[clang][NFC] simplify the unset check in `ParseLabeledStatement` (#117430)
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUSplitModule.cpp
blob5d7aff1c5092cc4b10e52f7a18818e03b617de6c
1 //===- AMDGPUSplitModule.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file Implements a module splitting algorithm designed to support the
10 /// FullLTO --lto-partitions option for parallel codegen.
11 ///
12 /// The role of this module splitting pass is the same as
13 /// lib/Transforms/Utils/SplitModule.cpp: load-balance the module's functions
14 /// across a set of N partitions to allow for parallel codegen.
15 ///
16 /// The similarities mostly end here, as this pass achieves load-balancing in a
17 /// more elaborate fashion which is targeted towards AMDGPU modules. It can take
18 /// advantage of the structure of AMDGPU modules (which are mostly
19 /// self-contained) to allow for more efficient splitting without affecting
20 /// codegen negatively, or causing innaccurate resource usage analysis.
21 ///
22 /// High-level pass overview:
23 /// - SplitGraph & associated classes
24 /// - Graph representation of the module and of the dependencies that
25 /// matter for splitting.
26 /// - RecursiveSearchSplitting
27 /// - Core splitting algorithm.
28 /// - SplitProposal
29 /// - Represents a suggested solution for splitting the input module. These
30 /// solutions can be scored to determine the best one when multiple
31 /// solutions are available.
32 /// - Driver/pass "run" function glues everything together.
34 #include "AMDGPUSplitModule.h"
35 #include "AMDGPUTargetMachine.h"
36 #include "Utils/AMDGPUBaseInfo.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/EquivalenceClasses.h"
39 #include "llvm/ADT/GraphTraits.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/StringExtras.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/Analysis/CallGraph.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/DOTGraphTraits.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Path.h"
56 #include "llvm/Support/Timer.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include <cassert>
60 #include <cmath>
61 #include <memory>
62 #include <utility>
63 #include <vector>
65 #ifndef NDEBUG
66 #include "llvm/Support/LockFileManager.h"
67 #endif
69 #define DEBUG_TYPE "amdgpu-split-module"
71 namespace llvm {
72 namespace {
74 static cl::opt<unsigned> MaxDepth(
75 "amdgpu-module-splitting-max-depth",
76 cl::desc(
77 "maximum search depth. 0 forces a greedy approach. "
78 "warning: the algorithm is up to O(2^N), where N is the max depth."),
79 cl::init(8));
81 static cl::opt<float> LargeFnFactor(
82 "amdgpu-module-splitting-large-threshold", cl::init(2.0f), cl::Hidden,
83 cl::desc(
84 "when max depth is reached and we can no longer branch out, this "
85 "value determines if a function is worth merging into an already "
86 "existing partition to reduce code duplication. This is a factor "
87 "of the ideal partition size, e.g. 2.0 means we consider the "
88 "function for merging if its cost (including its callees) is 2x the "
89 "size of an ideal partition."));
91 static cl::opt<float> LargeFnOverlapForMerge(
92 "amdgpu-module-splitting-merge-threshold", cl::init(0.7f), cl::Hidden,
93 cl::desc("when a function is considered for merging into a partition that "
94 "already contains some of its callees, do the merge if at least "
95 "n% of the code it can reach is already present inside the "
96 "partition; e.g. 0.7 means only merge >70%"));
98 static cl::opt<bool> NoExternalizeGlobals(
99 "amdgpu-module-splitting-no-externalize-globals", cl::Hidden,
100 cl::desc("disables externalization of global variable with local linkage; "
101 "may cause globals to be duplicated which increases binary size"));
103 static cl::opt<bool> NoExternalizeOnAddrTaken(
104 "amdgpu-module-splitting-no-externalize-address-taken", cl::Hidden,
105 cl::desc(
106 "disables externalization of functions whose addresses are taken"));
108 static cl::opt<std::string>
109 ModuleDotCfgOutput("amdgpu-module-splitting-print-module-dotcfg",
110 cl::Hidden,
111 cl::desc("output file to write out the dotgraph "
112 "representation of the input module"));
114 static cl::opt<std::string> PartitionSummariesOutput(
115 "amdgpu-module-splitting-print-partition-summaries", cl::Hidden,
116 cl::desc("output file to write out a summary of "
117 "the partitions created for each module"));
119 #ifndef NDEBUG
120 static cl::opt<bool>
121 UseLockFile("amdgpu-module-splitting-serial-execution", cl::Hidden,
122 cl::desc("use a lock file so only one process in the system "
123 "can run this pass at once. useful to avoid mangled "
124 "debug output in multithreaded environments."));
126 static cl::opt<bool>
127 DebugProposalSearch("amdgpu-module-splitting-debug-proposal-search",
128 cl::Hidden,
129 cl::desc("print all proposals received and whether "
130 "they were rejected or accepted"));
131 #endif
133 struct SplitModuleTimer : NamedRegionTimer {
134 SplitModuleTimer(StringRef Name, StringRef Desc)
135 : NamedRegionTimer(Name, Desc, DEBUG_TYPE, "AMDGPU Module Splitting",
136 TimePassesIsEnabled) {}
139 //===----------------------------------------------------------------------===//
140 // Utils
141 //===----------------------------------------------------------------------===//
143 using CostType = InstructionCost::CostType;
144 using FunctionsCostMap = DenseMap<const Function *, CostType>;
145 using GetTTIFn = function_ref<const TargetTransformInfo &(Function &)>;
146 static constexpr unsigned InvalidPID = -1;
148 /// \param Num numerator
149 /// \param Dem denominator
150 /// \returns a printable object to print (Num/Dem) using "%0.2f".
151 static auto formatRatioOf(CostType Num, CostType Dem) {
152 return format("%0.2f", (static_cast<double>(Num) / Dem) * 100);
155 /// Checks whether a given function is non-copyable.
157 /// Non-copyable functions cannot be cloned into multiple partitions, and only
158 /// one copy of the function can be present across all partitions.
160 /// External functions fall into this category. If we were to clone them, we
161 /// would end up with multiple symbol definitions and a very unhappy linker.
162 static bool isNonCopyable(const Function &F) {
163 assert(AMDGPU::isEntryFunctionCC(F.getCallingConv())
164 ? F.hasExternalLinkage()
165 : true && "Kernel w/o external linkage?");
166 return F.hasExternalLinkage() || !F.isDefinitionExact();
169 /// If \p GV has local linkage, make it external + hidden.
170 static void externalize(GlobalValue &GV) {
171 if (GV.hasLocalLinkage()) {
172 GV.setLinkage(GlobalValue::ExternalLinkage);
173 GV.setVisibility(GlobalValue::HiddenVisibility);
176 // Unnamed entities must be named consistently between modules. setName will
177 // give a distinct name to each such entity.
178 if (!GV.hasName())
179 GV.setName("__llvmsplit_unnamed");
182 /// Cost analysis function. Calculates the cost of each function in \p M
184 /// \param GetTTI Abstract getter for TargetTransformInfo.
185 /// \param M Module to analyze.
186 /// \param CostMap[out] Resulting Function -> Cost map.
187 /// \return The module's total cost.
188 static CostType calculateFunctionCosts(GetTTIFn GetTTI, Module &M,
189 FunctionsCostMap &CostMap) {
190 SplitModuleTimer SMT("calculateFunctionCosts", "cost analysis");
192 LLVM_DEBUG(dbgs() << "[cost analysis] calculating function costs\n");
193 CostType ModuleCost = 0;
194 [[maybe_unused]] CostType KernelCost = 0;
196 for (auto &Fn : M) {
197 if (Fn.isDeclaration())
198 continue;
200 CostType FnCost = 0;
201 const auto &TTI = GetTTI(Fn);
202 for (const auto &BB : Fn) {
203 for (const auto &I : BB) {
204 auto Cost =
205 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
206 assert(Cost != InstructionCost::getMax());
207 // Assume expensive if we can't tell the cost of an instruction.
