelI.eraseFromParent();
5041 return true;
5044 bool AArch64InstructionSelector::tryOptSelect(GSelect &I) {
5045 MachineRegisterInfo &MRI = *MIB.getMRI();
5046 // We want to recognize this pattern:
5048 // $z = G_FCMP pred, $x, $y
5049 // ...
5050 // $w = G_SELECT $z, $a, $b
5052 // Where the value of $z is *only* ever used by the G_SELECT (possibly with
5053 // some copies/truncs in between.)
5055 // If we see this, then we can emit something like this:
5057 // fcmp $x, $y
5058 // fcsel $w, $a, $b, pred
5060 // Rather than emitting both of the rather long sequences in the standard
5061 // G_FCMP/G_SELECT select methods.
5063 // First, check if the condition is defined by a compare.
5064 MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
5066 // We can only fold if all of the defs have one use.
5067 Register CondDefReg = CondDef->getOperand(0).getReg();
5068 if (!MRI.hasOneNonDBGUse(CondDefReg)) {
5069 // Unless it's another select.
5070 for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
5071 if (CondDef == &UI)
5072 continue;
5073 if (UI.getOpcode() != TargetOpcode::G_SELECT)
5074 return false;
5078 // Is the condition defined by a compare?
5079 unsigned CondOpc = CondDef->getOpcode();
5080 if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP) {
5081 if (tryOptSelectConjunction(I, *CondDef))
5082 return true;
5083 return false;
5086 AArch64CC::CondCode CondCode;
5087 if (CondOpc == TargetOpcode::G_ICMP) {
5088 auto Pred =
5089 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
5090 CondCode = changeICMPPredToAArch64CC(Pred);
5091 emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
5092 CondDef->getOperand(1), MIB);
5093 } else {
5094 // Get the condition code for the select.
5095 auto Pred =
5096 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
5097 AArch64CC::CondCode CondCode2;
5098 changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2);
5100 // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
5101 // instructions to emit the comparison.
5102 // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
5103 // unnecessary.
5104 if (CondCode2 != AArch64CC::AL)
5105 return false;
5107 if (!emitFPCompare(CondDef->getOperand(2).getReg(),
5108 CondDef->getOperand(3).getReg(), MIB)) {
5109 LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
5110 return false;
5114 // Emit the select.
5115 emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(),
5116 I.getOperand(3).getReg(), CondCode, MIB);
5117 I.eraseFromParent();
5118 return true;
5121 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
5122 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
5123 MachineIRBuilder &MIRBuilder) const {
5124 assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
5125 "Unexpected MachineOperand");
5126 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
5127 // We want to find this sort of thing:
5128 // x = G_SUB 0, y
5129 // G_ICMP z, x
5131 // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
5132 // e.g:
5134 // cmn z, y
5136 // Check if the RHS or LHS of the G_ICMP is defined by a SUB
5137 MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
5138 MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
5139 auto P = static_cast<CmpInst::Predicate>(Predicate.getPredicate());
5140 // Given this:
5142 // x = G_SUB 0, y
5143 // G_ICMP x, z
5145 // Produce this:
5147 // cmn y, z
5148 if (isCMN(LHSDef, P, MRI))
5149 return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
5151 // Same idea here, but with the RHS of the compare instead:
5153 // Given this:
5155 // x = G_SUB 0, y
5156 // G_ICMP z, x
5158 // Produce this:
5160 // cmn z, y
5161 if (isCMN(RHSDef, P, MRI))
5162 return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
5164 // Given this:
5166 // z = G_AND x, y
5167 // G_ICMP z, 0
5169 // Produce this if the compare is signed:
5171 // tst x, y
5172 if (!CmpInst::isUnsigned(P) && LHSDef &&
5173 LHSDef->getOpcode() == TargetOpcode::G_AND) {
5174 // Make sure that the RHS is 0.
5175 auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS.getReg(), MRI);
5176 if (!ValAndVReg || ValAndVReg->Value != 0)
5177 return nullptr;
5179 return emitTST(LHSDef->getOperand(1),
5180 LHSDef->getOperand(2), MIRBuilder);
5183 return nullptr;
5186 bool AArch64InstructionSelector::selectShuffleVector(
5187 MachineInstr &I, MachineRegisterInfo &MRI) {
5188 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
5189 Register Src1Reg = I.getOperand(1).getReg();
5190 const LLT Src1Ty = MRI.getType(Src1Reg);
5191 Register Src2Reg = I.getOperand(2).getReg();
5192 const LLT Src2Ty = MRI.getType(Src2Reg);
5193 ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
5195 MachineBasicBlock &MBB = *I.getParent();
5196 MachineFunction &MF = *MBB.getParent();
5197 LLVMContext &Ctx = MF.getFunction().getContext();
5199 // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
5200 // it's originated from a <1 x T> type. Those should have been lowered into
5201 // G_BUILD_VECTOR earlier.
5202 if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
5203 LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
5204 return false;
5207 unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
5209 SmallVector<Constant *, 64> CstIdxs;
5210 for (int Val : Mask) {
5211 // For now, any undef indexes we'll just assume to be 0. This should be
5212 // optimized in future, e.g. to select DUP etc.
5213 Val = Val < 0 ? 0 : Val;
5214 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5215 unsigned Offset = Byte + Val * BytesPerElt;
5216 CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
5220 // Use a constant pool to load the index vector for TBL.
5221 Constant *CPVal = ConstantVector::get(CstIdxs);
5222 MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIB);
5223 if (!IndexLoad) {
5224 LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
5225 return false;
5228 if (DstTy.getSizeInBits() != 128) {
5229 assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
5230 // This case can be done with TBL1.
5231 MachineInstr *Concat =
5232 emitVectorConcat(std::nullopt, Src1Reg, Src2Reg, MIB);
5233 if (!Concat) {
5234 LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
5235 return false;
5238 // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
5239 IndexLoad = emitScalarToVector(64, &AArch64::FPR128RegClass,
5240 IndexLoad->getOperand(0).getReg(), MIB);
5242 auto TBL1 = MIB.buildInstr(
5243 AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
5244 {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
5245 constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
5247 auto Copy =
5248 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
5249 .addReg(TBL1.getReg(0), 0, AArch64::dsub);
5250 RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
5251 I.eraseFromParent();
5252 return true;
5255 // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
5256 // Q registers for regalloc.
5257 SmallVector<Register, 2> Regs = {Src1Reg, Src2Reg};
5258 auto RegSeq = createQTuple(Regs, MIB);
5259 auto TBL2 = MIB.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
5260 {RegSeq, IndexLoad->getOperand(0)});
5261 constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
5262 I.eraseFromParent();
5263 return true;
5266 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
5267 std::optional<Register> DstReg, Register SrcReg, Register EltReg,
5268 unsigned LaneIdx, const RegisterBank &RB,
5269 MachineIRBuilder &MIRBuilder) const {
5270 MachineInstr *InsElt = nullptr;
5271 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
5272 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
5274 // Create a register to define with the insert if one wasn't passed in.
5275 if (!DstReg)
5276 DstReg = MRI.createVirtualRegister(DstRC);
5278 unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
5279 unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
5281 if (RB.getID() == AArch64::FPRRegBankID) {
5282 auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
5283 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
5284 .addImm(LaneIdx)
5285 .addUse(InsSub->getOperand(0).getReg())
5286 .addImm(0);
5287 } else {
5288 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
5289 .addImm(LaneIdx)
5290 .addUse(EltReg);
5293 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
5294 return InsElt;
5297 bool AArch64InstructionSelector::selectUSMovFromExtend(
5298 MachineInstr &MI, MachineRegisterInfo &MRI) {
5299 if (MI.getOpcode() != TargetOpcode::G_SEXT &&
5300 MI.getOpcode() != TargetOpcode::G_ZEXT &&
5301 MI.getOpcode() != TargetOpcode::G_ANYEXT)
5302 return false;
5303 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SEXT;
5304 const Register DefReg = MI.getOperand(0).getReg();
5305 const LLT DstTy = MRI.getType(DefReg);
5306 unsigned DstSize = DstTy.getSizeInBits();
5308 if (DstSize != 32 && DstSize != 64)
5309 return false;
5311 MachineInstr *Extract = getOpcodeDef(TargetOpcode::G_EXTRACT_VECTOR_ELT,
5312 MI.getOperand(1).getReg(), MRI);
5313 int64_t Lane;
5314 if (!Extract || !mi_match(Extract->getOperand(2).getReg(), MRI, m_ICst(Lane)))
5315 return false;
5316 Register Src0 = Extract->getOperand(1).getReg();
5318 const LLT VecTy = MRI.getType(Src0);
5319 if (VecTy.isScalableVector())
5320 return false;
5322 if (VecTy.getSizeInBits() != 128) {
5323 const MachineInstr *ScalarToVector = emitScalarToVector(
5324 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, Src0, MIB);
5325 assert(ScalarToVector && "Didn't expect emitScalarToVector to fail!");
5326 Src0 = ScalarToVector->getOperand(0).getReg();
5329 unsigned Opcode;
5330 if (DstSize == 64 && VecTy.getScalarSizeInBits() == 32)
5331 Opcode = IsSigned ? AArch64::SMOVvi32to64 : AArch64::UMOVvi32;
5332 else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 16)
5333 Opcode = IsSigned ? AArch64::SMOVvi16to64 : AArch64::UMOVvi16;
5334 else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 8)
5335 Opcode = IsSigned ? AArch64::SMOVvi8to64 : AArch64::UMOVvi8;
5336 else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 16)
5337 Opcode = IsSigned ? AArch64::SMOVvi16to32 : AArch64::UMOVvi16;
5338 else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 8)
5339 Opcode = IsSigned ? AArch64::SMOVvi8to32 : AArch64::UMOVvi8;
5340 else
5341 llvm_unreachable("Unexpected type combo for S/UMov!");
5343 // We may need to generate one of these, depending on the type and sign of the
5344 // input:
5345 // DstReg = SMOV Src0, Lane;
5346 // NewReg = UMOV Src0, Lane; DstReg = SUBREG_TO_REG NewReg, sub_32;
5347 MachineInstr *ExtI = nullptr;
5348 if (DstSize == 64 && !IsSigned) {
5349 Register NewReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
5350 MIB.buildInstr(Opcode, {NewReg}, {Src0}).addImm(Lane);
5351 ExtI = MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
5352 .addImm(0)
5353 .addUse(NewReg)
5354 .addImm(AArch64::sub_32);
5355 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
5356 } else
5357 ExtI = MIB.buildInstr(Opcode, {DefReg}, {Src0}).addImm(Lane);
5359 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
5360 MI.eraseFromParent();
5361 return true;
5364 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm8(
5365 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) {
5366 unsigned int Op;
5367 if (DstSize == 128) {
5368 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5369 return nullptr;
5370 Op = AArch64::MOVIv16b_ns;
5371 } else {
5372 Op = AArch64::MOVIv8b_ns;
5375 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5377 if (AArch64_AM::isAdvSIMDModImmType9(Val)) {
5378 Val = AArch64_AM::encodeAdvSIMDModImmType9(Val);
5379 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val);
5380 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5381 return &*Mov;
5383 return nullptr;
5386 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm16(
5387 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder,
5388 bool Inv) {
5390 unsigned int Op;
5391 if (DstSize == 128) {
5392 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5393 return nullptr;
5394 Op = Inv ? AArch64::MVNIv8i16 : AArch64::MOVIv8i16;
5395 } else {
5396 Op = Inv ? AArch64::MVNIv4i16 : AArch64::MOVIv4i16;
5399 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5400 uint64_t Shift;
5402 if (AArch64_AM::isAdvSIMDModImmType5(Val)) {
5403 Val = AArch64_AM::encodeAdvSIMDModImmType5(Val);
5404 Shift = 0;
5405 } else if (AArch64_AM::isAdvSIMDModImmType6(Val)) {
5406 Val = AArch64_AM::encodeAdvSIMDModImmType6(Val);
5407 Shift = 8;
5408 } else
5409 return nullptr;
5411 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val).addImm(Shift);
5412 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5413 return &*Mov;
5416 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm32(
5417 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder,
5418 bool Inv) {
5420 unsigned int Op;
5421 if (DstSize == 128) {
5422 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5423 return nullptr;
5424 Op = Inv ? AArch64::MVNIv4i32 : AArch64::MOVIv4i32;
5425 } else {
5426 Op = Inv ? AArch64::MVNIv2i32 : AArch64::MOVIv2i32;
5429 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5430 uint64_t Shift;
5432 if ((AArch64_AM::isAdvSIMDModImmType1(Val))) {
5433 Val = AArch64_AM::encodeAdvSIMDModImmType1(Val);
5434 Shift = 0;
5435 } else if ((AArch64_AM::isAdvSIMDModImmType2(Val))) {
5436 Val = AArch64_AM::encodeAdvSIMDModImmType2(Val);
5437 Shift = 8;
5438 } else if ((AArch64_AM::isAdvSIMDModImmType3(Val))) {
5439 Val = AArch64_AM::encodeAdvSIMDModImmType3(Val);
5440 Shift = 16;
5441 } else if ((AArch64_AM::isAdvSIMDModImmType4(Val))) {
5442 Val = AArch64_AM::encodeAdvSIMDModImmType4(Val);
5443 Shift = 24;
5444 } else
5445 return nullptr;
5447 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val).addImm(Shift);
5448 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5449 return &*Mov;
5452 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm64(
5453 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) {
5455 unsigned int Op;
5456 if (DstSize == 128) {
5457 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5458 return nullptr;
5459 Op = AArch64::MOVIv2d_ns;
5460 } else {
5461 Op = AArch64::MOVID;
5464 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5465 if (AArch64_AM::isAdvSIMDModImmType10(Val)) {
5466 Val = AArch64_AM::encodeAdvSIMDModImmType10(Val);
5467 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val);
5468 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5469 return &*Mov;
5471 return nullptr;
5474 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm321s(
5475 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder,
5476 bool Inv) {
5478 unsigned int Op;
5479 if (DstSize == 128) {
5480 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5481 return nullptr;
5482 Op = Inv ? AArch64::MVNIv4s_msl : AArch64::MOVIv4s_msl;
5483 } else {
5484 Op = Inv ? AArch64::MVNIv2s_msl : AArch64::MOVIv2s_msl;
5487 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5488 uint64_t Shift;
5490 if (AArch64_AM::isAdvSIMDModImmType7(Val)) {
5491 Val = AArch64_AM::encodeAdvSIMDModImmType7(Val);
5492 Shift = 264;
5493 } else if (AArch64_AM::isAdvSIMDModImmType8(Val)) {
5494 Val = AArch64_AM::encodeAdvSIMDModImmType8(Val);
5495 Shift = 272;
5496 } else
5497 return nullptr;
5499 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val).addImm(Shift);
5500 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5501 return &*Mov;
5504 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImmFP(
5505 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) {
5507 unsigned int Op;
5508 bool IsWide = false;
5509 if (DstSize == 128) {
5510 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5511 return nullptr;
5512 Op = AArch64::FMOVv4f32_ns;
5513 IsWide = true;
5514 } else {
5515 Op = AArch64::FMOVv2f32_ns;
5518 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5520 if (AArch64_AM::isAdvSIMDModImmType11(Val)) {
5521 Val = AArch64_AM::encodeAdvSIMDModImmType11(Val);
5522 } else if (IsWide && AArch64_AM::isAdvSIMDModImmType12(Val)) {
5523 Val = AArch64_AM::encodeAdvSIMDModImmType12(Val);
5524 Op = AArch64::FMOVv2f64_ns;
5525 } else
5526 return nullptr;
5528 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val);
5529 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5530 return &*Mov;
5533 bool AArch64InstructionSelector::selectIndexedExtLoad(
5534 MachineInstr &MI, MachineRegisterInfo &MRI) {
5535 auto &ExtLd = cast<GIndexedAnyExtLoad>(MI);
5536 Register Dst = ExtLd.getDstReg();
5537 Register WriteBack = ExtLd.getWritebackReg();
5538 Register Base = ExtLd.getBaseReg();
5539 Register Offset = ExtLd.getOffsetReg();
5540 LLT Ty = MRI.getType(Dst);
5541 assert(Ty.getSizeInBits() <= 64); // Only for scalar GPRs.
5542 unsigned MemSizeBits = ExtLd.getMMO().getMemoryType().getSizeInBits();
5543 bool IsPre = ExtLd.isPre();
5544 bool IsSExt = isa<GIndexedSExtLoad>(ExtLd);
5545 bool InsertIntoXReg = false;
5546 bool IsDst64 = Ty.getSizeInBits() == 64;
5548 unsigned Opc = 0;
5549 LLT NewLdDstTy;
5550 LLT s32 = LLT::scalar(32);
5551 LLT s64 = LLT::scalar(64);
5553 if (MemSizeBits == 8) {
5554 if (IsSExt) {
5555 if (IsDst64)
5556 Opc = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
5557 else
5558 Opc = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
5559 NewLdDstTy = IsDst64 ? s64 : s32;
5560 } else {
5561 Opc = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
5562 InsertIntoXReg = IsDst64;
5563 NewLdDstTy = s32;
5565 } else if (MemSizeBits == 16) {
5566 if (IsSExt) {
5567 if (IsDst64)
5568 Opc = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
5569 else
5570 Opc = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
5571 NewLdDstTy = IsDst64 ? s64 : s32;
5572 } else {
5573 Opc = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
5574 InsertIntoXReg = IsDst64;
5575 NewLdDstTy = s32;
5577 } else if (MemSizeBits == 32) {
5578 if (IsSExt) {
5579 Opc = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
5580 NewLdDstTy = s64;
5581 } else {
5582 Opc = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
5583 InsertIntoXReg = IsDst64;
5584 NewLdDstTy = s32;
5586 } else {
5587 llvm_unreachable("Unexpected size for indexed load");
5590 if (RBI.getRegBank(Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5591 return false; // We should be on gpr.
5593 auto Cst = getIConstantVRegVal(Offset, MRI);
5594 if (!Cst)
5595 return false; // Shouldn't happen, but just in case.
5597 auto LdMI = MIB.buildInstr(Opc, {WriteBack, NewLdDstTy}, {Base})
5598 .addImm(Cst->getSExtValue());
5599 LdMI.cloneMemRefs(ExtLd);
5600 constrainSelectedInstRegOperands(*LdMI, TII, TRI, RBI);
5601 // Make sure to select the load with the MemTy as the dest type, and then
5602 // insert into X reg if needed.
5603 if (InsertIntoXReg) {
5604 // Generate a SUBREG_TO_REG.
5605 auto SubToReg = MIB.buildInstr(TargetOpcode::SUBREG_TO_REG, {Dst}, {})
5606 .addImm(0)
5607 .addUse(LdMI.getReg(1))
5608 .addImm(AArch64::sub_32);
5609 RBI.constrainGenericRegister(SubToReg.getReg(0), AArch64::GPR64RegClass,
5610 MRI);
5611 } else {
5612 auto Copy = MIB.buildCopy(Dst, LdMI.getReg(1));
5613 selectCopy(*Copy, TII, MRI, TRI, RBI);
5615 MI.eraseFromParent();
5617 return true;
5620 bool AArch64InstructionSelector::selectIndexedLoad(MachineInstr &MI,
5621 MachineRegisterInfo &MRI) {
5622 auto &Ld = cast<GIndexedLoad>(MI);
5623 Register Dst = Ld.getDstReg();
5624 Register WriteBack = Ld.getWritebackReg();
5625 Register Base = Ld.getBaseReg();
5626 Register Offset = Ld.getOffsetReg();
5627 assert(MRI.getType(Dst).getSizeInBits() <= 128 &&
5628 "Unexpected type for indexed load");
5629 unsigned MemSize = Ld.getMMO().getMemoryType().getSizeInBytes();
5631 if (MemSize < MRI.getType(Dst).getSizeInBytes())
5632 return selectIndexedExtLoad(MI, MRI);
5634 unsigned Opc = 0;
5635 if (Ld.isPre()) {
5636 static constexpr unsigned GPROpcodes[] = {
5637 AArch64::LDRBBpre, AArch64::LDRHHpre, AArch64::LDRWpre,
5638 AArch64::LDRXpre};
5639 static constexpr unsigned FPROpcodes[] = {
5640 AArch64::LDRBpre, AArch64::LDRHpre, AArch64::LDRSpre, AArch64::LDRDpre,
5641 AArch64::LDRQpre};
5642 if (RBI.getRegBank(Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5643 Opc = FPROpcodes[Log2_32(MemSize)];
5644 else
5645 Opc = GPROpcodes[Log2_32(MemSize)];
5646 } else {
5647 static constexpr unsigned GPROpcodes[] = {
5648 AArch64::LDRBBpost, AArch64::LDRHHpost, AArch64::LDRWpost,
5649 AArch64::LDRXpost};
5650 static constexpr unsigned FPROpcodes[] = {
5651 AArch64::LDRBpost, AArch64::LDRHpost, AArch64::LDRSpost,
5652 AArch64::LDRDpost, AArch64::LDRQpost};
5653 if (RBI.getRegBank(Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5654 Opc = FPROpcodes[Log2_32(MemSize)];
5655 else
5656 Opc = GPROpcodes[Log2_32(MemSize)];
5658 auto Cst = getIConstantVRegVal(Offset, MRI);
5659 if (!Cst)
5660 return false; // Shouldn't happen, but just in case.
5661 auto LdMI =
5662 MIB.buildInstr(Opc, {WriteBack, Dst}, {Base}).addImm(Cst->getSExtValue());
5663 LdMI.cloneMemRefs(Ld);
5664 constrainSelectedInstRegOperands(*LdMI, TII, TRI, RBI);
5665 MI.eraseFromParent();
5666 return true;
5669 bool AArch64InstructionSelector::selectIndexedStore(GIndexedStore &I,
5670 MachineRegisterInfo &MRI) {
5671 Register Dst = I.getWritebackReg();
5672 Register Val = I.getValueReg();
5673 Register Base = I.getBaseReg();
5674 Register Offset = I.getOffsetReg();
5675 LLT ValTy = MRI.getType(Val);
5676 assert(ValTy.getSizeInBits() <= 128 && "Unexpected type for indexed store");
5678 unsigned Opc = 0;
5679 if (I.isPre()) {
5680 static constexpr unsigned GPROpcodes[] = {
5681 AArch64::STRBBpre, AArch64::STRHHpre, AArch64::STRWpre,
5682 AArch64::STRXpre};
5683 static constexpr unsigned FPROpcodes[] = {
5684 AArch64::STRBpre, AArch64::STRHpre, AArch64::STRSpre, AArch64::STRDpre,
5685 AArch64::STRQpre};
5687 if (RBI.getRegBank(Val, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5688 Opc = FPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5689 else
5690 Opc = GPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5691 } else {
5692 static constexpr unsigned GPROpcodes[] = {
5693 AArch64::STRBBpost, AArch64::STRHHpost, AArch64::STRWpost,
5694 AArch64::STRXpost};
5695 static constexpr unsigned FPROpcodes[] = {
5696 AArch64::STRBpost, AArch64::STRHpost, AArch64::STRSpost,
5697 AArch64::STRDpost, AArch64::STRQpost};
5699 if (RBI.getRegBank(Val, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5700 Opc = FPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5701 else
5702 Opc = GPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5705 auto Cst = getIConstantVRegVal(Offset, MRI);
5706 if (!Cst)
5707 return false; // Shouldn't happen, but just in case.
5708 auto Str =
5709 MIB.buildInstr(Opc, {Dst}, {Val, Base}).addImm(Cst->getSExtValue());
5710 Str.cloneMemRefs(I);
5711 constrainSelectedInstRegOperands(*Str, TII, TRI, RBI);
5712 I.eraseFromParent();
5713 return true;
5716 MachineInstr *
5717 AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV,
5718 MachineIRBuilder &MIRBuilder,
5719 MachineRegisterInfo &MRI) {
5720 LLT DstTy = MRI.getType(Dst);
5721 unsigned DstSize = DstTy.getSizeInBits();
5722 if (CV->isNullValue()) {
5723 if (DstSize == 128) {
5724 auto Mov =
5725 MIRBuilder.buildInstr(AArch64::MOVIv2d_ns, {Dst}, {}).addImm(0);
5726 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5727 return &*Mov;
5730 if (DstSize == 64) {
5731 auto Mov =
5732 MIRBuilder
5733 .buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {})
5734 .addImm(0);
5735 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {Dst}, {})
5736 .addReg(Mov.getReg(0), 0, AArch64::dsub);
5737 RBI.constrainGenericRegister(Dst, AArch64::FPR64RegClass, MRI);
5738 return &*Copy;
5742 if (CV->getSplatValue()) {
5743 APInt DefBits = APInt::getSplat(
5744 DstSize, CV->getUniqueInteger().trunc(DstTy.getScalarSizeInBits()));
5745 auto TryMOVIWithBits = [&](APInt DefBits) -> MachineInstr * {
5746 MachineInstr *NewOp;
5747 bool Inv = false;
5748 if ((NewOp = tryAdvSIMDModImm64(Dst, DstSize, DefBits, MIRBuilder)) ||
5749 (NewOp =
5750 tryAdvSIMDModImm32(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5751 (NewOp =
5752 tryAdvSIMDModImm321s(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5753 (NewOp =
5754 tryAdvSIMDModImm16(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5755 (NewOp = tryAdvSIMDModImm8(Dst, DstSize, DefBits, MIRBuilder)) ||
5756 (NewOp = tryAdvSIMDModImmFP(Dst, DstSize, DefBits, MIRBuilder)))
5757 return NewOp;
5759 DefBits = ~DefBits;
5760 Inv = true;
5761 if ((NewOp =
5762 tryAdvSIMDModImm32(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5763 (NewOp =
5764 tryAdvSIMDModImm321s(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5765 (NewOp = tryAdvSIMDModImm16(Dst, DstSize, DefBits, MIRBuilder, Inv)))
5766 return NewOp;
5767 return nullptr;
5770 if (auto *NewOp = TryMOVIWithBits(DefBits))
5771 return NewOp;
5773 // See if a fneg of the constant can be materialized with a MOVI, etc
5774 auto TryWithFNeg = [&](APInt DefBits, int NumBits,
5775 unsigned NegOpc) -> MachineInstr * {
5776 // FNegate each sub-element of the constant
5777 APInt Neg = APInt::getHighBitsSet(NumBits, 1).zext(DstSize);
5778 APInt NegBits(DstSize, 0);
5779 unsigned NumElts = DstSize / NumBits;
5780 for (unsigned i = 0; i < NumElts; i++)
5781 NegBits |= Neg << (NumBits * i);
5782 NegBits = DefBits ^ NegBits;
5784 // Try to create the new constants with MOVI, and if so generate a fneg
5785 // for it.
5786 if (auto *NewOp = TryMOVIWithBits(NegBits)) {
5787 Register NewDst = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
5788 NewOp->getOperand(0).setReg(NewDst);
5789 return MIRBuilder.buildInstr(NegOpc, {Dst}, {NewDst});
5791 return nullptr;
5793 MachineInstr *R;
5794 if ((R = TryWithFNeg(DefBits, 32, AArch64::FNEGv4f32)) ||
5795 (R = TryWithFNeg(DefBits, 64, AArch64::FNEGv2f64)) ||
5796 (STI.hasFullFP16() &&
5797 (R = TryWithFNeg(DefBits, 16, AArch64::FNEGv8f16))))
5798 return R;
5801 auto *CPLoad = emitLoadFromConstantPool(CV, MIRBuilder);
5802 if (!CPLoad) {
5803 LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!");
5804 return nullptr;
5807 auto Copy = MIRBuilder.buildCopy(Dst, CPLoad->getOperand(0));
5808 RBI.constrainGenericRegister(
5809 Dst, *MRI.getRegClass(CPLoad->getOperand(0).getReg()), MRI);
5810 return &*Copy;
5813 bool AArch64InstructionSelector::tryOptConstantBuildVec(
5814 MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) {
5815 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
5816 unsigned DstSize = DstTy.getSizeInBits();
5817 assert(DstSize <= 128 && "Unexpected build_vec type!");
5818 if (DstSize < 32)
5819 return false;
5820 // Check if we're building a constant vector, in which case we want to
5821 // generate a constant pool load instead of a vector insert sequence.
5822 SmallVector<Constant *, 16> Csts;
5823 for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
5824 // Try to find G_CONSTANT or G_FCONSTANT
5825 auto *OpMI =
5826 getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
5827 if (OpMI)
5828 Csts.emplace_back(
5829 const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
5830 else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
5831 I.getOperand(Idx).getReg(), MRI)))
5832 Csts.emplace_back(
5833 const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
5834 else
5835 return false;
5837 Constant *CV = ConstantVector::get(Csts);
5838 if (!emitConstantVector(I.getOperand(0).getReg(), CV, MIB, MRI))
5839 return false;
5840 I.eraseFromParent();
5841 return true;
5844 bool AArch64InstructionSelector::tryOptBuildVecToSubregToReg(
5845 MachineInstr &I, MachineRegisterInfo &MRI) {
5846 // Given:
5847 // %vec = G_BUILD_VECTOR %elt, %undef, %undef, ... %undef
5849 // Select the G_BUILD_VECTOR as a SUBREG_TO_REG from %elt.