208 CostType CostVal =
209 Cost.getValue().value_or(TargetTransformInfo::TCC_Expensive);
210 assert((FnCost + CostVal) >= FnCost && "Overflow!");
211 FnCost += CostVal;
215 assert(FnCost != 0);
217 CostMap[&Fn] = FnCost;
218 assert((ModuleCost + FnCost) >= ModuleCost && "Overflow!");
219 ModuleCost += FnCost;
221 if (AMDGPU::isEntryFunctionCC(Fn.getCallingConv()))
222 KernelCost += FnCost;
225 if (CostMap.empty())
226 return 0;
228 assert(ModuleCost);
229 LLVM_DEBUG({
230 const CostType FnCost = ModuleCost - KernelCost;
231 dbgs() << " - total module cost is " << ModuleCost << ". kernels cost "
232 << "" << KernelCost << " ("
233 << format("%0.2f", (float(KernelCost) / ModuleCost) * 100)
234 << "% of the module), functions cost " << FnCost << " ("
235 << format("%0.2f", (float(FnCost) / ModuleCost) * 100)
236 << "% of the module)\n";
239 return ModuleCost;
242 /// \return true if \p F can be indirectly called
243 static bool canBeIndirectlyCalled(const Function &F) {
244 if (F.isDeclaration() || AMDGPU::isEntryFunctionCC(F.getCallingConv()))
245 return false;
246 return !F.hasLocalLinkage() ||
247 F.hasAddressTaken(/*PutOffender=*/nullptr,
248 /*IgnoreCallbackUses=*/false,
249 /*IgnoreAssumeLikeCalls=*/true,
250 /*IgnoreLLVMUsed=*/true,
251 /*IgnoreARCAttachedCall=*/false,
252 /*IgnoreCastedDirectCall=*/true);
255 //===----------------------------------------------------------------------===//
256 // Graph-based Module Representation
257 //===----------------------------------------------------------------------===//
259 /// AMDGPUSplitModule's view of the source Module, as a graph of all components
260 /// that can be split into different modules.
262 /// The most trivial instance of this graph is just the CallGraph of the module,
263 /// but it is not guaranteed that the graph is strictly equal to the CG. It
264 /// currently always is but it's designed in a way that would eventually allow
265 /// us to create abstract nodes, or nodes for different entities such as global
266 /// variables or any other meaningful constraint we must consider.
268 /// The graph is only mutable by this class, and is generally not modified
269 /// after \ref SplitGraph::buildGraph runs. No consumers of the graph can
270 /// mutate it.
271 class SplitGraph {
272 public:
273 class Node;
275 enum class EdgeKind : uint8_t {
276 /// The nodes are related through a direct call. This is a "strong" edge as
277 /// it means the Src will directly reference the Dst.
278 DirectCall,
279 /// The nodes are related through an indirect call.
280 /// This is a "weaker" edge and is only considered when traversing the graph
281 /// starting from a kernel. We need this edge for resource usage analysis.
283 /// The reason why we have this edge in the first place is due to how
284 /// AMDGPUResourceUsageAnalysis works. In the presence of an indirect call,
285 /// the resource usage of the kernel containing the indirect call is the
286 /// max resource usage of all functions that can be indirectly called.
287 IndirectCall,
290 /// An edge between two nodes. Edges are directional, and tagged with a
291 /// "kind".
292 struct Edge {
293 Edge(Node *Src, Node *Dst, EdgeKind Kind)
294 : Src(Src), Dst(Dst), Kind(Kind) {}
296 Node *Src; ///< Source
297 Node *Dst; ///< Destination
298 EdgeKind Kind;
301 using EdgesVec = SmallVector<const Edge *, 0>;
302 using edges_iterator = EdgesVec::const_iterator;
303 using nodes_iterator = const Node *const *;
305 SplitGraph(const Module &M, const FunctionsCostMap &CostMap,
306 CostType ModuleCost)
307 : M(M), CostMap(CostMap), ModuleCost(ModuleCost) {}
309 void buildGraph(CallGraph &CG);
311 #ifndef NDEBUG
312 bool verifyGraph() const;
313 #endif
315 bool empty() const { return Nodes.empty(); }
316 const iterator_range<nodes_iterator> nodes() const {
317 return {Nodes.begin(), Nodes.end()};
319 const Node &getNode(unsigned ID) const { return *Nodes[ID]; }
321 unsigned getNumNodes() const { return Nodes.size(); }
322 BitVector createNodesBitVector() const { return BitVector(Nodes.size()); }
324 const Module &getModule() const { return M; }
326 CostType getModuleCost() const { return ModuleCost; }
327 CostType getCost(const Function &F) const { return CostMap.at(&F); }
329 /// \returns the aggregated cost of all nodes in \p BV (bits set to 1 = node
330 /// IDs).
331 CostType calculateCost(const BitVector &BV) const;
333 private:
334 /// Retrieves the node for \p GV in \p Cache, or creates a new node for it and
335 /// updates \p Cache.
336 Node &getNode(DenseMap<const GlobalValue *, Node *> &Cache,
337 const GlobalValue &GV);
339 // Create a new edge between two nodes and add it to both nodes.
340 const Edge &createEdge(Node &Src, Node &Dst, EdgeKind EK);
342 const Module &M;
343 const FunctionsCostMap &CostMap;
344 CostType ModuleCost;
346 // Final list of nodes with stable ordering.
347 SmallVector<Node *> Nodes;
349 SpecificBumpPtrAllocator<Node> NodesPool;
351 // Edges are trivially destructible objects, so as a small optimization we
352 // use a BumpPtrAllocator which avoids destructor calls but also makes
353 // allocation faster.
354 static_assert(
355 std::is_trivially_destructible_v<Edge>,
356 "Edge must be trivially destructible to use the BumpPtrAllocator");
357 BumpPtrAllocator EdgesPool;
360 /// Nodes in the SplitGraph contain both incoming, and outgoing edges.
361 /// Incoming edges have this node as their Dst, and Outgoing ones have this node
362 /// as their Src.
364 /// Edge objects are shared by both nodes in Src/Dst. They provide immediate
365 /// feedback on how two nodes are related, and in which direction they are
366 /// related, which is valuable information to make splitting decisions.
368 /// Nodes are fundamentally abstract, and any consumers of the graph should
369 /// treat them as such. While a node will be a function most of the time, we
370 /// could also create nodes for any other reason. In the future, we could have
371 /// single nodes for multiple functions, or nodes for GVs, etc.
372 class SplitGraph::Node {
373 friend class SplitGraph;
375 public:
376 Node(unsigned ID, const GlobalValue &GV, CostType IndividualCost,
377 bool IsNonCopyable)
378 : ID(ID), GV(GV), IndividualCost(IndividualCost),
379 IsNonCopyable(IsNonCopyable), IsEntryFnCC(false), IsGraphEntry(false) {
380 if (auto *Fn = dyn_cast<Function>(&GV))
381 IsEntryFnCC = AMDGPU::isEntryFunctionCC(Fn->getCallingConv());
384 /// An 0-indexed ID for the node. The maximum ID (exclusive) is the number of
385 /// nodes in the graph. This ID can be used as an index in a BitVector.