5850 Register Dst = I.getOperand(0).getReg();
5851 Register EltReg = I.getOperand(1).getReg();
5852 LLT EltTy = MRI.getType(EltReg);
5853 // If the index isn't on the same bank as its elements, then this can't be a
5854 // SUBREG_TO_REG.
5855 const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
5856 const RegisterBank &DstRB = *RBI.getRegBank(Dst, MRI, TRI);
5857 if (EltRB != DstRB)
5858 return false;
5859 if (any_of(drop_begin(I.operands(), 2), [&MRI](const MachineOperand &Op) {
5860 return !getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, Op.getReg(), MRI);
5862 return false;
5863 unsigned SubReg;
5864 const TargetRegisterClass *EltRC = getRegClassForTypeOnBank(EltTy, EltRB);
5865 if (!EltRC)
5866 return false;
5867 const TargetRegisterClass *DstRC =
5868 getRegClassForTypeOnBank(MRI.getType(Dst), DstRB);
5869 if (!DstRC)
5870 return false;
5871 if (!getSubRegForClass(EltRC, TRI, SubReg))
5872 return false;
5873 auto SubregToReg = MIB.buildInstr(AArch64::SUBREG_TO_REG, {Dst}, {})
5874 .addImm(0)
5875 .addUse(EltReg)
5876 .addImm(SubReg);
5877 I.eraseFromParent();
5878 constrainSelectedInstRegOperands(*SubregToReg, TII, TRI, RBI);
5879 return RBI.constrainGenericRegister(Dst, *DstRC, MRI);
5882 bool AArch64InstructionSelector::selectBuildVector(MachineInstr &I,
5883 MachineRegisterInfo &MRI) {
5884 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
5885 // Until we port more of the optimized selections, for now just use a vector
5886 // insert sequence.
5887 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
5888 const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
5889 unsigned EltSize = EltTy.getSizeInBits();
5891 if (tryOptConstantBuildVec(I, DstTy, MRI))
5892 return true;
5893 if (tryOptBuildVecToSubregToReg(I, MRI))
5894 return true;
5896 if (EltSize != 8 && EltSize != 16 && EltSize != 32 && EltSize != 64)
5897 return false; // Don't support all element types yet.
5898 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
5900 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
5901 MachineInstr *ScalarToVec =
5902 emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
5903 I.getOperand(1).getReg(), MIB);
5904 if (!ScalarToVec)
5905 return false;
5907 Register DstVec = ScalarToVec->getOperand(0).getReg();
5908 unsigned DstSize = DstTy.getSizeInBits();
5910 // Keep track of the last MI we inserted. Later on, we might be able to save
5911 // a copy using it.
5912 MachineInstr *PrevMI = ScalarToVec;
5913 for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
5914 // Note that if we don't do a subregister copy, we can end up making an
5915 // extra register.
5916 Register OpReg = I.getOperand(i).getReg();
5917 // Do not emit inserts for undefs
5918 if (!getOpcodeDef<GImplicitDef>(OpReg, MRI)) {
5919 PrevMI = &*emitLaneInsert(std::nullopt, DstVec, OpReg, i - 1, RB, MIB);
5920 DstVec = PrevMI->getOperand(0).getReg();
5924 // If DstTy's size in bits is less than 128, then emit a subregister copy
5925 // from DstVec to the last register we've defined.
5926 if (DstSize < 128) {
5927 // Force this to be FPR using the destination vector.
5928 const TargetRegisterClass *RC =
5929 getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(DstVec, MRI, TRI));
5930 if (!RC)
5931 return false;
5932 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
5933 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
5934 return false;
5937 unsigned SubReg = 0;
5938 if (!getSubRegForClass(RC, TRI, SubReg))
5939 return false;
5940 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
5941 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
5942 << "\n");
5943 return false;
5946 Register Reg = MRI.createVirtualRegister(RC);
5947 Register DstReg = I.getOperand(0).getReg();
5949 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}).addReg(DstVec, 0, SubReg);
5950 MachineOperand &RegOp = I.getOperand(1);
5951 RegOp.setReg(Reg);
5952 RBI.constrainGenericRegister(DstReg, *RC, MRI);
5953 } else {
5954 // We either have a vector with all elements (except the first one) undef or
5955 // at least one non-undef non-first element. In the first case, we need to
5956 // constrain the output register ourselves as we may have generated an
5957 // INSERT_SUBREG operation which is a generic operation for which the
5958 // output regclass cannot be automatically chosen.
5960 // In the second case, there is no need to do this as it may generate an
5961 // instruction like INSvi32gpr where the regclass can be automatically
5962 // chosen.
5964 // Also, we save a copy by re-using the destination register on the final
5965 // insert.
5966 PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
5967 constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
5969 Register DstReg = PrevMI->getOperand(0).getReg();
5970 if (PrevMI == ScalarToVec && DstReg.isVirtual()) {
5971 const TargetRegisterClass *RC =
5972 getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(DstVec, MRI, TRI));
5973 RBI.constrainGenericRegister(DstReg, *RC, MRI);
5977 I.eraseFromParent();
5978 return true;
5981 bool AArch64InstructionSelector::selectVectorLoadIntrinsic(unsigned Opc,
5982 unsigned NumVecs,
5983 MachineInstr &I) {
5984 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
5985 assert(Opc && "Expected an opcode?");
5986 assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors");
5987 auto &MRI = *MIB.getMRI();
5988 LLT Ty = MRI.getType(I.getOperand(0).getReg());
5989 unsigned Size = Ty.getSizeInBits();
5990 assert((Size == 64 || Size == 128) &&
5991 "Destination must be 64 bits or 128 bits?");
5992 unsigned SubReg = Size == 64 ? AArch64::dsub0 : AArch64::qsub0;
5993 auto Ptr = I.getOperand(I.getNumOperands() - 1).getReg();
5994 assert(MRI.getType(Ptr).isPointer() && "Expected a pointer type?");
5995 auto Load = MIB.buildInstr(Opc, {Ty}, {Ptr});
5996 Load.cloneMemRefs(I);
5997 constrainSelectedInstRegOperands(*Load, TII, TRI, RBI);
5998 Register SelectedLoadDst = Load->getOperand(0).getReg();
5999 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
6000 auto Vec = MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(Idx)}, {})
6001 .addReg(SelectedLoadDst, 0, SubReg + Idx);
6002 // Emit the subreg copies and immediately select them.
6003 // FIXME: We should refactor our copy code into an emitCopy helper and
6004 // clean up uses of this pattern elsewhere in the selector.
6005 selectCopy(*Vec, TII, MRI, TRI, RBI);
6007 return true;
6010 bool AArch64InstructionSelector::selectVectorLoadLaneIntrinsic(
6011 unsigned Opc, unsigned NumVecs, MachineInstr &I) {
6012 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
6013 assert(Opc && "Expected an opcode?");
6014 assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors");
6015 auto &MRI = *MIB.getMRI();
6016 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6017 bool Narrow = Ty.getSizeInBits() == 64;
6019 auto FirstSrcRegIt = I.operands_begin() + NumVecs + 1;
6020 SmallVector<Register, 4> Regs(NumVecs);
6021 std::transform(FirstSrcRegIt, FirstSrcRegIt + NumVecs, Regs.begin(),
6022 [](auto MO) { return MO.getReg(); });
6024 if (Narrow) {
6025 transform(Regs, Regs.begin(), [this](Register Reg) {
6026 return emitScalarToVector(64, &AArch64::FPR128RegClass, Reg, MIB)
6027 ->getOperand(0)
6028 .getReg();
6030 Ty = Ty.multiplyElements(2);
6033 Register Tuple = createQTuple(Regs, MIB);
6034 auto LaneNo = getIConstantVRegVal((FirstSrcRegIt + NumVecs)->getReg(), MRI);
6035 if (!LaneNo)
6036 return false;
6038 Register Ptr = (FirstSrcRegIt + NumVecs + 1)->getReg();
6039 auto Load = MIB.buildInstr(Opc, {Ty}, {})
6040 .addReg(Tuple)
6041 .addImm(LaneNo->getZExtValue())
6042 .addReg(Ptr);
6043 Load.cloneMemRefs(I);
6044 constrainSelectedInstRegOperands(*Load, TII, TRI, RBI);
6045 Register SelectedLoadDst = Load->getOperand(0).getReg();
6046 unsigned SubReg = AArch64::qsub0;
6047 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
6048 auto Vec = MIB.buildInstr(TargetOpcode::COPY,
6049 {Narrow ? DstOp(&AArch64::FPR128RegClass)
6050 : DstOp(I.getOperand(Idx).getReg())},
6052 .addReg(SelectedLoadDst, 0, SubReg + Idx);
6053 Register WideReg = Vec.getReg(0);
6054 // Emit the subreg copies and immediately select them.
6055 selectCopy(*Vec, TII, MRI, TRI, RBI);
6056 if (Narrow &&
6057 !emitNarrowVector(I.getOperand(Idx).getReg(), WideReg, MIB, MRI))
6058 return false;
6060 return true;
6063 void AArch64InstructionSelector::selectVectorStoreIntrinsic(MachineInstr &I,
6064 unsigned NumVecs,
6065 unsigned Opc) {
6066 MachineRegisterInfo &MRI = I.getParent()->getParent()->getRegInfo();
6067 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6068 Register Ptr = I.getOperand(1 + NumVecs).getReg();
6070 SmallVector<Register, 2> Regs(NumVecs);
6071 std::transform(I.operands_begin() + 1, I.operands_begin() + 1 + NumVecs,
6072 Regs.begin(), [](auto MO) { return MO.getReg(); });
6074 Register Tuple = Ty.getSizeInBits() == 128 ? createQTuple(Regs, MIB)
6075 : createDTuple(Regs, MIB);
6076 auto Store = MIB.buildInstr(Opc, {}, {Tuple, Ptr});
6077 Store.cloneMemRefs(I);
6078 constrainSelectedInstRegOperands(*Store, TII, TRI, RBI);
6081 bool AArch64InstructionSelector::selectVectorStoreLaneIntrinsic(
6082 MachineInstr &I, unsigned NumVecs, unsigned Opc) {
6083 MachineRegisterInfo &MRI = I.getParent()->getParent()->getRegInfo();
6084 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6085 bool Narrow = Ty.getSizeInBits() == 64;
6087 SmallVector<Register, 2> Regs(NumVecs);
6088 std::transform(I.operands_begin() + 1, I.operands_begin() + 1 + NumVecs,
6089 Regs.begin(), [](auto MO) { return MO.getReg(); });
6091 if (Narrow)
6092 transform(Regs, Regs.begin(), [this](Register Reg) {
6093 return emitScalarToVector(64, &AArch64::FPR128RegClass, Reg, MIB)
6094 ->getOperand(0)
6095 .getReg();
6098 Register Tuple = createQTuple(Regs, MIB);
6100 auto LaneNo = getIConstantVRegVal(I.getOperand(1 + NumVecs).getReg(), MRI);
6101 if (!LaneNo)
6102 return false;
6103 Register Ptr = I.getOperand(1 + NumVecs + 1).getReg();
6104 auto Store = MIB.buildInstr(Opc, {}, {})
6105 .addReg(Tuple)
6106 .addImm(LaneNo->getZExtValue())
6107 .addReg(Ptr);
6108 Store.cloneMemRefs(I);
6109 constrainSelectedInstRegOperands(*Store, TII, TRI, RBI);
6110 return true;
6113 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
6114 MachineInstr &I, MachineRegisterInfo &MRI) {
6115 // Find the intrinsic ID.
6116 unsigned IntrinID = cast<GIntrinsic>(I).getIntrinsicID();
6118 const LLT S8 = LLT::scalar(8);
6119 const LLT S16 = LLT::scalar(16);
6120 const LLT S32 = LLT::scalar(32);
6121 const LLT S64 = LLT::scalar(64);
6122 const LLT P0 = LLT::pointer(0, 64);
6123 // Select the instruction.
6124 switch (IntrinID) {
6125 default:
6126 return false;
6127 case Intrinsic::aarch64_ldxp:
6128 case Intrinsic::aarch64_ldaxp: {
6129 auto NewI = MIB.buildInstr(
6130 IntrinID == Intrinsic::aarch64_ldxp ? AArch64::LDXPX : AArch64::LDAXPX,
6131 {I.getOperand(0).getReg(), I.getOperand(1).getReg()},
6132 {I.getOperand(3)});
6133 NewI.cloneMemRefs(I);
6134 constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
6135 break;
6137 case Intrinsic::aarch64_neon_ld1x2: {
6138 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6139 unsigned Opc = 0;
6140 if (Ty == LLT::fixed_vector(8, S8))
6141 Opc = AArch64::LD1Twov8b;
6142 else if (Ty == LLT::fixed_vector(16, S8))
6143 Opc = AArch64::LD1Twov16b;
6144 else if (Ty == LLT::fixed_vector(4, S16))
6145 Opc = AArch64::LD1Twov4h;
6146 else if (Ty == LLT::fixed_vector(8, S16))
6147 Opc = AArch64::LD1Twov8h;
6148 else if (Ty == LLT::fixed_vector(2, S32))
6149 Opc = AArch64::LD1Twov2s;
6150 else if (Ty == LLT::fixed_vector(4, S32))
6151 Opc = AArch64::LD1Twov4s;
6152 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6153 Opc = AArch64::LD1Twov2d;
6154 else if (Ty == S64 || Ty == P0)
6155 Opc = AArch64::LD1Twov1d;
6156 else
6157 llvm_unreachable("Unexpected type for ld1x2!");
6158 selectVectorLoadIntrinsic(Opc, 2, I);
6159 break;
6161 case Intrinsic::aarch64_neon_ld1x3: {
6162 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6163 unsigned Opc = 0;
6164 if (Ty == LLT::fixed_vector(8, S8))
6165 Opc = AArch64::LD1Threev8b;
6166 else if (Ty == LLT::fixed_vector(16, S8))
6167 Opc = AArch64::LD1Threev16b;
6168 else if (Ty == LLT::fixed_vector(4, S16))
6169 Opc = AArch64::LD1Threev4h;
6170 else if (Ty == LLT::fixed_vector(8, S16))
6171 Opc = AArch64::LD1Threev8h;
6172 else if (Ty == LLT::fixed_vector(2, S32))
6173 Opc = AArch64::LD1Threev2s;
6174 else if (Ty == LLT::fixed_vector(4, S32))
6175 Opc = AArch64::LD1Threev4s;
6176 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6177 Opc = AArch64::LD1Threev2d;
6178 else if (Ty == S64 || Ty == P0)
6179 Opc = AArch64::LD1Threev1d;
6180 else
6181 llvm_unreachable("Unexpected type for ld1x3!");
6182 selectVectorLoadIntrinsic(Opc, 3, I);
6183 break;
6185 case Intrinsic::aarch64_neon_ld1x4: {
6186 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6187 unsigned Opc = 0;
6188 if (Ty == LLT::fixed_vector(8, S8))
6189 Opc = AArch64::LD1Fourv8b;
6190 else if (Ty == LLT::fixed_vector(16, S8))
6191 Opc = AArch64::LD1Fourv16b;
6192 else if (Ty == LLT::fixed_vector(4, S16))
6193 Opc = AArch64::LD1Fourv4h;
6194 else if (Ty == LLT::fixed_vector(8, S16))
6195 Opc = AArch64::LD1Fourv8h;
6196 else if (Ty == LLT::fixed_vector(2, S32))
6197 Opc = AArch64::LD1Fourv2s;
6198 else if (Ty == LLT::fixed_vector(4, S32))
6199 Opc = AArch64::LD1Fourv4s;
6200 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6201 Opc = AArch64::LD1Fourv2d;
6202 else if (Ty == S64 || Ty == P0)
6203 Opc = AArch64::LD1Fourv1d;
6204 else
6205 llvm_unreachable("Unexpected type for ld1x4!");
6206 selectVectorLoadIntrinsic(Opc, 4, I);
6207 break;
6209 case Intrinsic::aarch64_neon_ld2: {
6210 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6211 unsigned Opc = 0;
6212 if (Ty == LLT::fixed_vector(8, S8))
6213 Opc = AArch64::LD2Twov8b;
6214 else if (Ty == LLT::fixed_vector(16, S8))
6215 Opc = AArch64::LD2Twov16b;
6216 else if (Ty == LLT::fixed_vector(4, S16))
6217 Opc = AArch64::LD2Twov4h;
6218 else if (Ty == LLT::fixed_vector(8, S16))
6219 Opc = AArch64::LD2Twov8h;
6220 else if (Ty == LLT::fixed_vector(2, S32))
6221 Opc = AArch64::LD2Twov2s;
6222 else if (Ty == LLT::fixed_vector(4, S32))
6223 Opc = AArch64::LD2Twov4s;
6224 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6225 Opc = AArch64::LD2Twov2d;
6226 else if (Ty == S64 || Ty == P0)
6227 Opc = AArch64::LD1Twov1d;
6228 else
6229 llvm_unreachable("Unexpected type for ld2!");
6230 selectVectorLoadIntrinsic(Opc, 2, I);
6231 break;
6233 case Intrinsic::aarch64_neon_ld2lane: {
6234 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6235 unsigned Opc;
6236 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6237 Opc = AArch64::LD2i8;
6238 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6239 Opc = AArch64::LD2i16;
6240 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6241 Opc = AArch64::LD2i32;
6242 else if (Ty == LLT::fixed_vector(2, S64) ||
6243 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6244 Opc = AArch64::LD2i64;
6245 else
6246 llvm_unreachable("Unexpected type for st2lane!");
6247 if (!selectVectorLoadLaneIntrinsic(Opc, 2, I))
6248 return false;
6249 break;
6251 case Intrinsic::aarch64_neon_ld2r: {
6252 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6253 unsigned Opc = 0;
6254 if (Ty == LLT::fixed_vector(8, S8))
6255 Opc = AArch64::LD2Rv8b;
6256 else if (Ty == LLT::fixed_vector(16, S8))
6257 Opc = AArch64::LD2Rv16b;
6258 else if (Ty == LLT::fixed_vector(4, S16))
6259 Opc = AArch64::LD2Rv4h;
6260 else if (Ty == LLT::fixed_vector(8, S16))
6261 Opc = AArch64::LD2Rv8h;
6262 else if (Ty == LLT::fixed_vector(2, S32))
6263 Opc = AArch64::LD2Rv2s;
6264 else if (Ty == LLT::fixed_vector(4, S32))
6265 Opc = AArch64::LD2Rv4s;
6266 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6267 Opc = AArch64::LD2Rv2d;
6268 else if (Ty == S64 || Ty == P0)
6269 Opc = AArch64::LD2Rv1d;
6270 else
6271 llvm_unreachable("Unexpected type for ld2r!");
6272 selectVectorLoadIntrinsic(Opc, 2, I);
6273 break;
6275 case Intrinsic::aarch64_neon_ld3: {
6276 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6277 unsigned Opc = 0;
6278 if (Ty == LLT::fixed_vector(8, S8))
6279 Opc = AArch64::LD3Threev8b;
6280 else if (Ty == LLT::fixed_vector(16, S8))
6281 Opc = AArch64::LD3Threev16b;
6282 else if (Ty == LLT::fixed_vector(4, S16))
6283 Opc = AArch64::LD3Threev4h;
6284 else if (Ty == LLT::fixed_vector(8, S16))
6285 Opc = AArch64::LD3Threev8h;
6286 else if (Ty == LLT::fixed_vector(2, S32))
6287 Opc = AArch64::LD3Threev2s;
6288 else if (Ty == LLT::fixed_vector(4, S32))
6289 Opc = AArch64::LD3Threev4s;
6290 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6291 Opc = AArch64::LD3Threev2d;
6292 else if (Ty == S64 || Ty == P0)
6293 Opc = AArch64::LD1Threev1d;
6294 else
6295 llvm_unreachable("Unexpected type for ld3!");
6296 selectVectorLoadIntrinsic(Opc, 3, I);
6297 break;
6299 case Intrinsic::aarch64_neon_ld3lane: {
6300 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6301 unsigned Opc;
6302 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6303 Opc = AArch64::LD3i8;
6304 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6305 Opc = AArch64::LD3i16;
6306 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6307 Opc = AArch64::LD3i32;
6308 else if (Ty == LLT::fixed_vector(2, S64) ||
6309 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6310 Opc = AArch64::LD3i64;
6311 else
6312 llvm_unreachable("Unexpected type for st3lane!");
6313 if (!selectVectorLoadLaneIntrinsic(Opc, 3, I))
6314 return false;
6315 break;
6317 case Intrinsic::aarch64_neon_ld3r: {
6318 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6319 unsigned Opc = 0;
6320 if (Ty == LLT::fixed_vector(8, S8))
6321 Opc = AArch64::LD3Rv8b;
6322 else if (Ty == LLT::fixed_vector(16, S8))
6323 Opc = AArch64::LD3Rv16b;
6324 else if (Ty == LLT::fixed_vector(4, S16))
6325 Opc = AArch64::LD3Rv4h;
6326 else if (Ty == LLT::fixed_vector(8, S16))
6327 Opc = AArch64::LD3Rv8h;
6328 else if (Ty == LLT::fixed_vector(2, S32))
6329 Opc = AArch64::LD3Rv2s;
6330 else if (Ty == LLT::fixed_vector(4, S32))
6331 Opc = AArch64::LD3Rv4s;
6332 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6333 Opc = AArch64::LD3Rv2d;
6334 else if (Ty == S64 || Ty == P0)
6335 Opc = AArch64::LD3Rv1d;
6336 else
6337 llvm_unreachable("Unexpected type for ld3r!");
6338 selectVectorLoadIntrinsic(Opc, 3, I);
6339 break;
6341 case Intrinsic::aarch64_neon_ld4: {
6342 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6343 unsigned Opc = 0;
6344 if (Ty == LLT::fixed_vector(8, S8))
6345 Opc = AArch64::LD4Fourv8b;
6346 else if (Ty == LLT::fixed_vector(16, S8))
6347 Opc = AArch64::LD4Fourv16b;
6348 else if (Ty == LLT::fixed_vector(4, S16))
6349 Opc = AArch64::LD4Fourv4h;
6350 else if (Ty == LLT::fixed_vector(8, S16))
6351 Opc = AArch64::LD4Fourv8h;
6352 else if (Ty == LLT::fixed_vector(2, S32))
6353 Opc = AArch64::LD4Fourv2s;
6354 else if (Ty == LLT::fixed_vector(4, S32))
6355 Opc = AArch64::LD4Fourv4s;
6356 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6357 Opc = AArch64::LD4Fourv2d;
6358 else if (Ty == S64 || Ty == P0)
6359 Opc = AArch64::LD1Fourv1d;
6360 else
6361 llvm_unreachable("Unexpected type for ld4!");
6362 selectVectorLoadIntrinsic(Opc, 4, I);
6363 break;
6365 case Intrinsic::aarch64_neon_ld4lane: {
6366 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6367 unsigned Opc;
6368 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6369 Opc = AArch64::LD4i8;
6370 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6371 Opc = AArch64::LD4i16;
6372 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6373 Opc = AArch64::LD4i32;
6374 else if (Ty == LLT::fixed_vector(2, S64) ||
6375 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6376 Opc = AArch64::LD4i64;
6377 else
6378 llvm_unreachable("Unexpected type for st4lane!");
6379 if (!selectVectorLoadLaneIntrinsic(Opc, 4, I))
6380 return false;
6381 break;
6383 case Intrinsic::aarch64_neon_ld4r: {
6384 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6385 unsigned Opc = 0;
6386 if (Ty == LLT::fixed_vector(8, S8))
6387 Opc = AArch64::LD4Rv8b;
6388 else if (Ty == LLT::fixed_vector(16, S8))
6389 Opc = AArch64::LD4Rv16b;
6390 else if (Ty == LLT::fixed_vector(4, S16))
6391 Opc = AArch64::LD4Rv4h;
6392 else if (Ty == LLT::fixed_vector(8, S16))
6393 Opc = AArch64::LD4Rv8h;
6394 else if (Ty == LLT::fixed_vector(2, S32))
6395 Opc = AArch64::LD4Rv2s;
6396 else if (Ty == LLT::fixed_vector(4, S32))
6397 Opc = AArch64::LD4Rv4s;
6398 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6399 Opc = AArch64::LD4Rv2d;
6400 else if (Ty == S64 || Ty == P0)
6401 Opc = AArch64::LD4Rv1d;
6402 else
6403 llvm_unreachable("Unexpected type for ld4r!");
6404 selectVectorLoadIntrinsic(Opc, 4, I);
6405 break;
6407 case Intrinsic::aarch64_neon_st1x2: {
6408 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6409 unsigned Opc;
6410 if (Ty == LLT::fixed_vector(8, S8))
6411 Opc = AArch64::ST1Twov8b;
6412 else if (Ty == LLT::fixed_vector(16, S8))
6413 Opc = AArch64::ST1Twov16b;
6414 else if (Ty == LLT::fixed_vector(4, S16))
6415 Opc = AArch64::ST1Twov4h;
6416 else if (Ty == LLT::fixed_vector(8, S16))
6417 Opc = AArch64::ST1Twov8h;
6418 else if (Ty == LLT::fixed_vector(2, S32))
6419 Opc = AArch64::ST1Twov2s;
6420 else if (Ty == LLT::fixed_vector(4, S32))
6421 Opc = AArch64::ST1Twov4s;
6422 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6423 Opc = AArch64::ST1Twov2d;
6424 else if (Ty == S64 || Ty == P0)
6425 Opc = AArch64::ST1Twov1d;
6426 else
6427 llvm_unreachable("Unexpected type for st1x2!");
6428 selectVectorStoreIntrinsic(I, 2, Opc);
6429 break;
6431 case Intrinsic::aarch64_neon_st1x3: {
6432 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6433 unsigned Opc;
6434 if (Ty == LLT::fixed_vector(8, S8))
6435 Opc = AArch64::ST1Threev8b;
6436 else if (Ty == LLT::fixed_vector(16, S8))
6437 Opc = AArch64::ST1Threev16b;
6438 else if (Ty == LLT::fixed_vector(4, S16))
6439 Opc = AArch64::ST1Threev4h;
6440 else if (Ty == LLT::fixed_vector(8, S16))
6441 Opc = AArch64::ST1Threev8h;
6442 else if (Ty == LLT::fixed_vector(2, S32))
6443 Opc = AArch64::ST1Threev2s;
6444 else if (Ty == LLT::fixed_vector(4, S32))
6445 Opc = AArch64::ST1Threev4s;
6446 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6447 Opc = AArch64::ST1Threev2d;
6448 else if (Ty == S64 || Ty == P0)
6449 Opc = AArch64::ST1Threev1d;
6450 else
6451 llvm_unreachable("Unexpected type for st1x3!");
6452 selectVectorStoreIntrinsic(I, 3, Opc);
6453 break;
6455 case Intrinsic::aarch64_neon_st1x4: {
6456 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6457 unsigned Opc;
6458 if (Ty == LLT::fixed_vector(8, S8))
6459 Opc = AArch64::ST1Fourv8b;
6460 else if (Ty == LLT::fixed_vector(16, S8))
6461 Opc = AArch64::ST1Fourv16b;
6462 else if (Ty == LLT::fixed_vector(4, S16))
6463 Opc = AArch64::ST1Fourv4h;
6464 else if (Ty == LLT::fixed_vector(8, S16))
6465 Opc = AArch64::ST1Fourv8h;
6466 else if (Ty == LLT::fixed_vector(2, S32))
6467 Opc = AArch64::ST1Fourv2s;
6468 else if (Ty == LLT::fixed_vector(4, S32))
6469 Opc = AArch64::ST1Fourv4s;
6470 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6471 Opc = AArch64::ST1Fourv2d;
6472 else if (Ty == S64 || Ty == P0)
6473 Opc = AArch64::ST1Fourv1d;
6474 else
6475 llvm_unreachable("Unexpected type for st1x4!");
6476 selectVectorStoreIntrinsic(I, 4, Opc);
6477 break;
6479 case Intrinsic::aarch64_neon_st2: {
6480 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6481 unsigned Opc;
6482 if (Ty == LLT::fixed_vector(8, S8))
6483 Opc = AArch64::ST2Twov8b;
6484 else if (Ty == LLT::fixed_vector(16, S8))
6485 Opc = AArch64::ST2Twov16b;
6486 else if (Ty == LLT::fixed_vector(4, S16))
6487 Opc = AArch64::ST2Twov4h;