386 unsigned getID() const { return ID; }
388 const Function &getFunction() const { return cast<Function>(GV); }
390 /// \returns the cost to import this component into a given module, not
391 /// accounting for any dependencies that may need to be imported as well.
392 CostType getIndividualCost() const { return IndividualCost; }
394 bool isNonCopyable() const { return IsNonCopyable; }
395 bool isEntryFunctionCC() const { return IsEntryFnCC; }
397 /// \returns whether this is an entry point in the graph. Entry points are
398 /// defined as follows: if you take all entry points in the graph, and iterate
399 /// their dependencies, you are guaranteed to visit all nodes in the graph at
400 /// least once.
401 bool isGraphEntryPoint() const { return IsGraphEntry; }
403 StringRef getName() const { return GV.getName(); }
405 bool hasAnyIncomingEdges() const { return IncomingEdges.size(); }
406 bool hasAnyIncomingEdgesOfKind(EdgeKind EK) const {
407 return any_of(IncomingEdges, [&](const auto *E) { return E->Kind == EK; });
410 bool hasAnyOutgoingEdges() const { return OutgoingEdges.size(); }
411 bool hasAnyOutgoingEdgesOfKind(EdgeKind EK) const {
412 return any_of(OutgoingEdges, [&](const auto *E) { return E->Kind == EK; });
415 iterator_range<edges_iterator> incoming_edges() const {
416 return IncomingEdges;
419 iterator_range<edges_iterator> outgoing_edges() const {
420 return OutgoingEdges;
423 bool shouldFollowIndirectCalls() const { return isEntryFunctionCC(); }
425 /// Visit all children of this node in a recursive fashion. Also visits Self.
426 /// If \ref shouldFollowIndirectCalls returns false, then this only follows
427 /// DirectCall edges.
429 /// \param Visitor Visitor Function.
430 void visitAllDependencies(std::function<void(const Node &)> Visitor) const;
432 /// Adds the depedencies of this node in \p BV by setting the bit
433 /// corresponding to each node.
435 /// Implemented using \ref visitAllDependencies, hence it follows the same
436 /// rules regarding dependencies traversal.
438 /// \param[out] BV The bitvector where the bits should be set.
439 void getDependencies(BitVector &BV) const {
440 visitAllDependencies([&](const Node &N) { BV.set(N.getID()); });
443 private:
444 void markAsGraphEntry() { IsGraphEntry = true; }
446 unsigned ID;
447 const GlobalValue &GV;
448 CostType IndividualCost;
449 bool IsNonCopyable : 1;
450 bool IsEntryFnCC : 1;
451 bool IsGraphEntry : 1;
453 // TODO: Use a single sorted vector (with all incoming/outgoing edges grouped
454 // together)
455 EdgesVec IncomingEdges;
456 EdgesVec OutgoingEdges;
459 void SplitGraph::Node::visitAllDependencies(
460 std::function<void(const Node &)> Visitor) const {
461 const bool FollowIndirect = shouldFollowIndirectCalls();
462 // FIXME: If this can access SplitGraph in the future, use a BitVector
463 // instead.
464 DenseSet<const Node *> Seen;
465 SmallVector<const Node *, 8> WorkList({this});
466 while (!WorkList.empty()) {
467 const Node *CurN = WorkList.pop_back_val();
468 if (auto [It, Inserted] = Seen.insert(CurN); !Inserted)
469 continue;
471 Visitor(*CurN);
473 for (const Edge *E : CurN->outgoing_edges()) {
474 if (!FollowIndirect && E->Kind == EdgeKind::IndirectCall)
475 continue;
476 WorkList.push_back(E->Dst);
481 /// Checks if \p I has MD_callees and if it does, parse it and put the function
482 /// in \p Callees.
484 /// \returns true if there was metadata and it was parsed correctly. false if
485 /// there was no MD or if it contained unknown entries and parsing failed.
486 /// If this returns false, \p Callees will contain incomplete information
487 /// and must not be used.
488 static bool handleCalleesMD(const Instruction &I,
489 SetVector<Function *> &Callees) {
490 auto *MD = I.getMetadata(LLVMContext::MD_callees);
491 if (!MD)
492 return false;
494 for (const auto &Op : MD->operands()) {
495 Function *Callee = mdconst::extract_or_null<Function>(Op);
496 if (!Callee)
497 return false;
498 Callees.insert(Callee);
501 return true;
504 void SplitGraph::buildGraph(CallGraph &CG) {
505 SplitModuleTimer SMT("buildGraph", "graph construction");
506 LLVM_DEBUG(
507 dbgs()
508 << "[build graph] constructing graph representation of the input\n");
510 // FIXME(?): Is the callgraph really worth using if we have to iterate the
511 // function again whenever it fails to give us enough information?
513 // We build the graph by just iterating all functions in the module and
514 // working on their direct callees. At the end, all nodes should be linked
515 // together as expected.
516 DenseMap<const GlobalValue *, Node *> Cache;
517 SmallVector<const Function *> FnsWithIndirectCalls, IndirectlyCallableFns;
518 for (const Function &Fn : M) {
519 if (Fn.isDeclaration())
520 continue;
522 // Look at direct callees and create the necessary edges in the graph.
523 SetVector<const Function *> DirectCallees;
524 bool CallsExternal = false;
525 for (auto &CGEntry : *CG[&Fn]) {
526 auto *CGNode = CGEntry.second;
527 if (auto *Callee = CGNode->getFunction()) {
528 if (!Callee->isDeclaration())
529 DirectCallees.insert(Callee);
530 } else if (CGNode == CG.getCallsExternalNode())
531 CallsExternal = true;
534 // Keep track of this function if it contains an indirect call and/or if it
535 // can be indirectly called.
536 if (CallsExternal) {
537 LLVM_DEBUG(dbgs() << " [!] callgraph is incomplete for ";
538 Fn.printAsOperand(dbgs());
539 dbgs() << " - analyzing function\n");
541 SetVector<Function *> KnownCallees;
542 bool HasUnknownIndirectCall = false;
543 for (const auto &Inst : instructions(Fn)) {
544 // look at all calls without a direct callee.
545 const auto *CB = dyn_cast<CallBase>(&Inst);
546 if (!CB || CB->getCalledFunction())
547 continue;
549 // inline assembly can be ignored, unless InlineAsmIsIndirectCall is
550 // true.
551 if (CB->isInlineAsm()) {
552 LLVM_DEBUG(dbgs() << " found inline assembly\n");
553 continue;
556 if (handleCalleesMD(Inst, KnownCallees))
557 continue;
558 // If we failed to parse any !callees MD, or some was missing,
559 // the entire KnownCallees list is now unreliable.
560 KnownCallees.clear();
562 // Everything else is handled conservatively. If we fall into the
563 // conservative case don't bother analyzing further.
564 HasUnknownIndirectCall = true;
565 break;
568 if (HasUnknownIndirectCall) {
569 LLVM_DEBUG(dbgs() << " indirect call found\n");
570 FnsWithIndirectCalls.push_back(&Fn);
571 } else if (!KnownCallees.empty())
572 DirectCallees.insert(KnownCallees.begin(), KnownCallees.end());
575 Node &N = getNode(Cache, Fn);
576 for (const auto *Callee : DirectCallees)
577 createEdge(N, getNode(Cache, *Callee), EdgeKind::DirectCall);
579 if (canBeIndirectlyCalled(Fn))
580 IndirectlyCallableFns.push_back(&Fn);
583 // Post-process functions with indirect calls.
584 for (const Function *Fn : FnsWithIndirectCalls) {
585 for (const Function *Candidate : IndirectlyCallableFns) {
586 Node &Src = getNode(Cache, *Fn);
587 Node &Dst = getNode(Cache, *Candidate);
588 createEdge(Src, Dst, EdgeKind::IndirectCall);
592 // Now, find all entry points.
593 SmallVector<Node *, 16> CandidateEntryPoints;
594 BitVector NodesReachableByKernels = createNodesBitVector();
595 for (Node *N : Nodes) {
596 // Functions with an Entry CC are always graph entry points too.
597 if (N->isEntryFunctionCC()) {
598 N->markAsGraphEntry();
599 N->getDependencies(NodesReachableByKernels);
600 } else if (!N->hasAnyIncomingEdgesOfKind(EdgeKind::DirectCall))
601 CandidateEntryPoints.push_back(N);
604 for (Node *N : CandidateEntryPoints) {
605 // This can be another entry point if it's not reachable by a kernel
606 // TODO: We could sort all of the possible new entries in a stable order
607 // (e.g. by cost), then consume them one by one until
608 // NodesReachableByKernels is all 1s. It'd allow us to avoid
609 // considering some nodes as non-entries in some specific cases.
610 if (!NodesReachableByKernels.test(N->getID()))
611 N->markAsGraphEntry();
614 #ifndef NDEBUG
615 assert(verifyGraph());
616 #endif
619 #ifndef NDEBUG
620 bool SplitGraph::verifyGraph() const {
621 unsigned ExpectedID = 0;
622 // Exceptionally using a set here in case IDs are messed up.
623 DenseSet<const Node *> SeenNodes;
624 DenseSet<const Function *> SeenFunctionNodes;
625 for (const Node *N : Nodes) {
626 if (N->getID() != (ExpectedID++)) {
627 errs() << "Node IDs are incorrect!\n";
628 return false;
631 if (!SeenNodes.insert(N).second) {
632 errs() << "Node seen more than once!\n";
633 return false;
636 if (&getNode(N->getID()) != N) {
637 errs() << "getNode doesn't return the right node\n";
638 return false;
641 for (const Edge *E : N->IncomingEdges) {
642 if (!E->Src || !E->Dst || (E->Dst != N) ||
643 (find(E->Src->OutgoingEdges, E) == E->Src->OutgoingEdges.end())) {
644 errs() << "ill-formed incoming edges\n";
645 return false;
649 for (const Edge *E : N->OutgoingEdges) {
650 if (!E->Src || !E->Dst || (E->Src != N) ||
651 (find(E->Dst->IncomingEdges, E) == E->Dst->IncomingEdges.end())) {
652 errs() << "ill-formed outgoing edges\n";
653 return false;
657 const Function &Fn = N->getFunction();
658 if (AMDGPU::isEntryFunctionCC(Fn.getCallingConv())) {
659 if (N->hasAnyIncomingEdges()) {
660 errs() << "Kernels cannot have incoming edges\n";
661 return false;
665 if (Fn.isDeclaration()) {
666 errs() << "declarations shouldn't have nodes!\n";
667 return false;
670 auto [It, Inserted] = SeenFunctionNodes.insert(&Fn);
671 if (!Inserted) {
672 errs() << "one function has multiple nodes!\n";
673 return false;
677 if (ExpectedID != Nodes.size()) {
678 errs() << "Node IDs out of sync!\n";
679 return false;
682 if (createNodesBitVector().size() != getNumNodes()) {
683 errs() << "nodes bit vector doesn't have the right size!\n";
684 return false;
687 // Check we respect the promise of Node::isKernel
688 BitVector BV = createNodesBitVector();
689 for (const Node *N : nodes()) {
690 if (N->isGraphEntryPoint())
691 N->getDependencies(BV);
694 // Ensure each function in the module has an associated node.
695 for (const auto &Fn : M) {
696 if (!Fn.isDeclaration()) {
697 if (!SeenFunctionNodes.contains(&Fn)) {
698 errs() << "Fn has no associated node in the graph!\n";
699 return false;
704 if (!BV.all()) {
705 errs() << "not all nodes are reachable through the graph's entry points!\n";
706 return false;
709 return true;
711 #endif
713 CostType SplitGraph::calculateCost(const BitVector &BV) const {
714 CostType Cost = 0;
715 for (unsigned NodeID : BV.set_bits())
716 Cost += getNode(NodeID).getIndividualCost();
717 return Cost;
720 SplitGraph::Node &
721 SplitGraph::getNode(DenseMap<const GlobalValue *, Node *> &Cache,
722 const GlobalValue &GV) {
723 auto &N = Cache[&GV];
724 if (N)
725 return *N;
727 CostType Cost = 0;
728 bool NonCopyable = false;
729 if (const Function *Fn = dyn_cast<Function>(&GV)) {
730 NonCopyable = isNonCopyable(*Fn);
731 Cost = CostMap.at(Fn);
733 N = new (NodesPool.Allocate()) Node(Nodes.size(), GV, Cost, NonCopyable);
734 Nodes.push_back(N);
735 assert(&getNode(N->getID()) == N);
736 return *N;
739 const SplitGraph::Edge &SplitGraph::createEdge(Node &Src, Node &Dst,
740 EdgeKind EK) {
741 const Edge *E = new (EdgesPool.Allocate<Edge>(1)) Edge(&Src, &Dst, EK);
742 Src.OutgoingEdges.push_back(E);
743 Dst.IncomingEdges.push_back(E);
744 return *E;
747 //===----------------------------------------------------------------------===//
748 // Split Proposals
749 //===----------------------------------------------------------------------===//
751 /// Represents a module splitting proposal.
753 /// Proposals are made of N BitVectors, one for each partition, where each bit
754 /// set indicates that the node is present and should be copied inside that
755 /// partition.
757 /// Proposals have several metrics attached so they can be compared/sorted,
758 /// which the driver to try multiple strategies resultings in multiple proposals
759 /// and choose the best one out of them.
760 class SplitProposal {
761 public:
762 SplitProposal(const SplitGraph &SG, unsigned MaxPartitions) : SG(&SG) {
763 Partitions.resize(MaxPartitions, {0, SG.createNodesBitVector()});
766 void setName(StringRef NewName) { Name = NewName; }
767 StringRef getName() const { return Name; }
769 const BitVector &operator[](unsigned PID) const {
770 return Partitions[PID].second;
773 void add(unsigned PID, const BitVector &BV) {
774 Partitions[PID].second |= BV;
775 updateScore(PID);
778 void print(raw_ostream &OS) const;
779 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
781 // Find the cheapest partition (lowest cost). In case of ties, always returns
782 // the highest partition number.
783 unsigned findCheapestPartition() const;
785 /// Calculate the CodeSize and Bottleneck scores.
786 void calculateScores();
788 #ifndef NDEBUG
789 void verifyCompleteness() const;
790 #endif
792 /// Only available after \ref calculateScores is called.
794 /// A positive number indicating the % of code duplication that this proposal
795 /// creates. e.g. 0.2 means this proposal adds roughly 20% code size by
796 /// duplicating some functions across partitions.
798 /// Value is always rounded up to 3 decimal places.
800 /// A perfect score would be 0.0, and anything approaching 1.0 is very bad.
801 double getCodeSizeScore() const { return CodeSizeScore; }
803 /// Only available after \ref calculateScores is called.
805 /// A number between [0, 1] which indicates how big of a bottleneck is
806 /// expected from the largest partition.
808 /// A score of 1.0 means the biggest partition is as big as the source module,
809 /// so build time will be equal to or greater than the build time of the
810 /// initial input.
812 /// Value is always rounded up to 3 decimal places.
814 /// This is one of the metrics used to estimate this proposal's build time.