6488 else if (Ty == LLT::fixed_vector(8, S16))
6489 Opc = AArch64::ST2Twov8h;
6490 else if (Ty == LLT::fixed_vector(2, S32))
6491 Opc = AArch64::ST2Twov2s;
6492 else if (Ty == LLT::fixed_vector(4, S32))
6493 Opc = AArch64::ST2Twov4s;
6494 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6495 Opc = AArch64::ST2Twov2d;
6496 else if (Ty == S64 || Ty == P0)
6497 Opc = AArch64::ST1Twov1d;
6498 else
6499 llvm_unreachable("Unexpected type for st2!");
6500 selectVectorStoreIntrinsic(I, 2, Opc);
6501 break;
6503 case Intrinsic::aarch64_neon_st3: {
6504 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6505 unsigned Opc;
6506 if (Ty == LLT::fixed_vector(8, S8))
6507 Opc = AArch64::ST3Threev8b;
6508 else if (Ty == LLT::fixed_vector(16, S8))
6509 Opc = AArch64::ST3Threev16b;
6510 else if (Ty == LLT::fixed_vector(4, S16))
6511 Opc = AArch64::ST3Threev4h;
6512 else if (Ty == LLT::fixed_vector(8, S16))
6513 Opc = AArch64::ST3Threev8h;
6514 else if (Ty == LLT::fixed_vector(2, S32))
6515 Opc = AArch64::ST3Threev2s;
6516 else if (Ty == LLT::fixed_vector(4, S32))
6517 Opc = AArch64::ST3Threev4s;
6518 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6519 Opc = AArch64::ST3Threev2d;
6520 else if (Ty == S64 || Ty == P0)
6521 Opc = AArch64::ST1Threev1d;
6522 else
6523 llvm_unreachable("Unexpected type for st3!");
6524 selectVectorStoreIntrinsic(I, 3, Opc);
6525 break;
6527 case Intrinsic::aarch64_neon_st4: {
6528 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6529 unsigned Opc;
6530 if (Ty == LLT::fixed_vector(8, S8))
6531 Opc = AArch64::ST4Fourv8b;
6532 else if (Ty == LLT::fixed_vector(16, S8))
6533 Opc = AArch64::ST4Fourv16b;
6534 else if (Ty == LLT::fixed_vector(4, S16))
6535 Opc = AArch64::ST4Fourv4h;
6536 else if (Ty == LLT::fixed_vector(8, S16))
6537 Opc = AArch64::ST4Fourv8h;
6538 else if (Ty == LLT::fixed_vector(2, S32))
6539 Opc = AArch64::ST4Fourv2s;
6540 else if (Ty == LLT::fixed_vector(4, S32))
6541 Opc = AArch64::ST4Fourv4s;
6542 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6543 Opc = AArch64::ST4Fourv2d;
6544 else if (Ty == S64 || Ty == P0)
6545 Opc = AArch64::ST1Fourv1d;
6546 else
6547 llvm_unreachable("Unexpected type for st4!");
6548 selectVectorStoreIntrinsic(I, 4, Opc);
6549 break;
6551 case Intrinsic::aarch64_neon_st2lane: {
6552 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6553 unsigned Opc;
6554 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6555 Opc = AArch64::ST2i8;
6556 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6557 Opc = AArch64::ST2i16;
6558 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6559 Opc = AArch64::ST2i32;
6560 else if (Ty == LLT::fixed_vector(2, S64) ||
6561 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6562 Opc = AArch64::ST2i64;
6563 else
6564 llvm_unreachable("Unexpected type for st2lane!");
6565 if (!selectVectorStoreLaneIntrinsic(I, 2, Opc))
6566 return false;
6567 break;
6569 case Intrinsic::aarch64_neon_st3lane: {
6570 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6571 unsigned Opc;
6572 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6573 Opc = AArch64::ST3i8;
6574 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6575 Opc = AArch64::ST3i16;
6576 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6577 Opc = AArch64::ST3i32;
6578 else if (Ty == LLT::fixed_vector(2, S64) ||
6579 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6580 Opc = AArch64::ST3i64;
6581 else
6582 llvm_unreachable("Unexpected type for st3lane!");
6583 if (!selectVectorStoreLaneIntrinsic(I, 3, Opc))
6584 return false;
6585 break;
6587 case Intrinsic::aarch64_neon_st4lane: {
6588 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6589 unsigned Opc;
6590 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6591 Opc = AArch64::ST4i8;
6592 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6593 Opc = AArch64::ST4i16;
6594 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6595 Opc = AArch64::ST4i32;
6596 else if (Ty == LLT::fixed_vector(2, S64) ||
6597 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6598 Opc = AArch64::ST4i64;
6599 else
6600 llvm_unreachable("Unexpected type for st4lane!");
6601 if (!selectVectorStoreLaneIntrinsic(I, 4, Opc))
6602 return false;
6603 break;
6605 case Intrinsic::aarch64_mops_memset_tag: {
6606 // Transform
6607 // %dst:gpr(p0) = \
6608 // G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.aarch64.mops.memset.tag),
6609 // \ %dst:gpr(p0), %val:gpr(s64), %n:gpr(s64)
6610 // where %dst is updated, into
6611 // %Rd:GPR64common, %Rn:GPR64) = \
6612 // MOPSMemorySetTaggingPseudo \
6613 // %Rd:GPR64common, %Rn:GPR64, %Rm:GPR64
6614 // where Rd and Rn are tied.
6615 // It is expected that %val has been extended to s64 in legalization.
6616 // Note that the order of the size/value operands are swapped.
6618 Register DstDef = I.getOperand(0).getReg();
6619 // I.getOperand(1) is the intrinsic function
6620 Register DstUse = I.getOperand(2).getReg();
6621 Register ValUse = I.getOperand(3).getReg();
6622 Register SizeUse = I.getOperand(4).getReg();
6624 // MOPSMemorySetTaggingPseudo has two defs; the intrinsic call has only one.
6625 // Therefore an additional virtual register is requried for the updated size
6626 // operand. This value is not accessible via the semantics of the intrinsic.
6627 Register SizeDef = MRI.createGenericVirtualRegister(LLT::scalar(64));
6629 auto Memset = MIB.buildInstr(AArch64::MOPSMemorySetTaggingPseudo,
6630 {DstDef, SizeDef}, {DstUse, SizeUse, ValUse});
6631 Memset.cloneMemRefs(I);
6632 constrainSelectedInstRegOperands(*Memset, TII, TRI, RBI);
6633 break;
6637 I.eraseFromParent();
6638 return true;
6641 bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
6642 MachineRegisterInfo &MRI) {
6643 unsigned IntrinID = cast<GIntrinsic>(I).getIntrinsicID();
6645 switch (IntrinID) {
6646 default:
6647 break;
6648 case Intrinsic::aarch64_crypto_sha1h: {
6649 Register DstReg = I.getOperand(0).getReg();
6650 Register SrcReg = I.getOperand(2).getReg();
6652 // FIXME: Should this be an assert?
6653 if (MRI.getType(DstReg).getSizeInBits() != 32 ||
6654 MRI.getType(SrcReg).getSizeInBits() != 32)
6655 return false;
6657 // The operation has to happen on FPRs. Set up some new FPR registers for
6658 // the source and destination if they are on GPRs.
6659 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
6660 SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
6661 MIB.buildCopy({SrcReg}, {I.getOperand(2)});
6663 // Make sure the copy ends up getting constrained properly.
6664 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
6665 AArch64::GPR32RegClass, MRI);
6668 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
6669 DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
6671 // Actually insert the instruction.
6672 auto SHA1Inst = MIB.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
6673 constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
6675 // Did we create a new register for the destination?
6676 if (DstReg != I.getOperand(0).getReg()) {
6677 // Yep. Copy the result of the instruction back into the original
6678 // destination.
6679 MIB.buildCopy({I.getOperand(0)}, {DstReg});
6680 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
6681 AArch64::GPR32RegClass, MRI);
6684 I.eraseFromParent();
6685 return true;
6687 case Intrinsic::ptrauth_resign: {
6688 Register DstReg = I.getOperand(0).getReg();
6689 Register ValReg = I.getOperand(2).getReg();
6690 uint64_t AUTKey = I.getOperand(3).getImm();
6691 Register AUTDisc = I.getOperand(4).getReg();
6692 uint64_t PACKey = I.getOperand(5).getImm();
6693 Register PACDisc = I.getOperand(6).getReg();
6695 Register AUTAddrDisc = AUTDisc;
6696 uint16_t AUTConstDiscC = 0;
6697 std::tie(AUTConstDiscC, AUTAddrDisc) =
6698 extractPtrauthBlendDiscriminators(AUTDisc, MRI);
6700 Register PACAddrDisc = PACDisc;
6701 uint16_t PACConstDiscC = 0;
6702 std::tie(PACConstDiscC, PACAddrDisc) =
6703 extractPtrauthBlendDiscriminators(PACDisc, MRI);
6705 MIB.buildCopy({AArch64::X16}, {ValReg});
6706 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
6707 MIB.buildInstr(AArch64::AUTPAC)
6708 .addImm(AUTKey)
6709 .addImm(AUTConstDiscC)
6710 .addUse(AUTAddrDisc)
6711 .addImm(PACKey)
6712 .addImm(PACConstDiscC)
6713 .addUse(PACAddrDisc)
6714 .constrainAllUses(TII, TRI, RBI);
6715 MIB.buildCopy({DstReg}, Register(AArch64::X16));
6717 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
6718 I.eraseFromParent();
6719 return true;
6721 case Intrinsic::ptrauth_auth: {
6722 Register DstReg = I.getOperand(0).getReg();
6723 Register ValReg = I.getOperand(2).getReg();
6724 uint64_t AUTKey = I.getOperand(3).getImm();
6725 Register AUTDisc = I.getOperand(4).getReg();
6727 Register AUTAddrDisc = AUTDisc;
6728 uint16_t AUTConstDiscC = 0;
6729 std::tie(AUTConstDiscC, AUTAddrDisc) =
6730 extractPtrauthBlendDiscriminators(AUTDisc, MRI);
6732 MIB.buildCopy({AArch64::X16}, {ValReg});
6733 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
6734 MIB.buildInstr(AArch64::AUT)
6735 .addImm(AUTKey)
6736 .addImm(AUTConstDiscC)
6737 .addUse(AUTAddrDisc)
6738 .constrainAllUses(TII, TRI, RBI);
6739 MIB.buildCopy({DstReg}, Register(AArch64::X16));
6741 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
6742 I.eraseFromParent();
6743 return true;
6745 case Intrinsic::frameaddress:
6746 case Intrinsic::returnaddress: {
6747 MachineFunction &MF = *I.getParent()->getParent();
6748 MachineFrameInfo &MFI = MF.getFrameInfo();
6750 unsigned Depth = I.getOperand(2).getImm();
6751 Register DstReg = I.getOperand(0).getReg();
6752 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
6754 if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
6755 if (!MFReturnAddr) {
6756 // Insert the copy from LR/X30 into the entry block, before it can be
6757 // clobbered by anything.
6758 MFI.setReturnAddressIsTaken(true);
6759 MFReturnAddr = getFunctionLiveInPhysReg(
6760 MF, TII, AArch64::LR, AArch64::GPR64RegClass, I.getDebugLoc());
6763 if (STI.hasPAuth()) {
6764 MIB.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr});
6765 } else {
6766 MIB.buildCopy({Register(AArch64::LR)}, {MFReturnAddr});
6767 MIB.buildInstr(AArch64::XPACLRI);
6768 MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
6771 I.eraseFromParent();
6772 return true;
6775 MFI.setFrameAddressIsTaken(true);
6776 Register FrameAddr(AArch64::FP);
6777 while (Depth--) {
6778 Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
6779 auto Ldr =
6780 MIB.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr}).addImm(0);
6781 constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
6782 FrameAddr = NextFrame;
6785 if (IntrinID == Intrinsic::frameaddress)
6786 MIB.buildCopy({DstReg}, {FrameAddr});
6787 else {
6788 MFI.setReturnAddressIsTaken(true);
6790 if (STI.hasPAuth()) {
6791 Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
6792 MIB.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1);
6793 MIB.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg});
6794 } else {
6795 MIB.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr})
6796 .addImm(1);
6797 MIB.buildInstr(AArch64::XPACLRI);
6798 MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
6802 I.eraseFromParent();
6803 return true;
6805 case Intrinsic::aarch64_neon_tbl2:
6806 SelectTable(I, MRI, 2, AArch64::TBLv8i8Two, AArch64::TBLv16i8Two, false);
6807 return true;
6808 case Intrinsic::aarch64_neon_tbl3:
6809 SelectTable(I, MRI, 3, AArch64::TBLv8i8Three, AArch64::TBLv16i8Three,
6810 false);
6811 return true;
6812 case Intrinsic::aarch64_neon_tbl4:
6813 SelectTable(I, MRI, 4, AArch64::TBLv8i8Four, AArch64::TBLv16i8Four, false);
6814 return true;
6815 case Intrinsic::aarch64_neon_tbx2:
6816 SelectTable(I, MRI, 2, AArch64::TBXv8i8Two, AArch64::TBXv16i8Two, true);
6817 return true;
6818 case Intrinsic::aarch64_neon_tbx3:
6819 SelectTable(I, MRI, 3, AArch64::TBXv8i8Three, AArch64::TBXv16i8Three, true);
6820 return true;
6821 case Intrinsic::aarch64_neon_tbx4:
6822 SelectTable(I, MRI, 4, AArch64::TBXv8i8Four, AArch64::TBXv16i8Four, true);
6823 return true;
6824 case Intrinsic::swift_async_context_addr:
6825 auto Sub = MIB.buildInstr(AArch64::SUBXri, {I.getOperand(0).getReg()},
6826 {Register(AArch64::FP)})
6827 .addImm(8)
6828 .addImm(0);
6829 constrainSelectedInstRegOperands(*Sub, TII, TRI, RBI);
6831 MF->getFrameInfo().setFrameAddressIsTaken(true);
6832 MF->getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
6833 I.eraseFromParent();
6834 return true;
6836 return false;
6839 // G_PTRAUTH_GLOBAL_VALUE lowering
6841 // We have 3 lowering alternatives to choose from:
6842 // - MOVaddrPAC: similar to MOVaddr, with added PAC.
6843 // If the GV doesn't need a GOT load (i.e., is locally defined)
6844 // materialize the pointer using adrp+add+pac. See LowerMOVaddrPAC.
6846 // - LOADgotPAC: similar to LOADgot, with added PAC.
6847 // If the GV needs a GOT load, materialize the pointer using the usual
6848 // GOT adrp+ldr, +pac. Pointers in GOT are assumed to be not signed, the GOT
6849 // section is assumed to be read-only (for example, via relro mechanism). See
6850 // LowerMOVaddrPAC.