815 double getBottleneckScore() const { return BottleneckScore; }
817 private:
818 void updateScore(unsigned PID) {
819 assert(SG);
820 for (auto &[PCost, Nodes] : Partitions) {
821 TotalCost -= PCost;
822 PCost = SG->calculateCost(Nodes);
823 TotalCost += PCost;
827 /// \see getCodeSizeScore
828 double CodeSizeScore = 0.0;
829 /// \see getBottleneckScore
830 double BottleneckScore = 0.0;
831 /// Aggregated cost of all partitions
832 CostType TotalCost = 0;
834 const SplitGraph *SG = nullptr;
835 std::string Name;
837 std::vector<std::pair<CostType, BitVector>> Partitions;
840 void SplitProposal::print(raw_ostream &OS) const {
841 assert(SG);
843 OS << "[proposal] " << Name << ", total cost:" << TotalCost
844 << ", code size score:" << format("%0.3f", CodeSizeScore)
845 << ", bottleneck score:" << format("%0.3f", BottleneckScore) << '\n';
846 for (const auto &[PID, Part] : enumerate(Partitions)) {
847 const auto &[Cost, NodeIDs] = Part;
848 OS << " - P" << PID << " nodes:" << NodeIDs.count() << " cost: " << Cost
849 << '|' << formatRatioOf(Cost, SG->getModuleCost()) << "%\n";
853 unsigned SplitProposal::findCheapestPartition() const {
854 assert(!Partitions.empty());
855 CostType CurCost = std::numeric_limits<CostType>::max();
856 unsigned CurPID = InvalidPID;
857 for (const auto &[Idx, Part] : enumerate(Partitions)) {
858 if (Part.first <= CurCost) {
859 CurPID = Idx;
860 CurCost = Part.first;
863 assert(CurPID != InvalidPID);
864 return CurPID;
867 void SplitProposal::calculateScores() {
868 if (Partitions.empty())
869 return;
871 assert(SG);
872 CostType LargestPCost = 0;
873 for (auto &[PCost, Nodes] : Partitions) {
874 if (PCost > LargestPCost)
875 LargestPCost = PCost;
878 CostType ModuleCost = SG->getModuleCost();
879 CodeSizeScore = double(TotalCost) / ModuleCost;
880 assert(CodeSizeScore >= 0.0);
882 BottleneckScore = double(LargestPCost) / ModuleCost;
884 CodeSizeScore = std::ceil(CodeSizeScore * 100.0) / 100.0;
885 BottleneckScore = std::ceil(BottleneckScore * 100.0) / 100.0;
888 #ifndef NDEBUG
889 void SplitProposal::verifyCompleteness() const {
890 if (Partitions.empty())
891 return;
893 BitVector Result = Partitions[0].second;
894 for (const auto &P : drop_begin(Partitions))
895 Result |= P.second;
896 assert(Result.all() && "some nodes are missing from this proposal!");
898 #endif
900 //===-- RecursiveSearchStrategy -------------------------------------------===//
902 /// Partitioning algorithm.
904 /// This is a recursive search algorithm that can explore multiple possiblities.
906 /// When a cluster of nodes can go into more than one partition, and we haven't
907 /// reached maximum search depth, we recurse and explore both options and their
908 /// consequences. Both branches will yield a proposal, and the driver will grade
909 /// both and choose the best one.
911 /// If max depth is reached, we will use some heuristics to make a choice. Most
912 /// of the time we will just use the least-pressured (cheapest) partition, but
913 /// if a cluster is particularly big and there is a good amount of overlap with
914 /// an existing partition, we will choose that partition instead.
915 class RecursiveSearchSplitting {
916 public:
917 using SubmitProposalFn = function_ref<void(SplitProposal)>;
919 RecursiveSearchSplitting(const SplitGraph &SG, unsigned NumParts,
920 SubmitProposalFn SubmitProposal);
922 void run();
924 private:
925 struct WorkListEntry {
926 WorkListEntry(const BitVector &BV) : Cluster(BV) {}
928 unsigned NumNonEntryNodes = 0;
929 CostType TotalCost = 0;
930 CostType CostExcludingGraphEntryPoints = 0;
931 BitVector Cluster;
934 /// Collects all graph entry points's clusters and sort them so the most
935 /// expensive clusters are viewed first. This will merge clusters together if
936 /// they share a non-copyable dependency.
937 void setupWorkList();
939 /// Recursive function that assigns the worklist item at \p Idx into a
940 /// partition of \p SP.
942 /// \p Depth is the current search depth. When this value is equal to
943 /// \ref MaxDepth, we can no longer recurse.
945 /// This function only recurses if there is more than one possible assignment,
946 /// otherwise it is iterative to avoid creating a call stack that is as big as
947 /// \ref WorkList.
948 void pickPartition(unsigned Depth, unsigned Idx, SplitProposal SP);
950 /// \return A pair: first element is the PID of the partition that has the
951 /// most similarities with \p Entry, or \ref InvalidPID if no partition was
952 /// found with at least one element in common. The second element is the
953 /// aggregated cost of all dependencies in common between \p Entry and that
954 /// partition.
955 std::pair<unsigned, CostType>
956 findMostSimilarPartition(const WorkListEntry &Entry, const SplitProposal &SP);
958 const SplitGraph &SG;
959 unsigned NumParts;
960 SubmitProposalFn SubmitProposal;
962 // A Cluster is considered large when its cost, excluding entry points,
963 // exceeds this value.
964 CostType LargeClusterThreshold = 0;
965 unsigned NumProposalsSubmitted = 0;
966 SmallVector<WorkListEntry> WorkList;
969 RecursiveSearchSplitting::RecursiveSearchSplitting(
970 const SplitGraph &SG, unsigned NumParts, SubmitProposalFn SubmitProposal)
971 : SG(SG), NumParts(NumParts), SubmitProposal(SubmitProposal) {
972 // arbitrary max value as a safeguard. Anything above 10 will already be
973 // slow, this is just a max value to prevent extreme resource exhaustion or
974 // unbounded run time.
975 if (MaxDepth > 16)
976 report_fatal_error("[amdgpu-split-module] search depth of " +
977 Twine(MaxDepth) + " is too high!");
978 LargeClusterThreshold =
979 (LargeFnFactor != 0.0)
980 ? CostType(((SG.getModuleCost() / NumParts) * LargeFnFactor))
981 : std::numeric_limits<CostType>::max();
982 LLVM_DEBUG(dbgs() << "[recursive search] large cluster threshold set at "
983 << LargeClusterThreshold << "\n");
986 void RecursiveSearchSplitting::run() {
988 SplitModuleTimer SMT("recursive_search_prepare", "preparing worklist");
989 setupWorkList();
993 SplitModuleTimer SMT("recursive_search_pick", "partitioning");
994 SplitProposal SP(SG, NumParts);
995 pickPartition(/*BranchDepth=*/0, /*Idx=*/0, SP);
999 void RecursiveSearchSplitting::setupWorkList() {
1000 // e.g. if A and B are two worklist item, and they both call a non copyable
1001 // dependency C, this does:
1002 // A=C
1003 // B=C
1004 // => NodeEC will create a single group (A, B, C) and we create a new
1005 // WorkList entry for that group.