6852 // - LOADauthptrstatic: similar to LOADgot, but use a
6853 // special stub slot instead of a GOT slot.
6854 // Load a signed pointer for symbol 'sym' from a stub slot named
6855 // 'sym$auth_ptr$key$disc' filled by dynamic linker during relocation
6856 // resolving. This usually lowers to adrp+ldr, but also emits an entry into
6857 // .data with an
6858 // @AUTH relocation. See LowerLOADauthptrstatic.
6860 // All 3 are pseudos that are expand late to longer sequences: this lets us
6861 // provide integrity guarantees on the to-be-signed intermediate values.
6863 // LOADauthptrstatic is undesirable because it requires a large section filled
6864 // with often similarly-signed pointers, making it a good harvesting target.
6865 // Thus, it's only used for ptrauth references to extern_weak to avoid null
6866 // checks.
6868 bool AArch64InstructionSelector::selectPtrAuthGlobalValue(
6869 MachineInstr &I, MachineRegisterInfo &MRI) const {
6870 Register DefReg = I.getOperand(0).getReg();
6871 Register Addr = I.getOperand(1).getReg();
6872 uint64_t Key = I.getOperand(2).getImm();
6873 Register AddrDisc = I.getOperand(3).getReg();
6874 uint64_t Disc = I.getOperand(4).getImm();
6875 int64_t Offset = 0;
6877 if (Key > AArch64PACKey::LAST)
6878 report_fatal_error("key in ptrauth global out of range [0, " +
6879 Twine((int)AArch64PACKey::LAST) + "]");
6881 // Blend only works if the integer discriminator is 16-bit wide.
6882 if (!isUInt<16>(Disc))
6883 report_fatal_error(
6884 "constant discriminator in ptrauth global out of range [0, 0xffff]");
6886 // Choosing between 3 lowering alternatives is target-specific.
6887 if (!STI.isTargetELF() && !STI.isTargetMachO())
6888 report_fatal_error("ptrauth global lowering only supported on MachO/ELF");
6890 if (!MRI.hasOneDef(Addr))
6891 return false;
6893 // First match any offset we take from the real global.
6894 const MachineInstr *DefMI = &*MRI.def_instr_begin(Addr);
6895 if (DefMI->getOpcode() == TargetOpcode::G_PTR_ADD) {
6896 Register OffsetReg = DefMI->getOperand(2).getReg();
6897 if (!MRI.hasOneDef(OffsetReg))
6898 return false;
6899 const MachineInstr &OffsetMI = *MRI.def_instr_begin(OffsetReg);
6900 if (OffsetMI.getOpcode() != TargetOpcode::G_CONSTANT)
6901 return false;
6903 Addr = DefMI->getOperand(1).getReg();
6904 if (!MRI.hasOneDef(Addr))
6905 return false;
6907 DefMI = &*MRI.def_instr_begin(Addr);
6908 Offset = OffsetMI.getOperand(1).getCImm()->getSExtValue();
6911 // We should be left with a genuine unauthenticated GlobalValue.
6912 const GlobalValue *GV;
6913 if (DefMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
6914 GV = DefMI->getOperand(1).getGlobal();
6915 Offset += DefMI->getOperand(1).getOffset();
6916 } else if (DefMI->getOpcode() == AArch64::G_ADD_LOW) {
6917 GV = DefMI->getOperand(2).getGlobal();
6918 Offset += DefMI->getOperand(2).getOffset();
6919 } else {
6920 return false;
6923 MachineIRBuilder MIB(I);
6925 // Classify the reference to determine whether it needs a GOT load.
6926 unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
6927 const bool NeedsGOTLoad = ((OpFlags & AArch64II::MO_GOT) != 0);
6928 assert(((OpFlags & (~AArch64II::MO_GOT)) == 0) &&
6929 "unsupported non-GOT op flags on ptrauth global reference");
6930 assert((!GV->hasExternalWeakLinkage() || NeedsGOTLoad) &&
6931 "unsupported non-GOT reference to weak ptrauth global");
6933 std::optional<APInt> AddrDiscVal = getIConstantVRegVal(AddrDisc, MRI);
6934 bool HasAddrDisc = !AddrDiscVal || *AddrDiscVal != 0;
6936 // Non-extern_weak:
6937 // - No GOT load needed -> MOVaddrPAC
6938 // - GOT load for non-extern_weak -> LOADgotPAC
6939 // Note that we disallow extern_weak refs to avoid null checks later.
6940 if (!GV->hasExternalWeakLinkage()) {
6941 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X16}, {});
6942 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
6943 MIB.buildInstr(NeedsGOTLoad ? AArch64::LOADgotPAC : AArch64::MOVaddrPAC)
6944 .addGlobalAddress(GV, Offset)
6945 .addImm(Key)
6946 .addReg(HasAddrDisc ? AddrDisc : AArch64::XZR)
6947 .addImm(Disc)
6948 .constrainAllUses(TII, TRI, RBI);
6949 MIB.buildCopy(DefReg, Register(AArch64::X16));
6950 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
6951 I.eraseFromParent();
6952 return true;
6955 // extern_weak -> LOADauthptrstatic
6957 // Offsets and extern_weak don't mix well: ptrauth aside, you'd get the
6958 // offset alone as a pointer if the symbol wasn't available, which would
6959 // probably break null checks in users. Ptrauth complicates things further:
6960 // error out.
6961 if (Offset != 0)
6962 report_fatal_error(
6963 "unsupported non-zero offset in weak ptrauth global reference");
6965 if (HasAddrDisc)
6966 report_fatal_error("unsupported weak addr-div ptrauth global");
6968 MIB.buildInstr(AArch64::LOADauthptrstatic, {DefReg}, {})
6969 .addGlobalAddress(GV, Offset)
6970 .addImm(Key)
6971 .addImm(Disc);
6972 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
6974 I.eraseFromParent();
6975 return true;
6978 void AArch64InstructionSelector::SelectTable(MachineInstr &I,
6979 MachineRegisterInfo &MRI,
6980 unsigned NumVec, unsigned Opc1,
6981 unsigned Opc2, bool isExt) {
6982 Register DstReg = I.getOperand(0).getReg();
6983 unsigned Opc = MRI.getType(DstReg) == LLT::fixed_vector(8, 8) ? Opc1 : Opc2;
6985 // Create the REG_SEQUENCE
6986 SmallVector<Register, 4> Regs;
6987 for (unsigned i = 0; i < NumVec; i++)
6988 Regs.push_back(I.getOperand(i + 2 + isExt).getReg());
6989 Register RegSeq = createQTuple(Regs, MIB);
6991 Register IdxReg = I.getOperand(2 + NumVec + isExt).getReg();
6992 MachineInstrBuilder Instr;
6993 if (isExt) {
6994 Register Reg = I.getOperand(2).getReg();
6995 Instr = MIB.buildInstr(Opc, {DstReg}, {Reg, RegSeq, IdxReg});
6996 } else
6997 Instr = MIB.buildInstr(Opc, {DstReg}, {RegSeq, IdxReg});
6998 constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI);
6999 I.eraseFromParent();
7002 InstructionSelector::ComplexRendererFns
7003 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
7004 auto MaybeImmed = getImmedFromMO(Root);
7005 if (MaybeImmed == std::nullopt || *MaybeImmed > 31)
7006 return std::nullopt;
7007 uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
7008 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
7011 InstructionSelector::ComplexRendererFns
7012 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
7013 auto MaybeImmed = getImmedFromMO(Root);
7014 if (MaybeImmed == std::nullopt || *MaybeImmed > 31)
7015 return std::nullopt;
7016 uint64_t Enc = 31 - *MaybeImmed;
7017 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
7020 InstructionSelector::ComplexRendererFns
7021 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
7022 auto MaybeImmed = getImmedFromMO(Root);
7023 if (MaybeImmed == std::nullopt || *MaybeImmed > 63)
7024 return std::nullopt;
7025 uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
7026 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
7029 InstructionSelector::ComplexRendererFns
7030 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
7031 auto MaybeImmed = getImmedFromMO(Root);
7032 if (MaybeImmed == std::nullopt || *MaybeImmed > 63)
7033 return std::nullopt;
7034 uint64_t Enc = 63 - *MaybeImmed;
7035 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
7038 /// Helper to select an immediate value that can be represented as a 12-bit
7039 /// value shifted left by either 0 or 12. If it is possible to do so, return
7040 /// the immediate and shift value. If not, return std::nullopt.
7042 /// Used by selectArithImmed and selectNegArithImmed.
7043 InstructionSelector::ComplexRendererFns
7044 AArch64InstructionSelector::select12BitValueWithLeftShift(
7045 uint64_t Immed) const {
7046 unsigned ShiftAmt;
7047 if (Immed >> 12 == 0) {
7048 ShiftAmt = 0;
7049 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
7050 ShiftAmt = 12;
7051 Immed = Immed >> 12;
7052 } else
7053 return std::nullopt;
7055 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
7056 return {{
7057 [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
7058 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
7062 /// SelectArithImmed - Select an immediate value that can be represented as
7063 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
7064 /// Val set to the 12-bit value and Shift set to the shifter operand.
7065 InstructionSelector::ComplexRendererFns
7066 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
7067 // This function is called from the addsub_shifted_imm ComplexPattern,
7068 // which lists [imm] as the list of opcode it's interested in, however
7069 // we still need to check whether the operand is actually an immediate
7070 // here because the ComplexPattern opcode list is only used in
7071 // root-level opcode matching.
7072 auto MaybeImmed = getImmedFromMO(Root);
7073 if (MaybeImmed == std::nullopt)
7074 return std::nullopt;
7075 return select12BitValueWithLeftShift(*MaybeImmed);
7078 /// SelectNegArithImmed - As above, but negates the value before trying to
7079 /// select it.
7080 InstructionSelector::ComplexRendererFns
7081 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
7082 // We need a register here, because we need to know if we have a 64 or 32
7083 // bit immediate.
7084 if (!Root.isReg())
7085 return std::nullopt;
7086 auto MaybeImmed = getImmedFromMO(Root);
7087 if (MaybeImmed == std::nullopt)
7088 return std::nullopt;
7089 uint64_t Immed = *MaybeImmed;
7091 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
7092 // have the opposite effect on the C flag, so this pattern mustn't match under
7093 // those circumstances.
7094 if (Immed == 0)
7095 return std::nullopt;
7097 // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
7098 // the root.
7099 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7100 if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
7101 Immed = ~((uint32_t)Immed) + 1;
7102 else
7103 Immed = ~Immed + 1ULL;
7105 if (Immed & 0xFFFFFFFFFF000000ULL)
7106 return std::nullopt;
7108 Immed &= 0xFFFFFFULL;
7109 return select12BitValueWithLeftShift(Immed);
7112 /// Checks if we are sure that folding MI into load/store addressing mode is
7113 /// beneficial or not.
7115 /// Returns:
7116 /// - true if folding MI would be beneficial.
7117 /// - false if folding MI would be bad.
7118 /// - std::nullopt if it is not sure whether folding MI is beneficial.
7120 /// \p MI can be the offset operand of G_PTR_ADD, e.g. G_SHL in the example:
7122 /// %13:gpr(s64) = G_CONSTANT i64 1
7123 /// %8:gpr(s64) = G_SHL %6, %13(s64)
7124 /// %9:gpr(p0) = G_PTR_ADD %0, %8(s64)
7125 /// %12:gpr(s32) = G_LOAD %9(p0) :: (load (s16))
7126 std::optional<bool> AArch64InstructionSelector::isWorthFoldingIntoAddrMode(
7127 MachineInstr &MI, const MachineRegisterInfo &MRI) const {
7128 if (MI.getOpcode() == AArch64::G_SHL) {
7129 // Address operands with shifts are free, except for running on subtargets
7130 // with AddrLSLSlow14.
7131 if (const auto ValAndVeg = getIConstantVRegValWithLookThrough(
7132 MI.getOperand(2).getReg(), MRI)) {
7133 const APInt ShiftVal = ValAndVeg->Value;
7135 // Don't fold if we know this will be slow.
7136 return !(STI.hasAddrLSLSlow14() && (ShiftVal == 1 || ShiftVal == 4));
7139 return std::nullopt;
7142 /// Return true if it is worth folding MI into an extended register. That is,
7143 /// if it's safe to pull it into the addressing mode of a load or store as a
7144 /// shift.
7145 /// \p IsAddrOperand whether the def of MI is used as an address operand
7146 /// (e.g. feeding into an LDR/STR).
7147 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
7148 MachineInstr &MI, const MachineRegisterInfo &MRI,
7149 bool IsAddrOperand) const {
7151 // Always fold if there is one use, or if we're optimizing for size.
7152 Register DefReg = MI.getOperand(0).getReg();
7153 if (MRI.hasOneNonDBGUse(DefReg) ||
7154 MI.getParent()->getParent()->getFunction().hasOptSize())
7155 return true;
7157 if (IsAddrOperand) {
7158 // If we are already sure that folding MI is good or bad, return the result.
7159 if (const auto Worth = isWorthFoldingIntoAddrMode(MI, MRI))
7160 return *Worth;
7162 // Fold G_PTR_ADD if its offset operand can be folded
7163 if (MI.getOpcode() == AArch64::G_PTR_ADD) {
7164 MachineInstr *OffsetInst =
7165 getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
7167 // Note, we already know G_PTR_ADD is used by at least two instructions.
7168 // If we are also sure about whether folding is beneficial or not,
7169 // return the result.
7170 if (const auto Worth = isWorthFoldingIntoAddrMode(*OffsetInst, MRI))
7171 return *Worth;
7175 // FIXME: Consider checking HasALULSLFast as appropriate.
7177 // We have a fastpath, so folding a shift in and potentially computing it
7178 // many times may be beneficial. Check if this is only used in memory ops.
7179 // If it is, then we should fold.
7180 return all_of(MRI.use_nodbg_instructions(DefReg),
7181 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
7184 static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
7185 switch (Type) {
7186 case AArch64_AM::SXTB:
7187 case AArch64_AM::SXTH:
7188 case AArch64_AM::SXTW:
7189 return true;
7190 default:
7191 return false;
7195 InstructionSelector::ComplexRendererFns
7196 AArch64InstructionSelector::selectExtendedSHL(
7197 MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
7198 unsigned SizeInBytes, bool WantsExt) const {
7199 assert(Base.isReg() && "Expected base to be a register operand");
7200 assert(Offset.isReg() && "Expected offset to be a register operand");
7202 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7203 MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
7205 unsigned OffsetOpc = OffsetInst->getOpcode();
7206 bool LookedThroughZExt = false;
7207 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
7208 // Try to look through a ZEXT.