1007 EquivalenceClasses<unsigned> NodeEC;
1008 for (const SplitGraph::Node *N : SG.nodes()) {
1009 if (!N->isGraphEntryPoint())
1010 continue;
1012 NodeEC.insert(N->getID());
1013 N->visitAllDependencies([&](const SplitGraph::Node &Dep) {
1014 if (&Dep != N && Dep.isNonCopyable())
1015 NodeEC.unionSets(N->getID(), Dep.getID());
1019 for (auto I = NodeEC.begin(), E = NodeEC.end(); I != E; ++I) {
1020 if (!I->isLeader())
1021 continue;
1023 BitVector Cluster = SG.createNodesBitVector();
1024 for (auto MI = NodeEC.member_begin(I); MI != NodeEC.member_end(); ++MI) {
1025 const SplitGraph::Node &N = SG.getNode(*MI);
1026 if (N.isGraphEntryPoint())
1027 N.getDependencies(Cluster);
1029 WorkList.emplace_back(std::move(Cluster));
1032 // Calculate costs and other useful information.
1033 for (WorkListEntry &Entry : WorkList) {
1034 for (unsigned NodeID : Entry.Cluster.set_bits()) {
1035 const SplitGraph::Node &N = SG.getNode(NodeID);
1036 const CostType Cost = N.getIndividualCost();
1038 Entry.TotalCost += Cost;
1039 if (!N.isGraphEntryPoint()) {
1040 Entry.CostExcludingGraphEntryPoints += Cost;
1041 ++Entry.NumNonEntryNodes;
1046 stable_sort(WorkList, [](const WorkListEntry &A, const WorkListEntry &B) {
1047 if (A.TotalCost != B.TotalCost)
1048 return A.TotalCost > B.TotalCost;
1050 if (A.CostExcludingGraphEntryPoints != B.CostExcludingGraphEntryPoints)
1051 return A.CostExcludingGraphEntryPoints > B.CostExcludingGraphEntryPoints;
1053 if (A.NumNonEntryNodes != B.NumNonEntryNodes)
1054 return A.NumNonEntryNodes > B.NumNonEntryNodes;
1056 return A.Cluster.count() > B.Cluster.count();
1059 LLVM_DEBUG({
1060 dbgs() << "[recursive search] worklist:\n";
1061 for (const auto &[Idx, Entry] : enumerate(WorkList)) {
1062 dbgs() << " - [" << Idx << "]: ";
1063 for (unsigned NodeID : Entry.Cluster.set_bits())
1064 dbgs() << NodeID << " ";
1065 dbgs() << "(total_cost:" << Entry.TotalCost
1066 << ", cost_excl_entries:" << Entry.CostExcludingGraphEntryPoints
1067 << ")\n";
1072 void RecursiveSearchSplitting::pickPartition(unsigned Depth, unsigned Idx,
1073 SplitProposal SP) {
1074 while (Idx < WorkList.size()) {
1075 // Step 1: Determine candidate PIDs.
1077 const WorkListEntry &Entry = WorkList[Idx];
1078 const BitVector &Cluster = Entry.Cluster;
1080 // Default option is to do load-balancing, AKA assign to least pressured
1081 // partition.
1082 const unsigned CheapestPID = SP.findCheapestPartition();
1083 assert(CheapestPID != InvalidPID);
1085 // Explore assigning to the kernel that contains the most dependencies in
1086 // common.
1087 const auto [MostSimilarPID, SimilarDepsCost] =
1088 findMostSimilarPartition(Entry, SP);
1090 // We can chose to explore only one path if we only have one valid path, or
1091 // if we reached maximum search depth and can no longer branch out.
1092 unsigned SinglePIDToTry = InvalidPID;
1093 if (MostSimilarPID == InvalidPID) // no similar PID found
1094 SinglePIDToTry = CheapestPID;
1095 else if (MostSimilarPID == CheapestPID) // both landed on the same PID
1096 SinglePIDToTry = CheapestPID;
1097 else if (Depth >= MaxDepth) {
1098 // We have to choose one path. Use a heuristic to guess which one will be
1099 // more appropriate.
1100 if (Entry.CostExcludingGraphEntryPoints > LargeClusterThreshold) {
1101 // Check if the amount of code in common makes it worth it.
1102 assert(SimilarDepsCost && Entry.CostExcludingGraphEntryPoints);
1103 const double Ratio =
1104 SimilarDepsCost / Entry.CostExcludingGraphEntryPoints;
1105 assert(Ratio >= 0.0 && Ratio <= 1.0);
1106 if (LargeFnOverlapForMerge > Ratio) {
1107 // For debug, just print "L", so we'll see "L3=P3" for instance, which
1108 // will mean we reached max depth and chose P3 based on this
1109 // heuristic.
1110 LLVM_DEBUG(dbgs() << 'L');
1111 SinglePIDToTry = MostSimilarPID;
1113 } else
1114 SinglePIDToTry = CheapestPID;
1117 // Step 2: Explore candidates.
1119 // When we only explore one possible path, and thus branch depth doesn't
1120 // increase, do not recurse, iterate instead.
1121 if (SinglePIDToTry != InvalidPID) {
1122 LLVM_DEBUG(dbgs() << Idx << "=P" << SinglePIDToTry << ' ');
1123 // Only one path to explore, don't clone SP, don't increase depth.
1124 SP.add(SinglePIDToTry, Cluster);
1125 ++Idx;
1126 continue;
1129 assert(MostSimilarPID != InvalidPID);
1131 // We explore multiple paths: recurse at increased depth, then stop this
1132 // function.
1134 LLVM_DEBUG(dbgs() << '\n');
1136 // lb = load balancing = put in cheapest partition
1138 SplitProposal BranchSP = SP;
1139 LLVM_DEBUG(dbgs().indent(Depth)
1140 << " [lb] " << Idx << "=P" << CheapestPID << "? ");
1141 BranchSP.add(CheapestPID, Cluster);
1142 pickPartition(Depth + 1, Idx + 1, BranchSP);
1145 // ms = most similar = put in partition with the most in common
1147 SplitProposal BranchSP = SP;
1148 LLVM_DEBUG(dbgs().indent(Depth)
1149 << " [ms] " << Idx << "=P" << MostSimilarPID << "? ");
1150 BranchSP.add(MostSimilarPID, Cluster);
1151 pickPartition(Depth + 1, Idx + 1, BranchSP);
1154 return;
1157 // Step 3: If we assigned all WorkList items, submit the proposal.
1159 assert(Idx == WorkList.size());
1160 assert(NumProposalsSubmitted <= (2u << MaxDepth) &&
1161 "Search got out of bounds?");
1162 SP.setName("recursive_search (depth=" + std::to_string(Depth) + ") #" +
1163 std::to_string(NumProposalsSubmitted++));
1164 LLVM_DEBUG(dbgs() << '\n');
1165 SubmitProposal(SP);
1168 std::pair<unsigned, CostType>
1169 RecursiveSearchSplitting::findMostSimilarPartition(const WorkListEntry &Entry,
1170 const SplitProposal &SP) {
1171 if (!Entry.NumNonEntryNodes)
1172 return {InvalidPID, 0};
1174 // We take the partition that is the most similar using Cost as a metric.
1175 // So we take the set of nodes in common, compute their aggregated cost, and
1176 // pick the partition with the highest cost in common.
1177 unsigned ChosenPID = InvalidPID;
1178 CostType ChosenCost = 0;
1179 for (unsigned PID = 0; PID < NumParts; ++PID) {
1180 BitVector BV = SP[PID];
1181 BV &= Entry.Cluster; // FIXME: & doesn't work between BVs?!
1183 if (BV.none())
1184 continue;
1186 const CostType Cost = SG.calculateCost(BV);
1188 if (ChosenPID == InvalidPID || ChosenCost < Cost ||
1189 (ChosenCost == Cost && PID > ChosenPID)) {
1190 ChosenPID = PID;
1191 ChosenCost = Cost;
1195 return {ChosenPID, ChosenCost};
1198 //===----------------------------------------------------------------------===//
1199 // DOTGraph Printing Support
1200 //===----------------------------------------------------------------------===//
1202 const SplitGraph::Node *mapEdgeToDst(const SplitGraph::Edge *E) {
1203 return E->Dst;
1206 using SplitGraphEdgeDstIterator =
1207 mapped_iterator<SplitGraph::edges_iterator, decltype(&mapEdgeToDst)>;
1209 } // namespace
1211 template <> struct GraphTraits<SplitGraph> {
1212 using NodeRef = const SplitGraph::Node *;
1213 using nodes_iterator = SplitGraph::nodes_iterator;
1214 using ChildIteratorType = SplitGraphEdgeDstIterator;
1216 using EdgeRef = const SplitGraph::Edge *;
1217 using ChildEdgeIteratorType = SplitGraph::edges_iterator;
1219 static NodeRef getEntryNode(NodeRef N) { return N; }
1221 static ChildIteratorType child_begin(NodeRef Ref) {
1222 return {Ref->outgoing_edges().begin(), mapEdgeToDst};
1224 static ChildIteratorType child_end(NodeRef Ref) {
1225 return {Ref->outgoing_edges().end(), mapEdgeToDst};
1228 static nodes_iterator nodes_begin(const SplitGraph &G) {
1229 return G.nodes().begin();
1231 static nodes_iterator nodes_end(const SplitGraph &G) {
1232 return G.nodes().end();
1236 template <> struct DOTGraphTraits<SplitGraph> : public DefaultDOTGraphTraits {
1237 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
1239 static std::string getGraphName(const SplitGraph &SG) {
1240 return SG.getModule().getName().str();
1243 std::string getNodeLabel(const SplitGraph::Node *N, const SplitGraph &SG) {
1244 return N->getName().str();
1247 static std::string getNodeDescription(const SplitGraph::Node *N,
1248 const SplitGraph &SG) {
1249 std::string Result;
1250 if (N->isEntryFunctionCC())
1251 Result += "entry-fn-cc ";
1252 if (N->isNonCopyable())
1253 Result += "non-copyable ";
1254 Result += "cost:" + std::to_string(N->getIndividualCost());
1255 return Result;
1258 static std::string getNodeAttributes(const SplitGraph::Node *N,
1259 const SplitGraph &SG) {
1260 return N->hasAnyIncomingEdges() ? "" : "color=\"red\"";
1263 static std::string getEdgeAttributes(const SplitGraph::Node *N,
1264 SplitGraphEdgeDstIterator EI,
1265 const SplitGraph &SG) {
1267 switch ((*EI.getCurrent())->Kind) {
1268 case SplitGraph::EdgeKind::DirectCall:
1269 return "";
1270 case SplitGraph::EdgeKind::IndirectCall:
1271 return "style=\"dashed\"";
1273 llvm_unreachable("Unknown SplitGraph::EdgeKind enum");
1277 //===----------------------------------------------------------------------===//
1278 // Driver
1279 //===----------------------------------------------------------------------===//
1281 namespace {
1283 // If we didn't externalize GVs, then local GVs need to be conservatively
1284 // imported into every module (including their initializers), and then cleaned
1285 // up afterwards.
1286 static bool needsConservativeImport(const GlobalValue *GV) {
1287 if (const auto *Var = dyn_cast<GlobalVariable>(GV))
1288 return Var->hasLocalLinkage();
1289 return isa<GlobalAlias>(GV);
1292 /// Prints a summary of the partition \p N, represented by module \p M, to \p
1293 /// OS.
1294 static void printPartitionSummary(raw_ostream &OS, unsigned N, const Module &M,
1295 unsigned PartCost, unsigned ModuleCost) {
1296 OS << "*** Partition P" << N << " ***\n";
1298 for (const auto &Fn : M) {
1299 if (!Fn.isDeclaration())
1300 OS << " - [function] " << Fn.getName() << "\n";
1303 for (const auto &GV : M.globals()) {
1304 if (GV.hasInitializer())
1305 OS << " - [global] " << GV.getName() << "\n";
1308 OS << "Partition contains " << formatRatioOf(PartCost, ModuleCost)
1309 << "% of the source\n";
1312 static void evaluateProposal(SplitProposal &Best, SplitProposal New) {
1313 SplitModuleTimer SMT("proposal_evaluation", "proposal ranking algorithm");
1315 LLVM_DEBUG({
1316 New.verifyCompleteness();
1317 if (DebugProposalSearch)
1318 New.print(dbgs());
1321 const double CurBScore = Best.getBottleneckScore();
1322 const double CurCSScore = Best.getCodeSizeScore();
1323 const double NewBScore = New.getBottleneckScore();
1324 const double NewCSScore = New.getCodeSizeScore();
1326 // TODO: Improve this
1327 // We can probably lower the precision of the comparison at first
1328 // e.g. if we have
1329 // - (Current): BScore: 0.489 CSCore 1.105
1330 // - (New): BScore: 0.475 CSCore 1.305
1331 // Currently we'd choose the new one because the bottleneck score is
1332 // lower, but the new one duplicates more code. It may be worth it to
1333 // discard the new proposal as the impact on build time is negligible.
1335 // Compare them
1336 bool IsBest = false;
1337 if (NewBScore < CurBScore)
1338 IsBest = true;
1339 else if (NewBScore == CurBScore)
1340 IsBest = (NewCSScore < CurCSScore); // Use code size as tie breaker.
1342 if (IsBest)
1343 Best = std::move(New);
1345 LLVM_DEBUG(if (DebugProposalSearch) {
1346 if (IsBest)
1347 dbgs() << "[search] new best proposal!\n";
1348 else
1349 dbgs() << "[search] discarding - not profitable\n";
1353 /// Trivial helper to create an identical copy of \p M.
1354 static std::unique_ptr<Module> cloneAll(const Module &M) {
1355 ValueToValueMapTy VMap;
1356 return CloneModule(M, VMap, [&](const GlobalValue *GV) { return true; });
1359 /// Writes \p SG as a DOTGraph to \ref ModuleDotCfgDir if requested.
1360 static void writeDOTGraph(const SplitGraph &SG) {
1361 if (ModuleDotCfgOutput.empty())
1362 return;
1364 std::error_code EC;
1365 raw_fd_ostream OS(ModuleDotCfgOutput, EC);
1366 if (EC) {
1367 errs() << "[" DEBUG_TYPE "]: cannot open '" << ModuleDotCfgOutput
1368 << "' - DOTGraph will not be printed\n";
1370 WriteGraph(OS, SG, /*ShortName=*/false,
1371 /*Title=*/SG.getModule().getName());
1374 static void splitAMDGPUModule(
1375 GetTTIFn GetTTI, Module &M, unsigned NumParts,
1376 function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) {
1377 CallGraph CG(M);
1379 // Externalize functions whose address are taken.
1381 // This is needed because partitioning is purely based on calls, but sometimes
1382 // a kernel/function may just look at the address of another local function
1383 // and not do anything (no calls). After partitioning, that local function may
1384 // end up in a different module (so it's just a declaration in the module
1385 // where its address is taken), which emits a "undefined hidden symbol" linker
1386 // error.
1388 // Additionally, it guides partitioning to not duplicate this function if it's
1389 // called directly at some point.
1391 // TODO: Could we be smarter about this ? This makes all functions whose
1392 // addresses are taken non-copyable. We should probably model this type of
1393 // constraint in the graph and use it to guide splitting, instead of
1394 // externalizing like this. Maybe non-copyable should really mean "keep one
1395 // visible copy, then internalize all other copies" for some functions?