7209 if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
7210 return std::nullopt;
7212 OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
7213 OffsetOpc = OffsetInst->getOpcode();
7214 LookedThroughZExt = true;
7216 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
7217 return std::nullopt;
7219 // Make sure that the memory op is a valid size.
7220 int64_t LegalShiftVal = Log2_32(SizeInBytes);
7221 if (LegalShiftVal == 0)
7222 return std::nullopt;
7223 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI, true))
7224 return std::nullopt;
7226 // Now, try to find the specific G_CONSTANT. Start by assuming that the
7227 // register we will offset is the LHS, and the register containing the
7228 // constant is the RHS.
7229 Register OffsetReg = OffsetInst->getOperand(1).getReg();
7230 Register ConstantReg = OffsetInst->getOperand(2).getReg();
7231 auto ValAndVReg = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
7232 if (!ValAndVReg) {
7233 // We didn't get a constant on the RHS. If the opcode is a shift, then
7234 // we're done.
7235 if (OffsetOpc == TargetOpcode::G_SHL)
7236 return std::nullopt;
7238 // If we have a G_MUL, we can use either register. Try looking at the RHS.
7239 std::swap(OffsetReg, ConstantReg);
7240 ValAndVReg = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
7241 if (!ValAndVReg)
7242 return std::nullopt;
7245 // The value must fit into 3 bits, and must be positive. Make sure that is
7246 // true.
7247 int64_t ImmVal = ValAndVReg->Value.getSExtValue();
7249 // Since we're going to pull this into a shift, the constant value must be
7250 // a power of 2. If we got a multiply, then we need to check this.
7251 if (OffsetOpc == TargetOpcode::G_MUL) {
7252 if (!llvm::has_single_bit<uint32_t>(ImmVal))
7253 return std::nullopt;
7255 // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
7256 ImmVal = Log2_32(ImmVal);
7259 if ((ImmVal & 0x7) != ImmVal)
7260 return std::nullopt;
7262 // We are only allowed to shift by LegalShiftVal. This shift value is built
7263 // into the instruction, so we can't just use whatever we want.
7264 if (ImmVal != LegalShiftVal)
7265 return std::nullopt;
7267 unsigned SignExtend = 0;
7268 if (WantsExt) {
7269 // Check if the offset is defined by an extend, unless we looked through a
7270 // G_ZEXT earlier.
7271 if (!LookedThroughZExt) {
7272 MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
7273 auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
7274 if (Ext == AArch64_AM::InvalidShiftExtend)
7275 return std::nullopt;
7277 SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
7278 // We only support SXTW for signed extension here.
7279 if (SignExtend && Ext != AArch64_AM::SXTW)
7280 return std::nullopt;
7281 OffsetReg = ExtInst->getOperand(1).getReg();
7284 // Need a 32-bit wide register here.
7285 MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
7286 OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
7289 // We can use the LHS of the GEP as the base, and the LHS of the shift as an
7290 // offset. Signify that we are shifting by setting the shift flag to 1.
7291 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
7292 [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
7293 [=](MachineInstrBuilder &MIB) {
7294 // Need to add both immediates here to make sure that they are both
7295 // added to the instruction.
7296 MIB.addImm(SignExtend);
7297 MIB.addImm(1);
7298 }}};
7301 /// This is used for computing addresses like this:
7303 /// ldr x1, [x2, x3, lsl #3]
7305 /// Where x2 is the base register, and x3 is an offset register. The shift-left
7306 /// is a constant value specific to this load instruction. That is, we'll never
7307 /// see anything other than a 3 here (which corresponds to the size of the
7308 /// element being loaded.)
7309 InstructionSelector::ComplexRendererFns
7310 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
7311 MachineOperand &Root, unsigned SizeInBytes) const {
7312 if (!Root.isReg())
7313 return std::nullopt;
7314 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7316 // We want to find something like this:
7318 // val = G_CONSTANT LegalShiftVal
7319 // shift = G_SHL off_reg val
7320 // ptr = G_PTR_ADD base_reg shift
7321 // x = G_LOAD ptr
7323 // And fold it into this addressing mode:
7325 // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
7327 // Check if we can find the G_PTR_ADD.
7328 MachineInstr *PtrAdd =
7329 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
7330 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI, true))
7331 return std::nullopt;
7333 // Now, try to match an opcode which will match our specific offset.
7334 // We want a G_SHL or a G_MUL.
7335 MachineInstr *OffsetInst =
7336 getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
7337 return selectExtendedSHL(Root, PtrAdd->getOperand(1),
7338 OffsetInst->getOperand(0), SizeInBytes,
7339 /*WantsExt=*/false);
7342 /// This is used for computing addresses like this:
7344 /// ldr x1, [x2, x3]
7346 /// Where x2 is the base register, and x3 is an offset register.
7348 /// When possible (or profitable) to fold a G_PTR_ADD into the address
7349 /// calculation, this will do so. Otherwise, it will return std::nullopt.
7350 InstructionSelector::ComplexRendererFns
7351 AArch64InstructionSelector::selectAddrModeRegisterOffset(
7352 MachineOperand &Root) const {
7353 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7355 // We need a GEP.
7356 MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
7357 if (Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
7358 return std::nullopt;
7360 // If this is used more than once, let's not bother folding.
7361 // TODO: Check if they are memory ops. If they are, then we can still fold
7362 // without having to recompute anything.
7363 if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
7364 return std::nullopt;
7366 // Base is the GEP's LHS, offset is its RHS.
7367 return {{[=](MachineInstrBuilder &MIB) {
7368 MIB.addUse(Gep->getOperand(1).getReg());
7370 [=](MachineInstrBuilder &MIB) {
7371 MIB.addUse(Gep->getOperand(2).getReg());
7373 [=](MachineInstrBuilder &MIB) {
7374 // Need to add both immediates here to make sure that they are both
7375 // added to the instruction.
7376 MIB.addImm(0);
7377 MIB.addImm(0);
7378 }}};
7381 /// This is intended to be equivalent to selectAddrModeXRO in
7382 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
7383 InstructionSelector::ComplexRendererFns
7384 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
7385 unsigned SizeInBytes) const {
7386 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7387 if (!Root.isReg())
7388 return std::nullopt;
7389 MachineInstr *PtrAdd =
7390 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
7391 if (!PtrAdd)
7392 return std::nullopt;
7394 // Check for an immediates which cannot be encoded in the [base + imm]
7395 // addressing mode, and can't be encoded in an add/sub. If this happens, we'll
7396 // end up with code like:
7398 // mov x0, wide
7399 // add x1 base, x0
7400 // ldr x2, [x1, x0]
7402 // In this situation, we can use the [base, xreg] addressing mode to save an
7403 // add/sub:
7405 // mov x0, wide
7406 // ldr x2, [base, x0]
7407 auto ValAndVReg =
7408 getIConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI);
7409 if (ValAndVReg) {
7410 unsigned Scale = Log2_32(SizeInBytes);
7411 int64_t ImmOff = ValAndVReg->Value.getSExtValue();
7413 // Skip immediates that can be selected in the load/store addresing
7414 // mode.
7415 if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 &&
7416 ImmOff < (0x1000 << Scale))
7417 return std::nullopt;
7419 // Helper lambda to decide whether or not it is preferable to emit an add.
7420 auto isPreferredADD = [](int64_t ImmOff) {
7421 // Constants in [0x0, 0xfff] can be encoded in an add.
7422 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
7423 return true;
7425 // Can it be encoded in an add lsl #12?
7426 if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL)
7427 return false;
7429 // It can be encoded in an add lsl #12, but we may not want to. If it is
7430 // possible to select this as a single movz, then prefer that. A single
7431 // movz is faster than an add with a shift.
7432 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
7433 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
7436 // If the immediate can be encoded in a single add/sub, then bail out.
7437 if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
7438 return std::nullopt;
7441 // Try to fold shifts into the addressing mode.
7442 auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
7443 if (AddrModeFns)
7444 return AddrModeFns;
7446 // If that doesn't work, see if it's possible to fold in registers from
7447 // a GEP.
7448 return selectAddrModeRegisterOffset(Root);
7451 /// This is used for computing addresses like this:
7453 /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
7455 /// Where we have a 64-bit base register, a 32-bit offset register, and an
7456 /// extend (which may or may not be signed).
7457 InstructionSelector::ComplexRendererFns
7458 AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
7459 unsigned SizeInBytes) const {
7460 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7462 MachineInstr *PtrAdd =
7463 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
7464 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI, true))
7465 return std::nullopt;
7467 MachineOperand &LHS = PtrAdd->getOperand(1);
7468 MachineOperand &RHS = PtrAdd->getOperand(2);
7469 MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
7471 // The first case is the same as selectAddrModeXRO, except we need an extend.
7472 // In this case, we try to find a shift and extend, and fold them into the
7473 // addressing mode.
7475 // E.g.
7477 // off_reg = G_Z/S/ANYEXT ext_reg
7478 // val = G_CONSTANT LegalShiftVal
7479 // shift = G_SHL off_reg val
7480 // ptr = G_PTR_ADD base_reg shift
7481 // x = G_LOAD ptr
7483 // In this case we can get a load like this:
7485 // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
7486 auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
7487 SizeInBytes, /*WantsExt=*/true);
7488 if (ExtendedShl)
7489 return ExtendedShl;
7491 // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
7493 // e.g.
7494 // ldr something, [base_reg, ext_reg, sxtw]
7495 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI, true))
7496 return std::nullopt;
7498 // Check if this is an extend. We'll get an extend type if it is.
7499 AArch64_AM::ShiftExtendType Ext =
7500 getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
7501 if (Ext == AArch64_AM::InvalidShiftExtend)
7502 return std::nullopt;
7504 // Need a 32-bit wide register.
7505 MachineIRBuilder MIB(*PtrAdd);
7506 Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
7507 AArch64::GPR32RegClass, MIB);
7508 unsigned SignExtend = Ext == AArch64_AM::SXTW;
7510 // Base is LHS, offset is ExtReg.
7511 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
7512 [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
7513 [=](MachineInstrBuilder &MIB) {
7514 MIB.addImm(SignExtend);
7515 MIB.addImm(0);
7516 }}};
7519 /// Select a "register plus unscaled signed 9-bit immediate" address. This
7520 /// should only match when there is an offset that is not valid for a scaled
7521 /// immediate addressing mode. The "Size" argument is the size in bytes of the
7522 /// memory reference, which is needed here to know what is valid for a scaled
7523 /// immediate.
7524 InstructionSelector::ComplexRendererFns
7525 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
7526 unsigned Size) const {
7527 MachineRegisterInfo &MRI =
7528 Root.getParent()->getParent()->getParent()->getRegInfo();
7530 if (!Root.isReg())
7531 return std::nullopt;
7533 if (!isBaseWithConstantOffset(Root, MRI))
7534 return std::nullopt;
7536 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
7538 MachineOperand &OffImm = RootDef->getOperand(2);
7539 if (!OffImm.isReg())
7540 return std::nullopt;
7541 MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
7542 if (RHS->getOpcode() != TargetOpcode::G_CONSTANT)
7543 return std::nullopt;
7544 int64_t RHSC;
7545 MachineOperand &RHSOp1 = RHS->getOperand(1);
7546 if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
7547 return std::nullopt;
7548 RHSC = RHSOp1.getCImm()->getSExtValue();
7550 if (RHSC >= -256 && RHSC < 256) {
7551 MachineOperand &Base = RootDef->getOperand(1);
7552 return {{
7553 [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
7554 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
7557 return std::nullopt;
7560 InstructionSelector::ComplexRendererFns
7561 AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
7562 unsigned Size,
7563 MachineRegisterInfo &MRI) const {
7564 if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
7565 return std::nullopt;
7566 MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
7567 if (Adrp.getOpcode() != AArch64::ADRP)
7568 return std::nullopt;
7570 // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
7571 auto Offset = Adrp.getOperand(1).getOffset();
7572 if (Offset % Size != 0)
7573 return std::nullopt;
7575 auto GV = Adrp.getOperand(1).getGlobal();
7576 if (GV->isThreadLocal())
7577 return std::nullopt;
7579 auto &MF = *RootDef.getParent()->getParent();
7580 if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
7581 return std::nullopt;
7583 unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
7584 MachineIRBuilder MIRBuilder(RootDef);
7585 Register AdrpReg = Adrp.getOperand(0).getReg();
7586 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
7587 [=](MachineInstrBuilder &MIB) {
7588 MIB.addGlobalAddress(GV, Offset,
7589 OpFlags | AArch64II::MO_PAGEOFF |
7590 AArch64II::MO_NC);
7591 }}};
7594 /// Select a "register plus scaled unsigned 12-bit immediate" address. The
7595 /// "Size" argument is the size in bytes of the memory reference, which
7596 /// determines the scale.
7597 InstructionSelector::ComplexRendererFns
7598 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
7599 unsigned Size) const {
7600 MachineFunction &MF = *Root.getParent()->getParent()->getParent();
7601 MachineRegisterInfo &MRI = MF.getRegInfo();
7603 if (!Root.isReg())
7604 return std::nullopt;
7606 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
7607 if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
7608 return {{
7609 [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
7610 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
7614 CodeModel::Model CM = MF.getTarget().getCodeModel();
7615 // Check if we can fold in the ADD of small code model ADRP + ADD address.
7616 if (CM == CodeModel::Small) {
7617 auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
7618 if (OpFns)
7619 return OpFns;
7622 if (isBaseWithConstantOffset(Root, MRI)) {
7623 MachineOperand &LHS = RootDef->getOperand(1);
7624 MachineOperand &RHS = RootDef->getOperand(2);
7625 MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
7626 MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
7628 int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
7629 unsigned Scale = Log2_32(Size);
7630 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
7631 if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
7632 return {{
7633 [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
7634 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
7637 return {{
7638 [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
7639 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
7644 // Before falling back to our general case, check if the unscaled
7645 // instructions can handle this. If so, that's preferable.
7646 if (selectAddrModeUnscaled(Root, Size))
7647 return std::nullopt;
7649 return {{
7650 [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
7651 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
7655 /// Given a shift instruction, return the correct shift type for that
7656 /// instruction.
7657 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
7658 switch (MI.getOpcode()) {
7659 default:
7660 return AArch64_AM::InvalidShiftExtend;
7661 case TargetOpcode::G_SHL:
7662 return AArch64_AM::LSL;
7663 case TargetOpcode::G_LSHR:
7664 return AArch64_AM::LSR;
7665 case TargetOpcode::G_ASHR:
7666 return AArch64_AM::ASR;
7667 case TargetOpcode::G_ROTR:
7668 return AArch64_AM::ROR;
7672 /// Select a "shifted register" operand. If the value is not shifted, set the
7673 /// shift operand to a default value of "lsl 0".
7674 InstructionSelector::ComplexRendererFns
7675 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root,
7676 bool AllowROR) const {
7677 if (!Root.isReg())
7678 return std::nullopt;
7679 MachineRegisterInfo &MRI =
7680 Root.getParent()->getParent()->getParent()->getRegInfo();
7682 // Check if the operand is defined by an instruction which corresponds to
7683 // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
7684 MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
7685 AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
7686 if (ShType == AArch64_AM::InvalidShiftExtend)
7687 return std::nullopt;
7688 if (ShType == AArch64_AM::ROR && !AllowROR)
7689 return std::nullopt;
7690 if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI, false))
7691 return std::nullopt;
7693 // Need an immediate on the RHS.
7694 MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
7695 auto Immed = getImmedFromMO(ShiftRHS);
7696 if (!Immed)
7697 return std::nullopt;
7699 // We have something that we can fold. Fold in the shift's LHS and RHS into
7700 // the instruction.
7701 MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
7702 Register ShiftReg = ShiftLHS.getReg();
7704 unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
7705 unsigned Val = *Immed & (NumBits - 1);
7706 unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
7708 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
7709 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
7712 AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
7713 MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
7714 unsigned Opc = MI.getOpcode();
7716 // Handle explicit extend instructions first.
7717 if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
7718 unsigned Size;
7719 if (Opc == TargetOpcode::G_SEXT)
7720 Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
7721 else
7722 Size = MI.getOperand(2).getImm();
7723 assert(Size != 64 && "Extend from 64 bits?");
7724 switch (Size) {
7725 case 8:
7726 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTB;
7727 case 16:
7728 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTH;
7729 case 32:
7730 return AArch64_AM::SXTW;
7731 default:
7732 return AArch64_AM::InvalidShiftExtend;
7736 if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
7737 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
7738 assert(Size != 64 && "Extend from 64 bits?");
7739 switch (Size) {
7740 case 8:
7741 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTB;
7742 case 16:
7743 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTH;
7744 case 32:
7745 return AArch64_AM::UXTW;
7746 default:
7747 return AArch64_AM::InvalidShiftExtend;
7751 // Don't have an explicit extend. Try to handle a G_AND with a constant mask
7752 // on the RHS.
7753 if (Opc != TargetOpcode::G_AND)
7754 return AArch64_AM::InvalidShiftExtend;
7756 std::optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
7757 if (!MaybeAndMask)
7758 return AArch64_AM::InvalidShiftExtend;
7759 uint64_t AndMask = *MaybeAndMask;
7760 switch (AndMask) {
7761 default:
7762 return AArch64_AM::InvalidShiftExtend;
7763 case 0xFF:
7764 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
7765 case 0xFFFF:
7766 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
7767 case 0xFFFFFFFF:
7768 return AArch64_AM::UXTW;
7772 Register AArch64InstructionSelector::moveScalarRegClass(
7773 Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
7774 MachineRegisterInfo &MRI = *MIB.getMRI();
7775 auto Ty = MRI.getType(Reg);
7776 assert(!Ty.isVector() && "Expected scalars only!");
7777 if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
7778 return Reg;
7780 // Create a copy and immediately select it.
7781 // FIXME: We should have an emitCopy function?
7782 auto Copy = MIB.buildCopy({&RC}, {Reg});
7783 selectCopy(*Copy, TII, MRI, TRI, RBI);
7784 return Copy.getReg(0);
7787 /// Select an "extended register" operand. This operand folds in an extend
7788 /// followed by an optional left shift.
7789 InstructionSelector::ComplexRendererFns
7790 AArch64InstructionSelector::selectArithExtendedRegister(
7791 MachineOperand &Root) const {
7792 if (!Root.isReg())
7793 return std::nullopt;
7794 MachineRegisterInfo &MRI =
7795 Root.getParent()->getParent()->getParent()->getRegInfo();
7797 uint64_t ShiftVal = 0;
7798 Register ExtReg;
7799 AArch64_AM::ShiftExtendType Ext;
7800 MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
7801 if (!RootDef)
7802 return std::nullopt;
7804 if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI, false))
7805 return std::nullopt;
7807 // Check if we can fold a shift and an extend.
7808 if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
7809 // Look for a constant on the RHS of the shift.
7810 MachineOperand &RHS = RootDef->getOperand(2);
7811 std::optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
7812 if (!MaybeShiftVal)
7813 return std::nullopt;
7814 ShiftVal = *MaybeShiftVal;
7815 if (ShiftVal > 4)
7816 return std::nullopt;
7817 // Look for a valid extend instruction on the LHS of the shift.
7818 MachineOperand &LHS = RootDef->getOperand(1);
7819 MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
7820 if (!ExtDef)
7821 return std::nullopt;
7822 Ext = getExtendTypeForInst(*ExtDef, MRI);
7823 if (Ext == AArch64_AM::InvalidShiftExtend)
7824 return std::nullopt;
7825 ExtReg = ExtDef->getOperand(1).getReg();
7826 } else {
7827 // Didn't get a shift. Try just folding an extend.
7828 Ext = getExtendTypeForInst(*RootDef, MRI);
7829 if (Ext == AArch64_AM::InvalidShiftExtend)
7830 return std::nullopt;
7831 ExtReg = RootDef->getOperand(1).getReg();
7833 // If we have a 32 bit instruction which zeroes out the high half of a
7834 // register, we get an implicit zero extend for free. Check if we have one.
7835 // FIXME: We actually emit the extend right now even though we don't have
7836 // to.
7837 if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
7838 MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
7839 if (isDef32(*ExtInst))
7840 return std::nullopt;
7844 // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
7845 // copy.
7846 MachineIRBuilder MIB(*RootDef);
7847 ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);
7849 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
7850 [=](MachineInstrBuilder &MIB) {
7851 MIB.addImm(getArithExtendImm(Ext, ShiftVal));
7852 }}};
7855 InstructionSelector::ComplexRendererFns
7856 AArch64InstructionSelector::selectExtractHigh(MachineOperand &Root) const {
7857 if (!Root.isReg())
7858 return std::nullopt;
7859 MachineRegisterInfo &MRI =
7860 Root.getParent()->getParent()->getParent()->getRegInfo();
7862 auto Extract = getDefSrcRegIgnoringCopies(Root.getReg(), MRI);
7863 while (Extract && Extract->MI->getOpcode() == TargetOpcode::G_BITCAST &&
7864 STI.isLittleEndian())
7865 Extract =
7866 getDefSrcRegIgnoringCopies(Extract->MI->getOperand(1).getReg(), MRI);
7867 if (!Extract)
7868 return std::nullopt;
7870 if (Extract->MI->getOpcode() == TargetOpcode::G_UNMERGE_VALUES) {
7871 if (Extract->Reg == Extract->MI->getOperand(1).getReg()) {
7872 Register ExtReg = Extract->MI->getOperand(2).getReg();
7873 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); }}};
7876 if (Extract->MI->getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) {
7877 LLT SrcTy = MRI.getType(Extract->MI->getOperand(1).getReg());
7878 auto LaneIdx = getIConstantVRegValWithLookThrough(
7879 Extract->MI->getOperand(2).getReg(), MRI);
7880 if (LaneIdx && SrcTy == LLT::fixed_vector(2, 64) &&
7881 LaneIdx->Value.getSExtValue() == 1) {
7882 Register ExtReg = Extract->MI->getOperand(1).getReg();
7883 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); }}};
7887 return std::nullopt;
7890 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
7891 const MachineInstr &MI,
7892 int OpIdx) const {
7893 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7894 assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
7895 "Expected G_CONSTANT");
7896 std::optional<int64_t> CstVal =
7897 getIConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI);
7898 assert(CstVal && "Expected constant value");
7899 MIB.addImm(*CstVal);
7902 void AArch64InstructionSelector::renderLogicalImm32(
7903 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
7904 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
7905 "Expected G_CONSTANT");
7906 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
7907 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
7908 MIB.addImm(Enc);
7911 void AArch64InstructionSelector::renderLogicalImm64(
7912 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
7913 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
7914 "Expected G_CONSTANT");
7915 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
7916 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
7917 MIB.addImm(Enc);
7920 void AArch64InstructionSelector::renderUbsanTrap(MachineInstrBuilder &MIB,
7921 const MachineInstr &MI,
7922 int OpIdx) const {
7923 assert(MI.getOpcode() == TargetOpcode::G_UBSANTRAP && OpIdx == 0 &&
7924 "Expected G_UBSANTRAP");
7925 MIB.addImm(MI.getOperand(0).getImm() | ('U' << 8));
7928 void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB,
7929 const MachineInstr &MI,
7930 int OpIdx) const {
7931 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7932 "Expected G_FCONSTANT");
7933 MIB.addImm(
7934 AArch64_AM::getFP16Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
7937 void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB,
7938 const MachineInstr &MI,
7939 int OpIdx) const {
7940 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7941 "Expected G_FCONSTANT");
7942 MIB.addImm(
7943 AArch64_AM::getFP32Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
7946 void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB,
7947 const MachineInstr &MI,
7948 int OpIdx) const {
7949 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7950 "Expected G_FCONSTANT");
7951 MIB.addImm(
7952 AArch64_AM::getFP64Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
7955 void AArch64InstructionSelector::renderFPImm32SIMDModImmType4(
7956 MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const {
7957 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7958 "Expected G_FCONSTANT");
7959 MIB.addImm(AArch64_AM::encodeAdvSIMDModImmType4(MI.getOperand(1)
7960 .getFPImm()
7961 ->getValueAPF()
7962 .bitcastToAPInt()
7963 .getZExtValue()));
7966 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
7967 const MachineInstr &MI, unsigned NumBytes) const {
7968 if (!MI.mayLoadOrStore())
7969 return false;
7970 assert(MI.hasOneMemOperand() &&
7971 "Expected load/store to have only one mem op!");
7972 return (*MI.memoperands_begin())->getSize() == NumBytes;
7975 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
7976 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7977 if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
7978 return false;
7980 // Only return true if we know the operation will zero-out the high half of
7981 // the 64-bit register. Truncates can be subregister copies, which don't
7982 // zero out the high bits. Copies and other copy-like instructions can be
7983 // fed by truncates, or could be lowered as subregister copies.
7984 switch (MI.getOpcode()) {
7985 default:
7986 return true;
7987 case TargetOpcode::COPY:
7988 case TargetOpcode::G_BITCAST:
7989 case TargetOpcode::G_TRUNC:
7990 case TargetOpcode::G_PHI:
7991 return false;
7996 // Perform fixups on the given PHI instruction's operands to force them all
7997 // to be the same as the destination regbank.
7998 static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
7999 const AArch64RegisterBankInfo &RBI) {
8000 assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
8001 Register DstReg = MI.getOperand(0).getReg();
8002 const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
8003 assert(DstRB && "Expected PHI dst to have regbank assigned");
8004 MachineIRBuilder MIB(MI);
8006 // Go through each operand and ensure it has the same regbank.
8007 for (MachineOperand &MO : llvm::drop_begin(MI.operands())) {
8008 if (!MO.isReg())
8009 continue;
8010 Register OpReg = MO.getReg();
8011 const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
8012 if (RB != DstRB) {
8013 // Insert a cross-bank copy.
8014 auto *OpDef = MRI.getVRegDef(OpReg);
8015 const LLT &Ty = MRI.getType(OpReg);
8016 MachineBasicBlock &OpDefBB = *OpDef->getParent();
8018 // Any instruction we insert must appear after all PHIs in the block
8019 // for the block to be valid MIR.
8020 MachineBasicBlock::iterator InsertPt = std::next(OpDef->getIterator());
8021 if (InsertPt != OpDefBB.end() && InsertPt->isPHI())
8022 InsertPt = OpDefBB.getFirstNonPHI();
8023 MIB.setInsertPt(*OpDef->getParent(), InsertPt);
8024 auto Copy = MIB.buildCopy(Ty, OpReg);
8025 MRI.setRegBank(Copy.getReg(0), *DstRB);
8026 MO.setReg(Copy.getReg(0));
8031 void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
8032 // We're looking for PHIs, build a list so we don't invalidate iterators.
8033 MachineRegisterInfo &MRI = MF.getRegInfo();
8034 SmallVector<MachineInstr *, 32> Phis;
8035 for (auto &BB : MF) {
8036 for (auto &MI : BB) {
8037 if (MI.getOpcode() == TargetOpcode::G_PHI)
8038 Phis.emplace_back(&MI);
8042 for (auto *MI : Phis) {
8043 // We need to do some work here if the operand types are < 16 bit and they
8044 // are split across fpr/gpr banks. Since all types <32b on gpr
8045 // end up being assigned gpr32 regclasses, we can end up with PHIs here
8046 // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
8047 // be selecting heterogenous regbanks for operands if possible, but we
8048 // still need to be able to deal with it here.
8050 // To fix this, if we have a gpr-bank operand < 32b in size and at least
8051 // one other operand is on the fpr bank, then we add cross-bank copies
8052 // to homogenize the operand banks. For simplicity the bank that we choose
8053 // to settle on is whatever bank the def operand has. For example:
8055 // %endbb:
8056 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
8057 // =>
8058 // %bb2:
8059 // ...
8060 // %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
8061 // ...
8062 // %endbb:
8063 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
8064 bool HasGPROp = false, HasFPROp = false;
8065 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
8066 if (!MO.isReg())
8067 continue;
8068 const LLT &Ty = MRI.getType(MO.getReg());
8069 if (!Ty.isValid() || !Ty.isScalar())
8070 break;
8071 if (Ty.getSizeInBits() >= 32)
8072 break;
8073 const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
8074 // If for some reason we don't have a regbank yet. Don't try anything.
8075 if (!RB)
8076 break;
8078 if (RB->getID() == AArch64::GPRRegBankID)
8079 HasGPROp = true;
8080 else
8081 HasFPROp = true;
8083 // We have heterogenous regbanks, need to fixup.
8084 if (HasGPROp && HasFPROp)
8085 fixupPHIOpBanks(*MI, MRI, RBI);
8089 namespace llvm {
8090 InstructionSelector *
8091 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
8092 const AArch64Subtarget &Subtarget,
8093 const AArch64RegisterBankInfo &RBI) {
8094 return new AArch64InstructionSelector(TM, Subtarget, RBI);