1396 if (!NoExternalizeOnAddrTaken) {
1397 for (auto &Fn : M) {
1398 // TODO: Should aliases count? Probably not but they're so rare I'm not
1399 // sure it's worth fixing.
1400 if (Fn.hasLocalLinkage() && Fn.hasAddressTaken()) {
1401 LLVM_DEBUG(dbgs() << "[externalize] "; Fn.printAsOperand(dbgs());
1402 dbgs() << " because its address is taken\n");
1403 externalize(Fn);
1408 // Externalize local GVs, which avoids duplicating their initializers, which
1409 // in turns helps keep code size in check.
1410 if (!NoExternalizeGlobals) {
1411 for (auto &GV : M.globals()) {
1412 if (GV.hasLocalLinkage())
1413 LLVM_DEBUG(dbgs() << "[externalize] GV " << GV.getName() << '\n');
1414 externalize(GV);
1418 // Start by calculating the cost of every function in the module, as well as
1419 // the module's overall cost.
1420 FunctionsCostMap FnCosts;
1421 const CostType ModuleCost = calculateFunctionCosts(GetTTI, M, FnCosts);
1423 // Build the SplitGraph, which represents the module's functions and models
1424 // their dependencies accurately.
1425 SplitGraph SG(M, FnCosts, ModuleCost);
1426 SG.buildGraph(CG);
1428 if (SG.empty()) {
1429 LLVM_DEBUG(
1430 dbgs()
1431 << "[!] no nodes in graph, input is empty - no splitting possible\n");
1432 ModuleCallback(cloneAll(M));
1433 return;
1436 LLVM_DEBUG({
1437 dbgs() << "[graph] nodes:\n";
1438 for (const SplitGraph::Node *N : SG.nodes()) {
1439 dbgs() << " - [" << N->getID() << "]: " << N->getName() << " "
1440 << (N->isGraphEntryPoint() ? "(entry)" : "") << " "
1441 << (N->isNonCopyable() ? "(noncopyable)" : "") << "\n";
1445 writeDOTGraph(SG);
1447 LLVM_DEBUG(dbgs() << "[search] testing splitting strategies\n");
1449 std::optional<SplitProposal> Proposal;
1450 const auto EvaluateProposal = [&](SplitProposal SP) {
1451 SP.calculateScores();
1452 if (!Proposal)
1453 Proposal = std::move(SP);
1454 else
1455 evaluateProposal(*Proposal, std::move(SP));
1458 // TODO: It would be very easy to create new strategies by just adding a base
1459 // class to RecursiveSearchSplitting and abstracting it away.
1460 RecursiveSearchSplitting(SG, NumParts, EvaluateProposal).run();
1461 LLVM_DEBUG(if (Proposal) dbgs() << "[search done] selected proposal: "
1462 << Proposal->getName() << "\n";);
1464 if (!Proposal) {
1465 LLVM_DEBUG(dbgs() << "[!] no proposal made, no splitting possible!\n");
1466 ModuleCallback(cloneAll(M));
1467 return;
1470 LLVM_DEBUG(Proposal->print(dbgs()););
1472 std::optional<raw_fd_ostream> SummariesOS;
1473 if (!PartitionSummariesOutput.empty()) {
1474 std::error_code EC;
1475 SummariesOS.emplace(PartitionSummariesOutput, EC);
1476 if (EC)
1477 errs() << "[" DEBUG_TYPE "]: cannot open '" << PartitionSummariesOutput
1478 << "' - Partition summaries will not be printed\n";
1481 for (unsigned PID = 0; PID < NumParts; ++PID) {
1482 SplitModuleTimer SMT2("modules_creation",
1483 "creating modules for each partition");
1484 LLVM_DEBUG(dbgs() << "[split] creating new modules\n");
1486 DenseSet<const Function *> FnsInPart;
1487 for (unsigned NodeID : (*Proposal)[PID].set_bits())
1488 FnsInPart.insert(&SG.getNode(NodeID).getFunction());
1490 ValueToValueMapTy VMap;
1491 CostType PartCost = 0;
1492 std::unique_ptr<Module> MPart(
1493 CloneModule(M, VMap, [&](const GlobalValue *GV) {
1494 // Functions go in their assigned partition.
1495 if (const auto *Fn = dyn_cast<Function>(GV)) {
1496 if (FnsInPart.contains(Fn)) {
1497 PartCost += SG.getCost(*Fn);
1498 return true;
1500 return false;
1503 // Everything else goes in the first partition.
1504 return needsConservativeImport(GV) || PID == 0;
1505 }));
1507 // FIXME: Aliases aren't seen often, and their handling isn't perfect so
1508 // bugs are possible.
1510 // Clean-up conservatively imported GVs without any users.
1511 for (auto &GV : make_early_inc_range(MPart->global_values())) {
1512 if (needsConservativeImport(&GV) && GV.use_empty())
1513 GV.eraseFromParent();
1516 if (SummariesOS)
1517 printPartitionSummary(*SummariesOS, PID, *MPart, PartCost, ModuleCost);
1519 LLVM_DEBUG(
1520 printPartitionSummary(dbgs(), PID, *MPart, PartCost, ModuleCost));
1522 ModuleCallback(std::move(MPart));
1525 } // namespace
1527 PreservedAnalyses AMDGPUSplitModulePass::run(Module &M,
1528 ModuleAnalysisManager &MAM) {
1529 SplitModuleTimer SMT(
1530 "total", "total pass runtime (incl. potentially waiting for lockfile)");
1532 FunctionAnalysisManager &FAM =
1533 MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1534 const auto TTIGetter = [&FAM](Function &F) -> const TargetTransformInfo & {
1535 return FAM.getResult<TargetIRAnalysis>(F);
1538 bool Done = false;
1539 #ifndef NDEBUG
1540 if (UseLockFile) {
1541 SmallString<128> LockFilePath;
1542 sys::path::system_temp_directory(/*ErasedOnReboot=*/true, LockFilePath);
1543 sys::path::append(LockFilePath, "amdgpu-split-module-debug");
1544 LLVM_DEBUG(dbgs() << DEBUG_TYPE " using lockfile '" << LockFilePath
1545 << "'\n");
1547 while (true) {
1548 llvm::LockFileManager Locked(LockFilePath.str());
1549 switch (Locked) {
1550 case LockFileManager::LFS_Error:
1551 LLVM_DEBUG(
1552 dbgs() << "[amdgpu-split-module] unable to acquire lockfile, debug "
1553 "output may be mangled by other processes\n");
1554 Locked.unsafeRemoveLockFile();
1555 break;
1556 case LockFileManager::LFS_Owned:
1557 break;
1558 case LockFileManager::LFS_Shared: {
1559 switch (Locked.waitForUnlock()) {
1560 case LockFileManager::Res_Success:
1561 break;
1562 case LockFileManager::Res_OwnerDied:
1563 continue; // try again to get the lock.
1564 case LockFileManager::Res_Timeout:
1565 LLVM_DEBUG(
1566 dbgs()
1567 << "[amdgpu-split-module] unable to acquire lockfile, debug "
1568 "output may be mangled by other processes\n");
1569 Locked.unsafeRemoveLockFile();
1570 break; // give up
1572 break;
1576 splitAMDGPUModule(TTIGetter, M, N, ModuleCallback);
1577 Done = true;
1578 break;
1581 #endif
1583 if (!Done)
1584 splitAMDGPUModule(TTIGetter, M, N, ModuleCallback);
1586 // We can change linkage/visibilities in the input, consider that nothing is
1587 // preserved just to be safe. This pass runs last anyway.
1588 return PreservedAnalyses::none();
1590 } // namespace llvm